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Telomere length is known to be inversely associated with
aging and has been proposed as a marker for aging-related
diseases. Telomere attrition can be accelerated by oxidative
stress and inflammation, both commonly present in
patients with chronic kidney disease. Here, we investigated
whether relative telomere length is associated with
mortality in a large cohort of patients with chronic kidney
disease stage G3 and A1-3 or G1-2 with overt proteinuria
(A3) at enrollment. Relative telomere length was quantified
in peripheral blood by a quantitative PCR method in 4,955
patients from the GCKD study, an ongoing prospective
observational cohort. Complete four-year follow-up was
available from 4,926 patients in whom we recorded 354
deaths. Relative telomere length was a strong and
independent predictor of all-cause mortality. Each decrease
of 0.1 relative telomere length unit was highly associated
with a 14% increased risk of death (hazard ratio1.14 [95%
confidence interval 1.06-1.22]) in a model adjusted for age,
sex, baseline eGFR, urine albumin/creatinine ratio, diabetes
mellitus, prevalent cardiovascular disease, LDL-cholesterol,
HDL-cholesterol, smoking, body mass index, systolic and
diastolic blood pressure, C-reactive protein and serum
albumin. This translated to a 75% higher risk for those in
the lowest compared to the highest quartile of relative
telomere length. The association was mainly driven by 117
cardiovascular deaths (1.20 [1.05-1.35]) as well as 67 deaths
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due to infections (1.27 [1.07-1.50]). Thus, our findings
support an association of shorter telomere length with all-
cause mortality, cardiovascular mortality and death due to
infections in patients with moderate chronic kidney
disease.
Kidney International (2020) 98, 488–497; https://doi.org/10.1016/
j.kint.2020.02.034
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T elomeres are non-coding, repetitive nucleotide se-
quences (TTAGGG) ranging from 5 to 15 kilobase pairs
in length that are located at the end of eukaryotic chro-

mosomes.1 Their functions include protection of the DNA
and maintenance of chromosomal integrity. Telomeres
shorten at each cycle of cell division due to the incapacity
of DNA polymerase to replicate the very ends of linear chro-
mosomes.2 Approximately 50–200 base pairs are lost during
each cell division, and when a critical telomere length is
reached, cells undergo replicative senescence or apoptosis.
Consequently, telomere length (TL) has been proposed as a
marker of biological age,3 and its predictive role in aging-
related disease has been investigated in many epidemiologic
studies.4–6

Telomere attrition, accelerated by oxidative stress and
inflammation, leads to cell senescence, which compromises
regeneration and functionality of vital organs, including the
kidneys.7 In particular, it has been shown that chronic
inflammation leads to lymphocyte telomere attrition, cell
senescence, and finally impairment of the immune response.8

This T-cell dysfunction can contribute to increased suscepti-
bility to kidney infections and injury.7
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Table 1 | Characteristics of all patients available (n [ 4926) for analysis grouped by relative telomere length quartiles

RTL quartiles Total Quartile 1 Quartile 2 Quartile 3 Quartile 4

P value

RTL range
RTL mean ± SD
RTL median [25th, 75th percentile]

0.4–2.31
0.95 ± 0.19

0.92 [0.82, 1.05]

0.40–0.82
0.73 ± 0.07

0.75 [0.69, 0.78]

0.82–0.92
0.87 ± 0.03

0.87 [0.84, 0.90]

0.92–1.05
0.98 ± 0.04

0.98 [0.95, 1.01]

1.05–2.31
1.20 ± 0.14

1.16 [1.10, 1.26]

N 4926 1232 1232 1232 1230
Age, yr 60.2 � 11.9

63 [53, 70]
64.8 � 8.7
68 [61, 71]

62.4 � 10.1
65 [57, 70]

59.5 � 11.7
63 [52, 69]

54.1 � 13.6
56 [45, 65]

8.9e-110

Sex (female) 1 959 (39.8) 384 (31.2) 445 (36.1) 540 (43.8) 590 (48) 6.2e-19
Body mass index, kg/m2 29.8 � 6.0

28.9 [25.7, 33.2]
30.4 � 6.0

29.5 [26.2, 34.1]
29.9 � 5.8

29.1 [26.1, 33.2]
29.9 � 5.8

29.0 [25.9, 33.1]
29.0 � 6.2

27.8 [24.5, 32.4]
3.5e-10

Current smoker 785 (16) 170 (13.9) 175 (14.2) 208 (16.9) 232 (18.9) 1.3e-3
Diabetes mellitus 1768 (35.9) 530 (43) 474 (38.5) 405 (32.9) 359 (29.2) 6.9e-13
Prevalent CVD 1261 (25.6) 408 (33.1) 346 (28.1) 302 (24.5) 305 (16.7) 4.7e-20
eGFR (CKD-EPI formula), ml/min per 1.73 m2 49.5 � 18.2

46 [37, 58]
46.4 � 15.8
44 [35, 54]

47.6 � 17.2
45 [36, 55]

50.1 � 18.4
47 [38, 58]

53.8 � 20.4
50 [40, 62]

6.0e-22

UACR, mg/g 430 � 969
51 [9, 383]

413 � 1052
140 [9, 304]

350 � 784
44 [9, 294]

440 � 912
58 [10, 441]

519 � 1090
65 [10, 522]

1.6e-04

Serum albumin, mg/l 38.3 � 4.3
38.7 [36.2, 40.8]

37.9 � 4.2
38.3 [36.0, 40.5]

38.4 � 3.9
38.7 [36.2, 40.7]

38.5 � 4.1
38.9 [36.4, 41]

38.5 � 4.8
39 [36.2, 41.1]

4.3e-04

Systolic blood pressure, mm Hg 139.5 � 20.2
138 [126, 152]

141.1 � 20.0
140 [128, 154]

139.7 � 20.2
139 [126, 152]

140.1 � 20.9
138 [125, 152]

137.2 � 19.8
135 [124, 149]

2.1e-06

Diastolic blood pressure, mm Hg 79.2 � 11.7
79 [71, 87]

77.4 � 11.5
77 [70, 85]

78.6 � 11.7
78 [71, 86]

79.7 � 11.7
79 [72, 87]

81.1 � 11.6
81 [73, 88]

3.5e-14

High-sensitivity C-reactive protein, mg/l 4.77 � 8.48
2.27 [1.02, 5.01]

5.25 � 8.04
2.53 [1.22, 5.57]

4.80 � 7.82
2.34 [1.06, 4.97]

4.73 � 8.51
2.27 [1.01, 5.10]

4.31 � 9.41
1.91 [0.85, 4.4]

2.0e-07

HDL-cholesterol, mg/dl 51.8 � 18
48.3 [39.2, 61.3]

50.2 � 17.2
46.9 [38.2, 58.9]

51.1 � 17.8
47.7 [39.0, 60.3]

52.4 � 18.3
49.2 [39.8, 61.4]

53.5 � 18.4
50.1 [40.1, 64.1]

1.5e-05

LDL-cholesterol, mg/dl 118.2 � 43.5
113.6 [89.1, 142.7]

113.1 � 41.1
108.8 [84.9, 138.9]

115.8 � 40.4
112.2 [87.3, 140.5]

120.7 � 42.5
117.9 [90.7, 146.3]

123.3 � 48.8
117.0 [92.3, 147.2]

5.6e-08

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; RTL, relative telomere length; UACR, urine albumin–creatinine ratio.
Data are given as mean � SD, with median [25th, 75th percentile], or n (%), unless otherwise indicated.

F Fazzini et al.: Telomere length and mortality in CKD c l i n i ca l i nves t iga t ion
Chronic kidney disease (CKD) is a complex disease, and its
heritability has been estimated to be 30%–70%.9–12 In past
years, genome-wide association studies have identified many
genetic loci associated with kidney function and CKD.13–17

However, index single nucleotide polymorphisms at the iden-
tified loci explain only a minor part of the heritability, and
additional genetic contributors might be missing. To date, only a
few small studies have investigated the association between TL
and kidney disease. Some studies found that short TL correlates
with impaired kidney function in the general population,18,19 as
well as in heart failure patients.20 We recently described signif-
icantly shorter relative TL (RTL) in patients with moderately
severe CKD who have prevalent cardiovascular disease (CVD),21

as well as an association with duration22 and progression of
CKD.23 Patients who have reached kidney failure treated by
hemodialysis are described as having reduced TL in comparison
with healthy controls,24–27 and reduced TL is inversely associated
with mortality.28 Only a few investigations have been conducted
in non-dialysis-dependent kidney patients.21–23,29,30 To our
knowledge, the current study is the first prospective study that
investigates the association between leukocyte RTL and causes of
mortality in a large non-dialysis-dependent CKD cohort.
RESULTS
Baseline characteristics of the study population
RTL was quantified in peripheral blood by a quantitative
polymerase chain reaction method in 4955 patients from the
Kidney International (2020) 98, 488–497
German Chronic Kidney Disease study. Complete 4-year
follow-up was available from 4926 patients. Baseline charac-
teristics of these 4926 patients according to quartiles of the
RTL are provided in Table 1. RTL ranged from a minimum of
0.40 to a maximum of 2.31 (Supplementary Figure S1), with a
mean � SD of 0.95 � 0.19 and a median of 0.92 (1st
quartile ¼ 0.82; 3rd quartile ¼ 1.05). RTL was negatively
correlated with age (r ¼ –0.36, P < 0.001) and positively
correlated with estimated glomerular filtration rate (eGFR;
r ¼ 0.17, P < 0.001) and urine albumin–creatinine ratio (r ¼
0.05, P < 0.001). When we adjusted RTL for age and sex, we
no longer observed a significant correlation with eGFR and
urine albumin–creatinine ratio.

Prospective follow-up and mortality
A total of 354 deaths occurred during a median follow-up
period of 4 years (1483 days). The causes of death were
CVD including myocardial infarction, coronary heart disease,
sudden cardiac death, congestive heart failure, pulmonary
embolism, cardiac valve disease and ischemic stroke (117
patients, 33.1%), infections (67 patients, 18.9%), non-
ischemic cerebrovascular causes (9 patients, 2.5%), periph-
eral vascular disease (7 patients, 2.0%), kidney failure (8 pa-
tients, 2.3%), various other causes (103 patients, 29.1%) and
unknown causes (43 patients, 12.1%).

Cumulative incidence plots show that incidence of all-
cause mortality (Figure 1a) increases with shorter RTL, with
489



Figure 1 | Cumulative incidence function for (a) all-cause mortality, (b) cardiovascular disease (CVD) mortality, and (c) death due to
infections, by quartiles (Q) of relative telomere length (RTL). Q1 is the quartile including patients with the shortest RTL.
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Table 2 | Results of Cox model on all-cause mortality, death
due to cardiovascular disease (cause-specific hazard ratios
[HRs] are given), and death due to infections (cause-specific
HRs are given) for each decrease in 0.1 units of relative
telomere length (RTL) as well as the first quartile of RTL
versus quartiles 2 to 4 (combined as reference category)

Adjustment modela,b
For each decrease of 0.1 RTL

HR [95% CI] P value

All-cause mortality
Model 1 (354 events) 1.16 [1.08–1.24] 1.7e-05
Model 2 (343 events) 1.16 [1.08–1.24] 4.4e-05
Model 3 (333 events) 1.14 [1.06–1.22] 3.5e-04

Cardiovascular death
Model 1 (117 events) 1.22 [1.08–1.38] 0.0014
Model 2 (116 events) 1.21 [1.07–1.36] 0.0026
Model 3 (113 events) 1.20 [1.05–1.35] 0.0052

Death due to infections
Model 1 (67 events) 1.26 [1.07–1.48] 0.005
Model 2 (65 events) 1.28 [1.08–1.51] 0.0024
Model 3 (63 events) 1.27 [1.07–1.50] 0.0051

CI, confidence interval.
aModel 1: adjusted for age and sex; model 2: adjusted for age, sex, estimated
glomerular filtration rate, urine albumin–creatinine ratio, diabetes mellitus, prevalent
cardiovascular disease; model 3: adjustment as in model 2 plus low-density lipo-
protein cholesterol, high-density lipoprotein cholesterol, smoking, body mass index,
systolic blood pressure, diastolic blood pressure, C-reactive protein, and serum
albumin.
bDue to missing values, not all models include the same number of events.

F Fazzini et al.: Telomere length and mortality in CKD c l i n i ca l i nves t iga t ion
the highest incidence with lowest RTL quartile. In the cu-
mulative incidence function curves of cardiovascular
(Figure 1b) and infection mortality (Figure 1c), the difference
between quartiles was less pronounced, but the order of the
quartiles was the same.

Results of Cox regression models applying different ad-
justments are provided in Table 2 and showed a significant
association between shorter RTL and the risk of all-cause
mortality. Evaluated continuously, each decrease of 0.1 RTL
units was associated with a 16% increased risk of death in a
model adjusted for age and sex (hazard ratio [HR], 1.16; 95%
confidence interval [CI], 1.08–1.24; P ¼ 1.7e-05). The asso-
ciation remained significant after an extended adjustment for
eGFR, urine albumin–creatinine ratio, diabetes mellitus, and
prevalent cardiovascular disease (model 2: HR, 1.16; 95% CI,
1.08–1.24) as well the additional CVD risk factors low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol,
smoking, body mass index, systolic blood pressure, diastolic
blood pressure, C-reactive protein, and serum albumin at
baseline (model 3: HR, 1.14; 95% CI, 1.06–1.22; P ¼ 3.5e-04).
Nonlinear P spline analyses are given in Figure 2 and revealed
an almost linear association of RTL with all-cause mortality.
Patients with the shortest RTL (1st quartile) had a 75% higher
risk for all-cause mortality compared to those in the quartile
with the longest RTL (Supplementary Table S1, fully adjusted
model: HR, 1.75; 95% CI, 1.22–2.50; P ¼ 0.0024).

Next, we analyzed what is driving the association of RTL
with all-cause mortality (Table 2). We evaluated the 2 most
frequent specific causes of death and observed that each
decrease of 0.1 RTL units was associated with a 20%
Kidney International (2020) 98, 488–497
increased risk of CVD death in the fully adjusted model
(HR, 1.20; 95% CI, 1.05–1.35; P ¼ 0.0052). Reduced RTL
was also significantly inversely associated with death due to
infections. Each 0.1 unit decrease of RTL was associated with
a 1.27-fold higher risk for death due to infections (HR, 1.27;
95% CI, 1.07–1.50; P ¼ 0.0051). Looking at the estimates
for the various quartiles in Supplementary Table S1 revealed
for death due to infections that the estimates for each of the
quartiles 1, 2, and 3 were similarly elevated compared to
that for quartile 4. The analysis with other causes of death as
well as unknown causes of death was obviously too het-
erogeneous and did not reveal any association with RTL
(data not shown).

The graph of the scaled Schoenfeld residuals and test on
proportional hazard assumptions did not suggest any time-
varying effects for RTL on any of the investigated outcomes.
The subdistribution HRs for both cardiovascular and infec-
tion death, reported in Supplementary Table S2, are only
slightly attenuated compared to the cause-specific HRs.

We also evaluated whether the effect of RTL on the 3
different outcomes differed between men and women and for
patients with and without diabetes mellitus, but we did not
detect a significant interaction for these variables, or for age
(all P values of interaction >0.1 in the fully adjusted models).

Given that we recently observed a U-shaped association
between duration of CKD and RTL,22 we performed a
sensitivity analysis additionally adjusting for the duration of
CKD at baseline defined as less than 6 months, between 6
month and 5 years, and more than 5 years. This additional
adjustment resulted in only marginal changes of the HRs
obtained for all 3 endpoints (Supplementary Table S3).

DISCUSSION
The results of this study showed a significant association of
RTL with all-cause mortality in a non-dialysis-dependent
CKD cohort. Shorter RTL was associated with higher risk of
mortality independently from kidney function and traditional
CVD risk factors. This association was driven by death due to
CVD as well as death due to infections.

Association with all-cause mortality
Prior studies,5,6,31–35 with few exceptions,36,37 have demon-
strated a negative association between RTL and all-cause
mortality in the general population. The largest study so far
(n ¼ 64,637) was performed by Rode et al., with an adjusted
HR for mortality of 1.40 for the decile with the shortest versus
the decile with the longest RTL.35 In accordance with these
results, our study showed with each decrease of 0.1 RTL units
a 14% higher risk for all-cause mortality, which translates to a
75% higher risk for those in the lowest compared to the
highest quartile of RTL. To our knowledge, only Carrero
et al.28 have investigated the relationship between RTL and
mortality risk in CKD patients. They studied 175 patients
with end-stage kidney disease treated by hemodialysis, of
whom 70 died during a median of 31 months of observation.
The authors observed that TL independently predicted
491



Figure 2 | Adjusted nonlinear splines (and 95%confidence bands) for the association between increasing relative telomere length (RTL)
and hazard ratio (HR) of (a) all-causemortality, (b) cardiovascular death, and (c) death due to infections. HR is given as log-scale on the y-
axes. Gray line: adjustment model 1 (adjusted for age and sex). Blue line: adjustment model 3 (adjusted for age, sex, estimated [continued]
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patient survival after additional adjustment for age, sex, and
inflammation. The current study extends these observations
to the much larger group of individuals with CKD who do
not require dialysis.
Association with CVD mortality
No studies have investigated the association of RTL with CVD
mortality in CKD patients so far, although this is the major
cause of death in these patients. Depending on the investi-
gated ethnicity and on the data adjustment models, some, but
not all, studies in the general population reported an associ-
ation between low RTL and CVD outcomes.33,38–41 Strong
support for a causal association came from a Mendelian
randomization study in which genetic variants associated with
shorter RTL were found to be associated with ischemic heart
disease.40 In the present study, we identified a significant as-
sociation of RTL with cardiovascular deaths, with a 20%
higher risk with each decrease of RTL by 0.1 units, or a 75%
higher risk for those patients in the quartile with the shortest
TL compared to the quartile with the longest TLs. This
finding is in line with our earlier report of an association with
prevalent cardiovascular events in this patient population:
each decrease of RTL by 0.1 units was significantly associated
with a 6% higher odds for prevalent CVD in a model
adjusting for age, sex, current smoking, hypertension, dia-
betes status, low-density lipoprotein cholesterol, high-density
lipoprotein cholesterol, C-reactive protein, eGFR, and body
mass index.21 The prospective follow-up in these patients in
the present investigation revealed that especially the lowest
quartile of RTL was associated with a markedly increased risk,
whereas the other 3 quartiles showed very similar estimates
(Figure 1b).
Association with death due to infections
Although experimental evidence supports a role of cell
senescence and short TL in impaired immune response,
epidemiologic studies are sparse, especially in CKD patients.
Helby et al. conducted the largest (n ¼ 75,309) prospective
population-based study investigating RTL and the risk of
hospitalization for infectious disease and the risk of
infection-related death. During 7 years of follow up, they
observed a higher risk of any infections in the quartile with
the shortest compared with the quartile with the longest
RTL.42 Previous studies with smaller sample sizes reported
conflicting results.32,43,44 Our findings in CKD patients
describe for the first time the association between short RTL
and higher risk for death due to infections in this high-risk
population.
=

Figure 2 | [continued] glomerular filtration rate, urine albumin/creatinin
density lipoprotein cholesterol, high-sensitivity C-reactive protein, album
pressure, and prevalent cardiovascular disease). Vertical dotted lines indi
set as a reference (HR ¼ 1; horizontal dashed line).
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Potential mechanism
The biological mechanism underlying the relationship
between RTL and mortality is still unclear. The association
identified by our study does not elucidate whether RTL
shortening is causally related to cardiovascular disease and
infections. However, a genome-wide association study
followed by a genetic risk score analysis combining lead
variants at 7 genetic loci showed an association of the
alleles associated with shorter RTL with increased risk of
coronary artery disease. This finding provides possible
support for a potential causal role of RTL in CVD.45,46

Furthermore, cellular senescence induced by telomere
attrition could be a trigger of atherosclerosis as well
arteriosclerosis. The accumulation of senescent cells in the
vessel contributes to atherosclerotic plaque formation and
media calcifications resulting in increased arterial stiffness
as a dominant feature of uremic arterial disease.47 Most of
the studies have measured RTL in the DNA from pe-
ripheral leukocytes. However, a close correlation has been
shown between leukocyte and aortic wall tissue TL.48

Therefore, cellular senescence could affect endothelial
cells leading to dysfunction in the vascular wall and
promoting the adhesion of immune cells, a primary event
in atherosclerosis. Furthermore, short telomeres activate
p53 and autophagy in cardiac progenitor cells, destabiliz-
ing the balance of quiescence and proliferation toward
differentiation and senescence, leading to an exhaustion of
cardiac progenitor cells.49 Telomere dysfunction has been
shown to induce a profound p53-dependent repression of
the master regulators of mitochondrial biogenesis and
function, which leads to bioenergetic compromise due to
impaired oxidative phosphorylation and adenosine
triphosphate generation.50,51

There are also several links between RTL and infections.
The loss of telomeres has been observed during T cell dif-
ferentiation,52 in chronic viral infections,53 and with age.54

Furthermore, short leukocyte TL has been reported as a risk
factor in various immune-related diseases55 and diabetes.56

Leukocyte shorter TL causes cell senescence that is followed
by a reduction of immune cell proliferative capacity. TL may
also be involved in age-related declines in immune function
related to an insufficient response to vaccines and acute in-
fections.57–59 A potential role of TL in infections is also
supported by a recent genome-wide association study in a
Chinese population. Dorajoo and colleagues observed an as-
sociation between a TL-reducing allele and death due to
respiratory infection.60

RTL attrition might be strongly triggered by the presence
of elevated oxidative stress, a common condition in CKD.61
e ratio, diabetes mellitus, low-density lipoprotein cholesterol, high-
in, smoking, body mass index, systolic blood pressure, diastolic blood
cate the thresholds of RTL quartiles; the median value of RTL (0.92) is
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Several in vitro and in vivo studies showed that oxidative stress
accelerates telomere attrition.62,63 Indeed, telomeres, with
their high guanine content, are highly susceptible to oxidative
damage,64 and single-strand DNA breaks induced by oxidative
stress could be an important factor for telomere shortening
during DNA replication.65

Strengths and limitations
Strengths of this investigation include the large sample size of
a well-defined population with a median follow-up of 4 years
with almost no loss to follow-up, homogeneity of the study
population, and a centralized assessment of TL and outcome
measures. The measurement of RTL especially is of utmost
importance because standardization between laboratories is
not easy to accomplish and therefore the process should be
performed in the same laboratory under exactly the same
conditions in terms of protocol, reference gene, instrument,
personnel,66 and DNA extraction procedure.67

There are some limitations to this study. First, RTL was
measured in peripheral leukocytes. It is known that the rate of
progression to senescence differs among lymphocyte sub-
sets.59 Unfortunately, no data were available about blood cell
type composition in the German Chronic Kidney Disease
study and it was therefore not possible to investigate this
aspect. Knowing RTL from various kidney cell types would be
of interest, but it is not possible to obtain in a large epide-
miologic study as this would require tissue material from
biopsies. The second limitation includes the observational
design of the study, which does not allow for clarification of
causality or biological mechanism. Third, the study recruited
mainly CKD patients in stage G3 or A3, and the findings
might not be generalizable to other stages of CKD. Fourth, the
association with specific causes of death might have been
limited by statistical power but was still present for the 2
specific main causes of death. Finally, although our analyses
were adjusted for traditional cardiovascular risk factors as well
as kidney function parameters, we cannot exclude the possi-
bility of residual confounding by unknown or unmeasured
variables. However, it was very interesting to see that the age-
and sex-adjusted estimates of RTL for various outcomes were
very stable with further adjustment for the other variables,
indicating that RTL is relatively independent from other
variables when data are adjusted for age and sex.

Conclusions
Short relative TL quantified from peripheral blood leukocytes
was independently associated with all-cause mortality during
4 years of follow-up in patients with moderately severe CKD.
This association was driven by death due to CVD as well as
death due to infections.

METHODS
Study population
The German Chronic Kidney Disease study is an ongoing prospec-
tive multicenter observational cohort. A detailed description of the
study has been published previously.68 Briefly, 5217 patients under
regular care by nephrologists were enrolled. Inclusion criteria were
494
moderately reduced kidney function defined as eGFR of 30–60 ml/
min per 1.73 m2 (stage G3, A1–A3) or an eGFR >60 ml/min per
1.73 m2 in the presence of overt proteinuria (stage G1–G2, A3).
Exclusion criteria were non-Caucasian ethnicity, solid organ or bone
marrow transplantation, active malignancy within 24 months prior
to screening, New York Heart Association Stage IV heart failure, and
legal attendance or inability to provide consent. Laboratory param-
eters presented were all measured from collected biosamples in a
central laboratory as described previously.68 Information on socio-
demographic factors, medical and family history, medications, and
health-related quality of life were obtained by trained personnel
through standardized questionnaires. Prevalent cardiovascular dis-
ease at baseline was defined as history of non-fatal myocardial
infarction, coronary artery bypass grafting, percutaneous trans-
luminal coronary angioplasty, stroke, and interventions at the carotid
arteries (carotid endarterectomy and/or carotid balloon angioplasty
or stent implantation).

All participants provided written informed consent, and the study
was approved by the ethics committees of all participating in-
stitutions and registered in the national registry for clinical studies
(DRKS 00003971). All methods were carried out in accordance with
approved guidelines and the Declaration of Helsinki. Data are
collected and managed using Askimed (https://www.askimed.com)
as a cloud-based web platform for collection and management of
case report forms and laboratory data.

Clinical endpoints during prospective follow-up
As described recently,69 patients are followed on a yearly basis by
trained personnel alternating face-to-face visits with telephone visits.
During these visits, data on hospitalizations, outcome events, and
medical history are updated as part of a structured interview. Any
hospital discharge reports are collected from the treating physicians
and/or hospitals. Endpoints are continuously abstracted from these
reports by a trained and supervised endpoint committee composed
of 3 independent physicians according to a prespecified endpoint
catalogue. Information on cause of death is taken from these reports
as well as from death certificates collected from civil registry offices
whenever study personnel are informed of the death of a study
participant.

The current analysis includes all endpoints that occurred until 4-
year follow-up. If a patient missed the 4-year follow-up visit, we
included all endpoints until 4.5 years after the respective baseline visit.
Therefore, censoring time was either the 4-year follow-up date or 4.5
years after baseline. The primary outcome was all-cause mortality. To
evaluate whether identified associations could be attributed to a spe-
cific cause of death, death from cardiovascular causes and infectious
diseases were considered as secondary outcomes. The group of CVD
death included myocardial infarction, coronary heart disease, sudden
cardiac death, congestive heart failure, pulmonary embolism, cardiac
valve disease, and ischemic stroke. Other causes of death were also
recorded, but these subgroups were not large enough to conduct
further cause-specific analyses.

Measurement of RTL
Genomic DNA was extracted from whole blood in a central labo-
ratory with the Chemagic Magnetic Separation Module I (Perki-
nElmer chemagen Technologie GmbH, Baesweiler, Germany). The
current analysis was based on 4926 patients for whom measurements
of RTL in baseline blood samples and data on mortality were
available. RTL was measured in quadruplicate using a quantitative-
polymerase chain reaction–based assay developed by Cawthon70
Kidney International (2020) 98, 488–497
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and modified as described previously.71 DNA samples were run in
15-ml reactions containing 1x Quantifast TM SYBR Green PCR
mastermix (Qiagen, Hilden, Germany), 10 ng of DNA, 1 mM of
telomere primer, or 250 nm of housekeeping gene 36B4 primer. We
determined the relative ratio of telomere repeat copy number (T) to
single-copy gene copy number (36B4 gene, encoding ribosomal
phosphoprotein PO, located on chromosome 12; S). The T/S ratios
are proportional to individual RTL. The automation of this high-
throughput procedure resulted in very good quality-control mea-
sures with a low inter-assay coefficient of variation of the T/S ratios.
A commercially available DNA included in all the quantitative po-
lymerase chain reaction plates was used to check the performance of
the assay over the entire study. The interassay coefficient of variation
of T/S ratios of this sample analyzed in 112 independent experiments
was 9.6% before normalization and decreased to 4.0% after
normalization (Supplementary Figure S2).

Statistical analysis
We compared baseline characteristics of participants (Table 1) using
the Kruskal–Wallis test for continuous variables and chi-squared
tests for categorical variables. Cumulative incidence function
curves were used to estimate the cumulative incidence of the
different causes of death accounting for the competing risk.72 Cox
proportional hazards regression models were performed to evaluate
the associations of RTL with 3 outcomes: (i) all-cause mortality, (ii)
death due to CVD, and (iii) death due to infections. For both cause-
specific endpoints (ii and iii), patients were censored, if death
occurred by any other cause. In addition, associations with these
cause-specific endpoints were examined using competing-risks sur-
vival regression, considering all deaths from other causes as
competing events. Therefore, both cause-specific HRs and subdivi-
sion HRs are reported for death due to CVD or infections. Cox
proportional hazards models were fitted using 3 different levels of
adjustment: model 1 adjusted for age and sex; model 2 additionally
adjusted for baseline eGFR, urine albumin-creatinine ratio, prevalent
CVD, and diabetes; model 3 further adjusted for the traditional CVD
risk factors of low-density lipoprotein cholesterol, high-density li-
poprotein cholesterol, body mass index, smoking, systolic and dia-
stolic blood pressure, C-reactive protein, and albumin. The selection
of variables adjusted for in the various models was based on the
differences in the clinical characteristics between the quartiles of RTL
provided in Table 1. In the regression models, RTL was analyzed
continuously and as a categorical predictor (in quartiles of RTL).
Given that initial results indicated a higher risk, especially for low
values of RTL, the (cause-specific) HR is also reported for quartiles 1,
2, and 3 compared to quartile 4 as a reference (Supplementary
Table S1). Further downstream analysis was based on visul inspec-
tion of P-spline to derive the shape of the relationship between RTL
and mortality risk. We used Spearman’s rank correlation coefficient
to assess the association between study variables. All statistical ana-
lyses were performed using R 3.3.2 (https://www.r-project.org); P
values <0.05 were considered statistically significant.

APPENDIX
List of current GCKD study investigators and collaborators
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Andreas Beck, Thomas Ganslandt, André Reis, Arif B. Ekici, Susanne Avendaño,
Dinah Becker-Grosspitsch, Ulrike Alberth-Schmidt, Birgit Hausknecht, Rita
Zitzmann, and Anke Weigel. University of Freiburg: Gerd Walz, Anna Köttgen,
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Reinhard. RWTH Aachen University: Jürgen Floege, Georg Schlieper, Turgay
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Epidemiology: Florian Kronenberg, Julia Raschenberger, Barbara Kollerits,
Lukas Forer, Sebastian Schönherr, and Hansi Weissensteiner. University of
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Gronwald, and Helena Zacharias. University of Bonn, Institute of Medical
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provided after the normalization procedure, and the corresponding
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Table S1. Results of Cox model on all-cause mortality, death due to
cardiovascular disease, and death due to infections for quartiles 1, 2,
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