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We study analytically the non-Markovianity of a spin ensemble, with arbitrary number of spins and spin quantum
number, undergoing a pure dephasing dynamics. The system is considered as a part of a larger spin ensemble of
any geometry with pairwise interactions. We derive exact formulas for the reduced dynamics of the system and
for its non-Markovianity as assessed by the witness of Lorenzo et al. [Phys. Rev. A 88, 020102(R) (2013)]. The
non-Markovianity is further investigated in the thermodynamic limit when the environment’s size goes to infinity.
In this limit and for finite-size systems, we find that the Markovian character of the system’s dynamics crucially
depends on the range of the interactions. We also show that when the system and its environment are initially in
a product state, the appearance of non-Markovianity is independent of the entanglement generation between the
system and its environment.
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I. INTRODUCTION

Open quantum systems can display a large variety of
dynamical behaviors, including decoherence [1–3], thermal-
ization, and memory effects. The notion of non-Markovianity,
accounting for memory effects, has found applications in many
different fields ranging from quantum optics [4], quantum
thermodynamics [5,6], and quantum information theory
[7,8] to quantum foundations [9–12]. Non-Markovianity has
also been identified as a key ingredient to achieve specific
tasks in the context of quantum heat machines and quantum
information processing [13–15]. While Markovian dynamics
for discrete variable systems is always governed by a master
equation of the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) type, the methods for treating non-Markovian
quantum dynamics and their physical interpretation are
generally much more complicated, see, e.g., [16–21]. A direct
consequence is that non-Markovian master equations are
only rarely analytically solvable [22,23]. The departure from
Markovian dynamics can be quantified through measures of
non-Markovianity (see Sec. II). Even when the dynamics of the
system and its environment is known, evaluating analytically
measures of non-Markovianity is often a difficult task, so that
up to now only a limited number of analytical results have
been obtained [24–26]. The aim of this work is to contribute
to the analytical treatment of non-Markovianity in the case of
spin ensembles undergoing pure dephasing dynamics, with a
particular emphasis on the thermodynamic limit of infinitely
many spins in the system and/or the environment. Note that
non-Markovianity in spin chains has already been studied
analytically in [27,28] and numerically in [29–32].

The paper is organized as follows. In Sec. II, we present
three different measures of non-Markovianity and introduce

*Corresponding author: remy.dubertrand@ur.de

our main model of a spin ensemble with arbitrary pairwise
interaction range and longitudinal external field. In Sec. III,
the reduced dynamics and a non-Markovianity witness are
evaluated analytically for such an ensemble. The cases of
nearest-neighbor and infinite-range interactions are discussed
in detail, in particular in the limit of an infinite number of
spins. A comparison with other measures of non-Markovianity
is presented. In Sec. IV, we also discuss how non-Markovianity
is independent of the generation of entanglement between the
system and its environment. In Sec. V, we summarize our
results and formulate some perspectives. Some more technical
material is presented in the Appendix.

II. DEFINITIONS AND SYSTEM

A. Measures of non-Markovianity

Different measures of non-Markovianity have been pro-
posed in the literature, relying on different notions of non-
Markovianity. Although these notions are not equivalent, they
coincide in many instances [16,17,33]. In all cases, non-
Markovianity appears as a property of the dynamics, i.e., it
does not depend on a particular choice of the initial state(s).
The Rivas-Huelga-Plenio (RHP) measure is based on the
divisibility of the dynamical map for the reduced system
[34], the Breuer-Laine-Piilo (BLP) measure is devised from
information-theoretical considerations [35], and the measure
introduced in [36] relies on a geometrical characterization of
the dynamics. The RHP measure quantifies the divisibility of
the superoperator describing the time evolution of the reduced
density matrix. It can be reformulated as a positivity constraint
on the rates of the dynamical equation for the density matrix,
when this equation can be cast into GKSL form [16], see
Sec. III D. The BLP measure is probably the most intuitive:
it consists of tracking the time evolution of the trace distance
between two initially distinct states of the system. When the
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trace distance is growing, that may be interpreted as backflow
of information to the system [35], hence a signature of non-
Markovianity (see Sec. III D), despite some recent qualification
of this interpretation [37,38]. A practical limitation of this mea-
sure is that it requires an optimization over the two initial states,
which becomes prohibitive when studying large systems.

The measure of non-Markovianity introduced in [36] relies
on the parametrization of the system’s density matrix by
a Bloch vector, see, e.g., [39]. The time evolution is then
described by a matrix. The derivative of the determinant of this
matrix tells us whether the norm of the Bloch vector is expand-
ing or contracting. Any expansion, i.e., when the derivative
of the determinant is positive, is defined as a non-Markovian
episode in the time evolution. This corresponds to an increase
with time of the volume of accessible states. In contrast, for a
Markovian dynamics, the volume of accessible states can only
decrease with time. This measure is especially well suited for
analytical results and will be mainly considered in this work.
It will be compared to the two previously introduced measures
only in the simplest cases.

B. Spin ensemble with pairwise interaction and local
longitudinal field

We are interested in estimating how the time dynamics of a
subset of a system of spins can show non-Markovian features.
As our formalism allows us to address a quite general problem,
we will first express it in a most general framework. Then our
results will be applied to the particular case of a spin-1/2 chain.
From now on, we set h̄ = 1.

We consider a set of N spins with spin quantum number S

interacting with each other only through pairwise interaction.
Moreover each spin is subject to a local longitudinal field. The
Hamiltonian describing such a spin ensemble reads

H = −
N∑

i=1

N∑
j=1

JijS
z
i S

z
j +

N∑
i=1

hiS
z
i , (1)

where Sz
i stands for the spin operator in the z direction

associated with spin i (i = 1, . . . ,N), and hi is the magnitude
of the external field applied on spin i. The pairwise correlation
matrix (Jij ) is only assumed to be real symmetric and accounts
for the geometrical arrangement of the N spins and the range
of interaction. Note that at this stage, we do not impose any
specific geometry or boundary conditions. For the sake of
simplicity, we restrict ourselves to an external longitudinal
field, i.e., in the same direction as the interaction, which allows
a fully analytical description of the dynamics. The whole set
of spins is divided into a subset S of p spins (labeled hereafter
i = 1, . . . ,p without loss of generality), which defines our
system of interest, and the remaining N − p spins (i = p +
1, . . . ,N ), which form the environment E . The global system
S + E is assumed to be isolated, so that it evolves unitarily.
If ρS+E denotes its density matrix, it obeys the Liouville
equation

i
d

dt
ρS+E = [H,ρS+E ]. (2)

The global Hamiltonian (1) can be written

H = HS + HE + HSE , (3)

with

HS = −
p∑

i=1

p∑
j=1

JijS
z
i S

z
j +

p∑
i=1

hiS
z
i , (4)

HE = −
N∑

i=p+1

N∑
j=p+1

JijS
z
i S

z
j +

N∑
i=p+1

hiS
z
i , (5)

HSE = −2
p∑

i=1

N∑
j=p+1

JijS
z
i S

z
j , (6)

where HS is the Hamiltonian of the system S of interest, HE is
the Hamiltonian of its environment, and HSE is the interaction
Hamiltonian between the system and the environment. The
computational basis states are defined as the common eigen-
states of all Sz

i operators (i = 1, . . . ,N). For convenience, we
write these states as

|sσ 〉 ≡ |s ⊗ |σ 〉 = |s1s2 . . . sp〉 ⊗ |σp+1σp+2 . . . σN 〉, (7)

where |sk〉 (|σk〉) are the eigenstates of Sz
k for k = 1, . . . ,p (k =

p + 1, . . . ,N) of eigenvalue sk (σk) ∈ {−S, − S + 1, . . . ,S}.
In particular we use different notation to emphasize the
distinction between the system and its environment. Note that
all three Hamiltonians (4), (5), and (6) are diagonal in the basis
(7), and thus pairwise commute.

III. NON-MARKOVIANITY IN A SPIN ENSEMBLE
WITH PAIRWISE INTERACTION

A. Derivation of the main result

In this section, we calculate the reduced density matrix of
the system S at any time t and deduce from it the witness
of non-Markovianity following [36]. The time evolution op-
erator of the global system associated with Eq. (1), U (t) =
e−i(HS+HE+HSE )t , acts on the computational basis states as

U (t)|sσ 〉 = e−i[HS (s)+HSE (s,σ )+HE (σ )]t |sσ 〉, (8)

where

HS (s) = −
p∑

i=1

p∑
j=1

Jij sisj +
p∑

i=1

hisi, (9)

HE (σ ) = −
N∑

i=p+1

N∑
j=p+1

Jijσiσj +
N∑

i=p+1

hiσi, (10)

HSE(s,σ ) = −2
p∑

i=1

N∑
j=p+1

Jij siσj (11)

are the corresponding scalar Hamiltonians introduced in cor-
respondence to Eqs. (4)–(6) and contain all the physical
description of the dynamics.

We consider a density matrix of the global system that is
initially a product state with respect to the bipartition S + E ,

ρS+E (0) = ρS (0) ⊗ ρE (0). (12)

In particular, if the initial state of the whole chain is separable it
may not stay so during the dynamics. It will stay separable only
for some prescribed choices of the initial density matrix of both
the system and its environment. This important point about
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possible creation of entanglement during the time evolution,
already present within our simple model, will be discussed in
more detail in Sec. IV below. The reduced density matrix of S
at any time t is given by

ρS (t) = tr E [ρS+E (t)], with ρS+E (t) = e−iH tρS+E (0) eiHt ,

(13)
where tr E denotes a partial trace over the environment degrees
of freedom. This expression can be expanded as

ρS (t) =
∑

σ

〈σ |ρS+E (t)|σ 〉

=
S∑

σp+1=−S

S∑
σp+2=−S

· · ·
S∑

σN=−S

〈σ |ρS+E (t)|σ 〉. (14)

Expanding the initial state of the environment in the computa-
tional basis as

ρE (0) =
∑
σ ′,σ ′′

aσ ′,σ ′′ |σ ′〉〈σ ′′|, (15)

the evolved reduced density matrix follows from Eqs. (8), (13),
and (14)

〈s|ρS (t)|s′〉 = eit[HS (s′)−HS (s)]〈s|ρS (0)|s′〉As,s′ (t), (16)

with

As,s′ (t) =
∑

σ

aσ ,σ eit[HSE (s′,σ )−HSE (s,σ )]. (17)

In Eq. (17), the sum runs over the diagonal elements of the
expansion (15), which comes from the fact that the Hamiltonian
of the environment is diagonal in the computational basis.
Therefore the reduced density matrix of the system S only
depends on the initial populations of the environment in the
computational basis. Equations (16) and (17) show that the
populations of the system are conserved during the dynamics
as, for s = s′, we have As,s(t) = 1 for all t . This means
that the dynamics of the system is purely dephasing. Using
the definition (11) of the interaction Hamiltonian, Eq. (17)
becomes

As,s′ (t) =
∑

σ

aσ ,σ exp

⎡
⎣2it

⎛
⎝ N∑

j=p+1

σj

p∑
i=1

Jij (si − s ′
i)

⎞
⎠

⎤
⎦.

(18)

The next step consists of writing the Bloch vector parametriz-
ing the density matrix (16) in order to compute the determinant
of the time evolution operator for the reduced density matrix.
This operator is represented by a matrix MS (t) acting on the
Bloch vector, and its determinant is the volume of accessible
states. Its exact expression and the calculation of its determi-
nant is a bit lengthy and can be found in the Appendix. One
eventually gets the closed formula

det MS (t) =
∏
s,s′

As,s′ (t), (19)

where the product over s is meant to browse all the eigenstates
of the Hamiltonian (9), i.e., all the (2S + 1)p values of the
coordinates of s with si = −S, . . . ,S, and the same for s′.
We find that there is no dependence on the external field.

Equation (19) is one of the main results of our paper. Following
[36], the dynamics of S defined by Eq. (13) will be non-
Markovian whenever

d

dt
det MS (t) > 0. (20)

This result leads to several remarks. First, Eqs. (18) and
(19) show that the couplings between any two spins within
the system S (or the environment E) do not influence the
non-Markovianity of S . Instead, non-Markovianity is a feature
that only stems from the couplings between S and E . Second,
when the environment is in a computational basis state ρE =
|σ ′〉〈σ ′|, the determinant simplifies to det MS (t) = 1 for all
times, and the dynamics is Markovian. Last, let us emphasize
that the result (19) is very general as it is valid for any
pairwise interaction strengths Jij and in particular, for random
interactions or for spin glasses [40].

B. Application to spin-1/2 chains

Let us exemplify Eq. (19) in the case of N spin-1/2. For the
sake of simplicity, we consider the environment initially in the
maximally mixed state

ρE (0) = 1E
2N−p

. (21)

Inserting Eq. (21) into Eq. (18), and performing the sum over
the environment states by descending recursion, we obtain

As,s′ (t) =
N∏

j=p+1

cos

[(
p∑

i=1

Jij (si − s ′
i)

)
t

]
(22)

with si,s
′
i ∈ {−1/2,1/2}. We will use this result to determine

when one-dimensional spin chains with periodic boundary
conditions display non-Markovianity. We are more particularly
interested in studying how the range of the interaction can
affect the Markovian character of the dynamics of the system
S . We will start by investigating the most common case of
nearest-neighbor interaction. Then we will study the formal
case of infinite range where all the spins of the chain interact
with each other. Last, we consider a model with power-law
range, which interpolates between those two situations.

1. Ising model with nearest-neighbor interaction

We consider now a spin chain where each spin interacts
only with its two nearest neighbors (nn). When comparing
with the general form (1), this amounts to taking Jij = 0
for i = j and (|i − j | mod N ) > 2, and Jij = J (J > 0) for
(|i − j | mod N ) = 1. In this case, Eq. (22) yields

As,s′ (t) = cos[J t(sp − s ′
p)] cos[J t(s1 − s ′

1)], (23)

where it was assumed that the environment contains more than
one spin (N > p + 1). This explicit expression allows us to
evaluate the determinant of the time evolution operator MS (t)
of the Bloch vector given by Eq. (19),

det MS,nn(t) = cos22p

(J t), N − p � 1. (24)

This result indicates that the dynamics of the system is always
non-Markovian following the criterion (20), as the derivative
of this expression always reaches positive values. Interestingly
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Eq. (24) depends on neither the sign of the interaction nor the
size of the bath. Therefore the system remains non-Markovian
in the thermodynamic limit of infinitely large environment
(N → ∞). Another choice of the thermodynamic limit can
be taken by choosing a system size which is a finite fraction of
the whole chain: p = rN . From Eq. (24) it can be immediately
seen that the determinant is zero almost everywhere [41] so the
dynamics becomes Markovian in this limit.

2. Infinite-range Ising model

In this section, all spins are assumed to be coupled with
each other with the same interaction strength, i.e., Jij = J/N

(J > 0) for i 
= j and zero otherwise. In particular, we recover
for p = 1 the case of a single spin coupled uniformly to
an environment of spins: this is the celebrated central spin
model, which has been extensively studied before, see, e.g.,
[25,26,42]. Note that the Hamiltonian (4) of the system S
depends on the size of the environment through the interaction
constant Jij = J/N . This convention is particularly relevant
in order to consider the thermodynamic limit as in this case the
interaction part of the Hamiltonian follows the same scaling
when N → ∞ as the external field part. Evaluating Eq. (22)
and inserting the result into Eq. (19) yields

det MS,∞(t) =
∏
s,s′

cosN−p

[
J t

N

p∑
i=1

(si − s ′
i)

]
. (25)

This expression can be further simplified using a simple
combinatorial argument. When varying the spin variables si ,
each of them being ±1/2, the sum of them is

p∑
i=1

si = p − 2k

2
,

(
p

k

)
times, 0 � k � p. (26)

The determinant allowing us to estimate the non-Markovianity
of the dynamics is then given by

det MS,∞(t) =
p∏

j=0

p∏
k=0

[
cos

(
J t

N
(j − k)

)](N−p)(p

k)(
p

j)
. (27)

In this case again, the witness of non-Markovianity does not
depend on the sign of the interaction. We shall now consider
two thermodynamic limits: when the system size is fixed and
the environment size goes to infinity, and when the system S
consists of a finite fraction of the whole system S + E , i.e.,
p = rN , and N goes to infinity.

The first thermodynamic limit is almost trivial. The product
(27) contains a finite number of factors. One can use for each
factor the Taylor expansion

cos

(
J t

N
(j − k)

)N−p

�
(

1 − (J t)2(j − k)2

2N2

)N−p

,

to see that each of them will go to 1 in the limit N → ∞.
Eventually one gets

det MS,∞(t) = 1. (28)

Following the criterion (20) this means that the system’s
dynamics is Markovian in this thermodynamic limit. Another
way to understand this result is that, in this limit, all the
coefficients defined in Eq. (22) become As,s′ (t) = 1 so that

the system’s dynamics (16) is the same as if it was isolated
hence becomes Markovian.

The second thermodynamic limit, which consists of p =
rN , i.e., both the system and its environment have a infinitely
growing size, requires a bit more care. First, counting each
index pair once and doing the change of variable q ≡ k − j ,
Eq. (27) can be rewritten

det MS,∞(t) =
⎡
⎣ rN∏

q=1

cos2

(
J tq

N

)∑rN
k=q ( rN

k
)( rN

k−q
)
⎤
⎦

N(1−r)

. (29)

This expression is convenient to see that det MS,∞(t) is a
periodic function of t of period 2πN/J . It reaches the value
1 when t is an integer multiple of that period. It is enough
to restrict ourselves to the behavior during one period. For
0 < t < 2πN/J at least one factor is smaller than unity. As
it is raised to a power growing with N , it is enough to make
the whole product vanish to 0. This can be more precisely
written when t is such that qJ t/N is not a multiple of π for
any q between 1 and rN . The exponent of each factor can be
simplified by using the Chu-Vandermonde identity

rN∑
k=q

(
rN

k

)(
rN

k − q

)
=

rN−q∑
k=0

(
rN

k

)(
rN

k + q

)
=

(
2rN

rN − q

)
.

(30)

Each factor of the product (29) is Taylor expanded so that the
whole product becomes

det MS,∞(t) �
⎡
⎣ rN∏

q=1

(
1 − 1

2

(
J tq

N

)2
)( 2rN

rN−q)
⎤
⎦

2N(1−r)

,

which can be rewritten

det MS,∞(t) � exp

⎡
⎣−1 − r

N
(J t)2

rN∑
q=1

(
2rN

rN − q

)
q2

⎤
⎦.

(31)

As the sum grows at least exponentially when increasing N ,
the determinant converges to 0 for all times, which means that
the dynamics is Markovian in this limit.

3. Power-law-range Ising model

Here a slightly more general model of the spin system is
investigated, which includes as limiting cases both the previous
examples. Consider a one-dimensional chain, where the inter-
action between any two spins depends on the distance between
those spins through a power law (PL). More specifically,
the pairwise correlation matrix is chosen as Jij = JN (α)/rα

ij

(JN (α) > 0) for i 
= j and zero otherwise, where α is the
parameter ruling the range of the interaction, and rij denotes the
distance between the ith and j th sites. The interaction strength
JN (α) depends both on N and α. This model is convenient
to interpolate between the more common nearest-neighbor
interaction (α → ∞) and the infinite-range interaction (α →
0). Note that this model for α = 3 is similar to the RKKY
model [43–45], and has been previously intensively studied in
a spin glass perspective, see, e.g., [46,47]. Using Eqs. (22) and
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(19), the witness for non-Markovianity for the dynamics of S
is obtained by checking the variations of

det MS,PL(t) =
∏
s,s′

N∏
j=p+1

cos

[
JN (α)t

(
p∑

i=1

si − s ′
i

rα
ij

)]
.

(32)

Again it is customary to ask whether non-Markovianity
survives at the thermodynamic limit of a large size. There can
be two options for the choice of the interaction constant JN (α):
it can be independent of N as for optical atom systems [48–50],
or it can scale with N to have a unit mean-field temperature,
see, e.g., [51]. In both cases we can argue qualitatively the
same behavior for the non-Markovian character dynamics of
the system. Similar to the previous case of the infinite-range
system, the non-Markovianity witness is a product of periodic
functions. The crucial difference is that all the factors display
now incommensurable frequencies. Therefore we predict that,
in the large N limit, the whole product should vanish, which
is supported by our numerics. In other words the product (32),
which is a special case of Eq. (22), contains an infinite number
of factors. Each of them is raised to a power growing with N

so that they become nonzero only for a discrete set of times in
the thermodynamic limit. This set is different for each factor
so that the whole product vanishes for all time. The situation is
different as soon as the support of the interaction is finite. This
means that only a finite number of Jij in Eq. (22) are nonzero.
The product now contains a finite number of oscillating factors,
hence can generically have piecewise a positive derivative. This
is the reason why we conjecture that the dynamics is Markovian
at all times whenever the support of the interaction between
the system and its environment is infinite, and can become
non-Markovian in the case of finitely supported interactions.

C. Influence of dimension and temperature

1. Higher dimensional spin lattice

It is worth emphasizing that our results in Eqs. (16), (18),
and (19) can be applied to other partitions. This is particularly
relevant for higher dimensional models. For illustration we will
investigate the case of spins-1/2 located on a two-dimensional
square lattice interacting via a nearest-neighbor interaction,
and with periodic boundary conditions. To use our general
results, we consider a lattice S + E made of N = M2 sites.
The systems S here consists of the p = q2 spins in the square
sublattice in the upper left corner. Each spin sz

ix,iy is now labeled
with two spatial indices (ix,iy), which locates its position
along both directions of the lattice. These two indices can
be combined in a single index i ranging from 1 to N = M2

using i = (ix − 1)M + (iy − 1) + 1. To facilitate the physical
interpretation, we will use the two-dimensional indices (ix,iy)
in the following discussion. The nearest-neighbor interac-
tion corresponds to the pairwise correlation matrix given by
J(ix,iy),(jx,jy) = J (J > 0) for (jx,jy) = (ix,iy + 1), (ix,iy −
1), (ix + 1,iy), and (ix − 1,iy) and J(ix,iy),(jx,jy) = 0 other-
wise. To ensure periodic boundary conditions, an index taking
the value 0 (M + 1) corresponds to M (1). The initial state of
the environment is, in analogy with the one-dimensional case

in Eq. (21),

ρE (0) = 1E
2M2−q2 . (33)

Inserting Eq. (33) into Eq. (18) and using the definition of the
pairwise correlation matrix given previously leads to

As,s′ (t) =
q∏

i=1

cos[J t(s1,i − s ′
1,i)]

q∏
i=1

cos[J t(sq,i − s ′
q,i)]

×
q∏

i=1

cos[J t(si,1 − s ′
i,1)]

q∏
i=1

cos[J t(si,q − s ′
i,q)].

(34)

The first two products in Eq. (34) correspond respectively
to the coupling of the first and last rows of spins in S with
the environment. Similarly, the last two products in Eq. (34)
correspond respectively to the coupling of the first and last
columns of spins in S with the environment. Therefore, this
shows that only the coupling at the boundary between the
system and the environment contributes to non-Markovianity.
This result is similar to the case of the one-dimensional
chains with nearest-neighbor interaction previously discussed,
see Eq. (23). The last step consists of computing the non-
Markovianity witness using Eq. (19). The determinant consists
of 22q2

factors in two dimensions. There are exactly 22(q2−1)

factors for which sz
ix,iy and s ′ z

ix,iy are fixed for a given location
(ix,iy). One needs to distinguish between 4(q − 2) edge sites
located at (ix,iy) ∈ {(1,i),(i,q),(q,i),(i,1)} for 2 � i � q − 1
and 4 corner sites located at (1,1), (1,q), (q,q), and (q,1).
Following Eq. (34) the contribution of a given edge site is

⎡
⎣ ∏

sz
ix,iy=±1/2

∏
s ′ z
ix,iy=±1/2

cos
[
J t

(
sz
ix,iy − s ′ z

ix,iy

)]⎤⎦
22q2−2

,

whereas the contribution of any of the four corner sites is

⎡
⎣ ∏

sz
ix,iy=±1/2

∏
s ′ z
ix,iy=±1/2

cos2
[
J t

(
sz
ix,iy − s ′ z

ix,iy

)]⎤⎦
22q2−2

,

Multiplying all those contributions leads to the exact formula
for the non-Markovianity witness for a two-dimensional square
lattice

det MS,nn(t) = [cos (J t)]q22q2+1
, M − q � 1. (35)

Again it is worth stressing that this formula proves that the
dynamics of the sublattice will remain non-Markovian for
an arbitrary size of the surrounding environment. Conversely,
when the size of the system is taken as a finite fraction size of
its environment (q = rM), its dynamics becomes Markovian.

2. Finite-temperature state for the environment

It is worth noticing that our results can be generalized to
account for the effect of the temperature. We will illustrate
this for the case of the one-dimensional spin-1/2 chain with
nearest-neighbor interaction, and a homogeneous external
field.
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FIG. 1. Non-Markovianity witness (20) of a system of two
spin-1/2 with an environment made of 8 spin-1/2 as a function
of time. Here, S + E is a chain of N = 10 spins-1/2 with nearest-
neighbor interactions, periodic boundary conditions, and h = J . The
environment is initially in a thermal state [Eq. (36)] with β = 0
(black), β = 1/J (blue dashed), β = 3/J (green dotted), and β → ∞
(red dot-dashed).

Start from an initial density matrix for the environment at a
given finite temperature T :

ρE (0) =
∑

σ

e−βHE (σ )

Z
|σ 〉〈σ | , (36)

where β = 1/kBT is the inverse temperature. The Hamiltonian
of the environment is, see Eq. (10),

HE (σ ) = −J

N−1∑
i=p+1

σiσi+1 + h

N∑
i=p+1

σi. (37)

Note that this subchain, defining the environment, obeys open
boundary conditions. Last the partition function Z in Eq. (36)
is given by

Z ≡ Z(T ,h) =
∑

σ

e−βHE (σ ). (38)

As detailed in Sec. III A the way to assess the non-Markovian
character of the dynamics will be achieved in two steps. First
the coefficients As,s′ (t) as defined in Eq. (17) are computed.
Then the determinant (19) and its first derivative are evaluated
numerically. This is illustrated in Fig. 1, which shows the
non-Markovianity witness for different temperatures of the
environment. Notice that, similar to Eq. (24), the determinant
is a periodic function of the time t with period 2π/J . Hence
it is plotted only over one period. It can be seen that the dynam-
ics is non-Markovian for any nonvanishing temperature. Note
that for T = 0, the initial density matrix of the environment is
|σ 0〉〈σ 0| in the computational basis, where |σ 0〉 is the ground
state of the Hamiltonian. As mentioned earlier after Eq. (20),
this leads trivially to a Markovian dynamics for the system.

D. Comparison with other non-Markovianity measures
for systems of p = 1 spin

Our results can be used to compare different measures of
non-Markovianity [52]. For illustration, let us consider here the

special case of a system consisting of one spin-1/2 (p = 1).
Using Eqs. (19) and (22) which are valid for the environment
initially in the maximally mixed state, the determinant of the
evolution operator is

det MS (t) = A(t)2, (39)

with

A(t) =
N∏

j=2

cos(J1j t), (40)

such that, following the criterion (20), the dynamics is non-
Markovian whenever

A(t)A′(t) > 0. (41)

To evaluate other witnesses of non-Markovianity, we write
explicitly the reduced density matrix of S at any time t > 0.
Equation (16) yields

ρS (t) =
(

ρ11 ρ12A(t) e−ih1t

ρ21A(t) eih1t ρ22

)
, (42)

where ρij (i,j = 1,2) are the coefficients of the initial density
matrix of S at t = 0. One can get the corresponding Kraus
representation (see, e.g., [53]) and deduce from it the master
equation for the reduced density matrix [26,54]

d

dt
ρS (t) = −i

[
H eff

S ,ρS (t)
] + �z(t)[σ

zρS (t)σ z − ρS (t)],

(43)

with the effective Hamiltonian H eff
S = h1σ

z/2 where σ z stands
for the usual Pauli matrix. This master equation models a pure
dephasing channel with a time-dependent rate

�z(t) = − A′(t)
2A(t)

. (44)

The master equation (43), of the GSKL form, can be used to
evaluate the divisibility criterion, as it can be expressed as a sign
constraint on the rate in the master equation. The RHP measure
detects a non-Markovian behavior when the rate in the master
equation becomes negative [16]. Due to the explicit expression
(44) the dynamics will be non-Markovian if −A′(t)/A(t) < 0,
which trivially agrees with our witness (41). Knowing the exact
expression (42) of ρS (t) enables one also to compute the BLP
distance measure of non-Markovianity [35]. The trace distance
between two arbitrary states ρa

0 and ρb
0 is given by

D(ρa(t),ρb(t)) = tr (
√

[ρa(t) − ρb(t)][ρa(t) − ρb(t)]†)

=
√(

ρa
11 − ρb

11

)2 + A(t)2
∣∣ρa

12 − ρb
12

∣∣2
. (45)

The system is said to be non-Markovian according to the BLP
measure whenever

d

dt
D(ρa(t),ρb(t)) =

∣∣ρa
12 − ρb

12

∣∣2
A(t)A′(t)√(

ρa
11 − ρb

11

)2 + A(t)2
∣∣ρa

12 − ρb
12

∣∣2

(46)
is strictly positive. As here, 0 � A(t)2 � 1, and for any density
operator of a two-level system, we have |ρ12| � ρ11 � 1 and
|ρ12| � 1/2, see, e.g., [55]; the maximum of this expression is
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reached for ρa
11 = ρb

11 and ρa
12 = −ρb

12 = 1/2. This condition
for non-Markovianity is satisfied whenever A(t)A′(t) > 0,
which agrees again with Eq. (41).

IV. ENTANGLEMENT AND NON-MARKOVIANITY

The aim of this section is to investigate the relation between
the non-Markovianity of the system S and the generation of
entanglement with the environment E . Let us recall that we
consider an initial state without system-environment entangle-
ment of the form (12).

First, let us show that the dynamics of S can display
non-Markovianity, according to the witness (20), without
generating any entanglement with the environment. For this
purpose, we consider an initial separable state of the system
and the environment as in Eq. (12), the initial density matrix of
the latter being a classical mixture of the computational basis
state

ρE (0) =
∑
σ ′

aσ ′,σ ′ |σ ′〉〈σ ′|. (47)

According to our previous analysis, the system’s non-
Markovianity is given in this case by Eqs. (19) and (20).
Writing the initial state of S as

ρS (0) =
∑
s,s′

rs,s′ |s〉〈s′|, (48)

and using Eqs. (8), (9), (10), and (11), we obtain

ρS+E (t) =
∑

σ

aσ ,σ (ρS|σ (t) ⊗ |σ 〉〈σ |) (49)

with the conditional state of the system

ρS|σ (t) =
∑
s,s′

eit[HS (s′)−HS (s)+HSE (s′,σ )−HSE (s,σ )]rs,s′ |s〉〈s′|.

(50)

Therefore, we see that the global system S + E stays in a
separable state at all times as shown by Eq. (49), independently
of the non-Markovianity of S . Moreover, the state (49) has,
by definition, zero discord with respect to the environment
[56,57]. Note that, similarly, if the systemS starts in a classical
mixture of computational basis states, the global systemS + E
stays in a separable state at all times independently of the
initial state of the environment. This result is in agreement with
previous works on qubit-environment entanglement generation
during pure dephasing dynamics [58,59].

Let us now show that the system and its environment can
get entangled during the dynamics, when the initial state of the
environment ρE (0) has nonvanishing coherences aσ ′,σ ′′ in the
computational basis. As an illustration, we consider a chain
of N = 10 spin-1/2 with infinite-range or nearest-neighbor
interactions and various sizes of the system S . The presence of
entanglement between S and E is assessed using the negativity

N (ρS+E (t)) =
∥∥ρ

TS
S+E (t)

∥∥
1 − 1

2
, (51)

where ||ρ||1 = Tr(
√

ρρ†) and ρ
TS
S+E (t) is the partial transpose

of ρS+E (t) with respect to S . The Peres-Horodecki negativity
criterion [60,61] states that whenever the negativity is nonzero,
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E(
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)
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FIG. 2. Negativity N between the system S made of p = 3
spin-1/2 and the environment E made of 7 spin-1/2, as a function
of time for (a) infinite-range interactions, and (b) nearest-neighbor
interactions with periodic boundary conditions and hi = 0 for all
i = 1, . . . ,10. The system S is initially in the pure state |ψS (0)〉 =∑

s |s〉/2p/2. The black solid curves correspond to the environment
initially in the state |ψE (0)〉 = ∑

σ |σ 〉/27/2, and the red dashed curves
to the environment initially in a classical mixture of computational
basis states [Eq. (47)].

the bipartite system S + E is entangled. This criterion is
necessary and sufficient in the case of two spin-1/2 and two
spin-1. For higher dimensional systems, all separable states
have zero negativity but there also exist entangled states with
zero negativity. Figure 2 illustrates that N (ρS+E (t)) oscillates
as a function of time for a system S made of p = 3 spins and
a given initial state (12). Numerical simulations showed that
whenever the coherences of the initial density matrix of the en-
vironment are nonvanishing, the dynamics typically generates
entanglement between the system and its environment.

We have shown in Sec. III A that for any given separable
global state of the form (12), the non-Markovianity of the
system is independent of the coherences of the initial density
matrix of the environment. The reason is that the reduced
dynamics of S given by Eqs. (16) and (18) is independent
of the off-diagonal elements of ρE (0). Yet, having nonzero
coherences will lead to the generation of entanglement between
the system and its environment, see Fig. 2, whereas the
initial density matrix of E with the same populations and no
coherence will lead to a separable dynamics, see Eq. (49). As a
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FIG. 3. NegativityN between two spin-1/2 that define the system
S as a function of time when S + E is a chain of N spin-1/2 with
nearest-neighbor interactions and periodic boundary conditions and
hi = 0 for all i = 1, . . . ,N . This result is valid for any size of the
environment as soon as N � 4. The environment is initially in the
maximally mixed state [Eq. (21)]. The black curve corresponds to
the system S initially in the separable pure state (| − 1

2 〉 + | 1
2 〉) ⊗

(| − 1
2 〉 + | 1

2 〉)/2 while the red dashed curve corresponds toS initially

in the entangled pure state (| − 1
2 〉 ⊗ | − 1

2 〉 + | 1
2 〉 ⊗ | 1

2 〉)/√2.

consequence, we claim that for our model, the non-
Markovianity is independent of the generation of entanglement
between the system and its environment.

Last, although our model is sufficiently simple to allow
analytical calculations, it is interesting to note that spins within
the systemS undergoing non-Markovian dynamics can display
nontrivial entanglement dynamics as illustrated in Fig. 3. In
particular, when ρS+E (0) is a fully separable N -spin state, we
observe that the system can display sudden death and revival of
entanglement [8], whereas the environment stays at all times
in a separable state.

V. CONCLUSION

In this paper, we investigated analytically the quantum
non-Markovianity of a spin ensemble (S) undergoing a pure
dephasing dynamics arising from the unitary evolution of a
larger spin ensemble (S + E) governed by the Hamiltonian (1).
One of our main results is given by Eqs. (18)–(19) that apply
to spin ensembles of arbitrary size and spin quantum number
and allows us to determine analytically whether the dynamics
is Markovian or not. For a spin-1/2 ensemble S + E of finite
size, we found out that, when the environment E is initially
in the maximally mixed state, the dynamics of S is always
non-Markovian. We also obtained analytical results in the ther-
modynamic limit for one-dimensional spin chains. In the limit
of infinite size of the environment with fixed size of the system,
the quantum dynamics of the system stays non-Markovian for
nearest-neighbor interactions whereas it becomes Markovian
for infinite-range interactions, see Eq. (24) vs Eq. (28). In
the limit of infinite size of the environment with the size
of the system being a fixed fraction of the ensemble S + E ,
the quantum dynamics of the system becomes Markovian
both for nearest-neighbor and infinite-range interactions. In
these limits, we found out that Markovianity can appear when

(i) the non-Markovian episodes are separated by a period
whose value goes to infinity (cases studied with infinite-range
interaction), and (ii) the non-Markovian episodes occur for a
duration shrinking to zero (cases studied with infinite-range
or nearest-neighbor interaction with a system size being a
fixed fraction of N ). We also applied our results to a two-
dimensional square spin lattice. We also showed that, for our
system, non-Markovianity does not stem from the genera-
tion of entanglement with the environment. Although these
observations are specific to our system, they raise the more
general question of the relationship between non-Markovianity
and system-environment correlations. Natural extensions of
this work include the study of dynamics more general than
purely dephasing or nonintegrable dynamics [62,63], e.g., in
the presence of transverse field. Experimental realizations of
the system studied in this work could be realized with cold
atoms in optical lattices, see, e.g., [64].
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APPENDIX: DETERMINANT OF THE TIME EVOLUTION
OPERATOR FOR REDUCED DYNAMICS

We start by explaining how to write the time evolution
operator of the Bloch vector when the coefficients of the density
matrix are explicitly known. It will be illustrated for the system
considered in the main part of the paper: p spin-S interacting
via a pairwise interaction, see, e.g., Eq. (4). In particular the
dimension of the Hilbert space of the system under considera-
tion is D = (2S + 1)p. The Bloch parametrization for a density
matrix ρ of size D × D (see, e.g., [39]) consists of rearranging
the D2 entries of the density matrix into a vector, called the
Bloch vector. The coordinates rj of the Bloch vector are called
the Bloch parameters. They are divided into two sets: one set
containing D(D − 1) real Bloch coordinates to parametrize the
off-diagonal elements ρij (i 
= j ) of the density matrix. They
can be grouped in pairs, for the real and the imaginary part,
respectively. More precisely one can define

r1 = Re (ρ12), r2 = Im (ρ12),

r3 = Re (ρ13), r4 = Im (ρ13),

...
...

r2(D−1)+1 = Re (ρ21), r2(D−1)+2 = Im (ρ21),

r2(D−1)+3 = Re (ρ23), r2(D−1)+4 = Im (ρ23),

...
...

rD(D−1)−1 = Re (ρD−1 D), rD(D−1) = Im (ρD−1 D).

The second set of the D2 Bloch coordinates are formed by D

linear combinations of the diagonal elements of the matrix,

rD(D−1)+l =
√

2

l(l + 1)

(
l∑

k=1

ρkk − lρl+1 l+1

)
,
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for 1 � l � D − 1. The last remaining coefficient is chosen
by convention to be

rD2 =
D∑

k=1

ρkk,

so that it is unity for a density matrix. If the D2-dimensional
Bloch vector corresponding to the matrix at time t is denoted by
r(t), one can define its time evolution operator MS (t) through

r(t) = MS (t) r(0). (A1)

It can be shown that the operator MS (t) is linear, hence can be
represented by a D2 × D2 matrix.

The explicit expression (16) allows a direct evaluation of the
coefficients of the matrix representing MS (t). As the diagonal
elements of the density matrix are unchanged, the evolution
operator boils down to the identity in the subspace spanned
by the second set of Bloch coordinates, as defined above. For
the first set, it can be seen directly from Eq. (16) that each
pair of Bloch coordinates (r2j−1,r2j ) for 1 � j � D(D − 1)/2
follow a rotation, expressed by the time-dependent phase, and

a dilatation expressed by the factor As,s′ (t)(
r2j−1(t)
r2j (t)

)
= Oj

(
r2j−1(0)
r2j (0)

)
, (A2)

with

Oj =
(

As,s′ (t) cos θs,s′ t As,s′ (t) sin θs,s′ t

−As,s′ (t) sin θs,s′ t As,s′ (t) cos θs,s′ t

)
, (A3)

where the notation θs,s′ = HS (s′) − HS (s) was introduced for
the sake of brevity. In other words the matrix MS (t) in Eq. (A1)
can be written in a block structure for the first set of Bloch
coordinates:

MS (t) =

⎛
⎜⎜⎝
O1 0 . . . 0
0 O2 . . . 0
...

...
. . .

...
0 0 . . . OD(D−1)/2

⎞
⎟⎟⎠, (A4)

and its determinant is directly given by

det MS (t) =
D(D−1)/2∏

j=1

det Oj =
∏
s,s′

As,s′ (t), (A5)

which is exactly Eq. (19).
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