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Introduction

1 Introduction

1.1 General Motivation and Theoretical Background

Classical finance theory suggest that investors consider all information available within
their investment decision and trade assets rationally (Case & Shiller, 1990). This notion is
based on the efficient market hypothesis as proposed by Fama (1970). Consequently,
market efficiency would imply asset pricing based on economic fundamentals and
eliminate disequilibria in a timely manner. However, efficient markets are often only a
theoretical framework. The reality looks different, since inefficiency in markets can occur
due to several reasons. Behavioral finance demonstrates that investors are subject to

irrational behavior, resulting in deviations from fundamental values and asset mispricing.’

In the real estate sector, research shows that participants in real estate markets base their
investment decisions on observable fundamental characteristics (Scott, 1990). A broad
range of research states macro- and microeconomic conditions to play an important role
in determining real estate markets, although behavioral aspects of market participants
have shown to result in deviations from economic fundamentals (Clayton, 1998). Farlow
(2004) argues that over-optimism is a major aspect of real estate markets and highly affects
decision-making. Special characteristics of the underlying asset intensify mispricing in the
real estate sector. Real estate markets have shown to be informationally inefficient and
highly non-transparent. Furthermore, deviations from fundamental values are even more
pronounced as real estate as an asset class is segmented and short selling is limited
(Beracha & Skiba, 2011). As Hayunga and Lung (2011) state, real estate markets are

therefore a well suited research subject for mispricing behavior.

Asset mispricing is often associated with market timing, as the link between pricing
deviations and trading is intuitive. Market participants possess different beliefs of the
fundamental value. As information changes over time, the deviation between different
estimates of the intrinsic value generates trade since an owner would sell at the time when
an overconfident buyer possesses higher expectation of future cash flows (Scheinkman &
Xiong, 2003; Cao & Ou-Yang, 2008). Hence, the timing of investment decisions becomes

an essential factor in real estate markets (Ooi et al., 2010; Hochberg & Muhlhofer, 2011).2

' See e.g. Sharma and Kumar (2019) for an extensive review on market efficiency and behavioural finance. See
e.g. Palan (2013) for an overview of factors that influence mispricing behavior.

2 Several explanations have been proposed to explain asset mispricing in real estate markets. See e.g. Hayunga
and Lung (2011) for an investigation on inflation-illusion hypothesis and overconfidence theory.
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Market timing per se is a well-studied phenomenon in capital markets, since the market'’s
perception of the firm’s value is available on a daily basis due to global stock trading.
Summers (1986, p. 600) early states that market values can show high deviations from
rational expectations of future cash flows and consequently form their intrinsic valuation.
He argues that “it does suggest caution in treating stock prices or their changes as rational
reflection of fundamental values”. In the real estate sector, Barkham and Ward (1999) e.q.
found persisting discounts of market prices to net asset values (NAV). An outperformance
from investments in real estate corporations is found to be the result of specific investors’
abilities and private beliefs rather than rational investment strategies (Cici et al., 2011).
Timing behavior is also present for financing decisions (Graham & Harvey, 2001). Baker
and Waurgler (2002) state that the capital structure of a company is the cumulative
outcome of past attempts to time the equity market. Especially real estate investment
trusts (REITs), which regularly rely on the access to capital markets, are taking advantage
of overoptimistic expectations by timing the market (Boudry et al., 2010). Consequently,
deviations from economic fundamentals question on the one hand the efficiency of
financial markets including real estate securities, and on the other hand enable market
participants to exploit market disequilibria by optimally timing investment or financing

activities in capital markets.

As in indirect markets, literature shows that the link to market fundamentals is as
pronounced in direct real estate markets (Zhou, 2010; Yunus, 2012). Although economic
fundamentals are of high importance in the determination of real estate prices and rents,
they are, however, only able to explain their changes over time in a limited way (Quigley,
1999; Farlow, 2013). More than this, Clayton (1998, p. 41) applies measures for mispricing
and deviations from intrinsic values to “provides strong evidence against market efficiency
[in direct real estate markets]”. The inelasticity of supply (Glaeser et al., 2008), financing
aspects (Hunter et al., 2005) as well as the heterogeneous and local nature of real estate
properties and the effect of bargaining power (Harding et al., 2003) further contribute to
disequilibria in direct real estate markets. The limited short-selling ability in periods of over-
and undervaluation as well as the fact that market fundamentals affect different types of
real estate investors to varying extents likely result in persisting mispricing in real estate

asset markets (Ling et al., 2014; Ke & Sieracki, 2019).

In contrast to stock markets, the markets estimation of the commodities’ value is not
directly observable on a frequent or even daily basis. Hence, the value of a property is
derived from formal and informal appraisals (Redding, 2006). Appraisal-based estimations
typically contain time lags (Fisher et al., 1999) and are only an imprecise measure for true

market values (Cannon & Cole, 2011). Because “precise, timely estimations of property

2
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values are critical for real estate investors” (Kok et al., 2017, p. 203), property markets face
difficulties to assess asset mispricing and consequently identify opportunities for market-

timing behavior.

Technological advances seek to remedy these shortcomings. On the one side, new sources
of information, based e.g. on Multiple Listing Systems (MLS), provide an innovative data
environment to identify mispricing in a timely manner (Kok et al., 2017; Pérez-Rave et al.,
2019). On the other side, ongoing improvements in computational power led the way to
the development of Artificial Intelligence (Al) and Machine Learning (ML) to contribute to
a methodological framework that enables further mispricing analysis in real estate (Zurada
etal., 2011). ML thereby provides a far-reaching toolset in research and practice (Hastie et
al., 2009). Given the high predictive performance of ML models and the fact that “one of
the main approaches to face [new data sources] is machine learning” (Pérez-Rave et al.,
2019, p. 5), modern regression techniques provide a suitable framework to precisely

identify mispricing in property markets.

Nevertheless, letting the machine ‘understand’ the relationships within the data impedes
the acceptance of modern approaches. Because the internal logic and consequently the
rationale behind the individual predictions is rather hidden (Mullainathan & Spiess, 2017),
the use of ML often lacks transparency and is criticized for its ‘black box’ character
(Carvalho et al., 2019). Because sole measures like predictive accuracy are an incomplete
description of most real-world tasks (Doshi-Velez & Kim, 2017), explaining the inner
working of a ML model is crucial to understand and validate how a certain decision is
achieved (Adadi & Berrada, 2018). It is, therefore, not surprising that these issues on the
interpretability of algorithmic decision-making are finding its way into international
legislation, with the European Union including a “right to explanation” in their General

Data Protection Regulation (Guidotti et al., 2018; Carvalho et al., 2019).

In this context, the thesis attempts to extend the literature on market timing in direct as
well as indirect real estate markets and aims to provide a practical framework for market
participants to identify asset mispricing in the real estate sector. Because both precise and
timely estimations as well as the rationale behind the modelling approach are of crucial
importance to assess mispricing and derive investment strategies, the dissertation
furthermore sheds light on emerging data sources and Machine Learning methods as well

as their interpretability.
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1.2 Course of Analysis and Research Questions

The following section provides an overview over the course of analysis. Although all three
main chapters, each representing one research paper, address the topic of mispricing and

market timing in real estate, they highlight distinct aspects of the area under investigation.

Paper 1 | Underpricing and Market Timing in SEOs of European REITs and REOCs

The central objective of Paper 1 is to set the theoretical framework of market timing based
on findings in the indirect real estate market. Due to the importance of raising capital, it
examines how managers time the equity market by offering equity when market values
are high and investors are overconfident. While a large strand of literature examine timing
behavior as such, the study goes even further in examining how market timing affects the
pricing of equity offerings. Its findings complement the literature on offer price discounts

in European markets and further shed light on the particularities of REITs.

Research Questions

e Do European property companies show price discounts at seasoned equity
offerings (SEOs) and therefore accept additional cost of raising capital? How do

real estate specific particularities affect the cost of raising capital?

e How do asset mispricing and market timing affect capital increases in real

estate? Do managers time the market and exploit favorable market conditions?

e How do property company managers benefit from lower cost of raising capital
within their market timing behavior? Do high market valuations and optimistic

investors result in lower offer price discounts at SEOs?

Paper 2 | Rental Pricing of Residential Market and Portfolio Data — A Hedonic

Machine Learning Approach

The second Paper transfers the theoretical framework and findings on timing behavior to
direct real estate markets. Using algorithmic modelling techniques and data from MLS, it
does not only highlight the predictive performance of several algorithm-driven hedonic
models but furthermore identifies mispricing in residential portfolios and enables a
conceptual framework to derive market timing strategies in terms of investment or
disinvestment decisions. The findings show that ML leads to more accurate predictions
than traditional models. In addition, they indicate that algorithmic models are able to

reveal a higher degree of mispricing in institutional portfolios. The application of ML
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therefore can be a valuable extent to current analysis to identify investment opportunities

more precisely and in a timely manner.

Research Questions

e Does the growing data availability from MLS provide a suitable framework for

the analysis of direct real estate in mainly opaque property markets?

e Are ML algorithms more accurate in predicting residential rents than traditional

models due its ability to capture complex pattern and deal with large datasets?

e (Can the applications of ML models to a portfolio of institutionally managed
apartments reveal new insights on asset pricing and provide well-founded

investment strategies?

Paper 3 | Peeking inside the Black Box: Interpretable Machine Learning and

Hedonic Rental Estimation

Paper 3 complements the previous findings in property markets and sheds light on the
interpretability of ML-based results. Because the inner working of ML models is rather
hidden, their predictive framework is often criticized as a black box. Using Interpretable
Machine Learning (IML) methods enables to peek inside the predictive behavior of
algorithmic models and improve trust in ML-based estimates. The findings reveal the
rationale behind the final prediction of complex models. Consequently, IML methods can
e.g. reveal the rationale behind the estimation of asset mispricing and consequently
highlight its reliability. The study provides valuable inferential insights in ML-based results
in residential markets while maintaining the remarkable predictive performance of ML that

was and still is a major driver for the widespread application of algorithmic models.

Research Questions

e How do algorithmic hedonic models come to its final rental prediction? Is the
rationale behind the decision-making behavior of ML models based on the

economic context of residential property markets?

e Do model-agnostic interpretation methods identify which property
characteristics are important for the ML model and how these characteristics

contribute to the final prediction?

e Can IML methods provide inferential insights on the dependencies the algorithm
has learned from the underlying data? Do model-agnostic reveal possibly hidden

relationships in residential real estate markets?
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1.3 Submissions and Conference Presentations

This section complements the previous descriptions with details regarding submission to

journals, publication status and conference presentations.

Paper 1| Underpricing and Market Timing in SEOs of European REITs and REOCs

Authors: Felix Lorenz
Submission to Journal: Journal of Property Investment & Finance
Current status: Accepted for publication (04.11.2019) and published in

Vol. 38 No. 3 (16.12.2019)
Conference Presentation:

This paper was presented at the 35th Annual Conference of the American Real Estate
Society (ARES) in Paradise Valley, US (2019) and the 26th Annual Conference of the
European Real Estate Society (ERES) in Cergy-Pontoise, France (2019).

Paper 2 | Rental Pricing of Residential Market and Portfolio Data — A Hedonic

Machine Learning Approach

Authors: Marcelo Cajias, Jonas Willwersch, Felix Lorenz,

Wolfgang Schaefers
Submission to Journal: Real Estate Finance
Current status: Accepted for publication (27.04.2021)
Conference Presentation:

This paper was presented at the 26™ Annual Conference of the European Real Estate
Society (ERES) in Cergy-Pontoise, France (2019), the 2™ Workshop on “Artificial
Intelligence and Finance” of the Center of Finance of the University of Regensburg held
online (2020), and the 37th Annual Conference of the American Real Estate Society
(ARES) held online (2021).

Furthermore, the paper is submitted to be presented at the 27" Annual Conference of
the European Real Estate Society (ERES) in Kaiserslautern, Germany (2021) and the
Annual Meeting of the “Verein fuer Socialpolitik” (VfS) in Regensburg, Germany (2021).
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Paper 3 | Peeking inside the Black Box: Interpretable Machine Learning and

Hedonic Rental Estimation

Authors: Felix Lorenz, Jonas Willwersch, Marcelo Cajias,

Franz Fuerst
Submission to Journal: Real Estate Economics
Current status: Submitted (21.04.2021) and currently under review
Conference Presentation:

The paper is submitted to be presented at the 27" Annual Conference of the European

Real Estate Society (ERES) in Kaiserslautern, Germany (2021).



Introduction

1.4 References

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable
artificial intelligence (XAl). IEEE Access, 6, 52138-52160.

Baker, M., & Wurgler, J. (2002). Market timing and capital structure. The Journal of
Finance, 57(1), 1-32.

Barkham, R., & Ward, C. (1999). Investor sentiment and noise traders: Discount to net
asset value in listed property companies in the UK. Journal of Real Estate Research,
18(2), 291-312.

Beracha, E., & Skiba, H. (2011). Momentum in Residential Real Estate. The Journal of
Real Estate Finance and Economics, 43(3), 299-320.

Boudry, W. 1., Kallberg, J. G., & Liu, C. H. (2010). An analysis of REIT security issuance
decisions. Real Estate Economics, 38(1), 91-120.

Cannon, S. E., & Cole, R. A. (2011). How accurate are commercial real estate
appraisals? Evidence from 25 years of NCREIF sales data. The Journal of Portfolio
Management, 37(5), 68-88.

Cao, H. H., & Ou-Yang, H. (2008). Differences of opinion of public information and
speculative trading in stocks and options. The Review of Financial Studies, 22(1), 299—
335.

Carvalho, D. V., Pereira, E. M., & Cardoso,J.S. (2019). Machine learning
interpretability: A survey on methods and metrics. Electronics, 8(8), 832.

Case, K. E., & Shiller, R. J. (1990). Forecasting prices and excess returns in the housing
market. Real Estate Economics, 18(3), 253-273.

Cici, G., Corgel, J., & Gibson, S. (2011). Can fund managers select outperforming REITs?
Examining fund holdings and trades. Real Estate Economics, 39(3), 455-486.

Clayton, J. (1998). Further evidence on real estate market efficiency. Journal of Real
Estate Research, 15(1), 41-57.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine
learning. Working Paper. ArXiv:1702.08608.

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work.
The Journal of Finance, 25(2), 383-417.

Farlow, A. (2004). The UK housing market: bubbles and buyers. Oriel College.

Farlow, A. (2013). Crash and beyond.: Causes and consequences of the global financial

crisis. Oxford University Press.



Introduction

Fisher, J. D., Miles, M. E., & Webb, R. B. (1999). How reliable are commercial
appraisals? Another look. Real Estate Finance, 16, 9-15.

Glaeser, E. L., Gyourko, J., & Saiz, A. (2008). Housing supply and housing bubbles.
Journal of Urban Economics, 64(2), 198-217.

Graham, J. R., & Harvey, C. R. (2001). The theory and practice of corporate finance:
evidence from the field. Journal of Financial Economics, 60(2-3), 187-243.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D.
(2018). A survey of methods for explaining black box models. ACM Computing Surveys
(CSUR), 51(5), 1-42.

Harding, J. P., Rosenthal, S. S., & Sirmans, C. F. (2003). Estimating bargaining power
in the market for existing homes. Review of Economics and Statistics, 85(1), 178-188.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
data mining, inference, and prediction (2nd ed.). Berlin: Springer.

Hayunga, D. K., & Lung, P. P. (2011). Explaining asset mispricing using the resale
option and inflation illusion. Real Estate Economics, 39(2), 313—-344.

Hochberg, Y. V., & Muhlhofer, T. (2011). Market timing and investment selection:

Evidence from real estate investors.

Hunter, W. C., Kaufman, G. G., & Pomerleano, M. (2005). Asset price bubbles: The
implications for monetary, requlatory, and international policies. MIT press.

Ke, Q., & Sieracki, K. (2019). Exploring sentiment-driven trading behaviour of different
types of investors in the London office market. Journal of Property Research, 36(2),
186-205.

Kok, N., Koponen, E.-L., & Martinez-Barbosa, C. A. (2017). Big Data in Real Estate?
From Manual Appraisal to Automated Valuation. The Journal of Portfolio Management,
43(6), 202-211.

Ling, D. C., Naranjo, A., & Scheick, B. (2014). Investor sentiment, limits to arbitrage
and private market returns. Real Estate Economics, 42(3), 531-577.

Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric

approach. Journal of Economic Perspectives, 31(2), 87-106.

Ooi, J. T. L., Ong, S.-E., & Li, L. (2010). An analysis of the financing decisions of REITs:
the role of market timing and target leverage. The Journal of Real Estate Finance and
Economics, 40(2), 130-160.

Palan, S. (2013). A review of bubbles and crashes in experimental asset markets. Journal

of Economic Surveys, 27(3), 570-588.



Introduction

Pérez-Rave, J. I, Correa-Morales, J. C., & Gonzalez-Echavarria, F. (2019). A
machine learning approach to big data regression analysis of real estate prices for

inferential and predictive purposes. Journal of Property Research, 36(1), 59-96.
Quigley, J. (1999). Real Estate Prices and Economic Cycles. International Real Estate
Review, 2(1), 1-20.
Redding, L. (2006). Persistent mispricing in mutual funds: the case of real estate. Journal

of Real Estate Portfolio Management, 12(3), 223-232.

Scheinkman, J. A.,, & Xiong, W. (2003). Overconfidence and speculative bubbles.
Journal of Political Economy, 111(6), 1183-1220.

Scott, L. 0. (1990). Do prices reflect market fundamentals in real estate markets? The
Journal of Real Estate Finance and Economics, 3(1), 5-23.

Sharma, A., & Kumar, A. (2019). A review paper on behavioral finance: study of
emerging trends. Qualitative Research in Financial Markets, 12(2), 137-157.

Summers, L. H. (1986). Does the stock market rationally reflect fundamental values? The
Journal of Finance, 41(3), 591-601.

Yunus, N. (2012). Modeling relationships among securitized property markets, stock
markets, and macroeconomics variables. Journal of Real Estate Research, 34(2), 127—

156.

Zhou, J. (2010). Testing for cointegration between house prices and economic

fundamentals. Real Estate Economics, 38(4), 599-632.

Zurada, J., Levitan, A., & Guan, J. (2011). A comparison of regression and artificial
intelligence methods in a mass appraisal context. Journal of Real Estate Research, 33(3),

349-387.

10



Underpricing and Market Timing in SEOs of European REITs and REOCs

2 Underpricing and Market Timing in SEOs of
European REITs and REOCs

2.1 Abstract

This paper contributes to the literature on seasoned equity offerings (SEOs) by examining
underpricing of European real estate corporations and identifying determinants explaining
the phenomenon of setting the offer price at a discount at SEOs. With a sample of 470
SEOs of European real estate investment trust (REITs) and real estate operating companies
(REOCs) from 2004-2018, multivariate regression models are applied to test for theories
on the pricing of SEOs. This paper furthermore tests for differences in underpricing for

REITs and REOCs as well as specialized and diversified property companies.

Significant underpricing of 3.06% is found, with REITs (1.90%) being statistically less
underpriced than REOCs (5.08%). The findings support the market timing theory by
showing that managers trying to time the equity market gain from lower underpricing.
Furthermore, underwritten offerings are more underpriced to reduce the risk of the
arranging bank, but top-tier underwriters are able to reduce offer price discounts by being
more successful at attracting investors. The results cannot support the value uncertainty
hypothesis, but are in line with placement cost stories. In addition, specialized property

companies are subject to lower underpricing.

An optimal issuance strategy taking into account timing, relative offer size and the choice
of the underwriter can minimize the amount of “money left on the table” and therefore
contribute to lower cost of raising capital. This is the first study to investigate SEO
underpricing for European real estate corporations, pricing differences of REITs and REOCs

and the effect of market timing on the pricing of SEOs.

Keywords: Underpricing, Offer price discount, SEO, Equity offering, Europe, Market
timing, REIT, Property company
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Underpricing and Market Timing in SEOs of European REITs and REOCs

2.2 Introduction

As Ghosh et al. (2000) states, SEOs are major events in the lifetime of a listed property
company and essential to ensure profitable growth and sustainable development.
Especially REITs need to regularly raise money through capital increases and therefore
access the capital market more often than industrial firms due to their limited funding
possibilities with restriction on debt ratio and retained earnings (Boudry et al., 2011).
Although SEOs play an important role for listed companies, issued shares are regularly
offered at an offer price significantly lower than the price the shares are traded on the
offer day — defined as underpricing — or the day before the offering — defined as
discounting. Besides direct cost of raising capital the issuing firm is consequently accepting
additional expenses as “money left on the table” at equity offerings. Because the extent
of underpricing represents potential equity capital the issuer decided to forego convincing

arguments must exist to justify such losses.

As Goodwin (2013) states, equity offerings of property companies, in particular REITs, are
an interesting research topic due to their unique characteristics. Besides restrictions on the
equity ratio and income requirements, REITs are mainly characterized by their high profit
distribution (80-95% of net profit). Although REITs are an internationally well-known
investment vehicle, country specific differences in limitations of their business activity exist.
In addition, the valuation of property companies is complex not only due to valuation
variation of real estate as the underlying assets. Relatively low transparency in the real
estate sector and the added stock market risk also contribute to valuation uncertainty of

real estate corporations.

There is existing literature to explain the phenomenon of setting the offer price at a
discount at SEOs. Being mainly focused on industrial firms, far less is known about the
pricing of equity offerings in the real estate sector, especially in Europe. But with more and
more countries establishing the REIT regime, this listed real estate investment vehicle gain
increasing importance in European real estate markets (Ascherl & Schaefers, 2018). This is
to our best knowledge the first study to (1) investigate underpricing of equity offerings in
the European real estate sector, (2) examine pricing differences for REITs and REOCs at
SEOs and (3) analyze the impact of market timing behavior on the pricing of seasoned

offerings.
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2.3 Listed Real Estate Markets in Europe

REITs have shown to be an attractive investment alternative in the capital market in the
past decades (Laopodis, 2009) and gain increasing significance especially in Europe (Newell
& Marzuki, 2018). While several countries in Europe adopted the REIT regime in the late
2000™, emerging real estate markets in southern and eastern Europe are still into
extending their spectrum of real estate investment vehicles, with Poland and Portugal
being the most recent to establish the REIT regime in 2019. While in 1999, only one REIT
existed in Europe, the value of listed real estate in the European Union reached $ 387.6Bn

with 226 REITs accounting for $ 186.9Bn in market capitalization (EPRA, 2019b).

Table 2.1 provides an overview of listed real estate markets in Europe. Regarding total
market capitalization of property companies by country, Germany (€ 92.1Bn), the United
Kingdom (€ 77.0Bn) and France (€ 55.5Bn) have shown to be the largest listed markets in
Europe. While Germany is characterized by REOCs (e.g. Vonovia with € 22.8Bn and
Deutsche Wohnen with 11.5Bn) and further investment vehicles like open and closed end
funds with only a small proportion being invested in REITs, the UK REIT market is highly
matured comprising more than 80% of UKs total market capitalization of listed real estate
companies. The same appears for France, where REITs account for € 51.0Bn out of €
55.5Bn. While developed listed real estate markets like Sweden and Switzerland (€ 53.7Bn
and € 46.0Bn) have not adopted the REIT status yet, REITs play an important role in
Belgium, the Netherlands and Spain with high proportions being invested in the tax-

exempt investment vehicle.

Italy (3 REITs comprising € 1.0Bn) and Spain (71 REITs with € 22.9Bn) show on average the
lowest REIT size within Europe, with the two largest Spanish REITs (MERLIN Properties with
€ 5.7Bn and Inmobiliaria Colonial with € 5.0Bn) account for almost half of the Spanish REIT
market size. In contrast, France is characterized by large average REIT size with Gecina
being valued at € 9.8Bn and Klepierre at € 8.6Bn. WFD Unibail-Rodamco represents the
largest European REIT with a market capitalization of € 18.2Bn (EPRA, 2019a).

14



Underpricing and Market Timing in SEOs of European REITs and REOCs

Table 2.1. Overview of listed real estate markets in Europe

REIT_ status Market cap No. Market cap Biggest REIT
since REOCs REOCs (€Bn) REITs REITs (€Bn)

Austria - 6 7.45 - - -
Belgium 1995/ 2014 11 5.30 17 16.32  Warehouse DePauw
Bulgaria 2004 3 0.47 29 0.43 -
Croatia - 1 0.08 - - -
Cyprus - 12 1.05 - - -
Czech Rep. - 1 0.50 - - -
Denmark - 11 1.90 - - -
Estonia - 3 0.09 - - -
Finland 2010 5 5.19 - - -
France 2003 17 4.47 30 51.01 Gecina
Germany 2007 54 87.89 5 4.24 alstria Office REIT
Greece 1999 7 0.88 4 1.52 -*
Hungary - 2 0.40 - - -
Ireland 2013 - - 4 3.14 Green Rent PLC
Italy 2007 7 0.24 3 0.96 igd
Latvia - 1 0.00 - - -
Lithuania 2008/ 2013 2 0.04 - - -
Luxembourg* 2007/ 2016 - - - - -
Malta - 5 0.30 - - -
Netherlands 1969/ 2003 3 0.09 5 21.52 Unibail-Rodamco
Norway - 8 5.24 - - -
Poland 2019 40 5.65 3 0.72 -*
Portugal 2019 2 0.03 - - -
Rumania - 3 6.42 - - -
Spain 2009 14 5.69 71 22.95 MERLIN Properties
Sweden - 48 53.67 - - -
Switzerland - 40 45.98 - - -
UK 2007 37 12.90 55 64.06 Segro

Notes: Market capitalization reported as of June 2019; *No further information provided by EPRA. Source: EPRA (2019a)

and EPRA (2019b).
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2.4 Theoretical Background

Different theories evolved to understand the phenomenon of setting the offer price at a

discount at equity offerings.
Asymmetric information and value uncertainty theory

Rock (1986) was one of the first to explain underpricing using informational disparities
between the parties involved at equity issuances. As investors with informational
advantages create a negative externality for uninformed investors by only subscribing
when the offer price is below the expected true value, uninformed investors are
permanently faced with negative returns. Underpricing is suggested to be necessary to
keep uninformed investors in the market and recompense for the adverse selection. Beatty
and Ritter (1986) extend the model by adding ex-ante value uncertainty around the
offering. They assume higher ex-ante uncertainty about the true value of the firm to be
linked to a more cost-intensive information gathering process with investors being

therefore compensated by higher underpricing.
Placement cost theory

To attract investors and compensate for higher illiquidity and lower fungibility of the
shares, Altinkilic and Hansen (2003) suggest that shares being hard to place in the market
are subject to higher underpricing. They conclude that keeping total firm size (total
proceeds) constant, placement cost increase (decrease) with greater total proceeds (firm
size). Further research corroborate the results, suggesting that larger offerings (higher
proceeds or number of shares) are more likely to be absorbed by uninformed investors

(Corwin, 2003; Goodwin, 2013).
Underwriter reputation and investment banking power

Intermediary institutions between investors and the issuing firm are suggested to play an
important role at capital increases. Early research showed that the pricing of equity
offerings has an impact on the stock market valuation of the lead underwriter (Nanda &
Yun, 1997) and high deviation from “fair pricing” at IPOs is linked to a loss in the
underwriter's market share (Dunbar, 2000). The literature therefore assumes the
reputation of the lead underwriter to affect the amount of “money left on the table”
(Bowen et al., 2008). Since higher ranked underwriters are supposed to be more successful
in attracting investors they are associated with lower underpricing (Altinkili¢ & Hansen,
2003).
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The investment banking power is adding some insights into the role of intermediaries at
SEOs. Underpricing represents — besides underwriter spreads as direct cost of raising
capital — another way to maximize the investment banks earnings. Mola and Loughran
(2004) and Corwin (2003) show that investment banks use mechanisms in offer price
settings to gain from higher discounts by setting the offer price at a lower integer or even-
eighths fraction. They suggest that issuing firms focus more on underwriter services in
terms of being able to take up the shares offered rather than minimizing the offer price
discount. Armitage et al. (2014) suggest underwritten offerings to be more underpriced to
reduce the reputational risk for the underwriting bank. Consequently, two opposing
effects are supposed to occur. While underwritten SEOs are expected to show higher
underpricing because investment banks try to maximize their earnings and minimize the
risk of SEO failure, higher reputation of the underwriting intermediary is suggested to be

linked to lower offer price discounts.
Market timing theory

The market timing theory, proposed to understand managers financing decisions, can also
help to explain the extent of underpricing. Baker and Wurgler (2002) conclude that the
capital structure is the cumulative outcome of past attempts to time the equity market.
Consequently, firms prefer to offer equity rather than debt when investors are over-
optimistic about the value of the firm. Market timing is therefore referred to as offering
shares when market values are high. Using a survey of CFOs, Graham and Harvey (2001)
were one of the first to find evidence that the valuation of the stock is an important
determinant in issuing equity. Especially REITs take advantage of capital market conditions
(Ooi et al.,, 2010). Using investor sentiment to explain the extent of underpricing in SEOs,
Deng et al. (2014) assume two possible effects to occur considering the timing of equity
markets. On the one side manager could gain from over-optimism in the market by setting
the offer price higher to reduce offer price discounts and increase offer proceeds. On the
other hand, managers could also be supposed to place their shares with closely connected
investors and therefore set the offer price lower than necessary to protect them from
possible price declines in the future. Market timing could consequently also be linked to

higher underpricing at SEOs.
The “REIT effect”

High distribution of earnings and limited accessibility to loan capital are important reasons
for REITs to access the equity market more frequently compared to industrial corporations
(Goodwin, 2013). As Deng et al. (2014) suggest frequent access to the capital market

results in higher information disclosure. Furthermore, REITs have to meet high regulatory
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requirements to benefit from the tax-exempt status, resulting in higher transparency.
Consequently, REITs do not only show on average lower underpricing at IPOs than
industrial firms (Dolvin & Pyles, 2009). They are also less underpriced than REOCs at initial
public offerings (Ascherl & Schaefers, 2018; Dimovski, 2016). The REIT status is therefore

assumed to be negatively linked to offer price discounts.

2.5 Literature Review

Underpricing in SEOs

The academic interest on SEO pricing remained low until the early 2000 when SEO
underpricing was investigated in detail, finding evidence for average discounting and
underpricing of around 2-3% for industrial firms in the US. Altinkili¢ and Hansen (2003)
corroborate with the value uncertainty and placement cost hypothesis. Corwin (2003)
focusses on variation in discounting over different timeframes. Including underwriter
reputation and analyst coverage, Mola and Loughran (2004) suggest an increase in
investment banking power over time. Chemmanur et al. (2009) are regarding the role of

institutional investors at SEOs.

In a European background, Armitage et al. (2014) examine seasoned equity issues of
industrial firms listed in the UK to conclude for market reaction and the choice of issuance
methods. Andrikopoulos et al. (2017) are also focusing on UK SEOs, regarding institutional
ownership and the linkage to offer price discounts. As Bairagi and Dimovski (2012) or
Gokkaya et al. (2013) show, underpricing and discounting of SEOs is often used as control

variable for direct cost of raising capital.

The literature on SEOs in the real estate sector is well established on announcement effects
(Myers & Majluf, 1984) and the operating performance around equity issuances (Ghosh et
al., 2013). In contrary, less is known about the pricing of REIT SEOs. Ghosh et al. (2000)
are the first to investigate underpricing in the real estate sector. Regarding US REIT SEOs,
Goodwin (2013) shows that difficulties in the placement of shares as well as greater
uncertainty in the valuation both imply higher discounting. Regarding direct cost of raising
capital for REIT SEOs, Gokkaya et al. (2013) are using discounting as control, stating that
SEOs in hot market phases are subject to lower discounts. Using a sample of US REIT equity
offerings from 1986 to 2009, Deng et al. (2014) use investor sentiment to explain SEO
pricing, stating that in high sentiment periods higher discounting and underpricing is

observed.
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Market timing at SEOs

With an anonymous survey of CFOs admitting to market timing in SEOs, Graham and
Harvey (2001) were amongst the first to find evidence that the valuation of a firm is an
important determinant for issuing equity. Firms prefer to offer equity rather than debt
when investors are over-optimistic about the market value of the firm and shares are highly
valued. Baker and Wurgler (2002) therefore state, that the capital structure is the
cumulative outcome of past attempts to time the equity market. Feng et al. (2007) are
applying the financing decision model to a REIT framework. Ooi et al. (2010) are stating
that REITs tend to time the equity market by offering equity when stock values are high.
Further studies found strong evidence supporting the market timing hypothesis by
analyzing share repurchase decisions of REITs (Brau & Holmes, 2006), suggesting that REITs

tend to undertake repurchases when stocks are undervalued.

Analyzing managers’ financing decisions, Baker and Wurgler (2002), Feng et al. (2007) and
DeAngelo et al. (2010) use market-to-book ratio (M/B) to identify the manager’s
perception of mispricing in the capital market. With high M/B being linked to optimistic
expectation of investors, managers attempt to exploit the firm’s overvaluation by issuing
equity. Ooi et al. (2010) and Gibilaro and Mattarocci (2018) are using price-to-earnings
ratio (P/E) as indicators for market timing. Boudry et al. (2010) are applying price-to-NAV
ratio (P/NAV) as an indicator for REITs to gain from favorable market conditions in financing
decisions. Because these indicators are linked to stock market mispricing as well as growth
options (Fama & French, 2002), it is necessary to control for growth factors when
interpreting valuation estimates (Dai, 2012). Boudry et al. (2010) are using average returns
to control for growth in order to extract the effect of mispricing. Deng and Ong (2018)

include REIT growth, defined as the change in total assets from last period, as control.

The literature on market timing is mainly focused on capital structure and issuance choice.
There is to our best knowledge only little research regarding the effect of market timing
on the pricing of SEOs. For industrial firms, Armitage et al. (2014) are using M/B as a
measure for information asymmetry, suggesting that lower M/B indicates proportional
higher tangible assets. Andrikopoulos et al. (2017) use M/B, return on equity and leverage
to explain underpricing in SEOs. They assume high values to represent young growth
companies and to be therefore associated with higher offer price discount to ensure a
successful equity issuance. According to Baker and Wurgler (2002), M/B is suggested to
be an indicator for investment opportunities and risk in trade-off stories, while market
timing theories suggest M/B values to reflect mispricing in the equity market. We would

therefore suggest Andrikopoulos et al. (2017) to be in line with trade-off theories rather

19



Underpricing and Market Timing in SEOs of European REITs and REOCs

than market timing. As Boudry et al. (2010) state, trade-off theories are limited in their
explanatory power for REITs due to their regulatory requirements. Investigating the linkage
between IPO and SEOs for industrial firms in China, Gounopoulos et al. (2013) follow Kim
and Weisbach (2008) to use M/B as proxy for market timing. They find evidence that high

M/B is significantly and negative linked to initial return at SEOs.

2.6 Data and Summary Statistics

Sample design and variables

We use a sample of REIT SEOs collected from S&P Market Intelligence, former known as
SNL Financial. We excluded Adjustable Rates, Forward Sale Agreements, De Novo Bank
Offerings and Flow Through from the sample. Exchange offers, offerings made as part of
the consideration in a merger or acquisition and offerings made as part of Employee Stock
Ownership Plans or Dividend Reinvestment Plans are removed as well due to different
pricing characteristics. We follow Corwin (2003) by removing secondary offers and
Altinkilic and Hansen (2003) by removing penny stocks. This results in a final sample of
470 SEOs of REITs and REOCs from 1% of January 2004 until 31" of December 2018 from

18 European countries.

To control for outliers and mistakes in the provided data, Corwin (2003) and Bowen et al.
(2008) exclude offerings with over- and underpricing of more than 60% respectively 50%.
As various authors state, the offer dates can contain errors, since offers can be conducted
after the close of trading. Consequently, the offer day has to be corrected by taking the
day after as appropriate, if the trading volume the day after the official offer date is more
than two times the volume on the offer day or more than two times the average trading

volume of the last 250 trading days.

Underpricing and discounting are used as dependent variables to identify significant
determinants on the pricing of SEOs. Also referred to as offer-to-close return or offer price

discount at SEOs, we follow Ghosh et al. (2000) to calculated underpricing as

offer day closing price — offer price

or underpr = P _ 1

underpricing = offer price >
(o]

Following Altinkili¢ and Hansen (2003) and Goodwin (2013), discounting is calculated as

) ) day before closing price — offer price ] Pi-1
discounting = or disc =

-1
offer price Po
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Table 2.2. Independent variables with expected sign and previous research

Variable Definition and previous studies
Equals 1, if corporation obtained the REIT status (Dolvin & Pyles, 2009, Dimovski,
REIT -
2016)
PROP_TYPE _Equals 1, if firm is specialized on a property type (Goodwin, 2013; Ascherl &

Schaefers, 2018)

Measures of market timing

Market capitalization divided by book value (Gounopoulos et al., 2013; Deng &

W " Ong, 2018)

P/NAV - Price divided by net asset value (Boudry et al., 2010)

P/E - Price divided by earnings (Ooi et al., 2010; Gibilaro & Mattarocci, 2018)
Controls for growth

ASSETGROWTH - Change in total assets in the last 12 months (Dai, 2012; Deng & Ong, 2018)
ROA - Net income divided by average total assets (Andrikopoulos et al., 2017)

Measures of placement cost

REL_PROCEEDS +

Total proceeds divided by market capitalization (Corwin, 2003; Goodwin, 2013)

Measures of value uncertainty

MARKETCAP (€Mn)
ALREADY_SEO -

VOLATILITY +

CASH_ASSETS

Natural logarithm of market capitalization (Altinkilig & Hansen, 2003; Dimovski,
2016)

Equals 1, if firm has already conducted a SEO before (Ghosh et al., 2000)

Price volatility 30 to 2 days prior to the offering (Altinkilic & Hansen, 2003;
Chemmanur et al., 2009)

Cash and cash equivalents divided by total assets (DeAngelo et al., 2010; Deng
& Ong, 2018)

Measures of underwriter reputation and investment banking power

URANK -
UNDERWRITTEN +

INTEGER_0.25 +

Reputation of the lead underwriter as of the ranking of Migliorati and Vismara
(2014) (Mola & Loughran, 2004)

Equals 1, if the offering is underwritten (Armitage et al., 2014)

Equals 1, if the offer price is set at even-eighths (Chemmanur et al., 2009, Mola
& Loughran, 2004)

Further control variables

PROCEED_3M

(€Mn) *
STOCKLIQUIDITY -
LEVERAGE +

Natural logarithm of proceeds raised in the last three months (Gokkaya et al.,
2013)

Average trading volume divided by shares outstanding (Ghosh et al., 2000;
Armitage et al., 2014)

Total debt divided by total assets (Gibilaro & Mattarocci, 2018, Andrikopoulos
etal., 2017)

To test for the aforementioned theories, we use measures for value uncertainty, placement

cost, market timing as well as underwriter reputation and investment banking power as

shown in Table 2.2. MARKETCAP, ALREADY_SEO, VOLATILITY and CASH_ASSETS are

included as proxies for value uncertainty at the offering. The proceeds relative to the

market capitalization (REL_PROCEEDS) are used to test for placement cost. To get further

insights on underwriter reputation and investment banking power in European listed real

estate markets, we include the reputation of the lead underwriter (URANK), a measure for
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price setting mechanism (INTEGER_0.25) and a dummy variable for underwritten offers
(UNDERWRITTEN). In the literature, underwriter reputation is measured using the Carter-
Manaster ranking. As Migliorati and Vismara (2014) state, the ranking covers only 67.5%
of all underwriters participating in European SEOs. While the US investment banking
market is tightly oligopoly with few player dominating the market, the European market is
suggested to be more competitive (Krakstad & Molnar, 2014). Because differences in the
performance of investment banks are supposed to be hard to determine in Europe, earlier
research suggested that underwriter reputation is hardly possible to be derived in the
European equity market (Armitage et al., 2014). Using the European-based ranking of
Migliorati and Vismara (2014) for IPOs we are able to be one of the first to test for

underwriter reputation in Europe.

Following Baker and Wurgler (2002) and Feng et al. (2007) we use M/B to analyze the
effect of market timing behavior. In addition, we follow Boudry et al. (2010) and Gibilaro
and Mattarocci (2018) by furthermore including P/NAV and P/E as further measures of
market timing. To control for growth, we include ASSETGROWTH and the return on asset
(ROA) in our model. We control for hot and cold equity markets by including overall
proceeds raised by the market within the last three months (PROCEEDS_3M). A proxy for
the liquidity of the stock (STOCKLIQUIDITY) and the debt ratio (LEVERAGE) are included as
further control variables. We use year and country dummies to control for time and country
fixed effects (Corwin, 2003; Deng et al., 2014). In the literature, overall market conditions
are also used as controls but heteroscedasticity with year and country variables impede
the integration in our model specifications. The same appears for the maturity of the REIT
market in terms of months since the REIT regime was introduced in the respective country.
We suggest both effects to be captured by the fixed effect controls. We use natural
logarithm transformation for selected variables in order to minimize the influence of

outliers and reduce asymmetry.
Summary statistics

As reported in Table 2.3, the sample consists of 470 SEOs of European property companies
from 2004 to 2018 in 18 countries: Austria, Belgium, Denmark, Finland, France, Germany,
Greece, lIreland, Italy, Luxembourg, Monaco, Netherlands, Norway, Poland, Spain,
Sweden, Switzerland and United Kingdom. We find more equity offerings being placed by
REITs (299) than by REOCs (171) due to restrictions on debt and retained earnings and
therefore frequent access to the capital market. Within the sample, the UK accounts for
201 SEOs. We suggest the UK to play a predominant role in raising equity in Europe due

to the fact that the UK represents the largest REIT market, comprises the highest number
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of property companies and is characterized by enhanced transparency and a highly mature
capital market. While Austria and the Netherlands show on average overpricing of 0.66%
and 3.01%, we find high underpricing for Greece and Italy (39.74% and 12.71%), which
could be traced back to challenges within the financial market of both countries over the

last decade.

Table 2.4 shows the descriptive statistics of the variables in the sample, divided into
subsamples REITs and REOCs. We find statistically significant underpricing of 3.06% in the
whole sample, with REITs being on average less underpriced (1.90%) than REOCs (5.08%).
REITs also show lower discounting (3.08%) compared to REOCs (6.20%). The results are
below comparable studies of IPO underpricing for European REITs and REOCs (Ascherl &
Schaefers, 2018: 4.63%), but higher than studies of SEO underpricing of US REITs
(Goodwin, 2013: 1.21%; Deng et al., 2014: 1.64%). We suggest IPOs to be more
underpriced than SEOs due to higher uncertainty about the true value of the firm at its
initial offering. Lower offer price discounts in the US could be traced back to higher
transparency, a matured REIT market and high market acceptance of REIT equity issuances.
Regarding only the average underpricing in the sup-sample REIT, our results are in line with

the findings on REIT SEO underpricing in the US.

Table 2.3. Number of SEOs by REITs and REOCs from 2004 to 2018 in the sample

Country Number of SEOs Mean underpricing (%) Mean proceeds (€Mn)
Total REIT REOC
Austria 7 0 7 -0.66 247.49
Belgium 46 46 0 4.66 77.11
Denmark 5 0 5 6.46 31.62
Finland 23 2 21 4.74 118.58
France 54 54 0 3.60 133.50
Germany 70 23 47 3.55 59.71
Greece 2 1 1 39.74 171.62
Ireland 3 3 0 1.80 71.67
Italy 5 2 3 12.71 96.94
Luxembourg 4 1 3 10.79 184.05
Monaco 1 0 1 23.60 0.09
Netherlands 7 5 2 -3.01 216.52
Norway 8 0 8 8.54 101.63
Poland 2 0 2 3.66 97.49
Spain 1 1 0 2.69 93.44
Sweden 20 0 20 5.18 152.93
Switzerland 11 0 11 8.64 191.93
UK 201 161 40 1.02 65.43
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Table 2.4. Descriptive statistics of European REITs and REOCs from 2004 to 2018

Full Sample Mean

Mean St. Dev. q25 q75 REOC REIT
UNDERPR (%) 3.06%** 17.965 -0.03 6.38 5.08%** 1.90%**
DISC (%) 4.22%x* 18.635 -0.05 8.52 6.20%** 3.08***

Mean Median St. Dev. 25 q75

Panel A: REITs
M/B 1.08 1.06 0.24 0.99 1.15
P/NAV 1.12 1.10 0.24 1.00 1.21
P/E 23.65 12.70 114.84 7.83 22.22
ASSETGROWTH 0.26 0.13 0.42 0.02 0.37
ROA 0.04 0.05 0.09 0.02 0.07
REL_PROCEEDS 0.16 0.10 0.23 0.04 0.20
MARKETCAP (€Mn) 648.65 339.95 827.75 200.66 815.81
ALREADY_SEO 0.95 1.00 0.21 1.00 1.00
CASH_ASSETS 0.05 0.03 0.06 0.01 0.07
VOLATILITY 0.30 0.03 0.81 0.02 0.17
URANK 0.06 0.00 0.12 0.00 0.09
INTEGER_0.25 0.16 0.00 0.36 0.00 1.00
UNDERWRITTEN 0.45 0.00 0.50 0.00 1.00
Fgﬁ;EED—W 3,053.93 2,307.84 2,006.17 1,740.36 3,956.43
STOCKLIQUIDITY 0.00 0.00 0.01 0.00 0.01
LEVERAGE 0.43 0.46 0.17 0.31 0.56
PROP_TYPE 0.60 1.00 0.49 0.00 1.00
Panel B: REOCs
M/B 1.00 1.03 0.42 0.70 1.23
P/NAV 1.04 1.04 0.40 0.83 1.18
P/E 11.60 13.70 44.63 -0.13 26.14
ASSETGROWTH 0.18 0.05 0.53 -0.03 0.25
ROA 0.02 0.04 0.08 0.00 0.06
REL_PROCEEDS 0.31 0.13 0.55 0.06 0.31
MARKETCAP (€Mn) 736.51 448.37 957.78 138.08 912.36
ALREADY_SEO 0.92 1.00 0.27 1.00 1.00
CASH_ASSETS 0.06 0.03 0.12 0.02 0.07
VOLATILITY 0.21 0.08 0.48 0.03 0.20
URANK 0.05 0.00 0.1 0.00 0.03
INTEGER_0.25 0.09 0.00 0.29 0.00 1.00
UNDERWRITTEN 0.50 1.00 0.50 0.00 1.00
E’€R,\$|)§)EED_3I\/I 2,832.27 2,157.57 2,241.79 1,173.84 3,550.66
STOCKLIQUIDITY 0.00 0.00 0.00 0.00 0.25
LEVERAGE 0.50 0.53 0.22 0.29 0.65
PROP_TYPE 0.41 0.00 0.49 0.00 1.00

Notes: Coefficients of statistical significance at *10%, **5% and ***1% by testing if the mean (median) is different from zero.
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Underpricing over time

The sample comprises 15 years from 2004 to 2018 with the global financial crisis (GFC) as
extraordinary market event. Following Ascherl and Schaefers (2018) and Dimovski et al.
(2017) we use different timeframes as reported in Table 2.5 to analyze the pricing of SEOs
over time. Optimistic investors and “fair priced” or even overpriced equity offerings with
high mean proceeds mainly characterize pre-crisis years. With the beginning of the GFC in
mid-2008, plummeting proceeds and high offer price discounts reflect property companies
being faced on the one side with pressure on firm’s profits and on the other side with high
liquidity problems due to a global credit crunch (Krakstad & Molnar, 2014). High
underpricing was required to attract investors, with a peak in median underpricing of
6.07% in 2009. In years of market recovery from 2012 to 2015 underpricing regained
stability with median underpricing of 1.87%, although the average amount of money
raised remained low. Peaking mean proceeds with REOCs offering € 147.40Mn on average

from 2016 to 2018 reflect regained confidence in the listed real estate market.

Table 2.5. Underpricing of European REITs and REOCs from 2004 to 2018 over time

Time period No. of Underpricing (%) Proceeds (€Mn)

observations Mean Median Mean

Panel A: REITs

2004-2007 (pre-crisis) 14 -12.39 -1.82 119.74
2008-2011 (crisis) 61 2.58 1.75 96.84
2012-2015 (recovery) 132 1.50 1.96 57.41
2016-2018 92 4.40 2.63 82.58
2004-2018 299 1.90 2.01 73.74
Panel B: REOCs

2004-2007 (pre-crisis) 25 -0.70 0.07 114.56
2008-2011 (crisis) 48 5.77 5.29 56.02
2012-2015 (recovery) 65 4.27 1.83 80.95
2016-2018 33 10.51 3.92 147.40
2004-2018 171 5.08 2.43 93.15
Panel C: All property

companies

2004-2007 (pre-crisis) 39 -4.89 -0.46 116.42
2008-2011 (crisis) 109 4.08 3.09 77.69
2012-2015 (recovery) 197 2.42 1.87 65.25
2016-2018 125 6.01 2.74 99.70
2004-2018 470 3.06 2.08 80.80
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Nevertheless, with median underpricing of 2.74%, overpricing as in pre-crisis years cannot
be observed. Instead, remaining mistrust in the stability of the financial sector, fear of rising
interest rates and potential exaggerations in the commercial investment market in major
European cities could be an explanation for relatively high offer price discounts in recent
years.? Our findings are in line with Andrikopoulos et al. (2017), stating that the GFC had
a major impact on the capital market with significant effects on property companies equity
offerings. Regarding the two subsamples, REITs are less underpricing in all timeframes and
seem to be less affected by the GFC with relatively lower median underpricing and higher
average proceeds. We could assume higher transparency and the easier valuation process
of REITs to result in lower value uncertainty than REOCs especially in crisis years and

therefore less “money left on the table”.

2.7 Empirical Results

Methodology, model specifications and regression results

To test for the aforementioned theories on underpricing in equity offerings, we follow
Goodwin (2013), Dimovski et al. (2017) and Ascherl and Schaefers (2018) by applying

multiple linear regression models using OLS with

Underpr = By + B; (measures of market timing)
+ v; (controls for growth)
+ 6, (measures of placement cost and value uncertainty)
+ A; (underwriter reputation and investment banking power)

+ w,(control variables) + €

We assume the error term € ~ N(0, 62).

Regarding Table 2.6, we are in line with Altinkilic and Hansen (2003) to support the
placement cost theory. With REL_PROCEEDS being significant and positive over all model
specifications, we can state that shares being harder to place in the market are subject to
higher underpricing. Keeping total firm size (total proceeds) constant, placement costs

increase (decrease) with greater total proceeds (firm size).

3 Table 2.5 reports higher average underpricing in recent years (2016 to 2018) than in 2008 to 2011 comprising
the GFC. This is because SEOs until mid-2008 prior to the GFC showed low underpricing or even overpricing
and only few highly underpriced equity offerings took place within the second half of 2008.
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To attract investors and compensate for lower fungibility of the shares, high relative
proceeds are faced with larger offer price discounts. In contrast to placement cost stories,
we cannot find evidence regarding the value uncertainty theory. It is assumed that higher
uncertainty about the true value of the firm is linked to higher underpricing of the offering.
Large and well-known firms with high maturity in the market are suggested to show lower
uncertainty and could therefore gain from “less money left on the table” at equity

offerings.

Neither the fact that firms have already conducted an SEO (ALREADY_SEO) with relevant
information on the offering process being already disclosed, nor the pre-offering volatility
as proxy for value uncertainty indicate significant influence. The same appears for the
relation of cash and cash equivalents to total assets (CASH_ASSETS), with high cash
portions representing firms that are easier to value. Only the size of the offering firm
(MARKETCAP) show significance. While value uncertainty stories would suggest larger firm
to be less underpriced, we find evidence for a positive relation between market
capitalization and underpricing. Our results therefore rather support the placement cost
theory. We suggest larger firms to raise more capital resulting in higher relative proceeds
and more “money left on the table”. While uncertainty about the true value of the firm
plays an important role at IPOs in the European listed real estate market (Ascherl &
Schaefers, 2018), the disclosure of information at initial offerings and the market
estimation of the firm value in the secondary market could diminish the effect of value

uncertainty at seasoned offerings.

Although we cannot find statistical evidence regarding the price rounding at integer or
even-eighths (INTEGER_0.25), we can support the theories regarding underwriter
reputation and investment banking power. Our results show that if an intermediary
ensures the sale of the shares by underwriting the offering (UNDERWRITTEN), he is able to
reduce the risk of SEO failure and maximize his profit by setting the offer price at a higher
discount. The results are in line with the suggestions of Mola and Loughran (2004) and
Armitage et al. (2014). Corroborating with Altinkilic and Hansen (2003) and Bowen et al.
(2008), the decision which underwriter to choose is therefore of high importance. We find
evidence that the reputation of the lead underwriter can outdo the losses of being
underwritten. Higher ranked underwriter are more successful in attracting investors and
placing the shares within the market. Higher reputation therefore results in lower

underpricing.

To test for market timing within the pricing of seasoned offerings, M/B, P/NAV and P/E are

included separately within different model specifications. With all three measures of
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market timing being statistically significant and negative over all models we can state that
firms trying to time the equity market also gains from lower underpricing and therefore
less “money left on the table”. Consequently, manager’s timing the equity market by
issuing equity when valuation estimates are high are able to not only sell their shares at
favorable market prices but also gain from lower offer price discounts. We find high
valuation estimates to be subject to lower underpricing and can therefore support the

theory that managers take advantage of favorable conditions in the equity market.

As Ro and Ziobrowski (2011) suppose, REITs limit their investment focus to a specific
property type to profit from superior expertise of the specialized investment management.
However, they find no evidence for specialized REITs to outperform diversified ones. Ling
and Ryngaert (1997) show that focusing on different property types implies variation in
the transparency, being partly due to different lease structures. Analyzing announcement
effects in European property companies, Brounen and Eichholtz (2001) stated that
specialized property portfolios are subject to lower price reaction at SEOs. Freybote et al.
(2008) are in line with their findings, stating that difficulties for investors to assess the
firm’s value at the IPO because of a diversified business strategy could still affect the pricing
of SEOs. We therefore include the specialization on a specific property type (PROP_TYPE)
in our model specifications. Following Ascherl and Schaefers (2018) we furthermore apply
propensity score matching using probit regression to verify our results. To estimate the
effect of specialization on a specific property type the average treatment effect on the
treated (ATT) is used. Our regression results shown in Table 2.6 and the ATT shown in
Table 2.7 both show that a focus on a specific property type can enhance benefits in terms
of being subject to lower offer price discounts. We suggest both superior expertise for a
specific property type and easier assessment of the true firm value within a specialized

investment focus result in lower underpricing at the offering.

Table 2.7. ATT results using propensity score matching

Treatment variable No. O.f ATT St. error t-statistics
observations
PROP_TYPE 470 -0.0498** 0.0197 -2.52
REIT 470 -0.0517** 0.0231 -2.24

Notes: Coefficients of statistical significance at *10%, **5% and ***1%.

Ascherl and Schaefers (2018) and Dimovski (2016) both find a positive “REIT effect” in the
pricing of initial offerings. REITs are suggested to provide higher transparency due to their
regulatory requirements and restrictions on the business activities. In addition, an easier
estimation process of the firm’s value with more information being disclosed is supposed

to result in lower underpricing. While the summary statistics would indicate an impact of
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the REIT status with REITs being on average less underpriced than REOCs, we cannot find
evidence regarding the “REIT effect” within the different model specifications over the
whole sample. However, regarding Table 2.9, tobit regression of positive underpricing

following Altinkilic and Hansen (2003) show significance of the “REIT effect” (Model 13).

We can therefore conclude that the REIT regime can help to reduce offer price discounts
when offerings are positively underpriced. Furthermore, the REIT status lead to lower
underpricing especially in post-GFC periods (Model 14). Propensity score matching verifies
the results. We can support our findings from the summary statistics that a “REIT effect”
exists in term of higher transparency and therefore lower offer price discounts. A lack of
statistical significance in the overall data can possibly be traced back to different company
and offering specific characteristics for REITs and REOCs diminishing the “REIT effect” in

the whole sample.

Table 2.8. Multiple regression results on market adjusted underpricing and discounting

Model 7: Model 8: Model 9: Model 10:
ROA Market adjusted Discounting Disc. market adj.

M/B -0.115  (-3.68) ***  -0.110 (-3.50) *** -0.109 (-3.33) *** -0.109  (-3.34) ***
ROA -0.342  (-2.56) **
ASSETGR. -0.042  (-2.22) ** -0.046 (-2.37) ** -0.047 (-2.42) **
REIT -0.029 (-1.36) -0.023  (-1.07) -0.025 (-1.13) -0.022  (-1.01)
REL_PROC. 0.067 (2.69) *** 0.078  (3.11) *** 0.081  (3.15) *** 0.084  (3.23) ***
MARKETC. 0.029  (3.17) *** 0.026  (2.94) *** 0.028 (2.97) *** 0.029 (3.06) ***
URANK -0.282 (-3.03) ***  -0.283 (-3.03) *** -0.294 (-3.02) *** -0.294  (-3.03) ***
INTEG._.25 0.049 (1.36) 0.053 (1.46) 0.045 (1.20) 0.049 (1.30)
UNDERWR. 0.050 (2.48)** 0.051 (2.52)* 0.062  (2.95) *** 0.062  (2.93) ***
PROP_TYPE -0.039 (-2.23) ** -0.036 (-2.07) ** -0.027 (-1.48) -0.026 (-1.47)
Intercept Yes Yes Yes Yes
Time effects Yes Yes Yes Yes
Country eff. Yes Yes Yes Yes
N 470 470 470 470
R2 0.2137 0.2097 0.2158 0.2157
Adjusted R? 0.1424 0.1381 0.1447 0.1445
AIC -0.6779 -0.6741 -0.5990 -0.5980

Notes: Coefficients of statistical significance at *10%, **5% and ***1%; variables of statistical significance are shown.
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Robustness of results

In order to verify reliable und robust results, additional model specifications are used.
Regarding Table 2.8, we construct a model including ROA as another proxy for growth
opportunities (Model 7). We use market adjusted underpricing (Model 8) as dependent
variable to control for market movements at the offer day (Ghosh et al., 2000; Dimovski
et al., 2017). Discounting and market adjusted discounting (Model 9 and 10) are further

verifications.

As shown in Table 2.9, we also use winsorizing on the 99% and 95% level (Model 11 and
12) following Chemmanur et al. (2009) to check for the robustness of the results with
respect to extreme values. In accordance with Altinkii¢ and Hansen (2003), we
furthermore only include positive underpricing and conduct tobit regression to verify our
results (Model 13). Our results are robust over all model specifications. Both Ascherl and
Schaefers (2018) and Dimouvski et al. (2017) find significant influence of the GFC on the
pricing of initial offerings. To control for the extraordinary event, we not only include time
dummy variable in our model specifications but also run regression on the post-crises

period (Model 14). The results are in line with the overall results.

Table 2.9. Multiple regression results on variations in the dependent variable

Model 11: Model 12: Model 13: Model 14:
Win. 95% Win. 99% Tobit 2012-2018
M/B -0.039  (-2.48) ** -0.107 (-3.48) *** -0.064 (-1.93)* -0.138 (-4.46) ***
ASSETGR. -0.022  (-2.39) ** -0.040 (-2.17) ** -0.088 (-4.31) *** -0.049 (-2.40) **
REIT -0.012  (-1.10) -0.024  (-1.15) -0.089 (-3.87) *** -0.048 (-2.14) **
REL_PROC. 0.039  (3.13) *** 0.074  (3.03) *** 0.036 (1.10) 0.051 (1.79)*
MARKETC. 0.008 (1.88)* 0.025  (2.79) *** 0.025 (2.43)** 0.020 (2.08) **
URANK -0.091  (-1.94)* -0.273  (-2.98)***  -0.079 (-0.82) -0.286  (-3.13) ***
INTEG_.25 0.036  (1.98) ** 0.048 (1.35) 0.052 (1.25) 0.036 (0.73)
UNDERWR. 0.032 (3.13)**  0.050 (2.53)* 0.042 (-2.06) ** 0.004 (1.99)*
PROP_TYPE -0.014  (-1.64) -0.034  (-2.02) ** -0.033 (-1.76) * -0.006  (1.96) *
Intercept Yes Yes Yes Yes
Time effects Yes Yes Yes Yes
Country eff. Yes Yes Yes Yes
N 470 470 347 322
R? 0.2689 0.2114 0.2698
Adjusted R? 0.2026 0.1398 0.2028
AlIC -2.0483 -0.7112 -0.8480 -1.1557

Notes: Coefficients of statistical significance at *10%, **5% and ***1%; variables of statistical significance are shown.
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2.8 Conclusion

As Ghosh et al. (2000) state, SEOs are major events in the lifetime of a property company
and essential to ensure profitable growth and sustainable development. Although
especially REITs need to regularly raise money through capital increases and therefore
access the capital market more often, the issuing firms decides to forego potential equity
capital by setting the offer price significantly lower than the price the shares are traded on
the offer day — defined as underpricing. With a sample of 470 SEOs of European REITs and
REOCs from 2004 to 2018, this study contributes to the literature on SEO pricing in several

ways.

We can document significant underpricing of 3.06%, with REITs (1.90%) being
significantly less underpriced than REOCs (5.08%). With our results being below
comparable studies on IPO underpricing in Europe (Ascherl & Schaefers, 2018: 4.63%), we
suggest lower underpricing at SEOs due to disclosed information and matured business
structures after the initial offerings. While value uncertainty plays an important role at IPOs,
we cannot find statistical significance at seasoned offerings. In contrast, we can support
placement cost stories. Keeping firm size constant, higher proceeds are subject to higher
offer price discount. Following Goodwin (2013), we suggest that shares being hard to

place in the market require higher underpricing.

Intermediary institutions are essential in the pricing mechanism of SEOs. In line with of
Mola and Loughran (2004) and Armitage et al. (2014), we find underwritten offers to be
more underpriced and can therefore conclude that underwriting institutions are able so
set the offer price lower to reduce the risk of SEO failure. Managers focus more on the
ability of underwriters to take up the shares rather than reducing offer price discounts. The
indirect cost associated with the offering being underwritten can be balanced out by
choosing a top-tier underwriter. We find higher ranked underwriter to be linked to lower
underpricing and suggest them to be more successful in attracting investors — resulting in

less “money left on the table”.

As Baker and Wurgler (2002) and Boudry et al. (2010) show, managers try to time the
equity market by issuing equity when market values are high and investors are over-
optimistic. We can contribute to the literature on market timing by showing that managers
trying to time the equity market also gain from lower indirect cost of raising capital. In
addition, we find a “REIT effect” suggesting that REITs show higher transparency and are
easier to value due to their regulatory restrictions, resulting in lower offer price discounts.

Furthermore, our results show that a specialization on a specific property type results in
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“less money left on the table” due to managerial expertise and specialized business

strategy being easier to value.

Goodwin (2013) suggests frequent and smaller capital increases for the offering firm to be
preferred to reduce placement cost and gain from lower underpricing. We can add to their
findings that an optimal issuance strategy taking into account timing, the relative offer size
and the choice of the underwriter in combination with a specialized investment focus can
minimize the amount of “money left on the table” and therefore contribute to lower cost

of raising capital for the offering firm.

Consequently, investors chasing returns in SEOs of REITs and REOCs need to consider the
intermediary party involved in the offering as well as managers attempt to time the equity
market. Highly valued firms do not only show lower underpricing and therefore lower
initial returns for investors at SEOs. They are also subject to declining operating
performance following the offering (Ghosh et al., 2013). Managers try to exploit favorable
market conditions by offering shares when market values are high. Seasoned offerings of
highly valued property companies therefore need to be analyzed carefully to maximize
returns in SEO investments. Furthermore, our results show that investors are compensated
by higher initial returns not only for lower liquidity of the shares due to higher relative
proceeds. Value estimation being harder for non-REITs and non-specialized property
companies due to lower restrictions on the business activity and varying investment

strategies also requires higher first day returns for investors.
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3 Rental Pricing of Residential Market and
Portfolio Data — A Hedonic Machine Learning

Approach

3.1 Abstract

Artificial intelligence (Al) and especially machine learning (ML) methods increasingly offer
valuable alternatives to answer questions in real estate research and practice. This study
comprises two components: First, we investigate whether ML methods are suitable of
estimating residential rents by comparing a conventional hedonic model with four ML
algorithms, namely Support Vector Regression (SVR), Random Forest Regression (RFR),

Gradient Tree Boosting (GTB) and eXtreme Gradient Boosting (XGB).

We find ML methods to model rental values more precisely than traditional linear
regression. While RFR shows the highest predictive performance, GTB appears to be most
robust to overfitting. Second, we use these findings to estimate rental values for an
institutionally managed portfolio and match them with their corresponding contract rents.
On average, we find the apartments to be underrented, with ML models indicating higher
deviation of estimated and contract rents than linear Ordinary Least Squares (OLS) models.
Thus, our findings indicate that investors rather rely on traditional methods to derive
contract rent levels within their portfolio. With that, this study reveals potential benefits

when applying ML hedonic models in the area of residential markets and portfolios.

Keywords: Machine learning, hedonic models, residential real estate, rent prediction,

multiple listing systems
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3.2 Introduction

The role of residential rents is of central importance in the real estate industry for both
tenants and landlords. Considering the former, rents often account for the largest portion
of their monthly spending. For the latter, they mark the fundamental determinant of the
value of housing (Gallin, 2008; Genesove, 2003). Consequently, literature has long
concentrated on the question of how rental prices develop within a market. Today, more
than ever, this is of great importance given urbanization and demographic changes leading

to thriving residential markets especially in metropolitan areas (IMF, 2018; ULI, 2020).

In the case of a common house or apartment itself, its rent is “a single-dimensional
summary of the market's valuation of all the physical, service and locational attributes [...]"
(J. Goodman, 2004; Verbrugge et al., 2017). In other words, every single characteristic of
a residential property should be priced in and thus, ultimately contributes to the rent that
the market will accept. However, prices for individual attributes are not fixed. Researchers
have long tried to fathom the connections between the characteristics of a property and
its associated rent. While rather conventional statistical methods such as Ordinary Least
Squares (OLS) still represent the preferred statistical tool, new possibilities arise from the

field of artificial intelligence (Al).

While those methods are increasingly used in several areas of real estate research and
practice, they have only been applied in the derivation and analysis of residential rents in
a limited way yet. Given the above, this paper investigates whether hedonic machine
learning (ML) methods are capable of providing new insights and applications in residential
rental markets. Recent research in the field of real estate applying ML methods focuses
predominantly on valuation aspects. Authors such as Lindenthal (2020), Hamilton and
Johnson (2018) and Lindenthal and Johnson (2019) apply such techniques to investigate
whether aesthetics and architectural styles affect real estate prices. Using ML, Chin et al.
(2020) estimate the benefit of infrastructural investments on property values while Pérez-
Rave et al. (2019) apply ML to big data for predictive and inferential purposes. The subject
of rents and how market participants can use Al to assess and verify investment decisions

has, however, not yet been investigated in depth.

Consequently, literature on this topic is scarce even though new tools seem to have
capabilities that may outperform conventional hedonic methods. From a practical point of
view, next to its relevance for the institutional sector, our findings may be useful to
governments, for whom such methods can serve as additional instruments to engage in

housing markets. Consequently, we attempt to shed light on which ML methods are best
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suitable for capturing and processing price formations in rental markets. ML methods
differentiate from traditional regression methods in their underlying predefined
assumptions. The former presuppose a linear or non-linear relationship between rental
values and the hedonic characteristics whereas artificial intelligent learning methods “think’
differently. More precisely, there is no such predetermined prerequisite, but an algorithm.
Hence, an econometrician takes advantage of letting the machine decide the steps
necessary to model the relationship between the response and the explanatory variables

in several training steps.

The aim of this study is to shed light on the application of algorithm-driven methods in
rental markets. In addition, we aim to assess the value that market participants might
obtain when managing a residential real estate portfolio based on ML methods as opposed

to fundamental OLS analysis. Consequently, we

(1) assess how accurate linear and algorithm-driven hedonic models predict rents
based on a large data set from multiple listing systems (MLS). For this purpose, a
variety of performance metrics (error measures) is used.

(2) transfer the findings from (1) to a dataset of an institutionally managed residential
portfolio. Using the previous model specifications, we estimate rental values an
investor could expect for the portfolio apartments in re-lettings scenarios. Further,
we compare them to their corresponding contract rents to find out whether the

different models would estimate a potential (or need) for rental adjustments.

The paper is structured as follows. Section 2 contains an overview of the literature in the
field of real estate and ML. Section 3 explains the composition of the two data sets. In
section 4, the ML methods used for rent analysis throughout the paper are introduced.
The results are presented in section 5. The sixth and final section summarizes the

conclusions.

3.3 Hedonic Modelling in the Real Estate Literature

The aim of hedonic modelling is to better understand the fundamental factors affecting
property rents and prices. By expressing the rent or price of an apartment as the sum of
its estimated individual characteristics, hedonic modelling can be used for inferential and
predictive purposes. Traditionally, a hedonic model employs multiple linear regression to
establish the relationship between the response and the corresponding hedonic
characteristics (Rosen, 1974, A. C. Goodman, 1978). Depending on the spatial

characteristics of the market under investigation and the data structure, a hedonic model

42



Rental Pricing of Residential Market and Portfolio Data — A Hedonic Machine Learning
Approach

needs to fulfil @ minimum number of assumptions (see e.g. Sirmans et al., 2005 and
Bourassa et al., 2007).* However, several authors such as Lai et al. (2008), Bourassa et al.
(2010) and Cajias (2018) have demonstrated the limited explanatory power of traditional
hedonic models and shown that statistical developments such as the inclusion of spatial
and non-linear effects lead to significant enhancements in model accuracy (see more: Fik

et al., 2003; Lin et al., 2009; Banzhaf & Farooque, 2013).

Over the last decade, advances in computational power and ML algorithms have enabled
the development of modern regression techniques. By abandoning the previously
mandatory functional form of the relationship between the response and the covariates,
a variety of ML algorithms emerged — such as Gradient Boosting Trees (GTB) (Friedman,
2001), Random Forest Regression (RFR) (Breiman, 2001) and Support Vector Regression
(SVR) (Smola & Schélkopf, 2004). Given the goal of ML methods is to maximize explanatory
power and prediction accuracy, real estate literature has identified these to be well suited

for predictive questions.®
Hedonic Analysis of Property Prices — Mass Appraisal and Automated Valuation

Aside from traditional valuation models, automated valuation methods (AVM) based on
ML algorithms are becoming even more popular (Kontrimas & Verikas, 2011). Commonly,
authors focus on a specific ML method and look at its predictive power on real estate
prices to draw conclusions on the stand-alone improvements. In this context, Yoo et al.
(2012) use transaction data on 4,469 houses in Onondaga County, NY (USA) to
demonstrate the superior model accuracy of RFR, compared to traditional regression
techniques due to the ability of modelling non-linear relationships. The findings are in line
with Antipov and Pokryshevskaya (2012), who investigate a dataset of 2,848 transactions
relating to apartments in St. Petersburg (Russia). Both call for a more frequent application
of ML methods in predicting property prices. Moreover, Yao et al. (2018) use RFR to map
fine-scale housing prices in Shenzhen (China). By analyzing residential property
transactions in Hong Kong and Nanjing (China), Lam et al. (2009) apply SVR to predict
property prices. Moreover, the investigation of 100 house transactions in Lithuania by
Kontrimas and Verikas (2011) shows that SVR is well suited due to its ability to capture

non-linear relationships. Regarding boosting methods, van Wezel et al. (2005), for

4 The assumptions are intended to correspond to the variables to be included in the model, controlling for
spatial characteristics and nearby amenities. The data structure is generally either cross-sectional, time serial,
panel or pooled cross-sectional and determines the normality assumptions of the residuals.

5> The black box character of ML methods is often perceived as a disadvantage that prevents the econometrician
from understanding and interpreting the influence of certain variables. However, if the goal of ML methods is
prediction, this disadvantage is not very harmful, since the focus is not recognizing relationships between
variables, but rather optimizing the predictive performance.
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example, deploy gradient boosting to predict automobiles as well as real estate sales prices
in Boston (USA), Windsor and Essex (Canada), and the Netherlands. Moreover, Kok et al.
(2017) demonstrate the performance of boosting as well as RF and OLS on property prices

with a dataset containing 54,000 US multi-family houses.

Furthermore, recent literature in the field of modelling property prices compares several
ML techniques. Zurada et al. (2011) apply OLS, further linear regression techniques,
regression trees (RT) and SVR, using a sample of 16,366 transaction prices in Louisville,
Kentucky (USA). Baldominos et al. (2018) show the performance of RFR and SVR on house
prices in Spain, using online listings. Moreover, Mayer et al. (2019) analyze the accuracy
of different hedonic valuations models — including RFR, GTB and OLS as well as further
linear models — and propose the application of different data updating techniques for
property price valuations. Pace and Hayunga (2020) compare the performance of spatial
models to ML techniques using tree-based algorithms. Ho et al. (2020) apply different ML
methods for a dataset of housing transactions in Hong Kong. Bogin and Shui (2020) find
RFR to perform best in accurately estimating rural property prices. The authors conclude
that ML is more appropriate in modelling property prices due to its ability to allow for non-

linear effects, whereas traditional models might suffer from misspecification.
Hedonic Analysis of Residential Rents

Especially for ML methods, most studies within the hedonic modelling literature focus on
real estate prices. Far less is known about explaining and modelling rental values by
applying ML approaches. Early research estimated the determinates of rental values
(Sirmans et al.,, 1989; Kee & Walt, 1996). Recent studies on the rental housing market,
including Thomschke (2015), Zhang and Yi (2017) and Cajias and Ertl (2018), show that
traditional methods are still able to estimate property rents properly. While, for example,
V. James et al. (2005) use spatial models to predict apartment rents, Cajias (2018) shows
that semi-parametric models are capable of improving model accuracy by accounting for
non-linear relationships in rental markets. Although traditional models are limited in their
ability to reveal and model non-normal complex relationships, a lack of research exists
regarding the application of ML methods for modelling property rents, as Hu et al. (2019)

state.

Given the relevance of rental estimation for tenants, investors and governmental bodies
together, with the “potential of Al-based methods” (Zurada et al., 2011, p. 350), it is
important to also accurately model the underlying rental market. Even though there is a
growing body of literature on the topic, further investigation is needed due to various

reasons: First, literature is rather silent when it comes to a holistic comparison of various
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ML approaches for evaluating the varying performance measurements of different
algorithms. Second, to the best of our knowledge, property rents have not been analyzed
in depth so far in an ML context. Third, the emerging velocity and volume of real estate
data through MLS enables new insights to real estate markets and provides a promising
field of research, since “one of the main approaches to face [such data sources] is machine
learning” (Pérez-Rave et al., 2019, p. 5). And finally, the potential of ML applications for
market participants to derive well-founded decisions in real estate markets has not yet

been fully explored nor used.

3.4 Data

This study encompasses the residential real estate market in Munich, Germany. The country
is home to one of the largest and most active real estate markets in Europe. As it is well-
known as a safe haven for national and international investors, it attracts both domestic
and cross-border capital allocation. As of 2019, Germany consisted of 42 million occupied
apartments while having one of the lowest owner-occupancy rates in Europe with 47%.
With that, Germany is considered one of the most important hubs for capital allocation in
residential real estate on the continent, and thus, offers an interesting market for an in-
depth investigation. With approximately 1.5 million residents and an annual growth rate
of about 0.75%, Munich is the third largest city in Germany. The city and its metropolitan
areas have one of the most prospering economies in Germany, accommodating several
globally active companies in sectors such as automotive, environmental techniques,
information and communication, insurance, life sciences and medicine. Stable economic
growth and good employment conditions have yielded a positive development of the

residential market throughout the last decade.

To analyze the rental market in Munich, we use two different data sets: First, asking data
from MLS enables us to estimate and compare the predictive performance of the applied
hedonic models. Based on the derived values, we then estimate rental values for a
residential portfolio of institutionally managed apartments and compare the estimates to

the observed contract rents.
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MLS Data

In contrast to comparable international real estate markets, Germany does not require
either private or institutional landlords to publish rental information. Therefore, no general
database of contract rents exists. Consequently, asking rents from MLS serve as the main
source of pricing information and are used to estimate the current rental level in the
German residential market (see well-established applications, such as F+B Residential
Index, Empirica Real Estate Index, etc.). The use of asking data can be advantageous as it
offers the possibility to capture and rapidly reveal market movements. Y. Chen et al. (2016)
and Baldominos et al. (2018) argue that it is more appropriate for modelling timely

dynamics of housing markets on a fine-scale level.

When it comes to real estate sales, early research has documented that differences
between listing and transaction prices exist and that these are highly associated with
market liquidity, measured by time on market (TOM). Jud and Winkler (1994) and Jud et
al. (1996) found that both the degree of above market pricing and changes in the listing
price affect TOM. Yavas and Yang (1995) state that overpricing increases the marketing
time. Analyzing the German residential market, Cajias and Freudenreich (2018) show that
Munich is subject to high market liquidity, with the degree of overpricing being comparably
low. Since the German residential market is a renter’s rather than a buyer’'s market, their
findings indicate diminishing deviations between asking and market rents. Cajias (2018, p.
216) suggests that “the deviation [of asking and market rents] is not expected to lead to
error bias, especially after controlling for [...] hedonic characteristics”. As Grobel (2019, p.
8) suggests, asking data in Germany “reflects the currently prevailing overall market
situation” since the price formation in the housing market is perceived to be determined

by the offering party.

Moreover, MLS asking data can overcome the challenges raised by the general lack of
European housing contract data which is mentioned, for instance, by Rondinelli and
Veronese (2011). It is actively used for empirical research by several authors such as Hanson
and Hawley (2011), Rae (2014), Grobel and Thomschke (2018), Pérez-Rave et al. (2019)
and Grobel (2019) for studies in Germany, the US and the UK. As Pérez-Rave et al. (2019)
state, MLS data shows important characteristics of big data in terms of volume, variety
and value. This enables researchers and market participants to overcome temporal delays
and limited analyses on market developments that are associated with, for example, official
statistics. In this context, MLS are perceived as “one of the most significant feature of
today’s real estate industry” (Li & Yavas, 2015, p. 471). Due to the characteristics of the

Munich residential real estate market, we expect the asking rents to be a good
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approximation for market-conform rental values. Although asking data plays a significant
role in housing markets (see e.g. Shimizu et al.,, 2016, Han & Strange, 2016), differences

to transaction data can occur that need to be kept in mind.

To assess the performance of hedonic models, our study comprises a dataset of 65,743
residential apartments in Munich, including hedonic characteristics, socio-economic
information and distance variables, from January 2013 to June 2019. To avoid sample bias
for the investigation of Munich’'s residential market that is mainly dominated by
apartments, we exclude single houses as well as semi-detached and terraced houses.
Furthermore, highly specialized market segments like student apartments, senior living
accommodations, furnished co-living spaces, and short-stay apartments are not

considered.

Figure 3.1. Extraction-Load-Tranform (ELT) process for hedonic models
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Source: Own depiction.

We access Empirica Systeme, one of the largest providers of real estate data in the German
residential market. It uses web-scraping techniques for collecting, preparing and
integrating real estate listings from more than 120 different MLS with full hedonic
characteristics.® Furthermore, we include socio-economic data from Growth from
Knowledge (GfK), Germany’s largest market research institute. We also add a gravity layer
using data from Eurostat and the German statistical office to implicitly enable the models
to account for spatial information. Finally, we complement each georeferenced residential
data point by an amenities layer measuring the Euclidean proximity to important amenities.

This information is gathered from Open Street Map (OSM) and Google via an APl in R (R

© The Empirica Systeme GmbH is an established partner in data analytics solutions for the residential market in
Germany and a data provider for brokers such as CBRE, Colliers, Engel&Voelkers, JLL, Savills as well as for
banks, institutional real estate managers, cities and others.
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Core Team, 2016). Data preparation and processing is displayed in Figure 3.1. This results
in a dataset comprising eight structural characteristics (living area, age and whether the
apartment has a bathtub, built-in kitchen, parking lot, terrace, balcony and an elevator),
two socio-economic (number of households and households purchasing power in ZIP code
area), and seven distance variables (proximity to bus station, park, school, subway,
supermarket, neighborhood center and city center). Rent, living area, distances as well as
both socio-economic characteristics are incorporated using their log-transformation to
account for the distribution. Quarter and year dummies are used to control for time effects.
Earlier studies found additional contract and market information to affect price formation
in housing markets (see e.g. competition and listing density in Turnbull and Dombrow
(2006)). However, since we do not have access to further information, our analysis is

limited to structural, neighboring and locational characteristics.

Table 3.1. Descriptive statistics of the MLS data

Variable name Unit Spat. Ref. Source Mean Median SD Min Max

Living Area sgm Apartment Empirica 76.49 71.00 36.49 10.00 435.00
Age Integer Apartment Empirica 42.36 41.00 33.84 -2.00 118.00
Centroid ZIP km Distances OSM 0.60 0.53 038 0.00 243
Centroid NUTS km Distances OSM 4.62 457 208 022 12.33
Rent EUR/p.m. Apartment Empirica 1,238.00 1,079.34 721.82 123.97 10,764
No. households (HH) HH/zZIP ZIP GfK 11,423 11,768 3,305 1,860 16,978
HH purchase power EUR/HH/ZIP ZIP GfK 59,855 58,849 5,501 46,170 71,765
Bus km Distances OSM 1.14 0.75 1.10 0.00 6.20
Park km Distances OSM 0.79 044 092 0.00 4.75
School km Distances OSM 0.56 024 085 0.00 4.89
Subway km Distances OSM 1.44 0.75 1.67 0.00 11.76
Supermarket km Distances OSM 0.76 0.35 1.03 0.00 5.16
Bathtub Binary Apartment Empirica 0.54 1 0.5 0 1
Built-in kitchen Binary Apartment Empirica 0.68 1 0.47 0 1
Parking lot Binary Apartment Empirica 0.62 1 0.49 0 1
Terrace Binary Apartment Empirica 0.18 0 0.38 0 1
Balcony Binary Apartment Empirica 0.63 1 0.48 0 1
Elevator Binary Apartment Empirica 0.56 1 0.5 0 1

Notes: This table reports the summary statistics comprising data from January 2013 to June 2019. Age is calculated as the
difference from building age to the year 2017. All distance variables are calculated as the distance to the specific apartment
in kilometers. Binary variables report whether the apartment includes a certain characteristic (1) or not (0). Rent is presented
as euro per month. Information on households is reported on ZIP level. SD: standard deviation, Min: minimum value, Max:
maximum value.
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Table 3.1 shows the descriptive statistics. We find a mean asking rent of 1,238 EUR/p.m.
(euros per month), with rental values ranging from 123.97 EUR/p.m. up to 10,764
EUR/p.m. An average apartment is 76.49 sqm (square meters), comprises approximately
three rooms, and was built in 1975. Each apartment is on average 1.44 km distant from
the subway, 0.76 km from a supermarket and 0.56 km from the next school. Moreover,
the city center is on average 4.62 km away, the center of the corresponding ZIP code is in
0.60 km distance. The mean number of households in a ZIP area accounts for 11,423 with

a mean purchasing power of 59,855 EUR each.
Portfolio Data

In addition to the obtained data through MLS, a German asset manager granted access to
portfolio data from institutionally managed residential real estate that is publicly not
available. The portfolio consists of 716 apartments located in Munich, comprising contract

rents and the same explanatory variables as presented in the previous section.

Table 3.2. Descriptive statistics of the portfolio

Variable name Unit Spat. Ref. Source Mean Median SD Min Max
Living Area sgm Apartment Portfolio 71.99 75.56 30.59 20.92 179.79
Age Integer Apartment Portfolio 37.91 46.00 29.64 1.00 90.00
Centroid ZIP km Distances OSM 0.50 050 028 0.20 1.00
Centroid NUTS km Distances OSM 6.77 6.00 524 170 19.00
Rent EUR/p.m. Apartment Portfolio 1,009.37 938.61 469.33 204.52 3,179
No. households (HH) HH/ZIP ZIP GfK 13,200 13,662 2,321 9,720 16,256
HH purchase power EUR/HH/ZIP ZIP GfK 55,441 54,496 3,309 52,045 63,720
Bus km Distances OSM 0.92 064 083 0.13 2.77
Park km Distances OSM 0.65 068 026 0.29 1.14
School km Distances OSM 0.57 043 023 026 0.92
Subway km Distances OSM 0.60 053 026 0.13 1.01
Supermarket km Distances OSM 0.58 066 0.23 0.01 0.87
Bathtub Binary Apartment Portfolio 0.50 1 0.10 0 1
Built-in kitchen Binary Apartment Portfolio 0.21 0 041 0 1
Parking lot Binary Apartment Portfolio 0.50 1 0.10 0 1
Terrace Binary Apartment Portfolio 0.06 0 025 0 1
Balcony Binary Apartment Portfolio 0.94 1 023 0 1
Elevator Binary Apartment Portfolio 0.63 1 048 0 1

Notes: This table reports the summary statistics comprising data from June 2019. Age is calculated as the difference of the
building age to the year 2017. All distance variables are calculated as the distance to the specific apartment in kilometers.
Binary variables report whether the apartment includes a certain characteristic (1) or not (0). Rent is presented as euro per
month. Information on households is reported on ZIP level. SD: standard deviation, Min: minimum value, Max: maximum
value.
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Table 3.2 summarizes the descriptive statistics of the residential portfolio. An average
apartment contains 71.99 sqgm and yields a rental income of 1,009.37 EUR/p.m. The
distance to the city center of 6.77 km is about 2 km further than the distance of an average
apartment, but the distance to the center of the related ZIP code is with 0.50 km 200 m
shorter. Moreover, the distances to all important infrastructure facilities is on average
closer compared to the apartments in the previous dataset. Purchasing power and number
of households are about the same. We again consider additional hedonic characteristics

and time controls as dummy variables.

3.5 Methodology

Our analysis comprises two components. In the first part, we apply five hedonic models
and estimate rental values based on the MLS data presented in section 3.1. Several error
measures are used to compare the results to determine the model's predictive
performance. The methods and error measures are presented throughout this section. In
the second part, we transfer the findings and model specifications to the portfolio dataset
discussed in 3.2. Comparing the estimated rents to their contract rents enables us to
identify to what extent a possible potential (or need) for rental adjustments exists as well
as to highlight which new insights investors can get when applying ML methods in their

rental estimation.
Hedonic Modelling with Traditional and Machine Learning Methods

The analysis encompasses one linear and four ML models. We follow Zurada et al. (2011)
and Chin et al. (2020) by choosing OLS as the base case for the comparison of several
algorithm-driven hedonic models. OLS is a widespread variant for hedonic modelling and
consequently a well-known and easy interpretable benchmark for performance analysis.
SVR, RFR, GTB and eXtreme Gradient Boosting (XGB) represent the modern approaches
that will be applied in our analysis. Except for XGB, all methods have been used for real
estate related questions in areas such as valuation. XGB is a method developed in the last
few years that shows computational advantages especially in large data sets. In the

following, we discuss the basic structure of each hedonic method under investigation:

Ordinary Least Squares Regression (OLS) is the most common approach for traditional
regression. The rent y of property i is described as the sum of the predicted values of its j
characteristics x;;. By making use of OLS as a parametric optimization procedure, the
estimated parameters f3; are achieved by minimizing the sum of the squared residuals as a

loss function. The linear relationships between rents and the hedonic characteristics are
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valid for the entire population whenever the Gauss-Markov theorem is valid, that is, the
estimators are the best linear unbiased estimators of the observed market values. Several
statistical instruments can be further employed to increase the explanatory power, such as

interaction terms, polynomial effects, and spatial effects.
Machine Learning Methods

ML techniques can identify complex structures and patterns. They provide high flexibility
by avoiding the assumption of a specific functional form between the response and
independent variables and are at the same time able to learn from the underlying data and
optimize the predictive model. By dividing the dataset into a training and test set,
overfitting within the training set (in-sample) is penalized by poor out-of-sample accuracy
within the test set. Removing the test set during the learning process could mean that
important patterns within the data remain unnoticed. Hence, z-fold cross validation is
necessary. The resampling approach within this study makes use of a 5-fold cross-
validation technique with a 75:25 ratio between the train and the test sets based on

random sampling.’

Support Vector Regression (SVR) is a modification of the Support Vector Machine, to
categorize observations by finding a dividing hyperplane within an a-priori defined gap
between the categories (Cortes & Vapnik, 1995). Instead of dividing the feature space by
a certain gap, SVR attempts to fit observations within this specific threshold area to
estimate a hyperplane — representing the regression line — that is able to capture the
observed values. The threshold area is characterized by the soft margin €. It defines the
form of the hyperplane and is determined by choosing support vectors (SV) with respect
to a specific loss function that allows an error margin tolerance. While error terms less
than € (and consequently within the threshold area) stay unconsidered, the part of the
error exceeding the margin (§) is subject to a linear penalization. Consequently, SVs are
chosen in a way that the threshold area includes as many observed values as possible while
still accepting values exceeding the boundary through penalization. The model
consequently tries to fit a hyperplane that on the one hand stays as flat as possible and on
the other hand, accounts for exceeding values within its functional form by estimating the

amount up to which deviations larger than € are tolerated.

Random Forest Regression (RFR) is mainly characterized by Breiman et al. (1984) and

is @ bagging method based on the concept of regression trees (RT). The idea of a RT is to

7 An in-depth description of cross validation is provided by Ho et al. (2020) with a discussion of possible
advantages and disadvantages of selected ML methods. See Hastie et al. (2009) and G. James et al. (2015) for
a more detailed description of the applied ML methods.
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divide the regression space into sub-intervals and provide a predicted value for each final
interval, called leaf R,,. Starting with a specific input variable x;, observations are binary
partitioned at the node t,, into values being higher or lower than the chosen splitting value.
The process of binary partitioning is iteratively applied at each resulting node, first choosing
an independent variable x; and the value s at which the splitting will take place. s is chosen
in such a way that the sum of squared errors of the two inferior nodes is minimized. At
each individual terminal node R, the predicted value y|t, is a constant term that is equal

to the average of the observed values with respect to the partition.

Partitioning can be applied any number of times to grow the tree and improve the
approximation to the data. However, deep trees can be subject to noise as fewer
observations in each terminal partition are available to estimate the predicted value. To
avoid overfitting, penalty terms are used to identify, for example, the optimal number of
nodes and to prune the tree. Since single pruned trees perform poorly in predicting
observed values, a forest of trees is built by using several different trees simultaneously.
The difference between the trees is ensured by using bootstrap aggregation. The overall

predicted values are calculated by averaging the individual prediction rules.

Gradient Tree Boosting (GTB) is, aside from bagging techniques such as the
abovementioned RFR, a boosting method and a representative of ensemble learners that
combine the results of multiple models. The idea is to consolidate many so-called weak
learners (standalone prediction rules that lead to imprecise results) into a meaningful and
powerful so-called committee of predictions (Hastie et al., 2009). The GTB, proposed by
Friedman (2001), is a boosting concept with an ensemble of RTs as weak learners. In
contrast to RFR, GTB does not consider the average prediction rule of the underlying trees
but an ensemble of independent trees as the final predicted value. It uses the prediction
rule of subsequent trees and an ensemble of trees that depend on the prediction of the
preceding decision rule. Based on an initial decision rule, GTB proceeds with the prediction
error of the initial (or preceding) rule as the target variable and iteratively builds a
subsequent RT on the prediction error in order to incrementally enhance the final

prediction rule.

Extreme Gradient Boosting (XGB) is a scalable ML method for tree boosting. Moreover,
it is an extension of the GTB algorithm. Developed by T. Chen and Guestrin (2016), it is a
rather new approach to classification as well as regression, as it contains specific features

that won several Kaggle® competitions in the recent past. The Gradient Boosting

8 Kaggle is one of the leading online platforms for the data science community and regularly hosts data
competitions.
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framework provides the foundation for the XGB algorithm, which offers several

advancements.

The first involves a so-called regularized objective L(¢) that penalizes complex models and
therefore counteracts overfitting. Second XGB also contains a shrinkage parameter as a
learning rate that rescales the predictions of individual trees to ensure further model
improvements by following trees. A further addition of the method enables column
subsampling that performs better in preventing overfitting than the traditional row
subsampling. Split finding is one of the major challenges associated with tree learning. To
find optimal split points, XGB offers the exact greedy algorithm and the approximate
algorithm, both of which can be situationally applied. Since conventional approximate
splitting algorithms may face difficulties in dividing data when the data points are not of
equal weight, XGB adds the weighted quantile sketch algorithm. The latter ensures optimal
splitting even when data is weighted. However, this method not only improves the
computational procedures, it also increases the machine’s system design via various

features.
Error-based Comparison of Model Performance

Following Zurada et al. (2011), Schulz et al. (2014) and Mayer et al. (2019), we use mean
absolute error (MAE), mean absolute percentage error (MAPE), root mean squared error
(RMSE) and coefficient of determination R? to conclude on the accuracy of the applied
methods. We furthermore investigate the precision regarding over- or underestimation by
applying the mean percentage error (MPE). While similar research give little attention to
the dispersion of the errors within the prediction, we discuss error buckets (PE10 and
PE20), coefficient of dispersion (COD) and inter-quartile-range (IQR) to assess the
magnitude of the estimation errors. By looking at the accuracy, precision and dispersion,
we aim to derive further insights on the differences between the applied ML methods.

Detailed descriptions of the error metrics can be found in Table 3.6 in the appendix.
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3.6 Econometric Results

In the first part of our analysis, we aim to investigate the predictive performance in terms
of accuracy (how well models perform on average), precision (if models over- or
underestimate observed values) and dispersion (the distribution and variance of estimation

errors).
Predictive Performance of Hedonic Models

All results were obtained with the following model specifications. We used repeated cross-
validation with five folds and five repetitions running on 72 central processing units (CPUs)
simultaneously. GTB worked best with a tree depth of 6, a shrinkage rate of 0.07 and the
number of trees being 438. SVR ran on the following specifications: C = 0.9, € = 0.0451,
o = 0.00679. While the number of trees where 498 for RFR, XGB was trained with a =
0.112, y=0.601 and n=0.216.

Table 3.3. Error-based comparison of model performance at market level

Measure Unit OLS SVR GTB XGB RFR
EUR/p.m. 179.31 135.71 130.73 136.02 116.16

MAE
EUR/sgm/p.m. 2.34 1.77 1.71 1.78 1.52
RMSE EUR/p.m. 269.81 216.83 203.62 217.63 185.82
MAPE % 15.60 11.63 11.36 11.72 10.16
R? % 81.65 87.79 89.32 87.87 91.35
ME EUR/p.m. 18.81 13.07 21.16 22.7 22.91
MPE % 1.65 1.40 2.01 2.05 1.56
PE10 % 40.65 56.02 56.92 55.50 62.62
PE20 % 71.67 84.82 86.11 84.97 88.49
IQR EUR/p.m. 257.14 176.34 171.47 180.13 153.84
CcoD % -24.23 27.52 11.47 12.52 18.02

Notes: This table reports the error-based measurements on the predictive performance through MAE, RMSE, MAPE and R?.
ME and MPE indicate over- or underestimation. PE10, PE20, IQR and COD show the dispersion. All measures are out-of-
sample (test set) and are based on the calculations presented in Table 3.6 in the appendix. Absolute values are reported in
euro per month. Relative values are reported in percent.

With respect to the results displayed in Table 3.3, we find all ML methods to be more
accurate in modelling rents than traditional OLS regression.® While OLS provides on
average highest absolute rental estimation errors (MAE), we find all ML methods to

considerably increase the model accuracy, with RFR being most accurate. Figure 3.2 shows

° The complete results of the OLS estimation are displayed in the appendix in Table 3.7.
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the boxplots of the error distribution. The graphical analysis regarding median and
quantiles underpin the findings. To illustrate these results, we convert the MAE to
EUR/sgm, dividing it by the size of an average apartment of 76.49 sqm. The estimation
error decreases from 2.34 EUR/sgm (OLS) to 1.52 EUR/sgm (RFR). Regarding the RMSE,
which differs from the MAE by penalizing extreme deviations, the results show a similar
picture. Compared to OLS, all ML methods are more robust to extreme deviations. These
findings complement the results of Bogin and Shui (2020) and Pace and Hayunga (2020)
for property prices estimations, who likewise determine the highest prediction accuracy

for RFR.

While OLS shows an R? of 81.65%, GTB and RFR are able to explain approximately 90%
of the deviation. Ho et al. (2020) find similar results for housing transactions. Wu et al.
(2008) and Y. Chen et al. (2016) show SVR to be robust and also accurate in modelling
property prices and rents. It is therefore not surprising that SVR works well in our setting

(R? of 87.79%) and is similar to ensemble learners such as XGB and GTB.

Figure 3.2. Graphical comparison of model performance at market level
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Notes: The box represents 50% of the data within the quantiles 25 and 75%. The line measures the median, that is, the
quantile 50%. The antennas cover the 5% and 95% range of the data.

A look at the MAPE shows that traditional OLS misestimates the observed rents by 15.60%
on average, while RFR improves model accuracy with an average misspecification of about
10%. These findings corroborate the results of Hu et al. (2019), who also show the tree-
based bagging algorithm RFR to be most suitable for modelling property rents. Regarding
transactions prices, Baldominos et al. (2018) likewise highlight ensembles of regression

trees to perform best.

As Fik et al. (2003) state, Freddie Mac early suggested that at least 50% of the predicted
sale prices of residential properties should be within 10% of the true value. In common
real estate valuation practice, the estimated value of a property is allowed to vary 10% to
20% from its market value. Transferring this to rents, all our models yield satisfactory

results. As Figure 3.2 shows, the median percentage deviation of all ML methods, as
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displayed in the boxplots, is below 10%. Therefore, we conclude ML algorithms to be

capable of precisely modelling rents.

Aside from the previously analyzed accuracy, the quality of an estimation is additionally
influenced by its precision, which indicates whether hedonic models predict values that
are on average above or below observed rents. In the field of property valuations, Bogin
and Shui (2020) find real estate prices often to be overestimated, resulting in problems for
mortgage lending. In the case of residential rents, we propose overestimated rental values
to be less problematic for market participants, given that tenants are expected to react to
landlords’” high rental expectations with contract negotiations. In contrast,
underestimations would lead to rental values that are below market level and mean
landlords miss income. In Table 3.3, the positive MPEs indicate that all methods

underestimate the observed rental value on average.

In addition, the dispersion of the estimation adds another possibility for investigation. The
boxplots of MPE in Figure 3.2 show a symmetric distribution of all methods, indicating no
general bias for traditional as well as ML variants. PE10 calculates the percentage of
observations with a deviation of less than 10%. This metric can also be referred to as ‘hit
rate’. While OLS can estimate 40.65% of all observations within this range, algorithm-
driven RFR models estimate 62.62% correctly. Within a deviation of +/-20%, we find all
ML methods exceed 84%. The IQR draws a similar picture. While OLS estimates 50% of
all observed values within a range of 1.68 EUR/sqgm above or below the median, the ML
models significantly decrease the range of deviations (+/-1.00 EUR/sqm).'® The COD also
confirms these results. Thus, ML methods are not only more accurate on average, but the

error dispersion is also lower leading to a better predictive performance.

To verify the robustness of our results especially in terms of general applicability, we run
all methods on an additional sample of rents from July 2019 to September 2019. The
model specifications are the same as in the previous analysis (January 2013 to June 2019).

The results are presented in Table 3.8 and in

Figure 3.4 in the appendix. They consequently provide error-based measurements for a
one-period-ahead out-of-sample forecast. Our findings are equivalent to the findings in
the original dataset. An upward shift in all error-based measurements can be traced back
to thriving residential real estate markets in German metropolitan areas — especially in
Munich. Bogin and Shui (2020) find RFR to be prone to overfitting. We can corroborate

their results. While RFR performs best when it comes to the original dataset, we now find

9 The range as EUR/sgm is calculated by dividing the IQR by the average size of an apartment as reported in
the descriptive statistics. Because the IQR displays the distance between the 25 and q75, we can therefore
show the interval that comprises 50% of all estimations.
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all other ML methods to be more accurate in forecasting future rents. Regarding RMSE as
well as PE10 and PE20, the results indicate that RFR seems to show some misspecification
for high deviations. We suggest RFR fits extreme values generally well (lowest RMSE in
Table 3.3) but fails to explain them within new sample of future rents (as it shows the
highest RMSE besides OLS, but good results for PE10 and PE20 in Table 3.8 in the
appendix).

To summarize, the key facts in the first part of our analysis are:

e In terms of accuracy, all ML methods are more accurate in modelling rents than
OLS with RFR performing best.

e All methods underestimate observed values on average although the extent of
underestimation is low.

e ML methods bear less risk than OLS due to a lower amount of misspecification.

e SVR shows similar results to the tree-based ML methods (RFR, GTB and XGB).

e RFR appears to be prone to overfitting whereas boosting methods (GTB and XGB)

are more robust.

Altogether, a reasonable explanation for the better performance of ML methods can be
given by the fact that they are able to capture non-linear and non-normal relationships
(Pace & Hayunga, 2020; Bogin & Shui, 2020). Because non-linearity is an important
characteristic of real estate markets, the application of ML techniques provides more

accurate estimates of residential rents.
Rental Prediction at Portfolio Level

The previous results demonstrate that both traditional and ML methods can mimic the
price formation in residential rental markets. By means of the previous model
specifications, the models can estimate a rental value an investor could expect in a re-
letting scenario. We transfer this knowledge to the portfolio data described in section 3.2
to estimate a rent for every apartment based on their hedonic, socio-economic and spatial
characteristics. A comparison of the estimated rent with the actual contract rent provides
information on the feasibility of rental adjustments when re-letting apartments from the

portfolio. In a first step, we use MAE, RMSE and MAPE to analyze the accuracy.
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Table 3.4. Error-based comparison of model performance at portfolio level

Measure Unit OoLS SVR GTB XGB RFR
EUR/p.m. 158.64 268.51 197.79 195.59 168.44

MAE EUR/sgm/p.m. 2.20 3.73 2.75 2.72 2.34
RMSE EUR/p.m. 211.29 323.94 256.58 261.39 222.84
MAPE % 15.70 25.83 17.74 17.64 16.24
PE20 % 68.44 45.39 62.43 62.43 63.39

Notes: This table reports the model accuracy through MAE, RMSE and MAPE. PE20 shows the dispersion. All measures are
based on the calculations presented in Table 3.6. Absolute values are reported in euro per month. Relative values are reported
in percent.

In Table 3.4, OLS displays the lowest absolute error. All ML methods show a considerably
higher deviation within their estimation. While OLS only allows for an average estimation
error of 2.20 EUR/sqm, tree-based methods RFR, GTB and XGB result in an average
deviation of 2.34 to 2.75 EUR/sgm. RMSE and MAPE underpin these findings. Interestingly,
this is contrary to the previous findings in section 5.1. Hence, a look at the models’ “hit
rate’ reveals the following: While tree-based methods can estimate about 63% of all
observed rents within a deviation of +/-20%, OLS is able to model 68.44% accurately. For
the portfolio data, we can consequently conclude that linear OLS leads to more accurate

estimates. The graphical illustration is shown in Figure 3.3.

Figure 3.3. Graphical comparison of model performance at portfolio level
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Notes: The box represents 50% of the data within the quantiles 25% and 75%. The line measures the median, that is, the
quantile 50%. The antennas cover the 5% and 95% range of the data.

Furthermore, it is noticeable that SVR shows the highest deviation of portfolio rents from
estimated rents, with an MAE of 3.73 EUR/sqm, which requires a deeper discussion. SVR
is very sensitive to the choice of support vectors and tends to neglect the informational
content of observations within the threshold area that defines the hyperplane. Because
investors usually follow predefined investment goals when acquiring their portfolio

apartments, specifications in the portfolio dataset can result in biased estimations of rental

values for the portfolio observations when applying SVR. We assume its poor performance
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to be attributed to the difficulties encountered in correctly modelling the portfolio data

and therefore exclude SVR in the following comparison.

Regarding the interpretation of the results in this section, however, one must keep the
following in mind: A low error measurement (and therefore a low average deviation)
indicates that estimated rents are to a large extent in line with observed contract rents.
Because estimated rents represent a rental value a landlord could expect in re-lettings, OLS
(with the lowest error measures) would indicate a low potential (or need) for rental
adjustments. In contrast, ML models show considerably higher deviations. Because these
models have confirmed a higher predictive performance in 5.1 on the MLS dataset, we
would assume that estimates from ML models more accurately reflect the potential rental
value in re-letting. An investor who bases the rental estimation on OLS would consequently
underestimate possible rental changes in upcoming re-letting negotiations. Given the
estimated rents from OLS are in line with contract rents to a higher degree, we assume
investors to ‘think linear’. The results indicate that investors use linear models within their

rental estimation, although ML methods can identify higher rental potentials.

Table 3.5. Average potential for rental increases

As % of contract rents (MPE) As rent in EUR/sqm (ME/sqm)
Method All g5 & q95 q10 & q90 All g5 & q95 q10 & q90
OoLS -4.95% * -4.85%* -4.75%* -0.87* -1.02* -1.09*
GTB -14.81% *** -14.13%*** -13.64%*** -2.29%** -2.32%** -2.34%**
XGB -14.56%*** -13.99%*** -13.59%*** -2.271%** -2.30%** -2.36%**
RFR -12.54%*** -12.10%*** -11.91%*** -1.67%** -1.82%** -1.92%**

Notes: This table reports the average rental lift potential. Relative values are calculated as the difference between contract
rent and estimated rent as % of contract rent. Absolute values are calculated as the same difference divided by the rental
area. The column "All" includes results for the whole sample, while g5 & q95 excludes observations of the highest and lowest
5% quantile and q10 & q90 of the highest and lowest 10% quantile, respectively.

*denotes whether the mean is significantly different from the observed mean on a significance level of 1%.

** denotes whether the mean is significantly different from the OLS mean on a significance level of 1%.

To assess to which extent this rental potential exists and consequently whether portfolio
apartments are under- or overrented, we calculate the relative difference of estimated
rents to contract rents. According to the results in Table 3.5, all models indicate that
contract rents are below estimated rents. While OLS indicates portfolio apartments to be
underrented by 4.95% (0.87 EUR/sqm) on average, algorithm-driven hedonic models
signal contract rents to be 12.54% (1.67 EUR/sgm) (RFR) to 14.81% (2.29 EUR/sgqm) (GTB)
below estimated rents. Our results are robust even if we exclude the highest and lowest
5%-quantile and 10%-quantile, respectively. The fact that all models show underrent
situations is intuitive, especially in metropolitan areas in Germany, since rental growth in

the residential real estate market exceeds inflation and hence, contract rents lag behind.
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However, the difference between the methods is of special interest. An investor using OLS
underestimates the rental-lift potential in his portfolio. By ‘thinking linear’ when
researching the market, he assumes that contract rents are in line with estimated rents to
a high extent. In contrast, our study reveals that ML methods show the potential for rental
increases to be two to three times higher. In fact, we assume the potential to be at the
level of the results of GTB and XGB, since boosting methods have shown to be more robust

than RFR.

However, given current market practice, the following must be considered additionally:
Contractual arrangements on lease term and rental adjustments, specific regulations in
rental markets and further legal peculiarities between landlords and tenants impede the
realization of the full rental potential. Nevertheless, the sole identification in this case
provides investors with valuable possibilities to derive investment decisions. Aside from the
linearity perception of an investor, another possible reason contributing to OLS’ high
performance is the rather homogenous composition of the portfolio, whose data structure
can be well captured by linear models. Moreover, considering the general economics of
property management, another possible explanation becomes apparent: A residential
manager is contractually not incentivized to achieve the highest rents but rather to focus
on minimizing costs, again, favoring OLS, which does not capture high rental deviations.
These complementary explanations should be examined in more detail if the ML methods

are to be used in real case scenarios.

60



Rental Pricing of Residential Market and Portfolio Data — A Hedonic Machine Learning
Approach

3.7 Conclusion

In this study, we investigate the predictive performance of traditional and algorithm-driven
hedonic models and the added value an application of those methods can provide for
market participants in the residential real estate market. In the first part of our analysis,
both traditional linear and ML methods perform well in explaining residential rents.
However, algorithm-driven models are more accurate: While OLS on average misestimates
observed market rents by 15.60% (2.34 EUR/sgm), tree-based RFR shows the highest
accuracy by reducing the absolute estimation error to 10.16% (1.52 EUR/sgm), followed
by boosting methods. Hence, ML methods provide a valuable alternative for modelling
market rents. However, it is important to bear in mind that these techniques tend to
underestimate, resulting in below-market rental expectations in contract negotiations.
Moreover, we find the bagging approach of RFR to be prone to overfitting. We suggest

the use of boosting methods GTB and XGB to lead to more robust rental estimations.

Transferring these findings to an institutionally managed portfolio, we obtain the following
insights: OLS indicates that contract rents are only 4.95% below estimated rents. In
contrast, ML methods — which have shown to be more accurate in modelling rents -
identify potential for rental increases that is two to three times higher. Given these
contrasting results, we assume investors ‘think linear’ and make use of OLS findings when
determining rental values; for example in contract negotiations. That being said, the
application of ML methods can provide added value in residential portfolios by revealing
considerable potential for rental adjustments that have not been identified by more
traditional approaches. Nevertheless, complementary explanations for findings of this kind

should be considered when applying ML to day-to-day operations.

Practical implications of our study are manifold. Whereas investment managers gain
insights to rethink and structure their portfolios, governmental bodies and policy makers
can evaluate housing policies in a timely manner by showing the impact on residential
markets. Possible applications of artificial intelligence are consequently not limited to the
private sector. Since almost every investigation is confronted with limitations, a thorough
reflection is appropriate when comparing or applying findings in other scenarios. The first
part of our analysis uses asking data, which is considered a valuable proxy for timely rents.
However, deviations to transaction data can occur. Moreover, since our study covers a
period with stable economic conditions, it would be interesting to see how the models
react to stagnating or downturn markets. Also, our analysis solely focuses on the
residential market, which further limits the general applicability since we assume that

algorithms may behave differently when learning from office or retail data.
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While traditional models remain an important and valid tool in hedonic modelling, ML
models provide beneficial insights into rental markets and portfolios. Overall, we assume
an increasing number of Al applications to lead to additional ideas and added value in
research and practice. Future research in this area may further expand this knowledge
since new algorithms and methods are constantly being developed. Expanding data sets
by investigating other markets will strengthen the use of ML methods in the area of real

estate in the future.
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3.8 Appendix

Table 3.6. Error-based measurements on the predictive performance

Accuracy

Mean Absolute Error
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Root Mean Squared
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Mean Absolute
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Average of all absolute errors. Lower
MAE signals higher precision in units.

Average of squared residuals. In
contrast to MAE, RMSE penalizes high
deviations.

~ 1< yi — 9 Average of all absolute percentage
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(MAPE) =1 accuracy in percent.
, R 9) =1 - i (0 — 9)? .
R »y n(y;— 9)2 Goodness of fit of the model.
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Average of difference between
observed and predicted value.

Positive and negative errors cancel out
due to the lacking absolute value
operation. Positive (negative) MPE
signals (over-) underestimation.

Dispersion

Error buckets (PE(x))

Coefficient of
Dispersion (COD)

Inter-Quartile Range
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Percentage of predictions where the
percentage error is less than x%, with
X being set to 10 and 20.

Ratio of the mean deviation from
prediction errors to the median
prediction error, divided by the
median.

Range in terms of the difference
between the 75" and 25™ percentile of
the distribution of the prediction error.
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Table 3.7. Results of the OLS estimation

Variable Estimate Std. Error tvalue sign. level
log Living Area 0.918 0.002 422.377 o
Age relative to 2017 -0.001 0.000 -16.385 ok
log Centroid ZIP -0.014 0.001 -9.572 orE
log Centroid NUTS -0.036 0.002 -18.420 ok
log Number of households (HH) -0.730 0.035 -23.916 ok
log Household purchasing power 3.400 0.151 22.569 o
log Bus -0.028 0.001 -19.727 o
log Park -0.017 0.001 -12.122 orE
log School 0.002 0.001 1.181

log Subway -0.020 0.001 -13.561 Kk
log Supermarket 0.001 0.001 0.806

Bathtub -0.012 0.002 -6.616 Kk
Built-in kitchen 0.052 0.002 25.868 rx
Parking lot 0.019 0.002 8.126 Kk
Terrace 0.023 0.003 8.734 Kk
Balcony -0.012 0.002 -5.811 Kk
Elevator 0.070 0.002 34.014 rx
Intercept -3.451 0.401 -8.601 flad
Time dummies Yes

Notes: The dependent variable is log rent per month per apartment. The OLS model delivers an adjusted R? of 80.42%
calculated in-sample (training set). ***, ** and * represent statistical significance at 0.01, 0.05 and 0.10 levels, respectively.
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Table 3.8. Error-based comparison of model forecasting at market level

Measure Unit OLS SVR GTB XGB RFR
EUR/p.m. 271.14 201.84 189.52 203.61 212.35

MAE
EUR/sgm/p.m. 3.54 2.64 2.48 2.66 2.78
RMSE EUR 418.86 303.76 292.20 320.88 366.93
MAPE % 24.00 15.69 15.02 16.08 16.77
R? % 80.12% 84.39% 86.39% 84.60% 83.93%
ME EUR 177.59 10.54 26.13 42.26 108.20
MPE % 15.47 1.16 1.13 1.94 6.61
PE10 % 29.54% 42.12% 44.38% 41.42% 43.21%
PE20 % 57.22% 70.46% 74.22% 70.89% 72.75%
IQR EUR 322.61 275.89 258.27 274.44 273.39
CcoD % 1.94 9.73 79.99 25.80 4.09

Notes: This table reports the error-based measurements on the predictive performance through MAE, RMSE, MAPE and R,
ME and MPE indicate over- or underestimation. PE10, PE20, IQR and COD show the dispersion. All measures are out-of-
sample (test set) and are based on the calculations presented in Table 3.6. Absolute values are reported in euro per month.

Relative values are reported in percent.

Figure 3.4. Graphical comparison of model forecasting at market level
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4 Peeking inside the Black Box: Interpretable
Machine Learning and Hedonic Rental

Estimation

4.1 Abstract

While Machine Learning (ML) excels at predictive tasks, its inferential capacity is limited
due to the complex non-parametric structure. This paper aims to elucidate the analytical
behavior of ML in real estate through Interpretable Machine Learning (IML). After
estimating residential rents for Frankfurt am Main (Germany) with a hedonic ML approach,
we apply a set of model-agnostic interpretation methods. Our results suggest that IML
methods permit a peek into the "black box" of algorithmic decision-making by illustrating

the relative importance of hedonic variables and their relationship with rental prices.

Keywords: Hedonic modelling, residential real estate, rental estimation, interpretable

machine learning, black box
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4.2 Introduction

Possible applications of Artificial Intelligence (Al) and Machine Learning (ML) are manifold
and are rapidly gaining importance across a number of domains. While most members of
the general public interact with ML algorithms on a daily basis (e.g. personalized web ads,
mail spam filter, etc.), there is also a growing number of discoveries and implementations
in research. Recently, Deepmind and its interdisciplinary research team solved one of the
biggest challenges in biology with their Al-based system AlphaFold to predict how proteins
fold —a problem that has been investigated for nearly 50 years (Senior et al., 2020). Further
high stake domains include arrival planning in emergency department and cancer diagnosis
in healthcare (Ahmad et al., 2018) or recidivism forecasting in criminal justice (Berk &
Bleich, 2013).

But how is it that these methods are only gradually coming to the fore? The high predictive
performance marks ML as a promising extension for existing regression as well as
classification tasks due to their ability to incorporate complex patterns and deal with large
datasets. However, because the methods are often perceived as opaque, their so-called
‘black box’ character is repeatedly criticized. Certain use cases such as an Al-based decision
support of credit applications may improve and accelerate business operations of banks,
however the sole decision of whether a credit may be granted or denied lacks
accountability and does not represent a satisfactory outcome for neither the applicant nor
the creditor. Consequently, explaining the inner working of an ML model is important to
justify and validate how a certain decision is made as well as to discover new insights
(Adadi & Berrada, 2018).

A similar picture can be seen for the application of Al in the real estate industry. Because
real estate represents one of the largest asset classes worldwide (Kok et al., 2017), an
adequate estimation of real estate prices and rents are of crucial importance for investors,
landlords and tenants. By treating the property as the sum of its individual characteristics,
the hedonic price regression has established itself as the main approach for price and rent
estimation. ML models have proven to be helpful in real estate hedonic modelling
especially for predictive purposes. Nevertheless, their inferential capabilities are limited,
since the aforementioned missing transparency hides the inner logic and decision making
process (Mullainathan & Spiess, 2017). But how to overcome this obvious weakness? One
possibility is to design models in such a way that their complexity is kept low from the
beginning to ensure interpretability. An example comes from Lechner et al. (2020), who
have created a deep learning algorithm that manages to control a car based on only a few

artificial neurons. As a result, the decisions made by the algorithm are easy to understand
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while maintaining robustness and functionality. Another possibility is to examine existing
ML algorithms and their results with special analysis tools in order to establish
interpretability. This is where this study picks up. The ML algorithm eXtreme Gradient
Boosting (XGB) is used for a hedonic estimation of rents in the city Frankfurt am Main,
Germany, and forms the basis for the application of Interpretable Machine Learning (IML)
methods. Different model-agnostic tools such as feature importance and feature effects
are applied to illustrate how hedonic characteristics contribute to the final prediction of
the applied ML model. To the best of the authors’ knowledge, this is the first real estate
related study to use ex-post IML methods to justify machine-based decision-making on the
one hand, and on the other hand, to gain further insights into the individual value of

certain hedonic characteristics of an apartment.

4.3 Literature Review

For decades, hedonic models have formed the basis for empirically assessing prices and
rents of properties based on their characteristics, such as amenities or location. A hedonic
model estimates the effects of these characteristics by bundling them into a function and
can thus determine the price of a property. The approach is commonly used because the

concept offers many possible applications for a wide variety of problems.

According to Sirmans et al. (2005), origins of the hedonic model do not go back to just
one founding father. Whereas Court (1939) first used a hedonic procedure to determine
automobile prices, Lancaster (1966) and Rosen (1974) paved the way for the application
in real estate. Since then, a large body of literature has emerged dealing with issues
surrounding the relationship between the price or rent of a property and its characteristics.
Essays by Sheppard (1999), Malpezzi (2002) and Sirmans et al. (2005) provide an overview
of the diversity, but also the complexity of the questions that arise within hedonic research.
However, the starting point is, as so often, the underlying data set or the available features
of a property. Dubin (1988) argues that building characteristics that usually determine
prices in a hedonic model can be grouped into three categories: Structural, location and
neighborhood variables. Can (1992) and Stamou et al. (2017) define them as follows:
Structural variables describe the nature of an apartment, such as its size, the number of
rooms or the age of the property. Location variables, on the other hand, such as distance
to the central business district (CBD), define the geographic location. Neighborhood
variables tie in here and illustrate the socio-economic environment such as household

income or the physical make-up of the closer environment. Often, the location and
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neighborhood variables are considered together, as sometimes the distinction is not
evident (Can, 1992, Haider & Miller, 2000, Des Rosiers et al., 2011, Stamou et al., 2017).
In the recent past, much of the focus of studies has been on the effect of these locational
or neighborhood characteristics. Within this group, variables of interest come mainly from
the environmental, infrastructure and social domains. With respect to features in the
immediate environment of a property, Dumm et al. (2016), Rouwendal et al. (2017) and
Jauregui et al. (2019) analyze the effect of proximity to water on price. Studies by Below
et al. (2015) and Dumm et al. (2018) show the price impact of nearby subsurface
conditions such as sinkholes or land erosion. Other issues such as the influence of distance
to urban green spaces (Conway et al., 2010) or the presence of air pollution (Fernandez-
Avilés et al.,, 2012) also receive attention. Considering the group of neighboring
infrastructural facilities and their impact on properties, different studies emerged. Hoen et
al. (2015), Hoen and Atkinson-Palombo (2016) and Wyman and Mothorpe (2018) study
the effects of nearby electric facilities on property prices, such as wind turbines and power
lines. Availability of transportation facilities such as of a highway and rail transit are
investigated by Chernobai et al. (2011), Li (2020) and Chin et al. (2020). According to
Theisen and Emblem (2018) and Zheng et al. (2016), the possibility of an easy access to
early childhood education and training in the form of nearby kindergarten or schools is
also a price-determining factor of residential properties. There are even more exotic
themes such as the influence of strip clubs (Brooks et al., 2020) or the proximity to food
trucks (Freybote et al., 2017). Nevertheless, factors in the immediate social environment
can also play a role. For example, Goodwin et al. (2020) find that the presence of home
ownership associations has price-determining effects. Seo (2018) shows that the

neighborhood condition is similarly price determining.

When it comes to the model design, the usual hedonic approach involves a parametric,
semi- or non-parametric multiple regression analysis, which uses a pooled data set of
properties and their individual features. Interestingly, the development of improved
computational capabilities has recently allowed other methods such as ML to complement
this estimation process. While the parametric hedonic price regression approach is largely
applied for inferential purposes, its potential for predictive tasks is rather limited (Pérez-
Rave et al., 2019). The scope of ML methods, however, is the other way around. While
inference has hardly played a role so far due to the mostly opaque algorithms, the
predictive qualities of these methods are much more pronounced. ML algorithms, like
gradient tree boosting (GTB) (Friedman, 2001), random forest regression (RFR) (Breiman,
2001a) and support vector regression (SVR) (Smola & Scholkopf, 2004), are capable of

artificially learning from the underlying data and continuously improving their predictive
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performance. Hence, these algorithms have shown remarkable accuracy. In the real estate
literature, various studies demonstrate the performance of ML algorithms and parametric
hedonic models, including Lam et al. (2009) and Kontrimas and Verikas (2011) for SVR,
Yoo et al. (2012), Antipov and Pokryshevskaya (2012) and Yao et al. (2018) for RFR and
van Wezel et al. (2005) and Kok et al. (2017) for boosting methods such as GTB.
Furthermore, Zurada et al. (2011), Mayer et al. (2019) and Ho et al. (2020) document the

performance of different ML methods.

However, these methods are viewed critically due to their black box character (McCluskey
et al., 2013), since the final result often delivers the raw prediction without letting one
know how it came to the respective conclusion. As Mayer et al. (2019) state, the predictive
accuracy is only achieved by reduced comprehensibility of the ML models due to its ability
to artificially capture highly complex pattern within the underlying data. In consequence,
researchers are mostly faced with the trade-off between what is predicted (prediction) and

why the prediction took place (inference).

In general, many ML methods, such as SVR, RFR and GTB, provide model transparency
since there is an understanding of how the underlying algorithm works and the algorithm
can be described mathematically without further knowledge of the data — although the
structure of ML methods is increasingly complex. Nevertheless, model interpretability in
terms of identifying and understanding what factors impact the final predictions seems to
be the bottleneck for an overall acceptance and implementation of ML methods, because
sole measures like predictive accuracy are “an incomplete description of most real-world

tasks” (Doshi-Velez & Kim, 2017).

In the real estate literature, first approaches have been made to combine predictive and
inferential purposes within a ML context. Pérez-Rave et al. (2019) propose a variable
selection approach called “incremental sample with resampling” tested on two data sets
of property prices. They apply random forests to varying subsamples to predict the final
property prices. Variables are identified as important, if the feature is used in the final
prediction rule of the RFRs for 95% of the subsamples. The final inferential interpretation
is based on a parametric hedonic model using only the ML-selected variables. Moreover,
Pace and Hayunga (2020) analyze the informational content of residuals from linear, spatial
hedonic regression and ML models. After applying regression trees, they find that spatial
information is still present in the residuals of ML models. Although single trees are easy to
understand and their decision rule can be illustrated graphically, they show limited
predictive performance and tend to be unstable due to high sensitivity to changes in the

data or tuning parameter.
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To conclude this section, this rather young field of research opens up the possibility to
further engage with the interpretability of ML models and the impact of hedonic
characteristics. In the following, we present the data set of our analysis and describe the
methods we use to enable the interpretability of ML-based predictions. After that, we

discuss the results and summarize our findings in the conclusion.

4.4 Data

The sample for our analysis comprises 52,966 observations of residential rents in Frankfurt
am Main, Germany. The country is the fourth largest economy worldwide and known as
a safe haven for both domestic and cross-border real estate investments. With one of the
lowest home ownership ratios of 51% being well below the European average, Germany
is seen as a rental market rather than a homeowner market. Frankfurt represents the
leading financial hub in continental Europe and is hosting the European Central Bank and
the Frankfurt Stock Exchange amongst many important financial institutions. Its

metropolitan region is home to more than 5.8 million inhabitants.

Figure 4.1. Distribution of rents and observations of the Frankfurt data sample

Rents per sqm in EUR Rents per sgm in EUR

<10 <12
10-11.50 12-14
B 1150-13 14-16
Bl - 1450
- 450

Notes: The left map shows average rents per sqm for each ZIP code. The right map depicts all observations. Both cover the
Frankfurt city area from 2013 to 2019. The thin grey lines display the ZIP codes.

Rental data stems from Empirica Systeme, one of the largest German provider of real estate
data, which comprises, amongst others, real estate listings of leading German Multiple
Listing Systems (MLS). Data preparation and cleaning is performed to account for
duplicates and erroneous data points. As the study focuses on the urban rental market in
Frankfurt that is mainly determined by apartment rentals, we exclude single, semi-

detached and terraced houses. We furthermore leave out student apartments, senior living
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accommodations, furnished co-living spaces, and short-stay apartments to control for
highly specialized sub-markets that are expected to bias the overall rental market. Figure
4.1 provides two maps of the rental distribution in the data sample for Frankfurt. It
highlights the average rent per sqm in every ZIP Code (left) and displays all observations
gathered (right). Both maps indicate that the highest rents are found in the center, while
lower rents tend to occur in the outskirts. There are no rental observations in the most

southern part of Frankfurt due to highly forested areas and the airport of Frankfurt.

Besides the rent as target variable, the data contain information on structural
characteristics in terms of living area, building age, floor and whether a kitchen, parking
spot, balcony, terrace, bathtub and elevator is present or whether an apartment is
refurbished. We add socio-economic data from Growth from Knowledge, Germany's
largest market research institute. Since all rental data points are georeferenced, we are
able to add a spatial gravity layer based on data from Eurostat, the German statistical office
and Open Street Map to account for spatial information and therefore add several location
variables. We include the distance to the CBD as well as to numerous important amenities.
Proximity to bus and railway station account for public transport and accessibility. Bakery,
supermarket, convenience and department store distances comprise the local supply. Bar,
beergarden and café represent the access to hospitality. While distances to school and
park allow insights on public amenities, proximity to car wash and traffic signal incorporate

adverse effects mainly due to noise emissions.

MLS are frequently used in German rental markets from professional as well as from private
landlords. Moreover, since neither landlords nor tenants are obliged to disclose contract
information in Germany, listing data is the main source of information for both researchers
and practitioners."" In addition, it should be noted that rental price formation in major
German cities is generally dominated by the offering party since residential vacancy rates
in metropolitan areas are remarkably low.™ A look at individual renting scenarios reveals
that a landlord regularly receives inquiries in the double-digit range for an apartment that
has been advertised. In consequence, the rental decision is not based on auction
procedures but rather on timely application and best (personal and solvent) fit for the
landlord. In the literature, Cajias and Freudenreich (2018) demonstrate that German
residential markets are subject to low Time-on-Market and diminishing degrees of

overpricing. As Grobel (2019, p. 8) suggests, asking data in Germany “reflect the currently

" See e.g. Grobel and Thomschke (2018) using German rental listing prices in research as well as well-
established applications of listing data e.g. F+B Residential Index or Empirica Real Estate Index in practice.

2 According to CBRE, the vacancy rate for residential real estate in the city of Frankfurt am Main marks 0.4%
of the stock. Moreover, Immobilienscout 24, the leading online listing platform for real estate in Germany,
reports 198 clicks on average for an online apartment advertisement.
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prevailing overall market situation”. Although we do not claim that rental listing precisely
reflect the agreed contract rent, we expect the listing rents to be a useful framework for

the ongoing analysis.

Table 4.1. Descriptive Statistics of the dataset for Frankfurt am Main

Variable name Unit Mean Median Std.Dev
Rent EUR/month 1,036.123 884 638.175
Living area sgm 78.175 72 36.688
Floors Integer 2.396 2 2.328
Age (relative to 2017) Integer 49.377 48 39.701
Bathtub Binary 0.564 1 0.496
Refurbished Binary 0.242 0 0.428
Built-in kitchen Binary 0.688 1 0.463
Balcony Binary 0.633 1 0.482
Parking Binary 0.487 0 0.500
Elevator Binary 0.449 0 0.497
Terrace Binary 0.136 0 0.342
Purchasing Power EUR/HH/ZIP 50,390 49,993 5,798
CBD_distance Km. 3.616 3.604 1.896
Bar_distance Km. 0.722 0.511 0.636
Beergarden_distance Km. 1.135 0.937 0.759
Cafe_distance Km. 0.346 0.240 0.325
Bakery_distance Km. 0.370 0.245 0.403
Convenience store_distance Km. 0.849 0.589 0.748
Department store_distance Km. 1.550 1.306 0.997
Supermarket_distance Km. 0.252 0.223 0.167
Bus station_distance Km. 3.062 2.667 1.566
Railway station_distance Km. 0.835 0.581 0.685
Traffic signals_distance Km. 0.186 0.157 0.135
Car wash_distance Km. 1.266 1.234 0.584
Park_distance Km. 0.266 0.236 0.158
School_distance Km. 0.302 0.278 0.167

Notes: The table reports the summary statistics comprising data as of January 2013 to December 2019. Age is calculated
as the difference of the building age to the year 2017. All distance variables are calculated as the distance to the specific
dwelling in kilometers. Binary variables report whether the dwelling includes a certain characteristic (1) or not (0). Rent is
presented as euro per month. Information on households (HH) is reported on ZIP level. SD: standard deviation, Min:
minimum value, Max: maximum value.
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Table 4.1 shows the descriptive statistics. We find a mean asking rent of 1,036.12 EUR
p.m. (euros per month). An average apartment is 78.175 sqm located on the 2" floor in a
property that was built in 1968. The apartment contains a bathtub, a built-in-kitchen, a
balcony, but neither a parking slot nor an elevator. On average, it is 3.62 km away from
the CBD, 350 meters to the next café and 250 meters to the closest supermarket. The bus
and railways station are 3 km and 0.84 km away, whereas the next school is located 300

meters nearby. The mean household purchasing power amounts to 50,390 EUR p.m."?

4.5 Methodology

ML has proven its predictive power in the literature and is commonly used by real estate
professionals to inform their decision making (RICS, 2017). We apply a tree-based
approach to build the foundation for further analysis. As Pace and Hayunga (2020) state,
a regression tree (RT) is easy-to-understand while still being capable of identifying complex
pattern. That is because trees can capture non-linear relationships as well as interactions.
In its core, a RT can be understood as nested if-else conditions. Tree-based models divide
the data in distinct subsets and make a prediction for every subset (which usually is the
average outcome of all observations in the specific subset). The division is made by several
splitting steps, in which iteratively a feature variable is chosen and its feature space is split
in a way that a certain criterion is affected most (e.g. the prediction error is reduced most)

until a stopping point is reached.

Since single trees are prone to misspecification, ensembles are used to aggregate and
combine the prediction rule of multiple trees. We choose XGB as an ensemble boosting
method, which has shown to be capable of accurately predicting property prices and rents
and at the same time yield robust estimation results." Developed by Chen and Guestrin
(2016), it is a promising approach for regression, as well as for classification, as it contains
specific features that won it several Kaggle'> competitions in the recent past. In its basic
concept, boosting fits an initial tree, calculates the residuals of the initial prediction, and
fits another tree on the residuals to stepwise reduce the prediction error and incrementally

enhance the final prediction rule. To prevent overfitting cross-validation is applied.

3 In Table 4.3 in the appendix, we provide a full set of correlation coefficients for all variables.

4 In general, tree-based ensemble algorithms are based on two different approaches, namely boosting and
bagging. See e.g. Hastie et al. (2009) for a more detailed introduction to the fundamentals of ML models.

> Kaggle is one of the leading online platforms for the data science community and regularly hosts data
competitions.
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Because the internal logic and consequently the rationale behind the individual predictions
is rather hidden, the use of ML often lacks transparency. In consequence, a growing body
of literature on IML'® has evolved in recent years to further ‘improve trust’ in algorithmic
decisions (See e.g. Adadi & Berrada, 2018; Carvalho et al., 2019; Arrieta et al., 2020 or
Linardatos et al., 2021). In general, tree-based ML methods show some sort of algorithmic
transparency, since their underlying concept and theory is comprehensible and
mathematically described (James et al., 2015). Nevertheless, it is not evident, which

feature'” and to what extent it contributes to the prediction.

One possibility to understand how predictions are achieved in this context is to use
interpretable ML models.'® Like in parametric models, specific restrictions limit the
complexity of the model and therefore allow inferential insights. RTs are a well-known
example of interpretable ML models if e.g. the depth of the tree is limited. As Molnar
(2020) states, short trees with a depth up to three splits are interpretable in a
comprehensive way, since a maximum combination of three if-else-conditions as the

decision rule is enough to explain how the model yield a certain prediction.

Limiting the models complexity often results in depriving ML much of its effect, since their
flexible structure enables a strong predictive performance (Breiman, 2001b)™.
Consequently, (post-hoc) model-agnostic interpretation methods have been developed,
which separate the explanatory framework and the ML model, thus preserving its
predictive capabilities. In contrast to interpretable models, the ML model remains a black
box, with the separated interpretation methods aiming at extracting interpretable
information post-hoc. Model-agnostic tools benefit from their flexibility because they do
not depend on a specific ML method and can be applied to various learners (Ribeiro et al.,
2016).

Interpretation methods differ on whether their focus is on feature importance or feature
effects. The first one aims at evaluating which feature contributes the most to the
prediction, whereas the second one sheds light on how a single feature contributes to the
prediction. The methods are perceived as typical and useful tools to show the impact of

features in ML models and explain the inner working on a global level (Hastie et al., 2009).

'® In the context of IML, the term Explainable Artificial Intelligence (XAl) is often used synonymously.

7 To describe the covariates, hedonic literature mainly refers to them as variables or characteristics, while
research on IML generally uses the term features.

'8 Interpretable ML models are also referred to as transparent models, since they are considered to be
understandable by itself.

9 See e.g. Shmueli (2010) for further discussion on the trade-off between model accuracy and interpretability.
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We use the FeatureEffect and Featurelmp functions both implemented in the iml package
in R (R Core Team, 2016).

Feature importance (FI) measures the relevance of a single feature for the prediction.
The importance of a feature is calculated by permutation of the observed feature values
and its effect on the prediction error, keeping all other features constant. Based on the
concept of Breiman (2001a) for random forests, Fisher et al. (2019) provides a model-
agnostic framework for measuring the covariates contribution to the accuracy of an ML

model called ‘model reliance’.

Let X be the feature matrix, Y the dependent variable and f the ML model, with the
prediction error e being measured by a loss function L(Y, f(X)). The feature importance
is defined as the ratio of the model error after permutation to the original model error

before switching features.

€perm (f)

FI(H) = - )
orig

(1)

The permutated error is thereby calculated as the expected error of the ML model based

on the permuted feature matrix Xy, e, .

eperm(f) = EL(Y, f(Xperm)) (2)

To visualize the most important features, every variable is ranked and plotted according to
their Fl. Alternatively, the Fl score can also be calculated as the difference of both errors,
although the ratio provides the advantage of higher comparability. We use the Mean
Absolute Error (MAE) as loss function. By switching the feature values of all observations
(e.g. an observation with 1 for a kitchen being present is switched to 0), FI calculates how
much this change leads to an observable decrease in prediction accuracy. It can
consequently identify whether the specific feature contributes to the overall prediction or
whether its change does not perceptibly affect the outcome. Lastly, we average the
importance measures over 100 repeated permutations. As Fisher et al. (2019) states, Fl is
a helpful tool to identify influential features and increase the transparency of black box

models.

In addition to the individual importance, feature effects show how a single feature
influences the predicted outcome of an ML model. After the training process, a ML model
has learned a specific relationship between the covariates and the target variable that can
be analyzed. Partial Dependence (PD) plots visualize the marginal effects of features on the
model’s prediction (Friedman, 2001). The plots are based on partial dependence functions

which highlight the effect of one feature on the target variable when the average effects
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of all other features are accounted for. PD plots reveal useful information e.g. whether the

relationship can be explained linearly or in a more complex manner.

Let once again X; be the vector of the j variables and n be the number of observations.
The PD is the effect of features of a subset X by marginalizing over all other features in
the complement subset X, (Zhao & Hastie, 2021). Given the ML model f, the partial

function f, is defined as:

foo(xs) = Ex [f Crsr )] = f £ (x5, x¢) dP(xc) 3)

With dP(x) being the marginal distribution of X.. Marginalizing over all other features
leads to a function that is solely dependent on the features X to be analyzed. The partial

function f is estimated using the Monte Carlo method to average over actual features

values xéi) while keeping X constant:

fol) = 2 (x50) @

As shown in Greenwell (2017), all values of feature xg (e.g. living area) are in a first step
replaced with the particular feature value (e.g. of the first observations). The ML model
predicts expected output values for the newly created dataset (where all observations have
the same constant feature value xs). Averaging over these predictions calculates the
marginal effect at the particular feature value. This step is repeated n times to obtain a
marginal effect for all observed feature values. Finally, the single feature values are plotted
against the resulting f,. For a linear hedonic model, e.g. based on ordinary least squares
(OLS), a PD plot would show a straight line representing the specific estimated coefficient.
As Zhao and Hastie (2021) state, PD plots are a valuable visualization tool to interpret how

the prediction of ML models depend on specific features.

4.6 Econometric Results

To set up a functional ML framework, we first train the XGB algorithm on our dataset of
rental prices described in the data section. We apply random cross-validation with five
folds and five repetitions. The tuning process takes 16 hours with 72 central processing
units (CPUs) running simultaneously. The final XGB model is trained with n = 0.243, y =
0.0431, A =28.99 and a = 22.64. The out of sample rental prediction with XGB yields to
a R? of 92.50%. The mean absolute percentage error marks 11.13%. Moreover, 57.96%

of all predictions deviate less than 10% from the observed values. The tuned XGB
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algorithm subsequently allows a post-hoc analysis with a set of model-agnostic

interpretation tools to identify feature importance and feature effects.?
Feature importance of the hedonic characteristics

Figure 4.2 provides the relevance of all characteristics for the ML prediction based on FI.
The features are individually ranked on the y-axis from most important at the top to least
important at the bottom. The x-axis provides information of how much prediction accuracy
changes when the feature values are permutated. Median values are plotted with the bar
denoting the 5% and 95% quantiles. Feature importance ratios exceeding 1 indicate an
observable impact on the overall prediction. Ratios that tend towards 1 imply a rather

negligible influence of the features.

Figure 4.2. Feature importance of the hedonic characteristics
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Notes: The figure displays the median values of the relative feature importance obtained with XGB. MAE is chosen as loss
function. Variables are ranked based on their Fl score. The bar denotes the 5% and 95% quantiles of the distribution of FI
scores after 100 repetitions. A break in the horizontal axis is conducted to ease readability.

It is not surprising, that living area and age are seen to have by far the biggest impact on
rental prediction. Their median values highlight that randomly permuting living area and
age individually 100 times, increases the model error by a factor of 4.64 and 1.39, while
keeping all other variables constant. Furthermore, distance to the CBD and to a
department store are of high importance and associated with an increase in MAE of 1.10

and 1.09. We expect both variables to be a suitable proxy for a good location.?' Moreover,

20 To ensure basic hedonic functionality of a hedonic rent estimation, we apply linear, spatial and non-linear
methods in advance. The corresponding methodology is discussed in the appendix and the results are
presented in Table 4.2. All variables show expected signs and do not contradict findings from related literature.

21 In major German cities, department stores are usually located either close to the city center or in highly
frequented and therefore good shopping locations.
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the presence of a built in kitchen is also heavy influential. The purchasing power per
household is followed by the distances to the bus station and the next bar and
beergarden.?? The existence of a parking spot complements the ten most influential
variables. We will not discuss the remaining variables in detail since their contribution
seems rather marginal. The small distribution of FI for all variables demonstrated by the
5% and 95% quantile indicates that the results are stable over all repetitions. To
summarize, feature importance ranks how relevant a variable is for the predictive task as
it provides which variables are more or less influential for an ML model. One can thus
obtain a first impression whether an algorithmic hedonic model delivers reliable results
that are based on a plausible understanding of the economic context. However, FI does
not provide any information about the sign. To clarify e.g. whether a small or large distance

is decisive, we investigate feature effects in a next step.
Feature effects of the hedonic characteristics

PD plots enable an analysis of how a certain feature influences the rental prediction and
which relationships between residential rents and property characteristics has been traced
by the algorithm. While the X-Axis provides information on the independent variable with
the stacked black lines indicating the amount of observations, the Y-Axis shows the
respective rent level. Since marginal effects are calculated and averaged for every feature
value, PD plots require high computational power. Thus, we plot the partial dependence

for the year 2019, whose generation took eight hours of computing time.

Figure 4.3 demonstrates how rental prices are associated with the four most influential
characteristics living area, age and distance to CBD and department store. We start with
the most important feature living area, which is incorporated as the natural logarithm.
Since the PD plot highlights a linear relationship, the commonly applied log-log
transformation can be confirmed as a good approximation of the positive relationship
between living area and rent. Recent hedonic literature on property prices provides similar
findings for the positive relationship (e.g. Dumm et al., 2016, Dumm et al., 2018 or Stamou
etal., 2017).

22 Beergardens are perceived as important hospitality institutions in Germany and thus the result is not
surprising.
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Figure 4.3. PD plots for living area, age, distances to CBD and department store
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Notes: The figure displays the partial dependence of the most important feature regarding two structural characteristics and
distance to CBD and department store. The vertical axis denotes the feature values of log rent level while the horizontal axis
represents the covariates feature values. Stacked black lines display the number of observations.

Age is perceived to be more complex, though intuitive. We find rental values to decrease
with greater age until a building year of 1990-2000. While newly build apartments obtain
highest rents, depreciation, changes in living preference as well as increasing requirements
on energy-efficient construction most likely result in a steep decline in rental values. This
is followed by an indifference of rental values up to 1940™. Frankfurt was heavily bombed
in World War Il, with emergence constructions of social housing provided by the
government in the following decades. Therefore, historical pre-war buildings face higher
rents. Consequently, building age displays a u-shaped relationship, as e.g. incorporated in
Mayer et al. (2019).

Distance to CBD is perceived to be highly influential. In general, we find rental prices to
decline with greater distance to the city center. Hedonic literature suggests similar
conclusions since authors such as Osland (2010) or Zheng et al. (2016) also find a negative
relationship between property prices and distance to the city center. However, the
opposite effect is visible for close proximity. We expect tenants to appreciate separation
from very urban areas. A graphical turning point can be found at about 1.5 km, followed
by moderate decline in rental prices. Interestingly, apartments close to the CBD face
comparable rental values than the ones in 5 km distance. A steep decrease in rent levels

can be seen beyond 5 and 7.5 km.

Regarding local supply, department stores are rather linearly and negatively associated
with rental values. The proximity to shopping facilities results in increasing rents. We do

not find an equivalent distance variable in the hedonic literature, however, Dubé and
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Legros (2016) show a positive price effect for properties not more than 1 km away from a
shopping center. Interesting to note, the distance to department store drops sharply at
about 1.5 and 2.5 km. This could indicate a critical distance for consumer goods. However,
FI identifies supermarket as the least important distance variable. We assume that a high
density of supermarkets in urban areas ensure local supply for everyday goods and
therefore result in a negligible influence on rental values. In contrast, we assume different
circumstances in rural communities. With minor influence due to the limited appearance
of department stores, we expect the importance of supermarket to be more pronounced

in non-metropolitan areas.

Furthermore, Fl ranks the presence of a built-in kitchen as important. Grobel and
Thomschke (2018) find a significant positive relationship between built-in kitchens and
rents in Berlin (Germany). However, due to its binary nature, the visualization with PD plots

is limited.

Figure 4.4. PD plots for purchasing power, distance to bus, bar and beergarden
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Notes: The figure displays the partial dependence of the most important feature regarding two structural characteristics and
distance to CBD and department store. The vertical axis denotes the feature values of log rent level while the horizontal axis
represents the covariates feature values. Stacked black lines display the number of observations.

The next most important characteristics displayed in Figure 4.4 are, according to Fl,
purchasing power and distance to bus station, bar and beergarden. We find socio-
demographic information to show a rather linear relationship. Neighborhoods with high
purchasing power are associated with more expensive apartments and thus the variable is
perceived as a characteristic of a good residential area. A steep increase in rental values
for high wealth districts could reflect the segment of high-rise apartments in residential

towers. While the construction of high-rise buildings is restricted in most German cities,
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Frankfurt has early incorporated tower buildings in urban planning. These do not only
represent the highest price segment in the residential market of Frankfurt but have shown

to be driver of residential prices and rents in the last years.

Interesting to note, the distance to bar, beergarden and bus station have shown to affect
the overall prediction the most out of all hospitality and public transport features. All three
variables show a non-linear relationship with residential rents. We find the distance to a
bar to be positively associated with rental values up to approx. 700 meters. While a bar in
close proximity would result in lower rents, the access to hospitality leads to an increase
in rental values only from a certain distance. We expect tenants to face a trade-off between

accessibility and negative externalities such as noise.

The same relationship holds for the variable bus station. A location further away from a
central bus hub is linked to higher rental values up to approx. 1.7 km. Since central hubs
are related to mostly high urban density and traffic, we assume that tenants appreciate
locational separation. The plot reveals the relationship to be quite constant until 3.5 km,
followed by declining rental prices. The accessibility to central hubs through different
means of transport seems to overlay negative effect of a larger distance. However, after
3.5 km, we find this effect to become visible and apartments that are poorly located in
terms of transport face discounts for low accessibility. The presence of a parking spot
complements the ten most influential variables, yet as a binary variable, it is not displayed

as a PD plot.

Adding a temporal dimension to our analysis by displaying feature effects on a yearly basis
enables us in a last step to illustrate temporal dynamics of the effects of hedonic
characteristics. We demonstrate the latter by analyzing the distance to the CBD (Figure

4.5) and the distance to a department store (Figure 4.6).

At first, Figure 4.5 shows a negative relationship between rents and the distance to CBD
across time. A continuous upwards shift for all feature values indicates increasing rent
levels during the observed period. Only the graph of the year 2019 behaves differently,
since it moves below 2018 for closer proximity and analogous from 5 km distance
onwards. This development could be attributed to a declining preference for downtown

locations in combination with overall stable rent levels in recent years.
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Figure 4.5. PD plots for distance to CBD for the years 2013 to 2019
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Notes: The figure displays the partial dependence of important variables over different periods. The vertical axis denotes the
feature values of the log rent level while the horizontal axis denotes the covariates feature values.

Although the course of all lines is quite similar, we find some differences. First, a drop in
rental prices at a distance of 5 km is less pronounced for 2017, 2018 and 2019 than for
previous years. This possibly indicates that residential locations further away from the
center experienced rent increases due to a growing preference for sub-urban areas during
the last years. Second, another major decline can be recognized at 7 km for 2013 to 2016.
In the following years 2017 to 2019, however, this is only noticeable at a distance of
approx. 7.5 km, but the downturn is considerably stronger. Both changes indicate that
residential locations in medium distance to the center (5 to 7.5 km) experienced stronger
rent increases compared to central as well as periphery location. We would assume that
high demand in central locations results in a preference shift towards apartments further

away from the CBD.

In Figure 4.6, a negative relationship between rents and the distance to a department store
is displayed, yet a similar pattern for the graphs can be seen in terms of comparable
upwards shift of rents throughout all periods and 2019 being slightly below 2018. A first
major decline is visible at approximately 1.2 km, with the years 2013, 2014 and 2015
experiencing a stronger decrease. From 2.6 km distance, the picture is the other way
around. Whereas rents fell rapidly from 2016 to 2019, the downturn was not as strong as

in previous years.
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Figure 4.6. PD plots for distance to department store for the years 2013 to 2019
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Notes: The figure displays the partial dependence of important variables over different periods. The vertical axis denotes the
feature values of the log rent level while the horizontal axis denotes the covariates feature values.

The findings indicate that while locations between 1.2 km and 2.8 km gained popularity,
locations in close proximity as well as further away remained more or less stable. Figure
4.7 in the appendix provides additional and centered PD plots for the features Distance to
department store. Centered PD plots aid and underpin the interpretation of the differences

in PDs throughout the years.

Ultimately, the feature effects technique yields greater transparency of how the different
inputs contribute to the final estimation of the ML model. By visualizing the individual
relations between the variables and the rent to be estimated, this method demonstrates
which (economic) rational the algorithm has learned from the data and accordingly

integrated into its internal calculations.
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4.7 Conclusion

This paper sheds light on how Machine Learning (ML) based decision making in hedonic
modelling can be made more transparent. We visualize and investigate the relationship
between residential rents and a set of hedonic variables, which was learned by a ML model.
Based on a residential dataset of more than 52k apartments in Frankfurt am Main,
Germany, we apply the eXtreme Gradient Boosting algorithm (XGB) for rental prediction.
Model-agnostic Interpretable Machine Learning (IML) methods are subsequently used to
examine feature importance and feature effects. Feature importance (Fl) reveals that living
area, age and the distance to CBD and a department store influence the overall rental
prediction the most. In contrast, the least important features are several structural dummy

variables and the distance to a supermarket and a bakery.

We plot the partial dependences (PD) for the influential variables that were detected in the
preceding analysis to highlight feature effects. Although the relationship of rental values
and the distance to CBD and department store is mainly linear, major declines at specific
proximity values indicate that critical distances to the center as well as to local supply exist.
Furthermore, there seems to be a difference in rent level to the wealthiest neighborhoods.
Interestingly, we find that close proximity to hospitality and public transport is associated
with rental discounts. In addition, the inspection of PD plots on a yearly basis reveals that
especially apartments in a medium distance to the city center face considerable higher rent
increases over the years. We assume both an increasing preference for less urban areas as

well as peaking rent in the center to be possible reasons.

To conclude, interpretation methods can reveal the rationale behind the ML models
estimation by demonstrating what relationship the algorithm detects in the underlying
data. Peeking inside the black box enables researchers to reenact how a ML model arrived
at its prediction and will help to gain new insights, ease practical applications and enhance

reliability in algorithmic decisions.

The insights gained by these methods are relevant not only for research but also for
practice in the private as well as public sector. Since real estate professionals commonly
use ML to inform their decision making (RICS, 2017), model-agnostic methods provide a
useful framework to effectively handle Al-based results. Whereas the advantages of these
methods have already been discussed in detail, difficulties and limitations must also be
pointed out. First of all, there are challenges in terms of computing power. Whereas
parametric or semi-parametric methods are usually able to estimate hedonic models within
seconds, ML-based methods such as XGB take considerably longer. This also applies to the

application of IML. Furthermore, it should be noted that data availability is of course
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essential for hedonic models. Even with ML-based models, an omitted variable bias can
drastically reduce the informative value and thus the applicability. Admittedly, the data set
of this study is quite extensive, but there are of course other additional apartment features

imaginable that could influence the meaning of the results.

IML is a rapidly evolving field with new methods and applications being continuously
proposed. Although this research area has achieved a degree of stability (Molnar et al.,
2020), it is still in its infancy and faces several challenges to overcome. On the one hand,
there is a need to define what interpretability means to then evaluate how black box
models can be made more interpretable. On the other hand, the sensitivity of
interpretation methods is of high importance, since not only these methods, but also the
ML techniques are dynamically developing. To further improve ‘trust’ in algorithmic
decisions ongoing research is necessary. We expect IML methods to be a valuable addition
to the hedonic practice, both because it contributes to the transparency of ML models and
because it provides insights on potentially unknown relationships in real estate hedonic

modelling.
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4.8 Appendix

We apply different hedonic methods that have been used regularly in the literature. First,
we deploy a hedonic OLS modelling approach to estimate the effects of property
characteristics on rental prices. Linear hedonic regression represents the standard
approach in modelling real estate prices and rents and is frequently used in housing studies
(Mayer et al., 2019). The hedonic regression describes the rent Y as the sum of the

predicted values of its characteristics X;:

J
y = ﬁ0+ZXjﬁj+g (5)
j=1
In accordance to the real estate literature, a semi-log functional form with log-
transformation of the dependent variable is conducted. Property characteristics include
structural, socio-economic neighborhood and locational features. Proximity variables
account for the spatial distance to public amenities and transport. Further spatial effects
are modelled via spatial expansion by incorporating the coordinates in terms of longitude
and latitude (Bitter et al., 2007, Chrostek & Kopczewska, 2013, Pace & Hayunga, 2020).

Furthermore, temporal dummies are included for the specific month and year.

Many authors argue that property prices and rents may contain two key figures, namely
spatial autocorrelation and spatial heterogeneity, that can require the spatial extension of
hedonic models (LeSage, 1999). Since the occurrence of spatial effects can lead to
misspecifications and biased results in the OLS framework (Anselin, 1988), we additionally

apply a spatial autoregressive regression (SAR) with the following functional form:
Y=XB+pWY + ¢ (6)
pWY denotes a spatial lag of the target variable Y, with W being the spatial weight matrix

that specifies the spatial structure, and p representing the spatial lag parameter.

However, linear models are subject to various restrictions due to their functional
parametric form that can yield to misspecifications (Mason & Quigley, 1996; Pace, 1998).
Because relationships in housing markets appear often to be non-linear, hedonic modelling
can require the incorporation of more flexible functional forms to account for nonlinearity
(Bontemps et al., 2008; Brunauer et al., 2013). Hence, a semi-parametric generalized
additive model (GAM) is further considered.

] P
Vo= Bot ) X+ D f(Kp)+e )
j=1 p=1
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GAM relaxes the linearity assumption by replacing the parametric linear relationship with
non-parametric smoothers (e.g. splines, near neighbor and kernel smoothers). The linear
equation is expanded by p smooth functions f,, in order to identify latent non-linear effects.
The results of the aforementioned methods are presented in Table 4.2. The coefficients

provide expected signs and confirm a good model fit by showing acceptable R?.

Table 4.2. Results of the OLS, SAR and GAM estimation

Variable name oLS GAM SAR

log Living area 0.939 *** (0.002) 0.900 *** 0.928 *** (0,008)
Floors 0.002 *** (0.0004) 0.003 *** (0.0003) 0.003 *** (0,002)
Age (relative to 2017) -0.0002 *** (0.00003) s58.000 *** -0.000 *** (0,0001)
Bathtub -0.032 *** (0.002) -0.016 *** (0.001) -0.032 ** (0,006)
Refurbished -0.015 *** (0.002) 0.005 *** (0.002) -0.013 *** (0,007)
Built-in kitchen 0.084 *** (0.002) 0.077 *** (0.002) 0.077 *** (0,007)
Balcony 0.011 *** (0.002) 0.025 *** (0.002) 0.012 *** (0,007)
Parking 0.053 *** (0.002) 0.032 *** (0.002) 0.048 *** (0,008)
Elevator 0.053 *** (0.002) 0.020 *** (0.002) 0.048 *** (0,009)
Terrace 0.041 *** (0.002) 0.020 *** (0.002) 0.041 *** (0,009)
log Purchasing Power 0.406 *** (0.011) 0.069 *** (0.002) 0.313 *** (0,040)
CBD_distance -0.019 *** (0.001) $8.692 ** -0.014 ** (0,002)
Bar_distance -0.031 *** (0.002) 58579 -0.024 ***  (0,008)
Beergarden_distance -0.020 *** (0.002) $8.631 -0.015 ***  (0,005)
Cafe_distance -0.014 *** (0.003) $8.700 *x* -0.011 ** (0,010)
Bakery_distance -0.011 *** (0.003) $8.842 *** -0.016 *** (0,009)
sct%r;g’fngt”acnece -0.036 *** (0.002)  $8.144 **r -0.035 *** (0,007)
3?)?:31‘:2:@ -0.006 *** (0.001) 58580 *** -0.008 *** (0,005)
Supermarket_distance -0.018 *** (0.006) S 6.487 *** -0.029 *** (0,020)
Bus station_distance -0.028 *** (0.001) $8.794 *** -0.017 *** (0,004)
Railway station_distance -0.020 *** (0.002) S 8.757 *** -0.020 *** (0,007)
Traffic signals_distance 0.086 *** (0.007) 5 8.243  *** 0.075 *** (0,024)
Car wash_distance 0.012 *** (0.002) $8.763 *** 0.007 *** (0.006)
Park_distance -0.024 *** (0.006) $8.343 *** -0.019 *** (0.020)
School_distance -0.003 *** (0.005) $8.412 *** 0.008 *** (0,006)
Constant -34.043 *** (3.087) 2.405 ***  (0.100) -22.860 *** (11,359)
rho 0.131  ***

time controls Yes Yes Yes

locational controls Yes Yes Yes

observations 52,966 52,966 52,966

R? 0.880 0.885

adjusted R? 0.880 0.898

UBRE 0.028

Notes: "p<0.1; “p<0.05; *"p<0.01, standard errors are displayed in parentheses. The GAM column reports the estimated
degrees of freedom of the smooth terms (s) as well as their joint significance. Time controls (year and month) as well as
location controls (apartment coordinates) are included in all models.
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Figure 4.7. Centered PD plots for distance to department store
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Notes: The figure displays the partial dependence centered at lowest feature value. The vertical axis denotes the feature
values of the log rent level while the horizontal axis denotes the covariates feature values.
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5 Conclusion

5.1 Executive Summary

Market efficiency, price formation in competitive markets and timing behavior are
economic frameworks that are topics for academic studies and ongoing debates since
decades. In this context, the dissertation provides valuable insights in several ways. First,
building up a comprehensive data framework in mainly opaque property markets enables
in-depth analysis and contributes to well-founded decision-making in the real estate
sector. As data in real estate markets is limited or only available in unstructured form, the
emergence of new sources of information can form a basis to overcome the shortcomings
that come with the limited availability of housing data especially in Europe (Rondinelli &

Veronese, 2011).

Second, advances in computational power and the development of Machine Learning
algorithms enable modern regression techniques that are able to identify new insights in
asset mispricing. Given the “high potential of Al-based methods” (Zurada et al., 2011)
together with the limited reliability of current statistical models when facing large datasets,
“new approaches should be introduced to analyze the big datasets that are quickly
becoming the new standard in [real estate] econometrics” (Arbia et al., 2019). Al-based
results can not only model residential markets more accurately, but also reveal

considerable pricing differences in residential portfolios.

Despite the high predictive performance of Machine Learning methods, their inner working
and how these models derive a final prediction is rather hidden. These issues raise the
question on the reliability of ML-based results and the economic context their prediction
is based on, which is a “crucial feature for the practical deployment of Al models” (Arrieta
et al., 2020). Peeking inside the black box allows understanding how an artificial model
comes to its final result and reveals the economic rationale behind its decision-making

process.

Last, and most important, the findings add further evidence on asset mispricing and market
timing in direct and indirect real estate markets. Both that stock prices or their changes
are rational reflection of fundamental values only to a certain extent (Summers, 1986) and
that “fundamentals do not provide a sufficient determinant for real estate” (Farlow, 2013)
build the basis for real estate markets to be a well-suited research subject for mispricing
behavior. More than this, it enables possibilities for market participants to exploit

disequilibria and generate excess returns. Regarding listed real estate, market timing is, in
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addition to daily trading behavior (Barkham & Ward, 1999; Cici et al., 2011), highly present
in equity offerings. Not only the capital structure is suggested to be the result of attempts
to time the capital market (Baker & Wurgler, 2002). The findings of this thesis highlights
that, furthermore, the pricing of such events is determined by deviations of market prices

from fundamental values and consequently market timing.

As asset mispricing is even more pronounced in direct real estate markets due to the illiquid
and heterogeneous nature of properties and the issues associated with appraisal
estimations, timing is an important factor for property investment activities. The findings
of this thesis indicate that mispricing is not only a persistent aspect in residential portfolios,
but can be identified more precisely and in a timely manner with algorithmic-based
methods. This does on the one hand support a more frequent application of modern
approaches in the real estate sector and on the other hand provides investment strategies

for market participants in property markets.

To provide a comprehensive overview of all research findings throughout this thesis, the
following sections provide a brief summary of each individual research paper. Final remarks

and an outlook complement the work.

Summary - Paper 1

Underpricing and Market Timing in SEOs of European REITs and REOCs

Analyzing the market timing behavior in indirect real estate markets, the paper contributes
to the phenomenon of discounts in capital increases. Building a linkage between market
valuation and underpricing in seasoned equity offerings, the findings highlight investors
that time the equity market benefit from lower cost of raising capital. By offering shares
when market values are high, real estate companies are subject to lower underpricing.
Furthermore, the REITs status as well as property specific investment strategies face lower
discounts. This indicates that capital markets reward higher information disclosure and

transparency.

The study comprises a dataset of 470 SEOs of REITs and REOCs from January 2004 to
December 2018. Data is collected from S&P Market Intelligence, former known as SNL
Financial. Multivariate regression models are applied to identifying determinants explaining
the phenomenon of setting the offer price at a discount at SEOs and investigate market
timing in real estate capital markets. Following Baker and Wurgler (2002) and Feng et al.
(2007), market-to-book values form the basis to analyze the effect of timing behavior.

Information on stock price to net asset value and to earnings complement the
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methodological approach (Boudry et al., 2010; Gibilaro & Mattarocci, 2018). The results
are robust to different controls for growth, market-adjusted offer discounts, timely and

winsorized sub-samples and tobit regression.

As and Boudry et al. (2010) show, managers try to time the equity market by issuing equity
when market values are high and investors are over-optimistic. Baker and Wurgler (2002)
stated that that the capital structure is the cumulative outcome of past attempts to time
the equity market. As Ooi et al. (2010) shows, real estate companies tend to time the
equity market by offering equity when stock values are high. The paper adds to the
literature by demonstrating that market-timing behavior in SEOs is rewarded with lower
offer price discounts. Highly valued firms do not only show lower underpricing and
therefore lower initial returns for investors at SEOs. They are also subject to declining
operating performance following the offering (Ghosh et al.,, 2013). Consequently,

managers try to exploit favorable market conditions within their financing decision.

Summary - Paper 2
Rental Pricing of Residential Market and Portfolio Data — A Hedonic Machine Learning

Approach

Transferring the theoretical framework and findings on timing behavior to direct real estate
markets, the aim of this paper is to identify mispricing in residential portfolios and enables
a conceptual framework to derive market-timing strategies in terms of investment or
disinvestment decisions. It furthermore attempts to shed light on how listing systems as
new data source and Machine Learning can form the foundation for a suitable

investigation of property markets.

The study investigates the German residential market in Munich, comprising 65,743
apartments from January 2013 to June 2019. Since Germany does not require neither
private nor institutional landlords to disclose rental information, we use Multiple Listing
Systems as emerging source of information to overcome the challenges raised by the
general lack of European housing data. Socio-economic, spatial gravity and geo amenity

layers complement the dataset.

By expressing the rental price of an apartment as the sum of its estimated individual
characteristics, the study uses traditional hedonic modelling approaches for rental
prediction. Since the potential of parametric hedonic price regressions for predictive tasks
is rather limited (Pérez-Rave et al., 2019), several Machine Learning methods, namely

Support Vector Regression, Random Forest Regression, Gradient Tree Boosting and
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eXtreme Gradient Boosting are applied. Given the relevance of rental estimation for
tenants, investors and governmental bodies, together with the “potential of Al-based
methods” (Zurada et al.,, 2011), the paper evaluates the performance of different
algorithmic hedonic models. Since these models estimate a market willingness to pay for
an apartment based on its hedonic, neighboring and locational characteristics, previous
findings and model specifications are applied to a residential portfolio of 716 institutionally
managed apartments to identify mispricing in terms of deviations from contract rent to

their corresponding market willingness to pay.

The study demonstrates that, on average, institutionally managed apartments show a
considerable potential for rental adjustments in re-letting scenarios. Furthermore, Machine
Learning models indicating higher deviation of estimated and contract rents than linear
models. Thus, the findings indicate that investors rather rely on traditional methods to
derive contract rent levels within their portfolio, whereas Al-based regression approaches
would identify higher rental potential. With that, this study reveals potential benefits when
applying Machine Learning models in the area of residential markets and portfolio to

identify asset mispricing.

Summary - Paper 3
Peeking inside the Black Box: Interpretable Machine Learning and Hedonic Rental

Estimation

Machine Learning can detect complex relationships to solve problems in various research
areas and excels at predictive tasks. Although it represents a promising extension to the
hedonic literature since it is able to increase predictive accuracy and is more flexible than
standard regression-based approaches, specific characteristics impede its widespread
application. This is mainly due to its limited inferential capabilities (Mullainathan & Spiess,
2017).Because the internal logic and consequently the rationale behind the individual
predictions is rather hidden, the use of Machine Learning often lacks transparency
(Carvalho et al., 2019). It comes without saying that this circumstance impairs trust in Al-
based results. The study applies Interpretable Machine Learning to identify how the
algorithm comes to its final prediction and reveals insights on the economic rationale

behind ML-based rental prediction.

Using a dataset of 52,966 apartment in Frankfurt am Main (Germany), we estimate rent
levels with the eXtreme Gradient Boosting Algorithm. Model-agnostic interpretation

methods, namely feature importance and feature effects, are applied to reveal which
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hedonic characteristics are most influential and how they contribute to the overall

algorithmic prediction.

The paper sheds light on how ML-based decision making in hedonic modelling can be
made more transparent. By visualizing and investigating the relationship between
residential rents and hedonic characteristics the model has traced and learned, the findings
enable the interpretability of ML-based prediction to improve trust in algorithmic decision-
making in real estate. While e.g. living area, age and distance to city center is most
influential, the distance to supermarket and bakery shows minor importance. Furthermore,
interpretation methods reveal, amongst others, that close proximity to hospitality and
public transport face rental discount and preference shifts toward medium central
locations over time exist. Not only are ML models able to identify mispricing in institutional
portfolios more precisely, as e.g. shown in paper 2. Interpretable ML methods can
furthermore reveal the rationale behind the estimation of asset mispricing and
consequently highlight their reliability, which has long been seen as the bottleneck for Al

applications.

5.2 Final Remarks and Outlook

Presuming that the market price is the best estimate of the fundamental or intrinsic value,
theories on efficient markets have come a long way. Despite, or even because of its
simplicity, there is still no consensus in the literature on their validity. As Titan (2015) states,
“even if many tried to find the truth behind the efficient market hypothesis, no ultimate
conclusion exists”. Whether asset mispricing is therefore the exception to the rule of
market efficiency, or rather puts the final nail in the coffin of the theoretical framework
will be a fascinating topic for future studies in research and practice. It therefore comes
without saying that this dissertation does not claim to provide a holistic picture to this

puzzling topic.

As John Bogle, founder of The Vanguard Group and index fund pioneer, stated,
“inefficiency doesn't make it easier for all investors to beat the market.” Or in other word:
If one would expect markets to be inefficient, they would still be hard to outperform. In
an attempt to shed light on timing behavior and opportunities, the thesis aims to add
another piece to the puzzle on asset mispricing and market timing, especially in real estate
markets. It therefore should not only build a comprehensive framework for market
participants in the real estate sector, but furthermore encourage current and future

scholars to further this research.
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With one of the most severe pandemic crisis in recent history in mind, uncertainties and
the divergence to fundamental values may lead to a reinvigoration of the discussion on
market efficiency. Extending this strand of research to recent downturn markets that have
been strongly sentiment-driven can add further insights on timing behavior. Further
research could also include both the ongoing progress in data availability and
methodological advancements. While new data sources can provide a suitable data
environment fur detailed and timely analysis, their contribution to in-depth analyses
especially in mainly opaque real estate markets need to be treated carefully. Although e.g.
listing data is seen to play a significant role in housing markets (see e.g. Shimizu et al.,
2016, Han & Strange, 2016), differences to transaction data can occur that need to be

kept in mind (Kolbe et al., 2021).

In addition, Machine Learning and algorithmic decision-making is a rapidly evolving field
with new technical and methodological enhancements continuously evolving. This does
not only provide novel areas of applications, but also impedes consistency and
comparability and therefore hinder a comprehensive understanding. The same applies to
the field of Interpretable Machine Learning. Further research is necessary to increase trust
in Al-based results and ease their application. As mispricing is often linked to behavioral
finance and market sentiment, it would be promising to apply interpretation methods to
further research areas, such as image recognition or textual analysis. Being e.g. able to
explain which words drive sentiment in textual analysis and analyze how sentence
structure influence the informational context of news or company reports could reveal

further insights on the understanding of market sentiment.

As Adadi and Berrada (2018) state for mortgage lending, Al-based decision support of
credit applications may improve and accelerate business operations of banks, however the
sole decision of whether a credit may be granted or denied lacks accountability and does
not represent a satisfactory outcome for neither the applicant nor the creditor. Especially
when it comes to high-stake domains like wealth management, financial services or real
estate, the rationale behind the algorithmic decision is crucial. Especially since regulatory
authorities are the key enables to path the way to a comprehensive adoption of Al to
inform human decision-making, the interpretability of Al-based results will play a decisive
role in further research and practice as well as legislation. In an attempt to provide new
insights on market efficiency, timing behavior and the potential of Al in this context, this
thesis aims to contribute to scientific progress, encourage further research and offer

starting points for future studies.
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