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A version of a network model of quantum Hall systems is studied classically. We assume that randomness
inherent in the problem enters the modelvia random heights of saddle points only. We use ideas from classical
percolation theory to calculate numerically the fractal dimensiondf , the correlation length exponentn, the
diffusion coefficientD, the corresponding exponentk, and other parameters of interest. The width of the
longitudinal conductivity peak scales with the classical localization length exponentn.
@S0163-1829~96!01936-4#

I. INTRODUCTION

Even though it has always been argued1,2 that electron-
electron interactions are not important for a description of
the integral quantum Hall effect3 ~QHE!, it came as a sur-
prise when experiments4,5 found the same value of the criti-
cal exponent for the delocalization transition as predicted by
the single-particle calculations.629

It is interesting to note the agreement of the value of the
localization length exponentn52.3460.04 obtained numer-
ically for the lowest Landau level and uncorrelated disorder7

with one calculated analytically via semiclassical
arguments8,10 n5 7

3 and those obtained numerically from
transfer-matrix analysis of the network models9

n52.560.5 and11 n52.460.2, which should apply to
smoothly varying potentials and strong magnetic fields.

Moreover, in semiclassical approximations8,10 the wave
interference effects~backscattering! seem to play only a mi-
nor role, and tunneling alone is made responsible for the
change of the classical percolation exponentn2D5 4

3 to
n511n2D5 7

3. The present understanding of the network
models is that both, quantum tunneling and interference ef-
fects, are important to give the proper value of the exponent.

The applicability of semiclassical~percolation! arguments
to the description of the integer QHE relies on the fact that
states of disordered two-dimensional electron gases placed in
high perpendicular magnetic fieldsB are concentrated on a
strip of width l ( l is the magnetic length! along equipotential
lines of the smoothly varying potential.9,12

In this work we shall use a representation of quantum Hall
systems by means of a square network. The bonds of the
network correspond to the equipotentials along which the
guiding centers of the electronic orbits drift. The sites or
nodes of the network represent saddle points of the real sys-
tem. The idea behind the introduction of the network model
in this context was that most interesting differences between
classical and quantum behavior are connected with the pos-
sibility of tunneling at shallow saddle points.9,13

It is our aim to study the network modelclassically, and
obtain information relevant to the QHE. In particular we are
interested in values of classical exponents near the~classical
percolation! delocalization transition. We study large net-
works with up to 300033000 saddle points with randomly
distributed heights. We neglect all other possible randomness

in the system, in particular the random distances between
saddle points. There are no wave aspects of particle motion
in the model. In this respect our study is complementary to a
previous classical analysis of quantum Hall effect.14

Previous work9,13 on network models of quantum Hall
systems concentrated on quantum tunneling and interference
effects. Randomness entered the model through random
phases of the wave function describing electrons moving
along bonds of the network. Using the classical approach we
completely neglect interference effects and also tunneling.
Randomness enters our model through random ‘‘heights’’ of
the saddle points.

Moreover, extensive use of ideas from percolation
theory15,16 allows us to calculate not only the correlation
length exponentn, the diffusion exponentk, and fractal di-
mensiondf , but also the longitudinal conductivity of the
biased system and its critical behavior.

In our studies we also tried to allow for tunneling, but
excluding interfence effects. Classically the trajectory near a
given saddle point always turns either right or left depending
on the energy difference of the trajectory and the saddle
point. When incorporating tunneling into the model, we cal-
culated the tunneling probability17 in either direction. In
practice the direction of the further motion of the particle
was determined by choosing a random number and compar-
ing it with corresponding probabilities. This simplest treat-
ment of tunneling leads to an increase of the correlation
length even beyond the expected valuen5 7

3.
The organization of the paper is as follows. In Sec. II we

define the model, explain our approach, and present some of
the results. In Sec. III we present the details connected with
a calculation of the longitudinal conductivity of the system,
and define the corresponding exponents. A summary of the
results and their discussion is given in Sec. IV.

II. NETWORK MODEL

A weakly disordered two-dimensional electron gas, when
placed in strong perpendicular magnetic fields, exhibits at
low temperature the quantization of the Hall resistancerxy
for a wide range of magnetic field values accompanied by
the vanishing of the longitudinal resistancerxx .
The physics of the QHE at the plateaus is quite well
understood.1 ,2
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The transition region between consecutive Hall plateaus,
whererxy is not quantized andrxx takes on nonzero values,
has attracted a lot of attention recently. In fact, the
experiments4,5 have shown that this transition is a continu-
ous phase transition with an electron localization length be-
ing the only divergent length scale:

j}uB2Bcu2n or j}uE2Ecu2n, ~1!

whereBc(Ec) are critical values of the magnetic field~Fermi
energy! at which the transition occurs.

Consider a system of noninteracting two-dimensional
electrons moving in a slowly varying potentialV(r ) and sub-
ject to a strong perpendicular magnetic fieldB described by
the vector potentialA~r !. The corresponding Hamiltonian
can be written in the form

H5
1

2m*
~p1eA!21V~r !, ~2!

with p52 i\¹, ande andm* denoting the electron charge
and the effective mass, respectively. The random potential
V(r ) is assumed to vary on a scalel much larger than the
magnetic lengthl ( l 25\/eB). The semiclassical picture of
the quantum Hall effect is valid, strictly speaking, in the
B→` limit. In the considered limit ofl@ l , the electron
motion consists of a cyclotron motion superimposed on a
slow drift perpendicular to the local electric fieldEW , which is
given by 2¹V(r ). The eigenstates of the system have a
nonzero amplitude in a strip of widthl along the equipoten-
tial lines V(r )5Ep . The corresponding eigenenergies are
given by the sum of the kinetic energy of the cyclotron mo-
tion (n1 1

2)\vc (vc5eB/m* is the cyclotron frequency,
n50,1,2 . . . denotes consecutive Landau levels! and the po-
tential energyEp . In infinite systems all equipotentials will
be closed at energiesEpÞEc . Ec is the only energy at which
infinite trajectories exist. The contours at energyEp will
come close together near the saddle points of the potential.

In a very interesting paper, Chalker and Coddington9 pro-
posed replacing the real system by a network with nodes
representing saddle points and links joining them. In their
analysis the randomness of the lengths of equipotential lines
between neighboring saddle points has been simulated by the
randomness of phase factors in transfer matrices,9 but the
randomness of the heights of saddle points was neglected.
Lee, Wang, and Kivelson11 generalized the model, and also
took the randomness of the heights into account. They claim
to see the crossover between the classical and quantum limits
as a function of the widthW of the probability distribution of
the heights of saddle points.

We assume the nodes of the network to form a two-
dimensional square lattice. In a classical approach it is not
important that we neglect the randomness in the distances
between saddle points. Their heights are assumed to be uni-
formly distributed over the regionEsP@2W/2,W/2#. In ac-
tual calculations we have takenW51. This means that the
system percolates atEc50. The distance between neighbor-
ing saddle points is taken as the unit of length, and the time
required to traverse it is taken as the time unit.

If we assume the magnetic field to be applied in the posi-
tive z direction, then the electron at energyE approaching a
saddle point having energy~height! Es will turn left ~right! if

E2Es.0(,0). It is the peculiarity of the system under
study that near the saddle point the particle cannot move in a
forward direction. As a consequence the trajectories of elec-
trons in a network model have a very complicated shape.

Looking at the time dependence of the average extension
^R2(t)& of the region visited by the particle in a large
N3M network, we can determine the diffusion exponent
k, defined for large timest through

^R2~ t !&5Dtk, ~3!

whereD is the diffusion coefficient. We considered the value
of k when only closed trajectories were taken into account,
and obtainedk'1, indicating that at large times the diffu-
sion is normal. When taking only open~i.e., those extended
from one side of the network to the opposite one! trajectories
into account, we obtainedk51.2060.05. Both values coin-
cide with those found in a previous classical study of quan-
tum Hall systems.14 Our data obtained for systems with
lengthN51000 and widthM5500 are shown in Fig. 1. We
have averaged over 4000 realizations of saddle-point energy
distributions.

It is the peculiarity of the system studied that localized
states exist at every energy, even at the percolation level
where also extended states exist. The picture of equipotential
lines in random potentials is very helpful in understanding
that. In the network representation the situation is quite the
same. So if we look at possible trajectories of the particle in
the network, we can ask what is the relation between their
average extension̂R& and their average lengtĥL&,

^L&5const̂R&df , ~4!

which defines the fractal dimension of the walk. We have
found df51.760.05 for both localized and extended trajec-
tories. This value is compatible with the expected exact
value 7/4. Our ‘‘random walker’’ on a network in fact probes
what is called the ‘‘external hull.’’15 The fractal dimension
for a two-dimensional system at the percolation threshold is
expected to be 91/48 exactly.

FIG. 1. The time dependence of the averaged extension of the
trajectorieŝ R2(t)& at the percolation level. The thin full line and
the dashed line refer to open trajectories. The dash-dotted line cor-
responds to averaging over trajectories spanning theN3M system.
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To study the localization length exponentn, we per-
formed extensive calculations of the mean extension^R& of
orbits at various energiesE aroundEc and various system
sizes. We took only localized trajectories to get rid of uncon-
trolled surface effects. For the largest system (300033000)
we were able to study the behavior at energies as low as
0.005.

In Fig. 2 we show all data calculated at a number of
energies and system sizes. For those energies at which the
localization length does not exceed the size of the system,
the averaged extension of the trajectory increases with de-
creasing energy toward the percolation level. For energies
close enough to the percolation level, the localization length
exceeds the system size, and^R& saturates. From scaling
assumptions we expect that the value of^R& at the percola-
tion level should scale with the size of the systemM with the
same exponent. We have checked this to be really the case.
From the data shown in Fig. 2, we have estimated
n51.3060.10. This value again is compatible with that ex-
pected from percolation theory15 n5 4

3, and agrees with a
previous classical calculation for QHE.14

III. CONDUCTIVITY

Imagine a very large rectangular network of dimensions
N3M . Let N be the length of its top~and bottom! row, and
M its width. If we connect the top and the bottom row of the
network to metallic electrodes, we can measure a currentI
flowing across the network. The position of the Fermi level
inside the electrodes controls the energy of an electron in-
jected into the network. We assume that the applied voltage
U is sufficiently small, and does not change the energies and
their distribution inside the system.18

From Ohm’s law we expect the conductanceI /U of the
system to be proportional to its lengthN and inversely pro-
portional to its widthM , so we can define the conductivity
s in usual way:

I

U
5s

N

M
. ~5!

In a finite system the currentI as well as the conductivity
s will depend on the widthM . The system will be conduct-
ing (IÞ0) at energyE, provided there exists a state extend-
ing between the electrodes at this energy. Again, in a finite
system this will happen for a range of energiesE for which
M,j(E). The conductivity is proportional to the total cur-
rent. Contrary to the usual situation in percolation
problems,15,16 there is no difficulty here in calculating total
currents across the system, as there are no closed loops on
the trajectories connecting both electrodes.

For fixedN the increase ofM at a given value of energy
leads to a diminishing of the current and also of the longitu-
dinal conductivity which eventually vanishes ifM.j(E).
We have used Eq.~5! to calculate theE- andM -dependent
conductivitys. We have obtained a roughly linear decrease
of s, calculated at the percolation energyEc , with M

sM~Ec!}M
21 for const N. ~6!

The situation is quite different if we go to the thermody-
namic limit by lettingN→` andM→`, but with an aspect
ratio ar5N/M5const. The dependence onE andM of the
resulting conductivity is shown in Fig. 3. One can see that
presumablysM(E)→0 with M ,N→` for all E except
E5Ec , where it saturates at largeM ~and forar being con-
stant!. Thus in the thermodynamic limit we expect a nonzero
value of the conductivity exactly at the percolation threshold.

To understand this behavior, and in particular the nonzero
value of the conductivity at the percolation level, let us note
the differences between our case and the classical percola-
tion. In classical case conductivity is a continous function of
probability p of permitted sites,15 and vanishes atp5pc . It
takes nonzero values forp.pc , and in particular forp51.
In our case the parameter controlling the distance from the

FIG. 2. The averaged square of the extension of electron trajec-
tories vs energy relative to percolation level, and for a number of
sample sizes ranging from 1003100 to 100031000 in steps of 100.
The dashed curve shows the dependence of^R2& on energy for the
largest system size.

FIG. 3. Energy dependence of the longitudinal conductivity
sxx ~for a discussion of units see text! for a number of system sizes.
The data have been obtained by averaging over 50 000 realizations
of the disorder. The aspect ratio was taken to be 1.
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percolation level is the position of the Fermi level. Not all
properties of the classical percolation systems viewed as
functions of p can be traced back here by replacingp by
E. In particular the region of nonzero values of conductivity
in classical percolation15 pc,p<1 shrinks here to a point
E5Ec .

Inspection of Eq.~3! and Fig.~1! shows that diffusion~for
E5Ec) over closed trajectories is normal,k51, while the
particle motion over open trajectories is superdiffusive with
k51.2. It is this regime which leads to nonzero value for the
conductivity at the percolation level.

Another way to understand this is to realize that the par-
ticle motion considered in our work takes place on the hulls
of the clusters. They are fractal objects with fractal dimen-
sion df @see Eq.~4!#. There are a few important differences
between classical diffusion and diffusion on fractals,19 but
we shall not discuss them here. Moreover, within the sub-
space of open trajectories the particles do not diffuse but
propagate in a single direction only, which leads tok.1.

The approach to the thermodynamic limit can be studied
by looking at the decrease of the width in energy (DE)s of
the conductivity with increasing system size. We show this
dependence in Fig. 4 on a log-log plot. The width ofs(E)
vanishes~as it should! with the inverse of classical localiza-
tion length exponentn.

In view of a recent proposal,20 it is also interesting to
study the scaling of the peak value of the conductivity, i.e.,
the dependence ofs(Ec) onM . In the present approach this
quantity does not behave statistically very well. The data
shown in Fig. 3 have been averaged over 50 000 realizations
of disorder, and close inspection still shows sizable fluctua-
tions.

If, however, we take the changes withM of sM(Ec) se-
riously, then the quantity20

DsM~Ec!5s`2sM~Ec!5aM2h8 ~7!

(s` denotes the conductivity in the thermodynamic limit!
vanishes with the exponenth851.3660.3. This number
does not exclude the valueh851.6360.03 found in previous
fully quantum-mechanical studies of the QHE by means of

direct numerical evaluation of the Kubo formula forsxx .
20

This exponent has previously been identified with the fractal
dimension of the wave functionD(2). In Ref. 20 it has been
also found that the value ofs` was universal, and equal to
0.5e2/h. To convert our arbitrary units of Fig. 3 to the physi-
cal ones, Bu¨ttiker’s21 approach in the limit of ideal contacts
can, in principle, be used with due attention to the boundary
conditions. We have, however, an independent method of
calibration for the conductivity axis~and finding the value of
s`) which is free of boundary conditions problems. To this
end it is enough to use diffusion constantD determined from
time simulations~see Fig. 1! and Einstein relation

sxx5e2rD, ~8!

wherer is the density of states. Similar arguments as pre-
sented previously14 lead to the simple resultr51/h. From
the data presented in Fig. 1, we haveD'0.4960.02, and
s`5(0.4960.02)(e2/h).

The quality of our results for the scaling of width of con-
ductivity and its approach of the limiting~seemingly univer-
sal! value and their analysis is shown in Fig. 4. If the iden-
tification ofh andD(2) is correct, we can expect, at least in
principle, a scaling of the peak of ‘‘classical’’ conductivity
sxx with the fractal dimensiondf which we have just esti-
mated to be 1.7060.05. This number is certainly larger than
the most optimistic estimate ofh8 , and our classical estima-
tion of this exponent compares better with the quantum value
than with the expected classical one. The obtained agreement
is a little bit surprising, because in our classical treatment all
quantities scale with known classical exponents. This reflects
some internal consistency in our approach. Is the agreement
of our exponent for the scaling of the conductivity peak with
a quantum one just a lucky coincidence, or does it mean that
the peak value of the conductivity scales with an exponent
which does not depend on the approach, or do they not differ
much? We think this point deserves further studies.

IV. SUMMARY AND DISCUSSION

We applied classical methods to analyze the behavior of
the network model, which is the proper model to study the
quantum Hall system in long-range random potentials. All
the exponents we calculated excepth8, which describes the
scaling of the conductivity peak, agree with the expected
values for a classical two-dimensional percolating system.15

It has been found that the classical treatment of the network
model gives a reasonable overall description of the proper-
ties of the system it models. The critical exponents, however,
are all classical ones, and differ from those found in
quantum-mechanical treatments. The fact that the width of
the energy-dependent conductivity scales with the same ex-
ponent as the independently determined localization length is
an indication of the internal consistency of the approach. As
already mentioned, the surprising similarity of the value of
the exponenth8 found here and in quantum mechanical cal-
culations, is not clear at present, and further studies are
needed to clarify this point.

We have also tried to simulate the quantum tunneling in
the present approach. To this end at each saddle point where

FIG. 4. Analysis of the data shown in Fig. 3. The width of the
conductivity scales with an exponenth51/n50.75. The scaling of
the peak value is compatible with the previously found value
h851.62.
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an electron arrived we have calculated the transmission prob-
ability by using the formula17

T~E!5$11exp@2p~E2Es!/V9l 2#%21, ~9!

whereV95(Vx9Vy9)
1/2 andVx9 andVy9 are curvatures at the

saddle point along the principal directions. The characteristic
value of V9 is G/d2. G here is the characteristic disorder-
induced broadening of the Landau level, andd is the corre-
lation radius of the random potential. In actual calculations
we have estimatedV95G/d2. Assuming thatG50.5 and
d/ l53, we end up with 2p/V9l 25100 for the numerical
value of the coefficient multiplying the energy in the expo-
nent. Our preliminary results are inconclusive as yet. At the
time being, we have not been able to show that^R2(t)&
saturates in the limitt→`. Consequently it is not clear
whether our model with tunneling included is critical at all.
The calculated correlation length exponentn has become
energy dependent taking on larger values for energies closer
to the percolation energyEc . A qualitative understanding of
this result is rather easy. With tunneling included, each par-
ticle orbiting the closed trajectory has a chance~presumably
after long time! to hop onto the neighboring trajectory. This
should lead to a small increase of the conductivity. Our re-
sults are suprising in the respect that we obtained large in-
creases of̂ R2& and s(E) when allowing for tunneling at
about 5% of all saddle points. One reason might be that our
observation time (106 steps! is still too small, or that our
method of accepting the tunneling event by comparing the
tunneling probability with an additional random number may
be not sufficient. An absence of a phase transition from lo-
calized to delocalized trajectories would possibly have to be
interpreted as an indication that not only the tunneling alone
but also backscattering effects~interference! do play an im-
portant role in driving the system into the correct universality
class.22 This, however, means that the proposed theory,8

based on classical percolation supplemented by tunneling,
does not give a proper explanation of the localization-
delocalization transition.

The other possibility is that the values of the correlation
length exponents are not universal and, in a noninteracting

system, do depend on the width of the saddle-point distribu-
tion ~cf. the two values found in Ref. 10 for two values of
W), or at constant distribution width~as in our case! on the
system size. This point of view is certainly a non-orthodox
one. But there are additional arguments which may be of
some relevance to this discussion. A recent result, claimed to
be exact, from renormalization group-calculations24 for the
case of a white-noise random potential states thatn52.
There exist some arguments25 that the network model with
no ~phase! randomness should shown51. To conclude this
paragraph: there recently appeared a number of results which
render the necessity of better understanding the delocaliza-
tion transition in QHE.

The network model has recently also been applied23 to a
description of spin degenerate systems for which experi-
ments measure values of the localization exponent half large
as for transitions between spin-split Landau levels. In the
present approach at a given energyE there would be two
electrons, one with spin-up and another with spin-down si-
multaneously ‘‘walking’’ through the network. If their en-
ergy differs by, say,D1/2, their trajectories~though corre-
sponding to the same energyE) will belong to two different
equipotential lines. In an extremal case the trajectory of one
of the electrons can span the~finite! system, while the other
can be localized inside it. The coupling between both trajec-
tories should, however, be taken into account, which means
that the larger orbits will make the main contribution to the
studied quantity.26 This in turn means that in our approach
some averaging over an energy binD1/2 would be necessary
to obtain the values of the exponent valid for a spin-
degenerate band. This subject is beyond the scope of the
present work.
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by Jànos Hajdu~VCH, Weinheim, 1994!.

2The Quantum Hall Effect, edited by R. Prange and S. M. Girvin
~Springer Verlag, Berlin, 1986!.

3K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.45,
494 ~1980!; K. von Klitzing, Rev. Mod. Phys.58, 519 ~1980!.

4S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev.
Lett. 67, 883 ~1991!.

5H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken,
Phys. Rev. Lett.61, 1294~1988!.

6A. M. M. Pruisken, Phys. Rev. Lett.61, 1294~1988!.
7B. Huckestein and B. Kramer, Phys. Rev. Lett.64, 1437~1990!;

H. Aoki and T. Ando, J. Phys. Soc. Jpn.54, 2239 ~1985!;
S.Hikami, Prog. Theor. Phys.76, 1210~1986!.

8G. V. Mil’nikov and I. M. Sokolov, Pis’ma Zh. E´ksp. Teor. Fiz.
48, 494 ~1988! @JETP Lett.48, 536 ~1988!#.

9J. T. Chalker and P. D. Coddington, J. Phys. C21, 2665~1988!.
10Alex Hansen and C. A. Lu¨tgen, Phys. Rev. B51, 5566~1995!.
11Dung-Hai Lee, Ziqiang Wang, and Steven Kivelson, Phys. Rev.

Lett. 70, 4130~1993!.
12S. V. Iordansky, Solid State Commun.43, 1 ~1982!; R. F. Ka-

zarinov and S. Luryi, Phys. Rev. B25, 7626~1982!; S. A. Trug-
man, ibid. 27 7539 ~1983!.

13J. F. G. Eastmond, Ph.D. thesis, University of Oxford, 1992~un-
published!.

14F. Evers and W. Brenig, Z. Phys. B94, 155 ~1994!.
15Dietrich Stauffer and Amnon Aharony,Introduction to Percola-

tion Theory, 2nd ed.~Taylor and Francis, London, 1992!.
16M. B. Isichenko, Rev. Mod. Phys.64, 961 ~1992!.
17H. A. Fertig and B. I. Halperin, Phys. Rev. B36, 7969~1987!.
18In reality one has to take the screening into account, which is very
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