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Abstract
Using access to a unique bank loss database, we find positive 
dependencies of default resolution times (DRTs) of defaulted 
bank loan contracts and final loan loss rates (losses given de-
fault, LGDs). Due to this interconnection, LGD predictions 
made at the time of default and during resolution are subject 
to censoring. Pure (standard) LGD models are not able to 
capture effects of censoring. Accordingly, their LGD predic-
tions may be biased and underestimate loss rates of defaulted 
loans. In this paper, we develop a Bayesian hierarchical 
modelling framework for DRTs and LGDs. In comparison 
to previous approaches, we derive final DRT estimates for 
loans in default which enables consistent LGD predictions 
conditional on the time in default. Furthermore, adequate un-
conditional LGD predictions can be derived. The proposed 
method is applicable to duration processes in general where 
the final outcomes depend on the duration of the process and 
are affected by censoring. By this means, we avoid bias of 
parameter estimates to ensure adequate predictions.
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1  |   INTRODUCTION

One of the most important tasks for banks is the estimation and prediction of probabilities of default 
(PDs) and losses given default (LGDs) for loan contracts whereby the latter is a fraction of loss over 
the exposure at default. While PD estimation has a long history, LGD estimation is in the focus of 
more recent research and regulation. In contrast to default itself, final losses of defaulted loan con-
tracts are not observable until the end of the resolution process. These processes might continue 
for many years, thus, their duration (default resolution time, DRT) is subject to censoring. Ignoring 
censoring is likely to generate biased parameter estimates. Positive dependence between LGDs and 
DRTs is found in the literature, and, accordingly, LGD predictions can be biased when censoring of 
default resolutions is ignored. Pure (standard) LGD models do not take this into account which may 
cause inadequate LGD predictions. The aim of this paper is to develop a joint modelling framework 
for DRTs and LGDs which takes into account censoring effects of unresolved loan contracts. This 
leads to unbiased LGD predictions and enables us to use the information of the time a loan contract 
has already spent in default for LGD prediction. Thus, consistent predictions conditional on the time 
in default can be made.

In general, LGD modelling is important to banks due to regulatory obligations for determining 
risk of credit losses, for internal risk monitoring and pricing of credit risk contracts. According to the 
Basel regulations, banks have to determine regulatory capital charges which are supposed to protect 
banks from unexpected credit losses. Hereby, a bank can determine these charges by standardized 
rules (standardized approach), by deriving its own PD estimates and by combining these with fixed 
values of LGDs and the exposure at default (foundation internal rating-based approach) or by using its 
own models for PDs, LGDs and exposures at default (advanced internal ratings based approach). The 
approaches are used to determine risk weighted assets which are needed for deriving capital charges. 
While the advanced ratings based approach has been introduced with the motivation to relieve banks 
with good and sensitive risk modelling abilities from high capital charges, it has also led to a high 
variability which is considered a disadvantage by regulators. As a consequence, internal modelling 
of LGDs and exposure at default will no longer be permitted for a certain range of asset classes in the 
near future (see Basel Committee on Banking Supervision, 2017). Nevertheless, the importance of 
LGD modelling remains due to its use for internal risk monitoring and pricing credit risk contracts. 
The latter is of special relevance for a bank’s competitiveness. Banks with sensitive risk models are 
able to demand sensitive and appropriate risk premiums, thus, providing a high degree of differentia-
bility between ‘good’ and ‘bad’ debtors.

Due to the importance of LGD modelling, different approaches have been developed and compared 
in the literature. A broad overview of regression-type models, neural networks, regression trees and 
similar approaches is provided in comparative studies such as Loterman et al. (2012) and Qi and Zhao 
(2011). Overall, these studies imply predictive superiority of models which are able to capture non-
linear relationships between independent variables and the LGD. While most of these studies focus on 
predictions regarding expected loss given default, other papers rather focus on modelling the overall 
LGD distribution or at least certain quantiles of it. LGD distributions often exhibit bimodality with 
high probability masses at zero and one which is why mixture distributions seem like a natural choice 
for modelling the LGD distribution (see, e.g. Altman & Kalotay, 2014; Betz, Kellner, & Rösch, 2018; 
Calabrese, 2014; Kalotay & Altman, 2017). Alternatively, linear quantile regression is used by Krüger 
and Rösch (2017) for capturing specific levels of the LGD distribution. In general, a distinction should 
be made between market-based LGDs and workout LGDs. The former is typically defined as one 
minus the ratio of the market price 90 days after default over the outstanding amount. Hence, market-
based LGDs are only available for traded securities such as bonds. Workout LGDs are based on actual 
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recovery payments collected during the resolution process and are, thus, usually applied for loans. The 
distribution of workout LGDs can exhibit values below zero and above one because of administrative 
or legal costs and interest payments or high collateral recoveries, respectively. Typically this increases 
the challenging nature of LGD modelling, as market-based distributional models such as the beta dis-
tribution or models using inverse probability transformations of LGDs are not suited for this kind of 
data. One way to deal with this special feature lies in the application of multistage models. Common 
methods estimate separate models for LGD components (see Bellotti & Crook, 2012). Another rea-
son for the application of multistage modelling may lie in the nature of default resolution which is an 
accumulation of different outcomes during resolution. For instance, Tanoue, Kawada and Yamashita 
(2017) distinguish between recovery and write-offs with a probabilistic model and LGDs being equal 
to one or not and afterwards use a regression type LGD model for the latter class. Further examples 
for multistage modelling are Bijak and Thomas (2015), Sun and Jin (2016), Tobback et al. (2014), or 
Yao, Crook and Andreeva (2015). Moreover, even though machine learning methods have previously 
been applied for LGD modelling, current publications seem to further develop their application in this 
area. Examples are Bellotti, Brigo and Gambetti (2019), Kaposty, Kriebel and Löderbusch (2020), 
Gambetti, Gauthier and Vrins (2019) or Gambetti (2020).

Besides the question concerning appropriate LGD models, it is also of great relevance which vari-
ables impact LGDs and are fit to generate valid LGD predictions. However, due to the different nature 
of loan contracts (e.g. retail, credit cards, mortgages, etc.), there is no clear picture regarding the 
impact of independent variables. The most common variables in LGD models include information of 
collateralization, seniority, guarantees, loan size or industry affiliation (Betz, Kellner & Rösch, 2018; 
Dermine & Neto de Carvalho, 2006; Grunert & Weber, 2009; Qi & Zhao, 2011). Furthermore, the 
systematic impact of the economic environment is discussed in various studies, whereby macroeco-
nomic variables are often used as proxies. However, results are not consistent for certain variables. 
For instance, Grunert and Weber (2009) do not find the rate of unemployment to impact LGDs of 
commercial lending contracts, while a positive impact on LGDs from retail credit card contracts is 
found by Bellotti and Crook (2012). Capturing the systematic environment for LGDs can be challeng-
ing, especially in the case of workout LGDs with long lasting resolution which span different eco-
nomic surroundings. Krüger and Rösch (2017) find indications for non-linear relationships between 
LGDs and the economy, Betz, Kellner and Rösch (2018) capture the economic environment with an 
auto-regressive random effect or Nazemi et al. (2017) and Nazemi, Heidenreich and Fabozzi (2018) 
approximate the systematic environment via principal components which stem from different macro-
economic variables.

The literature regarding DRTs is more sparse and mainly refers to the duration of Chapter 7 and 
Chapter 11 resolutions (see, e.g. Bris, Welch, & Zhu, 2006; Denis & Rodgers, 2007; Helwege, 1999; 
Partington & Russel, 2001; Wong et al., 2007). Chapter 7 and Chapter 11 refer to different default 
resolution mechanisms in the United States. The former aims at processing default resolution, while 
Chapter 11 concerns reorganization with the aim to return to a healthy (non-default) status for the 
firm. Betz, Kellner and Rösch (2016) and Betz et al. (2017) analyse DRTs of loan contracts and de-
scriptively find impacts of DRTs on LGDs. The interconnection of DRTs and LGDs is also indicated 
in the related LGD literature. The LGD is censored during the DRT, which is why survival time 
analysis models can be applied during the collection process of recovery payments. In contrast to our 
approach, this does not take the time spent in default into account, but the amount of repayments until 
the final value of repaid debt is known. Examples for this approach can be found in Dermine and Neto 
de Carvalho (2006), Witzany, Rychnovsky and Charamza (2012) and Zhang and Thomas (2012). The 
latter additionally analyse the improvement in estimation when segmenting LGDs with decision trees 
before estimation, hereby, constructing a mixture of the LGD distribution. Gürtler and Hibbeln (2013) 
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focus on the effects of censoring on LGD observations and the negative consequences when censor-
ing is ignored (see Section 2 for further information on effects of censoring). They do not provide a 
methodical solution, but suggest to restrict the data set to avoid biased estimates. However, LGD data 
is sparse, so constraints might be unfavourable. Survival time models can also be used to determine 
probabilities of default in a certain time frame. Joubert, Verster and Raubenheimer (2019) use a Cox 
proportional hazards model to predict probabilities for loans to either get cured, be written-off or stay 
in an unresolved status. In comparison to these contributions, we model the resolution time with an 
accelerated failure time model in order to account for censoring of resolution time. With the estima-
tion of final DRTs of unresolved loans, corresponding censoring effects for LGDs are substantially 
diminished.

In this paper, our focus is headed towards a modelling approach, which is able to take censoring of 
the default resolution time and its link to censored LGD observations during default resolution into ac-
count. In comparison to previous contributions, our approach enables us to include non-resolved loan 
contracts in the estimation process with the exact information of how long the loan has already lasted 
in the unresolved status. This allows us to generate unbiased estimators, to use the highest amount of 
data possible and to determine the indirect impact of the systematic environment of DRTs on LGDs. 
A useful by-product of our model is the conditional estimation of DRTs for unresolved loans. This 
is valuable to banks as, the time, how long defaulted loans are in their books, impacts their business 
decisions and possibilities. In more detail, we develop a hierarchical Bayesian modelling approach for 
joint estimation of DRTs and LGDs combining a finite mixture model (FMM)—which is well suited 
to capture the distributional features of workout LGDs (see Betz, Kellner & Rösch, 2018)—with a 
probabilistic substructure for the LGD and an accelerated failure time (AFT) model for the DRT. 
The inclusion of survival modelling techniques—in terms of the AFT model—in the LGD modelling 
context enables the consideration of censoring in LGDs. Thus, the hierarchical approach enables ad-
equate unconditional LGD predictions for non-defaulted exposures and consistent LGD predictions 
conditional on the time in default for defaulted exposures within one modelling framework. In contrast 
to previous applications of survival time models for predicting the LGD distribution, our approach 
is different. Instead of directly applying these models to the process of recovery payments, we apply 
them to the DRT and hierarchically build on this to model the LGD distribution. By this means, the 
information of time spent in the resolution process after default is introduced in the LGD model, 
enabling us to predict conditional LGD distributions during the resolution process. In addition, due 
to the hierarchical approach, both models are estimated at the same time, allowing for interactions 
between parameter estimates. Other approaches estimate models for segmenting and predicting LGDs 
independently, hereby, accepting biased parameter estimates if the independence-assumption is not 
correct. Furthermore, correlated random effects are implemented in the hierarchical approach to allow 
for co-movements of DRTs and LGDs in the time line.

We apply the hierarchical approach to a unique European data set provided by Global Credit Data 
(GCD). GCD is a non-profit initiative which aims to support banks to measure credit risk by collect-
ing and analysing historical loss data (see http://www.globa​lcred​itdata.org/ for further information). 
Furthermore, we compare the hierarchical approach to a pure (standard) LGD model in terms of an 
FMM with probabilistic substructure and no inclusion of censoring. By this means, we contribute to 
the literature in three ways. First, we examine the dependency structure of DRTs and LGDs thoroughly 
allowing for a direct and an indirect channel. We find positive impacts of DRTs on LGD distribu-
tions (direct channel) which are even more pronounced in boom and crisis periods (indirect channel). 
Especially the latter has not been detected in previous literature, but is of special relevance for banks. 
Defaulted loans systematically exhibit higher losses and remain longer in the bank’s book during crisis 
periods. In crisis periods, this burdens financial market liquidity as more loan contracts are stuck in the 

http://www.globalcreditdata.org/
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resolution process. On top of that, losses are even higher than indicated by the direct channel due to an 
intensified dependency (indirect channel). Second, we derive a new way to include censored data of the 
default resolution process. In contrast to the previous literature, we directly include censored default 
resolution times instead of LGDs. As single payments during default resolution are of discrete nature, 
the application of continuous survival time models to the LGD does not seem appropriate opposed 
to directly model the censoring of DRTs which is transmitted to the LGD side. With our model, it is 
possible to include the exact information of current DRT and to provide unbiased estimates of DRTs 
as well as LGDs. Both are valuable to banks which are not only interested in the loss amount, but also 
how long the defaulted loan lasts in their books. Furthermore, all (censored) data can be used in our ap-
proach which usually reduces variance in LGD predictions. This seems to be favourable in comparison 
to approaches which suggest to ignore more recent data which typically is most exposed to censoring.

In contrast, a standard LGD model which ignores censored non-finalized LGDs suffers from bi-
ased parameter estimates that can cause erroneous LGD predictions, and even censored LGD models 
might be exposed to biased parameter estimates by not being able to include the exact information of 
current resolution time during resolution which is positively linked to LGDs. In extreme cases when 
using non-censored LGD models, LGDs are underestimated in an unconditional perspective by up to 
20 percentage points in our empirical study. Considering defaulted exposures, that is, LGD-in-default, 
this underestimation is intensified. Third, the hierarchical approach diminishes the bias of parameter 
estimates and, thus, leads to adequate unconditional LGD predictions. At first glance, the described 
application seems to be rather specific to credit risk management. However, the proposed modelling 
framework is applicable to duration processes in general in which dependency between time and some 
outcome at the end of the time horizon is present.

The remainder of this paper is structured as follows. Section 2 provides further information on 
the effects of censoring on LGDs and, thus, reasoning for the introduction of the EBA guidelines. 
Section 3 introduces the hierarchical modelling approach. Data and results are presented in Section 4. 
In Section 5, the model is further validated on an in-sample and out-of-sample perspective. Section 6 
concludes.

2  |   BACKGROUND

As stated in Section 1, workout LGDs are characterized by time-specific censoring, as they are indi-
rectly affected by the DRT. This section focuses on the effects of censoring on LGDs and, thus, offers 
guidelines with respect to the treatment of defaulted exposures.

Generally, ignoring censoring of the default resolution process might result in biased parameter 
estimates. We illustrate this with a simplified example to demonstrate the effects of censoring. For in-
stance, assume a Weibull distribution for DRTs (T ∼ Weibull) and—for simplicity—a fixed censoring 
time c. To ease transparency, we further assume that LGDs linearly depend on log DRTs, thus, follow 
the linear model

where Li is the LGD of loan i and ei ∼ N (0, �2 ). We randomly generate 10,000 pairs of DRTs and LGDs 
with a Monte-Carlo simulation based on this model. We choose the true values of the parameters to match 
location and scale of empirical DRTs and LGDs. The shape and scale of the Weibull distribution are set 
to one and two to ensure an average DRT of approximately two years. In Equation (1), we set � = 0.2 
and � = 0.3 resulting in an average LGD of approximately 0.25. It should be noted that the choice of 

(1)Li =�+� ln(Ti)+ei,
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parameters is arbitrary as resulting effects are independent of the specific values. Figure 1 illustrates the 
impact of censoring on the result variable LGD. The light grey bars illustrate the simulation result for 
the true distributions (which are not observable), whereas the dark grey bars are the observable censored 
distributions. The lines display the corresponding mean values, whereby the dotted lines indicate the 
absence of censoring. In the upper panel, the distribution of the time is displayed. Censoring limits the 
distribution to a certain value, which implies a slight underestimation of the average value if censoring 
is ignored. Due to the linear dependency between time and result in Equation (1), this phenomenon is 
transferred to the result variable (see lower left panel). Thus, average values are underestimated assuming 
a positive dependency of DRT and LGD, as the true mean marked by a dotted line is above the mean in 
the presence of censoring. In the conditional perspective, only censored cases are considered. Hereby, the 
effect of censoring and, thus, the underestimation, is intensified (see lower right panel) as the difference 
between true mean and mean in the presence of censoring increases. Ignoring censoring implies the same 
distribution for censored values as for non-censored ones. However, the true distribution is shifted towards 
higher values assuming a positive dependency, that is 𝛽 > 0.

The unconditional perspective corresponds to unconditional LGDs for the non-defaulted exposure, 
whereas the conditional perspective reflects LGDs conditional on the time in default for the defaulted 
exposure. Thus, the consideration of post-default information—such as the time in default—is re-
quired. The hierarchical approach we develop is a joint modelling approach for DRTs and LGDs. It 

F I G U R E  1   Impact of censoring on the result variable
Note: The figure illustrates the impact of censoring in the time variable on the result variable. The upper panel 
displays the distribution of time in the absence of censoring (light grey bars) and in the presence of censoring (dark 
grey bars). The distribution in the absence of censoring might be interpreted as the true distribution. The lower 
left panel illustrates the unconditional distribution of the result variable (dark grey indicates censoring, light grey 
no censoring). The lower right panel restricts the presentation to the censored cases. Means of the distributions are 
marked by lines, whereby the dotted line indicates absence of censoring
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considers censoring, dependencies between DRTs and LGDs and, thus, allows for adequate uncondi-
tional and consistent conditional LGD predictions within a single modelling framework.

3  |   METHODS

This paper develops a hierarchical modelling approach for DRTs and LGDs and, thereby, analyses 
the dependency structure of DRTs and LGDs and reveals impacts of censoring in DRTs on LGDs. 
We combine a common LGD model from previous literature with survival analysis techniques—in 
terms of an accelerated failure time (AFT) model—in a hierarchical structure to consider censoring in 
an LGD modelling context. LGD distributions of workout LGDs are often bimodal with high prob-
ability masses at no and total loss. Furthermore, the two modes are characterized by bindings, that is, 
values which are exactly 0 or exactly 1. In addition, workout LGDs can be lower than 0 or higher than 
1. We, therefore, extend the Bayesian FMM with a probabilistic substructure in terms of an ordered 
logit (OL) model developed by Altman and Kalotay (2014) and further extended by Betz, Kellner 
and Rösch (2018). This model seems to be well suited to capture the characteristic features of LGD 
distributions. To investigate direct dependencies of DRTs on LGDs, the DRT serves as an explanatory 
variable in the LGD model. Two correlated random effects are included to study co-movements of 
DRTs and LGDs in the time line (indirect dependencies). In the following, we briefly review the LGD 
model of Altman and Kalotay (2014), hereby, following the model description of Betz, Kellner and 
Rösch (2018) and discuss the extensions in the context of the hierarchical model.

3.1  |  LGD model

We apply a normal FMM to model the distribution of LGDs. Generally, FMMs offer high flexibility 
in modelling distributions of unknown shape (see McLachlan & Peel, 2000). The dependent variable 
L is assumed to be divided into a finite number of K latent components. In each class k, L follows 
a Normal distribution with parameters �k depending on the latent class k. We assume normally dis-
tributed components to achieve computational transparency (see McLachlan & Peel, 2000). Thus, 
the probability density function (PDF) of an FMM g(L | �1,…, �K ) is the pk weighted sum of the 
component PDFs fk (L |�k ):

To ensure the general properties of a PDF, that is g(L) ≥ 0 for all L ∈ ℝ and ∫ ∞
−∞

g(L ) = 1, pk ≥ 0 
and 

∑
kpk = 1 must hold. Assuming conditional independence, the likelihood of a Normal FMM 

�(L1,…, Ln | �, �, p ) is the product of the individual likelihood contributions:

where �k and �k are the parameters of a normal distribution for the latent class k and n is the number of 
observations. To adapt data augmentation, the component weight pk is replaced by an indicator variable 
dik, which takes the value one if Li is a random draw of component k and zero, otherwise:

(2)g
(
L|�1, …, �K

)
=

K∑
k= 1

pk fk
(
L|�k

)
.

(3)�(L1,…, Ln |�, �, p)=
1

(2�)
n

2

n∏
i= 1

(
K∑

k= 1

pk

�k

exp

[
−

(Li−�k)2

2�2
k

])
,
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To identify loan contracts with no and total loss, we fix the parameters of the two outer components. 
The means are set to �1 = 0 and �K = 1 with small standard deviations (�1 = �K = 0.0001). Results are 
robust to different (small) values for �1 and �K. Note that this means we try to approximate estimates for 
discrete LGD observations 0 and 1 by means of continuous distributions. This could potentially result in 
biased parameters as well as (small) deviations of LGD forecasts. Overall, this is mainly determined by 
the choice for �1 = �K. We tried different (small) values in the course of our analysis and found our results 
to be robust with respect to this choice.

To estimate the probability of loan i belonging to the k-th component depending on covariates, a 
probabilistic substructure in terms of an ordered logit (OL) model is formulated. To rely on the clas-
sical formulation of the OL model, we define the component affiliation yi:

where dik is the indicator in Equation (4). The component affiliation Yi represents the component of the 
mixture distribution from which the LGD observation is drawn. It is categorically distributed and deter-
mined by the comparison of a metric latent variable Y∗

i
 with cut points ck (k ∈ {1,…, K − 1}):

The latent variable Y∗
i
 follows a linear model:

where zi is a (1 × J ) vector of independent variables and � is the (J × 1) vector of coefficients. The term 
ei describes the errors. A random effect Ft(i) is introduced into the modelling framework to control for co-
movement in the time line. It originates from a normal distribution with mean zero and standard deviation �:

The time stamp t(i) in Equation (7) indicates the default time t of a loan i, expressed in quarters. Two loans 
i and i ′ which defaulted in the same quarter (t( i ) = t ( i � ) = t) share the same realization of the random 
effect ( ft(i) = ft(i�) = ft). For ft > 0 ( ft < 0), both loans exhibit higher (lower) values of y∗

i
 and, thus, higher 

(lower) probabilities of high component affiliations yi. Higher component affiliations yi correspond to 
higher loss rates and vice versa. Thus, the random effect displays the co-movement in time line, that is, 
higher or lower average loss rates in specific default quarters which cannot be explained by observable 
variables included in zi.

Betz, Kellner and Rösch (2018) additionally consider an autoregressive process of order 1, that 
is, AR(1), for the random effect to allow for cyclical movements in the realizations of the random 
effect. In this paper, we do not consider this specification due to simplicity, as the specification of the 

(4)�(L1,…, Ln |�, �, d)=
1

(2�)
n

2

n∏
i= 1

(
K∑

k= 1

dik

�k

exp

[
−

(Li−�k)2

2�2
k

])
.

(5)yi = k if dik =1,

(6)Yi =

⎧
⎪⎪⎨⎪⎪⎩

1 if Y∗
i
≤ c1

2 if c1 <Y∗
i
≤ c2

⋮

K if cK−1 <Y∗
i
.

(7)Y∗
i
= zi�+Ft(i)+ei, ei ∼ logistic,

(8)Ft(i) ∼N
(
0, �2

)
.
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random effect seems to have negligible impact on its realizations. For conditional predictions (LGDs-
in-default, ELBE) in the hierarchical approach, we apply the realized value of the random effect in the 
corresponding time period, while we use the mean value 0 for unconditional predictions.

3.2  |  Hierarchical model

In the hierarchical model, the pure (standard) LGD model of the previous subsection is extended by an 
additional hierarchical level in terms of an AFT model for the DRT to consider censoring and allow 
for LGD predictions conditional on the time in default (see, e.g. Wei, 1992). The logarithm of the 
resolution time ln(Ti ) can be expressed by a linear model:

where xi is a (1 × JT ) vector of independent variables, � is the (JT × 1) vector of coefficients, �0 is the 
intercept and s a scaling parameter. We assume the errors �T

i
 to follow a negative Gumbel distribution and 

thus the DRT to be Weibull distributed. Different distributional assumptions for the errors are possible 
with the normal, logistic, exponential and Weibull distribution being the most common ones in the AFT 
model. For our analysis, we compare the empirical distribution of the DRTs with posterior predictions of 
an AFT model considering a log normal, log logistic,and Weibull distribution. The comparison is based 
on density and quantile–quantile plots. With this respect, the Weibull distribution seems to have the best 
fit. A random effect FT

t ( i )
 is introduced into the modelling framework to control for co-movement in the 

time line, where T in superscript stands for the resolution time specific random effect. Equation (9) applies 
to non-censored, that is final, observations. For censored observations, final realizations are estimated 
within the Bayesian modelling framework. By this means, we are able to predict final DRTs for censored 
data points, that is, unresolved loans.

In the hierarchical approach, the AFT model for the DRT is simultaneously estimated with an 
FMM for the LGD (see previous subsection). To develop an intuitive method to generate LGD pre-
dictions conditional on the time in default, the logarithm of the DRT is included as an explanatory 
variable. This accounts for direct dependencies of DRTs and LGDs. Equation (7) modifies to:

where zi is the (1 × JL ) vector of independent variables, � is the (JL × 1) vector of coefficients, �T is the 
coefficient of the logarithm of the DRT and errors �i with mean 0 and scale 1. Again, a random effect 
FL

t ( i )
 is introduced into the modelling framework to control for co-movement in the time line where L in 

superscript stands for the LGD specific random effect. Equations (2), (3), (4), (5), and (6) apply in analogy 
to Yi ∗.

The random effects FT
t ( i )

 in Equation (9) and FL
t ( i )

 in Equation (10) originate from a bivariate nor-
mal distribution:

where 02 is the two-dimensional zero vector (0 0)T and Σ is the (2 × 2) covariance matrix. The latter is 
based on individual standard deviations (�T and �L) and the (2 × 2) correlation matrix Ω:

(9)ln(Ti)=�0+xi�+FT
t(i)

+s �T
i
, �T

i
∼negative Gumbel,

(10)Y∗
i
= zi�+ ln(Ti)�T+FL

t(i)
+�i, �i ∼ logistic,

(11)

(
F

T

t

F
L

t

)
∼N2

(
02, Σ

)
,
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where �T,L ( = �L,T ) is the correlation of FT

t
 and FL

t
. By the inclusion of the random effects, we control for 

joint co-movements of loss rates and resolution times in the time line. Two loans i and i ′ which defaulted 
in the same quarter (t( i ) = t ( i � ) = t) share the same realizations of the random effects ( fT

t ( i )
= fT

t ( i � )
= fT

t
 

and fL
t ( i )

= fL

t ( i � )
= fL

t
, however, fT

t
≠ fL

t
 in most of the cases). For fT

t
> 0 ( fT

t
< 0), average DRTs are 

higher (lower). Assuming a positive correlation between the random effects and a positive parameter esti-
mate of the logarithm of the DRT in the LGD model (𝛾T > 0), the corresponding LGDs are affected in two 
ways: Directly, as higher (lower) DRTs are inserted in the LGD model; indirectly, as positive (negative) 
realizations of fT

t
 tend to imply positive (negative) realizations of fL

t
 due to the positive correlation. Thus, 

LGDs are even higher. However, negative realizations of fL
t
 remain possible which might reduce LGDs. 

Both scenarios are conceivable. Confronted with a tense economic surrounding, financial institutions 
might decide to follow a wait-and-see strategy and relocate resolution efforts in the future. This might 
provide benefits and reduce the LGD ( fL

t
< 0). However, LGDs might be further increased ( fL

t
> 0) if 

financial institutions are forced to resolve defaulted loans at a certain point in time.

3.2.1  |  Estimation

The parameters of the LGD model and the hierarchical model are estimated via Bayesian inference. 
We use the Hamiltonian Monte Carlo (HMC) algorithm (see, e.g. Betancourt, 2017) for the simula-
tion of posterior distributions. In comparison to a Gibbs sampler that we tried, the HMC algorithm 
exhibited less correlated posterior distributions and needed shorter burn-in periods. In addition, the 
HMC algorithm is efficiently implemented in Stan (see Stan Development Team, 2016, for fur-
ther information on the implementation) and combines a Hamiltonian evolution with a Metropolis 
proposal to reduce the correlation in the chains. The parameters of the proposal distribution and 
the Hamiltonian evolution are tuned during the adaption phase. The LGD model and the hierar-
chical model are sampled with two HMC chains. Burn-in is set to 500. Posterior samples contain 
N = 25, 000 iterations per chain with a thinning of 5. Metric dependent variables are standardized 
to ease convergence. Most of the model parameters are provided with weakly informative prior 
distributions. See Section 1 of the online companion of this paper for detailed information on the 
Bayesian model specifications. Common convergence diagnostics can be found in Section 2 of the 
online companion.

4  |   DATA AND RESULTS

4.1  |  Data

We use the unique loss database of GCD. The database includes detailed loss information on a trans-
action basis of 53 member banks all around the world. In the database, the LGD is determined by 
Li = 1 − RRi, whereby Li is the loss rate of loan i and RRi is the corresponding recovery rate. The 
recovery rate is calculated as the sum over the present values of all relevant transactions divided by 
the outstanding amount (see Betz, Kellner & Rösch, 2016, 2018).

(12)
Σ =diag

(
�T, �L

)
Ω diag

(
�T, �L

)

=

(
�2

T
�T�L�L,T

�T�L�T,L �2
L

)
,
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We follow Höcht (2010) and Höcht, Kroneberg and Zagst (2011) and develop two selection crite-
ria to eliminate loans with extraordinary payment structures. Both criteria are related to all relevant 
transactions including charge-offs (which are not included in the LGD calculation) to the outstanding 
amount. The first criterion, to which we refer as pre-resolution criterion, is related to transactions 
arising pre-resolution to the outstanding amount at default. We set the barriers of the pre-resolution 
criterion to [90% , 110% ] for resolved and [ − 50% , 400% ] for unresolved loans. Different barriers 
for the criteria of resolved and unresolved are applied because the transactions should come up to 
100% for resolved loans as write-offs are already included if a loan is resolved. However, if a loan 
is still in the resolution process, write-downs do not yet exist in the records. Nevertheless, we aim 
to select loans with extraordinarily high or low individual payments. Thus, the corresponding barri-
ers are much wider. In the second criterion, that is, post-resolution criterion, transactions occurring 
post resolution are related to a fictional outstanding amount at resolution. The barriers are set to 
[ − 10% , 110% ] for the post-resolution criterion. The post-resolution criterion applies for resolved 
loans only. Subsequently, loans with extremely low and high LGDs (< −25% and > 125%) are elim-
inated. Overall, 0.50% of resolved loans are eliminated due to the pre-resolution criterion and 0.19% 
due to the post-resolution criterion, whereas 0.23% of unresolved loans are eliminated based on the 
pre-resolution criterion. Subsequently, 0.13% are removed due to extremely low and high LGD val-
ues. We consider a subsample from the original database which consists of defaulted European term 
loans and lines to small and medium sized enterprises (SMEs). We include the twelve most common 
European countries in the database—that is Great Britain, Germany, Denmark, Portugal, Ireland, 
France, Finland, Sweden, Norway, Latvia, Estonia and Poland. We further exclude loans which de-
faulted before 2004 and after 2016 (10.02% of subsample data). To estimate the random effects model 
in a stable way, we need a descent number of observations which is not the case in our database before 
2004 and after 2016. A subsample of 38,165 loans remains.

Figure 2 illustrates the interconnection of the two parameters of the resolution process, that is, the 
DRT and the LGD. Therefore, the data set is divided into DRT buckets based on realized DRTs. The 
first bucket includes all loans with DRTs ∈ [0, 0.5] years. The second bucket contains all loans with 
DRTs ∈ (0.5, 1.0] years, and so on (see the horizontal axis of the left panel and the legend of the right 
panel). In the left panel, box plots of LGDs divided by DRT buckets are displayed. The thick black 
lines mark the medians, whereas the thick grey lines are the means. Considering the latter, average 
LGDs seem to linearly increase in the DRT buckets. To examine the origin of this increase, the right 
panel displays kernel density estimates for the DRT buckets. The LGD distribution of higher DRT 
buckets is shifted towards higher LGD values, that is, probability masses of lower LGD values de-
crease and probability masses of higher LGD values increase. Thus, average values increase.

Table 1 summarizes the descriptive statistics of the dependent and explanatory variables. Figures 
are stated for all loans (resolved, i.e. non-censored, and unresolved, i.e. censored, cases) and for re-
solved and unresolved loans separately. The upper panel of the table includes descriptive statistics 
for the LGD and the DRT. For unresolved cases, non-finalized LGDs are considered. Non-finalized 
LGDs are computed as the sum over the present values of all relevant transactions, which occurred up 
to the end of the observation period (end of 2016), divided by the outstanding amount. As the resolu-
tion process is not terminated, non-finalized LGDs are higher than final LGDs. DRTs for unresolved 
cases are censored to the end of the observation period (end of 2016), for example for unresolved 
loans defaulted at the end of 2015 a censored DRT of one year is assigned. Censored DRTs are lower 
than final DRTs as the resolution process is not terminated. In the table, average values of LGDs and 
DRTs for unresolved cases are higher compared to resolved cases as unresolved cases are shaped by 
loans exhibiting high DRTs and high LGDs. In the middle panels of the table, descriptive statistics of 
loan specific independent variables are stated. We use the EAD to control for the size of the loan. It 
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is further distinguished between term loans and lines, whether a loan is secured by collateral or guar-
antee or not, and whether the debtor has Finance, Insurance, Real Estate (FIRE) industry affiliation. 
Reference categories in the subsequent models are printed in italics in the table. The lower panel of the 
table contains descriptive statistics of the macroeconomic variables. The year-on-year (yoy) percent-
age change of weighted average real residential prices (Δ HPI) is employed as explanatory variable for 
the LGD, whereas we use the VSTOXX Volatility Index (VIX) for the DRT. We tested further mac-
rovariables, for example the yoy percentage change of weighted average seasonally adjusted GDPs 
and the quarterly average yoy percentage change of weighted average equity indices. However, Δ 
HPI and VIX exhibit the highest statistical evidence. Furthermore, both variables have been used in 
previous analyses and exhibited potential impact on the LGDs (see, e.g. Qi & Zhao, 2011, Yao, Crook 
& Andreeva, 2017 or Tobback et al., 2014 for the impact of the HPI or Krüger & Rösch, 2017 for the 
impact of the VIX) as well as DRTs (see Betz et al., 2017 for the impact of the VIX).

Figure 3 illustrates the time patterns of average DRTs in the left panel and average LGDs in the 
right panel for resolved loans (thick black line) and all loans (resolved and unresolved loans, thin grey 
line). Regarding the latter, values for unresolved loans, that is censored observations, have to be calcu-
lated. Thus, DRTs are censored to the end of the observation period (end of 2016) and non-finalized 
LGDs are treated as unresolved cases. Non-finalized LGDs are computed as the sum over the present 
values of all relevant transactions which occurred up to the end of the observation period (end of 
2016), divided by the outstanding amount. The relation of DRTs and LGDs (see Figure 2) might be 
partly driven by analogous time patterns. Both dependent variables sharply increase prior to the Great 
Financial Crisis (GFC, 2007) and reach their maximum during the climax of the GFC. The rebound in 
the aftermath of the crisis seems gradual. There are only minor deviations between resolved loans and 
all loans considering the average DRTs. The graph for all loans is shifted slightly upwards by the cen-
sored observations. Regarding average LGDs, this spread is particularly severe in the most recent time 
periods. This is mainly due to non-finalized LGDs, that is, LGDs based on transactions which occur up 
to the end of the observation period, in the averaging. Final LGDs will be lower as further payments 
will be received until resolution in most of the cases. However, final LGDs of all loans will still lie 
above the black line (final LGDs of resolved loans). Due to the effects of censoring, final LGDs are 

F I G U R E  2   Relation of DRT and LGD
Note: The figure illustrates the relation of DRTs and LGDs. The data is divided into DRT buckets based on the 
realized DRTs. Thus, the first bucket includes all loans with DRTs ∈ [0, 0.5 ] years. The second bucket contains all 
loans with DRTs ∈ (0.5, 1.0 ] years, and so on (see the horizontal of the left panel and the legend of the right panel). In 
the left panel, box plots of LGDs for the DRT buckets are displayed. Outliers are hidden. The thick black lines mark 
the medians, whereas the thick gray lines are the means. In the right panel, kernel density estimates of LGDs for the 
DRT buckets are illustrated. The band width is fixed to 0.015 to ensure comparability
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only observable for defaults with short DRTs in the more recent time periods (see Section 2). Due to 
the interconnection of DRTs and LGDs, these tend to be lower implying an underestimation of LGDs 
in more recent time periods.

In this paper, we analyse the effects of censoring on unconditional and conditional LGD predic-
tions from in-sample and out-of-sample perspectives. Therefore, we divide the data set in Table 1 into 
subsamples. The first subsample serves as estimation sample. It includes all loans defaulted between 
2004 Q1 and 2010 Q4. Thus, it comprises times of rather sound economic surrounding, the GFC, and 
parts of the rebound phase. We treat loans which are not resolved until 2010 Q4 as censored obser-
vations, that is, unresolved loans. The second subsample, to which we refer to as validation sample I, 
includes the final observations to the censored observations of the estimation sample. For instance, a 

T A B L E  1   Descriptive statistics

All Resolved Unresolved

n 38,165 35,272 2893

Dependent variables

LGD Mean 0.2534 0.2099 0.7839

Median 0.0133 0.0082 0.9780

Standard deviation 0.3810 0.3531 0.3017

DRT Mean 1.9882 1.7342 5.0839

Median 1.2621 1.1335 4.9090

Standard deviation 2.0756 1.7509 3.0147

Loan specific (metric)

EAD Mean 533,118.89 516,582.05 734,739.20

Median 102,987.29 100,237.48 155,097.53

Standard deviation 3,624,711.52 3,610,978.60 3,782,983.43

Loan specific (categoric)

Facility Term loan 62.00% 60.39% 81.68%

Line 38.00% 39.61% 18.32%

Secured No 25.61% 26.03% 20.46%

Yes 74.39% 73.97% 79.54%

Industry Non-FIRE 83.13% 82.13% 95.30%

FIRE 16.87% 17.87% 4.70%

Macrovariables

Δ HPI Mean −1.6966 −1.7765 −0.7229

Median 0.1662 0.1662 0.8360

Standard deviation 6.0221 5.9928 6.2878

VIX Mean 24.4762 24.3681 25.7947

Median 22.9249 22.6771 23.3451

Standard deviation 9.4105 9.4699 8.5465

Note: The table summarizes descriptive statistics for dependent and independent variables in the data set. For metric variables, means, 
medians and standard deviations are stated. Proportions are presented for variables of categoric nature. The sample size is denoted by n. 
The abbreviation EAD stands for Exposure at default, FIRE stands for Finance, Insurance, Real Estate and denotes corporations of these 
industries. The macrovariable Δ HPI is the yoy percentage change of the House Price Index, whereas the VIX is the Volatility Index.
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loan defaulting in 2009 Q4 and being resolved in 2011 Q4 is included as a censored observation in the 
estimation sample whose final observation after resolution gets evaluated in validation sample I. We 
apply validation sample I to perform an out-of-sample validation of LGDs. The third sample, that is, 
validation sample II, includes all loans defaulted between 2011 Q1 and 2016 Q4. It is used to perform 
an out-of-sample out-of-time validation of LGDs. Table 2 summarizes the estimation sample and the 
validation samples. In the upper panel, the sample sizes are stated. Validation sample I consists of the 
10,171 loans which are treated as unresolved cases in the estimation sample, that is, are unresolved 
until the end of 2010. Some of these loans (1724) are still unresolved at the end of 2016. However, 
the proportion of unresolved loans is lower in validation sample I compared to the estimation sample. 
In the lower panel, average values of LGDs and DRTs are stated. These are rather similar comparing 
the estimation sample and validation sample II, however, considerably higher in validation sample 
I. This is due to the fact that validation sample I contains final observations to censored cases in the 
estimation sample, thus, observations with higher DRTs and higher LGDs.

4.2  |  Results

Under the Bayesian approach, we use highest probability density intervals (HPDIs) and posterior odds 
(po) to evaluate the effect of independent variables. As we are interested in the evidence of the signs, 
posterior odds are derived as the ratio of posterior mass favouring the sign of the posterior mean to 
posterior mass of the opposite sign:

where by � denotes an arbitrary parameter. Prior odds are the corresponding ratio of the prior distribution. 
Assuming a symmetric prior distribution around zero, posterior odds are equivalent to the Bayes factor. 

po (E[𝜃]<0) =
ℙ(𝜃 <0 | data)

ℙ(𝜃≥0 | data)

po (E[𝜃]>0) =
ℙ(𝜃 >0 | data)

ℙ(𝜃≤0 | data)
,

F I G U R E  3   Time patterns of average DRTs and average LGDs
Note: The figure illustrates time patterns of average DRTs in the left panel and average LGDs in the right panel. 
The black lines display the average values for resolved loans, whereas the grey lines are average values for all loans, 
that is resolved and unresolved cases. Thus, the latter include censored values. Means over the entire time period are 
illustrated by dotted lines
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A Bayes factor exceeding 3.2 is deemed as substantial evidence. Values above 10 correspond to strong 
evidence, whereas values above 100 represent decisive evidence (see Kass and Raftery, 1995).

4.2.1  |  LGD model

The LGD model is estimated based on the estimation sample (see Table 2) with five components of 
the FMM. However, it offers no possibility to include censored observations, that is unresolved loans, 
in the estimation process. Thus, the 21,817 resolved cases are included, whereas 10,171 unresolved 
defaults are ignored. As these unresolved loans tend to exhibit higher LGDs due to the resolution bias, 
parameter estimates are likely to be biased.

Table  3 summarizes the results of the LGD model. Parameters are stated in the first column, 
whereas the second column presents their posterior means. In the FMM within the LGD model, pa-
rameters of the outer components (�1 and �1 for the first component, �5 and �5 for the fifth compo-
nent) are fixed to identify loans with no (LGD = 0) and total (LGD = 1) loss. The second and third 
component are located near the first component (�2 = 0.0067 and �3 = 0.0290) and have rather small 
standard deviations (�2 = 0.0045 and �3 = 0.0249), whereas the forth component seems to cover the 
range in between the extremes of no and total loss (�4 = 0.5114 and �4 = 0.3364). The posterior dis-
tributions of the cut points (ck for k ∈ {1, 2, 3, 4}) can not directly interpreted as they depend on the 
range of the latent variable (Y∗).

Component probabilities are derived based on the OL model within the LGD model. The parameter 
of the EAD (�EAD) exhibits a negative posterior mean, indicating a lower value of the latent variable (Y∗) 
for higher EADs and, thus, lower LGDs. This impact is characterized by decisive evidence as the pos-
terior odds tend towards infinity po

(
E[𝜁EAD ] < 0

)
→∞) and the HPDI

(
�EAD

)
= [ − 0.14, −0.08] 

excludes zero. Reasons for the negative impact of the EAD might be found in higher resolution efforts 

T A B L E  2   Estimation sample and validation samples

Estimation 
sample

Validation sample I 
(out-of-sample)

Validation sample II (out-of-
sample out-of-time)

n All 31,988 10,171 6177

Resolved 21,817 8447 5008

Unresolved 10,171 1724 1169

Dependent variables

Average LGD All 0.2586 0.4270 0.2267

Resolved 0.1801 0.3511 0.1017

Unresolved 0.4270 0.7987 0.7622

Average DRT All 1.5763 4.2566 1.0495

Resolved 1.1964 3.6851 0.7869

Unresolved 2.3911 7.0568 2.1743

Note: The table summarizes the applied samples. The number n, the average LGD, and the average DRT of all loans, resolved loans 
and unresolved loans are presented for the estimation sample and the two validation samples. The models are estimated based on the 
estimation sample. This sample includes all loans defaulted between 2004 Q1 and 2010 Q4. Loans which are not resolved until 2010 Q4 
are treated as censored observations, that is, unresolved cases, in the estimation. Validation sample I contains the final observations of 
these unresolved cases. However, observations exist which are still censored at the end of 2016 (unresolved cases in validation sample 
I). In validation sample II, loans which defaulted between 2011 Q1 and 2016 Q4 are included. Thus, validation sample I is applied for 
the out-of-sample validation, whereas the out-of-sample out-of-time validation is performed on validation sample II.
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and thus, lower loss rates, for loans of major size. The negative relation between EAD and LGD is 
also confirmed by Grunert and Weber (2009). However, this result should not be generalized be-
cause a positive relationship between EAD and LGD is found by Dermine and Neto de Carvalho 
(2006). The posterior mean of lines (�Facility) is positive. Thus, lines are characterized by higher LGDs 
compared to term loans. This positive influence is decisively evident (po

(
E[𝜁Facility ] > 0

)
→∞ and 

0 ∉ HPDI
(
�Facility

)
= [0.15, 0.26]). Protection (�Protection) exhibits a negative posterior mean with 

decisive evidence (po
(
E[𝜁Protection ] < 0

)
→∞ and 0 ∉ HPDI

(
�Protection

)
= [ − 0.48, −0.36]). This 

indicates lower loss rates for secured loans which correspond to the economic intuition. According 
to the negative sign of the industry FIRE (� Industry), LGDs for loans of this industry affiliation are 
lower compared to other industries. This impact is decisively evident (po

(
E[𝜁 Industry ] < 0

)
→∞ and 

0 ∉ HPDI
(
� Industry

)
= [ − 0.30, −0.17]). The applied macrovariable, that is, the HPI (�HPI), exhibits 

a positive sign indicating higher LGDs for higher values of the HPI. This contradicts the economic 

T A B L E  3   Results of the LGD model

Posterior 
mean HPDI (95%)

Posterior 
odds

Naive 
standard 
error

Time series 
standard 
error

LGD model

�1 0.0000 Not estimated

�2 0.0067 0.0064 0.0070 ∞ 0.0000 0.0000

�3 0.0290 0.0277 0.0303 ∞ 0.0000 0.0000

�4 0.5114 0.5004 0.5229 ∞ 0.0000 0.0000

�5 1.0000 Not estimated

�1 0.0010 Not estimated

�2 0.0045 0.0042 0.0048 ∞ 0.0000 0.0000

�3 0.0249 0.0237 0.0261 ∞ 0.0000 0.0000

�4 0.3364 0.3295 0.3436 ∞ 0.0000 0.0000

�5 0.0010 Not estimated

c1 −0.6959 −0.9773 −0.4082 ∞ 0.0006 0.0012

c2 −0.0349 −0.3203 0.2510 1.4857 0.0006 0.0012

c3 0.8952 0.6087 1.1777 ∞ 0.0006 0.0012

c4 2.7509 2.4649 3.0421 ∞ 0.0007 0.0012

�EAD −0.1099 −0.1357 −0.0824 ∞ 0.0001 0.0001

�Facility 0.2038 0.1495 0.2584 ∞ 0.0001 0.0001

�Protection −0.4147 −0.4751 −0.3559 ∞ 0.0001 0.0001

� Industry −0.2355 −0.3000 −0.1683 ∞ 0.0002 0.0002

�HPI 0.0590 −0.2183 0.3311 2.0243 0.0006 0.0010

Random effect

� 0.8191 0.6200 1.0329 ∞ 0.0005 0.0005

Note: The table summarizes the results of the LGD model. Parameters are stated in the first column. Categorical variables are 
included via dummy coding. The reference categories are term loan for facility, no for protection, and non-FIRE for industry. The 
second column presents the posterior means. In the third and fourth columns, lower and upper bounds of the corresponding HPDIs to 
a credibility level of 95% are displayed. The fifth column contains the posterior odds. Naive and time series standard errors are shown 
in the last two columns. Time series standard errors are calculated based on the effective chain length (N ∗) instead of the actual chain 
length (N), whereby, N ∗

< N holds for autocorrelated chains.
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intuition and previous findings in Tobback et al. (2014) and Qi and Yang (2009), as a sound economic 
surrounding should be accompanied with lower loss rates. However, a positive sign is also reported 
in Yao, Crook and Andreeva (2017). Yet, our analysis does not indicate a positive impact which is 
statistically evident (po

(
E[𝜁HPI ] > 0

)
= 2.02 < 3.2 and 0 ∈ HPDI

(
�HPI

)
= [ − 0.22, 0.33]). The last 

row of the table summarizes the posterior distribution of the random effect parameter.
Figure 4 illustrates the realizations of the random effect ft in the LGD model. Higher realizations 

of the random effect ( ft > 0) indicate higher values of the latent variable Y∗ for all loans defaulted in t 
and thus higher average LGDs in this quarter. The left panel of the figure presents the time patterns of 
ft. The path of ft seems to be related to the economic cycle. While the realizations of the random effect 
scatter around zero prior to the crisis, increased values occur after 2007 Q2. In the climax of the GFC, 
ft reaches its maximum. The rebound in the aftermath of the crisis starts gradually. The right panel of 
the figure contrasts these time patterns of ft to average LGDs in the time line in Figure 3. The latter 
include observations which are not considered in the estimation, that is, final LGDs of unresolved 
loans in validation sample I. Up to the more recent time periods, the random effect seems to mimic 
the path of average LGDs. The time series disperse afterwards, whereby the spread further increases 
in the time line. This deviation might be attributed to the exclusion of censored observations. The 
final realizations of censored observations tend to have higher LGDs. This leads to biased realizations 
of the random effect in the more recent time periods. The effect of censoring and the associated bias 
worsen in the time line, that is, the bias of ft enlarges for higher t. Furthermore, a bias of the random 
effect parameter � has to be considered, as the downward bias in the random effect realizations might 
erroneously increase the underlying standard deviation of the random effect. We will come back to 
this later on (see subsequent paragraph).

4.2.2  |  Hierarchical Model

In analogy to the LGD model, the hierarchical approach is applied to the estimation sample (see 
Table 2). Due to the DRT model in the hierarchical approach, it is possible to include censored ob-
servations, that is, unresolved loans, in the estimation process. By this means, we are able to gener-
ate posterior predictive distributions for the DRT of unresolved cases and, thus, posterior predictive 

F I G U R E  4   Random effect of the LGD model
Note: The figure illustrates the course of the random effect in the LGD model over time. In the left panel, the posterior 
means (thick line) and the HPDI (95%, thin lines) of the random effect realizations, that is, f

t
, are displayed. In the 

right panel, the random effect (black line) is contrasted with the time patterns of average LGDs for all loans (dark grey 
line) and for resolved loans (light grey line). Final and non-finalized LGDs in validation sample I are included in the 
averaging. The dotted lines mark zero and serve as a reference line

time
Q3 2004 Q3 2006 Q3 2008 Q3 2010 Q3 2012

−3
.0

−1
.5

0.
0

1.
5

f t

posterior mean
HPDI (95%)
reference line

time
Q3 2004 Q3 2006 Q3 2008 Q3 2010 Q3 2012

−3
.0

−1
.5

0.
0

1.
5

f t

−0
.2

0.
0

0.
2

0.
4

av
er

ag
e 

LG
D

posterior mean
average LGD
average LGD (resolved)
reference line



636  |      BETZ et al.

distributions for the LGD of unresolved loans. Furthermore, effects of the resolution bias as in the 
pure LGD model (see Figure 4) are diminished.

Table 4 summarizes the results of the hierarchical model. Parameters are stated in the first column, 
whereas the second column presents posterior means. Posterior distributions for the estimated compo-
nent parameters (�k and �k for k ∈ {2, 3, 4}) and loan specific covariate parameters of the LGD model 
in the hierarchical approach (�EAD, �Facility, �Protection, and � Industry) are similar to their counterparts in the 
pure LGD model (see Table 3, �k and �k for k ∈ {2, 3, 4} and �EAD, �Facility, �Protection, and � Industry). A 
deviation arises for the parameter of the HPI (�HPI). In comparison with the corresponding parameter 
in the pure LGD model (�HPI) it exhibits an intuitively negative sign, thus, indicating lower LGDs in 
sound economic surroundings which is displayed by an increasing HPI. However, the parameter of the 
macrovariable is still characterized by a lack of statistical evidence (po

(
E[𝛾HPI ] < 0

)
= 1.18 < 3.2 

and 0 ∈ HPDI
(
�HPI

)
= [ − 0.13, 0.12]). The sign switch of �HPI compared to �HPI might be due to 

the inclusion of the logarithmized DRT as explanatory variable in the LGD model of the hierar-
chical approach (�T), as further systematic variables, that is, the VIX and the random effect of the 
DRT model, enter the LGD model through the DRT. The posterior mean of �T has a positive sign 
indicating higher LGDs for loans with higher DRTs. In Section 4.1 (see Figure 2), we determined 
this relation descriptively. The impact of the DRT is decisively evident (po

(
E[𝛾T ] > 0

)
→∞ and 

0 ∉ HPDI
(
�T

)
= [0.97, 1.03]).

In the DRT model of the hierarchical approach, loan specific covariates and a macrovariable, that 
is the VIX, are included. The posterior mean of the EAD (�EAD) exhibits a positive sign. Thus, loans of 
major size are accompanied with longer DRTs. This supports the thesis we stated in the previous subsec-
tion. Financial institutions might undertake higher resolution efforts for loans of major size. This might 
increase the DRTs and simultaneously lower LGDs. Decisive evidence can be stated for the positive 
impact of the EAD in the DRT model (po

(
E[𝛽EAD ] > 0

)
→∞ and 0 ∉ HPDI

(
�EAD

)
= [0.03, 0.07]

). According to the negative posterior mean of lines (�Facility), this facility type is accompanied with 
shorter DRTs compared to term loans. This impact is decisively evident (po

(
E[𝛽Facility ] < 0

)
→∞ 

and 0 ∉ HPDI
(
�Facility

)
= [ − 0.12, −0.06]). In analogy to the EAD, the impact of facility is reversed 

in the LGD and DRT model of the hierarchical approach. While lines are characterized by shorter 
DRTs, they result in higher LGDs. Reasons may be found in divergent resolution efforts related to the 
size of the loan and whether it is secured or not. The posterior mean of protection (�Protection) exhibits 
a positive, decisively evident (po

(
E[𝛽Protection ] > 0

)
→∞ and 0 ∉ HPDI

(
�Protection

)
= [0.10, 0.17]) 

sign indicating longer DRTs for secured loans. The impact of protection is divergent among the mod-
els in the hierarchical approach (𝛾Protection < 0 and 𝛽Protection > 0). This might depend on the specific 
protection mechanism. If loans are secured either by collateral or guarantees, efforts have to be taken 
to liquidate collaterals or claim funds which are related to guarantees. This might extend DRTs, but 
can lead to lower LGDs if additional cash flows for the creditor are generated. The industry affiliation 
FIRE (�Industry) reveals a negative posterior mean, thus, it is connected to shorter DRTs. The sign is 
decisively evident (po

(
E[𝛽Industry ] < 0

)
→∞ and 0 ∉ HPDI

(
�Industry

)
= [ − 0.20, −0.11]) and cor-

responds to the sign of the LGD model in the hierarchical approach (𝛾 Industry < 0 and 𝛽Industry < 0). 
Resolution prospects in the FIRE industry might be limited compared to other industries due to less 
tangible assets. Thus, DRTs are short and LGDs low. To control for the impact of the macroecon-
omy, the VIX (�VIX) is included in the DRT model of the hierarchical approach. Its posterior mean is 
positive and decisively evident (poE[𝛽VIX]>0 = 7, 141.86 > 100 and 0 ∉ HPDI�VIX

= [0.15, 0.39]). This 
entails longer DRTs in bad economic conditions which correspond to the economic intuition.

The parameters of the multivariate random effect in Equation (11) are stated in the lower panel of 
Table 4. As the DRT is included in the LGD model of the hierarchical approach, the random effect of 
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T A B L E  4   Results of the hierarchical model

Posterior 
mean HPDI (95%)

Posterior 
odds

Naive 
standard 
error

Time series 
standard 
error

LGD model in the hierarchical approach

�1 0.0000 Not estimated

�2 0.0064 0.0062 0.0067 ∞ 0.0000 0.0000

�3 0.0279 0.0268 0.0290 ∞ 0.0000 0.0000

�4 0.5033 0.4923 0.5144 ∞ 0.0000 0.0000

�5 1.0000 Not estimated

�1 0.0010 Not estimated

�2 0.0043 0.0040 0.0045 ∞ 0.0000 0.0000

�3 0.0234 0.0223 0.0244 ∞ 0.0000 0.0000

�4 0.3384 0.3314 0.3453 ∞ 0.0000 0.0000

�5 0.0010 Not estimated

c1 −1.4391 −1.5803 −1.3004 ∞ 0.0003 0.0005

c2 −0.5848 −0.7242 −0.4422 ∞ 0.0003 0.0006

c3 0.5728 0.4306 0.7090 ∞ 0.0003 0.0005

c4 2.6716 2.5262 2.8169 ∞ 0.0003 0.0005

�EAD −0.1952 −0.2233 −0.1667 ∞ 0.0001 0.0001

�Facility 0.3259 0.2700 0.3840 ∞ 0.0001 0.0001

�Protection −0.6291 −0.6932 −0.5676 ∞ 0.0001 0.0002

� Industry −0.2736 −0.3437 −0.2036 ∞ 0.0002 0.0002

�HPI −0.0061 −0.1287 0.1170 1.1847 0.0003 0.0005

�
T

0.9996 0.9711 1.0280 ∞ 0.0001 0.0001

DRT model in the hierarchical approach

�0 0.7341 0.6112 0.8521 ∞ 0.0003 0.0006

�EAD 0.0512 0.0343 0.0678 ∞ 0.0000 0.0000

�Facility −0.0903 −0.1238 −0.0555 ∞ 0.0001 0.0001

�Protection 0.1345 0.0981 0.1718 ∞ 0.0001 0.0001

�Industry −0.1555 −0.1954 −0.1141 ∞ 0.0001 0.0001

�VIX 0.2731 0.1514 0.3946 7141.8571 0.0003 0.0004

s 0.8488 0.8395 0.8583 ∞ 0.0000 0.0000

Random effect

�
T

0.3424 0.2627 0.4327 ∞ 0.0002 0.0002

�
L

0.3615 0.2696 0.4634 ∞ 0.0002 0.0003

�
T,L 0.1863 −0.1398 0.5031 6.3057 0.0007 0.0008

Note: The table summarizes the results of the hierarchical model. Parameters are stated in the first column. Categorical variables are 
included via dummy coding. The reference categories are term loan for facility, no for protection, and non-FIRE for industry. The 
second column presents the posterior means. In the third and fourth column, lower and upper bounds of the corresponding HPDIs to a 
credibility level of 95% are displayed. The fifth column contains the posterior odds. Naive and time series standard errors are shown 
in the last two columns. Time series standard errors are calculated based on the effective chain length (N ∗) instead of the actual chain 
length (N), whereby N ∗

< N holds for autocorrelated chains.
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the DRT model (FT

t
) enters the LGD model. Thus, the aggregated systematic impact of the random 

effects on LGDs (t) is the linear combination of �T
F

T

t  and FL

t
:

whereby �2
 is the variance of the aggregated systematic effect. Considering the results of Table 4, the 

standard deviation � of t amounts to 0.54. This standard deviation is considerably smaller compared to 
the standard deviation of the random effect in the pure LGD model (see Table 3, � = 0.82). As suspected 
in the previous subsection, the estimated standard deviation of the random effect in the pure LGD model 
seems to be biased due to the resolution bias. Ignoring censored observations, that is, unresolved loans, 
leads to biased realizations of the random effect ( ft) and, thus, subsequently to biased parameters (�).

Figure 5 illustrates the realizations of the random effects of the DRT model fT
t

 (upper left panel) 
and the LGD model fL

t
 (lower left panel) in the hierarchical approach. Higher realizations of the ran-

dom effect in the DRT model ( fT
t
> 0) imply higher DRT for all loans defaulted in t, whereas higher 

realizations of the random effect in the LGD model ( fL
t
> 0) lead to higher values of the latent variable 

 ∗ for all loans defaulted in t and, thus, to higher average LGDs in this quarter. Hence, DRTs impact 

(13)


t
= �

T
F

T

t
+F

L

t

�2

 = �2

T
�2

T
+�2

L
+2�

T
�

T
�

L
�

T,L,

F I G U R E  5   Random effect of the hierarchical model
Note: The figure illustrates the course of the random effects in the hierarchical model over time. In the left panels, 
the posterior means (thick lines) and the HPDI (95%, thin lines) of the random effect realizations, that is, f

T

t
 (DRT) 

and f
L

t
 (LGD), are displayed. In the right panel, the combined systematic effect on the LGDs according to the random 

effects of the hierarchical model (�
T
f

T

t
+ f

L

t
, black line) is contrasted with the time patterns of average LGDs for all 

loans (dark gray line) and for resolved loans (light gray line). Final and non-finalized LGDs in validation sample I are 
included in the averaging. The dotted lines mark zero and serve as a reference line
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LGDs in two ways (see Section 3): directly, as higher DRTs are inserted in the LGD model; indirectly, 
as positive realizations of fT

t
 tend to imply positive realizations of fL

t
 due to the positive correlation 

(�T,L). However, the indirect channel might also weaken the impact of DRTs on LGDs as negative re-
alizations of fL

t
 are still possible. Considering the time patterns of the random effects in Figure 5, four 

settings of the indirect channel are apparent. In the first setting prior to the GFC, fT
t
< 0 and fL

t
> 0 

are valid. Thus, average DRTs of loans defaulted in t are shorter. The positive realization of fL
t
, how-

ever, increases average LGDs. Resolutions of these loans at least partly take place during the crisis. 
This might depress recovery payments at the end of the resolution process and, thus, increase LGDs. 
The second setting in the climax of the GFC is characterized by positive realizations of both random 
effects ( fT

t
> 0 and fL

t
> 0) indicating longer DRT and simultaneously higher LGDs of loans defaulted 

in t. In the third setting in the aftermath of the GFC, signs of the random effects are reversed ( fT
t
> 0 

and fL
t
< 0). Hence, average DRTs of loans defaulted in t are longer, whereas average LGDs are lower. 

This might be due to the time delay in the first setting. Analogously, parts of the recovery payments 
take place during the rebound period which favors recovery collection and decreases LGDs. The 
fourth setting is located in the most recent time period. The realizations of both random effects exhibit 
negative signs ( fT

t
< 0 and fL

t
< 0) indicating shorter DRTs and simultaneously lower LGDs for loans 

defaulted in t. These settings illustrate the impacts of systematic effects in the resolution process. The 
positive correlation of the random effects (�T,L) seems to be driven by extreme economic surroundings 
as synchronism appears in crises and boom periods. Furthermore, reasoning for the gradual rebound 
in the aftermath of the GFC can be provided (see Figure 3). While the random effect of the LGD 
model fL

t
 indicates the rebound in the aftermath of the crisis (third setting), the random effect of the 

DRT model fT
t

 remains at its high level. This might be due to the high stock of non-performing loans 
in the aftermath of the GFC which decelerated resolution proceedings. Average LGDs increase due 
to the direct channel.

The right panel of Figure 5 contrasts the aggregated systematic impact of the random effects (t) to 
average LGDs in the time line. The latter include observations which are not considered in the estimation. 
The aggregated systematic effect seems to mimic the path of average LGDs. However, slight dispersions 
are apparent in the more recent time periods. Reasons might be found in a less accurate estimation of the 
random effect realizations of the LGD model ( fL

t
) in the more recent time periods. Although censored ob-

servations are included through the DRT model, unresolved loans do not directly enter the LGD model in 
the hierarchical approach. Comparing the dispersions of the hierarchical model with the pure LGD model 
(see Figure 4), improvements are apparent. While the spread extremely increases in the time line for the 
pure LGD model, the deviation is considerably less pronounced in the hierarchical approach. Thus, the 
hierarchical approach succeeds in reducing bias of the estimated random effect.

5  |   VALIDATION

As stated in Section 4.1 (see Table 2), the models are estimated based on the estimation sample. In 
the in-sample validation, the posterior predictive distributions based on the estimation sample are 
compared to the empirical distributions of completely resolved loans in the estimation sample. The 
out-of-sample validation examines the distributional fit for censored observations, that is, loans which 
have defaulted till the end of the estimation period but are still unresolved. Thus, posterior predictive 
distributions based on validation sample I are compared to the corresponding empirical distribution. 
The posterior predictive distributions are generated based on the estimated realizations of the random 
effect. In the out-of-sample out-of-time validation, loans which defaulted after the end of the estima-
tion period are considered. As no random effect realizations are available for those loans, posterior 
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predictive distributions are generated at the means of the random effects, that is, zero, and compared 
to the corresponding empirical distribution.

A detailed analysis of the distributional fit for both models can be found in the online companion of 
the paper. Overall, we find that both models exhibit good in-sample fits which speaks for the capability 
of the mixture model to capture the LGD distribution. In the out-of sample as well as out-of-time per-
spective, the hierarchical model shows a higher capability to capture the LGD distribution leading to 
more accurate LGD forecasts. A reason for this might be the inclusion of censored information which 
impacts LGD predictions. To understand the overall impact of censoring on LGDs in our model, we 
take a closer look at the validation in the time line of the posterior predictive means from both models.

5.1  |  Validation in the time line

Figure 6 illustrates the time patterns of average LGD predictions based on the posterior predictive dis-
tributions for specific default quarters. The upper left panel contrasts average LGDs (thin black line) 
with average LGD predictions based on the LGD model (thick grey line) and the hierarchical model 

F I G U R E  6   Validation in the time line
Note: The figure illustrates the validation in the time line. The means of the empirical distribution are displayed by 
a thin black line, whereas the means of the posterior predictive distributions are marked by a thick grey line for the 
LGD model and a thick black line for the hierarchical model, respectively. In the upper panel, the in-sample validation 
in the time line is presented (empirical means of resolved loans in estimation sample). The lower panels show the 
out-of-sample (empirical means of resolved loans in validation sample I) and out-of sample out-of-time validation 
(empirical means of all loans in validation sample II with non-finalized LGDs) in the time line
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(thick black line) for an in-sample perspective. A good in sample fit for both models can be observed. 
The lower left panel illustrates the time patterns of average LGDs and LGD predictions for an out-of 
sample perspective. Although the relative progressions of the LGD predictions based on the LGD 
model and the hierarchical model are similar, the predictions based on the LGD model are biased 
downward. Thus, average LGDs are underestimated by the LGD model in almost all quarters in vali-
dation sample I. This is not the case considering the predictions of the hierarchical model. The noisy 
behaviour of average LGDs at the beginning of the time period is due to a lack of data, as most loans 
defaulted in these quarters are resolved by the end of 2010 and, thus, not included in validation sam-
ple I. The lower right panel illustrates the time patterns of average LGDs and LGD predictions for an 
out-of sample out-of-time perspective. The predictions based on the LGD model seem to be constant 
through time, as the random effect is set to its mean, that is, zero, and the macrovariable is the only 
remaining systematic factor. However, the latter does not exhibit an impact which is statistically evi-
dent (see Table 3). Furthermore, LGD predictions based on the LGD model seem to be systematically 
too low. LGD predictions based on the hierarchical model better fit average LGDs. Deviations at the 
end of the time period might be attributed to the inclusion of non-finalized LGDs for unresolved cases 
(see Figure 3). Final LGDs will be lower and adjust the line downwards. In addition, LGD predictions 
based on the hierarchal model display systematic movement, as macrovariables with statically evident 
impact in the DRT model are included in the LGD model of the hierarchical approach (see Table 4).

6  |   CONCLUSION

In this paper, we thoroughly examine the dependence-structure of DRTs and LGDs using a hierar-
chical modelling framework. Previous approaches do either not take censoring of LGD values into 
account or directly apply a censoring mechanism to accumulated recovery payments during default 
resolution. These payments are a discrete process of single events, while default resolution time is of 
continuous nature. This is why we model (censored) DRT first and hierarchically build on DRTs and 
DRT estimates from unresolved loans to generate unconditional as well as conditional LGD estimates 
for unresolved loan contracts. This substantially diminishes censoring effects for LGDs, reduces the 
bias of parameter estimates and leads to better out-of-sample and out-of-time LGD estimates.

Furthermore, we find direct and indirect dependencies among the credit risk parameters. First, 
LGDs seem to be directly impacted by DRTs, that is, longer resolution processes are accompanied 
with higher losses. Second, the parameters are characterized by common time patterns as correlation 
of the random effects in the individual models is positive. Due to the random nature of these effects, 
the dependency of DRTs and LGDs might be intensified or weakened in certain time periods. We 
find similar signs of the random effect realizations during the GFC and deviating signs pre- and post-
crisis. Due to the consideration of direct dependency structures, we are able to generate intuitive LGD 
predictions for censored cases. These are of high practical relevance in the light of the recent EBA 
guidelines (see European Banking Authority, 2017). Besides LGD predictions for the non-defaulted 
exposure (unconditional predictions), financial institutions are required to predict LGDs for the de-
faulted exposure conditional on post-default information—such as the time in default. The hierarchi-
cal approach diminishes bias of parameter estimates due to the exclusion of censored observations in 
a pure (standard) LGD model and, thus, enables adequate unconditional LGD predictions for the non-
defaulted exposures and consistent conditional LGD predictions for the defaulted exposures within 
one modelling framework.

Nevertheless, a number of limitations and possibilities for improvement accompanying our model 
approach. One challenge is the choice of independent variables for DRTs and LGDs. While a multitude 
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of LGD studies exists whose findings can be used to select independent variables, we are only aware 
of the study by Betz, Kellner and Rösch (2016) which analyzes DRT drivers in detail. We select in-
dependent variables in our study based on their findings and the availability in our database. Previous 
findings suggest that country-specific laws and regulation might have a strong impact on DRTs, thus, 
including this kind of information could be a further step to refine the estimation and prediction of 
DRTs. This could also lead to additional improvements for LGD predictions. Furthermore, in contrast 
to researchers, banks should have access to detailed information regarding single payments during de-
fault resolution. Using this kind of information together with resolution time might also be of value for 
further model development. This could be subject to future research as it combines approaches which 
use accumulated payments as censored information and our approach which uses censored DRT.

Concluding, the consideration of censored observations is essential to generate suitable LGD pre-
dictions. The presented hierarchical model prevents the need of additional data constraints and provides 
fruitful insights into the dependency structure of DRTs and LGDs. Moreover, our approach might not 
only be relevant for DRT and LGD modelling. At first glance, the described setting seems to be a rather 
special case in credit risk management. However, possible applications are diverse. Generally, duration 
processes are subject to censoring. Whenever time-dependent result variables on a metric scale are of 
main interest, censoring should be considered to avoid underestimation (or overestimation respectively, 
if negative dependencies between time and result are present, i.e. 𝛽 < 0). Examples might be found in 
business where complex negotiations lead to outcomes on a metric scale, for example, granting loans 
(negotiation process vs. granted amount). Moreover, applications in completely different fields are con-
ceivable, for example, medicine and health science (healing process vs. resulting quality or strength). 
The developed hierarchical approach might be adjusted to different applications regarding the charac-
teristics of the outcome variable. In this paper, we follow Betz, Kellner and Rösch (2018) and apply a 
FMM to model the distribution of LGDs which has been well proven in prior publications to capture 
the challenging shape exhibiting high probability masses at 0 and 1 and its typical bimodal form. In a 
setting in which the result variable follows a different distribution, the FMM can be replaced by other 
distributions, for instance (skewed) normal, Student or logistic distributions for unimodal or lognormal 
or gamma distributions for non-zero results variables.
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