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Abstract
Engineering a physical system to feature designated characteristics states an inverse design
problem, which is often determined by several discrete and continuous parameters. If such a
system must feature a particular behavior, the mentioned combination of both, discrete and
continuous, parameters results in a challenging optimization problem that requires an extensive
search for an optimal system design. However, if the corresponding inverse design problem can
be reformulated as a parameterized Markov decision process, reinforcement learning (RL)
provides a heuristic framework to solve it. In this work, we use multi-layer thin films as an
example of the aforementioned optimization problems and consider three design parameters:
Each of the thin film layer’s dielectric material (discrete) and thickness (continuous), as well as
the total number of layers (discrete). While recent methods merely determine the optimal
thicknesses and—less commonly—the layers’ materials, our approach optimizes the total
number of stacked layers as well. In summary, we further develop a Q-learning variant to solve
inverse design optimization and thereby outperform human experts and current approaches like
needle-point optimization or naive RL. For this purpose, we propose an exponentially
transformed reward signal that eases policy search and enables constrained optimization.
Moreover, the learned Q-values contain information about the optical properties of multi-layer
thin films, which allows us a physical interpretation or what-if analysis and thus enables
explainability.

Keywords: machine learning, reinforcement learning, inverse design problem, optics,
multi-layer thin-film, optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

In many fields of physics and engineering, the design of a sys-
tem is determined by (design) parameters. In recent years, the
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numerical prediction of the physical behavior of given designs
by forward simulations has become faster due to advances in
computational sciences. Conversely, the search for optimal
design parameters of a system that features a required beha-
vior remains a challenging inverse design problem. Actually, it
becomes even more ambitious as breakthroughs in fabrication
methods andmaterial sciences increased the number of access-
ible design parameters as well. Notably, a linear increase of
tunable parameters results in an exponential increase of the
search space volume that needs to be explored—an effect that
is often referred to as the curse of dimensionality [5]. By
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solving inverse design problems regarding optical nanostruc-
tures [36, 37, 40, 65, 70], meta-surfaces [27, 38, 69], integrated
photonics [18, 58], and thin films [36], deep learning [19, 33]
has proven to potentially master the curse of dimensionality.

Basically, deep neural networks (DNNs) can be thought of
as approximators for arbitrary nonlinear functions with any
desired accuracy [12, 13]—in natural sciences this is often
exploited to obtain differentiable surrogate models of phys-
ical processes. As such, they can be trained to estimate the
physical behavior given a design but not vice-versa due to the
ambiguous relations between a target behavior and the pos-
sibility of various corresponding design solutions. Therefore,
DNNs are used to surrogate the forward simulations of given
designs in order to implement gradient-based [46], generat-
ive [37] or evolutionary optimization approaches [23]. The lat-
ter aim to compensate for prediction errors of DNNs [17, 52],
which are used for regression tasks. In general, the sufficient
training of DNNs in a supervised manner requires extens-
ive hyperparameter optimization and costly pre-selection of
an extensive dataset to properly reflect the design space
[23, 33].

Instead of being directly trained to approximate the under-
lying physical problem, DNNs can be implemented to estim-
ate the expected future reward of a particular design. Here, the
reward of a design is determined by its performance of approx-
imating a particular target behavior. Reinforcement learning
(RL) utilizes such so-called value function approximations
to enforce high rewards by adapting design parameters. This
sequential adaption of parameters corresponds to traversing a
trajectory of designs in the search space. Importantly, the RL
agent can learn an optimal policy from delayed rewards and is
thus able to globally optimize non-convex functions. The cor-
responding formalism, notations and technical terms are expli-
citly introduced in sections 3 and 4. Although known since the
1950s, RL recently gained attention for solving inverse design
problems when it beats human skills at games like chess [54]
and Go [51, 53]. Since then, RL has been used in optics and
nanophotonics to deduce compact integrated photonic devices
[3] like on-chip silicon beam splitters (T-junctions) [2], based
on binary matrix representations of meta-materials. Moreover,
researchers reported Q-learning [63], a variant of RL, to sta-
bilize the phases in coherent beam combining applications
[61] and the operation of mode-locked lasers [56] by means
of influencing operating conditions like driving voltage, wave
plates or polarizers, respectively. The samemethod was imple-
mented to optimize the color generation from dielectric nano-
structures [25, 48] as well as to find the optimal thickness con-
figuration of multi-layer thin films [29]. In general, most of the
recently proposed and almost all of the previously mentioned
RL approaches that solve inverse design problems implement
variants of Q-learning so as to find the optimal design paramet-
ers. By construction, Q-learning requires each possible design
parameter to be discrete, although they may appear to be con-
tinuous in nature. In such cases, a vectorization and discret-
ization of continuous parameters is inevitable. This often not
only requires many dimensions and prohibits the integral solv-
ing of specific tasks, it also implies an unphysical degradation

of the underlying problem. To overcome the mentioned inad-
equacies, we propose to formulate design spaces that accom-
modate both, continuous and discrete, parameters as so-called
parameterized actions spaces. A brief summary of the corres-
ponding research history is provided in section 2.

In this work, the integral optimization of multi-layer thin
films is taken as an example to demonstrate how paramet-
erized RL can lead to very intuitive implementations of
physical problems that feature both, inter-dependent continu-
ous and discrete design parameters. Recent optical systems,
e.g. light-emitting diodes (LEDs, [11, 30, 72]) or vertical-
external-cavity surface-emitting-lasers [8, 20], feature multi-
layer thin films, which transmit or reflect designated parts of
the wave spectrum to achieve a certain functionality [34, 39].
For example, multi-layer thin films are widely used for anti-
reflection coating [1, 14, 49, 59, 60]. In general, optimizing
those layer stacks with respect to their optical characterist-
ics states an inverse design problem, which covers discrete
as well as continuous parameters. Namely, the total number
of layers and each layer’s dielectric material as well as each
layer’s thickness. However, considering all these parameters
results in a large number of possible designs and particularly
in a large number of designs with sub-optimal optical proper-
ties. Thus, the corresponding search space is non-convex and
contains many sub-optimal local optima [24, 34] of flat fit-
ness [1, 4, 49], which renders gradient-based optimization dif-
ficult. Although the existence of a global optimum is mathem-
atically and computationally evinced [14, 59, 60], algorithms
that guarantee finding the global optimum in an exhaustive
search tend to be computationally intractable, even if only
layer thicknesses of less than four layers in total are considered
[16]. Thus, in accordance with some theoretical and analyt-
ical investigations [1, 15, 28, 68, 71], including genetic and
evolutionary approaches, multi-layer thin films are also optim-
ized based on heuristic approaches [10, 21, 29, 41, 44, 67].
Alike many of the mentioned methods, deep learning-assisted
techniques are reported to optimize layer thicknesses only:
Roberts et al [47] proposed a variational autoencoder, Liu et al
[36] combined forward modeling and inverse design in a tan-
dem of DNNs, and Hegde [23] blended deep learning with
evolutionary elements.While the needle-pointmethod (NPM),
proposed by Dobrowolski et al [55], uses a gradient-based
approach to optimize both, materials and thicknesses, of multi-
layer thin films, their algorithm cannot fully incorporate dis-
persive materials, a prerequisite for many optical optimization
problems. Note that for comparison we used an implementa-
tion of NPM, called OpenFilters [32], to validate some of our
results. However, due to the aforementioned non-convexity,
solutions found by NPM tend to be insufficient if the initial
design differs widely from the optimal one.

In this work, we propose a RL algorithm [62, 63] for the
optimization of multi-layer thin films, which is based onmulti-
path deep Q-learning (MP-DQN, [6]). Our approach allows us
to incorporate all three design parameters as well as to oper-
ate directly in the space of so-called parameterized actions,
where each discrete action is accompanied by a continu-
ous action-parameter. Remarkably, our approach finds designs
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from scratch, that is without any pre-determination of the num-
ber of layers, supporting the assumption that MP-DQN is able
to overcome local optima to some extent. Furthermore, we
impose constraints on the design parameters via a Lagrangian
formalism, so as to achieve multi-layer thin film designs that
feature less complex structures while preserving designated
optical characteristics, namely spectral and angular reflectiv-
ity, of multi-layer thin films. We demonstrate our algorithm on
three different optimization tasks and show that it outperforms
multi-layer thin films developed by an expert-guided NPM
approach as well as by a standardQ-learning algorithm [29]. In
addition, many hyperparameters of MP-DQN are defined such
that they have a physical correspondence regarding the pro-
posed multi-layer thin films. Based on this, Q-value estimates
are intuitively used to pursue awhat-if analysis and thus invest-
igate the behavior of a design under particular layer changes.
As such, our approach represents an example of physics-
guided explainable artificial intelligence. To achieve discrim-
inability of different multi-layer designs in terms of reward, we
introduce a domain-agnostic exponential transformation that
can be adapted to other optimization tasks, e.g. when a recon-
struction error should be minimized.

2. Parameterized action spaces and inverse design
problems: a short research history and merger

RL [57] and especially deep Q-learning have driven major
advances in finding an optimal policy in many domains that
allow either continuous [35] or discrete actions [43]. The
combination of both, discrete and continuous actions, results
in parameterized action spaces [42]. Recent work has found
sophisticated behavior policies in domains such as 2D robot
soccer [6, 22, 26], simulated human–robot interaction [31]
and terrain-adaptive bipedal and quadrupedal locomotion [45].
In general, the approaches to solving tasks that include para-
meterized actions are two-fold: first, hierarchical techniques
separate the optimization of discrete actions and continuous
action-parameters by iteratively alternating between them dur-
ing optimization [31, 42]. Therefore, they omit an exchange of
information between the policies for discrete and continuous
actions, respectively. Second, some recent work focuses on
transforming the parameterized actions into continuous [22]
or discrete ones [29]. Here, the interaction between continu-
ous and discrete actions is not exploited. Hence, by construc-
tion, these concepts are not suitable to represent the intrinsic
information contained in parameterized action spaces. How-
ever, Xiong et al [66] adapted DQN [62] to parameterize
each discrete action with a continuous value, thereby incor-
porating interactions between them. The proposed path-DQN
(P-DQN) allows policy optimization directly in a paramet-
erized action space. Bester et al [6] suggested so-called
MP-DQN, based on their assumption that P-DQN implements
the Bellman equation for parameterized action spaces incon-
gruously. Based on MP-DQN, we propose an algorithm for
solving inverse design problems that include parameterized
actions. Namely, we optimize multi-layer thin films while

avoiding unphysical assumptions and sticking closely to the
physical domain. For instance, each discrete material choice
of a particular layer is parameterized by a continuous thick-
ness value. A sequence of such design choices results in a tra-
jectory of multi-layer thin films with an ascending number of
layers in the search space. Conceptionally, this approach can
be extended to various other inverse design problems such as
the design of meta-lenses [48], which feature continuous (like
thicknesses, diameter or angles) and discrete (like materials or
basic geometric shapes of components) design parameters.

3. Multi-layer thin films and the inverse design
problem

In this work, the design of a multi-layer thin film is specified
by three parameters, starting with the total number L ∈ N of
layers in the layer stack. Each of these consecutive layers con-
sists of amaterial with a certain refractive index and a specified
thickness. Thus, we can encode all parameters of a multi-
layer thin film as a vector n ∈ CL of refractive indices and a
vector t ∈ RL of thickness values, respectively. Based on the
transfer matrix method [7] implemented by an open-source
Python program [9], the corresponding reflectivity Rλ,φ (n, t)
is obtained as a function of the design parameters n and t as
well as the wavelength λ and the incidence angle φ of the
incoming light. Here, a LED functions as a light source that
emits an unpolarized electromagnetic spectrum at different
angles. We thus get a vector of reflectivity values R(n, t) =
(Rλ,φ (n, t) |λ ∈ Λ,φ ∈ Φ), where Λ,Φ⊂ R denote discrete
and compact sets of wavelengths and incidence angles of the
emitted radiation, respectively. Based on the intended applic-
ation of an optical system, the design is required to feature a
target reflectivity vector T= (Tλ,φ|λ ∈ Λ,φ ∈ Φ). Therefore,
we can propose an objective function

F(n, t,T) =− 1
|Φ| · |Λ|

·
∑

φ∈Φ

∑
λ∈Λ
|Rλ,φ (n, t)−Tλ,φ|2

− µ

L
·
∑L

l=1
tl , µ > 0 (1)

that we aim to maximize. Here, the first summand com-
putes the mean squared error between a given and a target
reflectivity curve. The multiplier µ in the second addend, a
Lagrangian term, introduces regularization, which punishes
complex design suggestions. Complexity here refers to the
number of layers and layer thicknesses. In principle, the Lag-
rangian formalism can be used to include additional con-
straints. However, using this constrained objective function
as a reward signal for the RL algorithm results in barely dif-
ferentiable rewards for designs with reflectivity values close
to the target reflectivity. This effect may be attributed to
the quadratic form of equation (1), which yields high, but
nearly constant values for near-optimal designs. We address
this shortcoming by introducing an exponential transforma-
tion r≡ exp(α ·F) , α > 0, which scales the observed reward
r between 0.01 and 1. Here, α is an empirically determ-
ined scaling hyperparameter, as explained in appendix B. As
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Figure 1. Illustration of the mapping between error and reward,
highlighting the regions that divide the search space.

illustrated in figure 1, the reward function now emphasizes
the differences in near-optimal system designs while design
options with undesirable optical responses are still assigned
a low reward. Following the Bellman equation, the discrim-
inability of the rewards is directly imparted to the estimated
Q-values, which in turn evaluate the given states. As a result,
decision making and learning are improved in general.

4. RL for optimization in parameterized action
spaces

In RL, an agent aims to maximize a reward signal that is
calculated with respect to the environment’s current state.
Such a state can be described as a concatenated set si =
{n, t} ⊂ S, where i is the current episode’s step number and
S denotes the set of possible states. At the beginning of
each of the E ∈ N episodes, all entries of the vectors n and
t are set to zero. As stated in algorithm 1, the agent suc-
cessively executes parameterized actions ai = (ni, ti) ∈ N×T,
which determine the refractive index ni and the thickness
ti of the current layer i⩽ L. Instead of choosing ni and ti,
the agent can also terminate the episode and hereby determ-
ine the total number of layers l of the current multi-layer
thin film, such that l⩽ L. The parameterized action space
becomes A= {a= (n, t) |n ∈ N, t ∈ T}. Obviously, the pre-
definition of the sets of possible thickness values T⊂ R+

and available refractive indices N⊂ C allows to impose addi-
tional hard constraints on the optimization, e.g. to meet man-
ufacturing constraints. Note that our approach is conception-
ally applicable in presence of dispersive materials. For con-
venience and consistency reasons regarding the experiments
in section 5, we allowed only real-valued constant refract-
ive indices to be chosen by the agent throughout this study.
After an episode is terminated, either by the agent’s choice
or by reaching the maximum number of layers L, the multi-
layer thin film’s reflectivity curve is simulated. Based on this
reflectivity a reward is assigned, as explained in section 3. In

Algorithm 1 MP-DQN for inverse design optimization

1. Initialize θ,θ ′,E,L,D, τ
2. for e= 1 :E do
3. Initialize s0 (with zeros) and adapt ε
4. for i= 0 : (L− 1) do
5. With probability ε select random action (ni, ti)
6. Otherwise select ai = (ni, ti) = argmaxa ′(Q̂(si,a ′|θ))
7. Stack layer (ni, ti) and observe ri,si+1

8. Store transition (si,ai,ri,si+1) in D
9. end for
10. Sample random mini-batch B ⊂D of transitions

{(sj,aj,rj,sj+1)}j
11. For each transition compute

y= rj+ γ ·maxa ′(Q̂(sj+1,a
′|θ ′))

12. Compute loss L=
∑

B(y− Q̂(sj,aj|θ))2
13. Perform gradient descent on θ following Bester et al [6]
14. if target network update then
15. Update θ ′ using Polyak averaging θ ′← τ · θ+(1− τ) · θ ′

16. end if
17. end for

order to minimize costly calls to the simulation software, each
of the non-terminal states is assigned a zero reward. Because
these so-called delayed rewards impede Q-value approxima-
tion, we rate non-terminal states recursively using an l-step
return, ri−1← γ · ri, 0< i⩽ l, where rl≡r is the final reward
and γ= 0.95 is the discount factor for the future reward.

The described formalism allows us to interpret the prob-
lem as a parameterized action Markov decision process
(S,A,P,r,γ) (PAMDP, [42]), where P(si+1|si) is the Markov
state transition probability function. Each transition in this pro-
cess gets stored in a replay memoryD, as a tuple of the current
state si, the taken action ai, the subsequent state si+ 1, and the
l-step return ri. Using MP-DQN, the collected data and the
Bellman equation are used to approximate the Q-values

Q(si,ai) = Eri,si+1 [ri+ γ ·max
ai+1

Q(si+1,ai+1) |si,ai] (2)

that are the expected future rewards given a current state and a
particular parameterized action. As a result, the optimal policy
π : s 7→ argmaxa ′Q̂(s,a ′) is given by taking actions a corres-
ponding to maximum Q-value estimates Q̂(s,a)≈ Q(s,a) in
a particular state s. To approximate the Q-values, we imple-
ment a sequence of DNNs f and g with joint parameteriza-
tion θ. Briefly explained, we estimate possible thickness val-
ues for each material available given the current state by the
network g : S 7→ T|N| that features |s| input nodes and |N|
output nodes. Each output node corresponds to a material
in N and suggests the thickness value of the next layer to
stack if the respective material is chosen. Which material is
actually chosen is based on the multi-path policy evaluation
f(s,g(s)|θ), with |N|+ 1 outputs. Each output value repres-
ents a Q-value estimate, Q̂(s,a|θ)≡ Q̂(s,a), for the associ-
ated parameterized action while taking into account both, the
current state s and the suggestions for thickness values g(s).
Note that there is one additional node, which represents the
action that terminates an episode. We illustrate our approach
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Figure 2. The layer stack is iteratively generated based on the agent’s actions. After the terminal state is reached, a simulation reveals the
reflectivity behavior over wavelength. This is used to compute the reward signal r and corresponding l-step returns. The obtained experience
is stored in a prioritized replay memory and used for adapting the policy.

Table 1. Summary of the tasks including their target curves T, considered wavelengths Λ and incident angles Φ. L denotes the maximum
number of layers placed, |N| and |S| are the number of available materials and the approximate number of states of the resulting PAMDP,
respectively.

ID T Λ (nm) Φ (◦) L |S| |N|

1 Tλ,φ = 1/375×λ− 16/15 [400, 700] {0} 8 2.24× 1029 4
2 Tλ,φ = 1/2× [1− tanh(λ− 550)] [400, 700] {0} 8 2.24× 1029 4
3 Tλ,φ = 1.0 [445, 455] [0, 60] 34 1.94× 10108 2

in figure 2 which reveals that MP-DQN extends the DQN
algorithm so as to solve PAMDPs by considering network g as
an intermediate continuous actor and network f as an approx-
imator of Q-values, thus functioning as a discrete actor.

As in common DQNs, the successively collected data is
highly correlated and its distribution varies due to policy adap-
tion during optimization. This violates the assumption of inde-
pendent and identically distributed data for neural network
training. Hence, to stabilize policy optimization we introduce
a target network [62] and a replay memory D [43], where
sampling from D breaks the correlation between data gener-
ated by the same trajectory. The target and policy networks
feature two hidden layers with 256 nodes each. As outlined
in algorithm 1, after each episode and entailed l-step return
calculation, the policy network parameterization θ is updated
with a learning rate of 0.001. The target network parameter-
ization θ ′ is updated every ten episodes using Polyak aver-
aging, with τ = 0.01. The replay memory was adapted for
optical design optimization by implementing a non-uniform
random drawing of training batches, so-called prioritization
[50]. The probability of choosing a particular transition from
the replay memory is determined by applying the softmax
function to the losses of transitions. Thus, transitions that cor-
respond to misestimated Q-values have a higher probability
of being sampled. Another important aspect of optimization
algorithms in general is the exploration-exploitation trade-off
that is implemented through an ε-greedy policy in this work.
We adapt ϵ ∈ [ϵfinal,1] before each episode. Beginning from
ε= 1, we exponentially reduce ε by a factor of 0.997 until
ϵ= ϵfinal, such that (1− ϵfinal)

L ≈ 0.3 holds. This turned out to
be an adequate long-term trade-off between exploration and

exploitation, as the agent can design a multi-layer thin film in
3 out of 10 episodes without any random exploration. Note
that RL is employed to solve an optimization problem. Thus,
convergence of the policy is not intended, because this would
result in proposing the same optical system again and again
without any additional information gain.

5. Experiments

To analyze our MP-DQN approach, we perform optimization
on three different tasks, as stated in table 1. For each task, the
multi-layer thin film is cladded with air (top side) and a semi-
infinite substrate of refractive index 3.194+ 0.00018 · i ∈ C
(bottom side). The choosable materials exhibit real-valued
refractive indices. To realize the extent of the correspond-
ing search spaces, we can approximate the total number of
possible states to be |S|=

∑L
l=1 |T|l · |N| · (|N| − 1)l−1, if we

assume discrete layer thicknesses from 0 to 150 nm in steps
of 0.1 nm resulting in a total number of |T|= 1500 thick-
ness values [29]. We compare our experimental results to
multi-layer thin films designed by human experts and another
Q-learning algorithm [29], henceforth referred to as DQN
algorithm. However, to enhance comparability between our
approach and the DQN algorithm, we enabled the latter to not
only optimize over layer thicknesses but also over layer mater-
ials. Nevertheless, contrary to our approach, DQN operates on
discretized thickness values and a pre-defined stack consisting
of a fixed number of layers. Therefore, DQN’s design initial-
ization was set to a random but fixed layer stack at the begin-
ning of each of the 200 episodes, which cover 250 steps each.
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Figure 3. Illustration of the target and reflectivity curves that correspond to the highest obtained reward using MP-DQN (ours) and DQN.
Moreover, we validated our results using NPM. The achieved reward is denoted in brackets. In addition, the reflectivity curve obtained by a
distributed Bragg reflector (DBR, see appendix A) is visualized for task 2. We set α= 18.42 and µ= 0 in order to compute the reward based
on equation (1).

We run DQN ten times and report the reflectivity curves cor-
responding to the highest achieved rewards for tasks 1 and 2.
After running our approach once for 10 000 episodes with L
steps each, we compare the results of our approach and the
DQN algorithm. Figure 3 reveals that we distinctively outper-
form DQN not only in terms of achieved best rewards, which
were improved by at least 20% for task 1 and 2: Whereas
our approach employs 10 000 simulation calls, DQN relies
on one simulation call per step resulting in 50 000 simula-
tion calls in each run. Moreover, the same figure states that
MP-DQN achieves an even higher reward compared to a dis-
tributed Bragg reflector (DBR, see appendix A), which is a
physically deduced solution for task 2. The material configur-
ation of the DBR and the multi-layer thin film suggested by
our approach are used with randomized layer thickness values
as initial designs for NPM to solve task 2. The most suitable
reflectivity behavior that was observed in ten NPM runs with
randomized initial thicknesses is reported in figure 3. Here,
the orange area denotes the deviation between the reflectivities
achieved byMP-DQN and NPM. This procedure was repeated
for task 1 as well, where we used the design suggested by our
approach as initial design for the NPM only. As for both tasks
the maximum number L= 8 of layers stacked by MP-DQN is
fixed, we considered only solutions of NPM consisting of less
than ten layers. Notably, we found that NPM did not converge
to a sufficient solution if started from scratch for both, task 1
and 2.

5.1. Constrained optimization

To control the complexity of the designs created by our
MP-DQN approach, we run task 1 again, using a constrained
optimization by setting µ= 0.1 in equation (1). When com-
paring designs that achieve the same unconstrained reward
of approximately 0.99, performing constrained optimization
yields a distinctively thinner design with a total thickness of
503.7 nm, whereas the unconstrained approach (µ= 0.0) sug-
gests 598.2 nm. Note that as the constrained reward features
an additional non-zero term, the comparison of unconstrained

Figure 4. Task 3. On top, the reference design and the design
obtained by MP-DQN are depicted. The designs feature alternating
layers of two materials with real-valued refractive indices. The
bottom illustration depicts the target and specification reflectivity as
well as the averaged reflectivities for considered wavelengths over
angle. The filled area (orange) represents the solution found by
NPM [32] if the design of MP-DQN is used as a starting point.

and constrained reward is invalid. Thus, we report and com-
pare unconstrained rewards for both cases. Due to the convin-
cing proof of concept regarding task 1 and 2, we apply the
same Lagrangian multiplier µ= 0.1 to optimize task 3. Due to
manufacturing guidelines, only two materials are available for
this task. We compare the constrained optimization result with
a reference design that consists of 34 layers and was empir-
ically developed by human experts. Namely, optical engin-
eers estimated the number of layers and materials. Afterwards,
the aforementioned NPM was used to refine the suggested
expert designs. Note that the NPM approach did not converge
to a suitable solution if started from scratch. As shown in
figure 4, we outperform the reference (Expert + NPM, blue
line) and satisfy the specification (Spec, dashed gray line),
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Table 2. Each row represents an available material (Mat.), where Re(ni) denotes the real parts of the associated refractive indices. Each
column 1–8 corresponds to a layer i. The first sub-row in each column contains the estimated Q-values Q̂ while following the optimal policy
for task 2 (bold values). The grayscale values indicate relative differences in the magnitude of Q-values in each column. The second sub-row
in each column contains the optical path length pi, the third sub-row the l-step return ri resulting if a particular action was taken and we
follow the optimal policy in each (other) state.

Mat. Re(ni) Layer i 1 2 3 4 5 6 7 8

Q̂ 0.501 0.297 0.551 0.423 0.631 0.514 0.647 0.509
One 1.457 pi 0.580 0.380 0.735 0.312 0.790 0.613 1.199 0.376

ri 0.544 0.256 0.603 0.429 0.668 0.493 0.741 0.499
Q̂ 0.388 0.270 0.506 0.484 0.596 0.527 0.517 0.536

Two 1.645 pi 0.636 0.834 0.742 0.575 0.939 0.551 0.279 0.357
ri 0.414 0.257 0.485 0.477 0.619 0.605 0.568 0.513
Q̂ 0.316 0.362 0.416 0.544 0.586 0.578 0.612 0.714

Three 1.860 pi 0.663 0.703 0.967 0.661 1.273 0.609 1.473 0.313
ri 0.303 0.337 0.427 0.567 0.566 0.559 0.589 0.780
Q̂ 0.232 0.539 0.339 0.651 0.457 0.682 0.559 0.395

Four 2.327 pi 0.793 0.694 1.669 0.792 1.647 0.665 1.578 2.296
ri 0.182 0.573 0.294 0.634 0.493 0.703 0.575 0.433

using only 19 layers, with 1307.1 nm thickness in total. Prac-
tically, this reduction in complexity not only decreases pro-
duction costs and difficulties but also reduces optical absorp-
tion losses in the stack. Finally, to verify our MP-DQN’s
design (orange line), we set it as a starting point for NPM
with randomized thickness values again. The optimization res-
ulted in an increase of the unconstrained reward by 0.001 after
ten restarts of NPM with randomized layer thicknesses. The
thereby best obtained reflectivity is achieved with 20 layers
and illustrated in figure 4 (orange area). Thus, the NPM’s mar-
ginal improvement is achieved by an undesirable increase of
the total thickness by 87.3 nm and—more importantly—one
additional layer. This observation indicates that the heuristic
MP-DQN finds—at least—a local optimum of the constrained
reward regarding layer thicknesses and materials.

5.2. Review from a physical point of view

A physicist’s intuition about solving task 2 corresponds to
a DBR. Here, our approach coincides with the respective
material configuration—except for the last layer. As table 2
shows, the agent places material 3 instead of further altern-
ating between materials 1 and 4. Inspired by the finding that
material 4 surprisingly features the lowest Q-value, we ana-
lyzed Q-values in terms of optical characteristics. Therefore,
we compare the Q-value estimation Q̂(si,ai) of each trans-
ition i of an episode with respect to the optical characterist-
ics of the underlying parameterized action ai = (ni, ti) given
the same state si. The first optical characteristic that we con-
sider is the refractive index ni, the second characteristic is the
resulting optical path length pi = ni · ti. Interestingly, table 2
indicates that the functional dependencies Q̂(si,ni)≈ Q̂(si,ai)
show monotonic and in general convex behavior and non-
convex behavior in case of Q̂(si,pi)≈ Q̂(si,ai) for a fixed
state si, respectively. These relations suggest that the relative
order of the Q-value estimates is mainly based on the refract-
ive indices rather than thicknesses that are associated with an
action. Moreover, as convexity prohibits the existence of local

Figure 5. Given task 2, the estimated Q-values corresponding to the
first four layers are illustrated. Each Q-value corresponds to an
available material. The materials 1–4 are sorted by refractive indices
in ascending order.

optima aside from the global optimum, Q-values seem to val-
idly reflect relative adequacy of actions in terms of their asso-
ciated refractive indices in a particular state. We illustrate this
phenomenon in figure 5.

In addition, the expected future reward enables further
physical understanding by conducting a what-if analysis.
Namely, Q-values are interpreted as estimations of l-step
returns and thus design behavior, e.g. when a particular layer is
changed. This was validated by following the optimal policy
until layer i, taking a non-optimal parameterized action, and
then following the optimal policy again until the terminal
state. After conducting this for every possible parameterized
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action, the observed l-step returns ri were collected in table 2.
These results indicate that the influence of a design choice
on the obtained l-step return is identified by the Q-values.
Thus, engineers can infer physical knowledge, e.g. investigat-
ing where and why the optimal multi-layer thin film deviates
from a physical intuition as exemplified above for task 2. We
elucidate the acquired insights about convexity and the what-if
analysis in appendix C while also providing information about
the learning dynamics.

6. Conclusion

Many inverse design problems in optics and physics fea-
ture discrete and continuous parameters, which often makes
them only insufficiently solvable. In this work, we present
a MP-DQN framework that presents a heuristic solution to
inverse design problems. We demonstrated the suitability of
our approach using the example of multi-layer thin film optim-
ization, which includes discrete as well as continuous para-
meters. The environment for the RL agent is emulated by a
simulation, based on whose outcomes the reward is computed.
Thus, the proposed method can be used in absence of gradi-
ent information or prior assumptions about the system under
consideration as well. Our contribution is three-fold: first,
we demonstrate how to formulate inverse design problems as
parameterized Markov decision processes in order to solve
them with parameterized RL. Notably, our approach abandons
the unphysical reduction of the search space as well as the need
to rely on prior beliefs about the underlying system, which
both may lead to sub-optimal results. Hence, system designs
are optimized with respect to their entire physical structure
and as a result, our approach distinctively outperforms other
methods. Second, we develop a general constrained objective
function to compute rewards based on an exponential trans-
formation. The resulting reward signal becomes differenti-
able, which eases the agent’s policy optimization and decision
making. Moreover, it enables us to control the complexity
of suggested system designs, which reduces production costs
and decreases optical absorption losses in multi-layer thin
films. Finally, we perform a what-if analysis based on Q-value
estimates and thereby demonstrate how physicists can gain
insights from the estimated Q-values. Eventually, the proposed
approach represents an example of physics-guided explainable
artificial intelligence.
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Appendix A. Filter construction using distributed
Bragg reflectors

A distributed Bragg reflector (DBR) is an efficient optical
reflector that consists of alternating thin films of materials
with different refractive indices. Basically, a DBR is determ-
ined by two thickness values t1, t2 ∈ R+ and real refractive
indices n1,n2 ∈ R+, where n1 < n2 holds. Task 2 of table 1
corresponds to a high-pass filter in the wavelength domain,
because wavelengths lower than 550 nm should be reflected.
To obtain a physically deduced filter and thus a solution to
task 2, we can use a DBR [39]. Here, the wavelength width
∆λ of the stopping band can be computed with respect to the
center wavelength λ0 of the stopping band. In addition, we
want the stopping band to end at 550 nm and set n1 = 1.457
and n2 = 2.327. The obtained linear equation system

∆λ=
4
π
·λ0 · arcsin

∣∣∣∣n2− n1n2 + n1

∣∣∣∣
λ0 +∆λ= 550nm

yields λ0 = 424.59 nm. The resonance condition for first
order constructive interference n1 · t1 = n2 · t2 = λ0/4 yields
t1 = 72.85 nm and t2 = 45.62 nm. To obtain an eight-layer
DBR of 473.88 nm total thickness, we repeatedly stack these
two layers four times.

Appendix B. Impact of reward transformation and
Q-value reliability

Following the optimal policy, which leads to an optimal multi-
layer thin film, relies on an accurate Q-value estimation for
as many state-action pairs as possible. Moreover, to ease
decision making, the Q-value estimates for particular paramet-
erized actions should be as distinguishable as possible. This
condition does not apply if the rewards of more and more
improved designs remain almost constant, because equation
(2) and its implementation in algorithm 1 reveal that in such
a case the Q-value estimates will be almost constant, too. On
the other hand, many regions in the design search space are
completely inadequate for solving a given task and should
be assigned a very small reward. This is why we introduce a
dedicated reward transformation, which relies on a hyperpara-
meter α > 0 and is illustrated in figure 1. The hyperparameter
is computed by

α=−1
η
· ln

(
β1

β2

)
= 18.42,

where β1 = 0.01 and β2 = 1.0 are the lower and upper bound
hyperparameters for the reward, respectively. The empirical
mean value η= 0.25 of equation (1) is computed based on
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Figure 6. The best obtained objective (1) and reward over episode
of its achievement for α= 18.42 reveals the higher discriminability
of designs during training. Axis limits are chosen such that the
absolute length of the axes of reward and error coincide.

1000 randomly drawn multi-layer thin films. The impact of
this transformation regarding task 2 is illustrated in figure 6.

It is often not discussed that the approximation of Q-values
can be monitored during policy optimization. In figure 7, we
depict the mean value and standard deviation of the loss L
for task 2, which is computed every episode according to
algorithm 1, based on the entire data in the replay memory D.
Unsurprisingly, in the beginning, the loss is high, because the
training, which is based on batches of size 128, starts when the
replay memory of total size 5000 contains an initial number of
500 transitions. This prevents the neural network parameteriz-
ations from being biased due to very limited data in the early
training phase. Moreover, the impact of different final explora-
tion probabilities ϵfinal and the effect of prioritization is observ-
able.Whereas a higher value for ϵfinal implies more exploration
of unknown regions of the search space and thus uncertainty in
the underlying Q-value estimation, prioritization reduces the
standard deviation of loss values by preferring misestimated
transitions for sampling into the mini-batches used for train-
ing. Monitoring the approximation of Q-values in the replay
memory can function as an indicator in many respects. For
example to answer the questions of whether to initiate more
exploration in case of overfitting or whether the engineers can
trust a Q-value approximation in general or should adapt their
hyperparameters.

Appendix C. Learning dynamics

In addition to the loss, we also tracked l-step returns and even-
tually achieved rewards for each episode. Figure 8 depicts
these measures for two different values of the final explora-
tion probability ϵfinal solving task 2. As expected, we achieve
higher running rewards with lower ϵfinal. In addition and more
importantly, the best obtained reward remains nearly stable in
both cases although the best proposed optical design differs
due to various local optima in the search space. Finally, we
investigated how the functional behavior of Q-values evolves

Figure 7. Illustration of the standard deviation and mean value of
the computed loss over episode. We investigated different
configurations of ϵfinal. Note that we omitted the loss-weighted
sampling of mini-batches in one case (green).

Figure 8. Illustration of obtained reward (filled area) and running
reward (solid line) over episode. The best obtained reward is
indicated by dashed lines for two configurations of ϵfinal.

during optimization. As a Q-value is related to a parameter-
ized action in step i, we characterize the latter by either the
refractive index ni or the optical path length pi. We track in
each step i⩽ L of an episode whether the estimated Q-values
are convex in terms of refractive index Q̂(si,ni)≈ Q̂(si,ai) or
optical path length Q̂(si,pi)≈ Q̂(si,ai) given the same state si.
Based on the tracked data, the ratio between convex estimates
and the total number of steps in each episode is calculated.
Figure 9 illustrates how the running mean and standard devi-
ation of these ratios evolve over episodes. Here, an additional
measure is covered: The ratio of steps in each episode that were
convex with respect to both, refractive index and optical path
length. As we estimate four material-related Q-values per step,
the combinatorially deduced probability for the estimates to
show convex behavior is 50%. This regime of randomness is
indicated by the black rule in figure 9. The running mean and
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Figure 9. Step ratio of convex behavior of Q-value approximation
in terms of refractive index (n), optical path length (p), and
corresponding coincidence (n and p) over episode, respectively.

standard deviation of ratios were computed based onWelford’s
online algorithm [64]. Although the optical path length intu-
itively gives a more encompassing optical information about
a parameterized action, the ratios of convex behavior based
on refractive indices (red rule) of 0.6–0.8 are higher than
for optical path lengths that are around random guessing at
0.5–0.6. Moreover, a comparison indicates that if the Q-value
estimates are convex in terms of optical path length (green
rule), they are also convex in terms of refractive indices and
thus both optical characteristics (blue rule). In general, coin-
cident convexity in terms of both optical characteristics cannot
be proven. But it seems that the Q-value estimates reflect some
optical characteristics and thus contain information about the
optical similarity of corresponding parameterized actions.
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