
Machine Learning Approaches
for Energy Forecasting

Dissertation zur Erlangung des
Doktorgrades der Naturwissenschaften
(Dr. rer. nat.) der Fakultät für Physik

der Universität Regensburg

vorgelegt von

Christian Lang

aus

Hof (Saale)

im Jahr 2021

Promotionsgesuch eingereicht am: 27.04.2021
Die Arbeit wurde angeleitet von: Prof. Dr. Elmar W. Lang

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Jascha Repp
1.Gutachter: Prof. Dr. Elmar W. Lang
2.Gutachter: Dr. Stefan Solbrig
weiterer Prüfer: Dr. Alfred Jay Weymouth

Contents

Table of Contents i

List of Abbrevations v

1 Introduction 1
1.1 Motivation . 1
1.2 Project MAGGIE . 3
1.3 Dataset . 7
1.4 Research Objectives . 10

2 Literature Survey 11

3 Methods 15
3.1 Neural Networks . 16

3.1.1 Biological background . 16
3.1.2 Perceptron . 17

3.1.2.1 Single Layer Perceptron 18
3.1.2.2 Multi Layer Perceptron 18

3.1.3 From MLPs to Deep Neural Networks 19
3.1.4 Training a Neural Network via Back-Propagation 22
3.1.5 Network Structure Selection 27
3.1.6 Convolutional Neural Networks 29

3.2 Established Machine Learning Methods for Forecasting 33
3.2.1 Regression Models . 33

3.2.1.1 Exponential Smoothing 33
3.2.1.2 Ridge Regression . 33
3.2.1.3 ARIMA Models . 34

3.2.2 Recurrent Neural Networks 36
3.2.3 Tree-based Models . 37

3.3 Applying Machine Learning Methods to Time Series Forecasting . . 38
3.3.1 Forecasting with Regression Methods 38
3.3.2 Forecasting with Tree-Based Models 39
3.3.3 Forecasting with Convolutional Neural Networks 40

i

Contents

4 Results and Discussion 43
4.1 Partitioning of the Datasets . 44
4.2 Feature Engineering . 48
4.3 Baseline models . 51

4.3.1 Naïve Forecast . 52
4.3.2 Exponential Smoothing . 53
4.3.3 Ridge Regression . 53

4.4 Fully-Connected Neural Network Models 55
4.5 Recurrent Neural Network Models 57
4.6 Tree-Based Models . 58

4.6.1 Feature Selection . 59
4.6.2 Hyper-Parameter Adjustments 60
4.6.3 Forecast Evaluation . 61

4.7 Developing a Convolutional Neural Network Forecasting Model . . . 65
4.7.1 Choosing a Forecast Approach 66
4.7.2 Pre-Processing of the Load Time Series 67
4.7.3 Determining Fundamental Hyper-Parameters 71

4.7.3.1 Training Parameters 71
4.7.3.2 Network Parameters 76

4.7.4 Parameter Variations . 78
4.7.4.1 CNN with Two Fully-Connected Layers 79
4.7.4.2 CNN with Three Fully-Connected Layers 82
4.7.4.3 CNN with Four Fully-Connected Layers 85
4.7.4.4 Adding Dropout to the Neural Network 87
4.7.4.5 Adding Pooling Layers 104
4.7.4.6 Variation in Stride Sizes 107
4.7.4.7 Adding more Convolutional Layers 107
4.7.4.8 Influence of Dilated Kernels 114
4.7.4.9 Adding a Parallel Convolutional Layer 117
4.7.4.10 Creating a More Complex Network 121
4.7.4.11 Conclusion of Data-Driven Model Development . . . 125

4.7.5 Influence of Externally Added Features 127
4.7.6 Utilising Features for Best Models 134
4.7.7 Analysis of the Models . 137

4.7.7.1 Transferability . 137
4.7.7.2 Analysis of Kernels 140

4.8 Comparison of the Machine Learning Models 142
4.9 Comparison to Similar Research . 145

5 Conclusion 147
5.1 Summary of the Results . 147

ii

Contents

5.2 Contribution to the Scientific Discourse 149
5.3 Limitations . 150
5.4 Future Works . 151

List of Figures 153

List of Tables 161

Bibliography 164

Acknowledgements 177

iii

List of Abbreviations

Adam Optimisation algorithm utilising Adaptive Moment Estimation

AR Auto-Regression

ARIMA Autoregressive Integrated Moving Average

ARIMAX Autoregressive Integrated Moving Average with Exogenous
Variables

ANN Artificial Neural Network

CER Commission of Energy Regulation Ireland

CHP Combined Heat and Power Plant

CNN Convolutional Neural Network

CO2 Carbon Dioxide

EEG Erneuerbare Energien Gesetz

GRU Gated Recurrent Unit

IPCC Intergovernmental Panel on Climate Change

IRE15 Aggregated load of 15 residential households

IRE40 Aggregated load of 40 residential households

IRE350 Aggregated load of 350 residential households

ISSDA Irish Social Science Data Archive

LSTM Long Short-Term Memory

LTLF Long-term load forecast

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

v

Contents

MLP Multi Layer Perceptron

MSE Mean Squared Error

MTLF Medium-Term Load Forecast

Nadam Nesterov-accelerated Adam optimser

NLP Natural Language Processing

NN Neural Network

OLS Ordinary Least Square

PV Photovoltaic

ReLU Rectified Linear Unit

RLM Reale Lastgangmessung

RNN Recurrent Neural Network

SARIMA Seasonal ARIMA

SLP Single Layer Perceptron

STLF Short-Term Load Forecast

SVM Support Vector Machine

VSTLF Very Short-Term Load Forecast

vi

1 Introduction

1.1 Motivation

Climate change concerns us all, inevitably, undeniably.
The fight against anthropogenic climate change and its impacts is the biggest chal-
lenge humankind faces in the 21st century. There are several effect of the progressing
climate change that can already be observed today. The increasing global temper-
ature is causing glaciers and the polar caps to melt at record speed. The increased
carbon dioxide content of the air is acidifying the oceans and rapidly changing the
living environment of a large part of the ocean’s creatures. Climate change and its
impacts, however, not only effect nature and the living conditions of wildlife but
also us humans. [1, 2]
Higher temperatures, for example, have negative health effects. Additionally, they
are very likely the cause of an increasing amount and intensity of extreme weather
events, both of which endanger human lives and the lives of wildlife in the same
manner. Furthermore, a rising sea-level threatens to make densely populated coast
lines uninhabitable. Those are only a few of the direct and indirect impacts of cli-
mate change on human life in the foreseeable future. They show that climate change
concerns everybody, even if no direct impacts on daily life are yet recognisable, and
stress that limiting the human impact on our climate should, therefore, be acted
upon fiercely. [1, 2, 3]
Fighting climate change and developing innovative solutions to reduce the emission
of harmful greenhouse gases is a challenge that concerns everybody. The scientific
community, in particular, is called upon to come up with new ideas and concepts
to combat this global challenge. This thesis is my humble attempt to contribute to
the solution.

In the 19th century, the foundations for today’s climate research were already laid.
The mathematician and physicist Joseph Fourier discovered the greenhouse effect
in 1824 [4]. Later, Tyndall [5] was able to measure the behaviour of several gases
and vapours under infrared irradiation and Arrhenius [6] was able to describe the
atmospheric greenhouse effect quantitatively.
The German natural scientist Alexander von Humboldt is said to be the first sci-
entist who recognised the human influence on nature and (micro-)climate [7, 8]:

1

1 Introduction

"Veränderungen [. . .] welche der Mensch auf der Oberfläche des Fest-
landes durch das Fällen der Wälder, durch die Veränderung in der Ver-
theilung der Gewässer und durch die Entwicklung grosser Dampf- und
Gasmassen [. . .] hervorbringt. Diese Veränderungen sind ohne Zweifel
wichtiger, als man allgemein annimmt."

Today, the Intergovernmental Panel on Climate Change (IPCC) is investigating the
causes and impacts of anthropogenic climate change, and advises on which global
measures need to be taken in order to minimise those impacts. They regularly
publish reports on updated findings concerning climate change and its implications.
The latest report was published in 2013 and 2014 [2] and the next one is to be
published in 2022.
The the fifth IPCC assessment report emphasised that the warming of atmosphere
and oceans is "unequivocal" and that it is "extremely likely" that humans are the
dominant cause of the warming since the 1950s. The reason for this is the progressing
emission of greenhouse gases that increased the concentration of greenhouse gases in
the atmosphere to the largest levels in 800 000 years. In a special report, published
in 2018 [9], the IPCC offered pathways to limit the rise in global temperature. In
a nutshell, all suggested scenarios call for a drastic reduction in the emission of
greenhouse gases within the next fifty years.

The reports clearly show that the emission of greenhouse gases, like carbon dioxide,
must be reduced drastically in order to slow down or stop the human-induced climate
change. A large part of CO2 emission originates from coal and gas powered power
plants, which are corner stones of the electricity supply in many countries [1]. It is,
therefore, necessary to develop alternatives for those power plants and eventually
shut them down. In the last few decades, a multitude of technologies that are nowa-
days widely used and that utilise renewable energy sources to generate electricity,
for example wind and solar radiation, have been developed. The challenge of inte-
grating electricity from renewable sources and eventually completely replacing the
electricity from fossil energy sources in our power-grid is based on the uncertainty
in planning with and the volatility of the renewable energy sources. Therefore, new
concepts that factor those disadvantages in and ultimately eliminate them must be
developed. There are a lot of different concepts that deal with the challenge of inte-
grating renewable energy sources into the energy market. What most concepts have
in common is the need of accurate predictions of the possible energy production and
the anticipated energy load.

This thesis focuses on predicting the electricity loads and, therefore, investigates
different options for load forecasting utilising machine learning models. The per-
formance and the feasibility of generating those forecasts are evaluated. In the

2

1.2 Project MAGGIE

next section, an energy concept that improves the integration of renewable en-
ergy sources is introduced and the importance of accurate load forecasts is ex-
plained.

1.2 Project MAGGIE

The research of this thesis is embedded in the research project MAGGIE, which
is funded by the Federal Ministry for Economic Affairs and Energy. The project
addresses several objectives of federal initiatives regarding energy efficiency and
the transition from fossil to renewable energy sources, for example the 6. En-
ergieforschungsprogramm der Bundesregierung, the Leitinitiative Zukunftsstadt, and
the Nationaler Aktionsplans Energieeffizienz der Bundesregierung (NAPE) to name
just a few.
The goals of the project are manifold. One focus is to reduce the electricity and heat
consumption of apartment buildings, particularly in older buildings. Two potential
options to achieve that are explored in MAGGIE. Firstly, to improve the structure
of the building by improving the insulation and, secondly, to increase the efficiency
of the systems which provide heat and electricity. Another research question of
the project is how to better integrate renewable energies in the energy market with
the help of decentralised energy management. For that purpose, new energy con-
cepts with sector coupling and energy concepts for whole city quarters are developed
through MAGGIE. [10]

Typical, broadly available renewable energy sources are wind, solar radiation, and
biogas produced through fermentation of organic material. The first two sources are
by far the biggest renewable contributors in the energy market, but they come with
their own challenges. The energy allocation of power plants that rely on natural
sources like solar radiation or wind cannot be planned as precisely as those which
rely on "traditional" energy sources, like coal. For a coal power plant, for example,
it is possible to accurately plan how much energy is provided at which time. In
addition, it is possible to adjust that production schedule on short notice. Unfor-
tunately, most renewable energy sources do not allow for those possibilities. The
solar radiation fluctuates due to permanent changing cloud cover, precipitation, and
concentration of aerosols. The wind speed and direction changes constantly and
highly varies locally. All those factors not only perpetually change the power which
can be gained from the wind and solar radiation, but also make it difficult to es-
tablish an accurate power forecast for renewable energy power plants. Without a
reliable forecast, however, integrating renewable energies into the energy market is
challenging. Power grid operators must ensure a nearly constant voltage and fre-
quency of their power grids while increasing the share of more volatile renewable

3

1 Introduction

energies in their energy mix. By 2050, at least 80 percent of the German electricity
has to be contributed by renewable energy sources according to the EEG law [11].
In order to achieve that, methods have to be implemented that are, on one hand,
capable of balancing the fluctuations in the electricity generation from renewable
energy sources and, on the other hand, work better with uncertain forecasts. Only
when those methods exist, can renewable energy power plants permanently replace
power plants that use coal and natural gas, therefore increasing the sustainability
in the power market. [12]

The volatile renewable energy sources, wind and solar radiation, are mostly used
to produce electricity. In comparison to other energy forms, storing electric energy
locally is costly either due to high losses (e.g. in electrolysis) or expensive equipment
(e.g. batteries). The key to better integrating electricity from renewable sources into
the power market, however, is to provide a barely fluctuating, stable energy source.
One promising solution to achieve that is sector-coupling. It means connecting the
different energy sectors of electricity, gas, and heat in a beneficial way and thereby
utilising their advantages and compensating their disadvantages. Connecting energy
sectors typically means creating the possibility to transform one energy form into
another when it is profitable.

An example of sector-coupling is power-to-gas technology, which produces hydro-
gen or methane using electrolysis. Of course, using the electrical energy directly
is generally more efficient than transforming it into gas. However, the advantages
of gas over electricity are that it can be easily stored, that it can be easily trans-
ported, and that the German gas grid has an enormous storage capacity, which can
be utilised. Nowadays, the electricity power grid which connects the big off-shore
wind power plants at the northern German coast with the highly industrial areas
in central and southern Germany is regularly overloaded during periods of strong
winds along the whole German coastline. For that reason, wind power plants have
to be shut down regularly and potential renewable electricity is lost, which then
has to be produced in traditional power plants instead. The first facilities that use
the superfluous electricity for power-to-gas so the energy can be used later, albeit
with losses, are currently in use. The gas grid and gas storage can therefore be
seen as the battery for renewable energies on the way to a more sustainable energy
usage. [10, 12]

Through MAGGIE, the ideas of sector-coupling are applied on a more local level.
In the project, a building from the Baugenossenschaft Margaretenau in western Re-
gensburg was energetically renovated and evaluated, as well as equipped with a novel
energy system that enables the implementation of the ideas of sector-coupling on
a local scale. A novel central energy system was developed for the building which

4

1.2 Project MAGGIE

provides heat (via heated process water and warm drinking water) and electricity.
The system consists of a combined heat and power plant (CHP), a heat pump, a
photovoltaic (PV) power system, and a heat buffer.
A CHP is similar to a generator, the difference being that both, the generated heat
and electricity can be used. Hence, it has a very large efficiency. A heat pump
uses electricity to generate heat by transferring thermal energy from a colder ther-
mal reservoir to a warmer thermal reservoir. The PV system produces electricity
from solar radiation. A scheme of the energy system can be seen in figure 1.1. In
addition, a connection to the power grid can receive surplus electricity or provide
electricity. The CHP and the heat pump both provide thermal energy, one from fuel
the other from electricity. The heat demand of the residents can therefore either
be met by using electricity or fuel, whereat the latter option additionally produces
electricity. The electricity demand can also be met by two sources, the CHP and
the PV system. All parts of the system are monitored continuously and can be
controlled remotely and independently by a central control unit. Therefore, it is
possible to shift the production and consumption of heat and electricity in time and
between the participants of the system by heating and using the water of the heat
buffer at the needed times. This allows for optimisation of the machine schedules
depending on an optimisation target, for example a cost reduction or a high degree
of self-sufficiency.
The advantage of the system becomes clear when two factors are taken into consid-
eration. First, the system is meant to be scalable up to whole city districts. That
means it can consist of more than one CHP, heat pump, etc., that are then connected
to each other and are all controlled by the central control unit. And second, the
feed-in and consumption from the power grid has to be reported to the power grid
operator in a 15 minute grid on the previous day, if the installed power of the sys-
tem exceeds a certain value. When multiple apartment buildings are supplied using
CHPs, the installed power of the resulting energy system surpasses this threshold. At
the time the machine schedules are calculated, the electricity and heat demand of the
residents and the electricity production by the PV system are only predictions and
therefore inaccurate. Deviations in production and consumption, however, can be
compensated for with this system by the CHP and the heat pump utilising the possi-
bility to store and access thermal energy. Thereby, the declared electricity schedule
for the power grid can be met despite deviations of the consumption and production
forecasts. This facilitates the integration of PV systems into local energy system
that provide a decentralised energy supply. [13, 10, 12]

The energy system can furthermore be used to act in a grid-supportive manner.
When too much or too little energy availability in the power-grid is impending, the
system can help stabilise the grid by compensating for the energy difference. With
the system it is possible to reserve capacities of the thermal energy storage for either

5

1 Introduction

Figure 1.1: Simplified schema of the energy system that is installed in the Margarete-
nau for the project MAGGIE. It shows how the different components of
the energy system are connected. The green arrows indicate the possibil-
ity of electricity transfer, the red arrows of heat transfer via heated water.
The components are completely interconnected to enable variability in
production and consumption of the components.

extracting electricity from the power grid and transforming it into thermal energy
with the heat pump or feeding-in electricity from the CHP. Naturally, this concept
is only applicable in a larger scale. When several similar systems act together as
a so-called virtual power plant, they can assist in stabilising the power-grid. The
influence of one system on the power grid is simply too small. Initial trials of the
concept [14, 15] have recently been successfully conducted. [10, 12]
When a virtual power plant acts grid-supportive, it enables the power-grid operator
to react on short notice to deviations from the expected electricity production in the
grid. Those deviations can, for example, be caused by wind power plants that gener-
ate less electricity than anticipated. With the virtual power plant at their disposal,
the grid operator can utilise it to generate and feed in the lacking electricity. The
virtual power plant, thus, allows for compensating the inevitable uncertainties the
wind power plants introduce and stabilises the power grid. Without the possibility
of adjusting the electricity production of a power plant on short notice, the inte-
gration of renewable energy sources would not be possible. Today, the only power
plants that are able to spontaneously adjust their schedules are gas and, to a certain
extent, coal power plants. Those, however, must be replaced in order to reduce the
emission of greenhouse gases that fuel climate change.

6

1.3 Dataset

The crucial part in operating the local power system in project MAGGIE is planning
and calculating the machine schedules in a way that both ensures the availability
of electricity and heat for the residents at all times and achieves a maximum effi-
ciency regarding the optimisation target. The optimisation must particularly take
the volatility of the electricity and heat consumption of the residents into account. In
big grids of entire city districts or even entire regions, the average consumption, the
so-called standard load curve, can simply be used as load forecast. In single apart-
ment buildings, however, the standard load curve is not feasible as a forecast due to
the high volatility and the big influence that changes in behaviour of single house-
holds have on the total load of the building. Consequently, the quality of the optimi-
sation depends strongly on the accuracy of the load forecasts and more sophisticated
methods of computing forecasts need to be applied.

1.3 Dataset

In this work, the goal is to develop an algorithm for accurately forecasting electric-
ity loads. The focus lies on electricity and not heat forecasts mainly for one reason
- a lack of storage capacity. A surplus or underproduction of heat can be easily
compensated internally by the installed central heat puffer and, therefore, barely
compromises the reliability of energy supply, whereas a discrepancy between elec-
tricity consumption and production can only be compensated by either exchanging
electricity with the power grid, resulting in large fees due to the deviation of the de-
clared electricity schedule, or by producing undesired and unscheduled heat with the
CHP or heat pump, which in return negatively influences the upcoming schedules.
Therefore, knowing the future electricity load as precisely as possible is of paramount
importance. The algorithm to be developed for predicting electricity load can natu-
rally be applied to forecasting the heat demand as well.

As one requirement for the algorithm is to be scalable in order to be applicable from
single apartment buildings to whole city districts, the data must represent all these
different scenarios.
The plan was that such data was to be collected by smart meters in the building dur-
ing the project duration of MAGGIE. In Germany, they are also called RLM-Zähler,
which stands for registrierende Lastgangsmessung. Unfortunately, due to delays in
the renovation of the historical apartment building in the Margaretenau, changes
and readjustments of the project road map and objectives, and the bankruptcy of an
essential project partner, this data could not be collected during the project duration
or, respectively, during the making of this thesis.

7

1 Introduction

Therefore, I had to fall back on publicly available data. The data should represent
the electricity demand on a local or building level.
The data eventually used originates from the Smart Meter Trial in Ireland conducted
by the Commission for Energy Regulation (CER). It is made available by the Irish
Social Science Data Archive (ISSDA) on their homepage [16]. The dataset contains
roughly 5000 electricity load time series of single consumers, recorded for a period
of 17.5 months from July 14th 2009 until the end of the year 2010. The data was
collected in a 30-minute grid. 3273 of those time series are labelled as residential, the
remaining series are either from businesses or unlabelled. No further information
was given about the type of housing, the number of inhabitants, or the location
mainly due to privacy reasons. Figure 1.2 illustrates how diverse the load curves of
individual residential households can be.

(a) This load series displays
no day/night patterns,
probably no resident is
home. The regular spikes
originate presumably from
a regular consumer, e.g. a
fridge.

(b) In this load series, the
day and night difference
is recognisable. The con-
sumption of the different
days, however, varies sig-
nificantly.

(c) This load series shows a
regular behaviour, with
Monday to Thursday be-
ing particularly similar.
Moreover, the behaviour
on the weekend differs
clearly from the weekdays.

Figure 1.2: The three graphs show electricity loads of individual residential households
and demonstrate how different the load of the same week can look like. All
time series show a large volatility and about the origins of the occurring
load spikes can only be speculated.

For the energy system described in the previous section, only the accumulated elec-
tricity load of the whole building is of significance. Hence, only the accumulated
load needs to be predicted. Processing the electricity consumption of single house-
holds would also be extremely questionable in terms of data and privacy protection.
With the Smart Meter Trial dataset such accumulated load time series can be easily
created by adding together the load time series of an arbitrary number of residential
buildings.
In order to have time series similar to the ones that would have occurred in the
MAGGIE project, three different aggregated load time series were created and used
during the development of a forecasting model: a series of 15 households, 40 house-
holds, and 350 households. The households were chosen randomly. The 15 household

8

1.3 Dataset

load time series corresponds to the building that is renovated and equipped with the
new energy system in the project MAGGIE, which consists of around that number of
apartments. There are larger apartment buildings in the city district as well, which
are represented by the second time series. Finally, the 350 household load resembles
the whole city district of Margaretenau. In the following the three load time series
are referred to as IRE15, IRE40, and IRE350. An extract of the aggregated loads
is shown in figure 1.3.

(a) Combined load of 15
households.

(b) Combined load of 40
households.

(c) Combined load of 350
households.

Figure 1.3: The graphs show the consumption of the different aggregated electricity
consumption time series on the first day of the dataset. It can clearly be
seen that the volatility the series exhibits decreases with a higher aggre-
gation level.

The computations performed during the research into time series forecasting models
were conducted on two different machines. For the less costly and extensive com-
putations an ordinary laptop with four kernels was used. Mainly the fitting and
training of the linear and regression methods, as well as several preliminary tests
were conducted on the laptop. The more costly and time-consuming computations
were performed on a gaming computer with an Intel i7 processor containing eight
cores (16 threads) running with a clock frequency of 3.80GHz. The computations
were distributed on all threads. Utilising the graphics board for training the neural
networks did not decrease the computation duration. A training epoch of the convo-
lutional neural networks used in this thesis utilising the aggregated electricity load
datasets typically took between six and twelve seconds, depending on the complexity
of the network.

9

1 Introduction

1.4 Research Objectives

The detailed description of the project MAGGIE and its objectives stressed the
importance of electricity load forecasting. Computing forecasts is essential for effec-
tively planning and optimising the scheduling of the local energy system. Until now
predicting the aggregated electricity load of single buildings or small accumulations
of buildings has not been a necessity. Therefore, methods for computing those fore-
casts are still limited.
This thesis offers a comparative study of different machine learning methods that
can be applied to time series forecasting. Additionally, a novel forecasting method,
which utilises convolutional neural networks, is developed in the course of this thesis
and the development process is portrayed in detail. An evaluation of the abil-
ity to compute accurate forecasts for the aggregated electricity load time series
from different numbers of consumers is conducted for all models. They are com-
pared to each other and the advantages and disadvantages of each model are illus-
trated.

The subjects covered in this thesis are discussed in the following order.
After the introduction, the relevant literature is presented in chapter 2, in order
to get an overview of the research area. Afterwards, chapter 3 covers the different
methods that are applied in this thesis. First, neural networks are introduced in
3.1 and the development from a single layer perceptron to deep neural networks
and how they are trained is illustrated in the sections 3.1.2 to 3.1.5. Subsequently,
convolutional neural networks are discussed in section 3.1.6. After concluding with
neural networks, established machine learning methods are introduced - first, differ-
ent regression models in 3.2.1, followed by recurrent neural networks in 3.2.2, and
finally tree-based methods in 3.2.3. At the end of this chapter, in 3.3, how the differ-
ent methods are applied to time series forecasting is explained. Chapter 4 includes
and discusses the evaluation results. At the beginning, how the datasets are split
in 4.1 and which features are used for calculating the forecasts in 4.2 is described.
Afterwards, the forecast performance of the established models is presented: first,
for simple baseline models in 4.3, followed by the fully-connected neural networks
in 4.4, recurrent neural networks in 4.5, and the tree-based models in 4.6. This
is followed by the detailed representation of the development process of the novel
model, which is based on convolutional neural networks, in 4.7. The final models
are presented in 4.7.6, are analysed in depth in 4.7.7, and are compared with the
established models in 4.8. In the conclusive chapter 5, the findings of the work
are summarised, discussed with respect to the current research, and limitations and
future works are described.

10

2 Literature Survey

This chapter offers an overview of the literature that deals with electricity load
forecasting. It first presents studies and methods that deal with the broad subject
of load forecasting. Afterwards, the literature that addresses forecasting similar to
the data in this thesis is reviewed.

Forecasting the electric power demand is essential for all participants in the electric
industry. Forecasts are necessary for power grid development as well as for energy
distribution planning and enable low-carbon energy technologies to be better inte-
grated into the electric power market. Accurate load forecasts are also extremely
important for the power dispatch scheduling of power grid operators and energy
suppliers. Creating electricity load forecasts, however, is a complex and highly non-
linear problem that can be influenced by weather, location, social, and economic
factors [17]. Due to the various applications of electricity load forecasting, it is com-
mon to divide forecasts according to their forecast horizon into four categories [18].
The first category is very short term load forecast (VSTLF) which includes forecasts
up to an hour. A forecast horizon of one hour to several days is called short-term
load forecast (STLF). A mid-term load forecast (MTLF) is a forecast from a month
to one year and, finally, the long-therm load forecast (LTLF) includes all forecasts
with a forecast horizon of one year and longer.
LTLFs are mostly used for assessing the future degree of capacity utilisation of the
power grid, in order to identify possible congestions. Based on the possible conges-
tions, the development of the electric power grid and the power plant infrastructure
are planned. Linear regression and auto-regression methods are commonly used for
LTLF. The Autoregressive integrated Moving Average (ARIMA) algorithm and its
extensions, the seasonal ARIMA (SARIMA) and ARIMA with exogenous inputs
(ARIMAX), are constantly applied to that task [19, 20]. Other, different regres-
sion methods are also regularly investigated in the literature [21]. Machine Learning
methods and bio-inspired optimisation techniques like Genetic Algorithms [22] and
Artificial Neural Networks (ANN) [23, 24] are used as well, in order to generate long-
term forecasts.
The challenges in creating MTLFs are similar to LTLFs, which means the applied
methods are similar as well. Different variations of ARIMA are used in the litera-
ture. Hybrid models of ARIMA and machine learning algorithms, e.g. ANNs, are

11

2 Literature Survey

also sometimes used [20].
A majority of the publications deal with STLF and VSTLF, as there is a large
number of possible applications for the forecasts. Short-term predictions are crucial
for electricity suppliers, electricity traders, and for transmission and distribution
planning. The whole bandwidth of statistical and machine learning methods are
applied to the task. Autoregressive (AR) [25, 26], ARIMA [27, 28], ARIMAX, and
SARIMA [28] models have already been used in different variations for years, [29], as
have simple regression models [30, 31] or exponential smoothing [32, 33]. The most
recent progress using these models stems mostly from a larger availability of data,
the integration of external variables (e.g. weather data), and combinations of dif-
ferent statistical methods. Linear models work well for predicting a few time steps,
however, they reach their limitations when a larger number of time steps must be
predicted, due to their inability to represent non-linear dependencies, which become
more influential for longer forecasts. Hence, they provide good forecasts when ei-
ther the forecast horizon or the resolution are small. Therefore, the main areas of
application are VSTLFs and forecasts of low resolution in all forecast horizons that
consist of only a few time steps.
In addition, a large variety of machine learning models have been employed to cre-
ate forecasts. Most frequently used are fully-connected NN [34, 35, 36, 37] and
SVMs [38, 39, 40]. Tree-based regression models have been successfully applied
to STLF as well [41, 42]. In recent years, mostly due to advances in computing
capacities, recurrent neural networks (RNNs) [43, 44], long short-term memories
(LSTMs) [45], genetic algorithms [46], and hybrid models [47, 48] were the focus of
the research community and resulted in further improvements of the forecast qual-
ity.

As can be noticed by the great variety of methods covered by recent publications,
no superior model or algorithm for time series prediction has emerged yet. This
perception is shared by several literature surveys [29]. Moreover, the data used in
the majority of the mentioned publications are electricity loads of a large aggrega-
tion level, meaning consumption of whole cities, districts, or counties. Methods that
work for these datasets usually cannot be easily transferred to data of a smaller ag-
gregation level, for example to the electricity consumption of city districts or single
apartment buildings. However, the initial goal of this thesis is to provide electricity
demand forecasts for one apartment building in the Margaretenau in Regensburg
and, in the long term, for at least a part of or maybe even the whole quarter of
Margaretenau.
As could already be seen in section 1.3, the behaviour of time series of different
aggregation levels differ widely, in particular in regard to the volatility of the time
series. When accumulating the consumption of a large number of households, e.g.
of one city, there is hardly any recognisable noise left in the load series, as the

12

influence of the individual behaviour of one household is negligible. Therefore, sta-
tistical models perform well on that kind of load time series, which is also reflected
in the results of the existing research. Even naïve forecast models that utilise the
historic average load or apply simple regressions perform sufficiently well on those
datasets [49].
The amount of publications that deal with load time series of smaller aggregation
levels are in the minority. In the publications that work with data of lower aggrega-
tion levels, due to the volatile nature of the data, mostly machine learning methods
are applied to create the forecasts, as they are generally better suited to find and
utilise underlying patterns in the data.
Additionally, it is noteworthy that a lot of the studies only aim to predict one time
step or the daily average consumption, in particular for time series of lower aggrega-
tion levels. The reason might be that, due to the volatility, it is difficult to produce
good forecasts for a longer period. The problem at hand in the project MAGGIE,
however, demands a load prediction for one-and-a-half days.

While the research situation for electricity load forecasts with a prediction hori-
zon of one day or more is still sparse, the demand for exactly those predictions
is rising. Especially in the energy sector, load forecasts have become increasingly
important, due to the integration of renewable energy sources and the extension
sector-coupling. Furthermore, short-term predictions for more than a day with an
hourly or sub-hourly sampling rate are also of interest in other fields, e.g. in medicine
or economics, and hopefully methods developed for the energy sector can also be of
use in those fields.
Due to the limited number of publications on this topic and the rising interest in
it, investigating short-term energy load forecasting with machine learning methods
is necessary to not only enable the energy supply concept of the project MAGGIE,
but to advance the scientific discourse in this area.
The focus of the research presented in this thesis has been on generating forecasts
with Convolutional Neural Networks. At the time I commenced the exploration of
using CNNs for STLF, no publications on this subject were available. Due to their
structure and characteristics, it seemed promising to apply CNNs to one-dimensional
time series data in order to generate load forecasts.
CNNs have already been very successfully applied to image classification and other
tasks that require the handling two-dimensional data [50, 51, 52] before. Only re-
cently have CNNs appeared in publication for time series analysis, for example for
the purpose of classification [53, 54]. Since the beginning of my research, a few pub-
lications have been released from researchers that apply CNNs for load forecasting
as well. In 2017, for the first time, a few research results that predict time series
with CNNs were published. Hosein et.al. [55] and Dong et.al. [17], however, pre-
dict merely one time step and are therefore not applicable for STLF. Only in one

13

2 Literature Survey

publication, in the study of Amarasinghe et.al. [56], was a load time series of more
than one day forecasted. The authors discovered that, with a CNN structure, better
predictions on a building-level than with the widely-used support vector regression
can be produced, and that time series forecasting with CNNs is a promising ap-
proach. A few other studies that did STLF used a CNN as the first stage of a more
complex algorithm. He et.al. [57] use CNNs to pre-process the data as input for a
recurrent neural network, and Li et.al. [58] extract features of the time series with
a CNN based on which the data is clustered before computing predictions with a
fully-connected neural network. In the following years until now, the number of pub-
lications concerning electricity load forecasting rose and it has become more widely
recognised that it is promising to use CNNs for STLF. However, CNNs have mostly
been used as part of bigger, more complex network and algorithm structures. For
example, Zahid et.al. [59] utilised CNNs as a first step for feature extracting, while
Deng et.al. [60] incorporated them into a complex network that was used to cre-
ate a 3-day forecast of the electricity load of Ireland. Cai et.al. [61] constructed a
gated CNN unit, similar to LSTMs and employed it for load forecasting, and Kim
et.al. [62] used CNNs together with LSTMs. All these studies show that, with the
application of convolutional networks, improvements in STLF are possible. Kuo
et.al. [63] compared different machine learning methods for electricity load forecast-
ing, including a convolutional network. Their results show that proper forecasts for
more than 24 hours can be produced by machine learning methods like tree-based
regression, ANNs, CNNs, and LSTMs. A comparison has shown that the CNN pro-
duces the most accurate forecasts. The dataset the authors used was of a larger
aggregation level than used in this thesis. Their results, however, conform with
the experience gained from working with the dataset from Ireland and confirm the
forecasting capability of convolutional neural networks.

In summary, it can be said that research interest in forecasting electricity loads has
only started increasing recently, due to the changes the energy sector is undergoing
right now. Therefore, the amount of publications concerning this topic is still rather
sparse and the research has naturally been applying well-established methods first.
In the last few years, machine learning methods gained more attention and have
since been outperforming statistical methods. For the author of this thesis, the
next logical step seemed to be applying convolutional neural networks to the task of
STLF, which is a novel approach, as a survey of the existing literature suggests that
it has not been tried before. Since then, a few publications concerning electricity
load forecasting utilising CNNs have been published and support the effectiveness
of this method.

14

3 Methods

In recent years, different, intriguing applications of machine learning models drew
the attention of the interested public to this research field. However, machine learn-
ing models have already been investigated for decades by researchers who laid the
foundation for the development of models which are, for example, able to defeat
the world champion in "Go" [64]; can be used in smart-phone apps for image-based
plant identification [65]; or operate autonomous driving vehicles [66]. The potential
machine learning models offer for data-processing is understood and more and more
areas of application are arising.
Historically, image processing was one of the first applications of machine learning
models and has since been thoroughly studied. Much of the progress in the research
area has been driven by the development of increasingly accurate models for image
classification, object detection and so forth. However, machine learning techniques
and models are not in any way limited to the application to two-dimensional data.
As a result of advancing digitisation and digital transformation in the industrial sec-
tor and also in many areas of daily life, the amount of digitally available information
is constantly increasing. This opens up opportunities for processing time series with
machine learning methods, as much of the information is time-dependent. Typical
applications are monitoring of machines, e.g. in an industrial setting in order to
recognise wear or increase reliability and efficiency, and the analysis and prediction
of energy flows in order grant grid stability and plan machine schedules. In com-
parison to processing two-dimensional data, the development of machine learning
models for time series is still in its infancy.
The research conducted during the course of this thesis is concerned with the pos-
sibilities of predicting time series using machine learning models. The time se-
ries used in this work are electricity loads of residential households. The pre-
dictions of the electricity consumption are intended to facilitate the optimal pro-
duction and allocation of electrical and thermal energy in a power supply sys-
tem.

This chapter initially describes the evolution and working principles of neural net-
works - the best known machine learning model - in 3.1. First, the biological inspira-
tion of neural networks is highlighted in 3.1.1, and then their development from the
perceptron in 3.1.2 to the deep neural networks in 3.1.3 is traced. In addition, the

15

3 Methods

training algorithm of neural networks is outlined in 3.1.4 and convolutional neural
networks, which are a specialised type of neural networks, are discussed in 3.1.6.
Afterwards, further, established machine learning methods in the field of time series
forecasting are introduced in 3.2. Firstly, 3.2.1 introduces several regression models.
Secondly, recurrent neural networks are discussed in 3.2.2, before tree-based models
are presented in 3.2.3.
Finally, the application of the previously presented methods on time series forecast-
ing are discussed in 3.3.

3.1 Neural Networks

Artificial neural networks are a powerful machine learning model that has been
applied to a multitude of tasks. Neural network models became hugely popular in
the last two decades, in particular, with the increase in available computing power
and the simultaneous decrease in the cost of the same. The most prevalent tasks
for those models are classification and regression, the models are, however, also
applied to transcription, machine translation, anomaly detection, de-noising, and
many more. [67]

In the following, the single layer perceptron as the first abstraction of a living neuron
and the development of that simple model to the deep neural network that is used to-
day is described. Additionally, the back-propagation algorithm that neural networks
are trained with is presented. Furthermore, the working principle and structure of
a convolutional neural network are discussed, as this network type is predominantly
used and analysed in the late part of this work.

3.1.1 Biological background

The artificial Neural Network (NN) used in Machine Learning are models based on
the nervous system of animals and humans, in particular on their brains. The com-
plexity of the brain naturally can not be represented by the models, but the attempt
to reproduce the processes of the brain was the starting point of the research into
artificial neural networks. Therefore, a brief summary of the information processing
in the brain follows.

The central nervous system consists of the brain, the different sensory systems, and
the motorical system. Most of the information processing takes place in the brain
while only some pre-processing happens outside of the brain, e.g. in the retina.
The most integral part of the nervous systems are the neurons. There are roughly
1011 neurons in the human brain. A neuron is a cell that accumulates and transmits

16

3.1 Neural Networks

Figure 3.1: Structure of a prototypical biological neuron. Crucial parts of the neu-
ron are annotated. The neurons are electrically interconnected by their
synapses and can transport information through electrical signals. [68]

electrical activity. The prototypical neuron and its components are shown in figure
3.1. The axons are the fixed paths through which neurons interact. The axon of
one neuron with its terminal buttons leads to the dendrites of other neurons. The
gaps between them are only a few nanometres and are called synapses. An average
neuron of an adult has between 1.000 and 10.000 synapses. The communication
between the neurons works mostly through neurotransmitters. The change of the
electrical potential is accumulated in the cell body. When it reaches a threshold,
it is again transmitted through neurotransmitters by the terminal buttons to other
cells and changes their electrical potential. In addition to these chemical synapses,
there are also electrical synapses that conduct the electrical nerve impulses directly
through gap junctions. They are mostly found in neural systems that require a fast
transmission speed, like reflexes for instance. [68, 69]

3.1.2 Perceptron

In 1943, McCulloch & Pitts [70] were the first to propose a mathematical model
for an artificial neuron. They described a neuron as a unit with an arbitrary number
of inputs N , a threshold θ, an inhibitory input i, and a binary output. The output
y of the unit is calculated by

y =

1 if
N∑
k=0

xk > θ and i = 0

0 otherwise
(3.1)

and represents a unit step function or Heaviside step function that is shifted by θ.
With this, they tried to mimic how a single neuron in the brain works, it is either
activated or not. With their model, it is already possible to implement most boolean

17

3 Methods

functions. However, the parameters of their network had to be designed manually.

3.1.2.1 Single Layer Perceptron

Rosenblatt [71] extended that concept further and allowed for adaptation of the
neurons during a learning process based on the idea of the plasticity of neurons
suggested by Hebb [72]. The result was the Single Layer Perceptron (SLP), which
is the basis of all modern neural networks. The SLP corresponds to a binary model
that can separate two linearly separable classes. The output y for an input vector
x of this artificial neuron is

y(x) = σ
(
wTx+ b

)
(3.2)

with the bias b and the non-linear activation function

σ(a) =
{

0, a ≥ 0
1, a < 0

. (3.3)

The values of the weight vector w are changed during training according to the
so-called delta rule:

wnew
i = wold

i + ∆w (3.4)
with ∆wj = η(t− y)xj . (3.5)

η denotes the learning rate, which is typically between 0 and 1, and t is the desired
output of the neuron. Rosenblatt proved that the weights will always converge to
the correct network weights if a solution exists when using his learning rule for the
perceptron. [71, 73, 74]

The SLP, however, is inherently limited due to its incapability to describe non-
linearly separable classification problems, for example the XOR function, as was first
shown by Minsky and Papert [75]. The transfer of the known learning rule to more
complex programme architectures proved to be non-trivial.

3.1.2.2 Multi Layer Perceptron

The development of the error back-propagation (see section 3.1.4) and the Multi
Layer Perceptron (MLP) in the 1980s ignited the interest of the scientific commu-
nity in machine learning again.
A MLP consists of several artificial neurons that are organised into layers. It is

18

3.1 Neural Networks

able to thereby perform binary classification tasks on datasets which are not lin-
early separable. It can be shown that all boolean functions, no matter the number
of inputs, can be represented by a combination of neurons organised in only two
layers. Using logical equivalences, the function is divided into several linearly sepa-
rable boolean functions that are represented by the neurons of the first layer. The
neurons in the second layer recombine those functions to the desired boolean func-
tion.

A MLP can be best described as a directed graph. Its nodes are organised into layers.
The nodes of one layer are only connected to the nodes in the next layer. Usually,
the nodes are fully-connected, which means all nodes in one layer are connected to
all nodes in the consecutive layer. The first layer of the MLP is the input layer.
It receives the input and therefore has as many nodes as input values. Inputs can
be for example measured values or extracted features. A feature is a numeric value
or a vector of values which represents a property of the object about which the
model is to make a prediction or analysis. Features are often engineered in such way
that they contain a maximum of information, so the dimension of the input remains
small. The output layer is the last layer of the MLP and returns the calculated
result. There can be more than one node in the output layer. All edges of the graph
are given a trainable weight.
There can be an arbitrary number of additional nodes organised into several layers
between the input and the output layer. Those nodes are called hidden as they are
not visible to or accessible by external systems. The hidden nodes and the output
nodes consist of the same artificial neuron as the SLP, hence the name Multi Layer
Perceptron (MLP). That also means that calculations take place only in those nodes,
whereas no processing happens at the input nodes, as their only task is to introduce
the input vector to the graph. [68, 76]

3.1.3 From MLPs to Deep Neural Networks

A fully-connected feed-forward neural network is a more general form of the multi-
layer perceptron. The neurons are fully-connected, just as they are in a MLP. The
significant difference, however, is the activation function of the neurons. In contrast
to SLPs and MLPs, which per definition have the Heaviside step function as activa-
tion function, the neurons of neural networks can use any continuous, differentiable
function. When non-linear functions are used as activation functions, the network
can represent non-linear correlations between its input and output more easily. The
differentiability is a crucial property of a neuron’s activation function, as it allows
for the neural network to be trained with the back-propagation algorithm (details
in section 3.1.4).

19

3 Methods

Typical activation functions are:

• tanh f(x) = tanh(x) = ex−e−x

ex+e−x

• sigmoid f(x) = 1
1+e−x

• softsign f(x) = x
1+|x|

• Rectified Linear Unit (ReLU) f(x) =
{

0 for x ≤ 0
x for x > 0

• Leaky ReLU f(x) =
{

0.01x for x ≤ 0
x for x > 0

The ReLU and Leaky ReLU are presented here, as they have proven very effective
although they are not differentiable at x = 0. They can, however, be used in neural
networks because software implementations for neural network training usually only
use the one-sided derivatives, which exist for both functions. The introduced inac-
curacy may be justified by understanding that the training on a digital computer is
subjected to numerical errors anyway.

(a) tanh (b) sigmoid (c) softsign

(d) ReLU (e) leaky ReLU

Figure 3.2: (a) to (e) show plots of commonly used activation functions in neural
networks.

In addition to the inputs from other nodes, each neuron of a neural network possesses
a bias input. The bias input is always present and its value adapts during the
training. It can be interpreted as an additional, constantly active input with the
value xB = +1 that is connected to the neuron j of the layer l with a trainable
weight b(l)

j . Hence, a change of the bias input of a neuron corresponds to a shift of

20

3.1 Neural Networks

its activation function. Thus, the bias defines the initial activation of the neuron
when no inputs are applied. It is a critical feature, as it is crucial for an effective
error back-propagation (more in sec. 3.1.4), and therefore for an effective training.
The bias ensures that the activation of a neuron has such a magnitude that the
gradient of the activation function is not vanishing and the back-propagation can be
carried out effectively. [77, 68, 76]

The computation of the result of a neural network is carried out layer-wise from the
input layer l = 0 to the output layer l = L. At each neuron of the layer (l + 1), the
total excitation a(l+1)

j is calculated as a weighted sum of the outputs of the previous
layer l. Then, by applying the activation function fact, the output of the neuron j
is computed.
For the total excitation, that gives:

a
(l+1)
j =

M(l)∑
i=1

w
(l+1)
ij y

(l)
i + b

(l+1)
j (3.6)

and for the output of the neuron j in layer (l + 1):

y
(l+1)
j = fact

(
a

(l+1)
j

)
(3.7)

w
(l+1)
ij represents the weight of the connection from neuron i in layer l to neuron j

in layer (l + 1); M (l) the number of neurons in layer l; b(l)
j the bias weight of the

neuron j in layer l, with 0 ≤ j ≤M (l), l = 0, 1, . . . , L.

Those equations can also be represented as a matrix multiplication:

W (l+1) =
(
w

(l+1)
ij

)T
(3.8)

y(l+1) = fact
(
W (l+1)y(l)

)
(3.9)

The bias weight is integrated into the weight matrixW (l+1).

Thus, a neural network is a non-linear function from a set of input variables to a set
of output variables controlled by the matrix W of adjustable parameters.
An exemplary network is shown in figure 3.3. [77, 76]

Based on the presented formalism, the activation of every neuron in a neural network
of an arbitrary number of layers can be calculated. This allows for the development of
deep neural networks consisting of a multitude of hidden layers.

21

3 Methods

Figure 3.3: A very simple fully-connected neural network with one layer of hidden
neurons. The activation functions of the hidden neurons and of the output
neuron are differentiable. Every neuron of a layer, that is not part of the
input layer, is connected to every neuron of the previous layer, hence
fully-connected. Each connection possesses a trainable weight.

3.1.4 Training a Neural Network via Back-Propagation

For the human brain, learning means it is adapting its structure and modus operandi
based on experiences had. When a human learns something, a stimulus of some kind
is necessary. This can either be an external stimulus, which needs to be identified,
or the feedback from an executed action. For the brain to learn, several similar
stimuli are necessary, including the errors made in the identification or execution.
Based on those errors, the brain adapts and eventually learns to master the assigned
task. The tasks can be anything from learning to speak to identifying tastes and
mastering a new motor function.
During learning, the connections between the neurons and the rate of firing of the
neurons are adapted in such a way that the brain is able to grasp and represent the
correlations between its inputs and between the inputs and outputs.

Artificial neural networks are less complex than the brain. In contrast to the brain,
in NNs the neurons only have forward connections and the only trainable parameters
are the weights wij between the neurons.
Before the training of a NN starts, the network structure is defined and the net-
work is initialised with random weights. During the training, which corresponds
to the learning process of the brain, the weights of the connections are adapted
based on the error between the desired and the computed output of the network.
That process is repeated iteratively until the network is able to produce the desired
output.

22

3.1 Neural Networks

Hence, a cost function or loss function that measures the error between the output
o of the network and the target t needs to be specified. Based on that error, the
weights are adapted. Depending on the learning task, different cost functions are
applied. The most common ones are:

• mean squared error (MSE)

• mean absolute error (MAE)

• mean absolute percentage error (MAPE)

• cross entropy or log loss

• Kullback Leibler Divergence (KL Divergence)

The first three loss functions are usually applied to regression problems, the latter
two to classification problems. [67]

The adjustments made during the training of the NN are based on the error of the
cost function. Typically, the error back-propagation algorithm is used to adapt the
weights of the NN. It is similar to the delta rule, for SLP presented in section 3.1.2.1 .
The idea is to present an input vector yin to the NN, compute the output o = y(L),
and calculate the error ε with the cost function. When using, for example, the MSE
as cost function, that means:

εMSE = (t− o)2 =
M(L)∑
i=1

(ti − oi)2 (3.10)

=
M(L)∑
i=1

(
ti − y(L)

i

)2
(3.11)

The error of the loss function is then back-propagated starting from the output layer
through the entire network towards the input layer. During the back-propagation,
the trainable weights are adjusted layer-wise in order to reduce the error. The most
common optimisation algorithm for training neural networks is the gradient descent.
It adjusts the weight as following:

w
(l)
ij ← w

(l)
ij − η

∂ε

∂w
(l)
ij

= w
(l)
ij + ∆w(l)

ij (3.12)

η indicates the step size or learning rate, which has to be set manually.

23

3 Methods

The gradient of the error with respect to the weight w(l)
ij in the layer l computes for

one training sample (yin, t) as follows. In (3.14) it is assumed that the cost function
is still the MSE:

∂ε

∂w
(l)
ij

= ∂ε

∂y
(l)
j

∂y
(l)
j

∂a
(l)
j

∂a
(l)
j

∂w
(l)
ij

(3.13)

= ∂

∂y
(l)
j

(∑
i

(
ti − y(L)

i

)2
)

∂

∂a
(l)
j

fact
(
a

(l)
j

) ∂

∂w
(l)
ij

(∑
i

w
(l)
ij y

(l−1)
i − b(l)

j

)
(3.14)

To facilitate the representation of the derivative of the cost function, the gradient
in the next step is calculated for a weight in the output layer L. Naturally, the
calculation is possible for any neuron in the hidden layers by applying the chain
rule.

∂ε

∂w
(L)
ij

= −2
(
ti − y(L)

i

) ∂fact
(
a

(L)
j

)
∂a

(L)
j

y
(L−1)
i (3.15)

That means the correction term ∆w(l)
ij in (3.12) can generally be written as

∆w(l)
ij = η

∂ε

∂y
(l)
j

∂y
(l)
j

∂a
(l)
j

y
(l−1)
i (3.16)

and for weights in the output layer when employing the MSE as cost function it
simplifies to

∆w(L)
ij = −2η

(
ti − y(L)

i

)
f ′act

(
a

(L)
j

)
y

(L−1)
i . (3.17)

Often, the correction term is presented in the style of the delta rule (see (3.4)) to
emphasise their similarity:

∆w(l)
ij = ηδ

(l)
j y

(l−1)
i (3.18)

with δ
(l)
j = ∂ε

∂y
(l)
j

∂y
(l)
j

∂a
(l)
j

(3.19)

In (3.13) it can be seen why it is necessary that the cost function and the activation
funcation are differentiable. Additionally, it is important that their derivatives do
not vanish when a minimum of the cost function has not been reached yet.
With the Heaviside step function as activation function, error back-propagation can-
not be successfully applied as its derivative is either zero or does not exist. Therefore,
back-propagation is not suitable for SLPs and MLPs. [76]

24

3.1 Neural Networks

The training of neural networks is executed iteratively. One needs a whole set of
training samples, and those samples are presented one after another to the network.
Mainly, the order of the samples is random; they can, however, also have a specific
order. After each training sample, a correction term for every weight of the network
is computed according to (3.16).
If those terms are added to the weights directly afterwards, the type of training is
called stochastic gradient descent or online training, because each sample gives a
noisy estimate of the average gradient over all examples. The next training sample
is then applied to the network with the newly adapted weights. Besides the online
training, there is the batch training, which represents another variation of the gra-
dient descent.
Some authors distinguish between a batch and a mini-batch, with a batch including
all training samples and, therefore, having the same size as the training set, whereas
a mini-batch is smaller than the training set and contains only a certain number of
samples taken from the training set. In this work, mini-batches are simply referred
to as batches.
For the batch training, the training set is divided into batches. A batch can include
1 to N samples, with N representing the total number of training samples. For
each sample of the batch, the correction terms are calculated and saved. After all
samples of a batch have been presented to the exact same network and all correction
terms are determined, the average correction term for each weight is calculated and
then applied to the weights. The errors of the next batch are then computed using
the updated NN. With a batch size of one, the batch training equals the online
training. [68, 78]
Both training methods have their advantages and disadvantages. Online training
is often much faster. Additionally, the estimate of the gradient using only one
sample is noisier than using a whole batch. Noise during the training can be
desired in order to explore different minima of the cost function. In contrast to
online training, the gradient is less noisy when applying batch training. Thus,
the NN converges better as less fluctuations are present. Furthermore, by remov-
ing the noise in the data, sometimes a better generalisation can be reached. All
these factors have to be taken into account when the size of the batches is deter-
mined. [79, 68]

After computing the error and correction term of each training sample, the network
is typically not trained very well yet, no matter the training method. For that reason,
the network is trained using the training set several times successively. Each training
cycle is called an epoch. Depending on the learning task, the number of epochs nec-
essary to achieve good results varies. [68] A neural network can barely be trained in
a way that it reaches the global minimum of the cost function, as typically numerous
stationary points and inequivalent minima of the cost function exist. The training

25

3 Methods

result depends strongly on the initial network parameters and the training method.
It is, however, not necessary to find the global minimum. The goal of training is
usually to reach a sufficiently good local minimum. [77]

In addition to the online training and batch training, various variations of the gra-
dient descent exist that try to improve and speed up the training process. They all
use the back-propagated error of the weight, but calculate the correction term w

(l)
ij

differently.
One of the biggest challenges for training is to find the most effective learning rate
η, which is not too large in order to ensure convergence, but still large enough for
the weights to converge efficiently. Another key challenge is to minimise the highly
non-convex error function. The best established gradient descent optimisation algo-
rithms besides the stochastic gradient descent and the mini-batch gradient descent
are [77, 80]:

• gradient descent using momentum [81]

• Nesterov accelerated gradient descent [82, 83]

• Adagrad [84]

• Adadelta [85]

• RMSprop [86]

• Adam [87]

• Nadam [88]

• AMSGrad [89]

The gradient descent using momentum adds a fraction γ of the previous correc-
tion term to the current correction term. Therefore, convergence can be reached
faster:

∆w(l)
ij (t+ 1) = ηδ

(l)
j y

(l−1)
i + γ∆w(l)

ij (t) (3.20)

The Nesterov accelerated gradient descent uses momentum as well. The order of cal-
culating the gradient and applying the momentum term, however, differs. Instead of
calculating the gradient of the error function with the current weights w(l)

ij and then
adding it together with the momentum term, the momentum term is first added to
the weights and the gradient correction term is calculated afterwards. Poor updates
of the correction terms can thereby be avoided. The Nesterov accelerated gradient
descent is more robust and converges faster in convex regions of the error function.

26

3.1 Neural Networks

The optimisation algorithm based on adaptive moment estimation (Adam) com-
putes an adaptive learning rate for each parameter (similar to Adagrad). In addi-
tion, it uses exponentially decaying averages of the first and second order momentum
terms to obtain the correction terms.
The Nesterov-Accelerated Adam (Nadam) adds, as the name suggests, the Nesterov-
momentum into the Adam algorithm. [80]

All the described methods in this section represent or apply to supervised learning.
Supervised learning means that for each sample, the desired output is known and
that the adoption of the weights takes place on the basis of the error between desired
output and computed output of the model.
There are also other categories of training, for example unsupervised training [78, 90],
which are not discussed in this thesis.

3.1.5 Network Structure Selection

The crucial first step when applying a neural network is to choose a network archi-
tecture that can deliver good results for the task on hand. That means the network
should allow for low errors while not offering too many trainable weights. The more
weights a network contains and the deeper it is, the longer the training takes, and
the more challenging it is.

First, the term "layer" should be defined more specifically, as there are different
interpretations of it in the literature. In section 3.1.2.2, hidden units (or hidden
neurons) were already defined as units that cannot be reached or interacted with
from the outside. Moreover, it was said that the units are organised into layers. The
terminology for feed-forward neural networks used throughout this thesis from here
on does not count the layers of units. Instead, it counts the number of layers of
trainable weights. For example, a network that consists of one layer with N input
units and one layer with M outputs units is called a one-layer-network as it has one
layer of weights in between the units. That layer has N inputs and M outputs. The
network shown in figure 3.3 therefore represents a two-layer-network.
As the weights are the only trainable variables of an artificial neural network, the in-
formation gained during training is solely stored in them. This definition of a layer is
therefore consistent with the information storage within a NN.

When designing the architecture of a neural network, one has to make several crucial
choices. The only inevitable parameters of the NN are the number of input neurons
and the number of output neurons, everything else is variable.
How deep or shallow the network is going to be, meaning of how many layers it
consists, must be decided. Then, one has to decide for each layer how many in- and

27

3 Methods

outputs it has. That decision determines the number of trainable variables of the
network. In addition, the type of activation function used in the neurons has to be
chosen. It is even possible to use different activation functions for different neurons
or layers.

The properties of NNs for approximating different functions have been extensively
studied. Thereby, it was proven that two-layer neural networks can approximate
every logical function [91], every non-linear function [92], and every classification [93]
to arbitrary accuracy when the number of hidden units chosen is large enough.
Neural networks are therefore universal approximators.

Even though a shallow two-layer network is theoretically sufficient for most problems,
it does not mean it is the most efficient network structure for the given problem.
Deep neural networks, which consist of several hidden layers, can offer very effective
solutions due to their hierarchical structure. They can often achieve the same ap-
proximation accuracy as shallow networks with less nodes. It is desirable to have the
least amount of artificial neurons possible because the training of a smaller network
requires less computational resources.
The challenge with deep neural networks on the other hand is that it is more diffi-
cult to train them properly. The reason being that is the error back-propagation. In
order to calculate the correction term for a weight in an early layer of a deep neural
network, the error has to be back-propagated from the output through several lay-
ers. At each neuron on the way, the activation function and a multiplication with a
weight vector are applied. That can lead to the vanishing gradient problem, which
means that practically no information about the error reaches the early layers and
those layers, therefore, can not be trained effectively. The reason for that is that
the error term of an early layer (see (3.13)) includes the derivative of the activation
function several times, once for every consecutive layer, due to the chain rule. Typ-
ical activation functions often only exhibit small values for their derivative. Thus,
the back-propagated error gets smaller with each layer, which means the NN has
to be trained with more samples in order to train the weights of the early layers
effectively.
Some methods that ensure effective training and lessen the error reduction during
back-propagation of deep neural networks, e.g. batch-normalisation or residual net-
works have since evolved. [77, 76]
Hence, it is a fine line between having a network structure that is too deep or too
shallow, and the advantages and disadvantages of additional layers should be con-
sidered carefully.

The activation function of the output neurons is a parameter with only limited
choices for the user. It is already determined by the nature of the data and the
assumed distribution. For standard regression problems, the activation function

28

3.1 Neural Networks

should be the identity. For binary classification problems, the sigmoid function
is usually used, and for a multi-class classification problem, the softmax func-
tion. [77]

Further consideration has to be given to the number of trainable parameters in a
neural network. It is not reasonable to have too many trainable weights in a network.
When there are too many weights compared to the amount of training samples, the
network potentially memorises the training samples. The goal of machine learning
algorithms, in particular neural networks, is to learn generalising and not to purely
learn the existing data. By changing the weights of the network in order to minimise
the cost function for the training samples, it is assumed thereby that the cost func-
tion for unknown samples, that are not used for training, is also reducing. Hence,
the NN should be able to properly process unseen samples that originate from the
same source. Therefore, the available samples are usually split into a training, a
test, and sometimes a validation set.
The test set is used to evaluate the model performance after the training is com-
pleted. A large performance discrepancy between training and test set indicates
that the sought generalisation property of the model was not accomplished.
The validation set is used to inspect the training progress during training. When
the error of the training set is still decreasing with progressing training, how-
ever, the error of the validation set is constant or increasing, over-fitting occurs
and the training should be terminated. Over-fitting describes the process when
an estimator, due to its high capacity of trainable variables, memorises its train-
ing samples instead of finding underlying patterns and correlations. Typically, a
model that was over-fitted exhibits a very low error on its training samples, but
a large error on unseen samples from the validation or test set. In order to avoid
over-fitting, the number of trainable weights of a model chosen should not be too
large. [77, 67, 76, 78]

3.1.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), in the way they are used today, were first
introduced by LeCun et al. [94] for zip code recognition. Since then, they have
been further developed and are now the standard for image and pattern recognition.
They have also been successfully applied in other domains, for example, for object
tracking, scene labelling, text detection and recognition, and many more.
The structure of the first CNNs was inspired by early findings about the visual
system. It is similar to the hierarchical arrangement of cells in the visual cortex
ventral pathway. [78, 13, 95]

29

3 Methods

Modern convolutional networks are almost exclusively applied to image process-
ing, particularly to image and pattern recognition. Hence, their input consists of
a two-dimensional array or, in case of a colour image, of three two-dimensional ar-
rays. Each pixel of the image corresponds to one value of the input array. The
following introduction into the working principles of CNNs focuses therefore on the
case of two-dimensional data, but can also be abstracted for the one-dimensional
case

A typical convolutional network is assembled with three different layer types: con-
volutional layers, sampling layers, and fully-connected layers.
A convolutional layer processes its input using kernels and produces a two-dimensional
feature map, sometimes also called an activation map. Each unit of the resulting
feature map is only computed from a local patch of the input array. In addition, all
units of the same feature map share the same trainable weights. Usually the number
of weights, and thus the number of input nodes each neuron is connected to, is much
smaller than the number of total inputs. This weight matrix is called kernel, filter,
or filter-bank. The spatial extent of those sparse connections is called the receptive
field. That means each value in the feature map represents only the subset of input
values within its receptive field (see fig. 3.4). Additionally, the neurons have the
same structure as the neurons of a fully-connected layer. A convolutional layer can
have more than one kernel and hence produce several differing feature maps at the
same time. The resulting feature maps are stacked together in the depth dimension
and form the output.
The convolutional operation in a neural network can be described with the follow-
ing function. Let F : Z2 → R be a discrete function which represents the two-
dimensional input data of a convolutional layer. Ωr = [−r, r]2 ∩ Z2 is a kernel of
the size (2r + 1) and w : Ωr → R the discrete weight matrix. The convolutional
operation ∗ can then for a neural network be defined as:

(F ∗ w) (p) =
∑

s+t=p
F (s)w(t) (3.21)

The reason for that architecture is that in images and similar array data, neigh-
bouring values are often highly correlated. They form patterns and motifs. Those
patterns, however, can occur in different locations of the input array. By applying a
filter to the whole input image, it can detect the same pattern in every part of the
image. That filtering operation is a discrete convolution of the input with the filter,
hence the name convolutional layer. The values of the feature map indicate where
in the input array the pattern associated with the kernel and similar patterns occur.

A pooling layer reduces the spatial dimensionality of its input using a pooling op-
eration. Examples of pooling operations are calculating the arithmetic mean or the

30

3.1 Neural Networks

Figure 3.4: The image illustrates the receptive field in a CNN on a small exemplary
convolutional layer. The two-dimensional input of the convolutional layer
is depicted in blue and the resulting feature map in green. The darker
area of the input represents the receptive field of the darker value of the
feature map when a 3x3 kernel is applied. The receptive fields increases
with every subsequent convolutional layer. [96]

maximum of several values. Each output node of a pooling layer is only connected
to a local two-dimensional patch of input nodes, similar to a convolutional layer.
In contrast to a convolutional layer, the inputs are not weighted. Depending on
the stride size, also called step size or increment, and the padding method, pooling
layers can reduce the dimensionality of its input. Another function of pooling layers
is to make the representation of the patterns invariant to small translations.
A fully-connected layer of a CNN has the same structure as the fully-connected
feed-forward layer discussed in section 3.1.3. [67, 78, 95]

The network architecture of a CNN is structured into stages. The first stage consists
of one or more convolutional layer(s) and a pooling layer. Several of those stages
are usually stacked in series. The last stage consists of several fully-connected lay-
ers. Those layers take the information from the last pooling layer, combine it, and
compute the final output. That can, for example, be the affiliation to the known
classes in case of a classification problem. The output layer for classifications con-
sists of as many neurons as classes and the activation function is usually a softmax
function. The values of each neuron correspond to the probability that the input
image belongs to the designated class. [67, 78]

As mentioned before, the concept of CNNs is based on the working principle of
the mammalian vision system. The first neuroscientific findings about that were
awarded with a Nobel prize in 1981 [97] and had a great influence on early deep
learning models.
The first convolutional layer of a CNN extracts only low-level features like edges,

31

3 Methods

corners, and slopes. Those are then, with each convolutional layer, combined into
more complex, higher-level features. Corners, edges, and slopes combine into shapes,
shapes form parts, and objects are assembled from parts. Even though a single out-
put neuron of a layer has only a limited receptive field, by using a deep architecture,
the number of pixels of the original input image each output neuron indirectly in-
teracts with increases with every layer. Eventually, due to the hierarchical feature
extraction, the neurons are connected with all pixels of the input image. The pool-
ing layers in between the convolutional layers serve two purposes. First, they allow
for small variances in location and appearance of the elements. That is particularly
important as the distances and angles between features in images of the same object
can vary. The second reason for the pooling layer is to reduce complexity of the NN
through dimension reduction, which, in return, decreases computational load during
training and the likelihood of over-fitting. [67, 78]

In a nutshell, three characteristics of a CNN distinguish CNNs from fully-connected
feed-forward networks: sparse interactions, parameter sharing, and equivariant rep-
resentations. It is those characteristics that makes them very suitable for image
processing.
In comparison to traditional NNs, where each input of a layer interacts with each
output, CNNs have a sparse interaction between the neurons. Furthermore, in con-
volutional layers, each output node of a feature map shares the same weights, in
contrast to fully-connected layers, where the weights are independent from each
other. Due to the shared parameters, the convolutional layers are equivariant to
translation of features in the input. They are, however, not equivariant to other
transformations as rotation or change in scale. Moreover, these three properties
reduce the computational and memory requirements of CNNs drastically in compar-
ison to fully-connected NNs, and improve efficiency because there are significantly
fewer trainable parameters in CNNs.
The training of CNNs, however, works in the same manner as described for fully-
connected NNs in section 3.1.4. [67, 78]

32

3.2 Established Machine Learning Methods for Forecasting

3.2 Established Machine Learning Methods for Forecasting

This section introduces some established machine learning methods for time series
forecasting. Most of them are subsequently applied to the forcast task in chapter
4. Firstly, three regression methods are described, followed by recurrent neural
networks. Finally, tree-based methods are discussed.

3.2.1 Regression Models

In the following, three linear regression models are introduced. Linear methods have
already been used for time-series forecasting and analysis for a long time, as they
can mostly be computed with a small computational cost.
The presented methods are amongst the most widely used approaches for forecast-
ing. [98] They are exponential smoothing, ridge regression, and ARIMA.

3.2.1.1 Exponential Smoothing

Forecasting with Exponential Smoothing was already proposed in the late 1950’s, but
is still successfully applied today. A time series forecast with Exponential Smoothing
consists of a weighted sum of historic values. The weights decay exponentially,
meaning more recent values have larger associated weights. A time-series forecast
for the time t can be written as:

yt = αyt−1 + α (1− α) yt−2 + α (1− α)2 yt−3 + · · · (3.22)

with 0 ≤ α ≤ 1. The parameter α describes the rate at which the weights decline and
is the only trainable parameter of the model. It is typically estimated by minimising
the sum of squared errors. In addition, a few extensions of exponential smoothing
exist: a seasonal exponential smoothing that can capture known seasonalities in the
data or a double exponential smoothing that can represent a trend in the data, for
example [98].

3.2.1.2 Ridge Regression

Linear Regression is an approach that models the relationship between a dependent
variable y and an explanatory variable x. If more than one explanatory variables

33

3 Methods

are used, it is called multiple linear regression. The equation of the linear regression
is given in its general form by:

y = Xβ + ε (3.23)

with y being the dependent variable, X the explanatory or independent variables,
ε the error term, and β the model coefficients.
The coefficients are usually estimated by applying the ordinary least square (OLS)
method. The estimated coefficients β̂ are the result of:

β̂ = argminβ ‖Y−Xβ‖2 (3.24)

Ridge Regression is a variation of the linear regression with an adjusted cost func-
tion containing a regularisation term. One problem when fitting a linear regression
model with several inputs is multicollinearity. That occurs when the input vari-
ables are correlated to each other to a certain extent, which is regularly the case
for machine learning applications. By introducing additional bias, large coefficients
are penalised, which makes the model more stable. The coefficients are estimated
according to

β̂ = argminβ
(
‖Y−Xβ‖2 + λ ‖β‖2

)
(3.25)

with λ being the penalty parameter or, respectively, the Lagrange multiplier for the
constraint. [99, 100]

3.2.1.3 ARIMA Models

The acronym ARIMA stands forAuto-Regressive Integrated Moving Average. ARIMA
models aim to model the time series by describing the autocorrelation in the series.
As the name suggests, ARIMA models consist of three different processes. It is a
combination of an auto-regressive model, a moving average model, and an integra-
tion.

An Auto-Regressive (AR) model forecasts the value yt of a time series as a linear
combination of past values of the time series. Hence, it is a regression of the variable
against itself. An AR model can be written as:

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (3.26)

with εt being the white noise at the time t and c a constant. The formula de-
scribes an AR(p), which means it includes lagged values up to the order p. In

34

3.2 Established Machine Learning Methods for Forecasting

order to represent a stationary time series, the parameters must fulfil some con-
straints, for an AR(2) model for example: −1 < φ2 < 1, φ1 + φ2 < 1, φ2 − φ1 <
1 [98].

AMoving Average (MA) model uses past forecast errors for modelling the time series,
rather than lagged values. An MA(q) model can be written as:

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (3.27)

where q represents the order of lagged errors that are included, c is a constant, εt
is white noise, and εt−i with i < t are the past forecast errors of the model at time
t − i. The εt−i, however, are not observed errors. They are deviations from the
original time series, if the value at time t − i was predicted with the existing MA
model [98].

ARIMA models should only be applied to stationary time series. A time series {yt}
is stationary if, for all s, the distribution of (yt, . . . , yt+s) does not depend on t,
which means the properties of the time series do not change with time. If a time
series is not stationary, it is differentiated d times until stationarity is achieved.
In the case of a discrete time series, differentiating is not possible. Therefore, the
time series is differenced, which means the difference between consecutive values is
computed [98].

When combining these three processes, one obtains the ARIMAmodel:

y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt (3.28)

where y′t is the d times differenced time series. The equation represents an ARIMA(p, d, q)
model, with p being the order of the auto-regressive part, q the order of the moving
average part, and d the degree differencing.
The parameters of ARIMA models are typically fitted using the Maximum Likeli-
hood Estimation, which estimates the parameters of a probability distribution by
maximising a likelihood function. A likelihood function is a function that uses the
parameters of the probability distribution as variables. By maximising the likeli-
hood function, the distribution parameters that are most probable for the employed
statistical model can be found. The fitted model can then be applied for time series
forecasting.

In a nutshell, autoregressive moving average (ARMA) methods compute the forecast
as a combination of a linear regression on lagged values of the time series, which
is the autoregressive part, and of a moving average of previous deviations from the
expectation value. The ARIMA algorithm works with the differentiated time series,
as stationariness, which is a requirement for the ARMA algorithm to work, can be
achieved by differentiating.

35

3 Methods

3.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks that are designed to deal
with sequential data. Typical sequential information would be, for example, speech,
text, and music. Typically, for this kind of data, the single data points are not
independent from each other and have a given order. In contrast to a fully-connected
feed-forward NN, which handles all input variables simultaneously, a RNN processes
only one variable at a time.

In a RNN, the computed output of a neuron is fed to the neuron(s) in the subsequent
layer and additionally back to itself. This feedback loop is called "internal state" and
acts as a memory for the neuron. Thus, the output of the neuron at a given time t
depends not only on the input at time t, but also on the internal state of the neuron
at time t and, thereby, on its previous inputs. Information about the previous inputs
and computations is kept in the internal state. Thereby, RNNs are better equipped
to capture temporal dependencies within the data than feed-forward NNs, due to
their design. [101, 78]
Recurrent networks are trained analogous to feed-forward networks using back-
propa-gation. Additionally, back-propagation through time is applied, which means
the feedback loops are unfolded for the whole sequence of input data and then trained
similarly to feed-forward networks (see fig. 3.5). In practice, however, RNNs effec-
tively make use of only the information from a few steps back during the training,
due to the vanishing gradient problem. The gradient, which determines the effect of
an input variable on the weight adoption, gets smaller with every passing through
the neuron, or, respectively, through the activation function. After a few passings,
the gradient is so small that it has hardly any influence on the training process any
more. [101, 68]

Figure 3.5: Structure of a one-neuron recurrent neural network. On the left side, the
feedback loop is visible, which feeds back the computed output of the
neuron as input for the next computation step. The right side represents
the unfolded network.

36

3.2 Established Machine Learning Methods for Forecasting

Several variations of recurrent networks exist. Some improve the vanishing gradi-
ent problem, others have special architectures adapted to the characteristic of data.
Well-established modifications are Gated Recurrent Units (GRUs) and Long Short-
Term Memories (LSTMs). The GRU and LSTM are units that replace the classic
neuron in the network. Both of them consist of a cell with regulators, called gates,
that control the change of the internal state and the flow of information in and
out of the cell without necessarily feeding the input through an activation function.
Thereby, the vanishing-gradient problem during the back-propagation is diminished
and long-term dependencies can be better represented. [102, 103]
Typical areas of application for RNNs and their variations are natural language pro-
cessing, machine translation, and time series prediction. [101, 102, 78]

3.2.3 Tree-based Models

Another successfully applied method for time series forecasting is the tree-based
regression. The tree-based regression method is an ensemble learning technique
where the model consists of several decision trees. In the case of a regression, they
are called regression trees. The regression result is the aggregation of the output of
the individual trees.
A decision tree is a set of nodes and edges. Each node has two outgoing edges, called
children. The final nodes of the tree are called leaves and store the final results of
the trees. At the split nodes, a test function is applied to the input variables. The
test function is chosen in such a manner that it splits the samples in two optimal
sub-sets according to a split criterion (e.g. the gini impurity, the variance of the
sub-set, or the least-squares criterion). [104, 105]

There are two prevalent methods of generating an ensemble of regression trees -
bagging and boosting.
When bagging is applied, each prospective regression tree is built based on a sub-set
of size n of the training set. These sub-samples are called bootstraps and are cho-
sen randomly, with replacement from the dataset. Additionally, only a pre-defined
number mtry of randomly selected variables of the bootstraps are taken into account
for calculating the best possible split at each node. The aggregation is done by av-
eraging the output of all regression trees. An ensemble of trees trained with bagging
is called Random Forest. The advantage of the Random Forest regression is that
the trees are de-correlated and that due to the ensemble of trees, the method is
insensitive to noise less prone to over-fitting [106].
Boosting is an additive method of building the regression trees. The most com-
mon modification of boosting is gradient boosting. The single trees of the gradient
boosting algorithm are fitted to achieve the best split. The trees, however, are built

37

3 Methods

successively, based on the prediction error of the already existing ensemble of trees.
After training a regression tree, the tree is first scaled with a shrinkage parameter
η (similar to the learning rate in neural networks) and then added to the ensemble.
Lastly, the training dataset is evaluated on the updated ensemble model and and the
pseudo-residuals are calculated, which constitute the training data for the next tree.
The pseudo-residuals are the deviations between the prediction of the existing ensem-
ble of regression trees and the desired output. [107, 108]

3.3 Applying Machine Learning Methods to Time Series
Forecasting

This section describes how the above mentioned machine learning methods are ap-
plied and adapted for time series forecasting in this thesis. First, the application of
the variety of regression models to time series forecasting is discussed, followed by
the tree-based models. Finally, it is introduced how convolutional neural networks
are applied to predicting time series.

Generally, a dataset of measured, historic target values with their correspondent
input values is necessary for the training of any machine learning algorithm. The
input can consist of measured values or engineered features. The more data avail-
able, the better the results of the training usually are. Additionally, it is essential
that the dataset represents the whole spectrum of possible target and input values.
The dataset is then split into a training and test set, and, if desired, a validation set.
Each of the individual sets should represent the whole dataset as well as possible to
avoid biases.
As the names suggest, the training set is used to train the machine learning model
and the test set to evaluate the performance of the model after the training is com-
plete, using data the model has not processed before. Validation sets are often
used to measure the training progress, for cross-validation during the training, or
to adjust model parameters during the training. If the test set were to be used for
evaluation or regulation during the training process, the evaluation of the training
success with the test set would not be independent from the training process. It
could depict the training as more successful than it actually was.

3.3.1 Forecasting with Regression Methods

In in 3.2.1, several regression methods have been introduced. While exponential
smoothing and ARIMA are regression methods explicitly developed for time series

38

3.3 Applying Machine Learning Methods to Time Series Forecasting

data, the ridge regression is a more general approach that can be applied to data
of any dimensionality. ARIMA and exponential smoothing are both auto-regressive
methods, which means they compute a result based on preceding values of the time
series. A ridge regression model can, in principle, process any one-dimensional input
variable for the computation of the output. However, it makes hardly sense to use
the complete time series as input for a ridge regression forecast model, due to re-
dundancy in the relatively high-resolution data. Engineered features, that represent
the meaningful information of the historic time series, are instead utilised as input
for the ridge regression model. The forecast is then computed as linear combination
of those features. The crucial step in developing a regression model is, therefore, the
development of the input features.
Similarly to the ridge regression model, a fully-connected neural network can be em-
ployed as regression model as well. The key difference between a ridge-regression and
a neural network model, however, is that the computed forecast constitutes a non-
linear regression of the model inputs when applying a NN model. Both models can
either compute a univariate or a multivariate regression.

3.3.2 Forecasting with Tree-Based Models

Tree-based models are an established method for load forecasting and are regularly
deployed to that task [41, 42]. Their small computational cost and the explainability
of decision trees make that method a favourite of the industry.

Before an electricity load forecast can be created with a tree-based regression model,
the input variables have to be defined. Typically, the inputs of regression trees are
meaningful features rather than the entire load time series. The main reason for
this is that tree-based methods tend to dramatically over-fit, essentially memorising
the training data if too many variables are presented to the model. The effect is
amplified when the variables contain redundant information, which would be the
case if, for example, the load series of the past week was the input. Instead, engi-
neered features, which contain much condensed information, are used as input to the
regression tree. The feature selection and feature engineering are the most crucial
part in the development of a tree-based model for load time series prediction.
It is common practice to predict each data point individually and independently,
because some features are usually specific to a point in time. Predicting the electric-
ity load for the next 36 hours, as necessary in the project MAGGIE, means that 72
individual forecasts must be computed with the model. Due to the forecast horizon
of 36 hours, the load from the previous day at the same time of day is not available
for all predictions. Therefore, only loads from 48 hours ago and before can be used
for the feature engineering.

39

3 Methods

During the development of the tree regression models, several engineered features
have been tested. The features that eventually proved to be effective can be di-
vided into three groups: consumption features, weather features, and date features.
Details about feature-engineering and the used features can be found in section
4.2. Depending on the dataset, a selection of the features is used as input of the
model.

The algorithm used for training the regression model is XGBoost [108], which is short
for extreme gradient boosting. It is one of the most widely used classification and
regression frameworks, primarily due to the successes achieved in machine learning
competitions [109, 110, 111]. As the name indicates, the ensemble of regression trees
is generated using gradient boosting. Furthermore, the algorithm includes some
modifications to other tree-based methods that enhance the speed and effectiveness
of the training, for example awareness of sparse data and parallelisation of the tree
construction.
In order to obtain the best hyper parameters for the dataset on hand, a small
grid search of the most crucial hyper parameters is conducted as the first step of
the training. To evaluate the variations in the hyper parameters, a 4-fold cross
validation is performed and the best parameters are eventually applied to train
the final model on the complete training set. Without the cross-validation during
the training, hyper parameters representing a more complex model give the best
training result. However, that model would not be able to generalise well. Due to
its complex structures with numerous trainable parameters, it would only achieve
good results on the training data by essentially memorising the data. Through
the cross-validation, over-fitting can be detected and avoided. The squared error
is chosen as loss function and the other hyper parameters are set to their default
values.

3.3.3 Forecasting with Convolutional Neural Networks

In order to create electricity load forecasts with CNNs, the classic structure of a
Convolutional Neural Network with two-dimensional inputs and filter banks (as
described in section 3.1.6) is adapted for the one-dimensional case of a time series.
When forecasting electricity loads, the input is a one-dimensional time series. Hence,
the filter-banks and possible pooling operators are to be one-dimensional as well.
The last stage of the network is identical to the case of a two-dimensional input.
It consists of fully-connected layers that combine the information from the earlier
layers and compute the output.

40

3.3 Applying Machine Learning Methods to Time Series Forecasting

The convolutional function from sec 3.1.6 changes in the one-dimensional case to

(F ∗ w) (n) =
∑
s+t=n

F (s)w(t) (3.29)

with the weight function w : Ωr → R, w(i) = wi that represents the weight vector w
of a kernel Ωr = [−r, r] ∩ Z. F : Z→ R, F (i) = y

(l)
i represents the one-dimensional

input data from the previous layer of neurons l with y(l)
i being the output of the ith

neuron in layer l or, respectively, the ith value of the input series. This gives for the
total excitation of the jth value in layer (l + 1)

a
(l+1)
j =

(
F ∗ w(l+1)

)
(j) (3.30)

w(l+1) indicates here that the weight vector from layer (l+1) is used.

The basic idea for why time series forecasting should work just as well or better with
neural networks that include convolutional operations in comparison to established
methods and fully-connected NNs is that meaningful features are extracted by the
convolutional layer(s). If it were not for the convolutional layers, the information
contained in these features would either have to be extracted and fed to the model
manually, or would be omitted. In order to extract features from the time series, the
very first layer of the neural network is a one-dimensional convolution layer. The
first convolutional layer should operate directly on the time series, because other-
wise the sequential character and information of the data is lost. The benefits of a
convolutional layer are that dependencies and correlations of adjacent data points
are exploited and that the temporal developments of detected patterns can be ob-
served. An arbitrary number of further convolutional layers, or layers that conserve
the temporal dependencies of the data points, e.g. pooling layers, can be added
subsequently. The concluding part of the model consists of fully-connected layers.
The size and depth of the fully-connected part of the neural network model can
be chosen at will. The outputs from the convolutional part are treated as features,
which means they are handled alike and independently from each other. This results
in the loss of the temporal information. The extracted features are combined in the
fully-connected layers and basically a non-linear regression that eventually results in
the forecast is computed, which is yielded by the output layer of the NN. The whole
neural network is still called a convolutional neural network, as the crucial parts of
the network are the convolutional layers.
The kernels of a convolutional layer are able to identify patterns in its input series.
Those located patterns, represented in feature maps, are then either used as input
for further convolutional or pooling layers, or they constitute the input features of
the fully-connected layer(s). Based on the position, the intensity, frequency, and

41

3 Methods

combinations of those patterns, the neural network identifies the electricity con-
sumption behaviour and also changes in the behaviour in time. This information is
utilised for the computation of the prediction.
In contrast to fully-connected neural networks and other machine learning meth-
ods which rely on engineered features, the neural network extracts the signifi-
cant information of the time series itself, identifies hidden structures, and cre-
ates the forecast utilising this information. Naturally, external features can still
be added in order to further improve the forecast quality, for example weather
data.

Figure 3.6: The schema demonstrates the functional principle of a one-dimensional
CNN. It depicts a simple one-dimensional CNN with one convolutional
layer and without pooling layers and a single point output.

As the number of neurons in the output layer of a neural network, and therefore
the size of the output vector, can be chosen freely, two different ways of creating a
forecast with a CNN are possible.
The forecast for the complete forecast horizon can be created simultaneously by
setting the number of output neurons to the length h of the forecast horizon. That
means that the prediction is created directly from the set of input variables. The
second way to generate a forecast is iteratively. That means the value for only one
time step is predicted by the network. The predicted point is then appended to the
input time series and the first data point is cut off in order to maintain the shape
of the input time series. This procedure is repeated until h data points have been
predicted.

42

4 Results and Discussion

This chapter discusses the forecast results of the different machine learning methods
and presents the development of the novel forecasting model based on convolutional
neural networks in detail.
First, the used dataset is analysed and the division into the training, validation, and
test set is discussed. In the subsequent section, the features that are used for the dif-
ferent models are introduced and discussed. Thereafter, three linear forecast models
are trained in order to create a baseline for the machine learning models. Then,
fully-connected networks, recurrent networks and tree-based networks are applied
to the task of electricity load forecasting. The development of the tree-based model
is presented in detail. For the large remainder of this chapter, the development of
the CNN model is outlined. First, the model is developed from a simple structure
to a more complex structure using only the available dataset. Afterwards, several
external features are incorporated into the model and their influence is investigated
before the two models are combined. Finally, the performance of the different fore-
cast models are compared and a conclusion is drawn.

In order to evaluate and compare different machine learning models, an error mea-
sure must be chosen. For achieving the best forecast result, that error measure is also
applied as cost function during the training of the different models. The error mea-
sure used throughout this thesis is the mean squared error (MSE):

MSE = 1
N

N∑
i=1

(ti − oi)2 (4.1)

For all N time steps within the forecast horizon, ti describes the ith target value
and oi the corresponding output value of the model.
When applying the MSE, the deviation from the target value is squared, which
results in a strong emphasis being on large errors and outliers. They are undesired
because it is of particular importance to avoid large errors between the predicted
and actual electricity consumption. Small deviations can be compensated by the
energy system, by utilising the heat buffer and adapting the machine schedules
on short notice. Large deviations from the forecast, however, potentially cannot
be compensated, e.g. when the heat buffer state does not allow for a large heat
transfer. Moreover, it is possible that a large heat transfer from or into the heat

43

4 Results and Discussion

buffer compromises the further schedule of the energy system. Therefore, large
forecast errors should be avoided in the electricity forecasts, for which reason the
MSE is used as error measurement.

Additionally, the mean absolute percentage error (MAPE) is sometimes used as
well:

MAPE =
N∑
i=0

∣∣∣∣oi − titi

∣∣∣∣× 100 (4.2)

It describes the deviation between the forecast oi and the actual load ti as percentage
of the target. Therefore, the MAPE allows to better compare the errors of target
loads that exhibit a different magnitude.

The performance of all models is measured by computing a 72 point forecast with
the data available at the beginning of the forecast period. This implies that for the
last predicted data point, the earliest available consumption data is 36 hours old.
When, in the following, it is referred to the prediction error of a dataset, this
means that as many consecutive 36-hour forecasts have been computed as the
dataset and the model allow for, and the error of these single forecasts are aver-
aged.

4.1 Partitioning of the Datasets

This section discusses how the three datasets are split into a training, validation,
and test set and discusses why the division is done in this way. It also discusses the
different characteristics of the three sets and the disadvantages caused by the small
dataset. It is furthermore outlined from which data source the temperature data
originates.

Before a machine learning model is trained, the dataset is usually split into a training,
a validation, and a test set. The model is then trained on the training data. Dur-
ing the training process, the success of the training is measured with the validation
set. By doing this, over-fitting is recognised and the training can be terminated.
The model performance on the validation set is also used to evaluate changes in
hyper-parameters. The test set is eventually used to evaluate the success of the
development and the training of the model. As the model has neither processed the
training data before nor have the hyper-parameters of it been adjusted based on
the data in the test set, the evaluation of the final model with the test set offers an
unbiased result. When the performance is similar to the validation set, the machine
learning model has successfully learned to generalise.

44

4.1 Partitioning of the Datasets

Figure 4.1: Plot of the complete IRE350 dataset. It is obvious that the electricity
consumption varies strongly with the seasons. The largest load is reached
at Christmas 2009 and Christmas 2010. The colours indicate how the
dataset is split. The training set is depicted in darker blue, the test
set in a brighter blue, and the excluded Christmas Days are shown in a
transparent blue.

In order for the subsets to fulfil their respective tasks, each dataset must be repre-
sentative of the complete dataset. This implies that the range of input values and
the range of target values of the samples in the subset should be comparable to the
complete dataset. Furthermore, the distribution of samples in the sets should be
identical with the expected distribution of samples coming from the data source.
Successfully trained machine learning models are able to recognise and represent
underlying processes and correlations of the data source, which is not possible if
the distribution of the training set does not coincide with that of the data source.

The dataset from the CER Smart Meter trial includes electricity loads from mid-July
2009 until the end of the year 2010. In order to have an evenly distributed training
set in which no season or part of the year is under- or over-represented, the training
dataset consists of the load of exactly one whole year: from 14 June 2009, 00:30,
until 14 June 2010, 00:00 . The remaining data consists only of samples from half
a year. It is impossible to divide half a year of electricity loads into two unbiased
sets for the validation and testing. Therefore, creating a validation set is refrained
from. Instead, the remainder of the data from 14 June 2010, 00:30 until the end
of the year is consolidated to the test set. In case validation during the training

45

4 Results and Discussion

is necessary, the test set is used. During the development of the machine learning
models, however, it became apparent that none of the models is able to properly
predict the consumption for the Christmas days (24, 25, and 26 December). The
electricity consumption behaviour during Christmas differs significantly from the
rest of the year, as is illustrated in figure 4.2 . Therefore, the three Christmas
days of 2010 are not considered in the remainder of this thesis when evaluating the
model performance. In general, it should be possible for a machine learning model
to identify and correctly predict the consumption for Christmas, especially since
a feature to better identify the Christmas days can be created and passed on to
the model. The limiting factor for properly processing the Christmas days is the
limited amount of data. As the full dataset consists of less than two years of data, the
largest balanced training set consists of one year of data, as explained above. Hence,
the training set contains only one Christmas, which is insufficient for an effective
training of the model concerning recognising and predicting the Christmas days. In
that case, it is more promising to use a naïve model to predict the Christmas days.
Repeating the load from last year’s Christmas, for example, gives quite good results
and outperforms all tested machine learning models. It is symptomatic of machine
learning models trained on small datasets that they do not perform well on events of
the dataset that only occur once or very scarcely in training set, as too few differing
training samples of the same event are available. This does not enable the model to
learn to generalise.

(a) The load of 24 December
2010 and of two additional
days for comparison.

(b) The load of 25 December
2010 and of two additional
days for comparison.

(c) The load of 26 December
2010 and of two additional
days for comparison.

Figure 4.2: The figures show the consumption during Christmas 2010 of the IRE350
dataset. For comparison, the consumption of the same weekdays of the
two prior weeks is plotted as well. It is clearly recognisable that the
electricity consumption behaviour during Christmas differs from the rest
of the year, which seems logical because it is a widely celebrated holiday
of the year. The load curves of the Christmas days exhibit a different
shape and a higher daily mean.

46

4.1 Partitioning of the Datasets

The goal of this thesis is to provide a machine learning model that can be applied
for electricity load consumption. As briefly mentioned in section 1.2, one of the
constraints when creating forecasts for the energy market is that the feed-in into
and the consumption from the power grid must be announced to the power grid
operator on the day before, in the early afternoon. In order to calculate the machine
schedules for the different components of the energy system and, thereby, the feed-in
and consumption, the state of the energy system’s buffer storage must be known as
exactly as possible. Its state, in turn, depends on the previous consumption and
machine schedules. Hence, the load forecast needs not only be computed for 24
hours, but for around 36 hours. Therefore, the forecast horizon h used throughout
this thesis is h = 36h. The sampling rate of most data in the energy market is 15
minutes. The data from the CER Smart Meter Trial, however, is only available at a
30-minute sampling rate. For the data to remain coherent, the forecast is computed
with a 30-minute sampling rate, too, which means a forecast is comprised of 72 data
points.

All proposed models are tested on the three datasets of a varying aggregation level.
The sets consist of 15, 40, and 350 randomly selected households and, thereby, rep-
resents different areas of application: a small apartment building, a large apartment
building, and a whole city district. It is not certain, though, that the selected house-
holds are from the same part of the country. They can therefore experience different
external influences and consequently exhibit different behaviour. However, even the
inhabitants of apartments in the same building can have different social and eco-
nomic backgrounds, which leads to varying behaviour. The unknown location of the
single households should, hence, not constitute an issue, as different behaviour of
different tenants is to be expected.
The machine learning model that is developed should be applicable to the datasets
of all three aggregation levels, because one of the MAGGIE project goals is to create
an energy system that is scalable. When analysing the three datasets, one recognises
that the approximate daily consumption pattern remains similar, but the volatility
of the data increases drastically with a decreasing aggregation level. This has al-
ready been observed in figure 1.3. The larger the aggregation level, the smaller the
influence individual households and devices, and the smaller the influence of random
deviations by the residents from their regular behaviour. Electricity loads of large
aggregation levels are more well-behaved and can therefore be more easily analysed
and presumably also predicted. Therefore, three individual models are trained and
optimised for each dataset. At the end of this chapter, whether the models per-
form when they compute forecasts of diverging aggregation levels with respect to
the dataset they are trained on is analysed.

47

4 Results and Discussion

The electricity loads of the three datasets show a clear dependency on the seasons
(see fig. 4.1). The daily peak consumption and the daily load variance change with
the season. In order to analyse and pre-process the data, historical temperature
data from Met Éireann, Ireland’s National Meteorological Service is used [112].
Due to data privacy, the locations of the single households from which the used
aggregated datasets originates are unknown. According the Irish Social Science
Data Archive [16], which provides the CER Smart Meter Trial data, the data includes
homes from all over Ireland. The temperature data used was recorded by the weather
station "Phoenix Park" in Dublin. This station was chosen because 1.9 million people
live in the greater Dublin area, which is a large share of the total Irish population of
roughly five million people. The probability that a good share of the households that
account for the different aggregated datasets is from the Dublin area, and therefore
experience similar weather to the weather station, is large. The assumption that the
temperature data is approximately correct is supported by the fact that the Republic
of Ireland is about 70 000 km2 roughly the size of Bavaria. The temperature should,
in most occasions, not differ too much within the country. However, when analysing
the data and the results, on should keep in mind that the temperature set used is
not completely accurate for the aggregated datasets.

4.2 Feature Engineering

Many machine learning models use features as input variables instead of whole time
series in the case of one-dimensional data, or images in the case of two-dimensional
data. Engineering these features is an integral part of developing a successful ma-
chine learning model. In this section, all the engineered features that are used in
one of the models discussed hereafter are introduced and the reasoning in utilising
these features is explained.

The features can roughly be divided into groups based on: past electricity consump-
tion, environmental variables, and the date or time.
The consumption features contain information that is extracted from recent historic
loads. That means they represent the consumption of the last few days. The first
feature of this group is the load from exactly 48 hours before the time for which
a forecast is to be created. Additionally, past consumptions from one week, two
weeks, and three weeks ago are also used as features. The motivation for using these
features is that the load at a specific time of the day is most likely similar to the load
of the same time on a previous day, especially on the same day of the week. Without
any irregularities and changing external influences, the daily consumption patterns
repeat every seven days. The loads from 48 hours ago are utilised for computing
the forecast, because load values that are closer to the predicted load values are not

48

4.2 Feature Engineering

necessarily available for all time steps of the forecast. The forecast horizon in the
project MAGGIE is 36 hours which implies that the time difference between the
most recent measured load value and the last expected data point of the forecast
is 36 hours. Hence, the loads from 24 hours ago are not available for the complete
forecast horizon. Further consumption features are statistical key-performance in-
dicators from the last completely available day. They include the minimum and
maximum, the mean, the standard deviation, and the 0.25- and 0.75-percentiles.
The weather features contain information that is related to the weather. The am-
bient temperature has a presumably large influence on the electricity consumption.
In addition to the predicted temperature for the time and date to be predicted, the
temperatures three hours prior and thereafter are also provided, in order to identify
temperature trends. The reasoning for including the temperature is that a corre-
lation between the average daily consumption and the average daily temperature
is noticeable (see fig 4.3). That correlation is plausible because the colder the am-
bient temperature, the more probable it is that the residents spend time in their
apartments. Hence, they consume more energy by using electric devices in their
households.

Figure 4.3: The graph shows the daily average electricity consumption in blue and
the daily average temperature in red of the complete dataset. The y-
axis of the temperature is inverted. The temperature curve and the load
curve display a similar development, which indicates a negative correlation
between the two. Additionally, regular fluctuations in the load curve can
be seen that exhibit a seven day frequency, which stems from the difference
in consumption between weekdays and weekends.

49

4 Results and Discussion

Then, there are the date features, that offer information which is connected to the
date for which the forecast is computed. There are re-occurring cycles in the elec-
tricity consumption and the date features enable the models to place the date of
the forecast within these cycles. The existing cycles are the 24-hour daily cycle,
the seven-day weekly cycle and the 365-day yearly cycle. Information about the
existence of these cycles and the location of the value to be predicted within the
cycles is used for creating features. They include the hour of the day, the day of
the week, the day of the year, and the month of the year. It has already been
mentioned that there are differences between the average daily consumption pat-
tern of workdays and weekends. Therefore, an additional feature is created that
states whether the predicted value is on a weekend or a workday. Thus, this fea-
ture offers temporal context for the forecast computation. A similar consumption
behaviour to on weekends is observed on bank holidays. Therefore, a feature that
states whether the prediction is for a bank holiday is created as well. Furthermore,
the course of the sun on the corresponding day is computed and can be used to
determine the time of sunset and sunrise and the amount of daily sunshine hours.
They are created, as the necessity of electric lighting when the sun has set clearly
effects the electricity consumption. The course of the sun is calculated for the city of
Dublin and is used for the complete dataset, as no exact location of the consumers
is available.

In addition to the inclusion of the features into machine learning models, the for-
matting of the features matters for the success of the model as well. Therefore, in
the following, a short introduction to how features can be formatted is given.
Designed features usually have the form of a number or a vector. Categorical in-
formation, which means only a limited number of defined states exist, is usually
one-hot-encoded. A one-hot-encoded feature is presented to the machine learning
model as a vector whose length equals the amount of possible feature states. Each
entry is assigned to exactly one state, can only assume values of 0 and 1, and in-
dicates which state is active. Categorical information can also be integer-encoded.
That means an integer value is assigned to each state of the feature.
It is particularly important for neural networks that the features are one-hot en-
coded. There are two reasons why integer-encoding does not work well with neural
networks. On one hand, integer-encoding introduces an order to the states which
does not necessarily reflect the reality. Machine learning models can arrive at in-
correct assumptions due to that ordinality. On the other hand, integer-encoded
data cannot be processed straight-forward by a neural network. Assume there is a
categorical feature f , which can take three values: If those features were integer-
encoded, it could, for example, assume the values f ∈ {0, 1, 2}. And if it were
beneficial for a neuron to be activated when the variable has the value f = 1, it
would be impossible for that neuron to achieve that, because the activation function

50

4.3 Baseline models

of the neurons in neural networks are by extension threshold functions (see section
3.1.3). Having at least one additional neuron in the same layer and two neurons in
a subsequent layer would be necessary to utilise the feature f . When the feature is
one-hot encoded, which means, in that case, that it constitutes three input values
which can only assume values of 0 and 1, the feature can be directly used by any
neuron. The additional trainable weights generally have no negative impact on the
model performance as always only one of the one-hot inputs is non-zero at the same
time. However, it is important to ensure that each input is activated sufficiently
often so that all weights can be trained properly.

Only features that are actually included in one of the presented models are listed
here. In the course of the model developments, several other features were tested
as well, but in the end were not advantageous or were surpassed by the mentioned
features.

4.3 Baseline models

This section discusses the forecast performance of three linear baseline models: a
naïve model, the exponential smoothing model, and the linear regression model. All
models are trained on all three datasets. The corresponding forecast errors of the
models are depicted after discussing the details of the configuration of the model
and the training process.

A forecast model does not necessarily have to be extremely complex to generate
good forecasts. Simpler models have the advantage of being easily understood,
which leads to fewer misinterpretations and errors in the application of the mod-
els. Moreover, the computational complexity of training these models is often much
lower than with sophisticated machine learning models. Depending on the utili-
sation and the purpose of the model, it can be sufficient to rely on simple mod-
els.

Applying an ARIMA model to the task of predicting the 36 h electricity load is
refrained from, as no outstanding results are to be expected. Non-linear models, like
tree-based forecaster or neural networks, have by now superseded ARIMA models
when generating forecasts of high-resolution. ARIMA models struggle, on the one
hand, with recognising periodicities, and it can be expected that a fair amount of
effort must be invested into tuning these models, in order to enable them to properly
represent the daily average consumption with its two maxima in the morning and
evening. On the other hand, the forecast of an ARIMA model converges to the
mean load of the input when several time steps are predicted iteratively. This is

51

4 Results and Discussion

due to the auto-regressive nature of the model. As better results can be expected
with different methods and developing a proper model is very time-consuming, no
ARIMA models have been trained for the comparison of machine learning methods
for time series forecasting.

In the following, three simple forecast models for time series forecasting are intro-
duced and eventually applied to the forecasting task at hand. The dataset is divided
into a training and a test set, according to section 4.1 above. The evaluation of the
forecast is based exclusively on the test data.

4.3.1 Naïve Forecast

The first model that is discussed is the naïve forecast. The model simply assumes
that the electricity consumption of the desired day equals the consumption of the
previous day:

P (t) = P (t−∆t) (4.3)

with ∆t = 24h.
This is a reasonable assumption if only a rough prediction is required. The daily
consumption patterns resemble each other, in particular, when the aggregation level
of cumulated time series is sufficiently large. After all, humans are creatures of habit
and significant changes in behaviour are necessary to change the consumption, e.g.
due to extreme weather or vacation.
Alternatively, the consumption from the prior week can be used as well by applying
∆t = 168 h. That takes, on the one hand, deviations between the weekdays into
account, but, on the other hand, constitutes a sizeable time difference between the
model input and the forecast.

Table 4.1: The table shows the forecast errors achieved with the two naïve models
with different ∆t for all three datasets. The forecasts are relatively good
when taking the simplicity of the model into account.

MSE
∆t IRE15 IRE40 IRE350
24h 8.73 24.4 565
168h 8.64 22.6 469

The resulting forecast errors show that the rough predictions made by the naïve
model can already be used as an indicator for the consumption of the next day
or week. These models can be useful as a fall-back when other models fail. The
results also indicate that the consumption behaviour of the different days of the

52

4.3 Baseline models

week varies. This is the only explanation of why the model that takes the more
recent historic consumption values as predictions performs worse than the model
with ∆t = 168h.

4.3.2 Exponential Smoothing

Another model that is regularly used to predict trends in time series is Exponen-
tial Smoothing. It was already introduced in 3.2.1.1. The forecast, computed by
an exponential smoothing model, consists of the weighted sum of historic values
with exponentially decaying weights. When forecasting the electricity consumption,
which exhibits a periodic behaviour, the historic consumption values the forecast is
based on should reflect that periodicity. Therefore, only values that are 24 hours or
multiples of 24 hours in the past are utilised as historic values. Thus, the exponen-
tial smoothing model is basically a more sophisticated version of the naïve model
because it also takes the consumption of more than one previous day into account.
A variety of smoothing factors α have been evaluated. The forecast results corre-
spond to the α which generated the best forecasts.

Table 4.2: The table lists the forecast errors that are achieved by an exponential
smoothing model. The MSE values represent the most successful model
utilising the listed α for the respective dataset.

IRE15 IRE40 IRE350
MSE 16.4 49.1 2523
α 0.3 0.8 0.9

The resulting forecast errors of the exponential smoothing model suggest that this
method is not suitable for higher-resolution time series forecasting, as even the naïve
model performs better. That explains why exponential smoothing is mainly used for
calculating predictions of directly adjacent values [32, 33].

4.3.3 Ridge Regression

The Ridge Regression model is, in comparison to the previous two models, more
complex. The forecast is computed similarly to a multiple linear regression with
engineered features as input variables or, respectively, explanatory variables. The
only difference is the added regularisation term (details in sec. 3.2.1.2). Ridge regres-
sion is preferred over linear regression without regularisation and Lasso Regression,
because the preliminary tests using ridge regression have been the most promising.

53

4 Results and Discussion

The regression model is used in a way that it computes only one output value for
each set of explanatory input variables. Hence, in order to create a 36-hour predic-
tion, the model is executed 72 times with differing inputs. The calculation of the
used features is specific to the predicted point in time.
Two different versions of the ridge regression model are trained. They only differ in
which features are used as input. One model contains historic consumption values
and the predicted ambient temperature. This model is comparable to the exponen-
tial smoothing model - the main difference being that every historic input value has
its own designated, independent regression coefficient. The historic values used as
input features are the loads from 48 hours, one week, two weeks, three weeks, and
four weeks ago. The second version of the regression model employs more sophis-
ticated features as inputs. In addition to the historic consumption values and the
ambient temperature, the input also contains features with the information about
the day of the week, the hour of the day, and whether the predicted value is on
a weekend. Additionally, more ambient temperature values are included in order
to add context and the statistical features of the historic consumption values are
included. The statistical features and the format of the features are discussed in
detail in 4.2 .

Table 4.3: The table shows the forecast errors achieved with the two different ridge
regression models. They only differ in the utilised features.

MSE
input features IRE15 IRE40 IRE350
historic load 5.93 15.9 366
historic load & statistical features 5.86 16.1 372

The results show that the Ridge Regression model is able to compute considerably
better forecasts than the naïve approach. The forecast errors also show that the
addition of the statistical features does not necessarily improve the forecast quality.
Presumably, the information that is passed with the features can only be processed
poorly, since the scales and units of the included features differ from that of the
output.
Forecasting the energy load with a ridge regression model is, nevertheless, a valuable
approach, particularly because the computational load of training the model and
generating forecasts is small.

54

4.4 Fully-Connected Neural Network Models

4.4 Fully-Connected Neural Network Models

In this section, how forecasts can be computed using fully-connected neural net-
works is discussed and the forecast performances of the trained models are evalu-
ated.

It can not generally be assumed that a forecast can be represented as a linear combi-
nation of the engineered features. This limits the use of models which utilise linear
regression for computing their forecast. Therefore, a neural network model is ap-
plied in the following to perform a non-linear regression, in order to compute a load
prediction.
The model consists of a fully-connected neural network. The inputs of the model
are the same engineered features as used above for the Ridge Regression Model.
This means that the features contain some historic consumption values, statistical
measures of the historic consumption, the predicted ambient temperature, and in-
formation about the point in time for which the prediction is calculated. The used
network is the result of testing a variety of network structures with different num-
bers of layers and varying layer sizes. The architecture that performed the best is
applied and consists of four fully-connected layers. The layers have 50, 15, 8, and 1
output neurons respectively. The ReLU function is applied as an activation function
in all the neurons except the output neuron which utilises the identity as activation.
Figure 4.4 depicts the structure of the neural network. The 36-hour prediction is
generated the same way as for the regression model, which means point-wise. That
is due to the fact that the features change with the point in time for which the
forecast is computed.

Figure 4.4: This schematic depicts the network structure of the NN regression model
with four layers. The vertical lines represent the number of input or
,respectively, output neurons of each layer and the arrows represent the
weights. In this case all layers are fully-connected.

55

4 Results and Discussion

Similar to the regression model, several NN models are trained. The models differ
only in the number and type of input features; the network structure is identical. The
first model receives only the past consumption features and the ambient temperature
as input. The second model obtains the temperature values corresponding to the
past consumption features and information about whether the forecasted value is for
a weekend in addition. The third model, however, can make use of all the features
mentioned in section 4.2 .

Table 4.4: The table presents the forecast errors achieved with the fully-connected
neural network model. For each configuration, ten models have been
trained on each dataset. The listed errors represent the best model of
each configuration.

MSE
input features IRE15 IRE40 IRE350
historic loads 5.68 31.4 1528
historic loads & weekend 6.75 18.9 377
historic loads & weekend & statistical features 6.62 17.9 363

Using a fully-connected neural network in order to calculate a non-linear regression
of the features generates good forecast results. The more information the NN model
receives, generally the better the forecast. However, the improvements in comparison
to the ridge regression model in section 4.3.3 are only minor. The non-linear model
seems to be more capable of processing the information of the additional features,
because in contrast to the ridge regression model, the forecast improves with the
inclusion of more features. The NN model is, on the other hand, not able to make
as much use of the historic loads as the ridge regression model. The computational
load of training the NN model is considerably larger. When deciding between a
linear model and a fully-connected NN model for load forecasting, the advantages
and disadvantages of each model must be considered.

The results confirm that the most widely used machine learning model for time se-
ries forecasting presumably does not exploit the full potential that neural networks
can offer. This is one of the main reasons why a novel CNN model for time series
forecasting is being developed in the course of this work.
It has additionally also been tested whether a fully-connected neural network model
is able to compute an accurate forecast from the complete input series instead from
computing it from the engineered features. The forecast performance of the model,
however, was unsatisfactory which is why the approach has not been pursued fur-
ther.

56

4.5 Recurrent Neural Network Models

4.5 Recurrent Neural Network Models

This section shortly discusses how time series forecasting applying recurrent neural
networks works and why they are not a great tool for generating forecasts with a
large forecast horizon.

The previously discussed models have shown that the electricity load can be rea-
sonably well modelled using the bygone loads, because the load patterns of the days
resemble each other. It can also be assumed that, from the recent consumption,
indications for the next few hours can be derived. It seems therefore natural to
compute electricity predictions with recurrent neural networks (RNNs), as this type
of neural network is able to store and utilise past states of its units. The input
data is sequentially fed into and processed by the RNN. For each step, the state of
the recurrent units is updated and an output is generated, if desired. By feeding
measured loads into the RNN, the state of the units is updated until the input series
ends and a forecast is created. Then, predictions for any forecast horizon can be
computed iteratively.
The most recent advances in research applying RNNs has been achieved by LSTM
networks, which are neural networks with more complex recurrent units. LSTM
stands for Long Short-Term Memory. These units are more complex than a regular
recurrent neuron, as they possess an internal state, which is not effected by any
activation function, and several gates that adjust the internal state based on the
input or extract information from the state, using it for calculating the output of
the unit [113].

In the course of developing a forecast model for electricity data, the first neural
network models that were tested have been RNN models. Several networks consist-
ing of neurons with recurrent connections have been analysed for their forecasting
capabilities. After those models did not produce accurate forecasts, different LSTM
networks were examined. Even though the networks containing LSTM units gen-
erated better forecasts, they were still less accurate than the forecast of the linear
models. It was determined that the recurrent networks work well for short fore-
cast horizons, but fall short when longer forecast horizons are demanded, like the
desired 36 h forecast. It seems that the network units are not able to utilise input
values that have been processed ten or more steps previously. Natural language
processing (NLP) is the main application field of RNNs, in particular of LSTM net-
works. In NLP, the inputs correspond to words and only the last few words are
relevant for computing the output. As the meaning of a sentence primarily depends
on the previous words of this sentence, or maybe the previous sentence, it is not
necessary to access information that has been presented to the network many steps
previously. In the studies where LSTMs are applied to time series forecasting, the

57

4 Results and Discussion

forecast horizon is usually very small. It is furthermore computationally extremely
expensive to train recurrent networks, in particular LSTM networks. This makes
the training of RNNs extremely time-consuming and, thus, makes it difficult to test
several different network configurations and structures on their potential for time
series forecasting.

The uncertain prospect of whether recurrent networks are even suited to compute
forecasts with a large forecast horizon combined with the time-consuming develop-
ment of the models led to the decision not to further investigate the potential of
LSTM networks for electricity load time series forecasting. For that reason, no fully
developed forecast model with LSTM units exists for which the forecast results could
be included in good conscience in the comparison of the different models regarding
their forecast capabilities.

4.6 Tree-Based Models

In the following, the performance of tree-based models for time series forecasting
is evaluated. First, for what reason which features are utilised for generating the
forecasts is discussed. Thereafter, some hyper-parameters of the model are discussed
and an adjusted training algorithm utilising cross-validation is introduced. Finally,
forecast results of the tree-based models and the influence of the model configuration
choices are analysed.

A well established method for forecasting time series are tree-based methods. Those
methods are particularly popular within the industry, as the computational load
for training and applying tree-based methods is relatively small. In this work, the
algorithm used to train an ensemble of regression trees is XGBoost [108]. It is one
of the most effective and successful algorithms for tree-based models.
An advantage of an XGBoost model is that it can handle any type of input - cat-
egorical, boolean, string, or float. The input vector can even consist of different
types, as long as the variable has the same type for all samples. Furthermore, no
normalisation of the data is necessary.

The engineered input features of the model are discussed first. Then, a method utilis-
ing cross-validation that enables the training of an XGBoost model on a small dataset
without over-fitting is developed. Finally, the model is applied to forecast the three
electricity load datasets and the results are discussed.

58

4.6 Tree-Based Models

4.6.1 Feature Selection

Tree-based models over-fit easily when redundant information is presented to them.
Therefore, it is not reasonable to use a whole load time series as an input. The
neighbouring points of a load time series are usually highly correlated and, therefore,
each point contains only a small amount of new information. Moreover, similar load
patterns repeat every day, which constitutes additional redundant information in
the time series. Hence, the key to generating good forecasts using tree-based models
is to extract meaningful features from the data, which are then used as variables for
the regression model instead of the complete load time series. In the following, the
engineered features that are utilised in the computation of the forecasts with the
XGBoost model are introduced.

During the development of the models, several engineered features have been tested.
The features that proved to be very effective can be divided into three groups: past
consumption features, weather features, and date features.
The consumption features contain information extracted from the historic load.
They include the electricity load from 48 hours ago and the electricity load from
one, two, and three weeks ago. For the forecast task at hand, only the second-to-
last day consumption values for all timestamps that can be used for the forecast are
available. That is why the load from 48 hours ago is utilised as a feature instead of
the one from 24 hours ago. Additionally, it turned out that the forecast quality is
improved by the inclusion of statistical measures of the last known day. Hence, the
mean value, the 0.25- and 0.75-percentiles, the maximum, and the minimum load
of that day are utilised as features. They offer a condensed survey of the recent
consumption, which presumably offers insights into the future consumption.
The weather features contain information about the weather. In particular, the am-
bient temperature strongly influences the residential electricity consumption. The
features include the predicted temperature for the time of the prediction, and the
predicted temperatures three hours prior and thereafter, which enable the model to
identify a possible temperature trend. Furthermore, the corresponding temperatures
to the past consumption features are added in order to contextualise the consump-
tion with the temperature.
The date features offer information that is connected to the date or, respectively,
the point in time for which the forecast is computed. They include the hour of the
day and the month of the year. Instead of computing an average daily consumption
(standard load curve) and passing the corresponding load value on to the model, the
hour of the day is given to the model. This enables the model, on the one hand, to
learn the dependency between the time of day and the load itself and, on the other
hand, enables it to recognise and use complicated relationships between the time of
day and other inputs. Additionally, a binary feature that states whether the sun is

59

4 Results and Discussion

up or not can be utilised to take the variability of the length of day in the course
of a year into account. Furthermore, the weekend feature is included, because the
electricity consumption behaviour changes on weekends.

In summary, when forecasting the electricity load series created from the CER Smart
Meter Trial dataset, the below listed features are used as inputs:

• historic-consumption features:
load− 48h, load− 1w, load− 2w, load− 3w,mean,max,min,
0.25-percentile, 0.75-percentile

• weather features:
temp, temp− 3h, temp+ 3h, temp− 48h, temp− 1w, temp− 2w, temp− 3w

• date features:
hour, weekday, weekend,month, sun is up

During the development of the XGBoost model, various other features have been
tested as well. The above list of engineered features represent those that have
proven to be beneficial to the forecast performance of the model. Depending on the
dataset, it is possible that additional features which improve the forecast quality
exist.

4.6.2 Hyper-Parameter Adjustments

The performance of an XGBoost model is mainly dependent on the hyper-parameters
of the model. There are plenty of parameters that can be adjusted. The most influen-
tial hyper-parameters of a tree-based model are the following:

• rounds: the maximum number of gradient-boosted trees that are created dur-
ing the training

• tree-depth: the maximum tree depth of each base learner

• eta: weight shrinkage of the leaves, similar to learning rate

• subsampling-rate: ratio of training samples that is used to grow a tree

The main challenge when training tree-based models is preventing over-fitting. That
is particularly a problem when the training dataset is small, because the model keeps
adding more trees until the training error does not decrease further. In order to
prevent over-fitting, fixed values are assigned to the above mentioned parameters
with which the minimal training error is not achieved, but the generalisation ability
of the model increases. By limiting the number of trees and their depth, the model is

60

4.6 Tree-Based Models

not capable of memorising the training data and by training each tree only on a sub-
set of the training set over-fitting is limited to a certain extent. As a consequence,
the model learns to generalise during the training and over-fitting is avoided.
In order to identify the hyper-parameter values that prevent over-fitting but still
offer a sufficient amount of trainable parameters, a k-fold cross-validation is the first
part of the model training. A k-fold cross-validation means that the training data is
split into k complementary sub-sets. The model is then trained on (k − 1) of these
sub-sets and the remaining sub-set is used for evaluation during the training process.
The addition of new trees stops when the error on the remaining sub-set does not
decrease any further. This procedure is repeated k times until every sub-set is used
for validation exactly once. The total training error is computed as the mean of the
different evaluation errors. A grid-search is conducted for the four parameters to
find the most effective model. Thus, the model is trained several times with different
combinations of hyper-parameters and each time the total training error is computed.
The parameter combination with the smallest error is chosen to eventually train the
final model on the complete training set. If the model were trained on the complete
training data without any restrictions to the hyper-parameters, the result would be
a more complex model, which would perform better on the training data but much
worse on the test data or any unseen data. For the other parameters, which are less
influential than the mentioned ones, the default values are used, which can be found
in the XGBoost documentation [114]. The exact training procedure is described in
Algorithm1.

4.6.3 Forecast Evaluation

The evaluation of the generated forecasts shows that the tree-based models are
indeed capable of computing satisfying load predictions. The best trained models
outperform all previously developed forecast models on all three datasets (see table
4.5). In particular, the forecast error of the IRE350 set improved drastically (by
more than 20 %) in comparison to the fully-connected NN model. This proves that
a non-linear model, like the random forest model, is able to produce better forecasts
by identifying and exploiting non-linear correlations between the model inputs and
the predicted value. The performance increase on the IRE350 dataset is probably
much larger than on the other two sets, because, due to the less volatile series
consumption patterns, relations between features and the output and changes in
consumption can be detected more effectively and put to use. This means on the
other hand, that there is still plenty of room for improvement on the IRE15 and
IRE40 dataset.

61

4 Results and Discussion

Algorithm 1 The steps of training a random forest model applying the XGBoost
algorithm with cross-validation are listed below.

. Define cross-validation parameters
1: tree-depths D = {1, 2, 3, . . . , 20}
2: subsampling-rate S = {0.1, 0.2, . . . , 1.0}
3: eta E = {0.05, 0.10, 0.15, . . . , 0.70}
4: rounds r = 50
5: folds k = 4

. Start cross-validation
6: divide data into k sets

. Find best tree-depth
7: for d in D do:
8: for each set do:
9: initialise XGBoost model with tree-depth = d

10: train model with remaining f − 1 sets
11: evaluate model with the set
12: save forecast error
13: end for
14: average error over all k sets
15: end for
16: set dfinal to the value with the smallest forecast error

. Find best subsampling-rate
17: repeat the procedure from above with s ∈ S utilising dfinal
18: set ffinal to the value with the smallest forecast error

. Find best eta
19: repeat the procedure from above with e ∈ E utilising dfinal, ffinal
20: set efinal to the value with the smallest forecast error

. Check best tree-depth again
21: repeat the procedure from above with d ∈ D utilising ffinal, efinal
22: set dfinal to the value with the smallest forecast error

. Find best rounds
23: train XGBoost model with final parameters applying cross-validation
24: stop adding trees when the forecast error does not further decay → rstop
25: rfinal = rstop

. Train final model
26: train XGBoost model utilising dfinal, ffinal, efinal, rfinal on the complete data
27: → modelfinal

62

4.6 Tree-Based Models

Table 4.5: The mean squared error of the XGBoost regression model trained with
4-fold cross-validation for the three datasets.

MSE
model configuration IRE15 IRE40 IRE350

all features, parameters from cv 5.81 15.8 290
only shifts, parameter from cv 6.26 17.8 360
all features, default parameters 5.91 16.3 347

In addition to the models trained with the previously described features and the
developed cross-validation, models of two further configurations have been trained in
order to gain a better understanding of the influence of the modelling choices. On the
one hand, a model that includes only the shifts and the corresponding temperature
values has been trained to have a better comparison to the linear models. On the
other hand, a model using the default hyper-parameters, which perform reasonably
well in a lot of cases, has been trained to evaluate the effectiveness of the cross-
validation.

(a) IRE15 (b) IRE40 (c) IRE350

Figure 4.5: Development of the MSE with respect the tree depth during the grid-
search. The error is calculated with the training set during the cross-
validation process of the training. All curves show a clear minimum that
constitutes the optimal tree-depth, which is then used for the final model
configuration.

The model that only utilises the shifts and temperatures performed significantly
worse on all three datasets of differing aggregation level. This proves, in combina-
tion with the results of the NN model and the linear models that the developed
features contain information which enable more accurate predictions to be com-
puted. The forecast results from the model that has been trained on the default
hyper-parameters without cross-validation are larger for all three datasets, even if
only marginally for IRE15 data. This shows that the determination of the hyper-

63

4 Results and Discussion

parameters by means of cross-validation contributes to a more successful forecast
model.
To illustrate the influence of the hyper-parameters on the forecast performance of
the tree-based model, the error with respect to the tree-depth is exemplarily eval-
uated during the cross-validation. Figure 4.5 shows the error development for all
assumed values. It is noticeable that the curves for the three datasets have roughly
the same shape. With decreasing tree-depth, first, the error decreases and then
slowly increases again. The minimum of that curve constitutes the optimal tree-
depth, which is used for the final model. The learning rate and the sub-sampling
ratio are determined analogously.

(a) Measured and predicted load of an accurately forecasted week.

(b) Measured and predicted load of an inaccurately forecasted week. Deviations are,
in particular, noticeable during the first half of the days.

Figure 4.6: Exemplary forecasts of the IRE350 electricity load time series with the
XGBoost model trained with cross-validation. The blue line represents
the measured load and the yellow line the prediction. The forecast in (a)
is very accurate, whereas in (b) deviations from the actual load are visible.

64

4.7 Developing a Convolutional Neural Network Forecasting Model

In order to illustrate the accuracy of the forecasts, figure 4.6 displays two exemplary
weeks of predictions of the IRE350 set computed with the random-forest model.
It can be seen in 4.6(a) that very accurate load forecasts are possible with the
model, but 4.6(b) shows that, for some part of the test data, there are still obvious
discrepancies between the prediction and the measured load. The deviations of the
first day of 4.6(b) are particularly prominent. 25 October 2010 was a Monday, but
its load curve deviates from that of a typical weekday. The reason is that there
was a bank holiday on that day. When the selection of which features to include
was made, a feature that indicates bank holidays was tested as well. However, no
improvement in forecast accuracy could be achieved because, as an analysis showed,
the feature has not been considered by any decision tree, hence it was not used by
the model. Apparently, the influence of this feature is too minor to be considered
by the training algorithms, probably due to the fact that the training set contains
only a few bank holidays. Therefore, the model is not able to accurately predict the
electricity loads of bank holidays.

4.7 Developing a Convolutional Neural Network Forecasting
Model

In this section, a novel model for time series forecasting based on convolutional
neural networks is developed. The basic structure of the the model is as follows.
Several one-dimensional kernels of a convolutional neural network layer operate di-
rectly on the input time series. An arbitrary number of further convolutional layers
can subsequently process the resulting activation maps. Subsequent, several fully-
connected layers process the data of the last convolutional layer and compute the
output, which represents the forecast. With the application of a fully-connected
layer on an activation map, the temporal context of the data is lost, because the
layer treats all its inputs identically. The activation maps of the last convolutional
layer are used comparably by the fully-connected part of the suggested neural net-
work model than the input features of a non-linear regression model. The function
of the convolutional layer(s) is, therefore, to extract meaningful information from
the input series and to provide this information to the fully-connected part of the
network similar to features. Hence, the suggested model does not require manually
engineered features in order to calculate a forecast.
The performance of the novel model depends on many parameters. In the follow-
ing sections, the process of determining effective model parameters is presented in
detail. After defining the pre-processing and fundamental parameters of the model,
the influence of the fully-connected part of the model on the forecast performance is
evaluated. Afterwards, different hyper-parameters and the size of the convolutional

65

4 Results and Discussion

part are varied in order to obtain an accurate forecast model. Finally, external fea-
tures are included in the model and evaluated. Based on the gained understanding
of the model a final network structure is developed.

4.7.1 Choosing a Forecast Approach

Before the development of a convolutional neural network model for time series
forecasting commences, the fundamental choice whether to calculate the forecast at
once or iteratively must be made. In the following, this decision is made based on a
preliminary test.

As mentioned in section 3.3.3, there are two approaches to compute a time series
forecast using a CNN model. The forecast can be computed directly or iteratively.
When computing the forecast iteratively, only one data point is calculated at once.
Potentially erroneous data points from earlier predictions are, thus, part of the in-
put. Hence, the errors of the earlier prediction steps might be amplified and corrupt
the following prediction steps, which deteriorates the overall forecast performance.
In order to identify the most promising approach, a preliminary test has been con-
ducted, which included the training of two basic CNN models that differ only in the
configuration of the output layer. The neural network consists of one convolutional
layer comprised of eight kernels, each of which consists of six neurons. The resulting
feature maps serve as input for two successive fully-connected layers with the tempo-
ral order and the distinction between the feature maps being considered. All inputs
of a fully-connected layer are treated equally. The first layer contains ten output
neurons and the final output layer has either one output neuron or 72, depending on
which approach is applied. The network architectures are also depicted in figure 4.7.
All other hyper-parameters are identical. The first model only has a single output
neuron. The predicted value of this network is appended to the input series after
each prediction step and the first value of the series is removed in return, in order
to preserve the length of the input series. This procedure is repeated 72 times until
a 36 hour forecast has been calculated. The output of the second network consists
of 72 output neurons, hence it produces a 36 hour forecast.
The comparison of the forecast performance of the two different models indicates
that the iterative approach excels against the direct approach. One possible expla-
nation for this rather unexpected outcome lies in the number of trainable variables
of the two models. The number of trainable weights of the model with 72 output
neurons is significantly greater than of the model with one output neuron. Each
output neuron of the direct model is connected to the ten preceding neurons and
the bias. Hence, the last layer contains 792 weights in total. The last layer of the
iterative model, on the contrary, contains only eleven weights. The large amount of

66

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) CNN used for iterative approach. (b) CNN used for direct approach.

Figure 4.7: The figures depict the two networks trained in the preliminary test. They
both consist of one convolutional layer, utilising eight kernels of size ksize =
6, two fully-connected layers, and differ only in the number of output
neurons. The different coloured arrows represent the described layers.
The "flatten" layer represents the suspension of temporal and kernel-based
order.

trainable weights of the direct model in combination with a rather small number of
training samples presumably facilitates over-fitting. This is only of minor concern
for the iterative model due to the small number of trainable weights in the output
layer.

Due to the preliminary test, the iterative forecasting approach of creating a time se-
ries forecast was chosen and is pursued in this work. The direct approach would also
possibly generate good forecasts if the number of training samples were sufficiently
large. For the research presented in this thesis, however, the training set is limited
to one year of electricity consumption data due to the reasons mentioned in sec-
tion 4.1. Furthermore, the iterative approach seems more intriguing from a research
point-of-view, as it differs from the well-studied architecture of fully-connected neu-
ral networks, which are commonly applied to time series forecasting as discussed
in chapter 2. Applying CNN models on iteratively computing a one-dimensional
time series forecasts constitutes a novel approach in the file of time series analy-
sis.

4.7.2 Pre-Processing of the Load Time Series

The pre-processing of data is an important step in creating a successful machine
learning model. It can be divided into several steps: assessing the data qual-
ity, utilising domain knowledge, and data transformation or, respectively, rescal-
ing. In the following, the electricity consumption data is analysed regarding these

67

4 Results and Discussion

steps.

Firstly, the data quality is assessed and missing and inconsistent values are identified.
These data points or segments are then either excluded from the dataset or estimated
using an appropriate method. The majority of these processes are not highlighted
here because they are standard procedures of every machine learning algorithm and
because no unconventional measures had to be taken due to the good quality of the
data from the Irish Smart Meter Trial. Another aspect of pre-processing is utilising
domain knowledge about the data source and the context of the data. With that
knowledge, information and features can be extracted from the data and the data can
be better contextualised. Feature extraction has already been discussed in section
4.2. Furthermore, the data can be transformed in such a way that the machine
learning models process the data more effectively, e.g. normalisation, de-noising,
etc. .

Electricity load data exhibits a clear, seasonal behaviour as already mentioned ear-
lier. The underlying causes for such a changing electricity consumption behaviour
during the year are manifold and not explicitly known. The behaviour and changes
in the course of a year are dependent on the country and probably also correlate
with socio-economic factors, which makes it difficult to exactly identify them. That
is why predicting electricity loads is such a challenging task.
During the winter, the daily electricity consumption in Ireland is on average higher
than during the summer. There are two apparent explanations for that behaviour.
Firstly, the daily sunshine duration is shorter during the winter. Hence, more light-
ing and, thereby more electricity, is required. Secondly, due to poorer weather
conditions and colder temperatures during the winter, the residents spend more
time in their houses and, therefore, use more electrical household appliances. In
order to validate these assumptions, the electricity load, the temperature, and the
daily sunshine duration are plotted in figure 4.3 for the complete IRE350 dataset.
Apart from the yearly oscillation that both the load and the sunshine curve ex-
hibit, their shapes clearly differ from each other, which militates against a linear
correlation of the two. The shape of the load and the (inverse) temperature curves,
however, resemble each other to a great extent, which indicates a strong linear cor-
relation. That assumption is further supported by several coinciding local extrema
of the two curves. Three of them are marked in the plot with a vertical, grey,
dashed line for accentuation. Based on these findings, it is assumed that a linear
dependency between the electricity load and the temperature, or, respectively, the
weather, for which the temperature is one indication, exists. Additionally, such a
dependency can also be noted for the temperature and the local standard deviation
of the load. The standard deviation of the load changes with the seasons, similar to
the daily average load (see fig. 4.1). It increases with falling temperatures and vice
versa.

68

4.7 Developing a Convolutional Neural Network Forecasting Model

Figure 4.8: The graph depicts the IRE350 load (blue), the temperature (red), and
the daily sunshine duration (yellow) of the complete dataset. For a bet-
ter depiction of trends, the seven-day running average of the load and
temperature are displayed. It can be seen that the temperature curve
closely follows the load curve in contrast to the curve of the daily sun-
shine duration. The grey, vertical, dashed lines indicate dates where a
strong correlation between the load and temperature is visible.

In order to utilise this obtained domain knowledge and to facilitate the training
process of the machine learning model, the data is modified with the use of the
temperature time series.
First, a linear regression model is fit using the rolling seven day average temperature
as regressor to approximate the rolling seven day average electricity load, the regres-
sand. As a result, the regression model is able to roughly predict the development
of future electricity consumption, based on the weather forecast. Subsequently, the
approximated load by the regression model is subtracted from the actual load. If the
temperature were a perfect approximator, the seven day running mean of the result-
ing time series would constantly be zero. As that is not the case, only the total mean
of the time series is zero. Second, an additional linear regression is fit to estimate
the influence of the temperature on the variance of the electricity load. The regres-
sor is, again, the temperature time series and the regressand is the squared seven
day running mean. By dividing the squared time series by the estimated squared
time series approximated by the regressor, the total variance of the resulting series
is eventually zero.

69

4 Results and Discussion

The objective of these two regressions is to reduce the influence of the temperature
on the load time series and, thereby, remove one influence factor from the series,
which otherwise has to be taken into account by the forecast model. The seven day
running average is used to avoid daily and weekly patterns influencing the training
of the regression models.

Algorithm 2 Suggested pre-processing procedure for the electricity load data. The
pre-processing tries to eliminate the influence of the temperature t on the load l.
1: temperature t, 7-day-running average temperature t
2: load l, 7-day-running average load l

3: fit linear regression with parameters α1, β1
4: l = α1t+ β1 ⇒ α1, β1
5: convert load: lreg1 = l − (α1t+ β1)

6: fit linear regression with parameters α2, β2
7: l

2
reg1 = α2t+ β2 ⇒ α2, β2

8: convert load: lreg2 = lreg1√
α2t+β2

9: normalise data to interval [−1, 1]

10: use normalised lreg2 as input for the CNN model

As the final step of the pre-processing, the data is normalised so that all values are
situated in the interval [−1, 1]. Most of the common activation functions for neural
networks are saturating at large negative and positive values. Hence, the error back-
propagation, and therefore the training, is less effective when the input value range
is large, because the back-propagated error is multiplied with the derivative of the
activation function. A neural network that uses data that is not normalised should
eventually converge as well, but the training could take longer.
The scaling and regression parameters are determined using the training set. When
unseen data (e.g. live-data, test data) is processed by the fitted models, including
the pre-processing, the same scaling parameters as for the training set are applied.
Even though this can result in input values of the machine learning model not being
in the desired input interval of [−1, 1], the pre-processing is not changed. Otherwise,
the same temperature-load-tuple can result in differing input values of the machine
learning model during training and application of the algorithm, depending on the
range of the presented data. This behaviour is not intended and would result in a
decline of the forecast performance.

70

4.7 Developing a Convolutional Neural Network Forecasting Model

Figure 4.9: IRE350 load time series after being transformed by the two linear regres-
sions with the temperature as regressor. The series has a mean around
zero and the magnitude varies noticeably less than before the transforma-
tion.

4.7.3 Determining Fundamental Hyper-Parameters

This section addresses the fundamental parameters of a convolutional neural net-
work for time series forecasting which influence the way the model is trained and
the predictions are computed. A variation in those hyper-parameter changes the
architecture and character of the network drastically, hence they are being called
fundamental parameters. A change of those parameters also makes a comparison be-
tween different forecast models virtually impossible. In the following, the effects that
a variation of these parameters has on the model are discussed and finally their values
are set and are not changed for all subsequently presented models. First, fundamen-
tal parameters that effect the training process are discussed, followed by fundamental
parameters that describe the network structure.

4.7.3.1 Training Parameters

A convolutional neural network has some hyper-parameters that specify the training
procedure of the neural network. They are also called training parameters. They
have a great influence on the effectiveness and efficiency of the training process. In
the following, first the impact of the different parameters on the training process
are discussed and, thereafter, effective parameters for electricity load forecasting are
determined.
The most influential training parameters of a neural network are the number of
epochs, the (mini-)batch-size, the learning rate, and the applied optimiser.

71

4 Results and Discussion

Introduction of the Fundamental Training Parameters
First, the number of epochs are discussed. The trainable variables of a neural net-
work, which are usually the weights, are initialised with random values before the
training commences. After the complete training set has been presented to the neu-
ral network, the model generally does not produce good forecasts and the weights are
still trained poorly. Therefore, the training set is presented to the network several
times during the training process. Each such repetition is called an epoch. Once
the model has been trained with a sufficient number of epochs, a local minimum
of the error function is approached. If the network is trained further with more
epochs, its generalisation capability will diminish, because the CNN model mem-
orises the data. This means that over-fitting occurs, which results in a worsened
forecast quality of new, unseen data that is not in the training set. In order to avoid
over-fitting and ensure an efficient training, the number of epochs must be chosen
neither too large nor too small. To identify a number of epochs that balances out
the effects of insufficient training and over-fitting, the forecast error of the training
set and of the validation set is evaluated after each epoch. The training error usu-
ally decreases heavily during the first epochs and subsequently flattens out when
the neural network model does not improve further. The validation error displays
a similar behaviour with the addition that it starts increasing again at some point,
which then indicates over-fitting. The optimal amount of training epochs can be de-
duced from the minimum of the validation error, because it represents the number
of epochs that are necessary to achieve the best possible generalisation properties.
When trained further, the model adapts only specifically to the training data. It
does not learn the general nature and behaviour of the data any more. Therefore,
the model becomes less accurate for unseen data and, hence the validation error in-
creases. Typical error curves can be seen in figure 4.11, extracted from the training
on the IRE40 dataset.

Another crucial training parameter is the batch-size. It describes the number of
samples after which the network weights are updated. The training set is typically
divided into sub-sets that have the cardinality of the batch-size. The samples of
the sub-sets are randomly sampled without replacement from the training set. The
sub-sets are presented to the network one after another and the network weights are
updated every time all samples of one sub-set have been processed.
There is no general guideline that states an optimal batch-size value. The influ-
ence of the batch-size on the training process depends strongly on the data, the
used neural network model, and the resulting error landscape. The batch-size is
often chosen to be a power of two, in order to allow for better parallel comput-
ing.

The learning rate of a neural network model determines the adjustment of the model
in response to the computed errors during training. It is a measure for how fast the

72

4.7 Developing a Convolutional Neural Network Forecasting Model

model adapts to the training samples. The influence of the learning rate on the
training in the setup used is small due to the chosen optimiser and is, therefore, not
further discussed here.
All networks in this thesis are trained using the Nadam [88] optimiser. The name
is derived from Nesterov Accelerated Adaptive Moment Estimation. The optimiser
utilises an adaptive learning rate, which means that each trainable parameter of
the neural network possesses an individual learning rate. These individual learning
rates change during the training according to the first and second moment of the
gradients.

Determination of the Fundamental Training Parameters
As first step of developing a convolutional neural network for time series forecast-
ing, the effects of the above mentioned training parameters are analysed using the
available training set and their values are determined. They are not changed any
more during the further development of the CNN model.
Firstly, the differing behaviour when applying different batch-sizes was examined.
For this purpose, a basic 1D-convolutional neural network has been trained using
varying batch-sizes. The network structure is identical to that in section 4.7.1 (see
also fig. 4.7). In order to validate the training progress after each epoch during the
training and to monitor the convergence, a validation set is necessary. Due to the
limited available data, it has only been feasible to split the data into a training
and a test set without producing biased datasets, as described in section 4.1. It
is not possible to create an unbiased validation and an unbiased test set with the
limited amount of data. Therefore, the test set is used here for validation purposes
during the training. That contradicts the idea of a test set, but is justifiable in
this instance, because no final model is developed. During the development of the
neural network structure in the following section, validating the training progress is,
therefore, abstained from.
The experiments with different batch-sizes have led to the conclusion that a batch-
size of 128 is best suited for the given task. Identical networks have been trained with
different batch-sizes and with a deliberately chosen very large number of epochs. The
examined batch-sizes bsize and the number of epochs e are:

• bsize ∈ {2, 4, 8, 16, 32, 64, 128, 192, 256, 512}

• e = 200

The analysis of the differing training processes has shown that the best achievable
forecast errors are very similar for all the examined batch-sizes. A comparison of
the training duration per epoch, however, has yielded a very large training duration
for small batch-sizes (see fig. 4.10). For medium and large batch-sizes, the duration

73

4 Results and Discussion

Figure 4.10: The graph shows the computation duration for a network trained on a
home PC. The computation takes longer for small batch-sizes, probably
because the training processes cannot be distributed on several CPU-
or GPU-kernels. Furthermore, computing the weight updates and, in
the case of the adaptive learning rates, updating the individual learning
rates for all weights is computationally costly as well.

differences are marginal. Moreover, the number of epochs necessary for the neural
network to converge increases with the batch-size. When trained with a small batch-
size, the networks converge within a few epochs. Unfortunately, over-fitting occurs
only a few epochs afterwards (see fig. 4.11(a)). The small range of epochs that
promise a properly trained model and the large training duration per epoch discards
batch-sizes with bsize < 32. Batch-sizes of bsize ≥ 256 are also not deemed practical,
because the training duration per epoch is the same as for smaller batch sizes,
but more training epochs are necessary to reach the minimal validation error and,
hence, the best possible forecaster. Since the fluctuation of the validation error
during training is significantly lower for batch-sizes of bsize ≥ 128 (see fig. 4.11(b)
and (c)) and because the validation error plateaus at the minimum error for several
epochs for batch-size bsize ≥ 64, I decided to employ 128 samples in every batch. The
training behaviour is very similar for all three datasets (IRE15, IRE40, and IRE350)
and the same batch-size of bsize = 128 is applied.

Secondly, an optimal number of epochs that ensures convergence but minimises the
risk of over-fitting had to be determined. Therefore, the same basic network that
was used to determine the batch-size has been trained using a far-too-large number
of epochs, in order to better identify the optimal number of epochs. The typical
development of the error during the training process is depicted in figure 4.12. The
neural network is trained with a sufficient number of epochs when the validation er-
ror reaches a minimum. A further decline of the training error with a simultaneous
increase of the validation error is a sign of over-fitting, which reduces the generali-
sation ability of the neural network model. An epoch size of e = 40 appears to be
optimal for the CNN model trained with a batch-size of bsize = 128. For all three

74

4.7 Developing a Convolutional Neural Network Forecasting Model

datasets, the validation error typically reaches a minimum earlier than 40 training
epochs, but over-fitting commences only afterwards.

(a) batch size of 2 (b) batch size of 64

(c) batch size of 128

Figure 4.11: The three graphs depict the training error (grey) and validation error
(red) development of the IRE40 dataset for three different batch-sizes.
The error is computed during the training process and represents there-
fore only the aberration of the one-point forecast, hence the different
scaling. The comparison of (b) with (c) emphasises the decrease of val-
idation error fluctuation for larger batch-sizes. (a) illustrates the rapid
training process and the subsequent over-fitting of a CNN with a small
batch size.

The learning rate is set to η = 0.001, which is the default value of the Nadam
optimiser. The learning rate is not adjusted due to the applied optimiser. As
mentioned before, the Nadam optimiser computes individual learning rates for all
trainable parameters of the neural network that are adapted during the training.
Therefore, the initial learning rate has a smaller influence on the training than for
optimisers that use a global learning rate. Additional tests with varying learning
rates have confirmed this assumption. They have also shown that 0.001 is in the
range of the most efficient learning rates. There are two more parameters, β1 and β2,
that control the influence of the momentum on the individual learning rates. Those
parameters are kept at their default values as well. The applied loss function is the
mean-squared error, because it penalises large deviations more severely, which is

75

4 Results and Discussion

Figure 4.12: This graph shows the training and validation error for the one-point
forecast during training with the IRE40 dataset. A batch-size of bsize =
128 was applied. The CNN is trained with a large number of epochs.
The validation error reaches a minimum in the range of 20 to 50 epochs.
The graph is representative for all three datasets.

favourable by the energy system in MAGGIE. Small deviations can be compensated
by the heat buffer.

The training parameters determined in this section are used throughout the whole
thesis. It is assumed that neural networks with similar architectures to the tested
one still work very effectively with these parameters. Only if substantial changes
to the network architecture were made, would a reassessment of the training pa-
rameters be necessary. The high computational costs of finding optimal training
parameters for each tested model architecture are not justified by the possibly min-
imal benefits. Therefore, the parameters are fixed to the values presented in table
4.33.

Table 4.6: The training parameters determined in this section are listed in the table.
They are used throughout this whole work if not stated otherwise.
training parameter batch size epochs learning rate

applied value 128 40 0.001

4.7.3.2 Network Parameters

After having determined the training parameters, a suitable network architecture for
load time series forecasting has to be found. There are some fundamental network
parameters that are not changed during the model development. In this section,
first the fundamental model parameters are outlined. Then, the influence of these
parameters are discussed and optimal values are determined in order to acquire an
effective forecast model.

76

4.7 Developing a Convolutional Neural Network Forecasting Model

There are some parameters of the network that are fundamental for the setup of the
whole forecast model. A change of these parameters not only drastically changes the
way the forecaster works, but makes it difficult to compare variations in the model
configuration. These parameters are specified in the following paragraphs and the
parameter choice is justified.
As mentioned before, there are two ways a neural network model can construct fore-
casts: directly or iteratively. This thesis focuses on creating forecasts iteratively.
Preliminary tests have shown that this approach is more promising. Additionally,
creating the forecasts iteratively distinguishes the research into time series forecast-
ing with CNNs more distinctly from forecast models utilising solely fully-connected
neural networks. As outlined in chapter 2, forecast models using CNNs have hardly
been studied yet opposed to fully-connected NNs. Moreover, creating an iterative
forecast utilising fully-connected NNs is only possible to a limited extent in contrast
to CNNs. The input time series of a fully-connected NN should preferably always
contain the same period of time, meaning it always starts with the identical time of
the day, if the full potential of the neural network is to be exploited. This limitation
does not exist for 1D-CNNs, which makes them more versatile and allows for the
iterative approach to work. Therefore, the number of output neurons of the neural
network is fixed to one.
Another parameter that is not changed throughout the thesis is the length of the
model input series, because it strongly influences the training process as a whole.
The load input time series for all the CNN models and hence the network is exactly
one week, which translates with a sampling rate of 30minutes to 336 data points.
The input length of seven days is chosen because the consumption behaviours and
the average consumption of different weekdays differ from each other (see fig. 4.13).
With an input length of one week, it is ensured that the model input is not biased.
If the input length were shorter, for example, four days, it would consist of the loads
of the previous Thursday, Friday, Saturday, and Sunday in order to predict the con-
sumption of a Tuesday. As, on average, more electricity is consumed in a residential
household on the weekend than on weekdays, the daily average consumption of the
input data would be too large and possibly distort the forecast. Therefore, the
length of the input series is set to 336 samples, which corresponds to the repeating
weekly pattern the electricity consumption data exhibits. Furthermore, trials with
larger input series have shown that no gains could be achieved with an input of two
or more weeks. Larger inputs merely inflate the number of trainable weights of the
CNN, which makes them more difficult to train. It has been concluded that electric-
ity consumption data from further in the past has no real impact on the forecast.
Another integral component of a neural network and, hence, an influential parameter
is the activation function of the neurons. Typically, all neurons in one layer have the
identical activation function. The most common activation functions have been pre-
sented in section 3.1.3. As the CNN forecast model is a regression model, the output

77

4 Results and Discussion

neuron of the last layer possesses the identity as activation function. A regression
model should have an unbounded output, which is ensured by an activation function
that is also unbounded. The identity, f(x) = x, is the most simple function that
fulfils this prerequisite and, additionally, has the benefit of being easily calculated.
The activation function of the other neurons can be selected without restrictions.
The ReLU activation function has been chosen for the other neurons, because it has
been proven very effective in highly successful neural network models [115, 116, 117].
Moreover, it allows for efficient training, as it reduces the vanishing gradient prob-
lem due to its non-vanishing slope of one for positive values. Additionally, it is
cheap to compute, as no calculation of exponential functions is necessary. The non-
linearity of the ReLU activation function is provided by its change of slope at zero.

Figure 4.13: The graph shows the average weekly electricity load of the IRE350
dataset. The first day depicted is Monday. It can be seen that the
consumption of different days of the week varies. Particularly prominent
is the difference between weekdays and the weekend. However, also the
weekdays vary slightly among one another.

The basic structure of the above described network remains the same throughout
most of this work. There are many crucial network parameters that can and will be
modified in order to find the best convolutional neural network for electricity load
time series forecasting.

4.7.4 Parameter Variations

In the previous sections, the pre-processing, the training parameters, as well as
the fundamental model parameters of a CNN model have been investigated and

78

4.7 Developing a Convolutional Neural Network Forecasting Model

specified, and, thus, a prototype of a convolutional neural network for time series
forecasting has been created. This prototype forecasting model is used as basis
of the subsequent research. In this section, the prototype is developed further by
evaluating the influence of several parameters on the forecast performance. The
development of the improved CNN model is, from now on, purely data-driven by
the load data, in order to assess the potential of the novel forecasting approach using
convolutional layers in a NN to extract information or, respectively, features from a
time series. That implies that no manually extracted features or external variables
are considered during this step of the development process.
There are several hyper-parameters in a convolutional neural network that can be
adjusted. The influence of the following parameters on the forecast performance
is discussed in this section in detail: the size and amount of the kernels in the
convolutional layer, the size of the subsequent fully-connected network, the amount
of convolutional layers in the network, the influence of dilated kernels, changes in
the stride size, the addition of pooling layers, different variations of dropouts, and
an additional parallel convolutional layer.

The prototype CNN model, which is modified in this section, has been developed in
the previous section and computes the forecast iteratively. It consists of one convo-
lutional layer, followed by two fully-connected layers, where the output of the second
layer consists of the single output neuron. The activation function of the neurons
is a ReLU function. The input time series consists of one week of electricity load
consumption data, which equals 336 data points. The batch-size is set to bsize = 128
and the model is trained with e = 40 epochs.
By testing a great range of models with varying hyper-parameters and network archi-
tectures of increasing complexity, a CNN model that is optimally adjusted to the task
of energy load forecasting is eventually derived. Furthermore, a better understanding
of the influence and importance of the different hyper-parameters on the information
extraction and forecast performance of the CNNmodel is gained.

4.7.4.1 CNN with Two Fully-Connected Layers

As the first step of the enhancement of the forecast model, the influence of and
the interaction between the kernel size, the amount of kernels, and the number of
output neurons of the first fully-connected layer are investigated. Therefore, a large
grid-search is conducted in which a wide range of values is assigned to these three
hyper-parameters. The variation in the forecast performance with the changes of
the parameter values is studied, as is the relation of the parameters to each other.
The model structure is depicted in figure 4.14.

79

4 Results and Discussion

Figure 4.14: The graphic depicts the structure of the CNN model with one convolu-
tional layer and two fully-connected layers. The different coloured arrows
symbolise the different layer types that are utilised in the model.

Before the training starts, the hyper-parameter values are set and the CNN is com-
piled accordingly. The network weights are initialised with random values according
to the uniform Glorot initialisation [118] and the biases are initialised with zeros.
The initialisation, however, effects where in the multi-dimensional search space the
training of the neural networks commences and, hence, has an influence on the result-
ing trained model. Therefore, in order to make the results of the different parameter
combinations more independent from the initial weights and, thus, more comparable,
ten networks of each parameter configuration are trained. Each of the networks has
different initial weights, hence behaving differently during the training process. The
total forecast error for one configuration is calculated as the average of all ten mod-
els. Whenever forecast errors are mentioned in the following sections and chapters,
it is referring to the average error of the ten iterations.

The hyper-parameters kernel size ksize, amount of kernels knumber, and the size of the
fully-connected layer fsize are varied in the following range:

• ksize ∈ {2, 4, 6, 8, 10, 12}

• knumber ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• fsize ∈ {1, 2, 4, 6, . . . , 20, 25, 30, . . . , 50}

With the ten iterations per configuration being taken into account, 10 200 CNN mod-
els are trained in the course of this grid search for each of the three datasets.

The main finding of that grid search is that too large of a fully-connected layer has
a detrimental effect on the forecast performance of the CNN model. Figure 4.15
depicts the development of the forecast error in dependency of fsize. For all three
datasets, the error increases with an increasing number of neurons and, hence, with

80

4.7 Developing a Convolutional Neural Network Forecasting Model

Table 4.7: The table presents the forecast error averaged over all configurations and
the error of the most successful configuration.

dataset IRE15 IRE40 IRE350

MSE average 8.51 21.5 503
best model 6.59 17.1 287

an increasing number of trainable weights in the NN. It seems that over-fitting oc-
curs when the fully-connected layers are too large. This result implies that smaller
fully-connected layers are sufficient to process the information extracted by the con-
volutional layer. It is also noticeable that the prediction quality of the models for the
IRE15 and IRE40 dataset deteriorates already at small fsize values, but for IRE350
only at values from fsize > 20. For smaller fsize (except for fsize = 1), the error on
the IRE350 set remains basically constant. This is an indicator that the IRE350
dataset contains more information, respectively more information can be extracted
from it than from the two other datasets. This is consistent with the findings of
section 4.6.3, which concludes that the IRE350 dataset has a lower volatility due
to large aggregation of households. Therefore, more information can presumably
be extracted because it is easier for the model to notice changes in the consump-
tion behaviour. That, in turn, improves the forecast. The fact that the error for
4 ≤ fsize ≤ 20 is more or less the same also indicates that the extra information
cannot be processed in meaningful way within the fully-connected part of the NN.

(a) Forecast error of the
IRE15 set.

(b) Forecast error of the
IRE40 set.

(c) Forecast error of the
IRE350 set.

Figure 4.15: The plots depict the dependency of the amount of output neurons of the
first fully-connected layer on the forecast error for each dataset. The
error values represent the average error for all trained networks with
the respective number of output neurons independently from ksize and
knumber. It is clearly visible that a large number of neurons deteriorates
the forecast error for all datasets.

No clear preferences could be identified for ksize and knumber in this grid-search. For
IRE40 and IRE350, the number of applied kernels does not seem to have an influence

81

4 Results and Discussion

on the forecast performance. For IRE15, a slight preference for fewer kernels can be
detected and is presented in figure 4.16.

The kernel size has no obvious influence on the forecast performance for all datasets
and is further investigated in the following paragraphs.

The grid-search, which included 1020 different model configurations, has lead mainly
to two findings. Firstly, a convolutional NN, which computes time series predictions
of the volatile, high-resolution data at hand, does not require an extremely large
amount of trainable variables in order to produce proper forecasts. This has been
demonstrated by the fact that the forecast quality has gotten worse with a larger
fully-connected part of the CNN model. Secondly, the concept of producing forecasts
with a NN containing convolutional layers has proven to be very promising. The
forecast errors on the test set of the CNNs with the best configurations are in the
same range as the errors of the tree-based models and are superior to the baseline
models.

Figure 4.16: The graph depicts the forecast error of the IRE15 dataset with respect to
knumber and is averaged over all ksize and fsize. The spike for knumber = 6
is caused by a few very poorly trained models that exhibit forecast errors
far larger than the average. It can be considered an outlier. Apart from
that, the error increases with an increasing knumber.

4.7.4.2 CNN with Three Fully-Connected Layers

In the next step of finding a better CNN model for time series forecasting, the
fully-connected part of the neural network is expanded in order to be able to rep-
resent more complex relationships between the extracted features by the convolu-
tional layer and between the features and the output. A further fully-connected
layer is added, which means the fully-connected part of the network now contains
three fully-connected layers with the last layer being the output layer with one out-
put neuron (see fig. 4.17). Deeper networks are able to represent more complex

82

4.7 Developing a Convolutional Neural Network Forecasting Model

correlations between features as they allow for a greater degree of non-linearity.

Figure 4.17: The graphic depicts the structure of the CNN model with one convolu-
tional layer and three fully-connected layers.

The insight of the first-grid search - that a large amount of trainable variables is not
necessary - is utilised by avoiding too large a number of weights. This is achieved
by reducing the number of output neurons of the first fully-connected layer to a
maximum of ten.
The hyper parameters for the new grid-search are:

• ksize ∈ {2, 4, 6, 8, 10, 12}

• knumber ∈ {2, 3, 4, 5, 6, 7, 8, 9}

• fsize ∈ {[2-2-1], [4-2-1], [6-2-1], [6-4-1], [8-2-1], [8-4-1], [8-6-1], [10-2-1], [10-4-1]
[10-6-1], [10-8-1], [12-2-1], [12-4-1], [12-6-1], [12-8-1], [12-10-1]}

The fsize is depicted layer-wise from now on. For example, [4-2-1] means the first
fully-connected layer has four output neurons, the second two, and the third layer,
which is the output layer, one. The size of the respective input is already deter-
mined by the outputs of the previous layer. The possible sizes of the additional
fully-connected layer are always chosen to be smaller than the size of the prior fully-
connected layer. In fully-connected networks with several hidden layers, the size of
the hidden layers typically changes gradually from the input shape to the output
shape of the network. That principle is applied here as well.

In order to have a better representation of the results, the average MSE of the config-
urations is depicted as color-coded in the below figures, when the error in dependency
of two variables is plotted. Dark colors correspond to large error values. Thereby,
patterns and dependencies can be recognised more easily.

83

4 Results and Discussion

The evaluation of the results reveals interesting insights into the capabilities of the
proposed CNN regarding the processing of the different aggregation levels of the
data.

Table 4.8: The table shows the forecast errors achieved by networks that contain three
fully-connected layers.

dataset IRE15 IRE40 IRE350

MSE average 8.13 21.2 445
best model 6.53 17.6 304

For the IRE15 dataset, the best results have been achieved with relatively small fully-
connected layers after the convolutional layer. The most promising results are ac-
complished with fully-connected layers of the size fsize ∈ [[2-2-1], [4-2-1], [6-4-1], [8-2-1]].
The errors of larger fully-connected layers essentially increase with the size of train-
able parameters.
For the IRE40 dataset, the results are not as distinct. It is, however, noticeable
that the errors increase when the first-fully connected layers are large, which indi-
cates that a neural network with fewer trainable weights is favourable for the IRE40
dataset.

(a) Errors on the IRE15 set.
Small fully-connected
NNs perform the best.

(b) Errors on the IRE40 set.
Small fully-connected
NNs perform the best.

(c) Errors on the IRE350
set. The error de-
creases with increasing
fully-connected NN size.

Figure 4.18: The heatmaps depict the forecast error with respect to the amount of
output neurons of the first and the second fully-connected layer. The val-
ues shown represent the average errors for all models with the respective
fully-connected configuration, independently from ksize and knumber.

84

4.7 Developing a Convolutional Neural Network Forecasting Model

The error as a dependency of the size of the fully-connected layers develops the other
way around for the IRE350 dataset. The CNN models with large fully-connected
layers perform the best. The large error difference of more than 20 % between the
best and worst performing setup is to be highlighted. The maximal difference for
the other two datasets was each below 10 %. This indicates that, with changes in
the model configurations, more improvements of the forecast error are possible for
the IRE350 dataset than for the other two sets. That and the earlier analysis of
the volatility supports the assumption that the information content that can be
extracted from the data increases with decreasing volatility.
No conclusive statements can be made about the influence or the best values of the
kernel size or the number of kernels, based on the results of the grid-search with
two fully-connected layers. A few tendencies, however, are detectable. Concerning
the amount of kernels, a smaller number seems favourable for the IRE15 dataset
and a larger number for the IRE350 data. Different kernel sizes have no significant
influence on the forecast results in the conducted experiments. Only a kernel size of
ksize = 2 for the IRE350 set exhibits a larger error.

In general, it can be stated that a high volatility makes the extraction of information
more difficult. Therefore, the gains that can be achieved by having more trainable
weights in the neural network are larger for less volatile data.
However, on average, the additional fully-connected layer improves the forecast qual-
ity for all three datasets significantly, which means that by increasing the depth
of the NN, more information could be utilised for the forecast calculation. The
most improvement is observable for the IRE350 dataset. Whether the training pa-
rameters determined in section 4.7.3.1 are still working properly after adding an
additional fully-connected layer, which is the case has additionally been investi-
gated.

4.7.4.3 CNN with Four Fully-Connected Layers

The more layers a fully-connected neural network has, the more complex, non-linear
correlations between its input and its output can be represented by the network. The
earlier applied architecture of three fully-connected layers after the convolution, one
of which is the output layer with a linear activation, is still rather shallow and
small. Therefore, the next step of finding a good CNN for forecasting has been to
add another fully-connected layer to see if allowing for more non-linearity produces
better forecast results. The network structure of the model with four fully-connected
layers is depicted in figure 4.19

In order to avoid unnecessary computational load and to minimise the resulting
computation duration, the maximum number of output neurons of the first fully-

85

4 Results and Discussion

connected layer was set to 10, because the first grid-search suggests that a large,
first fully-connected layer is not beneficial to the forecast quality. Moreover, it does
not seem practical to test a large number of different knumber, due to computational
load and the resulting computation duration. Therefore, the architectures to be
tested have been narrowed down to the following. The same applies here as for the
previous computations - ten iterations have been calculated per setup, in order to
minimise effects introduced by the initialisation values and the random order of the
training samples.

• ksize ∈ {2, 4, 6, 8, 10, 12}

• knumber ∈ {4, 5, 6, 7, 8, 9}

• fsize ∈ {[6-4-2-1], [8-4-2-1], [8-6-2-1], [8-6-4-1], [10-4-2-1], [10-6-2-1], [10-6-4-1],
[10-8-2-1], [10-8-4-1], [10-8-6-1]}

The analysis of the trained models and their forecast errors shows that no significant
improvements in comparison to CNNs with three fully-connected layers have been
achieved. The forecast errors for all three datasets are consistently worse in compar-
ison to the model with three fully-connected layers. Neither the average error nor
the error of the best performing model decreased in this experiment. The forecast
performance did, however, not significantly worsen.

Table 4.9: The table shows the forecast errors achieved by networks that contain four
fully-connected layers.

dataset IRE15 IRE40 IRE350

MSE average 8.17 21.6 449
best model 6.59 17.9 318

Figure 4.19: The graphic depicts the structure of the CNN model with one convolu-
tional layer and four fully-connected layers.

86

4.7 Developing a Convolutional Neural Network Forecasting Model

These results lead to the conclusion that there is no need for the fully-connected
part of the neural network model to have more than three layers to be able to com-
pute good forecasts. That deduction is, of course, limited by the used dataset. It
is entirely possible that the forecast performance can benefit from a deeper network
structure for a substantially larger dataset.
Due to the fact that no improvements of the forecast quality have been made with
four fully-connected layers, testing even deeper networks is refrained from. From now
on, three fully-connected layers are used in the CNN model, because the performance
is at least as good as with four layers. Based on the idea of Occam’s Razor, the
simpler model is chosen for the time series forecasting model.

4.7.4.4 Adding Dropout to the Neural Network

The next step of improving the load forecast model is to include dropout to the neural
network. In the following, first, the concept of dropout is described. Afterwards,
different types of dropout are applied and their effect evaluated. The investigated
dropout variants include spatial dropout, dropout on the fully-connected part of
the NN with fixed and adjusted numbers of neurons, and a combination of the
methods.

Dropout was first introduced by Hinton in 2012. They demonstrated that dropout
improves the performance of neural networks for many known datasets. [119]
When dropout is applied in neural networks, it means that neurons, together with
their connections, are randomly removed - they are dropped temporarily from the
network. For each training sample, different neurons are being dropped. Hence,
only the weights connected to a fraction of neurons are adjusted during one training
step. However, all neurons and weights are used during the test and the application
of the NN. The weights are then down-scaled accordingly. [120, 119]
Applying dropout basically equals combining several different, equally weighted
models that share the same weights. Averaging several models usually increases
the overall performance of machine learning methods. When neurons are dropped
from the network, it corresponds to sampling one out of 2n thinned networks, with
n being the total number of neurons in the network. These different NNs are then
trained with extensive weight sharing between them, which is a more efficient way of
model averaging than training several models independently from each other. Addi-
tionally, dropping units reduces complex co-adaptations. Two or more neurons are
co-adapted when the output of one neuron can only be utilised in the presence of
one or more other neurons. For example, when one unit fixes the error another unit
causes. By applying dropout, the neurons must be able to work with and without
any other neuron in the NN and, therefore, complex co-adaptations are broken up

87

4 Results and Discussion

and the full capacity of the NN is utilised. This makes the model more robust and
decreases the generalisation error. [120, 119]
In a nutshell, both model averaging and breaking up co-adaptations prevent the
model from over-fitting and, therefore, enhance the model performance.

In practice, dropout is implemented through a dropout layer. The dropout layer
succeeds the layer of which neurons should be dropped and sets the output of a
pre-defined fraction p of the total neurons to zero during training. Additionally, the
remaining weights are up-scaled by 1/(1− p) during training, such that the average
sum over all inputs of the subsequent layer stays constant. If neurons of several
layers should be subject to dropout, each of those layers must be succeeded by a
dropout layer.

Numerous tests of varying variants of dropout with different dropout rates have been
conducted as part of the research on time series forecasting with convolutional neural
networks. In this section, the different experiments and their results are presented.
The kernel size ksize and the amount of kernels knumber have not been varied for
the computations in this section. Instead, they have been fixed to values which
have proven to be promising in the previous section. The variation of ksize, knumber,
and fsize in the previous section was already computationally expensive. Adding
another parameter further multiplies the computational cost and is out of proportion
with the gained insights into the behaviour of the CNN under parameter variation.
A variation of ksize, knumber, fsize, and the dropout rate drate, and computing ten
iterations of each configuration in order to balance out performance deviations due
to the initialisation would take four to five months. Therefore, the kernel size and
the amount of kernels are set to:

• ksize = 6

• ksize =

5 for IRE15
7 for IRE40
9 for IRE350

The above values have been chosen by considering the findings of computations of
CNNs with three fully-connected layers in the section before. The less volatile the
data, the better were the results with larger kernel sizes. As the amount of kernels
only had a minor influence on the forecast performance, a value in the medium range
of the tested parameter is used.
The computations of the following hyper-parameter grid-searches still took up to a
week each to complete.

In the neural network model developed thus far, there are two possibilities of where
to apply dropout: in the convolutional layer or in the fully-connected layers. In the

88

4.7 Developing a Convolutional Neural Network Forecasting Model

fully-connected layers, dropout is applied as described above. In the convolutional
layer, however, applying dropout is more tricky, because randomly removing neu-
rons corrupts the filters that are the basis of the convolutional operations. With
neurons removed from the filters, they can no longer fulfil their intended task of
identifying patterns and changes in patterns over time. Therefore, so-called spatial
dropout is applied in convolutional layers. This variation of dropout removes whole
filters, respectively feature maps, during training and thereby avoids the mentioned
shortcomings.
In order to find the best possible network that works with dropout, the testing of the
different dropout types and dropout rates drate is combined with an additional grid-
search regarding the size of the fully-connected layer fsize.

Spatial Dropout
First, spatial dropout is tested, which means a portion of the filters are randomly
dropped during training. The hyper parameters have been varied in the following
range:

• drate ∈ {0.1, 0.2, . . . , 0.9}

• fsize ∈ {[2-2-1], [4-2-1], [6-2-1], [6-4-1], [8-2-1], [8-4-1], [8-6-1], [10-2-1], [10-4-1]
[10-6-1], [10-8-1], [12-2-1], [12-4-1], [12-6-1], [12-8-1], [12-10-1]}

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

Again, ten iterations per setting have been carried out to minimise effects introduced
by the initialisation. After conducting preliminary tests, it became clear that a
larger number of filters is necessary when spatial dropout is used. This behaviour
is not unexpected due to the fact that, for large dropout rates, very few to only
one kernel is left to generate the features of which the forecast is composed. Hence,
only information about very few or one pattern is extracted from the time series
and available for the computation of the forecast. Therefore, knumber is adjusted
according to the dropout rate:

k̃number = knumber
d1− dratee

(4.4)

with d e indicating the ceiling function and k̃number the adjusted number of layers
based on the applied drate.

89

4 Results and Discussion

With the adjusted number of kernels, there are always knumber kernels trained
during each training step independently from the dropout rate. However, the
active kernels are chosen randomly for each sample, which avoids co-adaptation.

Figure 4.20: The graphic depicts the structure of the CNN model with one convo-
lutional layer and three fully-connected layers. The striped, grey arrow
indicates that spatial dropout is applied. The values in the graphic cor-
respond to the model forecasting the IRE350 data.

The analysis of the resulting forecast errors of the different forecast models shows a
clear picture. The inclusion of spatial dropout to the CNN model does not improve
the forecast quality of the models. The error values displayed in table 4.10 sup-
port this conclusion. The MSE of the best trained model is larger for all three
datasets than for the training without spatial dropout. The average error val-
ues are smaller than in table 4.8 because only the best performing values of ksize
and knumber are included in the grid-search conducted in the context of this para-
graph.

Table 4.10: The table shows the forecast errors of CNN models trained with spatial
dropout. The forecasts of the best models are less accurate than of models
without dropout.

dataset IRE15 IRE40 IRE350

MSE average 7.63 22.8 374
best model 6.95 19.3 338

Dropout on One Fully-Connected Layer
After applying spatial dropout, the influence of dropout on the fully-connected part
of the convolutional neural network for time series forecasting is investigated.
For this purpose, the neural network architecture developed in the previous sections

90

4.7 Developing a Convolutional Neural Network Forecasting Model

is used (see fig. 4.21. Dropout is, at first, only applied to the first fully-connected
layer, because it contains the biggest part of the trainable weights of the whole
network. For this purpose, a dropout layer has been added between the feature maps
and the output neurons of the first fully-connected layer. The hyper-parameters are
varied in the same range as before:

• drate ∈ {0.1, 0.2, . . . , 0.9}

• fsize ∈ {[2-2-1], [4-2-1], [6-2-1], [6-4-1], [8-2-1], [8-4-1], [8-6-1], [10-2-1], [10-4-1]
[10-6-1], [10-8-1], [12-2-1], [12-4-1], [12-6-1], [12-8-1], [12-10-1]}

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

Figure 4.21: The graphic depicts the structure of the CNN model applying dropout
in the first fully-connected layer, which is indicated by the striped, red
arrow. The values in the graphic correspond to the model forecasting
the IRE350 data.

The analysis of the forecast errors when applying dropout shows a major increase
in the forecast performance. The inclusion of dropout improves the generated fore-
casts drastically. The average error of all trained architectures decreases up to 30 %
compared to the average of the computations without dropout. Even the forecast
performance of the best configuration improves significantly (see table 4.11). The
improvement of the best models is not as strong as for the average per dataset. That
indicates that adding dropout to the fully-connected layer particularly improves the
performance of the worst performing configurations. The great improvements also
show that the neural networks did not previously exhaust their full capacity. Ap-
parently, some co-adaptations were developed that are prevented from being formed
when dropout is used.

91

4 Results and Discussion

Table 4.11: The table contains the forecast errors of the models trained with dropout
applied to the first fully-connected layer. The percentages represent the
improvement to the errors achieved with the models without dropout.

dataset IRE15 IRE40 IRE350

MSE average 5.91 (27%) 16.5 (22%) 314 (30%)
best model 5.43 (17%) 15.5 (7%) 267 (13%)

A more detailed analysis of the forecast errors comparing the different settings and
the different behaviour of the three datasets illuminates a few findings:
Firstly, concerning the variation in the dropout rate. For the IRE15 and IRE40
dataset, large dropout rates yield the best forecast results. That result is astonish-
ing, because training with a large dropout rate implies that only a very small number
of output neurons is active and thus trained during each training step. This shows
that even smaller CNNs are capable of providing satisfying forecasts, when they are
trained well. Furthermore, it proves that dropout is very successful on noisy data
or, respectively, highly volatile data. Both datasets exhibit a high variance. Such
data is more prone to over-fitting, as patterns and information are harder to extract.
Hence, neural networks are likely to memorise training data instead of extracting
meaningful information. Over-fitting becomes less probable with a large dropout
rate, since only a limited amount of trainable weights are available. In summary, it
is assumed that the advantages of large dropout rates outweigh the disadvantages
for highly volatile data. Hence, large dropout rates produce the more accurate fore-
casts. The forecast error of the less volatile IRE350 dataset reacts slightly different
to a varying dropout rate (see fig. 4.22). With an increasing rate, the error first
decreases and, after reaching an minimum for drate = 0.5, increases again. Espe-
cially for drate = 0.9, the forecast error is significantly larger. This indicates that the
network is not able to process the extracted information properly with a strongly
thinned-out network. In that case, the advantages of avoiding over-fitting and co-
adaptation disappear. The poor forecast results when applying very large dropout
rates suggest that a NN that is severely thinned out is no longer able to represent,
analyse, and process the more complex relations and dependencies between the ex-
tracted features from the IRE350 set sufficiently. This also indicates that the CNN
is able to extract more information from the time series when it is less volatile.
Secondly, the influence of the size of the first fully-connected layer is analysed with
respect to the dropout rate. Figure 4.23 shows not only the forecast error at differ-
ent dropout rates, but also the errors of a varying number of output neurons of the
first fully-connected layer. The size of the first fully-connected layer is of interest
because the dropout is applied to this layer. No distinct optimum of the layer sizes
can be determined for the IRE15 and IRE40 dataset, however, large layer sizes seem
to be slightly favoured. The number of output neurons of the first fully-connected

92

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) Error on the IRE15 set.
The best performances
are achieved with large
rates.

(b) Error on the IRE40 set.
The error increases again
for d = 0.9.

(c) Error on the IRE350
set. The best perfor-
mances are achieved with
medium rates.

Figure 4.22: The plots depict the average forecast error of a CNN with three fully-
connected layers when dropout is applied in the first of these layers with
respect to the dropout rate.

layer, however, has a discernible influence on the results when predicting the IRE350
dataset. A CNN with only two output neurons in the first layer performs signifi-
cantly worse than larger networks, regardless of the dropout rate. Hence, very small
neural networks do not possess enough variables to process the extracted information
properly or to be able to represent the correlations between the features properly.
This again supports the assumption that more information can be derived from less
volatile time series.
Thirdly, the influence of the size of the entire fully-connected part of the CNN on
the forecast performance is examined. The forecast errors shown in figure 4.23 show
that the best results for both the IRE15 and the IRE40 dataset have been achieved
with the medium sized layers. The forecast quality of the CNN models when fore-
casting the IRE40 dataset worsens when the CNN contains a rather small or a large
fully-connected section. When forecasting the IRE350 dataset, the larger the fully-
connected part, the better the forecast performance. Apparently, many trainable
weights are necessary to fully describe the correlations between the extracted fea-
tures and the output of the NN. It seems that an even larger network performs
even better. It is, however, refrained from training larger networks without knowing
whether the CNN model for the IRE350 dataset requires more trainable parameters
in order to perform better or whether the model needs more active neurons during
training in order to represent the complex correlations in the data. The decrease in
the forecast quality for large dropout rates can be an indication of the second asser-
tion. This question is explored in the next paragraph.

In summary, applying dropout to the output neurons of the first fully-connected
layer enhances the forecast performance of convolutional neural network models
drastically. This implies that the NNs previously trained have been inhibited by
over-fitting and co-adaptation and could, therefore, not develop their full capacity.

93

4 Results and Discussion

(a) Errors of the IRE15 set. (b) Errors of the IRE40 set. (c) Errors of the IRE350 set.

Figure 4.23: The heatmaps represent the forecast errors with respect to the dropout
rate and the number of neurons in the first fully-connected layer.

Medium to large dropout rates have shown the lowest forecast errors. Very large
dropout rates perform slightly worse, which possibly indicates that not enough neu-
rons were active during training to ensure an effective training. The most effective
rates are very large in comparison to the commonly applied dropout rates, which
range between 0.1 and 0.5. However, time series, for which there is no sign in
the literature that dropout has hitherto been applied, contain a lot of redundant
information in contrast to images. The negative influence of the redundancy is pre-
sumably reduced by applying dropout. The best forecasts for the IRE15 and IRE40
set are achieved with CNN models with medium-sized fully-connected sections and
for the IRE350 set with large fully-connected sections.

Dropout on One Fully-Connected Layer with Adjusted Layer Size
The size of the fully-connected layers that promise the best forecast results has
shifted to larger layers with the addition of dropout. Therefore, in this paragraph,
the size of the fully-connected network part is increased according to the dropout
rate, to further enhance the forecast performance of the CNN model. The number
of output neurons of the first fully-connected layer is adjusted according to the
chosen dropout rate. The number of neurons is changed similarly to the earlier
paragraph:

f̃number_l1 = fnumber_l1
d1− dratee

(4.5)

with fnumber_l1 being the number of output neurons of the first fully-connected
layer and f̃number_l1 the adjusted number. Thereby, the same number of neurons
is always active during training for a fixed fnumber_l1, regardless of the applied
dropout rate. This also allows for meaningful assertions about whether a change
in forecast error is caused by the variation in dropout rate or in the size of the
fully-connected section. At the same time, a larger number of neurons, and thereby

94

4.7 Developing a Convolutional Neural Network Forecasting Model

trainable weights, are available during training, which has already proven promising
in the previous experiments. Additionally, the possibility that only one or very few
output neurons of the first layer are active is avoided when using this approach.
The same hyper-parameter range as before has been used for the application of
dropout with the adjusted first fully-connected layer:

• drate ∈ {0.1, 0.2, . . . , 0.9}

• fsize ∈ {[2-2-1], [4-2-1], [6-2-1], [6-4-1], [8-2-1], [8-4-1], [8-6-1], [10-2-1], [10-4-1]
[10-6-1], [10-8-1], [12-2-1], [12-4-1], [12-6-1], [12-8-1], [12-10-1]}

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

The evaluation of the trained models and their forecast errors on the test set shows
a substantially increased forecast performance in comparison to CNN models with-
out any dropout (see table 4.12). In comparison to the results from the previous
paragraph, the new models perform, on average, slightly better than before. The
best trained models improved as well, in particular for the IRE40 dataset. That
underlines the previous assumption that applying dropout without adjusting the
size of the fully-connected layer, on one hand, avoids over-fitting, but, on the other
hand, limits the potential of the neural network. The better performance of the best
models is presumably the result of compensating this downside of applying dropout
by increasing the size of the fully-connected layer. A certain number of active neu-
rons is apparently necessary to extract and process all the information.

Table 4.12: The table contains the forecast errors of the models trained with an ad-
justed layer size according to the dropout rate. The percentages represent
the improvement to the errors achieved without dropout. The errors are
consistently lower than for the models with dropout but without adjust-
ment of the layer size.

dataset IRE15 IRE40 IRE350

MSE average 5.94 (27%) 16.4 (23%) 298 (33%)
best model 5.43 (17%) 15.4 (13%) 260 (14%)

An examination of the influence of the dropout rates on the forecast error reveals
that the errors clearly change depending on the dropout rate (see table 4.13). In gen-
eral, small dropout rates drate < 0.5 perform worse than larger rates. For the more
volatile datasets of IRE15 and IRE40, the error decreases further for even larger
rates, but the errors of the IRE350 dataset show a different behaviour. For the less

95

4 Results and Discussion

volatile data, medium dropout rates promise the best performance. In particular,
the large forecast error when applying drate = 0.9 indicates that very large dropout
rates do not work as well for less volatile time series.

Table 4.13: The table shows the average MSE with respect to the dropout rate. The
error values represent the average of all fully-connected configurations
computed with the same dropout rate. The size of the first fully-connected
layer has been adjusted according to the dropout rate.
CNN models utilising large dropout rates perform the best.

dataset IRE15 IRE40 IRE350

dropout rate

0.1 6.76 18.3 338
0.2 6.37 17.3 306
0.3 6.13 16.6 308
0.4 5.98 16.3 292
0.5 5.85 16.0 279
0.6 5.72 15.8 273
0.7 5.61 15.7 275
0.8 5.51 15.7 281
0.9 5.55 16.3 326

In order to find the fully-connected configuration that works the best for each
dataset, a more in-depth analysis of the forecast errors is done. The configuration
that has the lowest MSE on average does not necessarily produce the best forecast
model. The MSEs of less successful dropout rates can distort the results. Therefore,
an analysis of the error distribution with respect to the dropout rate is necessary.
The best forecasts for the IRE15 set have been made with very large dropout rates,
drate ∈ {0.7, 0.8, 0.9}. The analysis has shown that a dropout rate of drate = 0.7
produces the consistently best forecasts. drate = 0.8 displays the lowest error
and the best single result is achieved with that rate, however, the training with
drate = 0.8 seems to be less stable, as the variation in the forecast errors is larger
than for drate = 0.7 and configurations that perform worse are seemingly randomly
distributed over all tested fully-connected configurations. The training process of
drate = 0.9 appears to be more stable than for drate = 0.8 but less than for drate = 0.7.
In addition, no single result with MSE < 5.5 has been achieved for drate = 0.9, which
is the case for the two other rates. Therefore, the dropout rate for the IRE15 dataset
is chosen to be drate = 0.7. The forecast errors of the different fully-connected con-
figurations are shown in figure 4.24(a). The best configuration is fsize = [6-4-1] with
a forecast error of MSE = 5.46.
The changes in the forecast error depending on the variation of the dropout rate are
more similar for the IRE40 dataset than for the IRE15 set. CNNs trained with small

96

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) Errors of the IRE15 set
for d = 0.7.

(b) Errors of the IRE40 set
for d = 0.7.

(c) Errors of the IRE350 set
for d = 0.6.

Figure 4.24: The heatmaps display the forecast performance of the models with
dropout and an adjusted layer size with respect to the number of output
neurons of the first and second fully-connected layer. The number of
neurons of the first layer represent the amount before the adjustment
according to the dropout rate or, respectively, the number of active neu-
rons during training.

dropout rates perform worse than those trained with medium and large dropout
rates. The best results are achieved when a dropout rate of drate ∈ {0.6, 0.7, 0.8}
has been applied. CNNs with a dropout rate of drate = 0.9, however, are not able
to produce forecasts of the same quality. Since there are no discrepancies between
the variations of the forecast errors, drate = 0.7 is chosen as dropout for the IRE40
dataset, because CNNs utilising drate = 0.7 display the best forecast performance on
average. The best fully-connected configuration with that dropout rate according to
the forecast error is fsize = [8-6-1] (see fig. 4.24(b)), which exhibits a forecast error
of MSE = 15.4.
The behaviour of the forecast performance with changing dropout rates is a bit dif-
ferent for the IRE350 dataset. The CNNs trained with small dropout rates perform
the worst for the IRE350 set, however, very large dropout rates do not produce
the most accurate forecasts either. The neural network models performed the best
when medium size dropout rates were applied, drate ∈ {0.5, 0.6, 0.7}. When ex-
amining the forecast errors of the CNNs with the best performing dropout rate
of drate = 0.6, however, it can be noticed that the best results are produced by
the models with the largest fully-connected layers (see fig. 4.24(c)). The results
show a trend of a decreasing forecast error for an increasing fully-connected part of
the CNN. Therefore, additional CNN forecast models with larger fsize are trained
in order to expand the grid-search and identify the fsize that works the best for
the IRE350 dataset. However, applying small dropout rates is restrained from, as

97

4 Results and Discussion

models which utilise small dropout rates consistently perform the worst. The hyper-
parameter range for determining the best CNN configuration for the IRE350 dataset
is adapted to:

• drate ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

• fsize ∈ {[2-2-1], [4-2-1], [6-2-1], [6-4-1], [8-2-1], [8-4-1], [8-6-1], [10-2-1], [10-4-1]
[10-6-1], [10-8-1], [12-2-1], . . . , [12-10-1], [14-2-1], . . . , [14-12-1],
[16-2-1], . . . , [16-14-1], [18-2-1], . . . , [18-16-1]}

• ksize = 6

• knumber = 9

The evaluation of the forecast errors of the new grid-search reveals that the param-
eter range was sufficient. Table 4.14 shows that there is, on average, no substantial
error differences for the CNNs with 10, 12, 14, 16, and 18 output neurons in the
first layer, which indicates that no further performance increases are expected for
larger networks. Hence, the performed grid-search has been sufficient in finding
a good parameter configuration for the IRE350 CNN model. The most successful
dropout rates are again drate ∈ {0.5, 0.6, 0.7}, with the difference being that the
error is now the smallest for drate = 0.7. Additionally, the analysis of the model
performance analysis of these dropout rates exhibits that drate = 0.7 not only shows
the best results on average, but also includes the configuration that produces the
most accurate forecast. The fully-connected configuration that performed the best
is fsize = [16-6-1], with an error of MSE = 260.

Table 4.14: The table depicts forecast errors with respect to the applied dropout rate
(left) and with respect to the number of output neurons of the first fully-
connected layer (right).

dropout rate MSE output neurons MSE
2 304
4 286
6 270

0.4 287 8 280
0.5 277 10 268
0.6 275 12 270
0.7 272 14 271
0.8 281 16 268
0.9 327 18 272

98

4.7 Developing a Convolutional Neural Network Forecasting Model

Table 4.15: The table shows the forecast errors of the extended grid-search for the
IRE350 dataset. In contrast to the earlier conducted grid-search, only
models with dropout rates d ≥ 0.4 have been trained and, hence, are
included in the average MSE below.

dataset IRE15 IRE40 IRE350

MSE average 5.94 16.4 286
best model 5.43 15.4 258

Figure 4.25: The heatmap shows the errors of the model with respect to the number
of output neurons in the first and second layer for d = 0.7 after the
extended grid-search.

Dropout in All Fully-Connected Layers
As applying droput to the first fully-connected layer works well, in this paragraph,
it is consequently applied to all layers. The dropout rate of the first layer is fixed
to ddrop1 = 0.7, because it worked the best in the previous experiments. The best
fsize of the earlier experiments are used as well. The dropout rate of the second
fully-connected layer ddrop2 has been varied similarly to the earlier experiments.
The number of ouput neurons for both layers has been adjusted with respect to the
individual dropout rate:

• drate1 = 0.7

• drate2 ∈ {0.1, 0.2, . . . 0.9}

99

4 Results and Discussion

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

The forecast errors of the different CNN models with dropout applied in the first
and second fully-connected layer show that there are no benefits in applying dropout
to more than the first layer of the neural network. None of the models is able to
perform better than the forecast models, with dropout in only one layer (see table
4.16). In addition, it can be seen in figure 4.26 that the forecast error increases
continuously with an increasing dropout rate. This suggests that the most accu-
rate forecasts can be achieved with no dropout in the second fully-connected layer.

Table 4.16: The table describes the forecast errors achieved with models when dropout
is applied to all fully-connected layers. The large average forecast errors
are the result of the larger errors for large dropout rates.

dataset IRE15 IRE40 IRE350

MSE average 8.11 24.5 661
best model 5.90 15.8 318

(a) Forecast error of the
IRE15 dataset.

(b) Forecast error of the
IRE40 dataset.

(c) Forecast error of the
IRE40 dataset.

Figure 4.26: The plots depict the forecast error with respect to the dropout rate ap-
plied in the second fully-connected layer. The error increases drastically
with an increasing dropout rate for all datasets.

100

4.7 Developing a Convolutional Neural Network Forecasting Model

Why the application of dropout in the whole fully-connected part of the CNN deteri-
orates the forecast quality can only be speculated. One potential explanation would
be that applying dropout rather eliminates critical information instead of avoiding
co-adaptations in the network. The first fully-connected layer already condenses the
extracted information, so that, probably, hardly any redundancies in the output of
the layer exist any more. Thus, when applying dropout in the second layer, the in-
formation the layer receives is incomplete and therefore the training is less effective.

Figure 4.27: The graphic depicts the structure of the CNN model applying dropout in
all suitable fully-connected layers, which is indicated by the striped, red
arrows. The values in the graphic correspond to the model forecasting
the IRE350 data.

As the forecast performance of the models is worse than in the previous paragraph,
the concept of applying dropout to all fully-connected layers in the network is dis-
carded.

Combining Spatial Dropout with Dropout in the Fully-Connected Layer
Even though earlier experiments have shown that the inclusion of spatial dropout
in the CNN models does not necessarily improve the forecast performance of the
models, more tests are conducted in order to verify whether that is still the case in
combination with dropout in the fully-connected layer. The parameters of the best
performing CNN models using dropout in the first fully-connected layer are utilised.
In addition, spatial dropout is applied to the convolutional layer. The best perform-
ing dropout rate from the earlier experiments with spatial dropout is chosen as the
spatial dropout rate in these computations. knumber is adapted accordingly to the
rate, as done previously. No parameter search is conducted before the effectiveness
of combining the two dropout types has been confirmed.

• drate = 0.7

101

4 Results and Discussion

• drate_spatial =

0.9 for IRE15
0.8 for IRE40
0.5 for IRE350

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

The results (see table 4.17) show that, in combination with dropout in the fully-
connected layer, the addition of spatial dropout to the CNN model does not improve
its ability to create accurate forecasts. This indicates that adding spatial dropout
is not beneficial for time series forecasting or the type of data that is used in this
thesis.

Table 4.17: The forecast error of the models that use spatial dropout and dropout
in the first fully-connected layer. The errors are larger than for models
without spatial dropout.

dataset IRE15 IRE40 IRE350
MSE 6.04 16.1 327

Conclusion
The experiments conducted in this section demonstrate that time series forecasting
with convolutional neural networks of data with a large sampling rate strongly ben-
efits from the inclusion of dropout into the network. The experiments have shown
that, on one hand, dropout in the fully-connected part of the CNN is highly effec-
tive. Adding spatial dropout to the CNN, on the other hand, has only a marginal
effect on the forecast perfomance of the CNN model.
Dropout in the fully-connected part of the NN is successfully applied to the first
layer. The differences in the forecast results between CNN models with and without
an adjusted size of the layer to which dropout is applied indicates that thinning out
the network by applying dropout slightly reduces the ability to learn the correlations
of the features, which are extracted by the convolutional layer. Hence, increasing the
size of the network when applying dropout is crucial for achieving the best results

102

4.7 Developing a Convolutional Neural Network Forecasting Model

possible.
Another finding of the experiments is that neither combining spatial dropout with
dropout in the first fully-connected layer nor applying dropout to the entire fully-
connected part of the CNN model increases the forecast quality. On the contrary, the
forecast error increases when more dropout has been introduced to the neural net-
work. Therefore, dropout is only applied to the first fully-connected layer with an ad-
justed number of output neurons, according to the dropout rate.

The best configurations for each dataset have been determined according to the
mean squared error of the 36 hour forecast created. These configurations, which are
used from now on as the basis of further research, if not mentioned otherwise, are
summarised in table 4.18.

Table 4.18: The table summarises the network configuration for each dataset that
generated the most accurate forecasts so far.

dataset MSE configuration

IRE15 5.46
ksize = 6, knumber = 5,

drate = 0.7, fsize = [6-4-1]
f̃size = [20-4-1]

IRE40 15.4
ksize = 6, knumber = 7,

drate = 0.7, fsize = [8-6-1]
f̃size = [27-6-1]

IRE350 260
ksize = 6, knumber = 9,

drate = 0.7, fsize = [16-6-1]
f̃size = [54-6-1]

The best network configurations and the performances of different dropout rates
indicate that CNNmodels applied to data with a large sampling rate benefit the most
when the dropout rate is rather large. The lowest forecast errors in the experiments
were achieved with large rates of drate ∈ {0.6, 0.7, 0.8}. In established networks and
most of the publications that include experiments with dropout, the chosen rate is
mostly smaller (drate ∈ [0.1, 0.5]). It seems dropout is crucial for good results when
working with time series that have a large sampling rate. A possible explanation is
that the time series include a lot of redundant information, due to the large sampling
rate. The values of adjacent data points often barely differ from each other, which
means, in return, that they contain similar information. By applying a large dropout
rate, in addition to avoiding co-adaptation the probability of processing redundant
information in a training step is severely reduced. This enhances the forecast quality,
because less over-fitting takes place. When data with redundant information is
presented to a NN, the NN learns the noise of the data or, respectively, memorises

103

4 Results and Discussion

the training data instead of learning meaningful correlations. This happens because
the network has too many trainable weights at its disposal, due to the fact that
the input neurons of the layer, which represents potentially redundant features,
are connected to each output neuron of the first layer. That is presumably the
reason why large dropout rates work well for the used datasets. However, very large
dropout rates drate > 0.8 have an opposing effect on the forecast quality. This is
probably because correlations between the input are hardly learnt, since it is very
unlikely that the same neurons are regularly active together. Another reason is
the possible large temporal distance between two active input neurons, which can
result in the trend of the data not being properly represented. For similar data
with a higher temporal resolution, larger dropout rates would probably work better.
The best results were eventually achieved with a dropout rate of drate = 0.7 for all
datasets.

When examining the best configuration for each dataset (see table 4.18), it is no-
ticeable that the size of the fully-connected part of the CNN model increases with
a decreasing volatility of the datasets. The necessity of a larger fsize indicates that
more useful information can be extracted and, hence, must be processed by the fully-
connected layers. This coincides with earlier findings that the neural network is able
to derive more information from a less volatile time series. In general, it can be
assumed that predicting a load time series of large aggregation level is easier than of
smaller aggregation level, because the volatility is smaller; which, on the one hand,
allows more information to be extracted and, on the other hand, reduces the influence
of single households on the time series. This means, in return, that the time series is
less susceptible to interferences caused by one household.

The configurations determined in this section are used for every CNN model from
now on, if not mentioned otherwise. Naturally, the question of if the number of
training epochs e is still sufficient for the training with dropout was also examined.
Those tests concluded that training the chosen neural network models with e = 40
epochs is still adequate.

4.7.4.5 Adding Pooling Layers

A common component in established convolutional neural networks that process
two-dimensional data are pooling layers [95, 121]. They serve two purposes - to
reduce the dimensionality of the data and to make the CNN model less sensitive
to small translations of patterns. A pooling layer typically consists of a pooling
operation that transforms several input values to one output value. The most com-
mon pooling operations are max-pooling, where the output is the maximum of the

104

4.7 Developing a Convolutional Neural Network Forecasting Model

input values, and average-pooling, which computes the average of the input val-
ues.

That CNN models with large dropout rates have produced the best forecasting
results in the previous paragraph suggests that the data contains redundant in-
formation. A detailed discussion can be found in the previous paragraph. In this
paragraph, whether that redundant information can also be removed by the addition
of a pooling layer to the CNN model and whether, thereby, the forecast accuracy
increases is investigated. The assumption is that, by reducing the output dimen-
sionality of the convolutional layer, less over-fitting occurs and, thus, the forecast
performance of the model increases.
The pooling layer is placed subsequent to the convolutional layer and is, therefore,
applied to the extracted feature maps. Depending on the configuration of the pool-
ing layer, the size of the resulting, newly computed feature maps decreases and,
therefore, the input dimensionality of the fully-connected part of the network is re-
duced. In addition to the type of the pooling operation, pooling layers can vary
in the size of the pooling window and in stride size or increment. The stride size
specifies the step size with which the pooling window samples the feature map of the
convolutional layer. It should not be larger than the size of the pooling window itself,
because, otherwise, some data points would be neglected and not be processed at
all. Executing a pooling operation and reducing the dimensionality also involves the
risk that information will get lost during the process. The intention of the following
experiment is to ascertain whether the benefits or the drawbacks of adding a pooling
layer to a CNN model for time forecasting dominate.

In order to determine the effectiveness of a pooling layer in a CNN model, a grid-
search that varies the size of the pooling window psize and the stride size pstride is
conducted. Additionally, two types of pooling operations are assessed: average pool-
ing and max pooling. The setup of the fully-connected layer is chosen to be the best
performing setup from the previous paragraph, that analysed dropout, but dropout
will not be applied in this experiment. The assumption is that these setups have
proven to produce good results for the used datasets. If the pooling operations are
able to minimise the amount of redundant information, the forecast error should be
similar to models with dropout. If that is the case, the size of the fully-connected
part will be increased in a following step, to check if pooling offers even more poten-
tial. Additionally, varying fsize would result in a unreasonable computational load
as well. The neural networks do not include any dropout and, therefore, the number
of output neurons of the first fully-connected layer is not changed. Dropout is not
applied, as the experiment is intended to show whether pooling operations have a
similar effect to dropout layers.
The parameter variations of the grid-search are the following:

105

4 Results and Discussion

• psize ∈ {2, 4, 6, 8}

• pstride ∈ {1, 2, 4, 6, 8} if psize ≥ pstride
• ptype ∈ { max pooling, average pooling }

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

with ptype being the type of pooling operation applied.

The forecast errors of the CNN models trained with a pooling layer following the
fully-connected layer (see table 4.19) are larger than those of the networks trained
with dropout. That indicates that adding an average or max pooling layer subse-
quent to the convolutional layer does not have the desired effect of reducing the
impact of the existing information redundancy in the data. The forecast errors
are consistently larger than from models utilising dropout. A comparison with the
earlier experiment of computing CNNs with three fully-connected layers and no
dropout even suggests that adding the pooling layers has no positive influence on
the forecast performance of the CNNs at all. The average errors and the errors of
the best models are both as large or larger than the comparable errors produced
by networks with no dropout and no pooling (see table 4.8 for comparison). Con-
sequently, the approach of adding a pooling layer between the convolutional layer
and the fully-connected layer of the convolutional neural network is not pursued
further.

Table 4.19: The table presents the forecasting errors achieved with CNN models that
apply a pooling operation subsequent to the convolution. The top part
represents the errors when average pooling is applied, the bottom when
max pooling is applied.

dataset IRE15 IRE40 IRE350

MSE average 7.30 20.3 399
best model 6.08 16.8 341

MSE average 7.94 19.3 409
best model 7.06 17.4 339

106

4.7 Developing a Convolutional Neural Network Forecasting Model

4.7.4.6 Variation in Stride Sizes

The previous paragraph about pooling layers mentions the stride size as a hyper-
parameter of pooling layers. The possibility of changing the stride size is not ex-
clusive to pooling layers. Convolutional layers and pooling layers both process their
input data incrementally. Therefore, it is also possible to adjust the stride size of a
convolutional layer. It is common for the deep convolutional layers within a CNN to
have a stride size kstride 6= 1. The stride size of the input layer, however, is typically
set to kstride = 1. Nevertheless, an experiment is conducted in order to investigate
whether changing the stride size to larger values influences the forecast performance
of the CNN model. The remaining hyper-parameters of the convolutional layer as
well as of the fully-connected layers are kept the same as in the most successful
network.

• ksize = 6

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

• kstride ∈ {2, 4, 6}

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

No kstride values larger than six are investigated, as the stride size would then be
larger than the kernel size. With larger stride sizes, some input values of the time
series would be omitted.

The analysis of the results shows that applying larger stride sizes to the input
layer of the CNN does not result in more accurate forecasts in comparison to the
most successful forecast models. The results also show that the forecast quality
deteriorates with an increasing stride size, which is a further indication that a
stride size of kstride = 1 is favourable in the first convolutional layer. Therefore,
the stride size of the first layer is always set to one in the following experiments.

4.7.4.7 Adding more Convolutional Layers

In this section, additional convolutional layers are added subsequent to the current
layers in place. First, one layer and, afterwards, two layers are added, and the

107

4 Results and Discussion

Table 4.20: The forecast errors of CNN models with stride sizes of the convolutional
layer larger than one.

dataset IRE15 IRE40 IRE350

MSE average 5.92 15.9 367
best model 5.81 15.6 314

influence on the forecast performance is examined.

The experiments discussed in the previous sections were mostly focussed on opti-
mising the fully-connected part of the convolutional neural network and its input.
That is due to the early observation that variations in the kernel size as well as
in the amount of kernels have a smaller influence on the forecast performance on
the models. The changes in the forecast error and, thus, the potential for im-
provement have been larger when the configuration of the fully-connected layers is
varied. Therefore, the configuration of the fully-connected part has been optimised
first.

Another possibility of potentially improving the forecast performance of the CNN
model is adding more convolutional layers to the neural network, hence creating a
deeper network. A network with more convolutional layers is capable of recognis-
ing more complex and larger patterns. With every layer, the values of the feature
maps, which represent the presence of a pattern, can be combined to more sophisti-
cated patterns. This property of CNNs is the reason for their success in image and
pattern recognition. Furthermore, the receptive field is enlarged by adding more
convolutional layers. The receptive field indicates how many input values contribute
to a value in an activation map (see fig. 4.28). With a larger receptive field, larger
patterns and correlations can be represented in this activation map. In order to
analyse whether additional convolutional layers enhance the forecast performance of
the CNN models for time series forecasting, first, one convolutional layer is added
to the CNN model established in the previous section (see fig. 4.30(a)). The kernel
size and the amount of kernels of the additional layer are varied.
The best results with CNN models are usually achieved with networks where the
number of filters successively increases with the depth of the network. Most of
the successful CNN models are structured in that way [115, 122]. Therefore, the
amount of kernels of the second layer knumber2 is chosen to be at least equal to the
first layer knumber1. For a better comparability between the three datasets and for
a good coverage of the search space, knumber2 is chosen to be a multiple of knumber1.
Additionally, a stride size kstride2 ≥ 1 is also tested for the kernels in the second
convolutional layer. Even though changing the stride size in the first convolutional
layer has not improved the forecast quality (see section 4.7.4.6), it is tested for the

108

4.7 Developing a Convolutional Neural Network Forecasting Model

second convolutional layer again. Increasing the stride size reduces the amount of
additionally added trainable weights, thus reducing the possibility of over-fitting due
to an abundant number of weights in the neural network.

Figure 4.28: This graphic illustrates the receptive fields of two values in consecutive
activation maps. The values (grey boxes) on the left depict the input
series and the ki the kernel size of the layers. The dark blue value in the
first feature map is computed of the dark blue values of the input series.
Its receptive field corresponds to its kernel size. The light blue value in
the 3rd layer is computed of the light blue values of the 2nd layer. Its
receptive field corresponds to the blue value in the 1st layer, hence is
larger than its kernel size.

The configuration of the fully-connected layers is retained from the earlier experi-
ments. If the forecast errors with an additional convolutional layer are the same or
better than with one layer, the best convolutional configuration will be kept and a
further variation of the fully-connected layers will be conducted. Varying both parts
of the network at the same time would otherwise result in a very large computational
load. The grid-search conducted with the parameter ranges below already includes
the training of more than a thousand neural networks.

• ksize1 = 6

• knumber1 =

5 for IRE15
7 for IRE40
9 for IRE350

• ksize2 ∈ {4, 6, 8, 10, 12}

109

4 Results and Discussion

• knumber2 ∈

{5, 10, 15, 20} for IRE15
{7, 14, 21, 28} for IRE40
{9, 18, 27, 36} for IRE350

• kstride2 ∈ {1, 2, 4}

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

The resulting forecast errors of the best trained CNN models with two convolutional
layers show that a deeper convolutional network slightly enhances the information
extraction from the time series. The forecast errors (see table 4.21) of IRE15 and
IRE350 dataset are similar to the errors when one convolutional layer is used (com-
pare with table 4.15). The forecast error of the best model for the IRE40 dataset
shows a slight decrease of about 4 %.

Table 4.21: The forecast errors of the models containing two consecutive convolutional
layers are displayed.

dataset IRE15 IRE40 IRE350

MSE average 5.58 15.4 265
best model 5.41 14.9 251

The influence of the stride size on the forecast performance decreases with the aggre-
gation level. For the IRE15 datasets, models with kstride2 > 1 produce significantly
better forecasts than kstride2 = 1. The differences in the forecast error diminish for
the IRE40 dataset and are no longer existent for the less volatile IRE350 dataset.
The differences in the amount of trainable weights probably cause this behaviour.
A doubling of the stride size results in half the values in the final feature maps
of the convolutional part of the network, which constitute the inputs for the first
fully-connected layer. A reduction in the number of inputs, therefore, results in a
reduction in the number of weights by a multitude. Fewer weights means a smaller
probability of over-fitting. As less meaningful information can probably be extracted
from the more volatile time series, the CNN model over-fits more easily because the
abundant weights are then utilised to memorise the dataset, which decreases the
generalisation ability of the model; hence, the forecasts of the test set are less accu-
rate. For all three datasets, the forecast errors have been smaller in the average and
the respective best configuration with a stride size kstride2 > 1.
It seems that for a stride size of kstride2 = 4, another effect occurs. For small filter
sizes ksize2, the forecast errors are larger than for larger filter sizes. The errors indi-
cate that the information gets lost when the chosen size of the convolutional layer is

110

4.7 Developing a Convolutional Neural Network Forecasting Model

too small. The errors are then larger than with only one convolutional layer. Hence,
there exists a fine line between choosing a size of the second convolutional layer that
is too small or too large, which must be taken into account when this CNN model
is adapted to another dataset.
The choice of the kernel size in the second convolutional layer, however, seems to
have only a minor effect on the model performance. It was expected that a larger
kernel size, which results in a large receptive field, would be able to provide more
context in the second convolutional layer. However, the results do not confirm this
assumption.

Table 4.22: The table shows the configurations of the models that computed the most
accurate forecasts with the corresponding forecast error.

dataset MSE configuration

IRE15 5.41
ksize1 = 6, knumber1 = 9, kstrides1 = 1,
ksize2 = 8, knumber2 = 15, kstrides2 = 4,

drate = 0.7, fsize = [6-4-1], f̃size = [20-4-1]

IRE40 14.9
ksize = 6, knumber = 9, kstrides1 = 1,

ksize2 = 12, knumber2 = 21, kstrides2 = 2,
drate = 0.7, fsize = [8-6-1], f̃size = [27-6-1]

IRE350 251
ksize = 6, knumber = 9, kstrides1 = 1,

ksize2 = 12, knumber2 = 36, kstrides2 = 2,
drate = 0.7, fsize = [16-6-1], f̃size = [54-6-1]

More than one consecutive convolutional layer allows the addition of pooling lay-
ers between the convolutional layers. Preliminary tests, however, have not shown
promising results. In all tests, the forecast error deteriorates when pooling layers are
added between the two convolutional layers. Therefore, investigating the influence
of pooling layers any further has been refrained from.

As the forecast error could be decreased by adding a second convolutional layer to
the neural network model, naturally, it is also investigated whether the forecast per-
formance can be further enhanced by using even deeper CNNs for the computation
of the predictions. In the next experiment, a third convolutional layer is added to
the model (see fig. 4.30(b)). The amount of filters in the third layer knumber3 is,
again, a multiple of the amount in the previous layer. Different kernel sizes ksize3
and strides kstride3 are tested. Only strides larger than one are used in an effort not
to increase the amount of data points in the feature map too much. The addition
of one more input value to the layer creates connections to all the output neurons,
hence adding several trainable weights and, therefore, increases the amount of train-
able parameters, which in return increases the chance of over-fitting.

111

4 Results and Discussion

(a) Forecast errors of the
IRE15 dataset.

(b) Forecast errors of the
IRE40 dataset.

(c) Forecast errors of the
IRE350 dataset.

Figure 4.29: The heatmaps depict the forecast errors with respect to the stride size
and the kernel size of the new, additional convolutional layer. The error
values of the best networks cannot be found, because the depicted val-
ues represent the average of all configurations that have the respective
parameters.

The hyper-parameters of the conducted grid search are the following:

• ksize1 = 6 knumber1 =

5 for IRE15
7 for IRE40
9 for IRE350

kstride1 = 1

• ksize2 =

8 for IRE15
12 for IRE40
12 for IRE350

knumber2 =

15 for IRE15
21 for IRE40
36 for IRE350

kstride2 =

4 for IRE15
2 for IRE40
2 for IRE350

• ksize3 ∈ {4, 8, 12, 16} knumber3 ∈

{15, 30} for IRE15
{21, 42} for IRE40
{36, 72} for IRE350

kstride3 ∈ {2, 4}

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

The resulting forecast errors of this experiment suggest that the addition of a third
convolutional layer is not beneficial to the forecasting abilities of the CNN model.
The errors (see table 4.23) decreased or are similar in comparison to the errors
achieved with a model consisting of two convolutional layers. Therefore, no deeper
models have been tested as it is assumed that the addition of more layers only
worsens the forecast performance of the models.

112

4.7 Developing a Convolutional Neural Network Forecasting Model

Table 4.23: The forecast errors of the CNN model containing three consecutive con-
volutional layers.

dataset IRE15 IRE40 IRE350

MSE average 5.94 15.3 267
best model 5.79 15.0 257

For the best network configurations of both model architectures with two and three
convolutional layers, it has additionally been tested whether a variation in the size
of the fully-connected network part has the potential to improve the forecast per-
formance of the changed CNN. The results, however, show that the configuration of
the fully-connected part derived in 4.7.4.4 still provides the most accurate forecasts,
also for a deeper network.

(a) The CNN model with two consecutive
convolutional layers.

(b) The CNN model with three consecutive convo-
lutional layers.

Figure 4.30: The graphics depict the structures of CNNmodels with a varying number
of convolutional layers. The values in the graphic correspond to the
model forecasting the IRE350 data.

In conclusion, it is noticeable that one additional convolutional layer, and hence
a deeper network, does not deteriorate the forecast quality produced by the CNN
model. The forecast error improvements seen for the IRE40 dataset indicate, on the
contrary, that a deeper network offers the potential to extract more information. It
also became obvious, however, that choosing an appropriate model configuration is
more critical to the forecast performance of deeper networks, at least for datasets of
a size comparable to the Irish Smart Meter Trial.
Adding even more convolutional layers, however, does not improve the forecast qual-
ity further. Therefore, the models with two convolutional layers are the most promis-
ing models to create good electricity load forecasts.
Table 4.22 presents the network configurations that produced the best result.

113

4 Results and Discussion

4.7.4.8 Influence of Dilated Kernels

Another possibility to adjust the convolutional layer in order to improve the fore-
cast performance of the CNN model is to use dilated kernels. Usually, the kernels
of a convolutional layer process ksize neighbouring inputs. The computed outputs
from each convolutional step compose the feature map. In the feature maps, the
spatial and temporal order of the input is still preserved. A kernel of a dilated
convolutional layer, in contrast to a normal kernel, does not process neighbouring
inputs. Instead, the values the kernel uses for the computation are uniformly spaced
inputs with a fixed distance between each other. The distance to the next used input
value is called dilrate as skipping inputs dilates the time span the kernels operate
on. The time span is enlarged by the factor of the dilation rate. The formula of
the one-dimensional convolutional operation (see sec. 3.3.3) changes with dilation
to:

(F ∗ w) (n) =
∑

s+d·t=n
F (s)w(t) (4.6)

with the dilation rate shortened to d = dilrate.

Dilated convolutional layers were first introduced by Fisher et.al in 2016 [123] for
image segmentation. When using several layers of dilated convolutions, the recep-
tive field enlarges and more context of the neighbouring areas is available. The
term receptive field is derived from the visual system and describes the size of the
model input the computation of a feature is based on. The term is only used for
convolutional layers, as fully-connected layers have the maximum receptive field by
definition and their input is not ordered. Naturally, the receptive field enlarges with
each convolutional layer in the neural network. It extends with an increasing kernel
size and an increasing stride size as well. The stride size of dilated kernels, however,
is fixed to kstride = 1, because otherwise some input values are potentially not pro-
cessed, depending on the combination of dilation rate and stride size.
The purpose of using dilated convolutions in CNN models is, on the one hand, to
increase the receptive field and, on the other hand, to decrease the amount of redun-
dant information one kernel receives. As discussed earlier, it can often be assumed
that temporal neighbouring values of the input time series contain redundant infor-
mation. That is particularly the case for time series with a large sampling rate and,
thus, a high resolution. If kernels would not perceive neighbouring data points and
use them for the computation of their output, less redundant information would be
processed by the kernels. This might increase the performance of the CNN forecast
models.

Several CNN models of varying configurations are trained in order to study the
influence of dilated kernels in the convolutional layer on the forecast performance.

114

4.7 Developing a Convolutional Neural Network Forecasting Model

As a first step, CNN models with only one convolutional layer are used to assess the
changes in forecast performance when applying dilated kernels. The best networks
from section 4.7.4.4 (see also table 4.18) are used as the basis for the networks with
dilations. The dilation rate dilrate and the kernel size ksize are varied in the range
described below. The kernel size is not fixed to the previously determined value
because, with the change of the dilation rate, a kernel processes a different time
span and ksize = 6 might not be optimal.

• ksize ∈ {2, 4, 6, 8}

• knumber =

5 for IRE15
7 for IRE40
9 for IRE350

• dilrate ∈ {2, 4, 6, 8}

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

The results of this experiment are mixed. While the best forecast errors for the
IRE15 and IRE350 dataset remain similar to the best errors achieved without di-
lations, the forecast error of the IRE40 dataset has improved. This indicates that
more information can be extracted with a larger receptive field of the kernels. This
observation is in line with the results from the previous paragraph, in which net-
works with two convolutional layers (without dilation) were examined. Forecasts of
the IRE40 dataset exhibited the largest improvement when a second convolutional
layer was added and, thus, the receptive field is enlarged. This means a large recep-
tive field is desirable and can improve the forecast quality.

Table 4.24: The errors of CNN models with dilated kernels used in their convolutional
layer.

dataset IRE15 IRE40 IRE350

MSE average 5.84 15.2 274
best model 5.70 14.8 258

An analysis of the results shows that the best results are achieved with medium
kernel sizes of ksize ∈ {4, 6}. With increasing kernel size, the forecast performance
decreases, in particular for the IRE15 and IRE40 data and independently from the
dilation rate. No strong influence of the dilation rates can be recognised in the re-
sults. That, combined with the fact that models without dilation perform the same
or slightly better, leads to the conclusion that the inclusion of dilations does not

115

4 Results and Discussion

(a) IRE15 (b) IRE40 (c) IRE350

Figure 4.31: The heatmap shows the forecast errors of the models with respect to
the kernel size and the applied dilation rate. No clear preference for a
dilation rate is recognisable.

improve the forecast performance of the CNN models on electricity load time series.
The enhanced performance on the IRE40 dataset is limited to exactly one configu-
ration (see fig. 4.31) and can hardly be explained.

The previous section has shown that CNN models that contain two convolutional
layers are better suited for electricity load forecasting, probably due to the increased
receptive field. The next experiment examines whether a further enlargement of the
receptive field by using dilated kernels in the second convolutional layer further
decreases the forecast errors.
For this purpose, several CNN models are trained which differ in kernel size ksize2
and dilation rate dilrate2 of the second convolutional layer. The amount of kernels
knumber2 in the second layer are kept at the optimal value determined in section
4.7.4.7, assuming that the amount of extracted information does not drastically
increase, which would require more kernels. The range of the hyper-parameter
values assumed in this experiment is listed below:

• ksize1 = 6

• knumber1 =

5 for IRE15
7 for IRE40
9 for IRE350

• ksize2 ∈ {6, 8, 10, 12, 14}

• knumber2 =

15 for IRE15
21 for IRE40
36 for IRE350

116

4.7 Developing a Convolutional Neural Network Forecasting Model

• dilrate2 ∈ {2, 4, 6, 8}

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

The analysis of the forecast errors obtained during the experiment indicates that
dilated kernels in the second convolutional layer have no positive influence on the
forecast performance of the CNN models. Throughout all three datasets, the forecast
performance of the best model decreased between 7 % and 3 % in comparison to the
models with two convolutional layers, but without dilation.

Table 4.25: The table presents the forecast errors achieved with CNN models that
contain two convolutional layers with the second layer consisting of dilated
kernels.

dataset IRE15 IRE40 IRE350

MSE average 5.96 16.0 267
best model 5.83 15.5 259

Both experiments - using dilated kernels in a CNN model with one and with two
convolutional layers - resulted in a worsened forecast performance in comparison to
the respective models without dilation. This indicates that using dilated kernels
in time series forecasting is not beneficial. It does not seem to be the right tool
to address the problem of redundant information in the data. Therefore, dilated
kernels are no longer applied.

4.7.4.9 Adding a Parallel Convolutional Layer

In the previous paragraphs, the influence of several hyper-parameters of the CNN
model on the forecast quality have been examined and the parameter values have
been tuned in order to obtain an accurate forecast. However, the fundamental model
architecture has been kept identical for all experiments; only the depth of the model
has been varied. Section 4.7.4.7 has shown that the CNN models perform best with a
shallow convolutional part of the network. This may partly be caused by the limited
dataset size. With data of several years available, it is possible that models with
more convolutional layers perform better. The shallow convolutional part of the NN
combined with the small kernel sizes and no dilation makes the receptive field of
the convolutional layers very small. That means each value of the final feature map
is computed based only on a small part of the input time series. As a result, the
features cannot represent large-scale interrelationships within the input load time

117

4 Results and Discussion

series. A model with a larger receptive field should more easily be able to detect
those relationships.
In the previous section, attempts have already been made to compensate for the
disadvantages of small kernel sizes by using dilated kernels. However, no forecast
improvements have been achieved. The drawback of the small receptive field of the
convolutional layer is addressed in the following by again adding another set of larger
kernels to the neural network, which operate independently on the input time series.

Figure 4.32: The graphic depicts the structure of the CNN model with two parallel
convolutional layers, which both operate independently on the input
series. The values in the graphic correspond to the model forecasting
the IRE350 data.

The new, secondary convolutional layer, therefore, operates parallel to the existing
layer (see fig. 4.32). The idea is that the parallel layer extracts information about
trends and long time relations between the inputs. This has not been possible with
the previously applied network architecture. In order to enable the layer to fulfil
this function, it requires a large receptive field. This can be achieved by composing
the layer of large kernels. However, in order to not raise the number of weights too
much, dilated kernels are applied in the parallel convolutional layer. Furthermore,
only a small amount of kernels is used in the new layer. The resulting feature maps
are treated equally to the feature maps of the other convolutional layer. Hence, the
values of all feature maps constitute the input of the first fully-connected layer and
are, therefore, equally subject to the dropout applied in that layer. The dropout
rate is kept at drate = 0.7. Additionally, the size and the amount of kernels is varied,
as is the dilation rate. The different configurations have a receptive field between
six hours (with ksize_p = 12 combined with dilrate_p = 1) and 94.5 hours (with

118

4.7 Developing a Convolutional Neural Network Forecasting Model

ksize_p = 48 combined with dilrate_p = 4). The receptive field of the primary layer,
on the other hand, is only three hours.
The parameters of the grid search are listed below. The remaining network is con-
figured according to the best network derived in paragraph 4.7.4.4. It was decided
not to use the CNN model with two consecutive convolutional layers, even though
they have a better forecast performance, for the simple reason that the second layer
in those networks fulfils the same function of enlarging the receptive field as the
newly added parallel layer. Therefore, the simpler model architecture derived in
section 4.7.4.4 is resorted to. This allows a comparison of which method works more
effectively.

• ksize1 = 6

• knumber1 =

5 for IRE15
7 for IRE40
9 for IRE350

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

• ksize_p ∈ {12, 24, 48}

• knumber_p ∈ {2, 4, 6, 8}

• dilrate_p ∈ {1, 2, 4}

ksize_p, knumber_p, and dilrate_p describe the parameters kernel size, amount of ker-
nels and dilation rate of the parallel convolutional layer.

The analysis of the computed forecasts by the CNN model with two parallel convo-
lutional layers shows positive results. In general, it is ascertained that the parallel
layer fulfils its purpose of improving the forecasts by adding long-range information
extracted by large kernels.
The forecast error on the IRE15 dataset of the best tested configuration is a little
bit worse, but in a similar range, than for the CNN model with only one CNN layer.
The fact that only minor changes in the forecast error between the models with
one convolutional layer, two subsequent convolutional layers, three convolutional
layers, and two parallel layers can be observed, indicates that purely data-driven
improvements are hardly possible any more for the IRE15 dataset. The data driven
information extraction seems to be exhausted, at least with a CNN model. The
slightly larger forecast error is then probably caused by over-fitting, as the addition
of the parallel layer increases the amount of weights in the first fully-connected layer

119

4 Results and Discussion

significantly.
For the IRE40 and IRE350 dataset, the newly added parallel convolutional layer
improves the forecast quality of the CNN model with respect to the model with only
one convolutional layer. For the IRE350 set, the error is even smaller than for the
model with two consecutive convolutional layers. Increasing the receptive field im-
proves the forecast performance, in particular for the IRE350 dataset (see fig. 4.33).
Using even larger dilation rates or kernel sizes is, however, not expedient, since the
receptive field then enlarges to almost the size of the model input series, which is
one week. This would reduce the idea of the convolutional operations to absurdity.
For the IRE40 and also the IRE15 set, models with a small receptive field seem to
perform the best. This might be due to the volatility of the series, as the large-range
patterns interfere with the spikes due to the volatility.

Table 4.26: The table shows the configurations of the best performing models contain-
ing a secondary convolutional layer and their respective forecast error.

dataset MSE configuration

IRE15 5.54
ksize = 6, knumber = 9,

drate = 0.7, fsize = [6-4-1]
ksize_p = 24, knumber_p = 2, dilrate_p = 2

IRE40 15.2
ksize = 6, knumber = 9,

drate = 0.7, fsize = [8-6-1]
ksize_p = 12, knumber_p = 4, dilrate_p = 2

IRE350 245
ksize = 6, knumber = 9,

drate = 0.7, fsize = [16-6-1]
ksize_p = 24, knumber_p = 6, dilrate_p = 4

In conclusion, the approach of extracting large-scale information from the input se-
ries with a secondary convolutional layer that consists of large kernels seems to work,
as the forecast errors of the IRE40 and IRE350 improved.

120

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) Errors of the IRE40
dataset. Medium size
receptive fields perform
the best.

(b) Errors of the IRE350
dataset. Large receptive
fields perform the best.
df

Figure 4.33: The heatmaps show the forecast error of CNN models containing a sec-
ondary convolutional layer with respect to the dilation rate and the ker-
nel size of the parallel layer. The two parameters determine the size
of the receptive field. The larger the parameter values, the larger the
receptive field.

4.7.4.10 Creating a More Complex Network

The experiments of the two previous sections have shown that by enlarging the
receptive field, there is still potential for improvement in the purely data-driven
CNN model development. The forecast computation benefits from the extraction of
trends and the recognition of larger patterns that have not been extracted before.
The next logical step is to combine the two network structures, thereby creating a
more complex network, and examine whether the forecasts can improve even more.
For this purpose, the neural network consists of two consecutive convolutional layers
with small kernels, as derived in section 4.7.4.7. Parallel to those layers, a second
set of larger kernels operates on the input series and extracts large-scale informa-
tion. The configuration of this convolutional layer is taken from section 4.7.4.9. The
structure of the neural network is also depicted in figure 4.34.

121

4 Results and Discussion

Figure 4.34: The graphic depicts the structure of the CNN model which contains two
consecutive convolutional layers and a parallel convolutional layer that
operates on the input series as well. The values in the graphic correspond
to the model forecasting the IRE350 data.

For a first examination of the new model, the configurations of the kernels and the
fully-connected layers are chosen to be identical to the configurations that resulted
in the most precise forecasts in the earlier experiments:

• ksize1 = 6 knumber1 =

5 for IRE15
7 for IRE40
9 for IRE350

kstride1 = 1

• ksize2 =

8 for IRE15
12 for IRE40
12 for IRE350

knumber2 =

15 for IRE15
21 for IRE40
36 for IRE350

kstride2 =

4 for IRE15
2 for IRE40
2 for IRE350

• ksize_p =

24 for IRE15
12 for IRE40
24 for IRE350

knumber_p =

2 for IRE15
4 for IRE40
6 for IRE350

kdilation_p =

2 for IRE15
2 for IRE40
4 for IRE350

• fsize =

[6-4-1] for IRE15
[8-6-1] for IRE40
[16-6-1] for IRE350

The resulting forecast errors, averaged over ten iterations, are presented in table
4.27. The forecast quality for all three datasets deteriorated with respect to the
two network structures that have been combined: the network with two consecutive

122

4.7 Developing a Convolutional Neural Network Forecasting Model

convolutional layers and the one with two parallel convolutional layers. To ensure
that the root of the worsened results is not an unfinished trained model, the training
progress has been additionally evaluated with the test data as validation set. The
validation loss, however, is stable for the last ten episodes of training, which indi-
cates that the e = 40 epochs are still sufficient, even though the number of trainable
weights in the models is drastically increased. As an incompletely trained model is
not the cause for the unsatisfactory results, there are two further possible explana-
tions. Firstly, the fully-connected part of the neural network is too small to process
the increased amount of extracted features, hence the information cannot be prop-
erly put to use. Secondly, the two parallel convolutional components of the network
extract similar information, which results in redundant information being available
to the fully-connected part, thus offering great potential for over-fitting due to the
large number of weights with which the two components are each connected to the
output neurons of the first fully-connected layer. Both explanations imply that the
configurations of the different parts of the network are not aligned with each other,
which is a possibility.

Table 4.27: Forecast errors of the CNN model with two consecutive and a parallel
convolutional layer. The errors are larger than for less complex models.

dataset IRE15 IRE40 IRE350
MSE 5.54 15.3 276

In addition, the new, more complex models are less stable, by which it is meant that
the final state of the networks are more sensitive to the initial network parameters.
This is recognisable by the large variation of the forecast errors for the same config-
uration. The error values of the different iterations, which vary only in the initial
weights, differ by up to 30% for the models trained on the IRE350 dataset. That is a
significantly larger variation than observed before with simpler network structures.
Hence, a more complex model is less likely to end up in a state in which it produces
the best possible outputs. The larger variation also means that the average error
over all iterations looses significance as a measure of the forecast quality. However,
even the models with the smallest error of all iterations are still outperformed by
the best models of the earlier experiments with only either two consecutive or two
parallel convolutional layers.

In order to ensure that the fully-connected part of the neural network is sufficient for
processing the increased number of extracted features, the size of the fully-connected
layer is enlarged. Models with the following, larger fully-connected layers are trained
and their forecast performance is compared with the previously trained model. The
other hyper-parameters of the network are not changed and, therefore, they are not

123

4 Results and Discussion

listed again:

• fsize ∈

{[8-6-1], [10-8-1], [12-8-1], [14-8-1], [14-10-1]} for IRE15
{[10-8-1], [12-10-1], [14-10-1], [16-10-1], [16-12-1]} for IRE40
{[16-8-1], [16-10-1], [16-12-1], [18-10-1], [18-12-1], [20-10-1], [20-14-1]} for IRE350

Enlarging the fully-connected layers of the CNN model improves the forecast per-
formance slightly and the forecast errors approach the previously achieved errors of
the networks with only two convolutional layers.

Table 4.28: The table lists the configurations of the fully-connected network part of
the best performing CNN models within the conducted grid-search with
the corresponding averaged forecast errors.

dataset MSE configuration
IRE15 5.52 fsize = [10-8-1]
IRE40 15.2 fsize = [10-8-1]
IRE350 248 fsize = [18-10-1]

However, the averaged error of the best configuration and the error of the best single
model are still larger than of the previously trained models with only two convo-
lutional layers (see tables 4.22 & 4.26). Therefore, the second possible reason for
the deterioration of the results is now addressed - redundant information. Assuming
the two consecutive layers and the parallel layer extract redundant information, the
dimensionality of the extracted features should be reduced to avoid over-fitting. A
way of achieving that is pooling, which has already been described in section 4.7.4.5.
Here, the pooling layer is located after the secondary convolutional layer containing
the larger kernels, in order to decrease the dimensionality of the extracted features.
Optimally, only information that is not yet available is extracted and passed on to
the next layer. Average pooling is applied, which means the kernel computes the
average of all its inputs as output. Several kernel sizes of the pooling layer ksize_pool
are tested for their impact on the forecast performance. The largest size of the pool-
ing kernel ksize_pool = 208 corresponds to the dimension of the feature map. Thus,
when ksize_pool = 208 is applied, each feature map is reduced to exactly one output
value. Half the size of the pooling window corresponds to two outputs, and so forth.
The size of the fully-connected layers is changed to the optimised size previously
derived. The other hyper-parameters are not changed with respect to the previous
experiment and are not listed for clarity. This experiment is, however, only per-
formed for the models that predict the load of the IRE40 and IRE350 dataset. The
forecast errors of the models predicting the IRE15 datasets have essentially been
unaffected by any of the previous experiments. It seems that a more complex model

124

4.7 Developing a Convolutional Neural Network Forecasting Model

is not able to increase the forecast performance of the IRE15 models due to the high
volatility of the dataset.

• ksize_pool ∈ {208, 104, 52, 26, 13, 5}

• fsize =
{

[10-8-1] for IRE40
[18-10-1] for IRE350

Some of the errors have slightly decreased in comparison to the network without
pooling. There are, however, hardly any performance changes for the different kernel
sizes of the pooling layer. The fact that ksize_pool = 5 produces the best result
indicates that the addition the pooling layers was not as effective as anticipated.
The models are, again, producing slightly worse forecasts than the best models with
a simpler network structure. In a short, subsequent experiment, it was also tested
whether an increase in the amount of parallel kernels improves the performance, but
that was not the case.

Table 4.29: The model configuration with an average pooling layer that performed the
best and the corresponding errors. ksize_pool = 5 is the smallest pooling
size that was tested in the experiment.

dataset MSE configuration
IRE40 14.9 fsize = [10-8-1], ksize_pool = 5
IRE350 253 fsize = [18-10-1], ksize_pool = 5

It must, therefore, be concluded that increasing the complexity of the convolutional
network does not further improve the obtained forecasts. The exact reason for the
worsened results with the more complex model could not be determined. It is likely
that with the training data available, the model is not able to utilise the possibilities
a more complex network architecture offers, and instead begins to over-fit. Either
the limited amount of training data of only one year is the reason for that or there
is not more information in the data that can be extracted and used for forecasting
by a convolutional neural network.
Therefore, it is concluded that the potential of a purely data-driven development of
the neural network model has been fully exploited.

4.7.4.11 Conclusion of Data-Driven Model Development

After exploiting all possibilities of adjusting the network structure and the hyper-
parameters of the network, a short conclusion of this chapter is drawn.
In this chapter, the depth and the size of the convolutional and the fully-connected

125

4 Results and Discussion

part of the CNN have been determined. Furthermore, the influence of different
stride sizes, dilations, and pooling operations have been examined. The biggest
advance in forecast performance, however, has been achieved with the addition of
dropout to the neural network, which reduces the risk of over-fitting by reducing the
amount of redundant information the fully-connected layers process during train-
ing

The model configurations that produced the most accurate forecast for each dataset
are summarised in the table below (table 4.30), including the corresponding average
forecast error of the iterations and the forecast error of the single best model of that
configuration.
The best 36-hour prediction of the IRE15 and the IRE40 datasets are generated with
the models containing two consecutive convolutional layers and three fully-connected
layers. The best forecasts for the IRE350 set have been achieved with a CNN model
containing two parallel convolutional layers and also three fully-connected layers.
All three models employ dropout in their first fully-connected layer.
In the course of the data-driven model development, reductions of 20 % for IRE15,
16 % for IRE40, and 22 % for IRE350 in forecast error with respect to the prototype
model, which was the starting point of the development, have been achieved.

Table 4.30: The table sums up the findings of this chapter. The best model config-
uration for each dataset is presented together with the average forecast
error of that configuration and the error achieved with the best iteration.
Note the different network structures for IRE15 / IRE40 and IRE350.

dataset MSE configurationaverage best

IRE15 5.41 5.29
ksize1 = 6, knumber1 = 5, kstrides1 = 1,
ksize2 = 8, knumber2 = 15, kstrides2 = 4,

drate = 0.7, fsize = [6-4-1], f̃size = [20-4-1]

IRE40 14.9 14.4
ksize = 6, knumber = 7, kstrides1 = 1,

ksize2 = 12, knumber2 = 21, kstrides2 = 2,
drate = 0.7, fsize = [8-6-1], f̃size = [27-6-1]

IRE350 245 225
ksize1 = 6, knumber1 = 9, kstrides1 = 1,

ksize_p = 24, knumber_p = 6, dilrate_p = 4,
drate = 0.7, fsize = [16-6-1], f̃size = [54-6-1]

126

4.7 Developing a Convolutional Neural Network Forecasting Model

4.7.5 Influence of Externally Added Features

In the previous section, the computations of the load forecasts with the novel CNN
model are based exclusively on the pre-processed energy load time series. The model
extracts information from its input time series and utilises this information to calcu-
late the forecast. All tested modifications of the neural network have been focused
on extracting the maximum meaningful information from the input time series and,
thereby, improving the forecast performance of the CNN model. However, the ori-
gin of the data and knowledge about the setting from which the data stems of-
fer information as well. That information is called domain-knowledge. Utilising
domain-knowledge is a crucial part of the development of every machine learning
model. Until now, the development of the CNN forecast model has been purely
data-driven, which means no domain-knowledge is used to compute the forecast.
Based on the knowledge about the underlying processes that create the data, fea-
tures are designed in order to add further information to the neural network and,
thus, increase the forecast performance of the model.
In the following, several different, external features are included in the CNN model,
in order to evaluate their influence on the forecast performance. First, the tested
features and the reasoning to include them are discussed. Then, single features and,
afterwards, combinations of features are tested.

The time series data presents aggregated electricity loads of residential households.
The electricity consumption naturally exhibits a daily repeating pattern due to the
day and night cycle and the consequentially resulting human behaviour. Addition-
ally, as discussed earlier, there is a weekly repeating pattern because the consumption
on the different days of the week differ from each other. In particular the consump-
tion of working days differs from that of a Saturday or Sunday. All that knowledge
can be used to create features that complement the information extracted by the
convolutional part of the neural network.
All features that are mentioned in the following were already introduced earlier. For
more details, see section 4.2.

First, the different tested features are shortly introduced.
A criterion that obviously strongly influences the behaviour of the residential elec-
tricity consumption is the ambient temperature. The warmer it is, the more time
people spend outside and, thus, the less electricity is used. During the pre-processing
of the load time series, the influence of the ambient temperature on the consumption
is already utilised to transform the time series. It is used to eliminate the influence
of the temperature on the time series (see section 4.7.2). Even though this process
reduces the impact of the temperature on the pre-processed time series, there are
still noticeable shifts which coincide with changes in the temperature. Therefore,

127

4 Results and Discussion

the ambient temperature is tested as a feature.
Similarly to the temperature, the cloudage and the precipitation influence the elec-
tricity load consumption as well. Both environmental variables vary greatly, depend-
ing on the location. Unfortunately, the exact location of the homes included in the
time series are not known for data privacy reasons. They can be located anywhere
in the Republic of Ireland. Thus, the locations of the homes can differ by hundreds
of kilometres, which means no reliable weather information can be obtained. Hence,
the cloudage and precipitation are not included as features. If the location of the
consumers were not as wide-spread as in the Ireland dataset and the location were
(roughly) known, the inclusion of the two variables as features could well improve
the forecast quality.
In addition to features associated with environmental influences, there have been
extracted features related to the re-occurring cycles in the electricity consumption.
The included features connected to those cycles are the day of the week, the week-
end, the month of the year, and the day of the year. All these features have been
tested one-hot encoded and integer-encoded, whereby the models using the one-hot
encoded features where more successful. Thus, only those models are mentioned in
the analysis. The knowledge about the weekly cycle was also put to use when the
length of the input series was determined to be exactly seven days.
Even after pre-processing, the average daily consumption varies in the course of the
year. In the winter months, more electricity is consumed; in the summer months,
less. To reflect those differences, a new feature has been developed. The months
are divided into four categories, depending on their daily average consumption. The
analysis of the electricity load shows that the most electricity is consumed in the
months January, February, and December, followed by the months March, April, and
November. Once again, consumption is lower in the months May, September, and
October. As expected, the least amount of electric energy is consumed in the summer
months of June, July, and August. This gained insight into the consumption changes
during the year is abstracted into a one-hot-encoded feature consisting of four cat-
egories. Even though, the analysis of the consumption data further shows that the
average electricity load on bank holidays differs from the load of a workday, the holi-
day feature is not included because the training data contains very few bank holidays.
An improvement in the quality by including this feature is essentially impossible.
This finding was already obtained during the previous analysis of forecasting time
series with the XGBoost model (see section 4.6.3).

In addition to domain-knowledge, features regularly include information about prop-
erties of the data, for example statistical key performance indicators. Particularly
for a fully-connected neural network processing time series, the statistical properties
of the data are regularly used as features to represent the series instead of feeding
the series directly to the model. The advantage of forecasting a time series with

128

4.7 Developing a Convolutional Neural Network Forecasting Model

a convolutional neural network is that the network performs the task of extracting
meaningful features from the time series itself. Therefore, no features are included
in the CNN model that is derived directly from the data, because the objective in
the CNN model development is for the CNN to extract this information itself.
An examination of the computed forecasts, however, reveals that the forecasts some-
times underestimate the maximum of the daily consumption, which occurs in the
early evening. Particularly the forecasts of the winter months show this kind of
deviation from the actual load. The consumption in the winter time is generally
larger and the daily maximum shifts to a large power value. The reason for under-
estimating the maximum in the winter might be that for a majority of the days the
maximal consumption is smaller. In order to better predict the maximum, a feature
is introduced that includes the maximum and the minimum of the last completely
known day. These two values essentially describe the load range of the respective
day. The load range of adjacent days stays relatively constant over the course of
a few days. Therefore, the load of the second-to-last day is used to calculate this
feature. Including this feature should allow the model to more accurately predict
the maximal consumption of a day.

Figure 4.35: The graphic depicts the structure of the CNN model that is used for
testing the influence of the features on the forecast quality. The features
are added as input to the first fully-connected layer. The values in the
graphic correspond to the model forecasting the IRE350 data.

The CNN model with which the effectiveness of the features is tested is the model
with only one convolutional layer and three fully-connected layers, which was inves-
tigated in section 4.7.4.4. The network structure is also depicted in figure 4.35. The
best derived configuration for each dataset (see table 4.18) is utilised in the CNN
model that includes features. The features are incorporated into the network after
the convolutional layer. They are equal to the features extracted by that layer.

129

4 Results and Discussion

As the first step, the influence of each newly developed feature on the forecast per-
formance is investigated. For this purpose, several models are trained that each
include only one of the external features and the resulting forecast error is exam-
ined. For each feature configuration and dataset, twenty models are trained that
only differ in their initialisation. The number of iterations is increased from the
earlier experiments, as preliminary tests have shown that the model performance is
more dependent on the initialisation when features are included.
The average forecast errors are presented in the following table:

Table 4.31: The table displays the forecast errors that have been achieved with models
utilising one externally calculated feature for the three datasets. As a
reference, the forecast errors of the very same model without features are
mentioned as well. Each of the values represents the average over twenty
iterations. Only the weekend and the day of the week feature improve the
forecast quality.

included feature MSE
IRE15 IRE40 IRE350

None 5.43 15.4 255
weekend 5.11 14.2 242
day of the week 5.18 14.2 250
month category 5.57 15.6 259
value range two days ago 5.55 15.5 265
sun is up 5.67 15.7 269
sunshine duration 5.66 15.7 283
day of the year 6.43 18.6 472
hour 5.63 15.6 259
temperature 5.70 16.0 276

It is striking that only the weekend and the day-of-the-week feature reduce the fore-
cast error in comparison to the corresponding model without any features. With the
inclusion of the other features the forecast error either increases or stays the same
as without the features.
There are two possible explanations for why none of the other features improves the
model performance. Either the features contain no information that is beneficial for
the forecast computation. Hence, they can be excluded. Or the deviation between
the predicted and the actual value is mainly caused by a factor which is not repre-
sented in the feature, so that the potential improvement from including the feature
is many times smaller. The addition of the feature then rather offers potential for
over-fitting, instead of improvement. This may explain the deteriorated error values
for some of the other features.

130

4.7 Developing a Convolutional Neural Network Forecasting Model

Figure 4.36: The graph depicts the predictions with and without the weekend feature
for a Saturday in November. Thus, the first predicted value shown is
for Friday noon and the last for Saturday midnight. Around Saturday
noon, the prediction computed with features is clearly more accurate.
This can be observed for most Saturdays and shows the effectiveness of
the included feature.

The inclusion of some of the features into the model deteriorates the forecast error
drastically. This is especially the case for the feature that describes the day-of-the-
year, but also for the temperature feature. The hope when including the day-of-
the-year feature was that the model may use this information to reflect the changes
in the consumption patterns over the course of the year. That is apparently not
working and, therefore, the feature is not used any further. That also applies to
the temperature feature. Even though there are still seasonal changes in the data
after the pre-processing, the temperature seems not to be an adequate parameter to
represent those fluctuations. Possibly due to the unknown location of the consumers
that make up the dataset, the temperature is not accurate enough to explain the
consumption changes. The features that describe the temperature development
perform similarly or worse and are, therefore, not used.

The other features are tested in combination with the successful weekend feature in
a subsequent experiment. The results show whether the features are able to add
valuable information to the model, now that the deviations caused by the differ-
ent consumption behaviour on the weekend and on working days are eliminated.
Hence, the possibly smaller influence of the other features can be studied when
combing the weekend feature with one other feature at a time. The day-of-the-
week feature, however, is not combined in the same way with all other features,
as it is presumed that the same information was extracted earlier from this fea-
ture.

131

4 Results and Discussion

Table 4.32: The forecast errors achieved by models including the weekend feature and
one additional feature. For reference, the errors of two simpler models are
mentioned as well.

included feature MSE
IRE15 IRE40 IRE350

None 5.43 15.4 255
weekend 5.11 14.2 242
weekend & month category 5.16 14.2 232
weekend & value range two days ago 5.08 14.2 233
weekend & sun is up 5.18 14.2 243
weekend & sunshine duration 5.32 14.4 245
weekend & hour 5.17 14.3 234
weekend & day of the week 5.18 14.2 239

The forecast errors of the models including two features are shown in the table above.
The combination of the weekend feature with the remaining promising features has
partly resulted in an improved forecast performance. Only the daily sunshine du-
ration does not improve the forecast for any dataset and is, therefore, no longer
used. The inclusion of the information about whether the sun is up at the predicted
time only improved the forecast quality of the model for the IRE40 dataset. For
the IRE15 dataset, only the value range two days ago improved the forecast further.
For the IRE350 dataset, on the other hand, all of the other features improved the
forecast. This shows, again, that it is more difficult to compute accurate forecasts
for highly volatile time series.

In the next computations, three and more external features are included in the mod-
els to further improve the forecast quality. In order to limit the number of possible
combinations and, therefore, the computational load, only models that include the
weekend and the month category feature are evaluated. The month category feature
seems the most promising for the IRE350 dataset, where the most gains can still be
expected, and seems to reflect the forecast deviations over the course of a year the
best. All tested feature combinations and the resulting forecast errors are listed in
table 4.33.

The tests of the different feature combinations show that small improvements to the
forecast quality can still be achieved by including more features. The best forecast
results were obtained by the combination of the weekend, the month category, the
value range two days ago, and the day of the week feature for all three datasets.
When even more features are combined together, the forecast quality either does not
further improve or deteriorates. Therefore, the conducted computations of models

132

4.7 Developing a Convolutional Neural Network Forecasting Model

Table 4.33: The forecast errors of models including several features are presented. For
reference, three simpler models are mentioned as well.

included feature MSE
IRE15 IRE40 IRE350

None 5.43 15.4 255
weekend 5.11 14.2 242
weekend & month category 5.16 14.2 232
weekend & month category & value range 5.09 13.9 234
weekend & month category & hour 5.24 14.5 236
weekend & month category & day of the week 5.11 14.2 233
weekend & month category & sun is up 5.33 14.1 233
weekend & month category & value range & hour 5.18 14.5 230
weekend & month category & value range & sun is up 5.28 14.0 228
weekend & month category & day of week & hour 5.13 14.3 227
weekend & month category & day of week & sun is up 5.28 14.0 230
weekend & month category & day of week & value range 5.07 13.8 225

including even more features are not listed in table 4.33.

In comparison to the CNN models without any features, the inclusion of features
decreases the forecast error of the CNN model, regardless of the dataset the models
work with. The biggest improvement has been achieved for the models for the
IRE350 dataset. The error of the forecast decreased by 12 %. It decreased by 10 %
for the IRE40 models and 7 % for the IRE15 models.
The inclusion of one or two of the most influential features, however, improves the
forecast quality significantly. It can, therefore, be concluded that a big part of
the forecast deviations were caused by the different consumption behaviour on the
weekend, which the model has apparently not been able to represent and forecast
properly. If more data were available, another option to deal with those consumption
differences would be to train two independent models: one for the weekends and one
for the work days.

In contrast to the features utilised when computing the forecast with the XGBoost
model (see sec. 4.6), which are mostly directly created from the time series, the fea-
tures used in the creation of the forecasts with the CNN model only describe external
influences or domain-knowledge. There are two reasons for this. Firstly, the antici-
pated advantage and the objective of the developed CNN model for time series fore-
casting is that no manual feature extraction from the time series should be necessary
any more, because meaningful features are extracted from the data by the convo-

133

4 Results and Discussion

lutional layer of the neural network. Particularly the shift-features, which describe
the consumption at the same time of the day on previous days, are not necessary
for the CNN model. The XGBoost model, however, relies heavily on those features.
If the same features as for the XGBoost model were included, there is a chance that
the forecast would be mainly a regression of the added features and the information
extracted by the convolutional layer(s) would be neglected. Secondly, naturally, it
has also been tested whether features containing statistical information about the
input, e.g. the variance, improve the forecast accuracy. This was not the case, which
affirms that information is successfully extracted by the model itself. The sole ex-
ception is the feature that describes the value range of two days ago with respect to
the predicted value. This feature was included after ascertaining that the maximal
values of the 36h-forecast are regularly under-estimated.

In conclusion, it was shown that the addition of externally calculated features based
on domain-knowledge and weather data improves the forecast performance of CNN
models. The largest deviation between the computed forecasts and the actual load
was caused by the difference in consumption behaviour between weekends and week-
days, as the inclusion of the weekend feature improved the forecast quality the most.
The feature combination which resulted in the best forecast model is: weekend,
month category, value range two days ago, and day-of-the-week.

4.7.6 Utilising Features for Best Models

In section 4.7.4 and its subsections, the network architecture and the associated
hyper-parameters which promise to generate the best possible results without any ex-
ternally engineered inputs were identified. The final configurations are summarised
in table 4.30 on page 126. Furthermore, in section 4.2, the engineered features that
have the greatest positive influence on the forecast performance when included in a
more basic CNN model than the resulting model of section 4.7.4 were determined.
They are listed in table 4.33.

In order to achieve the best forecast performance possible, the models examined
in this section combine the most promising model architectures (see fig. 4.37) and
hyper-parameters with the engineered features. For each dataset, 20 identical models
are trained to better analyse the potential these models offer.

The results show that the forecast quality could, again, be improved by combining
the more complex model architecture with the engineered features.
These models constitute the final model of the novel CNN approach for time series
forecasting. The best achieved forecast errors are:

134

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) Model structure with two parallel con-
volutional layers that is applied to the
IRE350 dataset.

(b) Model structure with two consecutive
convolutional layers that is applied to
the IRE40 and the IRE15 datasets.

Figure 4.37: The graphic depicts the structure of the models that produce the most
accurate forecasts. These models are the final result of the development
of the novel forecast model based on convolutional neural networks.

Table 4.34: The table shows the forecast errors of the CNN models combining the
best developed network architecture with the most promising features.
The average errors over all iterations and the errors of the single best
model are presented.

dataset IRE15 IRE40 IRE350

MSE average 4.94 14.1 225
best model 4.89 13.7 211

Best forecast errors for each dataset

• IRE15: MSE = 4.89

• IRE40: MSE = 13.7

• IRE350: MSE = 211

135

4 Results and Discussion

Figure 4.38: The graphic shows an exemplary 36-h forecast for a November day of
the IRE15 dataset computed with the final model. It can be seen that
the model is able to compute a prediction that captures the trend of the
measured data well, but is not able to follow each fluctuation.

Figure 4.39: The graphic shows an exemplary 36-h forecast for a November day of
the IRE40 dataset computed with the final model. The model is able to
produce a forecast that captures the trend and most of the fluctuations
in the data well.

Figure 4.40: The graphic shows an exemplary 36-h forecast for a November day of
the IRE40 dataset computed with the final model. The model is able to
compute a quite accurate forecast, which even captures small variations
in the load.

136

4.7 Developing a Convolutional Neural Network Forecasting Model

4.7.7 Analysis of the Models

This section offers a deeper analysis of the obtained CNN models. The transferabil-
ity of the models to other datasets is addressed and the kernels of the models are
analysed to better understand their functionality. The models referred to in this
section are taken from the previous section (sec. 4.7.6) and include external features.
For each dataset, the single model exhibiting the lowest prediction error on the com-
plete test set is chosen to be analysed. The models differ in their configuration, as
the best configuration for each dataset is chosen (see table 4.30).

4.7.7.1 Transferability

The hyper-parameters of the models have been adjusted very specifically to the
explicitly available datasets. In the following, how the models perform on datasets
that are made up of different households of the Irish Smart Meter Trial is examined.
The amount of households in the datasets is, in the first step, kept the same as in
the datasets with which the models have been trained. That means the new datasets
contain the aggregated electricity consumption of either 15, 40, or 350 households.
In the second step, how the models perform when they work with datasets of a
differing aggregation level is tested.

For the first analysis, ten consumption time series of the same number of households
are created for each of the three models by randomly sampling households from the
Irish Smart Meter Trial dataset without replacement. The CER data contains the
consumption of 3273 residential households.

Table 4.35: The table shows the forecast errors when the model of a specified ag-
gregation level is applied to a new dataset constructed from the same
amount of households, in which the households are randomly sampled
from the CER data. The predictions are calculated once with the original
pre-processing parameters and once with adjusted parameters. The error
values represent the average error of all ten new datasets.

MSE MSE
aggregation level on original data on new data

original pre-processing new pre-processing
15 4.89 6.01 5.68
40 13.7 16.4 16.4
350 211 224 270

137

4 Results and Discussion

Table 4.36: The table shows the forecast errors similar to the previous table. The only
difference is that the error values represent the forecast error before the
predictions are rescaled to their actual size. Thereby whether the forecast
errors of table 4.35 originate from the forecast itself or the rescaling can
be evaluated.

MSE (no rescaling) MSE (no rescaling)
aggregation level on original data on new data

original pre-processing new pre-processing
15 0.028 0.035 0.035
40 0.021 0.024 0.023
350 0.006 0.006 0.008

The errors of the new time series are computed based on the test data. The new
datasets are split the same way as the original datasets into training and test sets.
Only the predictions of the test set are used for calculating the error. The new
training data is discarded and not put to use at all. This makes the errors comparable
with each other. The errors are displayed in table 4.35 . The pre-processing, i.e. the
regression with the temperature data and the normalisation, are done with the same
scaling parameters extracted and used for the original dataset with which the model
was trained. For each time series, the pre-processing is also performed utilising
newly extracted scaling parameters, which are computed individually for each time
series, in order to examine if a possibly non-optimal pre-processing has an influence
on the computed predictions. The exact pre-processing procedure is described in
section 4.7.2. Additionally, for comparative reasons, the prediction error before re-
normalising and reversing the regression is computed as well (see table 4.36).
The forecast errors generated with the new data are considerably larger than with
the data the models are trained with for the IRE15 and IRE40 models. The model
trained on the IRE350 dataset, however, is capable of producing good forecasts for
unknown datasets. The smallest error achieved with one of the new datasets is
MSEbest = 208 and, thus, even smaller than of the original data. This might be
caused by slightly smaller amplitude or less volatile data.
The forecast errors of the IRE350 model are more sensitive to a change in the pre-
processing parameters. The forecast errors for the IRE15 and the IRE40 model
with the newly derived pre-processing parameters are similar to the models with
the original parameters. The reason for that is that the forecasts generated by the
IRE15 and the IRE40 model are, in comparison, less accurate than by the IRE350
model, which is indicated by the errors computed before re-scaling which are shown
in table 4.36. It is apparently essential for the IRE350 model that the input values of
the neural network always correspond to the same consumption values that they had
when the model was trained. Moreover, the deviations between the original datasets

138

4.7 Developing a Convolutional Neural Network Forecasting Model

and the newly created datasets are smaller, the larger the aggregation level is. The
influence of the consumption behaviour of a single household on the aggregated
consumption time series is way larger when the time series consists of 15 or 40
households than of 350 households. The characteristics of the volatile time series can
differ drastically between the ten newly created series.

Secondly, whether the trained CNN models are capable of processing data of a dif-
fering aggregation level is tested. For this purpose, 15 new consumption time series
of varying aggregation level have been created by sampling residential households
from the Irish Smart Meter Trial data. The time series of the lowest aggregation
level represents the total electricity consumption of ten households, the one of the
highest level represents 500 households. In this analysis, the scaling parameters used
in the pre-processing are re-calculated for each of the 15 time series. In order to
better compare the forecast performance of the different time series, the error prior
to the re-scaling is additionally calculated.

(a) The forecast error is calculated
after re-scaling the predictions.
Hence, the error naturally increases
with an increasing aggregation level
or, respectively, load amplitude.

(b) The forecast errors presented in
this plot are calculated before the
predictions are re-scaled. It shows
that the IRE15 model is not able
to generate more accurate fore-
casts with an increasing aggrega-
tion level.

Figure 4.41: The plots show the forecast error of the new datasets with respect to
their aggregation level. The IRE350 model outperforms the other two
models on almost all aggregation levels.

The forecast results of the three models with the fifteen time series of varying ag-
gregation level are displayed in figure 4.41. The errors before re-scaling show, as
expected, that the models perform the best in the vicinity of the aggregation level
they have been trained with. The plot further shows that the IRE350 model out-
performs the other two models, with the exception of the lowest aggregation level.
The reason is that the models, which are trained on more volatile data, are probably

139

4 Results and Discussion

not able to analyse small changes in the consumption behaviour of the less volatile
time series, as detailed as the IRE350 model. They are, additionally, not able to
extract and process as much information from the time series as they contain less
kernels and a smaller fully-connected network in order to perform optimally on their
corresponding training data.

It can be concluded that the models perform the best on the datasets with which
they have been trained. Utilising trained models for forecasting comparable datasets
can only be advised when the data the model was trained on is not very volatile.
For volatile time series, the characteristics of the series differ too much for the same
model to produce an accurate forecast. Similar findings regarding applying a trained
model to data that exhibits a different magnitude have been obtained. It only works
when the time series is not very volatile. This, again, shows that the prediction of
volatile time series is very demanding.

4.7.7.2 Analysis of Kernels

In the attempt to better understand the information extraction process of the con-
volutional layers, the kernels of the resulting models are examined. For this purpose,
the kernels of the CNN models with one convolutional layer that provide the best
results were first examined. Afterwards, the models with two consecutive and two
parallel layers are analysed. Only the best configurations of each network structure
are a part of this examination.

The kernel size of the first layer is fixed to ksize1 = 6 for all models, regardless of
which dataset they are applied to. Figure 4.42 shows a selection of kernels taken
from the models with only one convolutional layer and the task of the kernels in
the convolutional neural network is discussed in the corresponding captions. The
selection of kernels is limited to those that are humanly interpretable. There are
many kernels in the networks whose function is not clear. If the function of all
kernels were obvious, however, there would be no need to train machine learning
models, as one could manually write the models instead. For some kernels, a portion
of their weights assume values close to zero. That suggests that only the part of
the kernel with the non-zero weights extracts information and it indicates that, for
this particular extraction, a smaller kernel size would have been sufficient as well.

The kernels exhibit different shapes and structures in order to extract the charac-
teristics, e.g. the location of the extrema, or the gradient. However, there exist
also a few kernels which only have one weight that is considerably different from
zero. They basically generate a representation of the input series as their feature

140

4.7 Developing a Convolutional Neural Network Forecasting Model

(a) This kernel is activated when its input ex-
hibits a non-vanishing gradient. Thus, it in-
dicates the location of a changing load in its
feature map.

(b) The last input value of this kernel has the
major influence on the activation of the ker-
nel. Hence, it basically reproduces the input
series as its feature map.

(c) This kernel is active when its input repre-
sents an extremum. Thus, the resulting fea-
ture map shows where in the data the ex-
trema are located.

(d) This kernel mainly detects slopes within the
second half of its input. Its activation is in-
creased when the first half of its input as-
sumes small values. Its function might be to
identify the ending of the nightly load mini-
mum.

Figure 4.42: The different plots all represent one kernel from networks with only one
convolutional layer. In the legend of each plot, the dataset on which the
model, which the kernel is a part of, has been trained is listed.

maps and, hence, fulfil a similar function to a skip connection residual NNs, namely
propagating the input series to the subsequent layers.
In figure 4.44, the kernels of the second layer of the networks containing two consec-
utive convolutional layers are depicted. They differ in size depending on the dataset
the model is trained on. Additionally, a stride size kstride2 > 1 is applied, which
means the kernels of the second layer have less overlap when processing their input.
It must be kept in mind that those kernels operate on the feature maps of the first
convolutional layer, which is not necessarily similar to the input series. This makes
interpreting the kernels’ purpose more challenging.

The kernels in figure 4.43 show the kernels of networks which contain two parallel
convolutional layers. The interpretation here is extraordinarily hard because the
kernels are large and have a dilation rate dilrate_p > 1, which results in a large
receptive field. For most of the kernels, it is not clear what function they fulfil in
the convolutional layer.

The analysis of the kernels unfortunately does not provide much insight into the

141

4 Results and Discussion

process of the forecast computation and, therefore, does not explain why the CNN
model performs better than the other machine learning models. On the other hand,
it was to be expected that the kernels only represent elementary structures, as the
load series does not exhibit very complex shapes itself. The function of the first
layers of convolutional networks is to extract basic shapes from the input and that
is exactly what the presented kernels do.

(a) The activation of this ker-
nel is, again, mainly influ-
enced by the last few input
values.

(b) This kernel seems to iden-
tify an extrema within the
first half of its input. The
second part of the kernel
has a minor influence, as
the weights are close to
zero and noisy.

(c) This kernel is representa-
tive for many kernels in the
parallel layer as it is not re-
ally interpretable.

Figure 4.43: The plots represent the kernels of the second parallel convolutional layer,
which also operates directly on the input data. The networks contain
two parallel convolutional layers, with the first layer consisting of a larger
number of rather small kernels in comparison to the depicted kernels.

4.8 Comparison of the Machine Learning Models

This section offers a comparison between the different tested models and summarises
the main findings for each forecast approach.

In this chapter, several differing methods for time series forecasting have been ap-
plied to forecasting electricity loads of three different aggregation levels derived from
the CER Smart Meter Trial. Naïve models and different linear and non-linear re-
gression models have been used and a novel forecast model based on one-dimensional
convolutional neural networks was eventually developed.
Table 4.37 shows the forecast errors for the different models. The newly developed
CNN model clearly performs the best on all datasets. The results, however, show
that simpler models are also able to provide good forecasts. Only the exponential
smoothing model performs poorly when applied to forecasting high-resolution time
series. In particular the performance of the linear ridge regression model is impres-
sive. The forecasts generated by the model for the IRE15 and the IRE40 dataset are
quite accurate and are only beaten marginally by the established non-linear models.

142

4.8 Comparison of the Machine Learning Models

(a) This kernel extracts the gradient of its input.
The noisy gradient probably originates from
the volatile IRE15 input series.

(b) This kernel is highly point-symmetrical.
That means when the input is axis-
symmetric, its activation is zero. This al-
lows it, for example, to extract the degree of
skewness of an extremum.

(c) This kernel identifies wide extrema. It dis-
tantly resembles the shape of the typical load
during the later day.

(d) This kernel identifies sharper extrema in
comparison to (c).

Figure 4.44: The plots represent the kernels of the second convolutional layer from
networks with two consecutive convolutional layers. In the legend of each
plot, the dataset is listed on which the model, which the kernel is part
of, has been trained.

This proves that linear models are valuable forecast tools as well, in particular for
volatile data. The advantages of the non-linear models only appear when processing
less volatile data, because they are better able to detect and utilise subtle varia-
tions and changes in the time series, which are concealed in the fluctuations of more
volatile series. Hence, it can be sufficient to apply a linear forecast model when
volatile time series are predicted. They generate comparably accurate forecasts, but
are less computationally costly.
Of the established models, the tree-based model generally performed the best. It
was especially able to employ its strengths with the less volatile IRE350 series, but
performed very well on the other two datasets as well. The computational load
is, however, significantly larger than for the ridge regression model when training
the model with cross-validation. That handicap must be taken into account when
choosing between the models.

In addition to the completely developed CNN model, the table also includes the
forecast errors of the CNN model without externally engineered features. Only the
temperature forecast was utilised in order to pre-process the data accordingly to

143

4 Results and Discussion

Table 4.37: The table compares the forecast performance of all the tested models.
The mean squared error and the mean absolute percentage error are pro-
vided for each dataset. The forecast errors correspond to the model that
performed the best, if several variations were evaluated.

IRE15 IRE40 IRE350
MSE MAPE MSE MAPE MSE MAPE

exponential smoothing 16.4 270% 49.1 23% 2523 15%
naïve forecast 8.64 29% 22.6 17% 469 8%
ridge regression 5.86 25% 15.9 14% 366 7%
fully-connected NN 5.68 26% 17.9 15% 363 8%
tree-based model 5.81 24% 15.8 14% 290 7%
CNN model (no external features) 5.29 24% 14.4 14% 225 6%
CNN model (with external features) 4.89 23% 13.7 13% 211 6%

the procedure introduced in section 4.7.2. The forecast errors achieved with this
simplified CNN model are larger than those of the complete CNN model but still
smaller than the errors of all established methods. This confirms, on the one hand,
that the extraction of useful information with convolutional layers does work very
well. The biggest part of the improvement in forecast performance with respect to
the established models stems from the novel way of extracting features from the
series. On the other hand, it shows that the addition of the engineered features is
beneficial to the forecast, but only adds the last bit of information to the model in
order to compute an accurate forecast.

In order to compare the forecast accuracy of the models between the three differ-
ent datasets, the mean absolute percentage error (MAPE) has also been calculated
for the best forecast models according to the MSE. In contrast to the MSE, large
deviations from the actual load are not particularly penalised. This can induce a
deviating assessment of the forecast performance.
The MAPE values clearly show that computing time series forecasts for volatile
data series is more difficult for all tested forecast models. The MAPE values gen-
erally differ around 20% between the IRE15 and the IRE350 set. The main reason
for the less accurate forecasts is, as stated before, that extracting information is
way more demanding due to rapidly changing consumption and due to the large
influence of single households on the aggregated load, which results in more un-
foreseeable consumption changes. However, even for the highly volatile IRE15 set,
which consists of the load of only fifteen households, the novel CNN model clearly
outperforms the established models which again shows the effectiveness of this new
approach.

144

4.9 Comparison to Similar Research

4.9 Comparison to Similar Research

The topic of electricity load forecasting just recently gained the attention of the
research community with the advancing digitisation of the energy sector. Hence,
the number of studies in this research area is still limited and the studies focus
on a wide variety of aspects. In the following, a few studies that have a focus
similar to this thesis are exemplarily presented and their findings are briefly sum-
marised.

There are a few publications that also use the CER Smart Meter Data for load
forecasting. One of the first studies using this very dataset is by Wijaya et.al [124]
and was published in 2015. They apply linear regression and seasonal ARIMA
(SARIMA), amongst other models, to forecasting the aggregated load of roughly
800 households. The focus of the work, however, is on the influence of clustering
the households that make up the load series and predicting the load for the clus-
ters individually. The authors evaluated their models on a one-point forecast only
and, therefore, the forecast performance cannot be compared with this work. Their
results have, however, shown that the SARIMA model performs considerably worse
than the other models, which confirms the decision to not include them into this
thesis.
[125] works with the CER data as well. Just like the authors of the previous study,
Arora et.al. predict one data-point at a time and evaluate their forecasters, which
are utilising kernel density estimations, on a one-point prediction. Additionally,
they only utilise seven months of data for training and one month for the eval-
uation, which is unusual and makes a comparison with the results of this thesis
meaningless.

In the last years, some publications that utilised a combination of a convolutional
and a LSTM network appeared.
Alhussein et.al. [126] published a study in 2020 that includes some interesting find-
ings, even though they only compute a three-hour prediction. A load series of small
aggregation level (69 residential buildings) from Australia is used. The authors de-
velop a hybrid model consisting of a CNN and a subsequent LSTM network. They
successfully apply the CNN to extracting information from the time series, similar
to what is done in this thesis. Additionally, they recognise the benefit of dropout,
even if they are applying a smaller dropout rate. Due to the recurrent units included
in the model, the computational cost is presumably many times larger than for a
solely CNN-based model.
In 2018, Tian et.al. published a study [127] in which they developed a CNN-LSTM
hybrid model as well. A comparison with a CNN model has shown that the hybrid
model performs only slightly better but is presumably far more costly to train. This

145

4 Results and Discussion

reassures the choice of the convolutional neural network model for computing the
forecasts. The electricity load series used in the study is, however, of a far larger
aggregation level. It includes the consumption of a whole region in northern Italy.
In 2019, Gasparin et.al. [128] compared several forecast models on a load series of
very large aggregation level as well. Additionally, they evaluated whether comput-
ing a 24-hour forecast at once or iteratively, as done in this work, results in better
forecasts and they concluded that the iterative approach is more promising. This
confirms that the iterative forecast approach of this work is promising, even if the
approach of computing the forecasts recursively has not yet become very common.
Furthermore, they determined that exogenous variables can significantly improve
the forecast accuracy, which could also be seen during the development of the CNN
model.

The mentioned studies show that electricity load forecasting is an active research
field, in which no prevalent forecast model has yet emerged. While CNN models
were barely mentioned in the context of load forecasting a few years back, in the
very recent past, CNN models started appearing in some publications. The studies
affirm some findings made in this thesis. None of the found studies, however, were
similar enough to the conducted work so that the forecast errors could be directly
compared. This shows, furthermore, that the work done in the course of this thesis is
a valuable contribution to research field. This thesis thus joins the series of publica-
tions that will eventually increase the accuracy of electricity forecasts. The detailed
description of the development process of the CNN model offered in this thesis might
be particularly valuable for researchers, as none of the publications mentioned that a
hyper-parameter search was conducted. It is, therefore, unclear whether the network
structures used are based on any empirical findings.

146

5 Conclusion

This concluding chapter offers, first, an overview of the topics covered in this thesis.
Afterwards, the key findings of the research are presented and the significance of
this work in the field of machine learning is portrayed. The chapter closes with a
short discussion of the limitations of the drawn conclusions and offers suggestions
on how to follow up on the work that has been initiated.

After introducing the project MAGGIE, in which the findings of this work will be
implemented, in 1.2 and the used dataset in 1.3, first, related works in the research
field were presented in 2. Afterwards, in 3.1, neural networks were introduced in
detail. Additionally, established machine learning approaches for time series fore-
casting were presented in 3.2, namely regression models, recurrent neural networks,
and tree-based models. Subsequently, in 3.3, how the machine learning methods are
applied to time series forecasting was discussed. In the following, the models were
applied to forecasting electricity loads. The forecast performance of the established
models was evaluated in 4.3, 4.4, and 4.6. Thereupon, a novel forecast model based
on convolutional neural networks was developed in 4.7. The final model was in-
troduced in 4.7.6. The results of the different models were eventually compared in
4.8.

5.1 Summary of the Results

The research conducted in the course of my doctoral thesis was focused on eval-
uating established machine learning models on the task of time series forecasting
and on developing a novel model for time series forecasting based on convolu-
tional neural networks. The models were employed to predict aggregated residential
electricity loads of different aggregation levels. Computing an accurate electricity
forecast is an important element in planning the machine schedules in energy sys-
tems.

The naïve approach of assuming that the electricity consumption behaviour of the
residents does not change allows for a rough estimate of the consumption. The linear
ridge regression model, which bases its forecasts on engineered features and selected

147

5 Conclusion

historic load values, already generated more accurate forecasts and, furthermore, is
computationally not very demanding. While a non-linear regression of the features
utilising a fully-connected neural network did not improve the forecasts significantly,
developing a random forest model for forecasting resulted in further improved fore-
casts. The tree-based models produced the most accurate forecasts of all established
models. Thus, applying a random forest utilising engineered features to compute an
electricity load prediction is the most successful approach for time series forecasting
of the established methods.
The newly developed convolutional neural network model extracts information di-
rectly from the input load time series, yet is also able to process external features
to further improve its forecasts. The predictions computed by the novel model were
much more accurate than of any other model. Even without including any exter-
nal features, it was able to provide better forecasts than the tree-based model with
external features. The major improvement to the established forecast models is,
therefore, the ability of the novel model to extract useful information from the data
itself. It does not necessarily require manually engineered and selected features.
Along with the non-linear data-processing that neural networks offer, this results in
a highly effective forecast model.

A key finding in the model development was that randomly dropping out a large
rate of the values in the activation maps improves the forecast performance of the
CNN model drastically. This illustrates that the amount of redundant information
present in time series with large sampling rates should be reduced, in order to obtain
good forecast results.
Furthermore, the experiments revealed that predicting the aggregated energy load
of a small number of residential households accurately is way more challenging than
of a large number of households. Time series of smaller aggregation level exhibit a
more volatile behaviour that is very difficult to accurately predict. The volatility
for smaller aggregation levels is larger because instances of spontaneous and ran-
dom human consumption behaviour influence the aggregated load time series more
strongly. The forecast error of all tested forecast models decreased with an increas-
ing aggregation level. Non-linear machine learning models stand out particularly
with their accurate forecasts for larger aggregation levels. Trying to predict elec-
tricity loads of single households seems not to be worthwhile in the light of this
fact.

The developed CNN models do not exhibit very complex or very deep network struc-
tures and can, therefore, still be trained with relatively small computational cost.
The conducted experiments showed that for computing time series forecasts of one-
dimensional data, rather simple models perform the best. Large neural network
structures should be avoided, because they only offer more potential for over-fitting
and training them is more elaborate and costly. The conclusion that highly complex

148

5.2 Contribution to the Scientific Discourse

models are not necessary to generate accurate forecasts is backed by the fact that a
linear regression already offers relatively accurate forecasts.
In the light of this finding, it is astonishing that in some recent publications highly
complex models are suggested for time series forecasting. This is not consistent with
the findings of this thesis. The author rather suggests striving for simplicity and
questioning whether an added degree of complexity in the model really improves its
capabilities when developing a time series forecasting model.
In addition, the computational cost of training a forecast model increases with the
complexity of the chosen model. The more modifiable parameters a model pos-
sesses, the longer the training process takes and the more data is necessary to ob-
tain a sufficiently trained model. Therefore, before developing or training a forecast
model, what the requirements on the model are, in particular which forecast accu-
racy one anticipates, how much data is available for training the model, and what
computational capacities can be used for the training process should always be de-
termined. Based on these factors, the model selection should be made. There are
instances when it could be beneficial to use a simpler model instead of the novel
CNN model.

In a nutshell, the research of this thesis has shown that the novel approach of ap-
plying a one-dimensional neural network to the task of electricity forecasting works
successfully. The convolutional neural network model outperformed all established
forecast models. When choosing an appropriate forecast model, however, the data
availability and the nature of the data should be taken into account. The most
complex and computationally costly model is not necessarily the best choice for the
task at hand - simpler models can possibly already fulfil the requirements set with
less computational cost.

5.2 Contribution to the Scientific Discourse

The research conducted within the scope of this thesis was focused on time series
predictions, specifically on computing short-term electricity load forecasts on a sub-
hourly time grid. The focus of the machine learning community has so far mainly
been on processing two-dimensional data. The topic of time series forecasting is just
gaining popularity as, on the one hand, the progress in image-processing is slowing
down and, on the other hand, more time series data is recorded and becomes available
due to the advancing digitisation. This increases the need for machine learning
methods that process one-dimensional data.
This thesis offers a comparative study of different machine learning models for time
series forecasting and highlights the advantages and disadvantages of the discussed
models. It emphasises that applying the most complex, available forecast model is

149

5 Conclusion

no guarantee for success - simple models also have their raison d’être.
Furthermore, a novel forecasting model based on convolutional neural networks was
introduced and its development stages were described in detail. The novel model
allows for very accurate time series forecasts. It was optimised to be applied to short-
term load forecasting (STLF), but could potentially be utilised for a broad spectrum
of forecasting issues. The detailed description of the development process allows
other researchers to follow the reasoning for the chosen model structure. It illustrates
why the convolutional neural network consists of relatively few layers compared to
other neural network models used in forecasting.

5.3 Limitations

There are a few limitations to the information value of the presented results that
are discussed in the following.
The evaluation of the different machine learning models regarding their forecast
performance is only based on the data from the CER Smart Meter Trial [16]. The
availability of datasets that cover more than one year of electricity consumption
and have a sub-hourly sampling rate is very limited. During the last few years,
the data availability increased slightly, but was still very scarce when the research
for this thesis started. The fact that the novel model was developed based on only
one dataset confines the use of the CNN model to similar data. Presumably, some
adjustments of the configuration or even the network structure are necessary when
adapting the CNN model to other datasets and new objectives.
Even though the dataset includes a multitude of single residential household load
series, it unfortunately only covers one and a half years of consumption in total. As
a result, only one year of electricity loads could be used as training data. This made
it impossible for the model to identify annually recurring consumption patterns and
utilise them for improving the forecasts. Electricity consumption data that covers
several years would be preferable. Another disadvantage of the CER Smart Me-
ter dataset has been that the location of the households is unknown. They could
be scattered all over Ireland. This meant it was not possible to include detailed
weather information in the features and also introduced an uncertainty to the accu-
racy of the used temperature time series. With better knowledge of the consumers’
location, detailed weather information could be used to enhance the forecast qual-
ity.

150

5.4 Future Works

5.4 Future Works

The limited data availability is one of the issues that needs to be addressed in fu-
ture research on the topic of time series forecasting. As discussed above, there is
still potential for improving the forecast quality of the developed CNN model when
larger datasets that cover a longer time period are available for training the model.
The CNN model should be evaluated with different datasets in order to get a more
detailed image of its capabilities and to identify shortcomings of the model.
Furthermore, it is essential to incorporate detailed weather information to the fore-
cast model. This could improve the forecast accuracy further, since human be-
haviour is strongly influenced by the weather. This requires knowledge about the
geo-location of the consumers.
The next logical step in computing more accurate forecasts would be, in my opin-
ion, to develop an ensemble model which combines the novel CNN model with one
or more other machine learning models and utilises the assets of each model to
test whether this allows for more accurate predictions - always with the assump-
tion that adequate data is available. In order to train an ensemble model, a larger
dataset than the one used here is necessary and, additionally, the fact that the
computational load of training such a model is increased needs to be taken into
account.

In general, the digitisation of the energy market, in particular on the consumer
side, needs to progress further. An extensively digitised energy market offers,
on the one hand, more data for machine learning applications and, on the other
hand, opens up opportunities to deploy those applications in a large scale. This,
in turn, allows for the transformation of the energy market towards carbon neu-
trality by integrating electricity from renewable energy sources and replacing con-
ventional power plants. Thereby, the emission of greenhouse gases will reduce sig-
nificantly which would be a big step into slowing down the human-induced climate
change.

151

List of Figures

1.1 Simplified schema of the energy system that is installed in the Mar-
garetenau for the project MAGGIE. It shows how the different compo-
nents of the energy system are connected. The green arrows indicate
the possibility of electricity transfer, the red arrows of heat transfer
via heated water. The components are completely interconnected to
enable variability in production and consumption of the components. 6

1.2 The three graphs show electricity loads of individual residential house-
holds and demonstrate how different the load of the same week can
look like. All time series show a large volatility and about the origins
of the occurring load spikes can only be speculated. 8

1.3 The graphs show the consumption of the different aggregated elec-
tricity consumption time series on the first day of the dataset. It can
clearly be seen that the volatility the series exhibits decreases with a
higher aggregation level. 9

3.1 Structure of a prototypical biological neuron. Crucial parts of the
neuron are annotated. The neurons are electrically interconnected
by their synapses and can transport information through electrical
signals. [68] . 17

3.2 (a) to (e) show plots of commonly used activation functions in neural
networks. 20

3.3 A very simple fully-connected neural network with one layer of hidden
neurons. The activation functions of the hidden neurons and of the
output neuron are differentiable. Every neuron of a layer, that is not
part of the input layer, is connected to every neuron of the previous
layer, hence fully-connected. Each connection possesses a trainable
weight. 22

3.4 The image illustrates the receptive field in a CNN on a small exem-
plary convolutional layer. The two-dimensional input of the convo-
lutional layer is depicted in blue and the resulting feature map in
green. The darker area of the input represents the receptive field of
the darker value of the feature map when a 3x3 kernel is applied. The
receptive fields increases with every subsequent convolutional layer. [96] 31

153

List of Figures

3.5 Structure of a one-neuron recurrent neural network. On the left side,
the feedback loop is visible, which feeds back the computed output
of the neuron as input for the next computation step. The right side
represents the unfolded network. 36

3.6 The schema demonstrates the functional principle of a one-dimensional
CNN. It depicts a simple one-dimensional CNN with one convolu-
tional layer and without pooling layers and a single point output. . . 42

4.1 Plot of the complete IRE350 dataset. It is obvious that the electricity
consumption varies strongly with the seasons. The largest load is
reached at Christmas 2009 and Christmas 2010. The colours indicate
how the dataset is split. The training set is depicted in darker blue,
the test set in a brighter blue, and the excluded Christmas Days are
shown in a transparent blue. 45

4.2 The figures show the consumption during Christmas 2010 of the
IRE350 dataset. For comparison, the consumption of the same week-
days of the two prior weeks is plotted as well. It is clearly recognisable
that the electricity consumption behaviour during Christmas differs
from the rest of the year, which seems logical because it is a widely
celebrated holiday of the year. The load curves of the Christmas days
exhibit a different shape and a higher daily mean. 46

4.3 The graph shows the daily average electricity consumption in blue and
the daily average temperature in red of the complete dataset. The
y-axis of the temperature is inverted. The temperature curve and the
load curve display a similar development, which indicates a negative
correlation between the two. Additionally, regular fluctuations in the
load curve can be seen that exhibit a seven day frequency, which stems
from the difference in consumption between weekdays and weekends. 49

4.4 This schematic depicts the network structure of the NN regression
model with four layers. The vertical lines represent the number of
input or ,respectively, output neurons of each layer and the arrows
represent the weights. In this case all layers are fully-connected. . . . 55

4.5 Development of the MSE with respect the tree depth during the grid-
search. The error is calculated with the training set during the cross-
validation process of the training. All curves show a clear minimum
that constitutes the optimal tree-depth, which is then used for the
final model configuration. 63

154

List of Figures

4.6 Exemplary forecasts of the IRE350 electricity load time series with
the XGBoost model trained with cross-validation. The blue line rep-
resents the measured load and the yellow line the prediction. The
forecast in (a) is very accurate, whereas in (b) deviations from the
actual load are visible. 64

4.7 The figures depict the two networks trained in the preliminary test.
They both consist of one convolutional layer, utilising eight kernels
of size ksize = 6, two fully-connected layers, and differ only in the
number of output neurons. The different coloured arrows represent
the described layers. The "flatten" layer represents the suspension of
temporal and kernel-based order. 67

4.8 The graph depicts the IRE350 load (blue), the temperature (red), and
the daily sunshine duration (yellow) of the complete dataset. For a
better depiction of trends, the seven-day running average of the load
and temperature are displayed. It can be seen that the temperature
curve closely follows the load curve in contrast to the curve of the
daily sunshine duration. The grey, vertical, dashed lines indicate
dates where a strong correlation between the load and temperature
is visible. 69

4.9 IRE350 load time series after being transformed by the two linear
regressions with the temperature as regressor. The series has a mean
around zero and the magnitude varies noticeably less than before the
transformation. 71

4.10 The graph shows the computation duration for a network trained on
a home PC. The computation takes longer for small batch-sizes, prob-
ably because the training processes cannot be distributed on several
CPU- or GPU-kernels. Furthermore, computing the weight updates
and, in the case of the adaptive learning rates, updating the individ-
ual learning rates for all weights is computationally costly as well.
. 74

4.11 The three graphs depict the training error (grey) and validation error
(red) development of the IRE40 dataset for three different batch-
sizes. The error is computed during the training process and repre-
sents therefore only the aberration of the one-point forecast, hence
the different scaling. The comparison of (b) with (c) emphasises the
decrease of validation error fluctuation for larger batch-sizes. (a) il-
lustrates the rapid training process and the subsequent over-fitting of
a CNN with a small batch size. 75

155

List of Figures

4.12 This graph shows the training and validation error for the one-point
forecast during training with the IRE40 dataset. A batch-size of
bsize = 128 was applied. The CNN is trained with a large number
of epochs. The validation error reaches a minimum in the range of 20
to 50 epochs. The graph is representative for all three datasets. . . . 76

4.13 The graph shows the average weekly electricity load of the IRE350
dataset. The first day depicted is Monday. It can be seen that the
consumption of different days of the week varies. Particularly promi-
nent is the difference between weekdays and the weekend. However,
also the weekdays vary slightly among one another. 78

4.14 The graphic depicts the structure of the CNN model with one convo-
lutional layer and two fully-connected layers. The different coloured
arrows symbolise the different layer types that are utilised in the model. 80

4.15 The plots depict the dependency of the amount of output neurons of
the first fully-connected layer on the forecast error for each dataset.
The error values represent the average error for all trained networks
with the respective number of output neurons independently from
ksize and knumber. It is clearly visible that a large number of neurons
deteriorates the forecast error for all datasets. 81

4.16 The graph depicts the forecast error of the IRE15 dataset with re-
spect to knumber and is averaged over all ksize and fsize. The spike for
knumber = 6 is caused by a few very poorly trained models that exhibit
forecast errors far larger than the average. It can be considered an
outlier. Apart from that, the error increases with an increasing knumber. 82

4.17 The graphic depicts the structure of the CNN model with one convo-
lutional layer and three fully-connected layers. 83

4.18 The heatmaps depict the forecast error with respect to the amount
of output neurons of the first and the second fully-connected layer.
The values shown represent the average errors for all models with the
respective fully-connected configuration, independently from ksize and
knumber. 84

4.19 The graphic depicts the structure of the CNN model with one convo-
lutional layer and four fully-connected layers. 86

4.20 The graphic depicts the structure of the CNN model with one con-
volutional layer and three fully-connected layers. The striped, grey
arrow indicates that spatial dropout is applied. The values in the
graphic correspond to the model forecasting the IRE350 data. 90

4.21 The graphic depicts the structure of the CNN model applying dropout
in the first fully-connected layer, which is indicated by the striped, red
arrow. The values in the graphic correspond to the model forecasting
the IRE350 data. 91

156

List of Figures

4.22 The plots depict the average forecast error of a CNN with three fully-
connected layers when dropout is applied in the first of these layers
with respect to the dropout rate. 93

4.23 The heatmaps represent the forecast errors with respect to the dropout
rate and the number of neurons in the first fully-connected layer. . . 94

4.24 The heatmaps display the forecast performance of the models with
dropout and an adjusted layer size with respect to the number of
output neurons of the first and second fully-connected layer. The
number of neurons of the first layer represent the amount before the
adjustment according to the dropout rate or, respectively, the number
of active neurons during training. 97

4.25 The heatmap shows the errors of the model with respect to the num-
ber of output neurons in the first and second layer for d = 0.7 after
the extended grid-search. 99

4.26 The plots depict the forecast error with respect to the dropout rate
applied in the second fully-connected layer. The error increases dras-
tically with an increasing dropout rate for all datasets. 100

4.27 The graphic depicts the structure of the CNN model applying dropout
in all suitable fully-connected layers, which is indicated by the striped,
red arrows. The values in the graphic correspond to the model fore-
casting the IRE350 data. 101

4.28 This graphic illustrates the receptive fields of two values in consecutive
activation maps. The values (grey boxes) on the left depict the input
series and the ki the kernel size of the layers. The dark blue value in
the first feature map is computed of the dark blue values of the input
series. Its receptive field corresponds to its kernel size. The light blue
value in the 3rd layer is computed of the light blue values of the 2nd
layer. Its receptive field corresponds to the blue value in the 1st layer,
hence is larger than its kernel size. 109

4.29 The heatmaps depict the forecast errors with respect to the stride
size and the kernel size of the new, additional convolutional layer.
The error values of the best networks cannot be found, because the
depicted values represent the average of all configurations that have
the respective parameters. 112

4.30 The graphics depict the structures of CNN models with a varying
number of convolutional layers. The values in the graphic correspond
to the model forecasting the IRE350 data. 113

4.31 The heatmap shows the forecast errors of the models with respect to
the kernel size and the applied dilation rate. No clear preference for
a dilation rate is recognisable. 116

157

List of Figures

4.32 The graphic depicts the structure of the CNN model with two parallel
convolutional layers, which both operate independently on the input
series. The values in the graphic correspond to the model forecasting
the IRE350 data. 118

4.33 The heatmaps show the forecast error of CNN models containing a
secondary convolutional layer with respect to the dilation rate and
the kernel size of the parallel layer. The two parameters determine
the size of the receptive field. The larger the parameter values, the
larger the receptive field. 121

4.34 The graphic depicts the structure of the CNN model which contains
two consecutive convolutional layers and a parallel convolutional layer
that operates on the input series as well. The values in the graphic
correspond to the model forecasting the IRE350 data. 122

4.35 The graphic depicts the structure of the CNN model that is used
for testing the influence of the features on the forecast quality. The
features are added as input to the first fully-connected layer. The
values in the graphic correspond to the model forecasting the IRE350
data. 129

4.36 The graph depicts the predictions with and without the weekend fea-
ture for a Saturday in November. Thus, the first predicted value
shown is for Friday noon and the last for Saturday midnight. Around
Saturday noon, the prediction computed with features is clearly more
accurate. This can be observed for most Saturdays and shows the
effectiveness of the included feature. 131

4.37 The graphic depicts the structure of the models that produce the
most accurate forecasts. These models are the final result of the
development of the novel forecast model based on convolutional neural
networks. 135

4.38 The graphic shows an exemplary 36-h forecast for a November day of
the IRE15 dataset computed with the final model. It can be seen that
the model is able to compute a prediction that captures the trend of
the measured data well, but is not able to follow each fluctuation. . . 136

4.39 The graphic shows an exemplary 36-h forecast for a November day
of the IRE40 dataset computed with the final model. The model is
able to produce a forecast that captures the trend and most of the
fluctuations in the data well. 136

4.40 The graphic shows an exemplary 36-h forecast for a November day
of the IRE40 dataset computed with the final model. The model is
able to compute a quite accurate forecast, which even captures small
variations in the load. 136

158

List of Figures

4.41 The plots show the forecast error of the new datasets with respect
to their aggregation level. The IRE350 model outperforms the other
two models on almost all aggregation levels. 139

4.42 The different plots all represent one kernel from networks with only
one convolutional layer. In the legend of each plot, the dataset on
which the model, which the kernel is a part of, has been trained is
listed. 141

4.43 The plots represent the kernels of the second parallel convolutional
layer, which also operates directly on the input data. The networks
contain two parallel convolutional layers, with the first layer consist-
ing of a larger number of rather small kernels in comparison to the
depicted kernels. 142

4.44 The plots represent the kernels of the second convolutional layer from
networks with two consecutive convolutional layers. In the legend of
each plot, the dataset is listed on which the model, which the kernel
is part of, has been trained. 143

159

List of Tables

4.1 The table shows the forecast errors achieved with the two naïve mod-
els with different ∆t for all three datasets. The forecasts are relatively
good when taking the simplicity of the model into account. 52

4.2 The table lists the forecast errors that are achieved by an exponential
smoothing model. The MSE values represent the most successful
model utilising the listed α for the respective dataset. 53

4.3 The table shows the forecast errors achieved with the two different
ridge regression models. They only differ in the utilised features. . . 54

4.4 The table presents the forecast errors achieved with the fully-connected
neural network model. For each configuration, ten models have been
trained on each dataset. The listed errors represent the best model
of each configuration. 56

4.5 The mean squared error of the XGBoost regression model trained
with 4-fold cross-validation for the three datasets. 63

4.6 The training parameters determined in this section are listed in the
table. They are used throughout this whole work if not stated otherwise. 76

4.7 The table presents the forecast error averaged over all configurations
and the error of the most successful configuration. 81

4.8 The table shows the forecast errors achieved by networks that contain
three fully-connected layers. 84

4.9 The table shows the forecast errors achieved by networks that contain
four fully-connected layers. 86

4.10 The table shows the forecast errors of CNN models trained with spa-
tial dropout. The forecasts of the best models are less accurate than
of models without dropout. 90

4.11 The table contains the forecast errors of the models trained with
dropout applied to the first fully-connected layer. The percentages
represent the improvement to the errors achieved with the models
without dropout. 92

161

List of Tables

4.12 The table contains the forecast errors of the models trained with an
adjusted layer size according to the dropout rate. The percentages
represent the improvement to the errors achieved without dropout.
The errors are consistently lower than for the models with dropout
but without adjustment of the layer size. 95

4.13 The table shows the average MSE with respect to the dropout rate.
The error values represent the average of all fully-connected configu-
rations computed with the same dropout rate. The size of the first
fully-connected layer has been adjusted according to the dropout rate.
CNN models utilising large dropout rates perform the best. 96

4.14 The table depicts forecast errors with respect to the applied dropout
rate (left) and with respect to the number of output neurons of the
first fully-connected layer (right). 98

4.15 The table shows the forecast errors of the extended grid-search for
the IRE350 dataset. In contrast to the earlier conducted grid-search,
only models with dropout rates d ≥ 0.4 have been trained and, hence,
are included in the average MSE below. 99

4.16 The table describes the forecast errors achieved with models when
dropout is applied to all fully-connected layers. The large average
forecast errors are the result of the larger errors for large dropout rates.100

4.17 The forecast error of the models that use spatial dropout and dropout
in the first fully-connected layer. The errors are larger than for models
without spatial dropout. 102

4.18 The table summarises the network configuration for each dataset that
generated the most accurate forecasts so far. 103

4.19 The table presents the forecasting errors achieved with CNN models
that apply a pooling operation subsequent to the convolution. The
top part represents the errors when average pooling is applied, the
bottom when max pooling is applied. 106

4.20 The forecast errors of CNN models with stride sizes of the convolu-
tional layer larger than one. 108

4.21 The forecast errors of the models containing two consecutive convo-
lutional layers are displayed. 110

4.22 The table shows the configurations of the models that computed the
most accurate forecasts with the corresponding forecast error. 111

4.23 The forecast errors of the CNN model containing three consecutive
convolutional layers. 113

4.24 The errors of CNN models with dilated kernels used in their convo-
lutional layer. 115

162

List of Tables

4.25 The table presents the forecast errors achieved with CNN models that
contain two convolutional layers with the second layer consisting of
dilated kernels. 117

4.26 The table shows the configurations of the best performing models con-
taining a secondary convolutional layer and their respective forecast
error. 120

4.27 Forecast errors of the CNN model with two consecutive and a parallel
convolutional layer. The errors are larger than for less complex models.123

4.28 The table lists the configurations of the fully-connected network part
of the best performing CNN models within the conducted grid-search
with the corresponding averaged forecast errors. 124

4.29 The model configuration with an average pooling layer that performed
the best and the corresponding errors. ksize_pool = 5 is the smallest
pooling size that was tested in the experiment. 125

4.30 The table sums up the findings of this chapter. The best model
configuration for each dataset is presented together with the average
forecast error of that configuration and the error achieved with the
best iteration. Note the different network structures for IRE15 /
IRE40 and IRE350. 126

4.31 The table displays the forecast errors that have been achieved with
models utilising one externally calculated feature for the three datasets.
As a reference, the forecast errors of the very same model without fea-
tures are mentioned as well. Each of the values represents the average
over twenty iterations. Only the weekend and the day of the week fea-
ture improve the forecast quality. 130

4.32 The forecast errors achieved by models including the weekend feature
and one additional feature. For reference, the errors of two simpler
models are mentioned as well. 132

4.33 The forecast errors of models including several features are presented.
For reference, three simpler models are mentioned as well. 133

4.34 The table shows the forecast errors of the CNN models combining the
best developed network architecture with the most promising features.
The average errors over all iterations and the errors of the single best
model are presented. 135

4.35 The table shows the forecast errors when the model of a specified
aggregation level is applied to a new dataset constructed from the
same amount of households, in which the households are randomly
sampled from the CER data. The predictions are calculated once
with the original pre-processing parameters and once with adjusted
parameters. The error values represent the average error of all ten
new datasets. 137

163

List of Tables

4.36 The table shows the forecast errors similar to the previous table. The
only difference is that the error values represent the forecast error be-
fore the predictions are rescaled to their actual size. Thereby whether
the forecast errors of table 4.35 originate from the forecast itself or
the rescaling can be evaluated. 138

4.37 The table compares the forecast performance of all the tested mod-
els. The mean squared error and the mean absolute percentage error
are provided for each dataset. The forecast errors correspond to the
model that performed the best, if several variations were evaluated. . 144

164

Bibliography

[1] R. Pachauri and A. Reisinger, eds., Climate Change 2007: Synthesis Report.
Contribution of Working Groups I, II and III to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. IPCC, 2007.

[2] R. Pachauri and L. Meyer, eds., Climate Change 2014: Synthesis Report.
Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. IPCC, 2014.

[3] S. C. Herring, N. Christidis, A. Hoell, M. P. Hoerling, and P. A. Stott, “Ex-
plaining extreme events of 2018 from a climate perspective,” Bulletin of the
American Meteorological Society, vol. 101, no. 1, pp. 1–140, 01 Jan. 2020.

[4] J. Fourier, “Mémoire sur les températures du globe terrestre et des espaces
planétaires,” Mémoires de l’Académie Royale des Sciences de l’Institut de
France, vol. 7, pp. 570–604, 1827.

[5] J. Tyndall, Heat considered as a mode of motion. D. Appleton and Company,
1875.

[6] S. Arrhenius, “Xxxi. on the influence of carbonic acid in the air upon the
temperature of the ground,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 41, no. 251, pp. 237–276, 1896.

[7] F. Holl, “Alexander von humboldt und der klimawandel: Mythen und fakten,”
HiN: Alexander von Humboldt im Netz; international review for Humboldtian
studies, vol. 19, no. 37, pp. 37–56, 2019.

[8] A. Von Humboldt, Central-Asien: Untersuchungen über die Gebirgsketten und
die vergleichende Klimatologie, vol. 1. CJ Klemann, 1844.

[9] V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. Shukla,
A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. Matthews,
Y. Chen, X. Zhou, M. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Wa-
terfield, eds., 2018: Summary for Policymakers. In: Global Warming of 1.5°C.
An IPCC Special Report on the impacts of global warming of 1.5°C above pre-
industrial levels and related global greenhouse gas emission pathways, in the

165

Bibliography

context of strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty. IPCC, 2018.

[10] O. Steffens, “Gesamtvorhabenbeschreibung maggie: Energetische mod-
ernisierung des genossenschaftlichen wohnquartiers margaretenau in regens-
burg.” Forschungsantrag, 2017.

[11] B. für Wirtschaft und Energie, “Das Erneuerbare-Energien-Gesetz.”
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Dossier/eeg.html,
2020. Accessed: 2020-04-21.

[12] M. Sterner and I. Stadler, Energiespeicher-Bedarf, Technologien, Integration.
Springer-Verlag, 2014.

[13] C. Lang, F. Steinborn, O. Steffens, and E. W. Lang, “Electricity load fore-
casting - an evaluation of simple 1d-cnn network structures,” in ITISE 2019-
International Conference on Time Series and Forecasting, 25-27 September
2019 Granada (Spain), vol. 2, pp. 797–806, 2019.

[14] Pressemitteilung Tennet TSO GmbH, “Aus david wird go-
liath: Dezentrale kleinanlagen stabilisieren das energiesystem.”
https://www.tennet.eu/de/news/news/aus-david-wird-goliath-dezentrale-
kleinanlagen-stabilisieren-das-energiesystem/, 06 2019. Accessed: 2020-04-21.

[15] Pressemitteilung Tennet TSO GmbH, “Intelligenztest für das stromnetz der
zukunft.”

[16] Commission for Energy Regulation (CER), “CER smart metering project -
electricity customer behaviour trial, 2009-2010.” Via the Irish Social Science
Data Archive: www.ucd.ie/issda/CER-electricity, 2012. Accessed: 2017-12-01.

[17] X. Dong, L. Qian, and L. Huang, “Short-term load forecasting in smart grid:
A combined cnn and k-means clustering approach,” in 2017 IEEE Interna-
tional Conference on Big Data and Smart Computing (BigComp), pp. 119–125,
IEEE, 2017.

[18] T. Hong, Short Term Electric Load Forecasting. PhD thesis, North Carolina
State University, 2010.

[19] E. M. de Oliveira and F. L. C. Oliveira, “Forecasting mid-long term electric
energy consumption through bagging arima and exponential smoothing meth-
ods,” Energy, vol. 144, pp. 776–788, 2018.

[20] A. El Desouky and M. El Kateb, “Hybrid adaptive techniques for electric-load
forecast using ann and arima,” IEE Proceedings-Generation, Transmission and
Distribution, vol. 147, no. 4, pp. 213–217, 2000.

166

Bibliography

[21] L. Mao and Y. Jiang, “Medium-and long-term load forecasting based on partial
least squares regression analysis,” Power System Technology, vol. 32, no. 19,
pp. 71–77, 2008.

[22] D. G. Lee, B. W. Lee, and S. H. Chang, “Genetic programming model for long-
term forecasting of electric power demand,” Electric power systems research,
vol. 40, no. 1, pp. 17–22, 1997.

[23] E. Feilat, D. Al-Sha’abi, and M. Momani, “Long-term load forecasting using
neural network approach for jordan’s power system,” Engineering Press, vol. 1,
pp. 43–50, 12 2017.

[24] R. Achnata, “Long term electric load forecasting using neural networks and
support vector machines,” IJCST, vol. 3, no. 1, 2012.

[25] M. T. Hagan and S. M. Behr, “The time series approach to short term load
forecasting,” IEEE transactions on power systems, vol. 2, no. 3, pp. 785–791,
1987.

[26] S.-J. Huang and K.-R. Shih, “Short-term load forecasting via arma model iden-
tification including non-gaussian process considerations,” IEEE Transactions
on power systems, vol. 18, no. 2, pp. 673–679, 2003.

[27] M. Cho, J. Hwang, and C. Chen, “Customer short term load forecasting by
using arima transfer function model,” in Proceedings 1995 International Con-
ference on Energy Management and Power Delivery EMPD’95, vol. 1, pp. 317–
322, IEEE, 1995.

[28] N. Mohamed, M. H. Ahmad, Z. Ismail, et al., “Short term load forecasting
using double seasonal arima model,” in Proceedings of the regional conference
on statistical sciences, vol. 10, pp. 57–73, 2010.

[29] C. Kuster, Y. Rezgui, and M. Mourshed, “Electrical load forecasting models:
A critical systematic review,” Sustainable cities and society, vol. 35, pp. 257–
270, 2017.

[30] A. D. Papalexopoulos and T. C. Hesterberg, “A regression-based approach to
short-term system load forecasting,” IEEE Transactions on Power Systems,
vol. 5, no. 4, pp. 1535–1547, 1990.

[31] O. Hyde and P. Hodnett, “An adaptable automated procedure for short-term
electricity load forecasting,” IEEE Transactions on Power Systems, vol. 12,
no. 1, pp. 84–94, 1997.

167

Bibliography

[32] P. Ji, D. Xiong, P. Wang, and J. Chen, “A study on exponential smoothing
model for load forecasting,” in 2012 Asia-Pacific Power and Energy Engineer-
ing Conference, pp. 1–4, IEEE, 2012.

[33] J. W. Taylor and P. E. McSharry, “Short-term load forecasting methods: An
evaluation based on european data,” IEEE Transactions on Power Systems,
vol. 22, no. 4, pp. 2213–2219, 2007.

[34] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg, “Elec-
tric load forecasting using an artificial neural network,” IEEE transactions on
Power Systems, vol. 6, no. 2, pp. 442–449, 1991.

[35] A. Khotanzad, R. Afkhami-Rohani, and D. Maratukulam, “Annstlf-artificial
neural network short-term load forecaster-generation three,” IEEE Transac-
tions on Power Systems, vol. 13, no. 4, pp. 1413–1422, 1998.

[36] J. W. Taylor and R. Buizza, “Neural network load forecasting with weather
ensemble predictions,” IEEE Transactions on Power systems, vol. 17, no. 3,
pp. 626–632, 2002.

[37] A. Almalaq and G. Edwards, “A review of deep learning methods applied
on load forecasting,” in 2017 16th IEEE international conference on machine
learning and applications (ICMLA), pp. 511–516, IEEE, 2017.

[38] J. Massana, C. Pous, L. Burgas, J. Melendez, and J. Colomer, “Short-term load
forecasting in a non-residential building contrasting models and attributes,”
Energy and Buildings, vol. 92, pp. 322–330, 2015.

[39] D. Niu, Y. Wang, and D. D. Wu, “Power load forecasting using support vec-
tor machine and ant colony optimization,” Expert Systems with Applications,
vol. 37, no. 3, pp. 2531–2539, 2010.

[40] A. Kavousi-Fard, H. Samet, and F. Marzbani, “A new hybrid modified firefly
algorithm and support vector regression model for accurate short term load
forecasting,” Expert systems with applications, vol. 41, no. 13, pp. 6047–6056,
2014.

[41] J. Moon, Y. Kim, M. Son, and E. Hwang, “Hybrid short-term load forecasting
scheme using random forest and multilayer perceptron,” Energies, vol. 11,
no. 12, p. 3283, 2018.

[42] A. Lahouar and J. B. H. Slama, “Day-ahead load forecast using random forest
and expert input selection,” Energy Conversion and Management, vol. 103,
pp. 1040–1051, 2015.

168

Bibliography

[43] E. Busseti, I. Osband, and S. Wong, “Deep learning for time series modeling,”
Technical report, Stanford University, pp. 1–5, 2012.

[44] J. Vermaak and E. Botha, “Recurrent neural networks for short-term load
forecasting,” IEEE Transactions on Power Systems, vol. 13, no. 1, pp. 126–
132, 1998.

[45] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,” IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851, 2017.

[46] G.-C. Liao and T.-P. Tsao, “Application of a fuzzy neural network combined
with a chaos genetic algorithm and simulated annealing to short-term load
forecasting,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3,
pp. 330–340, 2006.

[47] H. Nie, G. Liu, X. Liu, and Y. Wang, “Hybrid of arima and svms for short-term
load forecasting,” Energy Procedia, vol. 16, pp. 1455–1460, 2012.

[48] A. K. Fard and M.-R. Akbari-Zadeh, “A hybrid method based on wavelet, ann
and arima model for short-term load forecasting,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 26, no. 2, pp. 167–182, 2014.

[49] T. Hong, P. Wang, and H. L. Willis, “A naïve multiple linear regression bench-
mark for short term load forecasting,” in 2011 IEEE Power and Energy Society
General Meeting, pp. 1–6, IEEE, 2011.

[50] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural net-
works for image classification,” in 2012 IEEE conference on computer vision
and pattern recognition, pp. 3642–3649, IEEE, 2012.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, pp. 1097–1105, 2012.

[53] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with
deep neural networks: A strong baseline,” in 2017 International joint confer-
ence on neural networks (IJCNN), pp. 1578–1585, IEEE, 2017.

[54] C.-L. Liu, W.-H. Hsaio, and Y.-C. Tu, “Time series classification with multi-
variate convolutional neural network,” IEEE Transactions on Industrial Elec-
tronics, vol. 66, no. 6, pp. 4788–4797, 2018.

169

Bibliography

[55] S. Hosein and P. Hosein, “Load forecasting using deep neural networks,” in
2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Con-
ference (ISGT), pp. 1–5, IEEE, 2017.

[56] K. Amarasinghe, D. L. Marino, and M. Manic, “Deep neural networks for
energy load forecasting,” in 2017 IEEE 26th International Symposium on In-
dustrial Electronics (ISIE), pp. 1483–1488, IEEE, 2017.

[57] W. He, “Load forecasting via deep neural networks,” Procedia Computer Sci-
ence, vol. 122, pp. 308–314, 2017.

[58] L. Li, K. Ota, and M. Dong, “Everything is image: Cnn-based short-term
electrical load forecasting for smart grid,” in 2017 14th International Sym-
posium on Pervasive Systems, Algorithms and Networks & 2017 11th Inter-
national Conference on Frontier of Computer Science and Technology & 2017
Third International Symposium of Creative Computing (ISPAN-FCST-ISCC),
pp. 344–351, IEEE, 2017.

[59] M. Zahid, F. Ahmed, N. Javaid, R. A. Abbasi, H. S. Zainab Kazmi, A. Javaid,
M. Bilal, M. Akbar, and M. Ilahi, “Electricity price and load forecasting using
enhanced convolutional neural network and enhanced support vector regres-
sion in smart grids,” Electronics, vol. 8, no. 2, p. 122, 2019.

[60] Z. Deng, B. Wang, Y. Xu, T. Xu, C. Liu, and Z. Zhu, “Multi-scale con-
volutional neural network with time-cognition for multi-step short-term load
forecasting,” IEEE Access, vol. 7, pp. 88058–88071, 2019.

[61] M. Cai, M. Pipattanasomporn, and S. Rahman, “Day-ahead building-level load
forecasts using deep learning vs. traditional time-series techniques,” Applied
Energy, vol. 236, pp. 1078–1088, 2019.

[62] T.-Y. Kim and S.-B. Cho, “Predicting residential energy consumption using
cnn-lstm neural networks,” Energy, vol. 182, pp. 72–81, 2019.

[63] P.-H. Kuo and C.-J. Huang, “A high precision artificial neural networks model
for short-term energy load forecasting,” Energies, vol. 11, no. 1, p. 213, 2018.

[64] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mas-
tering the game of go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[65] S. H. Lee, C. S. Chan, P. Wilkin, and P. Remagnino, “Deep-plant: Plant
identification with convolutional neural networks,” in 2015 IEEE international
conference on image processing (ICIP), pp. 452–456, IEEE, 2015.

170

Bibliography

[66] K. Bimbraw, “Autonomous cars: Past, present and future a review of the
developments in the last century, the present scenario and the expected future
of autonomous vehicle technology,” in 2015 12th international conference on
informatics in control, automation and robotics (ICINCO), vol. 1, pp. 191–198,
IEEE, 2015.

[67] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[68] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher, Com-
putational intelligence: a methodological introduction. Springer, 2016.

[69] J. R. Anderson, Cognitive psychology and its implications. Worth publishers,
2000.

[70] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[71] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[72] D. O. Hebb, The organization of behavior: a neuropsychological theory. J.
Wiley; Chapman & Hall, 1949.

[73] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep., Stanford
Univ Ca Stanford Electronics Labs, 1960.

[74] F. Rosenblatt, Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. 1961.

[75] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational
geometry. MIT press, 2017.

[76] H. Niemann, Klassifikation von Mustern. springer-Verlag, 7 ed., 2013.

[77] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[78] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[79] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade, pp. 9–48, Springer, 2012.

[80] M. Tschoepe, “Beyond sgd: Recent improvements of gradient descent meth-
ods,” 07 2019.

171

Bibliography

[81] B. T. Polyak, “Some methods of speeding up the convergence of iteration meth-
ods,” USSR Computational Mathematics and Mathematical Physics, vol. 4,
no. 5, pp. 1–17, 1964.

[82] Y. E. Nesterov, “A method for solving the convex programming problem with
convergence rate o (1/kˆ 2),” in Dokl. akad. nauk Sssr, vol. 269, pp. 543–547,
1983.

[83] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International conference on
machine learning, pp. 1139–1147, 2013.

[84] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of machine learning research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[85] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[86] G. Hinton and T. Tieleman, “Lecture notes in coursera: Neural networks for
machine learning,” 2012.

[87] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[88] T. Dozat, “Incorporating nesterov momentum into adam,” Workshop track -
ICLR 2016, 2016.

[89] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[90] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[91] S. Muroga, “Threshold logic and its applications,” 1971.

[92] K. Hornik, M. Stinchcombe, H. White, et al., “Multilayer feedforward networks
are universal approximators.,” Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

[93] J. Makhoul, A. El-Jaroudi, and R. Schwartz, “Formation of disconnected de-
cision regions with a single hidden layer,” in Proceedings of the International
Joint Conference on Neural Networks I, vol. 455, p. 460, 1989.

[94] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

172

Bibliography

[95] N. Aloysius and M. Geetha, “A review on deep convolutional neural networks,”
in 2017 International Conference on Communication and Signal Processing
(ICCSP), pp. 0588–0592, IEEE, 2017.

[96] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” ArXiv e-prints, mar 2016.

[97] “Press release. nobelprize.org. nobel media ab 2020.”
https://www.nobelprize.org/prizes/medicine/1981/press-release/. Accessed:
2020-04-10.

[98] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice.
OTexts, 2018.

[99] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[100] R. J. Rossi, Mathematical statistics: an introduction to likelihood based infer-
ence. John Wiley & Sons, 2018.

[101] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[102] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[103] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term
temporal patterns with deep neural networks,” in The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
pp. 95–104, 2018.

[104] R. Couronné, P. Probst, and A.-L. Boulesteix, “Random forest versus logistic
regression: a large-scale benchmark experiment,” BMC bioinformatics, vol. 19,
no. 1, p. 270, 2018.

[105] A. Liaw, M. Wiener, et al., “Classification and regression by randomforest,”
R news, vol. 2, no. 3, pp. 18–22, 2002.

[106] A. Lahouar and J. B. H. Slama, “Day-ahead load forecast using random forest
and expert input selection,” Energy Conversion and Management, vol. 103,
pp. 1040–1051, 2015.

[107] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics &
data analysis, vol. 38, no. 4, pp. 367–378, 2002.

173

Bibliography

[108] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pp. 785–794, 2016.

[109] D. Nielsen, “Tree boosting with xgboost-why does xgboost win" every" ma-
chine learning competition?,” Master’s thesis, NTNU, 2016.

[110] D. D. M. L. Community, “Awesome xgboost - curated list of xgboost kaggle
usercases.” https://github.com/dmlc/xgboost/tree/master/demo, 22015. Ac-
cessed: 2021-03-27.

[111] V. Sandulescu and M. Chiru, “Predicting the future relevance of research
institutions-the winning solution of the kdd cup 2016,” arXiv preprint
arXiv:1609.02728, 2016.

[112] “Met Éireann, historical weather data.” https://www.met.ie/climate/available-
data/historical-data. Accessed: 2020-10-07.

[113] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[114] xgboost developers, “Xgboost documentation.”
https://xgboost.readthedocs.io/en/latest/. Accessed: 2020-10-14.

[115] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[116] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolu-
tional networks,” arXiv preprint arXiv:1312.6229, 2013.

[117] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[118] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pp. 249–256, 2010.

[119] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[120] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

174

Bibliography

[121] D. Mishkina, N. Sergievskiyb, and J. Matasa, “Systematic evaluation of cnn
advances on the imagenet,” Center for Machine Perception, Faculty of Elec-
trical Engineering, 2016.

[122] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann.
lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[123] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” arXiv preprint arXiv:1511.07122, 2015.

[124] T. K. Wijaya, M. Vasirani, S. Humeau, and K. Aberer, “Cluster-based aggre-
gate forecasting for residential electricity demand using smart meter data,”
in 2015 IEEE international conference on Big data (Big data), pp. 879–887,
IEEE, 2015.

[125] S. Arora and J. W. Taylor, “Forecasting electricity smart meter data using
conditional kernel density estimation,” Omega, vol. 59, pp. 47–59, 2016.

[126] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid cnn-lstm model
for short-term individual household load forecasting,” IEEE Access, vol. 8,
pp. 180544–180557, 2020.

[127] C. Tian, J. Ma, C. Zhang, and P. Zhan, “A deep neural network model for
short-term load forecast based on long short-term memory network and con-
volutional neural network,” Energies, vol. 11, no. 12, p. 3493, 2018.

[128] A. Gasparin, S. Lukovic, and C. Alippi, “Deep learning for time series fore-
casting: The electric load case,” arXiv preprint arXiv:1907.09207, 2019.

175

Acknowledgements

I would like to thank the following people, without whom this thesis would not look
the way it does and without whom my time at the University of Regensburg would
not have been the same.

Many thanks to Elmar Lang for offering me the possibility to do a doctorate, for
his friendly guidance during the research, and, above all, for the informal and un-
complicated atmosphere he creates in his group. I further would like to thank Flo
and Marinus for the discussions and good times we had in our office. Many thanks
also to Simon for his technical support and the effort he put into enabling remote
computing for me.
A big thank you to Haley for proof reading this thesis, which I do not take for
granted.
Furthermore, I would like to thank everyone who has turned the last few years into
what they have been - a genuinely great time that made me the person I am to-
day. Thank you Wacki, Chrissy, Tommy, Thea, Josef, Simon and so many more. A
special shout-out goes to Kathl for keeping me motivated during the last months. I
also would like to thank my friends from Hof - Martin, Sophia, Timo, Moni, Lise,
Anka, Verena, Konstantin, and Jule - who shared the excitement of studying and
doing the doctorate with me.
Finally, a big thanks to my parents and my brother for all the support and that I
can always rely on you.

177

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefer-
tigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und
Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Regensburg, den 27.04.2021

Christian Lang

Publications

• Christian Lang, Florian Steinborn, Oliver Steffens, Elmar W. Lang,
Electricity Forecasting - An Evaluation of Simple 1D-CNN Network Structures,
Proceedings ITISE 2019 - International Conference on Time Series Forecasting,
pp. 797-806 (2019)

• Christian Lang, Florian Steinborn, Oliver Steffens, Elmar W. Lang,
Applying a 1D-CNN Network to Electricity Load Forecasting,
Theory and Applications of Time Series Analysis, Springer International Pub-
lishing, pp. 205-218 (2020)

179

	Table of Contents
	List of Abbrevations
	Introduction
	Motivation
	Project MAGGIE
	Dataset
	Research Objectives

	Literature Survey
	Methods
	Neural Networks
	Biological background
	Perceptron
	Single Layer Perceptron
	Multi Layer Perceptron

	From MLPs to Deep Neural Networks
	Training a Neural Network via Back-Propagation
	Network Structure Selection
	Convolutional Neural Networks

	Established Machine Learning Methods for Forecasting
	Regression Models
	Exponential Smoothing
	Ridge Regression
	ARIMA Models

	Recurrent Neural Networks
	Tree-based Models

	Applying Machine Learning Methods to Time Series Forecasting
	Forecasting with Regression Methods
	Forecasting with Tree-Based Models
	Forecasting with Convolutional Neural Networks

	Results and Discussion
	Partitioning of the Datasets
	Feature Engineering
	Baseline models
	Naïve Forecast
	Exponential Smoothing
	Ridge Regression

	Fully-Connected Neural Network Models
	Recurrent Neural Network Models
	Tree-Based Models
	Feature Selection
	Hyper-Parameter Adjustments
	Forecast Evaluation

	Developing a Convolutional Neural Network Forecasting Model
	Choosing a Forecast Approach
	Pre-Processing of the Load Time Series
	Determining Fundamental Hyper-Parameters
	Training Parameters
	Network Parameters

	Parameter Variations
	CNN with Two Fully-Connected Layers
	CNN with Three Fully-Connected Layers
	CNN with Four Fully-Connected Layers
	Adding Dropout to the Neural Network
	Adding Pooling Layers
	Variation in Stride Sizes
	Adding more Convolutional Layers
	Influence of Dilated Kernels
	Adding a Parallel Convolutional Layer
	Creating a More Complex Network
	Conclusion of Data-Driven Model Development

	Influence of Externally Added Features
	Utilising Features for Best Models
	Analysis of the Models
	Transferability
	Analysis of Kernels

	Comparison of the Machine Learning Models
	Comparison to Similar Research

	Conclusion
	Summary of the Results
	Contribution to the Scientific Discourse
	Limitations
	Future Works

	List of Figures
	List of Tables
	Bibliography
	Acknowledgements

