
Nucleon axial and pseudoscalar isovector

form factors from lattice QCD

Dissertation zur Erlangung des Doktorgrades der

Naturwissenschaften (Dr. rer. nat.) der Fakultät

für Physik der Universität Regensburg

vorgelegt von

Thomas Wurm

aus

Regensburg

im Jahr 2020



Promotionsgesuch eingereicht am: 25.11.2020

Die Arbeit wurde angeleitet von: Prof. Dr. Andreas Schäfer



Abstract

The axial structure of the nucleon, in particular the iso-vector axial and

(induced) pseudoscalar form factors, can be analyzed from first principles

using Monte Carlo techniques in lattice QCD. Effective field theory predicts

that pseudoscalar form factors are dominated by a pion pole, which originates

from an exchange of a virtual pion. While experiments show agreement with

this expectation, previous lattice results have violated it. We show that

this discrepency can be traced back to excited state contaminations in the

three-point correlation function.

To this end we use effective field theory to gain insight into the structure of

nucleon pion excited state contributions, which enables us to disentangle the

ground state contribution reliably. The extracted form factors then satisfy

the pion pole dominance assumption as well as the constraints due to the

partial conservation of the axial current up to expected discretization effects.

Using a large landscape of ensembles, mostly generated within the CLS-effort,

we examine the parametrization dependance and take all relevant limits. We

find good agreement both with experiment and with predictions from chiral

perturbation theory.
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1. Introduction

The standard model is the successful theory of elementary particle physics and describes

three of the four fundamental interactions, namely the electromagnetic, weak, and strong

interactions. Among its successes are the predictions of the W ± and Z bosons and the

discovery of the Higgs at the Large Hadron Collider at Cern [1]. The standard model,

however, fails to include the fourth fundamental interaction, i.e., gravity, and is therefore

sometimes considered incomplete. Additionally dark matter and dark energy, which

account for ∼ 95% of the mass of the universe [2], are also not included in the standard

model.

In order to find beyond the standard model physics we first need a detailed under-

standing of current physics from first principle, in particular, the strong interaction

part of the standard model, which is called Quantum Chromodynamics or QCD. While

perturbative methods work well, e.g., for Quantum Electrodynamics, they are rather

problematic for QCD, due to the fact that the strong coupling g is of O(1) and expan-

sions in orders of g are non- or only slowly convergent. Therefore we are in need of a

non-perturbative method and, in this thesis, we chose lattice QCD.

In lattice QCD one regularizes the QCD path integral using Euclidean space-time

lattices, which remove both infrared and ultraviolet divergences. Observables can then

be estimated through Monte Carlo simulations of the regularized path integral. However,

in lattice QCD, one encounters a variety of systematics:

• discretization effects, due to the finite lattice spacing a, require a controlled con-

tinuum limit, i.e., a→ 0.

• finite volume effects, for example L3 for the spatial volume, where L is the extent

in one spatial dimension, require the infinite volume limit, i.e., L→∞.

• unphysical quark masses, which are implicitly set in the input parameters, usually

need to be extrapolated to the point where the pseudoscalar meson masses have

their physical values.

Additionally, correlation functions that are calculated in lattice QCD suffer from excited

state contaminations, requiring a careful treatment and analysis.

Numerous studies of the nucleon have been carried out in lattice QCD, see e.g., refs. [3–

37], albeit the treatment of the aforementioned systematics still remains challenging.

One example for this is the axial coupling gA, which can be measured with high pre-

cision from neutron β decay (e.g., n → pν̄ee
−), see refs. [38–41]. For a long time gA

served as a benchmark test for lattice QCD since earlier lattice determinations tended

to underestimate it by ∼10%, see for example [10, 14].
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As previously published in ref. [42], at finite momentum transfer Q2, the axial form

factor GA(Q2) (where GA(0) ≡ gA) and the induced pseudoscalar form factor GP (Q2)
are less precisely known. They enter the description of exclusive pion electroproduc-

tion [43–46] (e.g., e−p→ π−pν), (quasi-)elastic neutrino-nucleon scattering [47–50], radia-

tive muon capture [51–53], and ordinary muon capture [54–57]. Via weak muon capture

in muonic hydrogen a combination of the Dirac, Pauli, axial, and induced pseudoscalar

form factors can be measured, constraining the latter at the muon capture point [53, 56–

59]. The direct determination of the induced pseudoscalar coupling in refs. [56, 57] shows

that, at small momentum transfer, the induced pseudoscalar form factor is indeed well

approximated by a pion pole dominance (PPD) ansatz. Additionally, chiral perturbation

theory (ChPT) can yield valuable low energy theorems [46, 60–63] (motivating, e.g., the

above mentioned PPD ansatz).

The goal of this thesis is to extract axial and (induced-) pseudoscalar isovector currents

including a treatment of the systematics mentioned above. To this end, the thesis is

structured as follows:

In chapter 2 we describe some of the methods that are used when simulating Quantum

Chromodynamics (QCD) on the lattice. First we introduce the continuum action and

decompose it into a fermionic and a gluonic part. We then define the path integral,

perform the Wick rotation to imaginary time, and choose Euclidean space-time lattices

as regularizations. Afterwards, we take a more detailed look at some fermionic and

gluonic lattice actions, including the actions applied within the CLS effort. We briefly

outline the Monte Carlo simulations and conclude the chapter with a discussion of open

boundary conditions, which circumvent critical slowing down at fine lattice spacings.

In chapter 3 we detail how the analysis of the ensembles is performed. We start

with outlining the scale setting methods, before we discuss the propagators and their

smearing techniques. Then we define our operators, the two- and three-point correlation

functions, as well as the employed ratio. We conclude the chapter with remarks on the

renormalization.

Chapter 4 is dedicated to the effective field theory calculations which we use to isolate

most of the excited states contaminations. To this end we discuss the contributing

diagrams and define the employed Feynman rules. After the evaluations of the diagrams

we conclude the chapter with the final results for the spectral decompositions of two-

and three-point functions.

In chapter 5 we discuss the fitting analysis which was performed on a large set of

CLS ensembles. We compare the results with predictions from effective field theory,

reinvestigate subtracted currents [34], and check a special case for finite final momentum.

We conclude the chapter with comments on the obtained excited state energies.

Chapter 6 focuses on the form factors and their extrapolations to the physical limit,
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i.e., zero lattice spacing, infinite volume, and physical masses. We define the ratios

for the violations of the the pion pole dominance (PPD) assumption and the partial

conservation axial current (PCAC). In order to perform the extrapolation we calculate

the constraints, which follow from PCAC, for both the dipole parametrization and the

z-expansion. We list the final extrapolation formulas and directly compare our findings

to other lattice determinations, as well as results obtained from both experiment and

baryon chiral perturbation theory.

We summarize our work and give an outlook in chapter 7.

Note that chapters 4, 5, and 6, appendices B and C, and sections 3.9 and 3.10 as well

as parts of chapters 1 and 7 have been previously published in [42].
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2. QCD on the lattice

This chapter loosely follows ref. [64].

2.1. Continuum theory

Quantum chromodynamics (QCD) is the theory of the strong interaction in particle

physics. It is a quantum field theory with the underlying SU(3) color gauge group,

which is non-Abelian. It describes the interaction of massive spin 1/2 fermions called

quarks and massless spin 1 gauge bosons called gluons.

There are six types, usually referred to as flavor f , of quarks called up, down, charm,

strange, top, and bottom. They are represented by Dirac-spinor fields ψf, cα (x), that

depend on the space-time coordinate x, where α ∈ {1,2,3,4} is the spinor index and

c ∈ {1,2,3} is the color index. Quarks can only appear in color-neutral bound-states,

which is a phenomenon called confinement. In the following we will suppress the color

and spinor indices.

The special unitary group SU(3), or more precisely its Lie algebra, has 32 − 1 inde-

pendent generators ta (a ∈ {1,2, . . . ,8}). The eight corresponding massless gluons are

represented by the vector fields Aaµ(x). In perturbative QCD one additionally introduces

the so-called Faddeev-Popov ghost fields, to account for unphysical degrees of freedom.

Since we are only interested in gauge invariant observable we will not discuss gauge fixing

here and refer the interested reader to [64].

With the information given above we can now construct the QCD action. For free

quarks the action is given by

Sfree[ψ,ψ] = ∫ d4x∑
f

ψ
f(x)(i /∂ −mf)ψf(x), (2.1)

with the Dirac adjoint ψ
f(x) = ψf(x)†γ0, the Feynman slash notation /∂ ≡ γµ∂µ, and

the quark masses mf . Similarly to quantum electrodynamics (QED), this action is not

invariant under local gauge transformations, i.e.

ψf(x) Ð→ ψ′
f(x) = Ω(x)ψf(x), (2.2a)

ψ
f(x) Ð→ ψ

′f(x) = ψf(x)Ω(x)†, (2.2b)

where (in QCD) Ω(x) is an SU(3)-valued function, compared to the scalar U(1) function

in QED. Since Ω(x) are SU(3) matrices they fulfill Ω(x)† = Ω(x)−1. Like in QED, gauge

invariance is achieved by implementing the covariant derivative

Dµ(x) = ∂µ + igAµ, (2.3)
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where Aµ = ∑a taAaµ(x) and g is the strong coupling constant. Inserting (2.2) into (2.1)

and replacing ∂µ with the r.h.s. of eq. (2.3) yields

∂µ + igAµ(x) Ð→ ∂µ +Ω(x)†(∂µΩ(x)) + iΩ(x)†A′
µ(x)Ω(x). (2.4)

Thus the gluon field has to transform as

Aµ(x) Ð→ A′
µ(x) = Ω(x)Aµ(x)Ω(x)† + i

g
(∂µΩ(x))Ω(x)†. (2.5)

The gluon kinematic term can be calculated (again similar to QED) using the field

strength tensor which can be defined using the covariant derivative:

Fµν(x) = −i[Dµ(x),Dν(x)] = ∂µAν(x) − ∂νAµ(x) + ig[Aµ(x),Aν(x)], (2.6)

where [, ] is the commutator. In contrast to QED, [Aµ(x),Aν(x)] does not vanish. This

results in 3-gluon and 4-gluon vertices (gluon self-interactions), and ultimately color

confinement itself.

The final result for the continuum action is therefore

S[ψ,ψ,Aµ] = SF[ψ,ψ,Aµ] + SG[Aµ] (2.7)

with the fermionic and gluonic actions

SF[ψ,ψ,Aµ] = ∫ d4x ∑
f

ψ
f(x) (i /D(x) −mf)ψf(x), (2.8a)

SG[Aµ] = ∫ d4x − 1

4
Tr{Fµν(x)Fµν(x)}. (2.8b)

2.2. Path integral

Using the action defined in the previous section, we can express expectation values of

operators and operator products in terms of path integrals. For example, the expectation

value of two operators O1 and O2 at times t and 0, respectively, can be written as

⟨0∣O1(t)O2(0)∣0⟩ =
1

Z ∫ D[ψ,ψ]D[Aµ] O1[ψ,ψ,Aµ]O2[ψ,ψ,Aµ]eiS[ψ,ψ,Aµ], (2.9)

where on the r.h.s. the operators O1 and O2 are expressed in terms of the fields ψ, ψ

and Aµ. Z is the partition function, i.e.,

Z = ∫ D[ψ,ψ]D[Aµ] eiS[ψ,ψ,Aµ], (2.10)
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and D[ψ,ψ] and D[Aµ] are integral measures that are products of all fermion and gauge

field measures. Inserting a complete set of states, the l.h.s. of (2.9) can also be written

in terms of a sum of exponentials. We will come back to this in sections 3.5 and 3.8.

In Minkowski space-time the action enters eq. (2.9) as iS. This, however, is difficult

to interpret as a probability when we want to simulate QCD on a lattice. The cure for

this problem is to perform a Wick rotation, i.e., rotating to imaginary time

t Ð→ it. (2.11)

For a collection of relevant conventions see for example appendix C in ref. [65]. Effectively

this yields

iS[ψ,ψ,Aµ] Ð→ −SE[ψ,ψ,Aµ] (2.12)

in eqs. (2.9) and (2.10), where SE is the Euclidean action. We will derive suitable real

Euclidean lattice actions in later sections. From this point on we will drop the subscript

E and only use Euclidean conventions, with the exception of chapter 4 where for effective

field theory calculations Minkowski conventions are employed.

We regularize the r.h.s. of eq. (2.9) employing 4-dimensional space-time lattices

Λ = {n ∣ n1, n2, n3 ∈ {0,1, . . . ,Ns}, n4 ∈ {0,1, . . . ,Nt}} , x = an, (2.13)

with the number of spatial points Ns and the number of temporal points Nt. The finite

lattice spacing a serves as an infrared cutoff, whereas the finite spatial and temporal

extents, L = aNs and T = aNt, respectively, serve as ultraviolet cutoffs.

2.3. Fermionic action

In this section we will develop discretized versions of the fermionic QCD action starting

from eq. (2.1). We introduce the gauge links and name the main problem of the naive

fermion action. Then we describe the solution proposed by Wilson, which will lead to

the Wilson fermion action.

2.3.1. Gauge links and the naive fermion action

In order to discretize eq. (2.1) we replace the integral with a finite sum over all lattices

sites (cf. eq. (2.13)) and the derivative with its symmetric discretized form. This results

in

Sfree[ψ,ψ] = a4 ∑
n∈Λ
∑
f

ψ
f(n)

⎛
⎝∑µ

γµ
ψf(n + µ̂) − ψf(n − µ̂)

2a
+mfψ

f(n)
⎞
⎠
. (2.14)
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n n + µ̂

n + ν̂ n + µ̂ + ν̂

Uµ(n)

U †
ν(n) Uµν(n)

Figure 1: Pictorial representation of the lattice. Gauge links connecting n to n + µ̂ and
n + ν̂ to n are depicted in blue and brown, respectively. A plaquette starting
at n with the directions µ and ν is displayed in gray.

Like above in the continuum, this action lacks gauge invariance. On the lattice this is

fixed by introducing the so-called gauge links Uµ(n) which connect the point n with

n + µ̂ (cf. fig. 1). They are elements of SU(3) and have to transform as

Uµ(n) Ð→ U ′
µ(n) = Ω(n)Uµ(n)Ω(n + µ̂)†. (2.15)

For convenience one also defines U−µ(n) = Uµ(n − µ̂)† and γ−µ = −γµ. Collecting every-

thing, the naive fermion action is given as

Snaive
F [ψ,ψ,U] = a4 ∑

n∈Λ
∑
f

ψ
f(n)

⎛
⎝

±4

∑
µ=±1

γµ
Uµ(n)ψf(n + µ̂)

2a
+mfψ

f(n)
⎞
⎠
. (2.16)

However, this action suffers from the doubler problem, i.e., the corresponding prop-

agator has additional poles with the same mass mf at the edges of the first Brillouin

zone. This problem is visible, for example, when calculating the free propagator, i.e.,

Uµ = 1, and performing the Fourier transformation to momentum space. For a more

detailed explanation we refer the reader to [64] and only discuss Wilson’s solution in the

next section.
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2.3.2. Wilson fermion action

As a solution to the fermion doubling problem Wilson suggested to add the term1

− 1

2
a3 ∑

n∈Λ
∑
f

ψ
f(n)

⎛
⎝

±4

∑
µ=±1

Uµ(n)ψf(n + µ̂)
⎞
⎠
+ 4a3 ∑

n∈Λ
∑
f

ψ
f(n)ψf(n), (2.17)

which is the discretized and gauge invariant version of

a

2
∫ d4x ∑

f

ψ
f(x)∂µ∂µψf(x), (2.18)

i.e., it vanishes in the continuum limit. For the physical pole this term does not con-

tribute while for the doubler poles it affects their masses as

amf +
2L

a
. (2.19)

Hence the doublers decouple from the theory when taking the continuum limit, i.e.,

a→ 0. Additionally one usually defines the hopping parameter

κf =
1

2amf + 8
(2.20)

and absorbs a factor of
√
a3/2κf into redefinitions of ψ

f(n) and ψf(n).
Combining eqs. (2.16) and (2.17) we thus obtain the Wilson fermion action

SWilson
F [ψ,ψ,U] = ∑

n∈Λ
∑
f

ψ
f(n)

⎛
⎝
ψf(n) − κf

±4

∑
µ=±1

(1 − γµ)Uµ(n)ψf(n + µ̂)
⎞
⎠
, (2.21)

which approaches the continuum action with O(a) discretization effects.

2.4. Wilson gauge action

Looking at eq. (2.15) one can easily verify that traces of closed loops of link variables are

gauge invariant. The shortest nontrivial loop (cf. fig. 1) is called the plaquette Uµν(n)
and is defined as

Uµν(n) = Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)†. (2.22)

1In the literature one often finds this term with a coefficient r called Wilson parameter, where setting
r = 1 (r = 0) corresponds to the Wilson (naive) fermion action.
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With it the Wilson gauge action can be written as [66]

SWilson
G [U] = β

3
∑
n∈Λ
∑
µ<ν

Re Tr (1 −Uµν(n)), (2.23)

where we have introduced the inverse coupling β = 6/g2. Rewriting

Uµ(n) = eiaAµ(n) (2.24)

and using the Baker-Campbell-Hausdorff formula

eaAeaB = eaA+aB+
a2

2
[A,B]+O(a3) (2.25)

one can verify that the Wilson gauge action approaches the continuum action with O(a2)
discretization effects.

2.5. Symanzik improvement

While the Wilson fermion action has O(a) discretization effects, the Wilson gauge action

has O(a2). Within the Symanzik improvement program [67, 68] one can reduce the

discretization effects of Wilson fermions to O(a2) such that the whole action is O(a)-
improved. In a similar fashion one can also improve the Wilson gauge action. To this

end one writes an effective action

Seff. = ∫ d4x(Lcont.(x) + a∑
i

L(1)
i (x) + a2∑

i

L(2)
i (x) + . . . ) (2.26)

with all possibly contributing terms L(k)
i of dimension 4 + k. These terms can then be

used to counter the discretization effects of their corresponding order.

2.5.1. Wilson clover fermion action

In the case of the Wilson fermion action there are 5 possible terms of dimension 5:

L(1)
1 (x) = ψ(x)σµνFµν(x)ψ(x) (2.27a)

L(1)
2 (x) = ψ(x)

→
Dµ

→
Dµψ(x) + ψ(x)

←
Dµ

←
Dµψ(x) (2.27b)

L(1)
3 (x) =mTr (FµνFµν) (2.27c)

L(1)
4 (x) =m(ψ(x)

→
/Dψ(x) + ψ(x)

←
/Dψ(x)) (2.27d)

L(1)
5 (x) =m2ψ(x)ψ(x) (2.27e)
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P(6)
1 P(6)

2 P(6)
3

Figure 2: Illustration of all dimensions 6 elementary loops. All types have to be consid-
ered for the improvement of the Wilson gauge action.

The equations of motion can be used to eliminate L(1)
2 (x) and L(1)

4 (x), while L(1)
3 (x)

and L(1)
5 (x) already appear in the Wilson fermion action. Therefore, the latter can be

absorbed into redefinitions of the bare parameters.

Thus the Wilson-clover fermion action is given using the discretized version of L(1)
1 (x):

Sclover
F [ψ,ψ,U] = SWilson

F [ψ,ψ,U] + a2cSW ∑
n∈Λ
∑
f

ψ
f(n)σµνF lat

µν (n)ψ(n), (2.28)

with the discretized field strength tensor

F lat
µν (n) =

−i
8a2

(Qµν(n) −Qνµ(n)), (2.29)

where

Qµν(n) = Uµν(n) +Uµ−ν(n) +U−µ−ν(n) +U−µν(n) (2.30)

is the sum over all adjacent plaquettes (hence the name clover). For the tree-level

improved Wilson action and Nf = 3 the Sheikholeslami-Wohlert [69] coefficient cSW was

determined in ref. [70].

We remark that using Wilson-clover fermions reduces discretization effects of the whole

action to O(a2). However in order to achieve a full O(a)-improvement also local oper-

ators have to be corrected. We will discuss in section 3.7 how we improve our currents

of interest appropriately.

2.5.2. Tree-level improved Wilson gauge action

For the improvement of the Wilson gauge action we consider the plaquette and all

dimension 6 operators. Following [71] we can define the dimension d of a closed of gauge

links by taking the continuum limit and expanding as

P(d) a→0= ∑
n

anP(d,n). (2.31)

The dimension d is then given as the smallest n for which P(d,n) ≠ 0.
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For the improved gauge action we make the ansatz:

SImp. Wilson
G [U] = c(4)1 S

Wilson
G [U] + β

3

3

∑
i=1

c
(6)
i ∑
C∈P(6)i

ReTr(1 −U(C)), (2.32)

where c
(l)
k are parameters that need to be determined either perturbatively or non-

perturbatively, P(6)
i is the set of all elementary loops of type i and dimension 6 (cf.

fig. 2), and U(C) is the oriented product of link variables along the path C. In [71] it

was shown that for a tree-level improved action it is sufficient to set

c
(4)
1 = 5

3
− 24x, (2.33a)

c
(6)
1 = − 1

12
+ x, (2.33b)

c
(6)
2 = 0, (2.33c)

c
(6)
3 = x, (2.33d)

where x is a free parameter and ∣x∣ < 1
16 ensures that the action is positive. For conve-

nience, x was set to zero within the CLS effort such that only plaquettes and rectangles

contribute to the gauge action. This action is also called the Lüscher-Weisz gauge action

and has leading O(a2g2) discretization effects.

2.6. Fermion determinant

All fermion fields have to obey Fermi statistics, i.e., all fermion fields have to anti-

commute with each other. For example, with explicit indices, this means

ψf, cα (n)ψf
′, c′

α′ (n′) = −ψf
′, c′

α′ (n′)ψf, cα (n), (2.34a)

ψ
f, c
α (n)ψf

′, c′

α′ (n′) = −ψf
′, c′

α′ (n′)ψf, cα (n). (2.34b)

Therefore, the fermion fields are introduced as Grassmann numbers.

Using Grassmann numbers one can analytically calculate the Gaussian integral over

fermion fields in 2.9, i.e.,

∫ D[ψ,ψ] e
∑
f
ψ
f
Dfψf

=∏
f

det(Df) (2.35)

where we used matrix representations for the fermion fields ψ, ψ, and for the Dirac

operator Df . det(Df) is called the fermion determinant.

We assume the up and down quarks to be mass degenerate. This is well justified from
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nature, e.g., when looking at the similar masses of the proton and the neutron. Thus

the corresponding determinants simplify to

det(Du)det(Dd) = det(D`)det(D`) = det(D†
`)det(D`) = det(D†

`D`). (2.36)

This guarantees that the light determinant is always a real positive number. However,

due to statistical fluctuations, the light determinant may become very small and unstable

to determine. To circumvent this problem, one can employ twisted mass reweighting,

which will be discussed in the next section.

For heavier quark flavors mass degeneracy is a very badly fulfilled symmetry. In

these cases one implements a rational approximation for the determinant which will be

discussed in section 2.6.2.

2.6.1. Twisted mass

Twisted mass reweighting can avoid instabilities in the light quark determinant by shift-

ing the eigenvalue spectrum of the Dirac operator along the positive real axis. The

starting point is the exact relation [72]

det (D†
`D`) = ω` det (f(D†

`D`)), (2.37)

where f is a function that yields a modified Dirac operator and ω` is the associated

reweighting factor. We consider two modifications (cf. [73] and table 1 in [72])2

f1(D†
`D`) =D†

`D` + µ2, (2.38)

f2(D†
`D`) =

(D†
`D` + µ2)

2

D†
`D` + 2µ2

, (2.39)

where f1 is the traditional modification for twisted mass reweighting and f2 was proposed

in [72]. During the generation of the CLS ensembles, f2 was employed. For both f1 and

f2 the parameter µ serves as an infrared regularization and shifts the spectrum of the

Dirac operator along the positive real axes. The corresponding reweighting factors are

2In practice one also implements an even-odd preconditioning at this point, which we do not discuss in
this thesis. We refer the interested reader to [74] for more information.
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then given as

ω`1 = det
⎛
⎝

D†
`D`

D†
`D` + µ2

⎞
⎠
, (2.40)

ω`2 = det

⎛
⎜⎜
⎝

D†
`D`

(D†
`D` + µ2)

2
(D†

`D` + 2µ2)
⎞
⎟⎟
⎠
. (2.41)

The strategy is to use det (f(D†
`D`)) in the generation of the ensembles and account

for small deviations by calculating the reweighting factors after the simulation. In sec-

tion 2.7 we will discuss how to include the reweighting in the analysis.

2.6.2. Rational approximation

While the two light flavors are easy to include in the simulation if one assumes mass-

degeneracy, the inclusion of heaver quarks is more involved since

det(Df) = ± ∣det(Df)∣ (2.42)

can be positive or negative. The positive square root
√
D†
fDf can be approximated by

the rational function [73]

det(
√
D†
fDf) ≈ det(Rf) (2.43)

where

Rf = A−1
Np

∏
i=1

D†
fDf + µ̄2

i

D†
fDf + ν̄2

i

(2.44)

and for a given number of poles Np the matrix A and the parameters µ̄i and ν̄i can

be determined using Zolotarev’s optimal approximation. The corresponding reweighting

factor is then defined as

ωf = det (DfR
−1
f ) . (2.45)

Note that, by definition, this factor can switch its sign in the simulation and negative

reweighting factors may have to be included. For a detailed discussion we refer the

interested reader to ref. [75].

2.7. Monte Carlo simulations

In lattice QCD one can estimate path integrals (e.g. the r.h.s. of eq. 2.9) using Monte

Carlo methods. To this end one generates gauge configurations using importance sam-
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pling with the probability
1

Z
e−S[ψ,ψ,Aµ]∏

f

detDf . (2.46)

An observable A is then evaluated on all gauge configurations i and the vacuum expec-

tation value can be estimated via

1

Nconf.

Nconf.−1

∑
i=0

Ai, (2.47)

where Nconf. is the total number of configurations. For a detailed introduction we refer

the reader to ref. [64].

Our CLS ensembles include Nf = 2 + 1 flavors of quarks, i.e., two degenerate light

quarks and the strange quark. The employed probability then reads

1

Z
e−S[ψ,ψ,Aµ] det (f2(D†

`D`))detRs, (2.48)

cf. sections 2.6.1 and 2.6.2. Thus we have to take two reweighting factors, ωl and ωs,

into account when calculating expectation values:

Nconf.−1

∑
i=0

ωilω
i
sA

i

Nconf.−1

∑
i=0

ωilω
i
s

. (2.49)

The impact of reweighting on resampling is outlined in appendix A.

2.8. Open boundary conditions

In lattice QCD the traditional choice is to use periodic boundary conditions for the

gauge links, since they preserve translational invariance of ensemble averages. However,

within the CLS effort, we want to be able to take all relevant limits, i.e., physical

masses, infinite volume and continuum limits. In this respect, periodic boundaries are

problematic for small lattice spacings a since the Hybrid Monte Carlo algorithm can get

trapped in sectors of gauge fields with fixed topological charge [76] which dramatically

increases the auto-correlation times of the simulation. Using open boundary conditions

avoids this problem by allowing the topological charge to flow in and out through the

boundary.

To this end one demands for the field strength tensor Fµν(x)

F4i(x)∣
x0=0

= F4i(x)∣
x0=T

= 0 (2.50)
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for i ∈ {1,2,3}. The downside of this approach is that open boundaries introduce lattice

artifacts near and at the boundary which can be removed using an appropriate improve-

ment [77]. However these effects are expected to decay exponentially such that one can

safely ignore them when calculating observables far away from the boundary.
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3. Analysis methods

3.1. Scale setting

When doing lattice calculations the lattice spacing a is only set implicitly in the parame-

ters, requiring a determination after the simulation is done. In earlier lattice simulations

the static quark potential and the Sommer parameter r0, which require fits and/or ex-

trapolations, were used. For the CLS ensembles we set the scale by equating the Wilson

flow time t to the reference time t0, which does not require any fits. For a detailed review

we refer the reader to [78] and only briefly sketch the method below.

Following [77] the Wilson flow is given by

V 0
µ (n) = Uµ(n) (3.1)

V̇ t
µ(n) = −g2

0 {∂x,µSG[V t]}V t
µ(n) (3.2)

where Uµ(n) is the gauge link configuration and ∂x,µ is the natural su(3)-valued differ-

ential operator with respect to V t
µ(n) (cf. appendix A in [78]). Using the V t

µ(n) we can

calculate the average action density

E(t) = 1

4N3
sNt
∑
n

Tr{GV tµν(n)GV
t

µν(n)} (3.3)

where GV
t

µν(n) is the discretized field strength tensor (cf. eq. (2.29)) evaluated on the

Wilson flow V t
µ(n). In case of the open boundary ensembles the positions close to the

boundaries are neglected. Finally t0 is defined through equating

t2E(t)∣
t=t0

= 0.3, (3.4)

where some interpolation is required. The lattice spacing can then be obtained from

√
8t0 = 0.413 fm. (3.5)

In ref. [79] this final step is performed by means of a global fit to several inverse couplings

β simultaneously. The resulting lattice spacings a are collected in table 1.

3.2. Propagators

The propagator is one of the most important object that one can calculate directly in

lattice QCD. It is the inverse of the Dirac-operator Df , which can be computed from
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β 3.40 3.46 3.55 3.70 3.85

a [fm] 0.086 0.076 0.064 0.050 0.039

Table 1: Lattice spacings a, corresponding to the five different inverse couplings β used in
this thesis. The lattice spacings have been obtained by determining the Wilson
flow time at the SU(3) symmetric point in lattice units, t∗0/a2, and setting t∗0
using the result µ∗ref = (8t∗0)−1/2 ≈ 478 MeV of ref. [80].

the gauge configuration using the employed action.3 The full (also called all-to-all)

propagator is a complex 12N3
sNt × 12N3

sNt matrix and connects all lattice sites, color,

and Dirac indices with each other. Its determination is usually not feasible due to the

huge amount of memory required and in many cases it is sufficient to only determine

a single column (also called point-to-all propagator). There are however workarounds,

e.g., the sequential source and stochastic methods which we will discuss in sections 3.8.1

and 3.8.2, respectively.

For the point-to-all determination we can write

Gbc0βγ0
(y, x0) = ∑

x

D−1
f

bc

βγ
(y, x) Scγ(x)

(c0,γ0,x0) , (3.6)

where Gbc0βγ0
(y, x0) is the propagator that connects the point x0 with all other points,

and Scγ(x)
(c0,γ0,x0) is the source vector. In this work we start out with a point source,

i.e.,

Scγ(x)
(c0,γ0,x0) = δ(x − x0)δcc0δγγ0 , (3.7)

and smeared it afterwards (cf. section 3.3.2). Applying Df from the left on both sides

of eq. (3.6) leads to the system

∑
y

Df
cb
γβ (x, y)Gbc0βγ0

(y, x0) = Scγ(x)
(c0,γ0,x0) , (3.8)

which we have to solve 12 times (once for each c0 and γ0) in order to obtain the point-

to-all propagator.

3.3. Smearing techniques

The gauge field within a configuration is a heavily fluctuating function. For our local

currents (insertions) we must not interfere with this since it encodes the actual physical

information. However in terms of our sources and sinks we can significantly increase the

3Thus (for Wilson fermions) the flavor f is determined solely by setting κ, so that flavors with the same
mass also share the exact same propagator.
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overlap with the ground state of our creation and annihilation operators by applying

Wuppertal smearing [81, 82] on APE smoothed [83] gauge fields, which we will describe

in the following sections.

3.3.1. APE smoothing

The APE smoothing averages the gauge links with the staples

Cµν(U,x) = ∑
ρ=±ν

Uρ(x)Uµ(x + ρ̂)U−ρ(x + ρ̂ + µ̂). (3.9)

The starting point is the original gauge field, i.e.,

U (0)
µ (x) = Uµ(x). (3.10)

We restrict ourselves to smoothing the spatial components as

U
(n+1)
i (x) = PSU(3)

⎧⎪⎪⎨⎪⎪⎩
αU

(n)
i (x) +∑

j≠i
Cij (U (n), x)

⎫⎪⎪⎬⎪⎪⎭
(3.11)

with the weight factor α and

PSU(3){V } =X ∈ SU(3) ∣max{Re Tr (XV †)} (3.12)

projects the result back to SU(3) by maximizing the real part of the trace Tr (XV †). To

obtain the smoothed gauge field we have set α = 2.5 and used 25 iterations of eq. (3.11).

3.3.2. Wuppertal smearing

Wuppertal smearing is an iterative procedure that creates a Gaussian shape out of a

δ source (cf. eq. (3.7)) using nearest neighbors. Physically this is motivated since real

hadrons are not point-like particles but spatially extended. The smearing prescription

reads

S(n+1)(x) = 1

1 + 6d

⎛
⎝
S(n)(x) + d

±3

∑
j=±1

Uj(x)S(n)(x + ĵ)
⎞
⎠
, (3.13)

with the iteration count n and the smearing parameter d, which we have set to 0.25.

For a source as in eq. (3.7) we only need to apply the smearing on a single time slice.

However for the sink of the resulting propagator we need to perform the smearing on

the whole lattice volume. Additionally, we employed APE smoothed gauge links (cf.

section 3.3.1) in eq. (3.13) as this further smooths the Gaussian source, see [84].

21



We define the smearing radius via

r2
sm =

Ns/2−1

∑
n1,n2,n3=−Ns/2

S̃†(an⃗)a2n⃗2S̃(an⃗), (3.14)

with the normalized smearing function S̃(an⃗) where the position of the delta source is

shifted to the origin and

Ns/2−1

∑
n1,n2,n3=−Ns/2

S̃†(an⃗)S̃(an⃗) = 1. (3.15)

We collect the smearing radii for our ensembles in table 2 on page 49.

3.4. Operator definitions

In order to calculate the correlation functions we need for extracting nucleon form factors,

we take the quark content of the proton and define the nucleon annihilation and creation

operators as

Nα(x⃗, t) = εabc uαa(x⃗, t) (ub(x⃗, t)TCγ5dc(x⃗, t)) , (3.16a)

N ᾱ(x⃗, t) = εāb̄c̄ (ub̄(x⃗, t)Cγ5dc̄(x⃗, t)T )uᾱā(x⃗, t), (3.16b)

where we have used the charge conjugation matrix C in the usual quark-diquark struc-

ture. The operators in eqs. (3.16) annihilate/create all states with the same quantum

numbers as the nucleon and we define the ground state, i.e., the state with the lowest

energy, as the nucleon.

In order to calculate the contribution of the ground state to our correlation functions

we define the overlap factors with the nucleon ground state as

⟨0∣Nα(0⃗,0)∣N p⃗
σ⟩ =

√
Zp⃗n

α
p⃗,σ, ⟨N p⃗

σ ∣N
ᾱ(0⃗,0)∣0⟩ =

√
Zp⃗n̄

ᾱ
p⃗,σ, (3.17)

with the nucleon spinors nαp⃗,σ and n̄ᾱp⃗,σ and a nucleon state ∣N p⃗
σ⟩ with momentum p⃗ and

spin-projection σ. In general the overlap factors Zp⃗ will also depend on the smearing.

Since we always use the same smearing at the source and the sink we neglect this

dependence in our notation.

3.5. Two-point functions

One of the two correlation functions that we need for extracting nucleon form factors

is the two-point function where one creates a nucleon at time t0 and annihilates it at
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time tf . It encodes the mass of the nucleon, which we need for the determination of the

form factors, and it serves as a normalization of the three-point function, which we will

discuss in section 3.9. Additionally we use the two-point functions to define a generic

excited state mass, cf. section 4.4.

With the definitions of section 3.4, the nucleon two-point function reads

C p⃗2pt,P+
(tf − t0) = a3∑

x⃗

e−ip⃗(x⃗−x⃗0)P ᾱα+ ⟨Nα(x⃗, tf)N
ᾱ(x⃗0, t0)⟩, (3.18)

where we create a nucleon source at space-time position (x⃗0, t0) and destroy it at (x⃗, tf).
We project on positive parity with the unpolarized projector P+ = 1

2(1 + γ4). Using the

Fourier transform we can fix the momentum p⃗ and the resulting two-point function will

only depend on the time difference t = tf − t0. We proceed with the evaluation of the

Wick contractions:

C p⃗2pt,P+
(t) = a3∑

x⃗

e−ip⃗(x⃗−x⃗0)P ᾱα+ εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄×

× ⟨uαa(x⃗, tf)u
β
b (x⃗, tf)d

γ
c (x⃗, tf) ū

β̄

b̄
(x⃗, t0)d̄γ̄c̄ (x⃗0, t0)ūᾱā(x⃗0, t0)⟩

= a3∑
x⃗

e−ip⃗(x⃗−x⃗0)P ᾱα+ εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄×

×Dγγ̄
cc̄ (x,x0) (Uαβ̄ab̄ (x,x0)Uβᾱbā (x,x0) −Uαᾱaā (x,x0)Uββ̄bb̄ (x,x0)) , (3.19)

where U = D−1
u and D = D−1

d are the up and down quark propagators, respectively, and

we used the short hands x = (x⃗, tf) and x0 = (x⃗0, t0). Since we work in the limit of exact

isospin symmetry, a single point-to-all propagator (cf. eq. (3.6)) is sufficient to evaluate

the equation above. Since we thereby fix the source position x0, we can repeat this

calculation for several spatially and temporally separated sources on the lattice.

Using translational invariance and inserting a full set of states we can rewrite eq. (3.18),

which results in

C p⃗2pt,P+
(t) = P ᾱα+ a3∑

x⃗

e−ip⃗x⃗⟨Nα(x⃗, t)N ᾱ(0⃗,0)⟩

t≫0= P ᾱα+ ∑
σ

1

2Ep⃗
⟨0∣Nα(0,0)e−Ep⃗t∣N p⃗

σ⟩⟨N p⃗
σ ∣N

ᾱ(0⃗,0)∣0⟩

= Zp⃗

2Ep⃗
e−Ep⃗tP ᾱα+ ∑

σ

nαp⃗,σn̄
ᾱ
p⃗,σ

= Zp⃗
Ep⃗ +m
Ep⃗

e−Ep⃗t, (3.20)
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where m is the mass of the nucleon and Ep⃗ is the energy of the nucleon with momentum p⃗.

We used the time evolution operator and neglected both backward propagation and

excited state contributions. In the final step one can evaluate the sum over the spin-

projections σ using the well-known rules for spinors.

Since our lattice action is fully O(a)-improved we implemented the continuum disper-

sion relation

Ep⃗ =
√
m2 + p⃗2 (3.21)

for the ground state energy in eq. (3.20). Since this relation only holds up to O(a2)
effect, we test its validity in section 5.2 before we use it in the form factor analysis

afterwards.

3.6. Insertion currents

The local currents, which we use as the insertion operators in the three-point functions,

are defined as

P(x⃗, t) = ūa(x⃗, t)γ5ua(x⃗, t) − d̄a(x⃗, t)γ5da(x⃗, t), (3.22)

Aµ(x⃗, t) = ūa(x⃗, t)γµγ5ua(x⃗, t) − d̄a(x⃗, t)γµγ5da(x⃗, t), (3.23)

which are the isovector pseudoscalar and isovector axial currents, respectively. In the

continuum these currents are related to each other through the axial ward identity or

partial conservation of the axial current (PCAC). On the lattice, however, the PCAC

relation is only valid up to discretization effects, i.e.,

∂µAµ = 2m`P +O(a), (3.24)

where m` is the light quark PCAC mass. We reduce the discretization effects to O(a2)
using the improved currents in the next section.

We can express matrix elements between two nucleon states in terms of their Lorentz

decompositions J , i.e.,

⟨N p⃗′

σ′ ∣O (0⃗,0) ∣N p⃗
σ⟩ = n̄

γ
p⃗′,σ′J[O]γγ̄nγ̄p⃗,σ, (3.25)

where qµ = p′µ − pµ and O ∈ {P,Aµ}. In Euclidean space the Lorentz decompositions

read

J[P] = γ5GP (Q2), (3.26)

J[Aµ] = γµγ5GA(Q2) − iqµ

2mN
γ5GP̃ (Q

2), (3.27)
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where m is the mass of the nucleon. Using the equations of motion and eq. (3.24) also

the form factors can be related to each other as

m`GP (Q2) =mGA(Q2) + Q2

4m
GP̃ (Q

2) +O(a), (3.28)

where we again reduce the discretization effects to O(a2) using improved currents.

3.7. O(a)-improvement

As mentioned in section 2.5.1 we still need to improve the local currents Aµ and P.

Following [64] and similar to the improvement of the action, we start by writing down

all possible candidates for the improvement of the axial current:

δA1
µ(x) = ψ(x)γ5σµν (

→
Dν(x) −

←
Dν(x))ψ(x), (3.29a)

δA2
µ(x) = ∂µ (ψ(x)γ5ψ(x)) , (3.29b)

δA3
µ(x) =m`ψ(x)γµγ5ψ(x), (3.29c)

where ψ and ψ represent some quark field combination. Using the equations of motion we

can eliminate δA1
µ, while δA3

µ is just the original operator with a quark mass coefficient

and can be absorbed into the multiplicative renormalization, which we will discuss in

section 3.10. Thus, using δA2
µ = ∂µP, the improved local axial current can be written as

Aimp
µ (x) = Aµ(x) + cA∂µP(x), (3.30)

with the symmetrically discretized derivative

∂µf(x) =
f(x + aµ̂) − f(x − aµ̂)

2a
. (3.31)

The coefficient cA depends on the lattice spacing a and was non-perturbatively deter-

mined in [85].

In the case of the pseudoscalar current P, the only candidate is m`P , which is again

absorbed into the renormalization, hence

P imp(x) = P(x). (3.32)

3.8. Three-point functions

In order to extract the form factors we are interested in we have to analyze matrix el-

ements of our local currents P and Aµ between nucleon states. We can obtain these
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matrix elements from nucleon three-point functions (or the equivalent ratio, cf. sec-

tion 3.9) where we create a nucleon at the source at time t0, insert a current O at ti,

and finally destroy the nucleon at time tf .

Thus, we define the three-point function as

C p⃗
′,p⃗,O

3pt,Γ (t, τ) = ΓᾱαC
p⃗′,p⃗,O
3pt,αᾱ(t, τ)

= Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′(x⃗−x⃗0)+i(p⃗′−p⃗)(y⃗−x⃗0)⟨Nα(x⃗, tf)O(y⃗, ti)N

ᾱ(x⃗0, t0)⟩, (3.33)

with the initial and final momenta, p⃗ and p⃗′, respectively, as well as the polarization

operator Γ, which we will choose to be P i+ = P+iγiγ5. The three-point function only

depends on the time differences, t = tf − t0 and τ = ti − t0, and for later reference we

implicitly defined the three-point function with open spin indices C p⃗
′,p⃗,O

3pt,αᾱ(t, τ).
The ground state contribution to the three-point function can be computed in a similar

fashion as for the two-point function, i.e., by using translational invariance and inserting

two complete sets of states:

C p⃗
′,p⃗,O

3pt,Γ (t, τ) = Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′x⃗+i(p⃗′−p⃗)y⃗⟨Nα(x⃗, t)O(y⃗, τ)N ᾱ(0⃗,0)⟩

= Γᾱα ∑
σ′,σ

1

4Ep⃗′Ep⃗
⟨0∣Nα(0⃗, t)∣N p⃗′

σ′ ⟩⟨N
p⃗′

σ′ ∣O(0⃗, τ)∣N p⃗
σ⟩⟨N p⃗

σ ∣N
ᾱ(0⃗,0)∣0⟩ + . . .

t≫τ≫0= Γᾱα ∑
σ′,σ

√
Zp⃗′Zp⃗

4Ep⃗′Ep⃗
e−Ep⃗′(t−τ)e−Ep⃗τnαp⃗′,σ′ n̄

γ
p⃗′,σ′J[O]γγ̄nγ̄p⃗,σn̄

ᾱ
p⃗,σ

=
√
Zp⃗′Zp⃗

4Ep⃗′Ep⃗
e−Ep⃗′(t−τ)e−Ep⃗τTr{Γ(/p′ +m)J[O](/p +m)} . (3.34)

This functional form of the ground state is valid for all possible quark contents of the

insertion operator and for all choices of the polarization matrix Γ.

In the following we will treat the up and down quark insertions separately, starting

with the current insertion in the down quark line, i.e., Od = d̄Γinsd. We rewrite eq. (3.33)

as

C p⃗
′,p⃗,Od

3pt,Γ (t, τ) = Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′(x⃗−x⃗0)+i(p⃗′−p⃗)(y⃗−x⃗0)εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄Γδ̄δins×

×⟨uαa(x⃗, tf)u
β
b (x⃗, tf)d

γ
c (x⃗, tf) d̄δ̄d(y⃗, ti)dδd(y⃗, ti) ū

β̄

b̄
(x⃗0, t0)d̄γ̄c̄ (x⃗0, t0)ūᾱā(x⃗0, t0)⟩.

(3.35)

We depict the connected and disconnected contractions in the first and last row of

figure 3, respectively. The resulting connected part of the three-point function reads
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Figure 3: Contractions for the nucleon three-point function. The connected contractions
for a u-insertion are depicted in the first row, while the second and third row
correspond to a d-insertion. The last row shows the disconnected contractions,
which are identical for both u- and d-insertions.

C p⃗
′,p⃗,Od

3pt,conn,Γ(t, τ) = Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′(x⃗−x⃗0)+i(p⃗′−p⃗)(y⃗−x⃗0)εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄Γδ̄δins×

×Dγδ̄
cd (x, y)D

δγ̄
dc̄ (y, x0) (Uαβ̄ab̄ (x,x0)Uβᾱbā (x,x0) −Uαᾱaā (x,x0)Uββ̄bb̄ (x,x0)) .

(3.36)

The disconnected part of the three-point function reads

C p⃗
′,p⃗,Od

3pt,disc,Γ(t, τ) = −Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′(x⃗−x⃗0)+i(p⃗′−p⃗)(y⃗−x⃗0)εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄Γδ̄δins×

×Dδδ̄
dd(y, y)D

γγ̄
cc̄ (x,x0) (Uαβ̄ab̄ (x,x0)Uβᾱbā (x,x0) −Uαᾱaā (x,x0)Uββ̄bb̄ (x,x0)) ,

(3.37)

which conveniently factorizes into the two-point function and the momentum projected

trace of the disconnected loop:

C p⃗
′,p⃗,Od

3pt,disc,Γ(t, τ) = −C
p⃗′

2pt,Γ(t)∑
y⃗

ei(p⃗
′−p⃗)(y⃗−x⃗0)Tr{ΓinsDdd(y, y)}. (3.38)

The derivation is similar for Ou = ūΓinsu but slightly more involved since there are
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two u-lines where the current can be inserted. The result for the connected part is (cf.

row 2 and 3 of figure 3)

C p⃗
′,p⃗,Ou

3pt,conn,Γ(t, τ) = Γᾱαa
6∑
x⃗,y⃗

e−ip⃗
′(x⃗−x⃗0)+i(p⃗′−p⃗)(y⃗−x⃗0)εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄Γδ̄δinsD

γγ̄
cc̄ (x,x0)×

× (Uαδ̄ad (x, y)U
δβ̄

db̄
(y, x0)Uβᾱbā (x,x0)+

Uαβ̄
ab̄

(x,x0)Uβδ̄bd (x, y)U δᾱdā (y, x0)−

Uαδ̄ad (x, y)U δᾱdā (y, x0)Uββ̄bb̄ (x,x0)−

Uαᾱaā (x,x0)Uβδ̄bd (x, y)U δβ̄
db̄

(y, x0))

(3.39)

while the disconnected part yields exactly the same as for Od, i.e.,

C p⃗
′,p⃗,Ou

3pt,disc,Γ(t, τ) = C
p⃗′,p⃗,Od
3pt,disc,Γ(t, τ). (3.40)

This is due to the mass degeneracy of the up and down quarks. Hence, when using

isovector currents, the disconnected contributions will cancel exactly and we drop them

here.

For both quark insertions we require an all-to-all propagator to evaluate eqs. (3.36)

and (3.39). Using sequential sources or stochastic estimators circumvents this problem

and reduces it to an point-to-all-like solve. We will briefly discuss both methods in the

following sections.

3.8.1. Sequential sources

In this approach, the all-to-all propagators in eqs. (3.36) and (3.39) are calculated by

sequentially inverting from source to sink and from sink to insertion. As an example, we

consider the d-quark insertion and rewrite eq. (3.36) as

C p⃗
′,p⃗,Od

3pt,Γ (t, τ) = a3∑
y⃗

ei(p⃗
′−p⃗)(y⃗−x⃗0)Tr{γ5Σ†

c̄d(y, x0)γ5ΓinsDdc̄(y, x0)}, (3.41)

with the sequential propagator Σ which contains all the information at the sink, i.e.,

sink time tf , polarization Γ, and final momentum p⃗′. From comparing with eq. (3.36)

we find

[γ5Σ†(y, x0)γ5]
γ̄δ

c̄d
= a3∑

x⃗

Sγ̄γc̄c (x)[γ5D
†(y, x)γ5]

γδ

cd
, (3.42)
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Figure 4: Illustration of the coherent sink method [7] used for some of our ensembles. The
black ellipses depict the source position of the point-to-all propagators (black
lines). The blue ellipses depict the sequential sources which are combined into
one coherent sink. The green and red lines correspond to gauge-invariant and
non-gauge-invariant contributions of the coherent sink solve, respectively.

where we have used γ5-hermiticity and defined the sequential source as4

Sγ̄γc̄c (x) = Γᾱαe
−ip⃗′(x⃗−x⃗0)εabcεāb̄c̄(Cγ5)βγ(Cγ5)β̄γ̄×

× (Uαβ̄
ab̄

(x,x0)Uβᾱbā (x,x0) −Uαᾱaā (x,x0)Uββ̄bb̄ (x,x0)) . (3.43)

We can now solve for Σ by applying the dagger on both sides and multiplying the Dirac

operator Dd from the left:

∑
y⃗

Dd
γδ
cc̄ (x, y)[γ5Σc̄d(y, x0)]

δγ̄
= [γ5S

†
cd(x)]

γγ̄
δx4tf . (3.44)

We fix all properties of the sink when we create the sequential source S. Thus we have

to carry out one full solve per polarization matrix Γ, final time tf , final momentum p⃗′,

and also per quark insertion since the result for S would be very different for a u-quark

insertion. A common and sensible choice is to set p⃗′ = 0, which was used in the analysis

for all of our ensembles with the exception of D201, where we employed the stochastic

method which we will describe in the next section.

In ref. [7] the LHPC collaboration suggested to use so-called coherent sinks (illus-

trated in fig. 4) to reduce the computational cost of nucleon three-point functions. In

this approach we start out by calculating the point-to-all propagator for N temporally

separated source positions, where the separations should be chosen large enough such

that the source-sink distances fit in, i.e., larger than t+a. From these propagators we can

derive the sequential sources, for example with some fixed source-sink distance, and put

all sources into one object. Then we solve on this one object, instead of the N sequen-

tial sources separately, and reconstruct the three-point function from this solution. We

4For the sake of brevity we omit the implied dependencies on the source position x0, final momentum
p⃗′, final time tf , and polarization matrix Γ here.
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Figure 5: Illustration of the stochastic three-point function code which we employed for
D201. The black ellipses depict the sources of the point-to-all propagators.
Black and gray lines correspond to forward and backward contributions of the
point-to-all propagators, respectively. The blue ellipses depict the stochasti-
cally seeded sinks which are solved on in order to obtain the all-to-all propa-
gators depicted in green.

thereby include non-gauge-invariant contributions (depicted in red in figure 4) which will

cancel in the ensembles average. This reduces the number of solves for different source

positions, however one still needs to perform a solve for each polarization matrix, quark

insertion and, source-sink distance.

3.8.2. Stochastic estimators

Another possibility for calculating the all-to-all propagator in eqs. (3.36) and (3.39) is

to approximate it stochastically using Z2 noise vectors. This method is, in terms of

the resulting correlators, more flexible than sequential sources since, e.g., for different

polarizations or sink momenta no extra inversions are required. However, one introduces

an additional uncertainty through the stochastic estimation of the propagator, which is

added on top of the statistical error.

In our implementation (cf. figure 5) we seed Nst random Z2 sources at the forward

and backward sink timeslices, tfwd
f and tbwd

f , i.e.,5

S(j)γ
c (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

eiθ, if x4 ∈ {tfwd
f , tbwd

f } ,
0, otherwise,

(3.45)

where j ∈ {1, . . . ,Nst} is the stochastic index and θ ∈ {π
4 ,

3π
4 ,

5π
4 ,

7π
4
} is randomly chosen

for each stochastic index, lattice site and color and spin component. Due to the Z2 noise,

5One obtains the all-to-all propagator only if one seeds the Z2 noise on the whole lattice. Technically
we calculate a ”time slice-to-all” propagator but in order to avoid confusion we call it all-to-all.
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the S(j)γ
c (x) have the following properties [86]:

1

Nst
∑
j

S(j)γ
c (x) = 0 +O( 1√

N
) , (3.46)

1

Nst
∑
j

S(j)γ
c (x)S∗(j)

δ

d(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δcdδγδδ(x − y) +O ( 1√
N
) , if x4 ∈ {tfwd

f , tbwd
f } ,

0, otherwise.
(3.47)

For each stochastic index we determine Σ(j)δ
d(y) by solving

∑
y

Df
γδ
cd (x, y)Σ(j)δ

d(y) = S(j)γ
c (x). (3.48)

Finally, the all-to-all propagator is obtained via

1

Nst
∑
j

Σ(j)δ
d(y)S∗(j)

γ

c (x) = ∑
z

D−1
f

δβ

db
(y, z)

⎡⎢⎢⎢⎢⎣

1

Nst
∑
j

S(j)β
b (z)S∗(j)

γ

c (x)
⎤⎥⎥⎥⎥⎦

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

D−1
f

δγ

dc
(y, x) +O ( 1√

N
) if x4 ∈ {tfwd

f , tbwd
f } ,

0, otherwise.
(3.49)

To add even more flexibility to the method we can factorize the three-point functions

in spectator and insertion parts, and calculate both parts with open spin indices. This

enables us, e.g., to reuse the same insertion part, which contains the stochastic estima-

tion, for several baryons and mesons. Since, in this thesis, we only applied this method

for D201 we will not go into more detail here and refer the interested reader to [86, 87].

3.9. Ratios

The nucleon isovector form factors are obtained by a simultaneous fit to two-point func-

tions and to the ratio

Rp⃗
′,p⃗

Γ,O(t, τ) =
C p⃗

′,p⃗,O
3pt,Γ (t, τ)
C p⃗

′

2pt,P+
(t)

, (3.50)

using the parametrizations given in section 4.4. In the literature also the ratio

C p⃗
′,p⃗,O

3pt,Γ (t, τ)
C p⃗

′

2pt,P+
(t)

¿
ÁÁÁÁÀ

C p⃗
′

2pt,P+
(τ)C p⃗′2pt,P+

(t)C p⃗2pt,P+
(t − τ)

C p⃗2pt,P+
(τ)C p⃗2pt,P+

(t)C p⃗′2pt,P+
(t − τ)

(3.51)
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is found, which is constructed such that the overlap factors drop out and the ground state

contribution is time-independent. This is not the case for the ratio (3.50), where the

ground state contribution is ∝ e−(Ep⃗−Ep⃗′)τ . Nevertheless, we find it to be advantageous

for various reasons:

1. It allows for a maximal cancellation of correlations, since the interpolating currents

at the source and the sink occur at exactly the same spacetime positions with

exactly the same phase factors in two- and three-point functions, cf. eqs. (3.18)

and (3.33).

2. In contrast to eq. (3.51) it does not introduce additional excited states from two-

point functions at small separations τ or t − τ .

3. One avoids a technical problem of eq. (3.51): in the course of the error analysis

one can encounter negative values for single bootstrap samples due to statistical

fluctuations such that the argument of the square root is negative.

Note that point 1 also explains why fitting the ratio (3.50) is preferable to fitting the

three-point function. In principle, using the three-point function is of course equivalent.

In practice, however, one would need even better statistics to enable fully correlated,

simultaneous fits.

3.10. Renormalization

The local axial and pseudoscalar currents in our calculation have to be renormalized.

We use the renormalization factors ZA from ref. [88] (as recommended in this reference,

we use the values Z lA,sub from their table 7), which have been determined using a new

method based on the chirally rotated Schrödinger functional [89]. In addition, we use

the nonperturbative quark mass dependent O(a)-improvement coefficients described in

ref. [90] (but with updated values from ref. [91]). The isovector currents are multiplica-

tively renormalized using

Aren
µ = ZA(β)[1 + 2ambare

` bA(β) + 2a(2mbare
` +mbare

s )b̃A(β)]Aimp
µ , (3.52)

mren
` Pren = ZA(β)[1 + 2ambare

` bA(β) + 2a(2mbare
` +mbare

s )b̃A(β)]mimp
` P, (3.53)

where mimp
` is the PCAC light quark mass obtained from improved currents,

mimp
` = ⟨0∣∂µAimp

µ ∣π⟩
2⟨0∣P∣π⟩ . (3.54)
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The bare quark mass

mbare
q = 1

2a
( 1

κq
− 1

κcrit
) (3.55)

is calculated using the hopping parameter κq (cf. table 2) and its critical value κcrit [79].

We exploit the fact that the product of quark mass and pseudoscalar current renormalizes

in exactly the same way as the axialvector current. b̃A has been found to be zero within

errors and smaller than 0.1 [91]. This corresponds to shifts of at most 4h, depending

on the ensemble, that decrease towards the continuum limit. We neglect this effect,

which is small compared to the other sources of errors, and proceed with continuum

limit extrapolations that are quadratic in a.
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4. EFT-based analysis

Employing a theory where hadrons are the effective degrees of freedom (like baryon

chiral perturbation theory) in order to elucidate the excited state structure in correla-

tion functions is appealing, in particular if multi-hadron states with additional pions

are the relevant excitations, see refs. [92–96]. In many cases, however, these contribu-

tions are relatively small and one can deal with them using standard methods like, e.g.,

source/sink-smearing and multi-exponential fits that allow for generic excited state con-

tributions. As will be explained in detail in this section, the situation is different in the

context of isovector axial and pseudoscalar form factors, where Nπ contributions can ac-

tually be a leading term from the EFT point of view due to pion pole dominance (PPD).

Especially for small pion masses, this effect outweighs the exponential suppression at the

currently available source-sink distances due to the small energy gap.6 In this situation,

multi-exponential fits with generic excited states become very unstable and usually fail

to isolate the ground state contribution (see the discussions in refs. [29, 31, 32, 34]).7

In refs. [98, 99] nucleon three-point functions with axialvector and pseudoscalar current

insertions have been analyzed using ChPT and compelling qualitative evidence has been

presented that the violations of the PCAC and PPD relations are indeed caused by Nπ

excited states. This is done as follows: first, one calculates the excited state contribution

to the form factor using ChPT. The predicted, excited state contaminated form factor

is found to agree quite well with recent data from the PACS collaboration [32], cf.

refs. [99, 100]. In a second step, one may attempt to correct the error by subtracting

the calculated excited state contaminations a posteriori (see, e.g., refs. [98, 101], where

such a subtraction has been performed for the induced pseudoscalar form factor). While

this method yields convincing qualitative results, there are some open questions and

limitations that need to be addressed:

1. In general, the operator smearing can have a different effect on N and Nπ overlap

factors, which a leading order ChPT calculation does not allow for. There are

heuristic arguments that this effect of the smearing should be negligible as long

as the smearing radii rsm are much smaller than the Compton wavelength of the

pion, λπ ≈ 1.41 fm, cf. refs. [92, 94–96]. This seems to contradict the observation

that the operator smearing used in actual simulations has a strong impact on the

signal of excited states. In refs. [12, 14] it has been found that smearing radii of

roughly rsm ∼ 0.5 fm maximize the ground state overlap. In the lattice analysis

performed in this work, the optimized smearing radii are on some ensembles even

6Note that, due to the exponential deterioration of the signal, one cannot expect the source-sink
distances to become dramatically larger in future simulations.

7An alternative method has been proposed in ref. [97], which appears to resolve the ground state
contribution in this situation. We will comment on this method in some detail in sections 5.3 and 6.1.
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larger (up to 0.8 fm, cf. table 2), and it is questionable whether a dependence on

the smearing can be completely excluded for such smearing radii.8

2. So far, an a posteriori subtraction of the excited states has only been performed

in combination with the ratio method on the lattice. It is unclear how one would

avoid double counting, if one combines it with a standard excited state analysis,

e.g., by using multi-exponential fits.

3. Estimating the systematic error tied to the ChPT based subtraction is challenging.

From a lattice QCD perspective the situation is quite clear concerning point 2. If there

is a large Nπ excited state contribution, then it should be taken into account explicitly

in the multi-state fits to the correlation functions.9 In this approach, point 1 can be

addressed simultaneously by allowing for a smearing dependence of the Nπ coupling to

the interpolating currents. Furthermore, we can avoid systematic uncertainties (point

3) by relaxing ChPT constraints. In the following, we will describe in detail how this

can be achieved.

4.1. Diagrams

The first and second rows of figure 6 show the tree-level Feynman diagrams that con-

tribute to the correlation functions. As discussed in ref. [98], these yield the most

important contribution to the correlation function. The squares on the right and left

depict the smeared source and sink currents, while the one in the middle corresponds

to the inserted local quark bilinears (axialvector or pseudoscalar currents in our case).

The dashed and solid lines depict pion and nucleon propagators, while the circle stands

for a pion-nucleon interaction vertex. The dotted red lines are for illustration only and

indicate the identity operators (i.e., the sum over all hadronic states) that are usually

inserted between source and current as well as between current and sink, cf. eq. (3.34).

This elucidates that the diagram in the first row yields a contribution to the ground

state, while the diagrams on the left- and right-hand sides in the second row give rise

to a nucleon-pion excitation in the final and initial state, respectively. For the diagram

in the middle of the second row, however, the situation is not that simple, since the

nucleon-pion interaction is not restricted to a specific time-slice. As a consequence, the

8Note that our analysis in section 5 suggests that there is no strong suppression of the Nπ states due
to the smearing and that the leading order ChPT approximation for the interpolating currents is
actually quite good.

9One can also try to circumvent the problem entirely by either suppressing or subtracting the unwanted
excited state contributions. In ref. [102] the pion pole contribution is suppressed by analyzing the
matrix elements of currents with a Gaussian profile instead of local currents. Ref. [34] presents a
method to subtract some of the excited state contributions.
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Figure 6: Feynman diagrams showing the most important (tree-level) contributions to
the axial and pseudoscalar three-point functions. The squares correspond to
explicitly inserted operators: the right and left ones correspond to smeared
three-quark baryon interpolating currents at the source (at time 0) and the sink
(at time t), respectively, while the ones in the middle depict a pseudoscalar or
an axialvector operator insertion (at time τ). The circles correspond to pion-
nucleon interaction vertices, while the dashed and solid lines represent pion
and nucleon propagators, respectively. The dotted red vertical lines indicate
the sums over hadronic states one usually introduces to interpret correlation
functions.

diagram contributes to both the ground state and the excited states, as shown in the

bottom row of figure 6. This follows from an explicit calculation of the diagrams (see

below). We emphasize that there is no one-to-one correspondence between the individual

contributions in the spectral decomposition and the diagrams. For example, both the

diagram in the first row and the diagram in the middle of the second row contribute to

the ground state and, actually, an infinite number of diagrams will contribute to each

state if one takes into account higher orders in ChPT (see ref. [98] for a list of one-loop

diagrams). Finally, a single diagram can contribute to multiple states in the spectral

decomposition, cf. the bottom row of figure 6. We will exploit the fact that the pion

pole contribution to the ground state automatically gives rise to an associated excited

state.

Before addressing the details, let us note that the following calculation is in large parts

already contained in refs. [98, 99], where also one-loop diagrams are taken into account.
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Also the presentation in ref. [102] is based on similar considerations (cf. also ref. [103]).

However, we will present the result in a more general way (without using a particular

spin projection or fixing initial and final state momenta to a predefined configuration)

such that it can be used in a variety of simulation setups.

4.2. Feynman rules

The first ingredient we need in order to evaluate the diagrams in figure 6 are the corre-

sponding Feynman rules. Here we follow the conventions of ref. [104], but adapt them to

our choices for the currents (see eq. (3.23)) and convert them to position space. We work

in two-flavor baryon ChPT here. However, since we only consider the nucleon sector and

are only working at tree-level accuracy, a three-flavor calculation would give exactly the

same result. Note that in this section all time variables are in Minkowski time and will

be rotated to imaginary times only at the very end. The pion and nucleon propagators

read

SN(x) = i∫
d4q

(2π)4
e−iqx

/q +m
q2 −m2 + iε , (4.1)

Sabπ (x) = δabSπ(x) = i∫
d4q

(2π)4
e−iqx

δab

q2 −m2
π + iε

. (4.2)

For the vertices of the current insertions we have

Aµ = gAγµγ5σ
3, (4.3)

P = 0, (4.4)

Aµ = −2Fπ∂
µδa3, (4.5)

P = −2iFπBδ
a3 , B ≡ m2

π

2m`
, (4.6)

where we only take into account the leading contribution in the chiral counting10 and all

derivatives are understood to act on the pion propagator. Here, Fπ and gA correspond

to the pion decay constant and the axial coupling in the chiral limit, respectively, while

B is the condensate parameter and σa are Pauli matrices.

For the leading Nπ interaction vertex we have

= −i gA
2Fπ

/∂γ5σ
a. (4.7)

10Note that γ5 is counted as first order in baryon ChPT, while other elements of the Clifford algebra are
counted as zeroth order, see, e.g., ref. [105]. This explains why the NN vertex of the pseudoscalar
current vanishes at leading order.
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The vertices for local three-quark currents have been derived in ref. [106]. We adapt

these to the smeared interpolating currents used here by allowing for momentum- and

smearing-dependent couplings. With the nucleon isospinor ΨN , where Ψp = (1,0)T and

Ψn = (0,1)T , the leading order vertices read

=
√
Zp⃗′Ψ̄N , =

√
Zp⃗ΨN , (4.8)

=
√
Z̃p⃗,q⃗

i

2Fπ
Ψ̄Nγ5σ

a , =
√
Z̃p⃗′,q⃗

i

2Fπ
γ5σ

aΨN , (4.9)

where one can actually assume Zp⃗ = Zp⃗(p⃗2) and Zp⃗,q⃗ = Zp⃗,q⃗(p⃗2, p⃗ · q⃗, q⃗2) up to lattice

artifacts (obviously, the couplings will also depend on the masses, the smearing method

and the smearing radii). We will use Z = Zp⃗, Z
′ = Zp⃗′ , Z̃ = Z̃p⃗′,q⃗, and Z̃ ′ = Z̃p⃗,q⃗ as

shorthand notations. In the following we always consider protons, i.e., Ψ̄pσ
3Ψp = 1. We

will not assume

√
Z̃p⃗,q⃗ =

√
Zp⃗′ + higher order ,

√
Z̃p⃗′,q⃗ =

√
Zp⃗ + higher order , (4.10)

which should hold at least approximately for small smearing radii, as discussed above.

Instead, we will test the validity of this assumption by comparing it to our data, cf.

figure 10 in section 5.2. We complete the setup with the definition of the following

energies and four-momenta

E =
√
p⃗2 +m2 , E′ =

√
p⃗′2 +m2 , Eπ =

√
(p⃗′ − p⃗)2 +m2

π , (4.11)

p =
⎛
⎝
E

p⃗

⎞
⎠
, p′ =

⎛
⎝
E′

p⃗′
⎞
⎠
, q =

⎛
⎝
E′ −E
p⃗′ − p⃗

⎞
⎠
, r± =

⎛
⎝

Eπ

±(p⃗′ − p⃗)
⎞
⎠
. (4.12)

4.3. Evaluation of the diagrams

We will now consider one example for each type of diagram in figure 6 with an axialvector

current insertion, starting with the purely nucleonic diagram (in the first row of figure 6).

Defining the four-vectors x = (t, x⃗), y = (τ, y⃗), we obtain

√
Z ′

√
Z ∫ d3xe−ip⃗

′x⃗∫ d3y e−i(p⃗−p⃗
′)y⃗SN(x − y)gAγµγ5SN(y) =

= −
√
Z ′

√
Z ∫

dE2

2π
e−iE2(t−τ)∫

dE1

2π
e−iE1τ (γ0E2 − γ⃗p⃗′ +m)gAγµγ5(γ0E1 − γ⃗p⃗ +m)

(E2
2 − p⃗′2 −m2 + iε)(E2

1 − p⃗2 −m2 + iε)

=
√
Z ′

√
Z

2E′2E
e−iE

′(t−τ)e−iEτ(/p′ +m)gAγµγ5(/p +m) . (4.13)

In the first step, one integrates over the positions which gives delta distributions in

momentum space, which in turn eliminate the integrals over the three-momenta from
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the propagators. Then, we close both integration contours in the lower half of the

complex plane and use Cauchy’s residue theorem twice. Rotating to imaginary times

(t → −it and τ → −iτ) one obtains the axial part of eq. (3.34) to zeroth order accuracy

in ChPT, exactly as expected.

Next, we consider the left diagram in the second row of figure 6, where the current in-

sertion couples to a pion that directly connects to the sink, while the nucleon propagates

directly from source to sink. We find

√
Z̃ ′

√
Z ∫ d3xe−ip⃗

′x⃗∫ d3y e−i(p⃗−p⃗
′)y⃗ ( i

2Fπ
γ5)(−2Fπ

∂

∂yµ
)Sπ(x − y)SN(x) =

= −
√
Z̃ ′

√
Z ∫

dE2

2π
e−iE2(t−τ)∫

dE1

2π
e−iE1t

(E2
q⃗ )µ

E2
2 − q⃗2 −m2

π + iε
γ5(γ0E1 − γ⃗p⃗ +m)
E2

1 − p⃗2 −m2 + iε

= +
√
Z̃ ′

√
Z

2E2Eπ
e−iEπ(t−τ)e−iEtrµ+γ5(/p +m), (4.14)

where we have introduced the notation (E2
q⃗ )µ to list the components of a 4-vector. The

pion carries the three-momentum q⃗, while the nucleon propagates with momentum p⃗. As

in the first diagram, the integrals over the energies can be calculated independently. The

diagram yields an Nπ excitation in the final state with the energy E + Eπ. In general

this will not be the excited state with the smallest possible energy. For the diagram

where the pion propagates from the source to the insertion (cf. the right diagram in the

second row of figure 6) one obtains, carrying out an analogous calculation,

−
√
Z ′

√
Z̃

2E′2Eπ
e−iE

′te−iEπτrµ−(/p′ +m)γ5, (4.15)

which yields an Nπ excitation in the initial state.

Finally, the diagram where the nucleon-pion interaction happens dynamically (the

middle diagram in the second row of figure 6) gives

√
Z ′

√
Z ∫ d3xe−ip⃗

′x⃗∫ d3y e−i(p⃗−p⃗
′)y⃗ ∫ d4z

× SN(x − z) [(−i gA
2Fπ

γνγ5
∂

∂zν
)(−2Fπ

∂

∂yµ
)Sπ(z − y)]SN(z) =

= gA
√
Z ′

√
Z ∫

dE2

2π
e−iE2(t−τ)∫

dE1

2π
e−iE1τ

×
(E2−E1

q⃗ )µ(E2−E1
q⃗ )ν

(E2 −E1)2 − q⃗2 −m2
π + iε

(γ0E2 − γ⃗p⃗′ +m)γνγ5(γ0E1 − γ⃗p⃗ +m)
(E2

2 − p⃗′2 −m2 + iε)(E2
1 − p⃗2 −m2 + iε) . (4.16)

In this case, where the virtual pion has the three-momentum q⃗ and the energy E2 −E1,
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the remaining integrations over E1 and E2 are not independent of each other. We will

perform them consecutively starting with E1. Similarly to the procedure for the other

diagrams, both integration contours can be closed in the lower half of the complex plane.

There, the integrand has two single poles, which collapse to a double pole if E2 = E−Eπ.

The latter case has to be treated separately. The result after the first integration is

gA
√
Z ′

√
Zi∫

dE2

2π
f(E2), (4.17)

where, for E2 ≠ E −Eπ,

f(E2) = e−iE2(t−τ)e−iEτ(E2−E
q⃗ )µ(E2−E

q⃗ )ν
(γ0E2 − γ⃗p⃗′ +m)γνγ5(/p +m)

2E((E2 −E)2 −E2
π + iε)(E2

2 −E′2 + iε)

+ e−iE2te−iEπτ( −Eπq⃗ )µ( −Eπq⃗ )ν (γ0E2 − γ⃗p⃗′ +m)γνγ5(γ0(E2 +Eπ) − γ⃗p⃗ +m)
2Eπ(E2

2 −E′2 + iε)((E2 +Eπ)2 −E2 + iε) .

(4.18)

For E2 = E−Eπ, one can check that f(E2) is finite, which is the only relevant information

since it means that there is no pole at this point when using the residue theorem for E2

later on. Thus, one finds that f(E2) has three poles in the lower half of the complex

plane. The first term in eq. (4.18) has two single poles, while the second term in eq. (4.18)

has only one single pole. Its second, seeming pole is at E2 = E −Eπ, where eq. (4.18) is

not evaluated. One obtains three contributions that correspond to the diagrams in the

bottom row of figure 6:

− gA
√
Z ′

√
Z

2E′2E
e−iE

′(t−τ)e−iEτqµqν
(/p′ +m)γνγ5(/p +m)

q2 −m2
π

− gA
√
Z ′

√
Z

2E2Eπ
e−iEπ(t−τ)e−iEtrµ+r

ν
+
(/p + /r+ +m)γνγ5(/p +m)

(p + r+)2 −m2

− gA
√
Z ′

√
Z

2E′2Eπ
e−iE

′te−iEπτrµ−r
ν
−
(/p′ +m)γνγ5(/p′ + /r− +m)

(p′ + r−)2 −m2
,

(4.19)

where we have written the result in terms of the four-vectors defined in eqs. (4.12). The

first term yields a contribution to the ground state. It is responsible for the leading,

pole dominant contribution to the induced pseudoscalar form factor. The second and

the third term contribute to the same Nπ excitations in the final and initial states as

those in eqs. (4.14) and (4.15), respectively.

This concludes our calculation of the tree-level diagrams shown in figure 6 for the

axialvector current insertion. For the pseudoscalar current the calculation is analogous

and we will not repeat it here. By matching the result obtained for the ground state with

the usual form factor decompositions (using eq. (3.34) in combination with eqs. (3.26)
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and (3.27) after rotating to Euclidean times) one finds

GA(Q2) = gA + higher order, (4.20)

GP̃ (Q
2) = gA

4m2

Q2 +m2
π

+ higher order , (4.21)

GP (Q2) = gA
m

m`

m2
π

Q2 +m2
π

+ higher order. (4.22)

We emphasize that we will not enforce these results for the ground state contribution.

In eq. (4.20) this corresponds to augmenting the axial coupling in the chiral limit to the

full axial form factor, which is justified at leading order accuracy. In the same spirit, we

have already tacitly used the actual nucleon mass in the propagator instead of its chiral

limit value, which is also correct to leading order accuracy in ChPT. It is consistent

to perform the same replacement gA ↦ GA in the complete calculation. (We will show

that this choice is in much better agreement with the data at nonzero Q2, cf. section 5.2

and, in particular, figure 10.) After doing so, eqs. (4.21) and (4.22) yield the PPD

assumptions [107, 108] for the (induced) pseudoscalar form factors, as expected.

It turns out to be convenient to define the ratios

a =
√
Z̃√
Z
, a′ =

√
Z̃ ′

√
Z ′
, (4.23)

where a = a′ = 1 would correspond to the assumption that the smearing does not affect

the overlap of the interpolating currents with the Nπ excited states (compared to the

ground state). Note that in general a and a′ are functions of the momenta. Putting

everything together and rotating to Euclidean time (t→ −it and τ → −iτ) we find

C p⃗
′,p⃗,Aµ

3pt = +
√
Z ′

√
Z

2E′ 2E
e−E

′(t−τ)e−Eτ(/p′ +m) [GAγµγ5 +GP̃
qµ

2m
γ5] (/p +m)

−
√
Z ′

√
Z

2E 2Eπ
e−(E+Eπ)(t−τ)e−Eτrµ+ (b′γ5(/p +m) +GA

(/p +m)/r+γ5(/p +m)
(p + r+)2 −m2

)

+
√
Z ′

√
Z

2E′ 2Eπ
e−E

′(t−τ)e−(E
′+Eπ)τrµ− (b(/p′ +m)γ5 −GA

(/p′ +m)/r−γ5(/p′ +m)
(p′ + r−)2 −m2

)

+ . . . , (4.24)
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for the axial current and

C p⃗
′,p⃗,P

3pt = +
√
Z ′

√
Z

2E′ 2E
e−E

′(t−τ)e−Eτ(/p′ +m)GPγ5(/p +m)

−
√
Z ′

√
Z

2E 2Eπ
e−(E+Eπ)(t−τ)e−EτB (b′γ5(/p +m) +GA

(/p +m)/r+γ5(/p +m)
(p + r+)2 −m2

)

−
√
Z ′

√
Z

2E′ 2Eπ
e−E

′(t−τ)e−(E
′+Eπ)τB (b(/p′ +m)γ5 −GA

(/p′ +m)/r−γ5(/p′ +m)
(p′ + r−)2 −m2

)

+ . . . , (4.25)

for the pseudoscalar current, where

b = −a +GA
m2
π

(p′ + r−)2 −m2
, b′ = −a′ +GA

m2
π

(p + r+)2 −m2
, (4.26)

and the dots represent additional excited state contributions. These results can be used

for all momentum configurations and with arbitrary spin projections. After taking the

trace with the specific matrices P i+ that we use here, the result can be further simplified,

see below. We emphasize that the leading, pole enhanced Nπ excited state contribution

calculated here occurs either in the initial state or in the final state, but not in both

simultaneously.

4.4. Spectral decomposition

In this section we will provide the explicit expressions for the correlation functions that

are used in our analysis, including our parametrization of additional generic excited

states. For the latter we will assume that they occur with the same energies in both,

two- and three-point functions. Some state-of-the-art lattice analyses of form factors take

into account up to three excited states in the two-point and up to two excited states

in the three-point functions, see, e.g., ref. [109]. Whether this is necessary depends

on the available statistics and on the applied source/sink smearing. In our simulation a

relatively large number of smearing steps was performed, leading to large smearing radii,

cf. table 2. In this situation, we find it sufficient to add only one generic excited state

to the two- and three-point correlators on top of the pion pole enhanced state that we

have calculated in the last section. Including the additional generic excited state term,

we obtain for the two-point function

C p⃗2pt,P+
(t) = Zp⃗

Ep⃗ +m
Ep⃗

e−Ep⃗t (1 +Ap⃗e−∆Ep⃗t) . (4.27)
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In the following we will abbreviate ∆E = ∆Ep⃗ and ∆E′ = ∆Ep⃗′ . Note that we do not

assume any dispersion relation for the excited state energies, nor do we assume that

these are single hadron states. Instead, we treat them as free fit parameters. We define

the trace occurring in the ground state contribution to the three-point function as

Bp⃗′,p⃗
Γ,O = Tr{Γ(/p′ +m)J[O](/p +m)}. (4.28)

The explicit results can be found in appendix B, together with the remaining traces

needed to evaluate eqs. (4.24) and (4.25). For the three-point functions we obtain the

parametrization

C p⃗
′,p⃗,Aµ

3pt,P i+
=

√
Z ′

√
Z

2E′ 2E
e−E

′(t−τ)e−Eτ

× [Bp⃗′,p⃗

P i+,Aµ
(1 +B10e

−∆E′(t−τ) +B01e
−∆Eτ +B11e

−∆E′(t−τ)e−∆Eτ)

+ e−∆E′
Nπ(t−τ) E

′

Eπ
rµ+(c′pi + d′qi) + e−∆ENπτ E

Eπ
rµ−(c p′i + d qi), ]

(4.29)

C p⃗
′,p⃗,P

3pt,P i+
=

√
Z ′

√
Z

2E′ 2E
e−E

′(t−τ)e−Eτ

× [Bp⃗′,p⃗

P i+,P
(1 +B10e

−∆E′(t−τ) +B01e
−∆Eτ +B11e

−∆E′(t−τ)e−∆Eτ)

+ e−∆E′
Nπ(t−τ) E

′

Eπ

m2
π

2m`
(c′pi + d′qi) − e−∆ENπτ E

Eπ

m2
π

2m`
(c p′i + d qi)],

(4.30)

where we have suppressed the dependence of the excited state parameters on the mo-

menta, the spin-projection, and the current insertion: Bij = Bij(p⃗′, p⃗,Γ,O). We have

defined ∆ENπ = Eπ + (E′ −E), ∆E′
Nπ = Eπ − (E′ −E) and

c = −2b − 4GA
mEπ + p′ · r−

(p′ + r−)2 −m2
, c′ = −2b′ − 4GA

mEπ + p · r+
(p + r+)2 −m2

, (4.31)

d = −GA
4m(m +E′)

(p′ + r−)2 −m2
, d′ = GA

4m(m +E)
(p + r+)2 −m2

. (4.32)

Equations (4.31) and (4.32) are only valid up to higher order corrections in ChPT. For

instance, one could replace GA by (Q2 +m2
π)GP̃ /(4m2) or by (Q2 +m2

π)m`GP /(mm2
π)

in the Nπ excited state contributions (cf. eqs. (4.20), (4.21) and (4.22)) and the result

would still be valid at leading order. From a plain vanilla ChPT power-counting point

of view one could even replace GA by gA. Therefore, in anticipation of possible higher

order corrections, we may relax the assumptions even further by using c, c′, d, and d′ as

free fit parameters, which reduces the ChPT input. This has the additional advantage
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that it does not allow the excited state signal to have a direct influence on the result

for the ground state form factors. Naturally, one has to pay for the increased number

of fit parameters with a slightly larger statistical error for the ground state result – a

small price considering that one gets rid of one source of systematic uncertainty. In

section 5.2 we will assess the validity of the ChPT predictions by comparing them to

the results obtained from the fits. In particular we will be able to check whether the

data is consistent with the parameter-free ChPT prediction for d and whether the direct

coupling of the smeared three-quark interpolating currents to the Nπ state differs from

the leading order ChPT prediction calculated for local currents.

Note the elegance of the parametrization given in eqs. (4.29) and (4.30). Even after

relaxing the conditions (4.31) and (4.32), it encodes the relative strength of the Nπ

excited state contribution in the different channels. The importance of this knowledge

must not be underestimated. For instance, combining eq. (4.28) with eq. (4.29) one can

see that any determination of the axial form factor using solely the A1, A2, and A3

channels is not affected by these excited states at all.

Finally, let us note that for the kinematics we use in the numerical analysis, setting

the final state momentum to zero, p⃗′ = 0, such that p⃗ = −q⃗ (this setup is used in many

lattice simulations), the parametrization becomes even simpler since one can replace

c′pi+d′qi = e′qi (with e′ = d′−c′) and cp′i+dqi = dqi. In this kinematic situation, the Nπ

excited state energy corresponds to EN(0)+Eπ(−q⃗) in the initial state and EN(p⃗)+Eπ(q⃗)
in the final state.
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5. Data analysis

5.1. Ensembles

In order to determine the axial and (induced) pseudoscalar form factors using the corre-

lation functions described in sections 3.5 and 3.8, we have analyzed a large set of lattice

ensembles generated within the CLS effort [73].11 The ensembles have been generated

using a tree-level Symanzik improved gauge action and Nf = 2 + 1 flavors of nonper-

turbatively order a improved Wilson (clover) fermions, see sections 2.3.2 and 2.5.1. An

efficient and stable hybrid Monte Carlo sampling is achieved by applying twisted-mass

determinant reweighting [76], which avoids near-zero modes of the Wilson Dirac opera-

tor, cf. section 2.6.1. The polynomial approximation of the strange quark determinant

was corrected for by reweighting too, employing the method introduced in ref. [75]. We

use the nucleon interpolator defined in eq. (3.16), where the individual quarks at the

source and the sink are Wuppertal-smeared [81], employing spatially APE-smoothed [83]

gauge links.

Some of the CLS ensembles (cf. table 2 for a full list of the ensembles used in this

work) have been simulated employing very fine lattices down to a = 0.039 fm. For these

lattices we avoid large autocorrelation times by using open boundary conditions in the

time direction [76, 77]. While employing open boundary conditions is crucial for fine

lattice spacings, we use lattices with both open and periodic boundary conditions for the

coarser spacings. In total we have five different lattice spacings ranging from a = 0.039 fm

to a = 0.086 fm, see table 1. The spatial and temporal extents are encoded in the letter

of the ensemble name, see table 3.

As illustrated in figure 7, the available ensembles have been generated along three

different trajectories in the quark mass plane:12

a) sym, blue: trajectory with exact flavor symmetry, where the light and strange quark

masses are degenerate (m` =ms)

b) trM, green: ensembles created with 2m` +ms = const., such that 2m2
K +m2

π ≈ phys.

c) msc, red: ensembles created keeping the renormalized strange quark mass con-

stant [111], so that 2m2
K −m2

π ≈ phys.

11The ensembles rqcd021 and rqcd030 have been generated using the BQCD code [110].
12See also ref. [111]. In practice the ensembles do not always lie exactly on top of the green and red

trajectories shown in figure 7.

47



E
n

s.
b

.c
.

κ
l

κ
s

m
π

m
K

m
π
L

r s
m

#
co

n
f.

t/
a

#
m

ea
s.

tr
a

j.

β
=

3.
4

U
10

3
o

0.
13

67
59

62
0.

13
67

59
62

41
7

41
7

4.
4

0.
63

8
24

73
8 1

,
10

2
,

12
3
,

1
4

4
tr

M
,

sy
m

H
10

1
o

0.
13

67
59

62
0.

13
67

59
62

42
0

42
0

5.
9

0.
64

3
20

00
8 2

,
10

2
,

12
2
,

1
4

2
tr

M
,

sy
m

H
10

2
o

0.
13

68
65

0.
13

65
49

33
9

35
2

43
9

4.
9

0.
66

9
19

97
8 1

,
10

2
,

12
3
,

1
4

4
tr

M
H

10
5

o
0.

13
69

7
0.

13
63

40
79

27
9

46
5

3.
9

0.
73

5
19

96
8 1

,
10

2
,

12
3
,

1
4

4
tr

M
N

10
1

o
0.

13
69

7
0.

13
63

40
79

27
9

46
3

5.
8

0.
72

2
32

0
8 1

,
10

2
,

12
3
,

1
4

4
tr

M
C

10
1

o
0.

13
70

3
0.

13
62

22
04

1
22

0
47

2
4.

6
0.

77
2

23
43

8 1
,

10
2
,

12
3
,

1
4

4
tr

M
D

10
1

o
0.

13
70

3
0.

13
62

22
04

1
22

0
47

3
6.

1
0.

79
9

32
3

8 1
,

10
2
,

12
3
,

1
4

4
tr

M
D

15
0

p
0.

13
70

88
0.

13
61

07
55

12
6

47
9

3.
5

0.
84

4
57

9
8 1

,
10

2
,

12
3
,

1
4

4
tr

M
,

m
sc

H
10

7
o

0.
13

69
45

66
59

07
98

0.
13

62
03

16
51

43
47

6
36

6
54

6
5.

1
0.

67
3

15
64

8 2
,

10
2
,

12
3
,

1
4

4
m

sc
H

10
6

o
0.

13
70

15
57

00
24

0.
13

61
48

70
44

78
27

2
51

6
3.

8
0.

68
0

15
53

8 2
,

10
2
,

12
3
,

1
4

4
m

sc
C

10
2

o
0.

13
70

3
0.

13
62

22
04

1
22

2
50

1
4.

6
0.

77
9

15
00

8 2
,

10
2
,

12
3
,

1
4

4
m

sc
rq

cd
02

1
p

0.
13

68
13

0.
13

68
13

33
8

33
8

4.
7

0.
67

6
15

41
8 2

,
10

2
,

12
4
,

1
4

4
sy

m

β
=

3
.4

6

B
45

0
p

0.
13

68
9

0.
13

68
9

41
8

41
8

5.
2

0.
61

7
15

94
9 1

,
11

2
,

13
3
,

1
6

4
tr

M
,

sy
m

S
40

0
o

0.
13

69
84

0.
13

67
02

38
7

35
2

44
2

4.
3

0.
66

5
28

72
9

1
,

11
2
,

13
3
,

1
6

4
tr

M
N

40
1

o
0.

13
70

61
6

0.
13

65
48

07
71

28
5

46
1

5.
3

0.
72

1
11

00
9 1

,
11

2
,

13
3
,

1
6

4
tr

M
D

45
0

p
0.

13
71

26
0.

13
64

20
42

86
39

93
7

21
4

47
7

5.
3

0.
78

4
62

0
9 4

,
11

4
,

13
4
,

1
6

4
tr

M
B

45
2

p
0.

13
70

45
5

0.
13

63
78

04
4

35
0

54
5

4.
3

0.
65

0
19

44
9 3

,
11

3
,

13
3
,

1
6

4
m

sc
N

45
0

p
0.

13
70

98
6

0.
13

63
52

60
1

28
5

52
4

5.
3

0.
70

6
11

32
9

4
,

11
4
,

13
4
,

1
6

4
m

sc
D

45
1

p
0.

13
71

4
0.

13
63

37
76

1
21

7
50

3
5.

4
0.

78
4

53
2

9 4
,

11
4
,

13
4
,

1
6

4
m

sc
rq

cd
03

0
p

0.
13

69
58

7
0.

13
69

58
7

31
7

31
7

3.
9

0.
68

8
12

24
9 4

,
11

4
,

13
8
,

1
6

8
sy

m
X

45
0

p
0.

13
69

94
0.

13
69

94
26

3
26

3
4.

9
0.

73
9

40
0

9 2
,

11
2
,

13
4
,

1
6

4
sy

m

β
=

3
.5

5

N
20

2
o

0.
13

7
0.

13
7

41
1

41
1

6.
4

0.
61

0
88

4
11

1
,

14
2
,

16
2
,

1
9

4
tr

M
,

sy
m

N
20

3
o

0.
13

70
8

0.
13

68
40

28
4

34
5

44
2

5.
4

0.
66

0
15

43
11

1
,

14
2
,

16
3
,

1
9

4
tr

M

48



E
n

s.
b

.c
.

κ
l

κ
s

m
π

m
K

m
π
L

r s
m

#
co

n
f.

t/
a

#
m

ea
s.

tr
a

j.

N
20

0
o

0.
13

71
4

0.
13

67
20

86
28

4
46

2
4.

4
0.

69
6

17
12

11
1
,

14
2
,

16
3
,

1
9

4
tr

M
D

20
0

o
0.

13
72

0.
13

66
01

74
8

20
1

48
1

4.
2

0.
78

6
19

99
11

1
,

14
2
,

16
3
,

1
9

4
tr

M
E

25
0

p
0.

13
72

32
86

7
0.

13
65

36
63

3
13

0
48

9
4.

1
0.

82
9

49
0

11
4
,

14
4
,

16
4
,

1
9

4
tr

M
,

m
sc

N
20

4
o

0.
13

71
12

0.
13

65
75

04
9

35
1

54
5

5.
5

0.
66

1
15

00
11

2
,

14
2
,

16
3
,

1
9

4
m

sc
N

20
1

o
0.

13
71

59
68

0.
13

65
61

31
9

28
5

52
3

4.
5

0.
72

7
15

22
11

2
,

14
2
,

16
3
,

1
9

4
m

sc
D

20
1

o
0.

13
72

06
7

0.
13

65
46

84
4

19
9

50
1

4.
1

0.
77

8
10

78
11

4
,

14
4
,

16
4
,

1
9

4
m

sc
X

25
0

p
0.

13
70

5
0.

13
70

5
34

8
34

8
5.

4
0.

65
5

34
5

11
2
,

14
2
,

16
4
,

1
9

4
sy

m
X

25
1

p
0.

13
71

0.
13

71
26

7
26

7
4.

2
0.

71
9

43
6

11
4
,

14
4
,

16
8
,

1
9

8
sy

m

β
=

3.
7

N
30

0
o

0.
13

7
0.

13
7

42
2

42
2

5.
1

0.
59

1
76

0
14

1
,

17
2
,

21
2
,

2
4

4
tr

M
,

sy
m

N
30

2
o

0.
13

70
64

0.
13

68
72

17
91

35
8

34
6

45
1

4.
2

0.
64

4
13

83
14

1
,

17
2
,

21
3
,

2
4

4
tr

M
J
30

3
o

0.
13

71
23

0.
13

67
54

66
08

25
7

47
5

4.
2

0.
70

5
63

4
14

1
,

17
2
,

21
6
,

2
4

8
tr

M
N

30
4

o
0.

13
70

79
32

50
93

65
4

0.
13

66
65

43
01

05
66

3
35

1
55

4
4.

3
0.

62
0

16
52

14
2
,

17
2
,

21
3
,

2
4

4
m

sc
J
30

4
o

0.
13

71
23

0.
13

67
54

66
08

26
0

52
3

4.
2

0.
70

8
15

25
14

3
,

17
3
,

21
3
,

2
4

4
m

sc

β
=

3
.8

5

J
50

0
o

0.
13

68
52

0.
13

68
52

41
0

41
0

5.
2

0.
57

9
75

0
17

1
,

22
2
,

27
3
,

3
2

4
tr

M
,

sy
m

J
50

1
o

0.
13

69
03

2
0.

13
67

49
71

5
33

3
44

5
4.

2
0.

61
3

15
07

17
1
,

22
2
,

27
3
,

3
2

4
tr

M

T
ab

le
2:

L
is

t
of

th
e

en
se

m
b

le
s

u
se

d
in

th
is

w
or

k
w

it
h

th
e

re
sp

ec
ti

ve
b

ou
n

d
ar

y
co

n
d

it
io

n
in

ti
m

e
(p

er
io

d
ic

(p
)

o
r

o
p

en
(o

))
,

la
b

el
ed

b
y

th
ei

r
id

en
ti

fi
er

an
d

so
rt

ed
b
y

th
e

in
ve

rs
e

co
u

p
li

n
g
β

.
W

e
li

st
th

e
li

gh
t

an
d

st
ra

n
ge

h
op

p
in

g
p

a
ra

m
et

er
s
κ
`

an
d
κ
s

u
se

d
in

th
e

si
m

u
la

ti
on

an
d

th
e

re
su

lt
in

g
ap

p
ro

x
im

at
e

m
es

on
m

as
se

s
(g

iv
en

in
M

eV
).

W
e

al
so

p
ro

v
id

e
th

e
ro

o
t

m
ea

n
sq

u
ar

ed
sm

ea
ri

n
g

ra
d

ii
r s

m
fo

r
th

e
li

gh
t

q
u

ar
k

so
u

rc
es

in
fm

d
efi

n
ed

in
eq

.
(3

.1
4)

.
#

co
n

f.
g
iv

es
th

e
n
u

m
b

er
of

co
n

fi
gu

ra
ti

on
s

an
al

y
ze

d
.

T
h

e
co

lu
m

n
t/
a

li
st

s
th

e
so

u
rc

e-
si

n
k

d
is

ta
n

ce
s

in
la

tt
ic

e
u

n
it

s
th

at
h

av
e

b
ee

n
a
n

a
ly

ze
d

on
th

is
la

tt
ic

e.
T

h
e

su
b

sc
ri

p
t

#
m

ea
s.

sp
ec

ifi
es

h
ow

m
an

y
m

ea
su

re
m

en
ts

h
av

e
b

ee
n

p
er

fo
rm

ed
fo

r
th

e
re

sp
ec

ti
ve

so
u

rc
e-

si
n

k
d

is
ta

n
ce

.
T

h
e

la
st

co
lu

m
n

sp
ec

ifi
es

on
w

h
ic

h
tr

a
je

ct
or

ie
s

in
th

e
q
u

ar
k

m
as

s
p

la
n

e
th

e
en

se
m

b
le

li
es

,
cf

.
fi

gu
re

7.
A

n
in

-d
ep

th
d

es
cr

ip
ti

on
of

th
e

en
se

m
b

le
ge

n
er

at
io

n
ca

n
b

e
fo

u
n

d
in

re
f.

[7
3]

.
N

ot
e

th
at

en
se

m
b

le
D

2
0
1

w
a
s

on
ly

u
se

d
fo

r
th

e
te

st
w

it
h

n
on

ze
ro

fi
n

al
m

om
en

tu
m

sh
ow

n
in

fi
gu

re
12

.

49



Figure 7: Schematic visualization of the analyzed CLS ensembles in the space spanned by
the lattice spacing and the quark masses. On the flavor symmetric plane (blue),
wherem` =ms, flavor multiplets of hadrons have degenerate masses (e.g., m2

K =
m2
π). The green lines are defined to have physical average quadratic meson

mass (2m2
K+m2

π = phys.). This corresponds to an approximately physical mean
quark mass (2m`+ms ≈ phys.). The red lines are defined by 2m2

K −m2
π = phys.

and indicate an almost physical strange quark mass (ms ≈ phys.). Physical
masses are reached at the intersections of green and red lines.

Along trajectory a) observables do not depend on the quark mass splitting. Data

from these ensembles thus enables a precise determination of the dependence on the

average quark mass, and can also be used to obtain results in the three-flavor chiral

limit. Trajectory b), where the average quark mass is kept approximately constant,

yields complementary information on flavor symmetry breaking. The additional data

along trajectory c) provides further insight into the dependence on the light quark mass.

The physical point is close to the intersection of the latter two trajectories. Since we

cover a large fraction of the relevant quark mass plane, any deviation of an ensemble

from its target trajectory can be taken into account.

The ensembles cover a range of volumes with 3.5 ≤mπL ≤ 6.4 allowing us to investigate

and control finite volume effects. The majority of the ensembles has mπL > 4. Having

multiple quark mass trajectories with a wide range of lattice spacings and volumes

enables us to simultaneously extrapolate to physical masses, to infinite volume, and to

the continuum limit by means of a global fit to 37 ensembles. Our extrapolation strategy

is explained in detail in section 6.2.

5.2. Fits to the correlation functions

On each ensemble we have analyzed 4 source-sink separations that have been chosen such

that they correspond roughly to the physical distances 0.7 fm, 0.9 fm, 1.0 fm, and 1.2 fm.
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Ns Nt Ns Nt Ns Nt

B 32 64 J 64 192 H 32 96
C 48 96 S 32 128 X 48 64
D 64 128 U 24 128 rqcd021 32 32
E 96 192 N 48 128 rqcd030 32 64

Table 3: List of lattice volumes that are used in this work, where Ns and Nt are the
number of points in spatial and temporal direction, respectively. The volumes
are encoded in the first letter of the ensemble name with the exception of the
rqcd ensembles.

The source-sink distance in lattice units and the corresponding number of measurements

per configuration are specified in table 2. On some ensembles we have reduced the

computational cost by applying the coherent sink technique, cf. section 3.8.1. For the

statistical analysis we generate 500 bootstrap samples per ensemble using a bin size of

20 molecular dynamics units to eliminate autocorrelations.

The nucleon energies determined from fits to two-point functions using the spectral

decomposition in eq. (4.27) with one generic excited state agree with the continuum

dispersion relation, see figure 8. With this justification, we employ the continuum dis-

persion relation for single nucleon energies in the subsequent analysis.

Results of the simultaneous fits using the ratio defined in eq. (3.50) and the two-

point functions are shown in figure 9, where we have selected cases in which the effect

due to the pion pole enhanced excited states is large, i.e., ensembles with small pion

masses at small (but nonzero) momentum transfer. Note that for our kinematics the

parametrization (4.29) and (4.30) only includes two additional fit parameters (d and e′)

in addition to the usual excited state parametrization. These two parameters describe

the Nπ related excited state contributions for the axialvector and pseudoscalar channels

simultaneously, for all spin-projections. That this is even possible strongly indicates that

the results given in section 4.4 are a very good approximation of the underlying physics.

In order to take into account systematic uncertainties of our excited state analysis, we

perform a fit range variation, where the minimal distance between the operators is varied

between 2a and 4a in the ratios, and between 2a and 3a in the two-point functions. In

figures 9 and 11 the full circles (dots) correspond to data points that are always (never)

part of the fitted window, while the open symbols indicate data points that are used

only in some of the fits. The error bands of the extracted ground state contributions

contain both the statistical error and the error related to the choice of the fit range.

In figure 9 the yellow bands correspond to the ground state contributions extracted

from the EFT-inspired ansatz for the three-point function (eqs. (4.29) and (4.30)), while
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Figure 8: Nucleon dispersion relation for the ensembles listed in table 2. The data points
show the squared ground state energies obtained from fits to two-point func-
tions using the ansatz (4.27) and treating the energies as free fit parameters.
The lines correspond to E2 =m2 + p⃗2 using the nucleon mass m determined at
zero momentum.

the gray band is the ground state signal obtained from a traditional multistate fit ansatz

(also using eqs. (4.29) and (4.30), but without the explicit Nπ contribution, i.e., setting

c = c′ = d = d′ = 0). The decomposition of the ground state matrix elements in terms of

form factors is determined by eq. (4.28); see appendix B for an explicit evaluation. As

one can see, the ground state contribution can be disentangled from the huge signal of

the Nπ state (which fails to be resolved using the traditional ansatz with generic excited

state contributions). Here, it is particularly advantageous that the coefficients of the Nπ

contributions are constrained for various channels and spin projections in our fit, which

simplifies the determination of the corresponding fit parameters (e′ = d′ − c′ and d, for

our kinematics). To this end, the seemingly linear behavior of A0 (i.e., row 3 in figure 9,

where the spin projection is aligned with the momentum) is actually helpful and it is

noteworthy that this data can be described very well by our fit ansatz. The ratio shown

in the top panels (which is sensitive to GA but independent of GP̃ ) is not affected by
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Figure 9: Fits to the ratio R0⃗,p⃗
Γ,O (defined in eq. (3.50)) at a momentum transfer q⃗ = −p⃗ =

2π
L (0,0,−1)T for ensemble D200 (left side) and C101 (right side) for various
channels and spin projections, where we have exploited rotational symmetry to
average over equivalent directions. The solid lines correspond to a simultaneous
fit to all the channels taking into account the leading Nπ contribution using
eqs. (4.29) and (4.30). The yellow band corresponds to the ground state. The
gray band (dashed lines) shows the ground state extracted from a traditional
fit using one generic excited state. The ground state contributions in the top
(bottom) panels are sensitive to GA (GP ), exclusively, while those in the second
and the third row yield linear combinations of GA and GP̃ (see eqs. (B.3)-
(B.6)). The bands include the statistical error and an error due to a variation
of the fit range.
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the pole enhanced Nπ excited state contribution.13 Indeed, we do not see any evidence

in our numerical data for Nπ or other low-lying multiparticle state contributions in this

channel. This supports the choice made in previous lattice calculations to determine the

axial form factor using this channel, in combination with traditional excited state fits.

The ansatz including the Nπ excited states explicitly allows for a much better descrip-

tion of the data. In the case of D200 for instance, fits using block-correlated covariance

matrices yield χ2/d.o.f. ≈ 1.31 (including Nπ) versus χ2/d.o.f. ≈ 7.17 (excluding Nπ).

Note, however, that we have decided to use uncorrelated fits to extract the results. This

avoids instabilities in the covariance matrix and prevents an underestimation of the

statistical errors.

We find that almost the complete excited state contamination can be attributed to

this Nπ state, and that there are only very mild additional contributions at the sink

(where p⃗′ = 0⃗). Nevertheless, we refrain from removing the additional generic excited

states from the parametrization, in order to exclude an underestimation of the error

in the extracted ground state contribution. Actually, one can also obtain a very good

description of the data with even smaller statistical errors if one would use the ChPT-

biased parametrizations discussed in section 4, which may indicate that possible higher

order corrections are small. Nevertheless, the latter would entail a systematic uncertainty

that we intend to avoid.

5.2.1. Predictions from EFT

We can confront the results of our fits with the corresponding ChPT prediction, see

figure 10. In particular for the parameters d and d′ in eqs. (4.29) and (4.30) ChPT

yields a parameter free prediction, see eq. (4.32). Since d corresponds to one of our fit

parameters, a direct comparison is possible (left plot in figure 10). As anticipated in

section 4, the prediction using GA(Q2) (circles) as the pion-nucleon coupling, instead

of gA = GA(0) (crosses), agrees well with our data, even at large Q2, where one would

usually not expect ChPT to work.

For our kinematics, the Nπ excitation in the final state can also couple directly to

the three-quark operator (this corresponds to the diagrams on the left and right in the

second row of figure 6). Therefore, we can try to determine a′ (defined in eq. (4.23))

directly from the data. A value a′ = 1 means that the leading order ChPT estimate for

the coupling of Nπ to the three-quark operators calculated for local currents is exact in

spite of the smearing. As one can see from the large statistical errors in the right plot

of figure 10, our data is not very sensitive to a′. This is expected, since c and c′ (which

contains a′) are suppressed compared to d and d′ by one factor of O(mπm ). We neither

13The small shift within errors occurs because we perform a simultaneous fit such that the determined
energy of the generic excited state is influenced by the fit in the other channels.
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fit (dfit). As anticipated in section 4, the estimate using gA instead of GA
(crosses) is not as good. This simply means that at nonzero momentum
transfer the coupling of the pion to the nucleon is given by GA(Q2) instead
of gA, as expected. In the plot on the right we show a′ (cf. eq. (4.23)) obtained
from our fit to the data. A value of a′ = 1 would imply that the leading order
ChPT estimate for the coupling of Nπ to the three-quark operators is exact
and that the operator smearing does not affect the coupling at all. As one
can see, the data is not very sensitive to the value of a′. We do not see any
significant momentum dependence and no strong smearing effect.

see a significant momentum dependence nor a strong smearing effect. If anything, the

direct coupling of the three-quark operators to Nπ seems to be slightly enhanced by the

smearing.

5.2.2. Subtracted currents

In figure 11 we reinvestigate the subtraction method that was proposed in ref. [34].

As one can clearly see in the upper panels of figure 11, it almost entirely removes the

seemingly linear behavior in the A0 channel caused by the Nπ states. We find that the

results for the ground state obtained from fits to the unsubtracted (solid lines; ground

state yellow) and the subtracted (dashed lines; ground state red) data are mutually

compatible, once we take into account the leading Nπ contribution.14 For the subtracted

correlation functions, the fit ansatz given in section 4.4 has to be adapted appropriately,

cf. appendix C. However, the ground state extracted from the subtracted data has a

much larger statistical uncertainty. A closer look shows that the subtraction method

14Note that the subtraction method in combination with traditional excited state fits (as used in ref. [34])
does not yield the correct ground state. In particular in the pseudoscalar channel the correction
overshoots and yields too large values. This has strong effects on GP̃ and GP , while GA is unaffected.
For a detailed study of this topic see also ref. [112]
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Figure 11: Comparison to the subtraction method proposed in ref. [34] for the ratio R0⃗,p⃗
Γ,O

(defined in eq. (3.50)) at the momentum transfer q⃗ = −p⃗ = 2π
L (0,0,−1)T for

ensemble D200. The solid and dashed lines show fits to the unsubtracted
and subtracted data, respectively, where the yellow and red bands show the
corresponding ground state signals. In both cases we have taken into account
the leading Nπ contribution. For the subtracted current the fit ansatz has to
be adapted, cf. appendix C.

here has fallen victim to its own success: since the largest and clearest excited state

contaminations (in A0) have been subtracted successfully, the corresponding parameters

cannot be determined as reliably, which in turn leads to a large error in the ground state.

One can conclude that a combination of the analysis method presented here (taking into

account the relevant Nπ excitation explicitly in the fit to the correlation function) and

the subtraction method proposed in ref. [34] is not advantageous.
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Figure 12: Fits to the ratio Rp⃗,p⃗Γ,O (as defined in eq. (3.50), but rescaled such that the
ground state contribution in all the channels corresponds to gA) at the mo-
mentum transfer q⃗ = 0⃗, with p⃗′ = p⃗ = 2π

L (0,0,1)T and with p⃗′ = p⃗ = 0⃗ for the
contributing axial channels. This analysis has been performed on ensemble
D201. The solid lines correspond to a simultaneous fit to all the channels
taking into account the leading Nπ contribution using eqs. (4.29) and (4.30),
where the yellow band corresponds to the ground state. The bands include
the statistical error and an error due to a variation of the fit range.

5.2.3. Finite final momentum check

As a consistency check, we have also considered the case q⃗ = 0 with p⃗′ = p⃗ ≠ 0⃗ on one of

our ensembles (D201). In this situation, eq. (4.29) predicts that the correlation functions

of A1, A2, and A3 are not affected by the Nπ excited state, while A0 gets a contribution

∝ exp(−(EN +mπ/2)t) cosh(mπ(τ − t/2)) in the three-point function. In figure 12 we

show that this is indeed the case and that a simultaneous fit using eq. (4.29) yields a

consistent description of the data for all the channels. This suggest that the observation

in ref. [19] (see also ref. [33]), that a determination of gA from the A0 channel in a moving

frame (at Q2 = 0) gives results different from those obtained using A1, A2, and A3, can

be attributed to the same Nπ excited state contaminations that have been problematic

at nonzero Q2 in other studies.
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5.3. Excited state energies

In ref. [97] it has been proposed to use the signal of the timelike axialvector channel to

determine the energy of the low-lying Nπ excitation. The main difference with respect

to the traditional excited state fit method is that one does not impose that the leading

excited states in the two- and three-point functions have the same energy. In figure 13

(which roughly reproduces Fig. 3 of ref. [97]15) we show the energy gaps to the various

excited states obtained from two different fits to the correlation functions on ensemble

D200 (with mπ ≈ 201 MeV). The dots (fit 1) have been obtained using the method

proposed in ref. [97] (with the slight difference that we perform a simultaneous fit to all

the channels instead of the two-step method presented there), while the crosses (fit 2)

have been obtained using our fit ansatz from eqs. (4.29) and (4.30) but leaving ∆ENπ

and ∆E′
Nπ as free fit parameters. In contrast to fit 1, fit 2 contains the additional excited

states known from the two-point function, which leads to larger statistical uncertainties,

in particular when the energy levels of the Nπ state and the excited state from the

two-point function (blue data points) get close to each other. Both kinds of fits lead

to energies for the nucleon-pion states that approximately correspond to those of a

noninteracting system (cf. the diagrams in the left and the right column of figure 6),

which for our kinematics means that ENπ = EN(0⃗) +Eπ(q⃗) in the initial state (orange,

dotted line) and E′
Nπ = EN(−q⃗) + Eπ(q⃗) in the final state (green, dashed line). The

fact that both methods result in compatible values for the Nπ excited state energies

is encouraging and suggests that the physical interpretation obtained using EFT (cf.

section 4) is correct.

In particular for the low-lying Nπ state (which for our kinematics occurs in the initial

state) at intermediate Q2 one can see that the energies obtained from the fits slightly

undershoot those of the noninteracting system. This effect is found to be a bit more sig-

nificant in ref. [97]. One may speculate that this small deviation is due to an interaction

between the nucleon and the pion. For the time being we have chosen to ignore these

small deviations in our fits.

15Figure number from the arXiv v2 version.
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Figure 13: Energy gaps between the ground state and the excited states on the ensem-
ble D200. The crosses have been obtained from a fit using the ansatz from
eqs. (4.29) and (4.30) but taking ∆E3pt = ∆ENπ and ∆E′

3pt = ∆E′
Nπ as free

fit parameters, while ∆E2pt = ∆E corresponds to the energy of the generic
excited state determined from two- and three-point functions. The dots have
been obtained from a fit without an explicit Nπ state (i.e., c = c′ = d = d′ = 0
in eqs. (4.29) and (4.30)) but relaxing the condition that the excited state en-
ergies in two- and three-point function have to match (i.e., ∆E3pt = ∆E and
∆E′

3pt = ∆E′ from the three-point function and ∆E2pt = ∆E from the two-
point function). The orange, dotted line and the green, dashed line show the
energy gaps for a noninteracting nucleon-pion system in the initial and the fi-
nal state, respectively, as obtained from the diagrams in the left and the right
column of figure 6. For our kinematics the energies are ENπ = EN(0⃗)+Eπ(q⃗)
and E′

Nπ = EN(−q⃗) +Eπ(q⃗).

59





6. Form factors and extrapolations

6.1. Approximate restoration of PCAC and PPD

As mentioned in the introduction, form factors extracted from data using a traditional

fit ansatz (with the same excited state energies in the two- and the three-point functions)

show strong violations of PCAC and PPD. In particular in the case of PCAC this result

was puzzling since the latter is fulfilled at the correlation function level (up to small,

expected discretization effects). In order to quantify the violation of the PCAC relation

at the form factor level (cf. eq. (3.28)), we define the ratio (cf. also ref. [29])

rPCAC =
m`
m GP (Q2) + Q2

4m2GP̃ (Q2)
GA(Q2) , (6.1)

where rPCAC = 1 if PCAC holds exactly. As the panel on the left-hand side of fig-

ure 14 demonstrates, using the parametrization of excited state contributions described

in section 4.4, the PCAC relation is now fulfilled reasonably well on all ensembles, in par-

ticular on the ensembles with small pion masses, which previously exhibited the largest

deviations. We emphasize that our fit ansatz does not impose PCAC on the ground

state. While we see a significant improvement for all ensembles, small deviations of

∼ 5% remain in some cases.

The induced pseudoscalar form factor is often estimated by

GP̃ (Q
2) ?≈ 4m2GA(Q2)

m2
π +Q2

⇒ rPPD =
(m2

π +Q2)GP̃ (Q2)
4m2GA(Q2)

?= 1, (6.2)

which is usually referred to as the pion pole dominance (PPD) assumption. Note that

this relation does not have to hold exactly, even in the continuum. However, one would

expect it to be satisfied at least approximately for small pion masses. The panel on

the right-hand side of figure 14 shows that this is indeed the case if one explicitly takes

into account the pion pole enhanced excited states in the spectral decomposition of the

correlation function.

As reported in ref. [97] the problem can also be resolved (though within larger sta-

tistical uncertainties), if one uses a traditional multi-state fit ansatz, but relaxes the

condition that the excited state energies of the two- and three-point functions have to

match. One can exploit the huge excited state signal in the timelike axialvector channel

to determine the energy gaps quite precisely (cf. also section 5.3). This can be seen as

further confirmation that the previously observed large deviations from PCAC and PPD

were indeed caused by unresolved, pion pole enhanced excited states. Note, however,

that our ansatz (shown in eqs. (4.29) and (4.30)) conveys insight into the structure of
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Figure 14: Violation of PCAC (left panel) and PPD (right panel) displayed for various
ensembles along the trajectory with constant average quark mass (green lines
in figure 7) at β = 3.55. The plots show the ratios defined in eqs. (6.1)
and (6.2). The filled circles are obtained taking into account the pion pole
enhanced excited states directly in the fit functions, while the crosses were
obtained using a traditional fit ansatz (with the same excited state energies
in the two- and three-point functions).

the excited state contamination. For instance, it is clear that, for Aµ with µ = 1,2,3,

the result for GA will not be affected by the leading Nπ excited state contribution.

Heuristically speaking, this is because GA is not subject to pion pole dominance.

6.2. Parametrization and extrapolation

In this section we will explore two common form factor parametrizations: the traditional

dipole ansatz and the z-expansion, which has become fashionable lately. In both cases

we also consider parametrizations that are consistent with PCAC in the continuum

(section 6.2.3) and we will use a generic ansatz for the combined continuum, chiral, and

volume extrapolation explained in section 6.2.4.

6.2.1. Dipole ansatz

Motivated by eqs. (4.20), (4.21), and (4.22), we rewrite the form factors as

GA(Q2) ≡ A(Q2) , GP̃ (Q
2) ≡ 4m2

Q2 +m2
π

P̃ (Q2) , GP (Q2) ≡ m

m`

m2
π

Q2 +m2
π

P (Q2), (6.3)

where the pion pole is isolated (cf. also ref. [26]) such that one can use similar parametriza-

tions for the residual form factors X(Q2), X ∈ {A, P̃ , P}. The prefactors not only ensure

that all the functions X(Q2) have the same mass dimension, but also enable us to obtain

the correct chiral behavior of the form factors at small Q2 despite using the same generic

ansatz for all the form factors, see section 6.2.4 below.
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One can consider various parametrizations for the residual form factors. For instance,

one can use a dipole ansatz

X(Q2) = gX

(1 +Q2/M2
X)2

, (6.4)

which reproduces the traditional dipole form for the axial form factor with the axial

coupling gA and the axial dipole mass MA. This parametrization not only yields the

correct low-energy behavior (if one uses a generic parametrization for the pion mass,

volume, and lattice spacing dependence of gX and MX , cf. section 6.2.4 below), but also

yields the correct asymptotic limit GA ∝ 1/Q4, GP̃ ∝ 1/Q6, and GP ∝ 1/Q6 [113], at

large momentum transfer.

6.2.2. z-expansion

One may also parametrize the residual form factors using the z-expansion [114, 115],

which automatically imposes analyticity constraints. This corresponds to an expansion

of the form factors in the variable

z(Q2) =
√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (6.5)

where tcut = 9m2
π is the particle production threshold and t0 is a tunable parameter.16

We then parametrize

X(Q2) =
N

∑
n=0

aXn z(Q2)n, (6.6)

where the X(Q2) are defined as in section 6.2.1. Without additional constraints this

parametrization has N + 1 free parameters and is usually called a z(N+1) ansatz. Again,

the generic parametrization discussed in section 6.2.4 will yield the correct chiral behav-

ior. However, eq. (6.6) does not incorporate any constraints at large momentum transfer.

In order to reproduce the correct asymptotic behavior one has to enforce restrictions of

the type

lim
Q→∞

QkX(Q2) != 0, for 0 ≤ k ≤ n , (6.7)

which can be implemented (as long as n < N) by demanding

0 =
N

∑
l=0

lkaXl , for 0 ≤ k ≤ n . (6.8)

16We have set t0 to −tphys
cut = −9m2

π,phys in our analysis. By choosing a negative value one can avoid the
erratic behavior at tcut = t0, while approaching the chiral limit.
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These can be incorporated, e.g., by fixing

aXk = (−1)k+n+1

k!(n − k)!
N

∑
l=n+1

l!

(l − (n + 1))!(l − k)a
X
l , for 0 ≤ k ≤ n. (6.9)

Alternatively, one can solve the problem recursively by setting

aXk = (−1)2k+1

k!

N

∑
l=k+1

l!

(l − (k + 1))!(l − k)a
X
l , for 0 ≤ k ≤ n. (6.10)

To enforce the correct scaling in the asymptotic limit, GA ∝ 1/Q4, GP̃ ∝ 1/Q6, and

GP ∝ 1/Q6 [113], we have to apply the formulas above for n = 3, thereby fixing aXk
for k = 0,1,2,3, such that 4 coefficients are fixed and only N − 3 coefficients are free

parameters.17 This parametrization with the correct asymptotic behavior is usually

referred to as the z4+(N−3) ansatz.

6.2.3. Consistency with PCAC in the continuum

Let us assume the following ansatz for the extrapolation to the physical point (mπ →
mphys
π , a→ 0, L→∞),

x = xa(mπ,mK , L)xa(a,mπ,mK), (6.11)

where we have factorized the dependence on the lattice spacing into xa with

xa(0,mπ,mK) = 1 (6.12)

for all parameters in the form factor decompositions, i.e., x ∈ {gA,MA, gP̃ ,MP̃ , gP ,MP }
for the dipole ansatz, and x ∈ {aAn , aP̃n , aPn }, n = 4,5 . . . ,N for the z-expansion. This

allows us to perform a combined fit to all ensembles for each form factor. The expressions

used for xa and xa will be given below in section 6.2.4.

Since we know that the partial conservation of the axial current has to be satisfied

exactly in the continuum limit, we can use eq. (3.28) to obtain GP from GA and GP̃

m`

m
GP (Q2) = GA(Q2) − Q2

4m2
GP̃ (Q

2) +O(a2). (6.13)

However, one then has to impose the additional constraints

lim
Q→∞

Qn (GA(Q2) − Q2

4m2
GP̃ (Q

2))∣
a=0

!= 0 (6.14)

17We neglect possible O(Q2a2) lattice artifacts since we only have lattice data with Q2 ≪ a−2. Such
effects could be implemented by relaxing the constraint (6.7) at nonzero lattice spacing.
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via

lim
Q→∞

Qn(A(Q2) − P̃ (Q2))∣
a=0

!= 0 for n ∈ {4,5} , (6.15)

in order to preserve the correct asymptotic behavior of GP , cf. also eq. (6.3). For the

dipole parametrizations one gets

gAM
4
A∣
a=0

!= gP̃M
4
P̃
∣
a=0

. (6.16)

The equivalent constraints for the z-expansion can be obtained using eq. (6.9) and read

(aAk − aP̃k ) ∣
a=0

= (−1)k
k!(5 − k)!

N

∑
l=6

l!

(l − 6)!(l − k) (aAl − aP̃l ) ∣
a=0

for k ∈ {4,5}. (6.17)

Let us now parametrize the pseudoscalar form factor using

P (Q2) = (1 + Q2

m2
π

)P1(Q2) − Q2

m2
π

P2(Q2). (6.18)

This ansatz becomes consistent with PCAC in the continuum limit once we demand that

P1(Q2)∣
a=0

= A(Q2)∣
a=0

, P2(Q2)∣
a=0

= P̃ (Q2)∣
a=0

. (6.19)

Unfortunately, PCAC is broken on the lattice by discretization effects, such that P1(Q2)
and P2(Q2) differ from A(Q2) and P̃ (Q2) at nonzero lattice spacing. Hence, we use the

same ansatz for both (e.g., the dipole form (6.4) or the z-expansion (6.6)), but we start

with independent parameters. Here, the asymptotic constraints yield

lim
Q→∞

Qn (P1(Q2) − P2(Q2)) != 0 for n < 6, (6.20)

independent of a. Note, that eq. (6.19) and (6.20) can only be fulfilled simultaneously

if the axial and induced pseudoscalar form factors meet the requirement (6.14). For the

two parametrizations (cf. sections 6.2.1 and 6.2.2) that we consider, the constraints for

n < 4 hold automatically. Similar to the above, the remaining two constraints can be

satisfied by

gP1M
4
P1

!= gP2M
4
P2

(6.21)

when using the dipole ansatz, and by

(aP1

k − aP2

k ) = (−1)k
k!(5 − k)!

N

∑
l=6

l!

(l − 6)!(l − k)
(aP1

l − aP2

l ) for k ∈ {4,5}, (6.22)
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when using the z-expansion.

To summarize, if we wish our form factor parametrizations to obey PCAC in the

continuum limit, we start by parametrizing P (Q2) as in eq. (6.18), thereby introducing

more parameters at first. However, as discussed above, these parameters are highly

constrained such that the ansatz enforcing PCAC will have less free fit parameters in

the end. Using the dipole ansatz, we have gA,MA, gP̃ ,MP̃ , gP1 ,MP1 , gP2 ,MP2 , which can

be factorized in a lattice spacing dependent and a lattice spacing independent part as

shown in eq. (6.11). The constraints discussed above can be incorporated by setting

gP2 = gP1 (
MP1

MP2

)
4

, gaP1
= gaA, [gaP2

= ga
P̃
, ] (6.23)

ga
P̃
= gaA

⎛
⎝
Ma
A

Ma
P̃

⎞
⎠

4

, Ma
P1

=Ma
A, Ma

P2
=Ma

P̃
, (6.24)

where the constraint in brackets is not independent of the others. If one uses the

z-expansion, one starts with aAn , a
P̃
n , a

P1
n , a

P2
n , n = 4,5 . . . ,N . Again, we assume these

coefficients to be factorized as in eq. (6.11). Here, the constraints discussed above can

be implemented by setting

aP2

k = aP1

k + (−1)k
k!(5 − k)!

N

∑
l=6

l!

(l − 6)!(l − k)
(aP2

l − aP1

l ) for k ∈ {4,5}, (6.25)

aP̃ ,ak = aA,ak + (−1)k
k!(5 − k)!

N

∑
l=6

l!

(l − 6)!(l − k) (aP̃ ,al − aA,al ) for k ∈ {4,5}, (6.26)

aP1,a
k = aA,ak for k ∈ {4,5, . . . ,N}, (6.27)

aP2,a
k = aP̃ ,ak for k ∈ {[4,5, ]6, . . . ,N}. (6.28)

As above, the constraints in brackets are not independent of the others.

6.2.4. Continuum, quark mass, and volume extrapolation

In our combined analysis of all the ensembles we will consider four kinds of fits: the dipole

ansatz (2P), the z-expansion with the correct asymptotic behavior (z4+(N−3)), and the

two corresponding parametrizations where PCAC holds automatically in the continuum

(!2P and !z4+(N−3), respectively). They are listed in table 4. We have factorized the

occurring parameters x = xaxa (see eq. (6.11)) into a continuum limit part xa, and a

part which describes discretization effects, xa, where xa → 1 for a → 0, see eq. (6.12).

In the parametrizations that respect PCAC, the number of parameters is reduced due

to the constraints derived in section 6.2.3 (see also table 4). We perform a combined
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id PCAC xa xa #params per FF

2P × gaA, ga
P̃

, gaP , gaA, ga
P̃

, gaP , 18

Ma
A, Ma

P̃
, Ma

P Ma
A, Ma

P̃
, Ma

P

!2P ✓ gaA, gaA, ga
P̃

, gaP1
, 13

Ma
A, Ma

P̃
Ma
A, Ma

P̃
, Ma

P1
, Ma

P2

z4+(N−3) × aA,a4 , aA,a5 , . . . , aA,aN , aA,a4 , aA,a5 , . . . , aA,aN , 9N − 27

aP̃ ,a4 , aP̃ ,a5 , . . . , aP̃ ,aN , aP̃ ,a4 , aP̃ ,a5 , . . . , aP̃ ,aN ,

aP,a4 , aP,a5 , . . . , aP,aN aP,a4 , aP,a5 , . . . , aP,aN

!z4+(N−3) ✓ aA,a4 , aA,a5 , . . . , aA,aN , aA,a4 , aA,a5 , . . . , aA,aN , 8N − 30

aP̃ ,a6 , aP̃ ,a7 , . . . , aP̃ ,aN aP̃ ,a4 , aP̃ ,a5 , . . . , aP̃ ,aN ,

aP1,a
4 , aP1,a

5 , . . . , aP1,a
N ,

aP2,a
6 , aP2,a

7 , . . . , aP2,a
N

Table 4: Overview of the form factor parametrizations. We will use the dipole ansatz
(2P) and the z-expansion with the correct asymptotic behavior (z4+(N−3)) as
described in sections 6.2.1 and 6.2.2, respectively. For both cases we also con-
sider parametrizations where PCAC is fulfilled in the continuum limit (marked
by a preceding ! in the identifier), cf. section 6.2.3. In the rightmost column, we
give the total number of fit parameters used for the combined continuum, quark
mass, and volume extrapolation per form factor, assuming that formulas (6.29)
and (6.30) are used for the extrapolation of xa and xa, respectively.

continuum, quark mass, and volume extrapolation using the generic ansatz

xa(mπ,mK , L) = cx1 + cx2m̄2 + cx3δm2

+ cx4
m2
π√

mπL
e−mπL + cx5

m2
K√

mKL
e−mKL + cx6

m2
η√

mηL
e−mηL,

(6.29)

xa(a,mπ,mK) = 1 + a2 (dx1 + dx2m̄2 + dx3δm2) , (6.30)

where we set m2
η = (4m2

K −m2
π)/3 using the Gell-Mann–Oakes–Renner relation [116].

The functional form of the finite volume terms is motivated by the leading contribution

found in ChPT calculations of the axial coupling, cf. refs. [117, 118]. To parametrize the

quark mass plane we have defined the linear combinations

δm2 =m2
K −m2

π ≈ B(ms −ml), (6.31)

m̄2 = (2m2
K +m2

π) /3 ≈ 2B (ms + 2ml) /3, (6.32)
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Figure 15: Comparison of continuum results at the physical point for the residual form
factors obtained using the different fits, cf. table 4. The fits enforcing PCAC
in the continuum (lower panels) yield significantly smaller statistical errors.
The mean values of the plotted curves can be reproduced using the parameters
provided in table 5.

such that δm = 0 corresponds to exact flavor symmetry, i.e., the blue line in figure 7,

while the green line with physical average masses is defined by m̄ = phys. ≈ 411 MeV.

Along the line of an approximately physical strange quark mass, i.e., the red line in

figure 7, the average mass varies; all ensembles used in this study have m̄ < 500 MeV.

Note that our additional ensembles with exact flavor symmetry (along the blue line in

figure 7) facilitate the determination of the parameters cx1 , cx2 , dx1 , and dx2 .

6.3. Results

Figure 15 provides a compilation of (continuum, quark mass, and finite volume extrap-

olated) form factors that have been obtained from the parametrizations discussed in the

previous sections. The parameters producing the central values can be taken from ta-

ble 5. Surprisingly, even the fits using a dipole ansatz (2P) give a reasonable description

of the data (actually, it has in most cases the smallest χ2/d.o.f. of all fits, cf. table 5),

despite the fact that the functional form is very constrained. However, the latter may
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id X χ2/d.o.f. gX MX [GeV]
2P A 0.80 1.226 1.311

P̃ 0.65 1.332 1.154
P 0.66 1.259 1.487

!2P A = P1 0.71 1.229 1.312

P̃ = P2 1.222 1.313

id X χ2/d.o.f. aX0 aX1 aX2 aX3 aX4 aX5 aX6 aX7

z4+3 A 0.94 1.009 -1.756 -1.059 1.621 3.919 -5.739 2.005

P̃ 0.66 1.008 -1.831 -1.713 4.994 -1.522 -1.984 1.047
P 0.66 1.066 -1.461 -1.053 -2.504 12.446 -12.260 3.766

!z4+3 A = P1 0.83 1.013 -1.713 -0.591 -0.771 7.790 -8.418 2.689

P̃ = P2 1.007 -1.678 -0.680 -0.653 7.701 -8.382 2.684

z4+4 A 0.97 1.014 -1.777 -1.026 1.596 3.928 -5.740 2.005 -0.00003

P̃ 0.61 1.080 -2.211 -0.920 4.201 -1.164 -2.016 1.031 0.00001
P 0.66 1.117 -1.692 -0.641 -2.858 12.583 -12.271 3.762 -0.00012

!z4+4 A = P1 0.79 1.027 -1.773 -0.488 -0.854 7.818 -8.418 2.688 0.00002

P̃ = P2 1.015 -1.703 -0.662 -0.625 7.649 -8.352 2.678 -0.00031

Table 5: Results for the parameters at the physical point in the continuum for the dipole
ansatz (6.4) and the z-expansion (6.6), together with the uncorrelated χ2 per
degree of freedom of the corresponding fit. For convenience, we also provide
the values for the parameters, which are entirely fixed by constraints.

lead to an underestimation of the error, and it may also induce a smaller slope at zero

momentum transfer. In order to reduce this bias one may relax the constraints due to

the choice of parametrization. The currently most popular and probably best suited

ansatz for this task is the z-expansion described in section 6.2.2. To this end, we have

performed z4+3 and z4+4 fits (and the corresponding fits that are constrained to be con-

sistent with PCAC in the continuum limit). While the z4+3 fit is almost as restrictive

as the dipole ansatz (27 vs. 18 parameters per form factor), expansions with a larger

number of parameters (z4+4, z4+5, etc.) introduce less and less parametrization bias.

In practice, however, the choice will always be a balancing act between reducing the

parametrization bias and being able to control the systematics of all occurring param-

eters. Therefore, the statistical quality of the data and its coverage of lattice spacings,

quark masses, and volumes are a deciding factor.

We emphasize that PCAC was not enforced when extracting the form factors from

fits to the correlators. Nevertheless, due to the advances in the understanding of ex-

69



cited state contaminations in the correlation functions, we are now able to resolve the

ground state contributions such that the resulting form factors agree with PCAC (and

also PPD) reasonably well. This enables us to perform combined fits to all form factors

using parametrizations that automatically obey PCAC in the continuum limit. As one

can easily see in table 4, the resulting parametrizations are much more restrictive than

their counterparts. For example, the dipole fit (!2P) has in total three free parameters

(at the physical point in the continuum limit) for all form factors. However, in contrast

to the parametrization bias discussed above, the PCAC constraints do not evoke any

kind of systematic uncertainty, since they only reflect an exactly known symmetry. Un-

surprisingly, we find that the continuum extrapolation is more stable when using these

PCAC-consistent parametrizations. Overall, we find that both the !2P and the !z4+3

fit yield very good descriptions of the data (χ2/d.o.f. = 0.71 and χ2/d.o.f. = 0.83, re-

spectively), while still allowing for a controlled extrapolation to the physical point. Our

final results are therefore based on these fits. The !z4+4 fit also provides a very good

description of our data (χ2/d.o.f. = 0.79). However, it is less trustworthy since it relies

on an excessive number of parameters, which leads to larger systematic uncertainties in

the combined continuum, quark mass, and volume extrapolation.

In figures 16, 17, and 18, we show our data and how well it is described by the

!z4+3 fit. (For the !2P fit such plots look equally convincing.) The 6 rows in each

figure correspond to the five available lattice spacings and to the continuum limit, while

the columns correspond to the different quark mass trajectories, see the explanation in

section 5.1. Along the trM and msc trajectories, some of the ensembles have close to

physical masses (C101, C102, D200, D450, D451, with mπ ≈ 200 MeV and, in particular,

D150 and E250, with mπ ≈ 130 MeV). Note that the sym trajectory with exact flavor

symmetry does not approach the physical point in the quark mass plane. The colored

curves show the mean fit result evaluated at the masses, volume, and lattice spacing of

the respective ensemble, while the yellow band corresponds to the extrapolated result

at physical masses, in infinite volume, and at the lattice spacing for the particular row.

The data show that the form factors exhibit an increasing slope (in Q2) for decreasing

pion masses (as one would expect) and lattice spacings. In figure 16 one can see that

also the data for gA = GA(0) is well described by the fit. However, in particular for

large pion masses, the data at Q2 = 0 lies significantly below the extrapolated value,

which highlights the importance of the extrapolation to physical masses. In this context

one should note that the z-expansion (shown here) exhibits a different mass dependence

than the dipole ansatz, since the pion mass directly enters the definition of z in eq. (6.5).

What is harder to see from the curves is the increase of the slope towards the smaller

lattice spacings. In order to provide some way for the reader to appreciate how big this

effect is, we indicate the slope of GA at Q2 = 0 in figure 16 by a dashed line. In figures 17
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Figure 16: The axial form factor GA(Q2) obtained using the !z4+3 ansatz fitted to all
available ensembles. This is a combined fit to all form factors with χ2/d.o.f. =
0.83. The panels correspond to different lattice spacings and quark mass
trajectories (see section 5.1), where the yellow band corresponds to the form
factor obtained from the fit, evaluated at physical masses and at infinite
volume, but at the lattice spacing corresponding to the particular row.
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Figure 17: The induced pseudoscalar form factor GP̃ (Q2) obtained using the !z4+3 ansatz
fitted to all available ensembles. This is a combined fit to all form factors
with χ2/d.o.f. = 0.83. The panels correspond to different lattice spacings and
quark mass trajectories (see section 5.1), where the yellow band corresponds
to the form factor obtained from the fit, evaluated at physical masses and
at infinite volume, but at the lattice spacing corresponding to the particular
row.
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Figure 18: The pseudoscalar form factor m`
m GP (Q2) obtained using the !z4+3 ansatz fit-

ted to all available ensembles. This is a combined fit to all form factors with
χ2/d.o.f. = 0.83. The panels correspond to different lattice spacings and quark
mass trajectories (see section 5.1), where the yellow band corresponds to the
form factor obtained from the fit, evaluated at physical masses and at infinite
volume, but at the lattice spacing corresponding to the particular row.
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Figure 19: The rPCAC (left panel) and rPPD (center panel) ratios (defined in eqs. (6.1)
and (6.2)) at the physical point in the continuum limit. These are obtained
using a 2P (dotted, blue), z4+3 (solid, green) or a z4+4 (dashed, red) fit ansatz.
In the case of rPPD, we also show results of the corresponding fits that are
constrained to be consistent with PCAC in the continuum limit (right panel),
cf. table 4.

and 18 it is particularly encouraging that the data for our physical mass ensemble at

small lattice spacing (E250) nicely reproduces the expected pion pole structure in the

(induced) pseudoscalar form factor (cf. eq. (6.3)).

Above, in figure 14, we have demonstrated that the nucleon form factor data extracted

from the correlation functions using the results presented in section 4.4 agree reasonably

well with PCAC and PPD. In figure 19 we show the result for the ratios rPCAC (left

panel) and rPPD (center panel) after the extrapolation, using the previously discussed

form factor parametrizations that do not enforce PCAC. We find that both PCAC and

PPD are fulfilled within large statistical errors. As one can see by comparing the center

and the right panel (note the difference in the scale between the two plots), the dipole

and z-expansion fits with enforced PCAC relation allow for a much better resolution

of possible deviations from the pion pole dominance assumption for the induced pseu-

doscalar form factor. We find the PPD assumption to be valid at the 1%–2% level at all

momentum transfers, independent of the parametrization.

The results for the form factors at zero momentum transfer and for the mean squared

radii are given in table 6, where we also provide the induced pseudoscalar coupling at

the muon capture point

g⋆P = mµ

2m
GP̃ (0.88m2

µ), (6.33)
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id GA(0) r2
A [fm2] GP̃ (0) r2

P̃
[fm2] ml

m GP (0) r2
P [fm2] g⋆P gπNN

2P 1.226(23) 0.272(21) 246(22) 11.98(12) 1.259(80) 11.85(7) 9.02(76) 15.55(3.00)
!2P 1.229(24) 0.272(21) 226(5) 11.91(2) 1.229(24) 11.84(8) 8.30(17) 12.93(55)
z4+3 1.275(45) 0.351(58) 231(24) 11.85(22) 1.311(222) 12.04(36) 8.48(84) 13.23(3.06)
!z4+3 1.302(45) 0.449(42) 238(9) 12.06(4) 1.302(45) 11.94(14) 8.68(30) 14.78(1.16)
z4+4 1.285(58) 0.357(47) 261(30) 11.99(12) 1.416(173) 12.10(14) 9.54(1.04) 17.41(4.31)
!z4+4 1.329(48) 0.465(24) 240(9) 12.06(3) 1.329(48) 11.83(19) 8.76(30) 15.07(1.14)

Table 6: Results for the form factors GX(0) at zero momentum transfer and for the mean
squared radii r2

X = −6G′
X(0)/GX(0) obtained from fits using various form factor

parametrizations. We also provide results for the pion-nucleon coupling gπNN
and for the induced pseudoscalar coupling at the muon capture point g⋆P , which
can be directly compared to the experimental value g⋆P = 8.01(55) from muon
capture [56, 57].

with the muon mass mµ = 105.6 MeV, and for the pion-nucleon coupling constant

gπNN = lim
Q2→−m2

π

m2
π +Q2

4mFπ
GP̃ (Q

2) = m

Fπ
P̃ (−m2

π), (6.34)

where we use the PDG value of Fπ = 92.07 MeV [119]. As a general trend we find

that the fits which ensure that PCAC is satisfied in the continuum limit yield smaller

statistical uncertainties. We find reasonable values for g⋆P that are in agreement with

the approximate realization of PPD in nature. From table 6 one can actually read off

that the different parametrizations yield compatible results, with the exception of the

axial radius, where the dipole fits give significantly smaller values.

In our opinion, the parametrizations !2P and !z4+3 yield the most reliable results (for

the fits with more free parameters the chiral and continuum extrapolation is less stable).

However, given our set of available data, we cannot decide whether the !2P or the !z4+3 fit

is better. We have therefore decided to perform an analysis of systematic uncertainties

for both of these fits. In table 7 we provide, in addition to the statistical error ()s,
estimates for the systematic uncertainties due to the quark mass extrapolation ()m and

the continuum extrapolation ()a. To this end, we have performed additional fits with

cuts in the fit ranges (m̄ < 450 MeV and a < 0.08 fm, respectively). We then take the

difference between the results from these fits and our main result as an estimate of the

corresponding systematic uncertainties. As discussed in section 5.3, our main analysis

is performed using the fit ansatz with the energies of the nucleon-pion states fixed to

the noninteracting value. To estimate the systematic uncertainty due to this choice, we

have performed additional fits, where the energies for the nucleon-pion states are free
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!2P !z4+3

GA(0) = m`
m GP (0) 1.229(24)s(6)ex(3)m(17)a 1.302(45)s(42)ex(38)m(46)a

GP̃ (0) 226(5)s(4)ex(2)m(2)a 238(9)s(5)ex(7)m(5)a
r2
A [fm2] 0.272(21)s(6)ex(7)m(24)a 0.449(42)s(42)ex(42)m(49)a
MA [GeV] 1.312(50)s(15)ex(16)m(54)a 1.020(50)s(52)ex(44)m(52)a
r2
P̃
[fm2] 11.91(2)s(0)ex(1)m(2)a 12.06(4)s(3)ex(4)m(3)a

r2
P [fm2] 11.84(8)s(24)ex(6)m(2)a 11.94(14)s(8)ex(3)m(12)a
g⋆P 8.30(17)s(14)ex(6)m(8)a 8.68(30)s(18)ex(23)m(16)a
gπNN 12.93(55)s(44)ex(20)m(32)a 14.78(1.16)s(72)ex(98)m(67)a
∆GT [%] 0.86(2.39)s(3.71)ex(1.21)m(88)a 6.53(4.26)s(1.30)ex(2.90)m(53)a

Table 7: Results obtained from the !2P and the !z4+3 fit including the statistical error ()s
and estimates of the systematic uncertainties due to quark mass extrapolation
()m, due to the continuum extrapolation ()a, and due to additional excited
state effects ()ex. The systematics are specific to the particular fits and do
not reflect differences between fitansätze. Since both fits satisfy PCAC in the
continuum, GA(0) = m`

m GP (0) holds automatically.

fit parameters.18 The Nπ energies obtained from these fits are consistent with those

presented in figure 13. The difference between our main result and the result obtained

from this alternative fit is given as an estimate for the systematic uncertainty of our

excited state analysis ()ex.

6.4. Discussion

Both the !2P and the !z4+3 fit describe the data well (with similar values for the χ2/d.o.f.)
and, as one can see in table 7, yield compatible results for almost all observables. For

definiteness we choose to quote the values from the !z4+3 fit as our final result in these

cases, merely because it might have less parametrization bias and because the slightly

larger statistical uncertainty is more conservative. In the case of the axial radius, which

is directly linked to the axial dipole mass MA =
√

12/rA, however, we find that the dipole

fit and the z-expansion yield significantly different results. Our main conclusion here has

to be that rA (and the small Q2 behavior of the form factors in general, cf. figure 15) is

highly parametrization dependent – a nuisance which also plagues determinations from

experiment, cf. below. It is consistent that we also find a parametrization dependence

of the axial coupling constant, where the value gA = 1.302(86) (z-exp) is higher than

gA = 1.229(30) (dipole). In this case one can compare to the value from an analysis that

18In these fits, we did not allow for the contributions of additional generic excited states to the three-
point functions. Keeping these, without fixing the Nπ energies, turned out not to be feasible for the
statistics presently available on most of our ensembles.
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MA[GeV] id ref. description

A [62] reanalysis of experimental data (year ≤ 1999)

A1 ν scattering; various targets; world avg. year ≤ 1990

A2 π electroproduction; world avg. year ≤ 1999

A3 π electroproduction; world avg. year ≤ 1999; HBChPT corrected

B [120] ν scattering; reanalysis of ANL, BNL, FNAL, CERN, and IHEP data;

various targets; RFG model; dipole ansatz

C [50] reanalysis of ν scattering data

C1 BNL data [121]; dipole ansatz

C2 ANL data [122]; dipole ansatz

C3 FNAL data [123]; dipole ansatz

C4 combined analysis of BNL, ANL, and FNAL data; z-exp

D [124] ν scattering; K2K (SciFi); oxygen target; dipole ansatz

E [125] ν scattering; MINOS; iron target; dipole ansatz

F [126] ν scattering; MiniBooNE; carbon target; assuming RFG model; dipole ansatz

G [127] reanalysis of [126]; RFG model and spectral function model; dipole ansatz

H [115] reanalysis of MiniBooNE and π electroproduction data

H1 MiniBooNE data [126]; dipole ansatz

H2 π electroproduction data (from refs. [128–132]); dipole ansatz

H3 MiniBooNE data [126]; z-exp

H4 π electroproduction data (from refs. [128–132]); z-exp

I [133] analysis of MiniBooNE ν̄ scattering data [134]

I1 dipole ansatz

I2 z-exp

J [135] reanalysis of MiniBooNE data [126]

J1 LFG model; dipole ansatz

J2 LFG model + multi-nucleon reactions + RPA, etc., see [136]

K [6] Nf = 2 + 1 DWF; RBC/UKQCD; a = 0.114 fm

L [26] Nf = 2 + 1 Wilson (clover) fermions; a = 0.114 fm

M [27] Nf = 2 Wilson (clover) fermions; ETMC; a = 0.0938 fm

M1 dipole ansatz

M2 z-exp

N [28] Nf = 2 Wilson (clover) fermions; CE

O [29] Nf = 2 + 1 + 1 Wilson (clover-on-HISQ) fermions; PNDME; CE

O1 dipole ansatz

O2 z-exp

P [34] Nf = 2 Wilson (clover) fermions; RQCD; subtraction method; CE; z-exp

Q [97] Nf = 2 + 1 + 1 Wilson (clover-on-HISQ) fermions; PNDME; a = 0.0871 fm;

takes into account Nπ state; z-exp

R [42] This work; Nf = 2 + 1 Wilson (clover) fermions; RQCD;

full resolution of Nπ state; CE

R1 dipole ansatz

R2 z-exp

Figure 20: Compilation of results for the axial dipole mass MA from experiment (A-J)
and lattice simulations (K-R). Extractions based on a dipole ansatz are col-
ored red, while those using any variant of the z-expansion are colored blue.
The error bands show the results of our !2P (red) and our !z4+3 (blue) fits,
with all errors added in quadrature.
Symbols: crosses: ν scattering; circles: π electroproduction; tic: not contin-
uum extrapolated; dot: single ensemble; square: continuum extrapolated.
Abbreviations: RFG: relativistic Fermi gas [137]; LFG: local Fermi gas;
RPA: random phase approximation [138–140]; DWF: domain wall fermions;
HISQ: highly improved staggered quarks; CE: continuum extrapolated.

only takes into account data at zero momentum transfer, which is in agreement with the

result obtained from the dipole fit. Note, that this parametrization dependence of the

form factors gradually disappears at increasing momentum transfer Q2.

In figure 20 we show a compilation of experimental data and lattice data for the axial

dipole mass. While the 20th century world average (cf. ref. [62]) supports a value of
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MA around 1 GeV, newer experiments by K2K [124], MINOS [125], and, in particular,

MiniBooNE [126, 134] yield larger values. This has fueled some discussions lately. One

possible explanation is that the discrepancy is caused by nuclear effects. In ref. [135]

it has been demonstrated that, using a local Fermi gas (LFG) model combined with

multi-hadron interactions and the random phase approximation (RPA), one can recover

smaller values for MA from MiniBooNE data. As argued in ref. [141], larger values for

MA in MiniBooNE may also be a consequence of transverse enhancement due to meson

exchange currents, cf. ref. [142].

Another line of inquiry is pursued, e.g., in refs. [50, 115, 133]. It is based on the

suspicion that the dipole ansatz may be too restrictive. Using the z-expansion one

finds smaller values and much larger errors for MA. In ref. [115] it is shown that the

MiniBooNE data is consistent with old π electroproduction data under these circum-

stances. Our analysis supports this picture. The results for the axial radii obtained

from the dipole fit (!2P) and the z-expansion (!z4+3) correspond to the axial pole masses

of MA = 1.31(8) GeV (dipole) and MA = 1.02(10) GeV (z-exp). The situation we find

is thus very similar to the one reported in ref. [115], where extractions using a dipole

ansatz yield MA = 1.29(5) GeV (dipole, [115]), while the z-expansion yields a smaller

value MA = (0.85+0.22
−0.07 ± 0.09) GeV (z-exp, [115]), see also ref. [133]. It is notable that

the z-expansion coefficients we obtain from our fits (see table 5) approximately satisfy

the constraints that are imposed in ref. [115].

For the dipole ansatz our result is in good agreement with previous lattice determina-

tions. In particular the agreement with the continuum extrapolated value from ref. [29]

is encouraging. For the z-expansion the situation is not so clear, since the lattice results

scatter over a wide range. In part this may be caused by the use of different vari-

ants of the z-expansion (number of parameters, use of priors, choice of t0 in eq. (6.5),

implementation of constraints, etc.).

In figure 21 we have compiled results for the induced pseudoscalar coupling at the muon

capture point, g⋆P , from experiment, ChPT, and lattice QCD. The ChPT predictions19

are based on measurements of the axial radius and experimental data for gπNN . They

persistently call for a value slightly above 8. While older measurements of ordinary

muon capture (OMC) were in agreement with this prediction (within large errors), the

TRIUMF measurement [52, 53] lies significantly higher. It has to be seen as a success of

BChPT that the new OMC measurement by MuCap [56, 57] is spot on with a small error.

Independent of the choice of parametrization, our results are in agreement with both

the ChPT prediction and the MuCap result. In particular, recent lattice results that

include a chiral and a continuum extrapolation using ensembles with close to physical

pion masses have yielded much smaller values. In retrospect, it is clear that these findings

19Heavy baryon ChPT actually reproduces the Adler–Dothan–Wolfenstein formula [144, 145], cf. ref. [62].
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g?P id ref. description

A [51] RMC on calcium; g⋆P = 6.5(1.6)gA;

point in plot obtained by multiplying with gA = 1.27

B [52, 53] RMC on hydrogen; TRIUMF; updated value from [54]

C [54] OMC world avg. (year ≤ 1981)

D [55] OMC in hydrogen; Saclay; updated value from [54]

E [56, 57] OMC in hydrogen gas; MuCap

F [60] HBChPT; MA from ν scattering; assuming gπNN = 13.31

G [61] HBChPT; MA from π electroproduction [43, 131, 132];

assuming gπNN = 13.0

H [62] HBChPT; MA from ν scattering; assuming gπNN = 13.10

I [63] covariant BChPT (EOMS); MA from ν scattering;

assuming gπNN = 13.21 [143]

J [4] Nf = 2 DWF; a = 0.116 fm; dipole ansatz

K [6] Nf = 2 + 1 DWF; RBC/UKQCD; a = 0.114 fm; dipole ansatz

L [14] Nf = 2 Wilson (clover) fermions; RQCD; CE; EFT ansatz

corrected by missing factor of 2

M [26] Nf = 2 + 1 Wilson (clover) fermions; a = 0.114 fm; z-exp

N [27] Nf = 2 Wilson (clover) fermions; ETMC; a = 0.0938 fm; dipole ansatz

O [28] Nf = 2 Wilson (clover) fermions; CE; EFT ansatz

P [29] Nf = 2 + 1 + 1 Wilson (clover-on-HISQ) fermions; PNDME; CE; EFT ansatz

Q [34] Nf = 2 Wilson (clover) fermions; RQCD; subtraction method; CE; z-exp

R [97] Nf = 2 + 1 + 1 Wilson (clover-on-HISQ) fermions; PNDME; a = 0.0871 fm;

takes into account Nπ state; z-exp

S [42] This work; Nf = 2 + 1 Wilson (clover) fermions; RQCD;

full resolution of Nπ state; CE

S1 dipole ansatz

S2 z-exp

Figure 21: Compilation of data for the pseudoscalar coupling at the muon capture point,
g∗P , from experiment (A-E), BChPT (F-I), and lattice simulations (J-S). Ex-
tractions based on a dipole ansatz are colored red, while those using any
variant of the z-expansion are colored blue. Some lattice calculations use an
EFT ansatz colored green (pion pole term combined with Taylor expansion).
The error bands correspond to the result of our !2P (red) and our !z4+3 (blue)
fits, with all errors added in quadrature.
The lattice results in parentheses are outdated, since they are strongly af-
fected by the pion pole enhanced excited states treated in this article, cf. also
the discussion in ref. [97].
Symbols: circle: radiative muon capture; triangle: ordinary muon capture;
tic: not continuum extrapolated; dot: single ensemble; square: continuum ex-
trapolated.
Abbreviations: RMC: radiative muon capture; OMC: ordinary muon cap-
ture; HBChPT: heavy baryon ChPT; EOMS: extended on-mass-shell scheme;
DWF: domain wall fermions; HISQ: highly improved staggered quarks;
CE: continuum extrapolated.

were caused by the pion pole enhanced Nπ excited state contribution, which was not

fully under control. See also ref. [97], where the same conclusion has been drawn.

Results for the pion-nucleon coupling constant gπNN are collected in figure 22. The

experimental results from πN scattering, NN scattering, and pionic atoms have reached

a high precision, and ,in particular, recent determinations are in quite good agreement

with each other. The discussion is now centering on the understanding of charge and
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Q1
Q2

gπNN
id ref. description

A [146] πN scattering; PWA

B [147–149] np, pp scattering; PWA

C [150, 151] πN scattering; PWA

D [152] πN scattering; PWA; GMO

E [153] np backward cross section

F [154] πN scattering; PWA; DR

G [155] π−p and π−d pionic atoms; GMO

H [156] π−p and π−d pionic atoms; GMO

I [143] π−p and π−d pionic atoms; GMO

J [157] πN scattering; DR;

J1 CERN data

J2 TRIUMF data

K [158] πN scattering; PWA; DR

L [159–161] π−p and π−d pionic atoms; GMO; including third-order ChPT corrections

M [162] np, pp scattering; PWA

N [6] Nf = 2 + 1 DWF; RBC/UKQCD; a = 0.114 fm; dipole ansatz

O [26] Nf = 2 + 1 Wilson (clover) fermions; a = 0.114 fm; z-exp

P [29] Nf = 2 + 1 + 1 Wilson (clover-on-HISQ) fermions; PNDME; CE; EFT ansatz

Q [42] This work; Nf = 2 + 1 Wilson (clover) fermions; RQCD;

full resolution of Nπ state; CE

Q1 dipole ansatz

Q2 z-exp

Figure 22: Compilation of data for the pion-nucleon coupling constant gπNN from exper-
iment (A-M) and from lattice simulations (N-Q). We do not discriminate be-
tween charged and neutral pion-nucleon couplings here, which can be slightly
different. In the lattice section we have only listed direct determinations,
ignoring all results that are merely based on the Goldberger–Treiman rela-
tion [163]. Extractions based on a dipole ansatz are colored red, while those
using any variant of the z-expansion are colored blue. Some lattice calcula-
tions use an EFT ansatz colored green (a pion pole term combined with a
Taylor expansion). The error bands show the results of our !2P (red) and
our !z4+3 (blue) fits, with all errors added in quadrature. The lattice result
in parentheses is outdated, cf. the discussion in ref. [97]. For a recent review,
see ref. [164].
Symbols: circle: Nπ scattering; triangle (up): NN scattering; trian-
gle (down): pionic atoms; tic: not continuum extrapolated; dot: single en-
semble; square: continuum extrapolated.
Abbreviations: PWA: partial wave analysis; GMO: Goldberger–Miyazawa–
Oehme sum rule [165]; DR: dispersion relation; DWF: domain wall fermions;
HISQ: highly improved staggered quarks; CE: continuum extrapolated.

isospin breaking effects (see, e.g., refs. [166, 167]) — a question that is out of reach of

current lattice QCD analyses of nucleon structure, which usually ignore QED effects

and use degenerate light quark masses. Also the experimental precision is not yet within

reach.20 However, a comparison of the lattice values with the experimental results and,

20There are a number of indirect estimates based on the Goldberger–Treiman relation, see, e.g., refs. [4,
6, 14, 27]. While such estimates can have quite small statistical errors and may serve as consistency
checks, they should not be considered as independent measurements of gπNN .
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in particular, with the analysis of refs. [159–161], which includes higher order ChPT

corrections and an estimate of systematic uncertainties, can serve as a consistency check.

It is thus quite encouraging that our results for gπNN from both, the !2P and the !z4+3

fit, are in agreement with these determinations. As one can see in table 7, a meaningful

prediction of the Goldberger–Treiman discrepancy ∆GT = 1− mgA
FπgπNN

is not possible with

our current accuracy.
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7. Summary and outlook

In this thesis we have presented a method that can control pion pole enhanced excited

state contributions that occur in the axial and pseudoscalar channels. The technique

is based on EFT considerations similar to refs. [92–96, 98, 99, 101], but simultaneously

reduces the ChPT input. The EFT analysis presented in section 4 is mainly used to

understand the general structure of the pole enhanced Nπ contribution, which then

can be taken into account explicitly in the spectral decomposition of the three-point

functions, see section 4.4. The fits give amplitudes consistent with EFT expectations,

however, we do not constrain these in the analysis. Our numerical analysis presented in

section 5 demonstrates that, using our new technique, the ground state can be extracted

reliably, even at small pion masses where the pole enhanced excited state constitutes (at

currently available source-sink distances) the largest contribution in some channels.

We find that the nucleon form factors extracted at nonvanishing lattice spacings satisfy

constraints from PCAC up to small deviations of roughly 5%, which can be attributed

to discretization effects. We find the PPD assumption to be fulfilled to the same degree.

Note, however, that the pion pole dominance assumption for the pseudoscalar form

factors is only a (seemingly very good) estimate and is not expected to be satisfied

exactly, even in the continuum. PCAC, however, has to hold exactly in the continuum.

We leverage the latter information in our form factor analysis: in addition to the usual

dipole ansatz and the z-expansion, we have derived (for both cases) parametrizations

that are consistent with PCAC in the continuum, cf. section 6.2.3. The latter stabilize

the continuum extrapolation considerably, without adding any parametrization bias.

Using a large set of CLS ensembles, we are able to take all the relevant limits (con-

tinuum limit, infinite volume limit, and extrapolation to physical quark masses) in a

controlled fashion. To this end, we use generic extrapolation formulas (see section 6.2.4)

for the parameters occurring in the form factor parametrization. The results at the

physical point (in the continuum and for infinite volume) obtained from various form

factor parametrizations are given in tables 5 and 6. Within present errors, our form

factor data are well represented both by the dipole parametrization and by z-expansion

fits. The final numbers, including estimates of systematic uncertainties due to the quark

mass and the continuum extrapolation, can be taken from table 7. In figure 23 we show

the results for the form factors. One can see that the deviations between the dipole

fit and the z-expansion mainly affect the small Q2 region, and gradually disappear at

increasing momentum transfer Q2. Files containing the data used to create this figure

are included as supplementary material in the arXiv and journal version of [42].

In particular the slope of the axial form factor at zero momentum transfer, which is

proportional to the axial radius (i.e., inversely proportional to the so-called axial mass),
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Figure 23: Results for the form factors obtained from the !2P (blue) and the !z4+3 (green)
fits. The bands show the statistical and systematic errors added in quadra-
ture. The left panel shows the axial form factor GA(Q2). At Q2 = 0 the black
circle indicates the experimental result for gA [119] (see also refs. [38–41]),
while the lines indicate the slope of the corresponding fit. On the right panel
we plot the results for

mµ
2mGP̃ (Q

2), which can be compared to the experi-
mental value for the induced pseudoscalar coupling g⋆P (cf. eq. (6.33)) from
OMC [56, 57] (black circle).

exhibits a substantial parametrization dependence, as can be seen in figure 23. To reduce

this ambiguity and to eventually rule out one of the parametrizations one would have

to improve the resolution of the form factor in the region of small momentum transfer.

This can be achieved by increasing the number of data points at very small values of

Q2 (one could also compute the derivative of the form factor at Q2 = 0 [168, 169])

or by substantially reducing the errors of the data in this region.21 Interestingly, the

tendency of obtaining a larger radius from the z-expansion also applies to the analysis of

experimental data, which do not cover the very low-Q2 region well either. In fact both

our z-expansion and our dipole fit results for the axial radius are in agreement with

the respective findings from recent quasi-elastic (anti-)neutrino nucleon scattering data

(MiniBooNE, [115, 133]), where the same parametrization bias has been reported. We

emphasize that within the Q2 regime that is of interest regarding terrestrial long baseline

neutrino experiments the two parametrization of our data overlap within a fraction of a

standard deviation so that both parametrizations can be used equally well for neutrino

phenomenology. In contrast to most determinations from experiment (in particular the

more precise ones), our method does not rely on any assumptions regarding nuclear

effects. Therefore, the results can also be used to benchmark nuclear models.

In figure 19, we plot the ratios rPCAC and rPPD at the physical point, where deviations

from unity correspond to a violation of PCAC and deviations from the PPD assumption,

21Certainly such data would be most helpful at small lattice spacings and at physical quark masses in
order to control the necessary extrapolations.
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respectively. In particular the fits with exact PCAC in the continuum (i.e., rPCAC = 1

automatically) allow us to draw conclusions with respect to the pion pole dominance

ansatz for the pseudoscalar form factors. We find that our results are consistent with

the PPD ansatz independent of the choice of parametrization of the form factor. The

values we extract for the induced pseudoscalar coupling at the muon capture point are

in good agreement with the experimental value obtained from muon capture [56, 57].

Using the frameworks we developed in this thesis we can study a variety of form fac-

tors on our ensembles in the future. For example, the isovector vector form factor may

be contaminated by nucleon rho and nucleon two-pion states, which could be treated in

a similar fashion as the nucleon pion states in section 4. This is especially interesting

since the isovector anomalous magnetic moment g̃T of the nucleon, which requires the

extrapolation of the induced tensor form factor to Q2 = 0, tends to be slightly underes-

timated on the lattice compared to its experimental value, see ,e.g., refs. [14, 35, 109].

In this context also the electric and magnetic radii are interesting to study.

Additionally our group has developed high-performance code that is able to estimate

the disconnected loops (cf. eq. (3.38)) using the techniques described in [170]. Using

this code we are currently generating data for all our ensembles, cf. table 2, which will

enable us to do a systematic analysis of singlet form factors similar to section 6.2.4.

Since obtaining high precision for observables which include disconnected contributions

is very challenging we aim for a determination of charges first, i.e., Q2 = 0. In this

context, interesting quantities are for example:

• The nucleon sigma terms σqN for flavor q, or equivalently the quark mass fractions

fTq = σq/m, which can be used to calculate the quark mass contributions to the

nucleon mass [171]

m = ∑
q

σq +Ekin +Etr.a. (7.1)

where Ekin is the kinetic energy of quarks and gluons and Etr.a. is the contribution

that arises from the trace anomaly.

• The axial charges gqA for flavor q which are equivalent to the first Mellin moments

of the polarized parton distribution function ∆q of the nucleon. Using Ji’s sum

rule [172] the nucleon’s total spin can be decomposed as

1

2
= ∑

q

(1

2
∆q +Lq) + Jg, (7.2)

where Lq is the total orbital angular momentum of quarks with flavor q and Jg is

the total angular momentum of the gluons.

For an overview of recent lattice calculations, see, e.g., the latest FLAG review [173].
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A. Resampling

In order to obtain reliable error estimates for our ratios, we need to resample our bare

two- and three-point functions. In this section we will briefly outline how to incorporate

the reweighting into this. To this end we assume that Ai are measurements of an

observable (such as C2pt(t)) on each configuration i ∈ {0,1, . . . ,Nconf. − 1} where Nconf.

is the total number of configurations. The ωi are the corresponding reweighting factors,

which, for the CLS ensembles, are products of the reweighting factors that correspond

to the twisted mass and the rational approximation, cf. sections 2.6.1 and 2.6.2.

The mean value is calculated as

A =

Nconf.−1

∑
i=0

ωiAi

Nconf.−1

∑
i=0

ωi

. (A.1)

A.1. Binning

Before we address the actual resampling we will make a few comments on binning, which

is used to minimize the correlations in the Monte Carlo time direction. We bin the data

with a binsize of Nbin such that

Nbinned
conf. = ⌊Nconf.

Nbin
⌋ , (A.2)

where ⌊. . . ⌋ is the floor function.

The binned measurements and reweighting factors are then given as

Abinned
j =

(j+1)Nbin−1

∑
k=jNbin

ωkAk

(j+1)Nbin−1

∑
k=jNbin

ωk

, ωbinned
j =

(j+1)Nbin−1

∑
k=jNbin

ωk, (A.3)

where j ∈ {0,1, . . . ,Nbinned
conf. − 1}. One can easily verify that

A
binned ≡

Nbinned
conf. −1

∑
j=0

ωbinned
j Abinned

j

Nbinned
conf.

−1

∑
j=0

ωbinned
j

= A, (A.4)

if Nbinned
conf. ·Nbin = Nconf.. Since the resampling is identical for both binned and unbinned
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measurements we will drop the superscript in the following sections.

A.2. Jackknife

In jackknife resampling we create jackknife samples by dropping a single measurement

each. Thus for all i the samples are given as

Ajack
i =

∑
j≠i
ωjAj

∑
j≠i
ωj

≡
∑
j
ωjAj − ωiAi

∑
j
ωj − ωi

. (A.5)

The distribution of the jackknife samples is much narrower than the original distribution

and the error can be calculated via

σjack
A =

¿
ÁÁÀNconf. − 1

Nconf.
∑
i

(Ajack
i −Ajack)

2
. (A.6)

With this method we can obtain reliable errors, however we would require additional

tricks to combine different ensembles, since the number of jackknife samples is identical

to the number of configurations and ensembles usually have different Nconf..

A.3. Bootstrap

In bootstrap resampling we can freely choose the number of samples Nboot. This is

advantageous since we can simply use the same number of samples on all ensembles

which is straight forward to combine afterwards. For each of the sample we randomly

take Nconf. measurements, i.e.,

Aboot
j =

∑
k∈Φj

ωkAk

∑
k∈Φj

ωk
, (A.7)

where Φj is the set of configurations for the j-th sample. A rule of thumb is Nboot ≥
2N

(binned)
conf. such that the original distribution of the Ai is roughly reproduced.

Within bootstrap, the statistical error is determined via

σboot
A =

¿
ÁÁÀ 1

Nboot − 1
∑
i

(Aboot
i −Aboot)

2
. (A.8)

Alternatively one can derive asymmetric errors from the distribution (histogram) of the

samples. The lower (upper) error is then defined by the smallest (biggest) cutoff where

15.87% of the samples are below (above). This approach is less sensitive to outlying
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samples than the traditional symmetric error and was used in this thesis in figures 16,

17, and 18.

B. Traces

Note that in this section we use Minkowsky conventione in order to be consistent with

chapter 4. For the ground state contributions defined in eq. (4.28) one finds

Bp⃗′,p⃗

P i+,Aµ
= 2GA(p′ipµ + pip′µ +m(p′ + p)igµ0 − giµ(m2 +mE′ +mE + p′ ·p))

+ 2GP̃
qµ

2m
((m +E′)pi − (m +E)p′i), (B.1)

Bp⃗′,p⃗

P i+,P
= 2GP ((m +E′)pi − (m +E)p′i). (B.2)

Evaluating these equations for the 4 particular cases depicted in the rows of figure 4,

where p⃗′ = 0⃗ and p⃗ = −q⃗ = (0,0, p)T with p = 2π
L , yields

row 1: 4m(E +m)GA, (B.3)

row 2: (E +m)(4mGA − 2(E −m)GP̃ ), (B.4)

row 3: p(4mGA − 2(E −m)GP̃ ), (B.5)

row 4: 4mpGP . (B.6)

For the remaining traces that are needed for the determination of the parametrizations

given in section 4.4 one gets

Tr{P i+(/p +m)/r+γ5(/p +m)} = 4(pi(mEπ + p · r+) −mri+(m +E)), (B.7)

Tr{P i+(/p′ +m)/r−γ5(/p′ +m)} = 4(p′i(mEπ + p′ · r−) −mri−(m +E′)), (B.8)

Tr{P i+γ5(/p +m)} = +2pi, (B.9)

Tr{P i+(/p′ +m)γ5} = −2p′i. (B.10)

C. Fit ansatz for the subtracted currents

For the subtracted correlation functions defined in ref. [34], instead of the usual currents

one inserts

Aµ⊥ = (gµν − p̄
µp̄ν

p̄2
)Aν , P⊥ = P −

1

2im`

p̄µp̄ν

p̄2
∂µAν , (C.1)

where p̄ = (p′+p)/2. By construction, this does not change the ground state contribution

at all. In contrast, the excited state contributions are affected very strongly. Therefore,
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the fit ansatz given in eqs. (4.29) and (4.30) has to be adapted to this case. Following

the same steps as discussed in detail for the standard currents in section 4.29, we find

C
p⃗′,p⃗,Aµ⊥
3pt,P i+

=
√
Z ′

√
Z

2E′2E
e−E

′(t−τ)e−Eτ

× [Bp⃗′,p⃗

P i+,Aµ
(1 +B10e

−∆E′(t−τ) +B01e
−∆Eτ +B11e

−∆E′(t−τ)e−∆Eτ)

+ e−∆E′
Nπ(t−τ) E

′

Eπ
(rµ+ − p̄µ

p̄ · r+
p̄2

)(c′pi + d′qi)

+ e−∆ENπτ E

Eπ
(rµ− − p̄µ

p̄ · r−
p̄2

)(cp′i + dqi)],

(C.2)

C p⃗
′,p⃗,P⊥

3pt,P i+
=

√
Z ′

√
Z

2E′2E
e−E

′(t−τ)e−Eτ

× [Bp⃗′,p⃗

P i+,P
(1 +B10e

−∆E′(t−τ) +B01e
−∆Eτ +B11e

−∆E′(t−τ)e−∆Eτ)

+ e−∆E′
Nπ(t−τ) E

′

Eπ

1

2m`
(m2

π −
(p̄ · r+)2

p̄2
)(c′pi + d′qi)

− e−∆ENπτ E

Eπ

1

2m`
(m2

π −
(p̄ · r−)2

p̄2
)(cp′i + d qi)].

(C.3)

Similar to the situation with unsubtracted correlation functions, the parametrization

simplifies for the particular kinematics we are using in our numerical analysis (p⃗′ = 0⃗

such that q⃗ = −p⃗).
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