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Since the discovery of the histamine H2 receptor (H2R), radioligands were among the most powerful tools
to investigate its role and function. Initially, radiolabeling was used to investigate human and rodent
tissues regarding their receptor expression. Later, radioligands gained increasing significance as pharma-
cological tools in in vitro assays. Although tritium-labeling was mainly used for this purpose, labeling with
carbon-14 is preferred for metabolic studies of drug candidates. After the more-or-less successful applica-
tion of numerous labeled H2R antagonists, the recent development of the G protein-biased radioligand
[3H]UR-KAT479 represents another step forward to elucidate the widely unknown role of the H2R in the
central nervous system through future studies.
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For more than 50 years now, the histamine H2 receptor (H2R) has been subject of drug research in academia and
the pharmaceutical industry. While in 1966 Ash and Schild speculated about its existence [1], the SK&F research
group around Sir James W Black was able to prove the presence of the H2R in 1972 with their experiments on
histamine-induced gastric acid release [2]. From today’s perspective, a rather small number of 700 tested compounds
within 9 years of drug development (1964–1972) [3] led via burimamide and metiamide to the world’s first
blockbuster drug, cimetidine (Figure 1). Cimetidine is known to be the first H2 receptor antagonist on the market
in the treatment of peptic ulcer and gastroesophageal reflux disease [3,4]. To date, five additional H2R antagonists
(ranitidine [5], famotidine [6], nizatidine [7], roxatidine [8] and lafutidine [9]; Figure 1) with increased potency and
better pharmacokinetic properties have been successfully approved [10]. In contrast, H2 receptor agonists have
not yet found their way into the world’s drug portfolio. Although a large number of highly potent and subtype-
selective agonists has already been published, these ligands are predominantly applied in basic research studies
within academia [11–18]. However, the aforementioned properties turn them into valuable pharmacological tools
that could be of great importance to elucidate the largely unknown role of the H2R in the central nervous system
(CNS) [3,15]. Such molecules would be an important addition as counterparts to zolantidine (Figure 1), the only
described CNS-penetrable H2R antagonist until today [19]. In addition to this application, there are several studies
discussing possible peripheral (acute myeloid leukemia) [14,20] and central (memory and learning) [21,22] therapeutic
indications for H2R agonists, although cardiac and gastric side effects should be considered. In particular, the
effect on learning and memory occurs via the stimulation of postsynaptic H2Rs, which so far have only been
shown via the use of dual-acting acetylcholinesterase inhibitors and H3R antagonists as these molecules initiate
this process through inhibition of presynaptic H3-autoreceptors [21,22]. For that reason, the use of CNS-penetrating
H2R agonists is of great interest.

Numerous publications with elaborate pharmacological studies and dedicated research were necessary to write the
preceding story of success about the H2R. In this regard, radiolabeled compounds played an important role for the
examination of histamine receptor expression in the different tissues of the human body. Moreover, characterizations
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Figure 1. Structures of histamine H 2 receptor radioligands and the precursor BMY25368. For impromidine and
lafutidine, the exact location of the tritium label was not indicated in the literature. BMY-25368 has not been
synthesized in radiolabeled form.
*3H-labeled position(s); **14C-labeled position(s); ***35S-labeled position; ****125I-labeled position.
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of ligand–receptor interactions and metabolic studies for potential drug candidates were facilitated. Although the
number of publications of modern FRET/BRET-based methods for G-protein-coupled receptors (GPCRs) is
increasing rapidly, radiolabeled compounds are still an integral part of the pharmacological repertoire of medicinal
chemists.

Radiolabeling
In principle, there are several ways to introduce a radioisotope into a molecule. First, a decision has to be made
on the choice of the isotope. Due to the high prevalence of hydrogen and carbon in organic compounds, their
isotopes – namely, tritium (3H) and carbon-14 (14C) – are the first to be considered for labeling. On the other hand,
compounds with radioactive isotopes of phosphorus (32P, 33P), sulfur (35S) and iodine (125I) are less frequently
encountered. Except for the gamma emitter iodine-125, all isotopes listed here are beta emitters (negative beta
decay).

The decisive factor for the choice of the specific radioisotope is the type of study which should be performed. It
is of particular importance whether the radioligand should be applied for a preliminary in vitro characterization in
the early phase of drug development or whether the drug candidate is already in a preclinical phase and a metabolic
study (e.g., human ADME study) is required. Therefore, depending on the purpose, a thorough assessment of the
situation must be made to decide which labeling is the right one. Excellent guidance to make a decision between
3H- and 14C-labeling is provided in the review article by Joel A Krauser, which served as a reference for some of the
following points [23]. When comparing the radiochemical properties of the two isotopes, it is obvious that tritium has
a significantly higher specific activity (3H: 28.7 Ci/mmol vs 14C: 0.0624 Ci/mmol) is cheaper to acquire and more
readily available. In addition, the synthesis of tritiated compounds is much simpler since nowadays the labelling
reagents are more easily to handle. Whereas tritium gas was used almost exclusively in the past, highly reactive
N-hydroxysuccinimide (NHS) esters are now available, most of which containing a tritiated alkylic side chain.
Because of their nongaseous state, these NHS esters can be used easily with exact stoichiometry delivering very high
yields due to their reactivity. A disadvantage compared with tritium gas is certainly the dependence of commercially
available tritiated side chains of NHS esters, which may not be compatible with the structure of an already existing
drug candidate. In addition to the significantly lower acquisition costs, the lower half-life (3H: 12.32 vs 14C:
5730 years) also allows simpler and more economical management of radioactive waste disposal. All these aspects
provide reasons to use tritiated compounds in the early phase of drug development, which is why academia works
almost exclusively with [3H]radioligands. Although 3H-labeled compounds possess high radiochemical stability,
there is a high risk of biological degradation by oxidative cleavage of the 3H label mediated by cytochrome P450
enzymes. Because 14C is integrated into the molecular scaffold, there is a reduced risk of direct label cleavage, which
is beneficial for metabolic studies. Furthermore, the isotopic signature of 14C can be analyzed and detected very
specifically by mass spectrometry. Conversely, the aforementioned metabolic instability of 3H-labeled compounds
inevitably negates their use in such studies. Accordingly, the revealed profile of carbon-14 labeling leads to the
fact that studies with 14C-labeled compounds can be predominantly found in the literature in preclinical studies
of the pharmaceutical industry. Nevertheless, one should not blindly follow this classification but rather make a
detailed and individual evaluation when choosing the right label related to the respective project. Compounds
labeled with 35S are rare, certainly also due to the low sulfur content in drugs. However, the application of this
isotope is often found in functional GPCR assays, in which [35S]GTPγS is used. 35S is also a beta emitter and
possesses a much lower half-life of 87.1 days compared with 3H and 14C. The isotopes 32P and 33P are mainly used
to label guanosine-5′-triphosphate (GTP) in functional assays, for example, the [γ-32P]-GTPase or [γ-33P]-GTPase
assay, respectively. Both isotopes have extremely short half-lives (32P: 14.3 and 33P: 25.4 days) but show significant
differences in decay energy. While phosphorus-32 has a comparatively high decay energy of 1.71 MeV, the energy
beta emission of phosphorus-33 is only 0.25 MeV.

Radioligands for the histamine H2 receptor
The most versatile molecular tools which successfully promoted pharmacological research on histamine recep-
tors were radioligands. Therefore, in the early 1980s, the well-established H2R antagonists [3H]cimetidine and
[3H]ranitidine (Figure 1) were mainly employed [24–27]. However, the general drawback of these ligands was their
comparatively low affinity for the H2R (Table 1) despite their high efficacy [28–30]. In addition to the described
effect at the H2R, [3H]cimetidine also exhibited considerable affinity for another imidazole recognition site, which
precluded selective investigations of the H2R [24,25]. Although [3H]tiotidine (Figure 1) is routinely used in biological
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Table 1. Binding data (pKi values) of selected H2R ligands at the human histamine H2 receptor.
Compound pKi

hH1R hH2R hH3R hH4R Ref.

Histamine 4.6 5.1 8.2 8.1 [51]

Cimetidine 4.75 5.84 4.69 5.03 [51]

Ranitidine 4.47 6.67 4.89 �5 [51]

Famotidine �5† 7.56 – �5 [51]

Tiotidine �4 7.77 �4‡ �5 [51]

Nizatidine – 6.92§ – – [52]

Lafutidine – 7.92¶ – – [53]

ICIA 5165 – 7.89# – – [35]

Roxatidine acetate – 7.41†† – – [54]

Zolantidine 5.1‡‡ 7.40 – – [55,28]

Iodaminopotentidine – 9.51 – – [29]

UR-DE257 �5 7.55 5.42 �5 [29]

BMY25368 – 7.72 4.66 – [29,40]

UR-NK79 6.36 7.94 6.08 5.96 [14]

Impromidine 5.2 7.64 6.99 7.76 [51]

UR-SB69 �4 7.65 5.3 4.4 [40]

UR-KAT479 �5 7.59§§/7.78¶¶ 4.91 �5 [17]

Binding data (pKi ) were determined at human HxRs in different assay systems, unless otherwise stated.
†gpH1R.
‡rH3R.
§pKd from measurements of CRE-SPAP production from CHO-H2-SPAP cells in the presence of histamine.
¶Data (pKi ) from radioligand competition binding experiments performed in guinea pig cerebral cortex synaptic membrane with [3H]tiotidine.
#Data (pKi ) from radioligand competition binding experiments performed at guinea pig gastric mucosa with [3H]ICIA5165.
††H2R antagonistic activity (pA2) on the isolated guinea pig right atrium.
‡‡Data (pKi ) from competition binding experiments with [3H]mepyramine performed at homogenates of guinea pig cerebral cortex.
§§Data (pKi ) from radioligand competition binding experiments performed on membrane preparations of Sf9 insect cells expressing the hH2R-Gs�S with [3H]UR-KAT479.
¶¶Data (pKi ) from radioligand competition binding experiments performed at HEK293T-hH2R-qs5-HA cells with [3H]UR-KAT479.

in vitro assays, it was reported to have a very high nonspecific binding and to address only a subpopulation of the
H2R [31,32]. Similar problems were faced in studies with the endogenous ligand [3H]histamine (Figure 1), which
was also found to have low affinity (Table 1) and high nonspecific binding [15,33]. Consequently, large quantities
of radioligand had to be used to obtain meaningful results leading to higher risks to health and the environment,
as well as inefficiency. Furthermore, [3H]histamine does not exhibit any selectivity within the histamine receptor
family showing even higher affinities at the H3R and H4R. This lack of selectivity automatically disqualified
[3H]histamine for selective studies at the H2R [15]. The same disadvantage applied for [3H]impromidine (Figure 1),
rendering this agonist unsuitable as an appropriate H2R radioligand, as well [34]. Unfortunately, also radiolabeling
of the antagonist [3H]ICIA 5165 (Figure 1), an analog of tiotidine, did not lead to any significant improvements
over the drawbacks already mentioned [35].

In the 1990s, some experiments with 125I-labeled compounds were performed, resulting in the versatile H2R
antagonist [125I]iodoaminopotentidine (Figure 1) [28,36,37]. Thus, [125I]iodoaminopotentidine constituted a po-
tent radioligand at the H2R (Table 1), which could also be used for autoradiography experiments in primates
(human/nonhuman brain) and rodents (brain/heart) [36,37]. Its most obvious disadvantage is, however, the use of
the iodine-125 isotope (gamma emitter), which involves significantly higher safety precautions during the prepa-
ration and usage of the radioligand, compared with tritiated compounds. Moreover, due to the short half-life of
the isotope (59.5 days) [38], the radioligand can only be used for 4–6 weeks after preparation [29]. To improve
the handling and the safety aspects, the tritiated compound [3H]UR-DE257 (Figure 1) was synthesized, which
exhibited a new structural motif with the squaramide modification derived from H2R antagonist BMY25368
(Figure 1 & Table 1) [29]. [3H]UR-DE257 was very well suited to determine pKi values but turned out to be an
insurmountable antagonist in functional and kinetic assays, which limited its applicability as a pharmacological
tool [29]. The radioligand also possesses high affinity to histamine H2 receptor orthologs (rat, guinea pig) beside the
human H2R [29]. Furthermore, [3H]UR-DE257 could be successfully employed for autoradiography of the heart
sections of transgenic mice overexpressing the human histamine H2 receptor [39]. The synthesis of [3H]UR-SB69
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(Figure 1 & Table 1), a structural combination of the two antagonists famotidine (Figure 1 & Table 1) and UR-
DE257, also failed to remedy this situation [40]. In addition to high nonspecific binding, complete displacement of
the radioligand could not be achieved in dissociation experiments in this case either [40]. Furthermore, a long-term
stability study showed that after 15 months, approximately 50% of the radioligand were already degraded [40].
To circumvent these problems, several attempts were made to radiolabel high affinity H2R agonists with different
structural features. A first experiment, starting from the agonistic dimer UR-NK22, resulted in [3H]UR-NK79
(Figure 1 & Table 1) [14]. However, also this ligand did not bind in a saturable manner and showed high non-
specific binding in saturation binding experiments [14]. Furthermore, confocal microscopy studies with fluorescent
ligands of similar structure indicated that such compounds tend to a pronounced, receptor-independent cellular
accumulation [14]. However, since some observations from Kagermeier et al. indicated an improved kinetic behavior,
investigations of monomeric carbamoylguanidine-containing amines as promising precursors for H2R radioligands
were performed. This led to the development of the highly stable high affinity agonist [3H]UR-KAT479 (Fig-
ures 1 & 2, & Table 1), a G protein-biased H2R radioligand with a very good selectivity within the histamine
receptor family [17]. In addition to significantly improved kinetics (including complete dissociation from the recep-
tor), [3H]UR-KAT479 showed excellent properties in saturation and competition binding assays [17]. Furthermore,
its applicability was demonstrated on H2R orthologs (guinea pig, mouse) by reporting pKi values of standard H2R
ligands in whole cells for the first time [17]. Its G protein bias also eliminates the need for specifically adjusted
assay conditions (e.g., hypotonic buffers), which can be used to prevent receptor internalization. Finally, the in-
vestigated low binding of [3H]UR-KAT479 to red blood cells provides a promising basis for the use of unlabeled
carbamoylguanidine-type ligands in animal studies to further explore the role of the H2R in the CNS [17].

In addition to the application of radioligands in basic research, potential H2R drug candidates were also
investigated in preclinical studies with regard to their pharmacokinetic properties. In this case, the literature mainly
consists of studies with the marketed H2R antagonists. As discussed at the beginning, the selection of the label plays
a central role, which is why publications with 14C-labeled compounds are found almost exclusively for metabolic
studies. The first work on this topic was published in the early 1980s, studying the excretion and metabolism of
[14C]cimetidine in male volunteers [41]. Extensive studies with urinary and fecal samples revealed a comprehensive
picture of the metabolic spectrum of cimetidine showing that more than 70% of the 14C was excreted in the urine
after 24 h and 5% in the feces [41]. Unchanged cimetidine was the largest urinary component (63%), followed
by cimetidine N′-glucuronide (24%) [41]. In addition to the synthesis of 35S- and 14C-labeled famotidine [42],
metabolic studies with orally administered [14C]famotidine in man have also been published [43]. Also in this
case, urinary and fecal recovery were specifically investigated [43]. Again, renal excretion was the major route of
elimination with a recovery of unchanged famotidine of approximately 67% after intravenous administration [43].
The bioavailability averaged 43% of the applied famotidine dose [43]. An interesting ex vivo animal model is
provided by the isolated perfused kidney in rats, in which the effect of cationic drugs on the renal secretion of
tritiated ranitidine ([3H]ranitidine) was examined [44]. The results indicate that at clinically relevant concentrations
the renal tubular secretion of ranitidine is inhibited by trimethoprim, but not by amantadine, pseudoephedrine or
triamterene [44]. Besides the classical pharmacokinetic profile in human, pharmacodynamic and hormonal effects of
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healthy and renally or hepatically impaired patients were also studied with [14C]nizatidine [45]. Nizatidine showed
high bioavailability (>90%) with more than 90% being recovered in urine within 16 h of dosing [45]. The drug did
not alter hormone concentrations in plasma; however, renal impairment decreased the elimination of nizatidine [45].
Further studies deal with the secretion in human breast milk [46], as well as the localization of the active drug in
the parietal cells of gastric mucosa, also here using [14C]nizatidine [47]. The disposition of nizatidine was similar
in lactating and nonlactating women with less than 0.1% of the maternal dose being secreted into milk during
a 12-h interval after either single or multiple doses [46]. Furthermore, nizatidine was confirmed to be retained as
an unchanged drug in the gastric mucosa, supporting the duration of pharmacological effects of nizatidine [47].
Among structurally novel H2R antagonists, metabolic studies with [3H]- and [14C]roxatidine acetate [48], as
well as autoradiographic studies of [3H]lafutidine on CGRP-immunoreactive nerves and gastric parietal cells are
reported [49]. Roxatidine acetate was almost completely absorbed after oral administration (>95%) and was rapidly
converted to roxatidine, its major active plasma and urinary metabolite [48], whereas autoradiographic studies have
shown that lafutidine effector sites coincided with the CGRP-immunoreactive nerves as well as the parietal cells [49].

In addition to the dominant number of pharmacokinetic reports, CNS permeability studies using radiolabeled
H2R antagonists have also been performed. Foremost among these is the study by Young et al. that attempts to
establish a working model for the passage of histamine H2 receptor antagonists across the blood–brain barrier,
where [14C]zolantidine (Table 1), [14C]cimetidine, [14C]ranitidine and [3H]tiotidine, among others, were used [50].

Conclusion & future perspective
The aim of this special report was to provide an overview of the use of radioligands at the H2R over the past five
decades. Although a lot of progress was made in the field of H2R radioligands, some challenges remain. For example,
a recently published study suggests that ligands with similar structural features as [3H]UR-KAT479 possess a high
affinity for dopamine receptors of the D2-like family, specifically for the dopamine D3 receptor [18]. This drawback
might hamper a possible application in autoradiography experiments.

Even though H2R agonists have not yet found their way on the drug market, research in this field remains exciting.
As described earlier, there are several unanswered questions regarding the human histamine H2 receptor that relate
to effects in both the periphery (acute myeloid leukemia) and the CNS (memory and learning), emphasizing the
need for the development of appropriate pharmacological tools in this area. Continued efforts in the field of H2R
research might eventually lead to the discovery of an agonistic drug for therapeutic purposes, although some studies
with regard to bioavailability and blood–brain barrier permeability of the compounds are still pending.

Executive summary

Radiolabeling
• 3H and 14C isotopes are most frequently used for the labeling of potential drug candidates.
• 3H labeling is mainly used in preliminary in vitro characterization, while 14C labeling is mainly required for

metabolic/pharmacokinetic studies (preclinical/clinical phase).
Radioligands for the histamine H2 receptor
• 3H-labeled H2R antagonists like [3H]cimetidine, [3H]ranitidine or [3H]tiotidine display comparatively low affinity

and high nonspecific binding at the H2R.
• Squaramide-type H2R antagonist [3H]UR-DE257 with high affinity and lower non-specific binding but

insurmountable antagonism.
• Development of the G protein-biased radioligand [3H]UR-KAT479 (H2R agonist) led to improved kinetic binding

properties, beside high affinity and very good receptor subtype selectivity.
• Recent H2R study shows high affinities of carbamoylguanidine-type agonists such as [3H]UR-KAT479 at dopamine

receptors of the D2-like family (mainly D3R).
• Pharmacokinetic studies of marketed H2R antagonists are mainly performed with 14C-labeled radioligands by

pharmaceutical industry in preclinical/clinical stage.
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