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Preface

About this document

This document is a corrected version of the author’s master thesis, submitted in Re-
gensburg on 14 May 2021. This revised versioin was published by the Library of the
University of Regensburg under DOI 10.5283/epub.47792.

From classical mechanics to blow-ups

In physics, in particular in mechanics, one is interested inN -particle systems, for example
a system of N electrons around a nucleus. These electrons feel an attractive force
towards the nucleus, and repulsive forces among each other, which can be modelled by
an antiderivative to said forces, called a potential.

Such a potential is a function V : R3N → R ∪ {∞}, where the 3N components of the
domain stand for the positions of all of the electrons in three-dimensional space. The
Schrödinger equation which describes eigenstates of this N -particle system is of the form

Hψ + V ψ = Eψ, (0.1)

where H is a differential operator and E ∈ R.
Now the problem is that V is not finite everywhere: Indeed, it becomes singular when

some electrons are at the same point in space, i. e. they collide. For example, the first two
electrons colliding corresponds to the satisfaction of all of the three collision equations
x1 = x4, x2 = x5 and x3 = x6. For large enough N , more equations need to be taken into
account, which then correspond not only to two, but also to multiple electrons colliding.
Additionally, one needs to consider the case of one or multiple electrons falling into the
nucleus leading to even more collision equations.

When trying to numerically solve (0.1), it is important to optimise the behaviour of
the algorithm around these singularities to obtain results of high precision. This can
be done by “blowing up” R3N along the singularity submanifolds which replaces the
potential landscape by a regular one whilst retaining many of the core properties of the
original potential.

In this thesis, we will introduce the abstract concept of the blow-up of manifolds with
corners and we will prove some properties of particular kinds of blow-ups, which show
up in the application to the N -body problem.

Therefore, we present the concept of a manifold with corners, which is a direct gen-
eralisation of the ordinary concept of smooth manifolds, together with different kinds of
submanifold notions. These will make it possible to talk about the blow-up construction.
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Having this abstract foundation, we will then iterate these blow-ups and ask for dif-
ferent kinds of submanifold properties in this context. More precisely, some results from
[2] regarding images of product maps in the context of these iterated blow-ups are dis-
cussed and new insights and stronger versions of these theorems are presented, giving a
complete classification of the types of submanifolds to expect depending on the type of
blow-up.

Lastly, we will consider vector fields on manifolds with corners and we will answer the
question whether or not a given vector field lifts into a blow-up along a p-submanifold.
It turns out that there is a nice necessary and sufficient condition for this to happen,
which can then be used to investigate special kinds of lifts:

Translation vector fields and affine maps on Rn can be extended to the spherical com-
pactification Rn, and for a k-dimensional linear subspace V of Rn, we will characterise
the vector fields which lift into

[
Rn : ∂V

]
.

This is particularly interesting because this type of blow-up shows up in the treat-
ment of the N -body problem using iterated blow-ups, which was discussed in [2, p. 32f,
Example 5.13].
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1 Manifolds with corners and their
submanifolds

For the application purposes mentioned in the preface, one can not only consider ordinary
smooth manifolds, but one needs a particular generalisation of those: manifolds with
corners. This is because after the blow-up procedure, even a smooth manifold without
corners will in general become a manifold with corners.

For a start, we introduce the following model spaces (see [2, p. 4]):

Definition 1.1 (model spaces). For n ∈ N and k ∈ {0, . . . , n} we define

Rnk := [0,∞)k × Rn−k ⊂ Rnk .

Since we do not only want to consider topological manifolds with corners, but smooth
manifolds, we have to introduce a suitable notion of smoothness, which can be found in
[2, p. 4, Def. 1.1]:

Definition 1.2. For U ⊂ Rnk and V ⊂ Rml open and f = (f1, . . . , fm) : U → V , we say
f is smooth if there exists an open neighbourhood W of U in Rn such that f extends to
a smooth function f̃ : W → Rm.
f is a diffeomorphism if f is bijective and both f and f−1 are smooth.

In this sense, using the notation of [2, p. 4f., Def. 1.2], we may now define corner
charts which will locally model manifolds with corners.

Definition 1.3. Let M be a Hausdorff space. A (corner) chart on M is a tuple (U, φ),
where U ⊂M is open and φ : U → Ω is a homeomorphism onto the open subset Ω ⊂ Rnk .

We say, two corner charts (U, φ) and (U ′, φ′) with values in Rnk and Rn′k′ are compatible,
if V := U ∩ U ′ = ∅ or if the map

φ′ ◦ φ−1 : φ(V )→ φ′(V )

is a diffeomorphism.

As in [2, p. 5, Def. 1.3, 1.4], we now proceed in the same way as with ordinary manifolds
to define atlases and smooth maps between manifolds:

Definition 1.4 (Corner atlas, manifold with corners). Given a Hausdorff space M , a
(corner) atlas A = {(Ua, φa) | a ∈ A} on M is a family of compatible corner charts such
that M ⊂

⋃
a∈A Ua.

We say, two corner atlases are equivalent if their union again forms a corner atlas. A
manifold with corners is a paracompact Hausdorff space together with an equivalence
class of corner atlases. For the rest of this chapter, if not defined otherwise, n will always
be the dimension of M .
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1 Manifolds with corners and their submanifolds

Definition 1.5 (Smooth maps between manifolds). A map f : M → M ′ between two
manifolds with corners is smooth if for any two charts (U, φ) of M and (U ′, φ′) of M ′,
the map φ′ ◦ f ◦ φ is smooth. Analogously, diffeomorphisms are defined in the obvious
way.

As manifolds with corners seem to be very similar to manifolds without corners, it is
rather tempting to think that the notion of a submanifold of a manifold with corners is
as straightforward and canonical as usual. And indeed, one can define submanifolds of
manifolds with corners in quite an ordinary fashion and get a sensible object ([2, p. 6f.,
Def. 1.8]):

Definition 1.6 (Submanifold). We call a subset S of a manifold with corners M a
submanifold if for each p ∈ S there exists some k ∈ {0, . . . , n} and a corner chart
φ : U → Ω ⊂ Rnk together with natural numbers n′ ≤ n and k′ ≤ n′ and a matrix
G ∈ GL(n,R) such that p ∈ U and

1. G ·
(
Rn′k′ × {0}n−n

′
)
⊂ Rnk ,

2. φ(S ∩ U) = G ·
(
Rn′k′ × {0}n−n

′
)
∩ Ω.

The first property assures that the matrix G suitably embeds the local model of S
into the one of M , whereas the second statement says that, locally, S sits inside M as a
model subspace up to the action of G.

This definition is surely helpful, but there are some downsides to this approach:

For example, in general, the image of a submanifold under a diffeomorphism onto its
image is not a submanifold, as we will see later in 1.20. Also, certain constructions like
the blow-up of a manifold with corners along a submanifold only work if this subma-
nifold has some additional properties. So it is necessary to introduce different kinds of
submanifolds, each of them with their own advantages and disadvantages.

For example, a slightly less restrictive version introduced in [2, p. 8, Def. 1.112] is the
following:

Definition 1.7 (Weak submanifold). Let M be a manifold with corners and S ⊂ M .
We say, S is a weak submanifold if, for each p ∈ S, there exists a k ∈ {0, . . . , n} and a
chart φ : U → Ω ⊂ Rnk such that p ∈ U and

φ(S ∩ U) is a submanifold with corners of Rn.

The main difference to an ordinary submanifold is that in local coordinates, we do not
obtain a submanifold of the local model Rnk of M , but one of the whole Euclidean space
Rn. This type of submanifold will be of great importance since images of submanifolds
under a diffeomorphism onto its image are always weak submanifolds.

In contrast to that, a more restrictive version of a submanifold are so-called p-
submanifolds. These will be modelled by the following submanifolds of Rnk (see [2,
p. 8, Def. 1.13]):
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Definition 1.8. Let I ⊂ {1, . . . , n}. We define

LI := {x = (x1, . . . , xn) ∈ Rnk | xi = 0 if i ∈ I}.

We say, b := #(I ∩ {1, . . . , k}) is the boundary depth of LI , c := #I is the codimension
of LI and d := n− c its dimension.

These sets are special submanifolds of Rnk , in the sense that they are factors of products
of the form Rnk ∼= Rn1

k1
× Rn2

k2
. As in [2, p. 9, Def. 1.14], the idea for p-submanifolds now

is to model them locally as such a factor LI of the product Rnk = LI ×L⊥I which explains
where the “p” in p-submanifold comes from.

Definition 1.9 (p-submanifold). A subset P of a manifold with corners M is a p-
submanifold if, for each x ∈ P , there exists a chart (U, φ) with x ∈ U and I ⊂ {1, . . . , n}
such that

φ(P ∩ U) = LI ∩ φ(U).

Dimension, codimension and boundary depth are defined analogously to Definition 1.8.

Then there is a type of submanifold which lies in between p-submanifolds and sub-
manifolds: those without an interior boundary. Although the name suggests that the
definition uses a correspondence between the boundaries of the submanifold and the
ambient manifold, we actually think of them to locally be the intersection of a linear
subspace of Rn with Rnk (see [2, p. 11, Def. 1.21]):

Definition 1.10 (wib-submanifold). Let M be a manifold with corners and let S ⊂M
be a submanifold. Then S is called a wib-submanifold or a submanifold without interior
boundary if, for every p ∈ S, there exists a chart φ : U → φ(U) ⊂ Rnk , and some linear
subspace L of Rn such that p ∈ S and

φ(S ∩ U) = L ∩ φ(U).

Using the notation G for the linear map in 1.6, we have L = G · (Rn′ ×{0}). So in other
words, a submanifold is a wib-submanifold if and only if one can choose k′ = 0.

We see that any boundary of S in the definition above can only occur as the intersection
of S with the boundary of Rnk because of the local description. Hence, the boundary
of a wib-submanifold is completely contained in the boundary of the ambient manifold
which explains the choice of the name “submanifold without interior boundary”.

Remark 1.11. One can immediately observe that by choosing L = spanRn(LI) in the
definition above, we obtain that every p-submanifold is a wib-submanifold.

As already mentioned in the previous definitions, the four notions of submanifolds
introduced so far can be arranged from being stricter to being less strict. Indeed, we
may state the following remark:
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1 Manifolds with corners and their submanifolds

Remark 1.12. Let M be a manifold with corners and let S ⊂M be a subset; then

S is a p-submanifold⇒ S is a wib-submanifold

⇒ S is a submanifold⇒ S is a weak submanifold. (1.1)

It is worth mentioning that we have not yet discussed whether or not these implications
are proper, i. e. if we really have four distinct types of submanifolds. But before we
discuss this topic, we will introduce even more submanifold notions. To be precise, we
will introduce two more kinds of submanifolds in between p-submanifolds and ordinary
submanifolds, the so-called d- and b-submanifolds which were first defined by Melrose
in [4, p. I.12, Def. 1.7.4]:

Definition 1.13 (d-submanifold). A submanifold S of a manifold M with corners is
called a d-submanifold if at each point p ∈ S there exists a coordinate chart (φ,U) with
U ⊂ Rnk such that

φ(U ∩ S) = L ∩ φ(U),

where L is of the form

L = {x ∈ Rnk | xl+1 = . . . xk = 0, xk+1 ≥ 0, . . . , xk+j ≥ 0, xk+j+1 = . . . = xk+j+r = 0}

with l, r, j ≥ 0, l ≤ k and r + j + k ≤ n.

The name d-submanifold stands for “decomposable”, since its local description is a
decomposition in the sense above. Looking at this decomposition, we can also see that
it is actually a generalisation of a p-submanifold:

Remark 1.14. Using the notation of the above definition, we can reformulate the defi-
nition of a p-submanifold: A d-submanifold is a p-submanifold if L as above can always
be chosen with j = 0.

This is indeed a restriction: For example, consider the model case M = R2
1, S = R2

2,
where j = 1, r = l = 0. Here, S ⊂M is a d-submanifold, but not a p-submanifold.

The last type of submanifolds we would like to discuss are b-submanifolds; therefore we
need to define a certain kind of smooth maps between manifolds with corners, so-called
b-maps, which Melrose introduced in [4, p. I.21, Def. 1.12.8]:

Definition 1.15 (b-maps). Let M and N be manifolds with corners and assume that
there exist complete families (ρH)H∈M1(M) and (ρ′G)G∈M1(N) of boundary defining func-
tions of M and N , respectively.

Then we call a C∞-map F : M → N a b-map if for each G ∈M1(N)

either F ∗ρ′G ≡ 0 or

F ∗ρ′G = aG
∏

H∈M1(M)

ρ
e(H,G)
H with 0 < aG ∈ C∞(M), e(H,G) ∈ N0.

We call F an interior b-map if for no G ∈ M1(N) the first case occurs, otherwise it is
called a boundary b-map.
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Although this definition is rather technical, it allows us to very easily define b-sub-
manifolds. This is because for d-submanifolds the canonical inclusion is always a b-map
(see [4, p. I.22, Prop. 1.12.1]). So it is only natural to use this property as a condition
for this new type of submanifold which it conveniently also inherits its name from.

Definition 1.16 (b-submanifold). Let S ⊂ M be a submanifold of a manifold with
corners. We call S a b-submanifold if the inclusion ιS : S → M is a b-map ([4, p. I.22,
Def. 1.12.9]).

As before, we see that these new types of submanifolds fit nicely in between p-sub-
manifolds and ordinary submanifolds ([4, p. I.22]):

Remark 1.17. By definition, any d-submanifold is a b-submanifold, and every b-sub-
manifold is a submanifold. This leads to the following chain of statements:

S is a p-submanifold⇒ S is a d-submanifold

⇒ S is a b-submanifold⇒ S is a submanifold.

As mentioned before, one might wonder if the implications in 1.12 and 1.17 are proper,
and indeed they are. As a proof for this statement, we will consider a range of examples
and counterexamples.

Example 1.18 (A wib-submanifold, which is not p). Given a manifold N with corners,
the Hausdorff space M := N × N is also a manifold with corners. In [2, p. 10, Exam-
ple 1.17], it was stated that for ∂N 6= ∅ the diagonal ∆N := {(p, p) ∈ M | p ∈ N} is a
wib-submanifold of M (choose L =

{
x ∈ R2n | ∀i ∈ {1, . . . , n} : xi = xn+i

}
), but not a

p-submanifold.

Example 1.19 (A submanifold, which is not wib). Let E := {x ∈ Rn | |x| < 1}. Then
E ⊂ Rn is a submanifold, but not a wib-submanifold. In an illustrative sense, the
boundary of E, which is Sn−1, lies in the interior of Rn, so it is not “without an interior
boundary”.

The precise argument, however, is as follows: There really is no choice for L in this
context, since the dimensions of E and Rn match. Thus, L = Rn, but at any boundary
point, one can never find a chart φ and a coordinate neighbourhood U around x ∈
Sn−1 ⊂ Rn such that

φ(E ∩ U) = Rn ∩ φ(U) = φ(U).

This is because U is an open subset of Rn whereas E ∩ U is not.

Previously, we stated that in general, the image of a diffeomorphism onto its image
is not a submanifold. As an illustration, consider the following example from [2, p. 7,
Ex. 1.11]:

Example 1.20 (A weak submanifold, which is not a submanifold). Let M := R2
1 and

S := f(R2
1) where f : R2

1 → R2
1, (x, y) 7→ (x+ y2, y). Then S is a submanifold of R2, i. e.

a weak submanifold of R2
1, but it is not a submanifold of R2

1.
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1 Manifolds with corners and their submanifolds

Proof. Suppose, S ⊂ M were a submanifold. Because S contains a non-empty open
subset of M in every neighbourhood of zero, the local model of S around zero needs to
be two-dimensional. Indeed, since the local model of M around zero is R2

1 and S has no
corner of depth two, we are only left with the model R2

1 of S.

So, if we choose a corner charts φ : U → φ(U) ⊂ R2
1 with 0 ∈ U and a matrix

G ∈ GL(2,R) with

G ·
(
R2

1

)
⊂ R2

1,

we get:

φ(S ∩ U) = G · R2
1 ∩ φ(U). (1.2)

Now, as a diffeomorphism, φ needs to preserve boundaries, hence for G we obtain

G · ({0} × R) = {0} × R,

which restricts this matrix to the form

G =

(
g11 0
g21 g22

)
with g11 > 0 and g22 6= 0. In summary, we have

G · R2
1 = R2

1

and thus, equation (1.2) transforms to

φ(S ∩ U) = φ(U).

But since φ is a diffeomorphism, this means that

S ∩ U = U.

This is a contradiction because in any given neighbourhood around zero, there are points
of R2

1 that do not lie in S. Therefore, this proves the claim.

Remark 1.21. So far, we have only discussed that the implications in 1.12 are proper.
But as already said, this also holds for the implications in 1.17:

First, we have seen in 1.14 that not every d-submanifold is a p-submanifold.

Furthermore, the diagonal of R2
2 shows that there are b-submanifolds which are no d-

submanifolds (the proof works the same way as in the case of showing that the diagonal
is not a p-submanifold).

And lastly, there exist submanifolds which are no b-submanifolds, as will be shown in
the following example:

Example 1.22. Consider M := R2
1 and the subset S :=

{
(x, y) ∈ R2

1 | |y| ≤ x
}

. Then S
is a submanifold of M , but it is not a b-submanifold. Indeed, we can easily verify that
the inclusion map can not be a b-map.
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Also, instead of just considering the two implication chains of submanifolds separately,
we might wonder if there is any connection between them. But this is not the case as
well: Indeed, all notions of submanifolds introduced are distinct, as we can see from the
following statements:

Example 1.23 (A wib-submanifold, which is not a d-submanifold). The diagonal of R2
2

is a wib-submanifold, but it is not a d-submanifold because of the very same reasons it
is not a p-submanifold.

Example 1.24 (A d-submanifold, which is not a wib-submanifold). The submanifold
R2

2 ⊂ R2
1 discussed in 1.14 is a d-submanifold, but it is not a wib-submanifold, because

part of the boundary lies in the interior of the containing manifold with corners.

Remark 1.25. Since every d-submanifold is a b-submanifold, but d-submanfolds can
have an interior boundary, we also know that being a b-submanifold does not imply
being a wib-submanifold.

This shall be enough about the differences between different submanifold types. But
there is one type of submanifolds which will become highly important when introducing
the blow-up of manifolds later on: the p-submanifolds. Hence it is worth remarking a
few basic properties (see [2, p. 9, Lemma 1.16]):

Lemma 1.26. Let P ⊂ Q ⊂M be manifolds with corners.

1. If P is a p-submanifold of M , then P is locally closed, i. e. it is the intersection of
a closed subset with an open subset.

2. If both P and Q are p-submanifolds of M , then P is a p-submanifold of Q.

3. If P is a p-submanifold of Q and Q is a p-submanifold of M , then P is a p-
submanifold of M .

Proof. We fix an atlas A = {(U, φ)}.

1. Let (U, φ) be a coordinate chart as in Definition 1.13. By the definition of a
p-submanifold, we have

φ(P ∩ U) = LI ∩ φ(U),

where LI is closed and φ(U) is open.

2. Locally, a p-submanifold can be expressed by defining functions: Let x1, . . . , xl

be such defining functions for the p-submanifold P of codimension l in a neigh-
bourhood of x ∈ P . I.e., xj ∈ C∞(φ(U)), dx has full rank on φ(P ∩ U) and
φ(P ∩ U) =

⋂l
j=1 x

−1(0).

Now choose I ⊂ {1, . . . , l} such that (dxi|p)i∈I is a basis of T ∗xQ. Then, the func-
tions (xi)i∈I define P as a p-submanifold ofQ in a (possibly smaller) neighbourhood
of x.
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1 Manifolds with corners and their submanifolds

3. Let x1, . . . , xk be functions locally defining P as a p-submanifold of Q and let
xk+1, . . . , xl be functions locally defining Q as a p-submanifold of M . Then
x1, . . . , xl locally define P as a p-submanifold of M .

At this point we have gathered all of the equipment needed to proceed with the blow-
up of manifolds with corners which will be introduced in the following chapter.
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2 The blow-up of a manifold with corners

Now that we have a good notion of manifolds with corners, we may introduce the concept
of a blow-up. Illustratively, up to diffeomorphism, blowing up a manifold M along a
p-submanifold P can be described as removing a small open neighbourhood around
P from M , leaving behind a manifold with additional boundary or corners. But the
precise definition of a blow-up is a lot better since we will be able to achieve a blow-up
diffeomorphic to said illustrative one, which preserves the manifold structure outside of
P . In other words, the blow-up [M : P ] of M along P is identical to M in M \ P .

In order to get this property, we will define the blow-up as a set by replacing every
point x in P by its inward pointing spherical normal bundle, which is the set of inward-
pointing unit length vectors in the tangent space TxM orthogonal to P . Therefore, we
need the following definition ([2, p. 10, Def. 1.18]):

Definition 2.1. Let P ⊂M be a p-submanifold of a manifold M with corners. Then

NM (P ) := TM |P /TP

is called the normal bundle of P in M .
We call the image NM

+ P of T+M |P in NMP the inward pointing normal fibre bundle
of P in M . The set S(NM

+ P ) of unit vectors in NM
+ P is called the inward pointing

spherical normal bundle of P in M which is equipped with a fibre bundle projection

S(NM
+ P )→ P.

As said before, we can now define the blow-up by replacing P with its inward pointing
spherical normal bundle (see [2, p. 12, Def. 2.1]):

Definition 2.2. Let M be a manifold with corners and let P be a closed p-submanifold
of M . Let S(NM

+ P ) be the inward pointing spherical normal bundle of P in M . We
define the blow-up of M along P as a set to be the following disjoint union:

[M : P ] := (M \ P ) t S(NM
+ P ).

Naturally, this set comes with a map β = βM,P , the so-called blow-down map

βM,P : [M : P ]→M

x 7→

{
x if x ∈M \ P,
π(x) else,

where π : S(NM
+ P )→ P is the fibre bundle projection.
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2 The blow-up of a manifold with corners

Of course, this definition of a blow-up only makes sense as a set, since the smooth
structure of the disjoint union above does not match our imagination of a blow-up as
removing an open neighbourhood around P . So, following [2, p. 12f.], we try to find a
different smooth structure we can equip the blow-up with. As in many other cases, it is
useful to first look at simple model cases (i. e. the local descriptions of p-submanifolds)
and see whether we can construct a suitable smooth structure.

Recall that every p-submanifold sits inside the ambient manifold as a factor of a
product. So every blow-up has a local model of the form

[Rnl × Rn
′
l′ : Rnl × {0}] :=

(
Rnl × Rn

′
l′ \ Rnl × {0}

)
t Rnl × Sn

′−1
l′

= Rnl ×
(
Sn
′−1
l′ t

(
Rn
′
l′ \ {0}

))
.

(2.1)

In these local models, we may write down a map inspired by polar coordinates:

κ : Rnl × Sn
′−1
l′ × [0,∞)→ Rnl ×

(
Sn
′−1
l′ t

(
Rn
′
l′ \ {0}

))
(x, ξ, r) 7→

{
(x, ξ) ∈ Rnl × Sn

′−1
l′ if r = 0

(x, rξ) ∈ Rnl ×
(
Rn′l′ \ {0}

)
if r > 0.

(2.2)

It is an easy calculation that κ is bijective. Under this map, the blow-down map trans-
forms to

β : Rnl × Sn
′−1
l′ × [0,∞)→ Rnl × Rn

′
l′

(x, ξ, r) 7→ (x, rξ).
(2.3)

The map κ−1 has the advantage that it maps the blow-up of the model space bijectively
to a space with a natural smooth structure, namely

Rnl × Sn
′−1
l′ × [0,∞)

together with the smooth structure of the product of manifolds with corners. So for any
open subset U ⊂ Rnl × Rn′l′ , we can endow

[U : U ∩ (Rnl × {0})] = β−1(U) ⊂ [Rnl × Rn
′
l′ : Rnl × {0}]

with the induced structure of a manifold with corners. Also, by construction, this turns
κ into a diffeomorphism of manifolds with corners.

In order to get an illustration of blow-ups of model cases, we give some basic examples.

Example 2.3 (Simple model case). One of the easiest examples is blowing up the first
quadrant of the plane along the origin: Let M := R2

2 and P := {(0, 0)}. Then, using
equation (2.1), we obtain

[M : P ] =
[
R2

2 : {0}
]

= S2−1
2 t

(
R2

2 \ {0}
)

= S1
2 t
(
R2

2 \ {0}
)
.

If we now use the map κ from (2.2), this can be transformed to S1
2 × [0,∞), which can

be pictured as follows:
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Example 2.4 (Another simple model case). Consider the manifold with corners M :=
R2

1 together with its p-submanifold P := [0,∞) × {0}. First, we again write M and P
in the notation of equation (2.1):

M = R2
1 = R1

1 × R1
0, P = [0,∞)× {0} = R1

1 × {0}.

Then, using equation (2.1) and the map κ from (2.2), we can write the blow-up [M : P ]
as follows:

[M : P ] =
[(
R1

1 × R1
0

)
:
(
R1

1 × {0}
)]

=
(
R2

1 \ ([0,∞)× {0})
)
t S

(
N

R2
1

+ ([0,∞)× {0})
)

= R1
1 ×

(
S1−1

0 t
(
R1

0 \ {0}
))

∼= R1
1 × S0 × [0,∞)

= [0,∞)× S0 × [0,∞) .

Since S0 is just two points, this is diffeomorphic to
⊔2
i=1 [0,∞)2, which might be depicted

like this:

17



2 The blow-up of a manifold with corners

At this point, we have endowed blow-ups of model cases with a suitable smooth struc-
ture, but of course we would like to turn any blow-up into a (smooth) manifold with
corners. Therefore we need the following lemma from [2, p. 13, Lemma 2.2]:

Lemma 2.5. Let Pi ⊂Mi (i ∈ {1, 2}) be closed p-submanifolds and let φ : M1 →M2 be
a diffeomorphism such that φ(P1) = P2. Then there exists a unique map φβ : [M1 : P1]→
[M2 : P2] which is bijective and makes the following diagram commute:

[M1 : P1] [M2 : P2]

M1 M2

φβ

βM1,P1
βM2,P2

φ

It is functorial in the following sense:

(φ ◦ ψ)β = φβ ◦ φβ.

In the case that the Mi are open subsets of Rnk , φβ is a diffeomorphism.

Applying this lemma to corner charts allows us to derive an atlas of the blow-up from
an atlas of the original manifold (see [2, p. 13, Lemma 2.3]).

Lemma 2.6. Let A = {(Ua, φa) | a ∈ A} be an atlas of a manifold with corners
M and let P be a closed p-submanifold of M together with the blow-down map β =
βM,P : [M : P ]→M .

We endow the blow-up [M : P ] with the smallest topology which makes all the maps

(φβa)a∈A continuous. Then

β∗(A) := {(β−1(Ua), φ
β
a) | a ∈ A}

is an atlas of [M : P ].

If A and A′ are compatible atlases of M , then β∗(A) and β∗(A′) are compatible atlases
of [M : P ].

Because of this compatibility property of atlases of the blow-up, we can use the smooth
structure on [M : P ] induced by any lifted atlas of M ([2, p. 14, Def. 2.4]):

Definition 2.7. Given a manifold M with corners and a closed p-submanifold P ⊂M ,
we endow [M : P ] with the smooth structure defined by the atlas β∗(A) for any atlas A
of M .

In summary, we see that the blow-up of a manifold with corners is again a manifold
with corners. This allows us to create blow-ups along any p-submanifold of any manifold,
for example the blow-up of the 2-sphere along its equator.
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Example 2.8. Let M := S2 be the 2-dimensional unit sphere and P := S1 be its equator.
Then, in local coordinates near P , [M : P ] is modelled by the blow-up

[
R2 : R1 × {0}

]
,

which can be computed in the very same way as in the previous examples. This yields
the following local structure:

R× S0 × [0,∞) =

2⊔
i=1

(R× [0,∞)) . (2.4)

This is diffeomorphic to the process of removing a small open neighbourhood around
the equator.

Having seen these examples and knowing that the blow-up is again a manifold, it is
quite natural to ask whether one can repeat this process. This leads to the concept of
iterated blow-ups which will be discussed below.
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3 Submanifold properties of iterated
blow-ups

The goal of this chapter is to introduce iterated blow-ups together with some important
statements and to partly disprove three parts of a conjecture in [2, p. 28, Rem. 4.14]
related to these statements. Therefore we need to discuss iterated blow-ups of different
generality and complexity:

3.1 Iterated blow-ups of disjoint p-submanifolds

There are several possibilities to iterate the procedure of a blow-up, and depending on
the relation of the p-submanifolds, delicate situations might appear. However, the easiest
case is the iterated blow-up of two disjoint p-submanifolds: In this case, P lifts to a p-
submanifold of [M : Q] because [M : Q] = M in M \Q and vice versa. So both iterated
blow-ups are well-defined and since both single blow-ups are in some sense independent
of each other, it does not matter in which order we do the blow-up. Indeed, there is a
lemma stated in [2, Lemma 3.7] which turns this into a precise statement:

Lemma 3.1. Let M be a manifold with corners and let P and Q be two closed, non-
trivial, disjoint p-submanifolds of M . Then there is a unique, smooth, natural map

ζM,Q,P : [[M : Q] : P ]→ [M : P ]

which restricts to the identity outside of P ∪Q. Furthermore, the product map

BM,Q,P :=
(
ζM,Q,P , β[M : Q],P

)
: [[M : Q] : P ]→ [M : P ]× [M : Q]

is proper in each component.

Its image is a weak submanifold and BM,Q,P is a diffeomorphism onto its image.

Proof. The proof can be found in [2, p. 19].

Reading through this statement, the question arises if the image of the product map
is really just a weak submanifold. In the paper, they conjectured that this statement
could be refined in such a way that said image is actually a wib-submanifold and a
b-submanifold ([2, p. 28, Rem. 4.14]). Considering some basic examples, this is quite
tempting to think, but it turns out that, in general, it is not even an ordinary submani-
fold:
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3 Submanifold properties of iterated blow-ups

Proposition 3.2. The image of the map BM,Q,P of Lemma 3.1, in general, is not a
submanifold. More specifically, it is a submanifold if and only if everywhere the local
model for any of the blow-ups [M : P ] and [M : Q] is of the form[

Rnk × Rn
′
k′ : R

n
k × {0}

]
,

where either n′ = 1 or n′ ≥ 2 and k′ = 0, and in this case, it is actually always a
wib-submanifold.

In order to prove this proposition, we will apply some simplifications without any loss
of generality:

Remark 3.3. Since being a submanifold is a local property, it is sufficient to only
consider points in a neighbourhood around P , and we may assume

[M : Q,P ] =
[
Rnk × Rn

′
k′ : R

n
k

]
, (3.1)

[M : P ] =
[
Rnk × Rn

′
k′ : R

n
k

]
, (3.2)

[M : Q] = Rnk × Rn
′
k′ .

In this setting, the product map locally becomes

B := BM,Q,P = id×βRnk×Rn′k′ ,Rnk
:
[
Rnk × Rn

′
k′ : R

n
k

]
→
[
Rnk × Rn

′
k′ : R

n
k

]
×
(
Rnk × Rn

′
k′

)
Now we can simplify the blow-up in (3.1) and (3.2), since both the ambient manifold
and the p-submanifold contain common factors of lines and half-lines. Thus, we may
take the diffeomorphism [

Rnk × Rn
′
k′ : R

n
k

]
∼= Rnk ×

[
Rn
′
k′ : {0}

]
in order to obtain the following description of the product map:

B = δRnk × id×βRn′
k′ ,{0}

: Rnk ×
[
Rn
′
k′ : {0}

]
→ (Rnk)2 ×

[
Rn
′
k′ : {0}

]
× Rn

′
k′ ,

where δRnk : Rnk → (Rnk)2 is the diagonal map. Since images of such diagonal maps are
always wib-submanifolds, this part of the map is well-behaved, i. e. if this factor embeds
as a wib-submanifold, so does the whole map. Thus, in order to prove Proposition 3.2,
we may only consider the rest of the product map

B̃ = id×βRn′
k′ ,{0}

:
[
Rn
′
k′ : {0}

]
→
[
Rn
′
k′ : {0}

]
× Rn

′
k′ .

At this point, it becomes clear that the submanifold property can only depend on the
values of n′ and k′. But before we can proceed with the full proof, we will prove the case
n′ = 1. This is because the one-dimensional models behave rather differently than the
higher-dimensional ones which already became clear in the statement of the proposition
in the case n′ = 1.
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3.1 Iterated blow-ups of disjoint p-submanifolds

Example 3.4 (n′ = 1). If n′ = 1, the image of the product map is always a submanifold.
To see that, we first remark that there are only two possible local models corresponding
to k′ = 0 and k′ = 1 respectively: R1

0 = R and R1
1 = [0,∞).

For k′ = 0, since S0 just consists of two points, the product map for k′ = 0 is given by

B̃ : {−1, 1} × [0,∞)→ {−1, 1} × [0,∞)× R,
(ξ, r) 7→ (ξ, r, rξ).

Clearly, the image consists of two connected components, each one belonging to a con-
nected component of the ambient space:

{1} × {(x, x) | x ∈ [0,∞)} ⊂ {−1, 1} × [0,∞)× R,
{−1} × {(x,−x) | x ∈ [0,∞)} ⊂ {−1, 1} × [0,∞)× R.

So the connected components of the image boil down to the weak submanifolds

{(x, x) | x ∈ [0,∞)} ⊂ [0,∞)× R,
{(x,−x) | x ∈ [0,∞)} ⊂ [0,∞)× R,

which can both be bent to R1
1 ⊂ R2

1 and therefore are actually p-submanifolds. In
particular, the whole image of the product map is a wib-submanifold.

In the other case, k′ = 1, the product map takes the form

B̃ : {1} × [0,∞)→ {1} × [0,∞)× [0,∞) ,

(ξ, r) 7→ (ξ, r, rξ),

so the image image of this map (after omitting the single point {1}) is the diagonal in
R2

1, which is a wib-submanifold as well.

Having treated the special case separately, we are now capable of proving 3.2 for
n′ ≥ 2:

Proof of Proposition 3.2. Recall the following local description of the product map:

B̃ =
(

id, βRn′
k′ ,{0}

)
:
[
Rn
′
k′ : {0}

]
→
[
Rn
′
k′ : {0}

]
× Rn

′
k′ .

First, we want to express this blow-up in concrete terms using the diffeomorphism κ
from (2.2): [

Rn
′
k′ : {0}

]
∼= Sn

′−1
k′ × [0,∞) .

This yields the following description of B̃ (which, in an abuse of notation, we will also
call B̃):

B̃ : Sn
′−1
k′ × [0,∞)→ Sn

′−1
k′ × [0,∞)× Rn

′
k′ ,

(ξ, r) 7→ (ξ, r, rξ),
(3.3)
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3 Submanifold properties of iterated blow-ups

Now there are two distinct cases in which different statements hold: In the no-corner
case k′ = 0, we will use (n′ − 1)-dimensional spherical coordinates to show that the
image of B̃ is a wib-submanifold. However, if there is a proper corner, i. e. k′ > 0, we
extract the first component using the Mercator projection. This component is a half-line
because k′ ≥ 1, and at the boundary the Jacobian of B̃ will show that the image of B̃ is
not even a submanifold.
Case k′ = 0: Since n′ ≥ 2 and k′ = 0, we can locally parametrise Sn

′−1
k′ = Sn′−1 smoothly

around any given point ξ, i. e. we can choose (n′ − 1)-dimensional spherical coordinates
φ : Rn′−1 ⊃ U

∼−→ Sn
′−1
k′ where U is an open neighbourhood of 0 and im(φ) is an open

neighbourhood of ξ. This yields another local description of B̃:

B̃ : Rn
′

1 ⊃ [0,∞)× U → [0,∞)× U × Rn
′
k′ ,

(r, x1, . . . , xn′−1) 7→ (r, x1, . . . , xn−1, rφ(x1, . . . , xn′−1)),
(3.4)

At this point, it is crucial that k′ = 0 because in this case, there exists the smooth map

F : ([0,∞)× U)× V → ([0,∞)× U)× Rn
′

(x, y) 7→ (x, y − x1 · φ(x2, . . . , xn′)),

where V ⊂ Rn′ is a sufficiently small open neighbourhood of 0. Indeed, this is a diffeo-
morphism onto its image, since the inverse map is just given by

(x, y) 7→ (x, y + x1 · φ(x2, . . . , xn′)).

If we combine the parametrisation and the local diffeomorphism, we locally obtain the
commutative diagram

[0,∞)× U [0,∞)× U × V

[0,∞)× U × Rn′ .

B̃

B̂
F

We can now calculate for any (r, x) ∈ [0,∞)× U :

B̂(r, x) = F (B̃(r, x)) = ((r, x), rφ(x)− rφ(x)) = ((r, x), 0)

and see that B̂ is a projection onto the first components. More precisely, locally around
zero we have

im(B̂) ∼= ∆Rnk × Rn
′

1 × {0} ⊂ (Rnk)2 × Rn
′

1 × Rn
′
.

This subset is a combination of a diagonal and the image of a projection, hence it is
indeed a wib-submanifold. Note that this construction only works since Rn′ = Rn′k′ is a
vector space for k′ = 0 and therefore subtraction is defined; for k′ > 0 the corner Rn′k′ is
not a vector space and hence does not admit any such diffeomorphism F .
Case k′ > 0: The problem with this case is that the image of B̃ is tangent to a boundary
face at zero whilst not being locally contained in the boundary, similar to example 1.20.
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3.1 Iterated blow-ups of disjoint p-submanifolds

So our goal is to exploit the Jacobian of B̃ to show that its image is tangential to the
boundary at zero, but any points in any sufficiently small neighbourhood already lie in
the interior of Rn′k′ . Such a tangential behaviour cannot be flattened by any diffeomor-
phism, so it cannot be a submanifold.

We start by considering the local description of the product map from (3.3), but this
time we use the Mercator diffeomorphism

Φ: Sn
′−1
k′ \ {N} ∼→ [0,∞)× Sn

′−2
k′−1

ξ = (ξ1, . . . , ξn′) 7→
1√

ξ2
2 + . . .+ ξ2

n′

· ξ,

where N := (1, 0, . . . , 0) ∈ Sn
′−1
k′ is the north pole.

Now we choose a point ξ̃ such that ξ̃1 = 0 and any sufficiently small neighbourhood
looks like an open subset of [0,∞) × Sn′−2, i. e. ξ̃ is on the edge ξ1 = 0 of the sphere
orthant and the boundary depth is precisely 1.

Here we can use rather obvious coordinates to parametrise this lower-dimensional
sphere in an open neighbourhood U ′ of ξ̃. Without loss of generality, this parametrisation
is assumed to be the identity φ = id for n′ = 2 and the ordinary (n′ − 2)-dimensional
spherical coordinates for n′ > 2:

φ : Rn
′−2 ⊃ U ∼→ U ′ ⊂ Sn

′−2

φ1(x1, . . . , xn′−2) = cos(x1),

φ2(x1, . . . , xn′−2) = sin(x1) cos(x2),

...

φn′−2(x1, . . . , xn′−2) = sin(x1) · . . . · sin(xn′−3) cos(xn′−2),

φn′−1(x1, . . . , xn′−2) = sin(x1) · . . . · sin(xn′−3) sin(xn′−2).

Combining these two diffeomorphisms, we get a diffeomorphism

Ψ := Φ−1 ◦ (id, φ) : [0,∞)× U ∼→ U ′′ ⊂ Sn
′−1
k′ \ {N}

x = (x1, x̃) 7→ (x1, φ(x̃))

‖(x1, φ(x̃))‖
,

where we used the shorthand notation x̃ := (x2, . . . , xn′−1). Using Ψ, we obtain a
different description of the product map:

B̂ : [0,∞)× U × [0,∞)→ [0,∞)× U × [0,∞)× Rn
′
k′

(x, r) = (x1, x̃, r) 7→
(
x, r, r

(x1, φ(x̃))

‖(x1, φ(x̃))‖

)
(3.5)

We observe that B̂ is an injective immersion because its differential takes the form

DB̂(x,r) =

(
1n′

∗

)
,

25



3 Submanifold properties of iterated blow-ups

where ∗ stands for entries which are not calculated any further, since the columns are lin-
early independent anyway. Hence, the differential has full rank everywhere and therefore
is injective.

If we now consider any point (x, r) ∈ [0,∞) × U × [0,∞) with x1 = r = 0, we claim
that the differential DB̂ at (x, r) is a map

DB̂(x,r) : R× Rn
′−2 × R −→

(
R× Rn

′−2 × R
)
× {0} × Rn

′−1,

so DB̂n+1 = 0. In order to obtain this, we just compute all the partial derivatives of

B̂n′+1(x, r) =
rx1

‖(x1, φ(x̃))‖

at the point (x, r) with x1 = r = 0:

∂B̂n′+1

∂x1
(x, r) =

r

‖(x1, φ(x̃))‖

∣∣∣∣
r=0

+ rx1
∂

∂x1

1

‖(x1, φ(x̃))‖

∣∣∣∣
x1=0

= 0,

∂B̂n′+1

∂xi
(x, r) = rx1

∂

∂xi

1

‖(x1, φ(x̃))‖

∣∣∣∣
x1=r=0

= 0,

∂B̂n′+1

∂r
(x, r) =

x1

‖(x1, φ(x̃))‖

∣∣∣∣
x1=0

= 0,

where i ∈ {2, . . . , n′ − 1}.
If we now denote the coordinates in the target space of B̂ by zi, we obtain

im(DB̂) ⊂ ker dzn
′+1,

where zn
′+1 is the boundary defining function of the first component of Rn′k′ .

Now suppose im(B̂) were a submanifold. Then we would find some diffeomorphism
F : V

∼→W between open subsets V,W ⊂M := [0,∞)× U × [0,∞)× Rn′k′ such that

F (B̂) = L ∩M,

where L ⊂ R2n′ is a linear subspace. As a diffeomorphism, F must map boundary faces
of codimension l onto one another:

F ((∂M)l ∩ V ) = (∂M)l ∩W.

In particular, without loss of generality, we can assume that F maps {zn′+1 = 0} to
{z1 = 0}.

Using this diffeomorphism, we get another product map Φ = F ◦ B̂ which now maps
onto the linear subspace L introduced above. Looking at its differential at zero, we
obtain

DΦ0 = DF0DB̂0.

26



3.1 Iterated blow-ups of disjoint p-submanifolds

But since DB̂n′+1(0) = 0 and DF maps the (n′+1)-st component to the first component,
we also have DΦ1(0) = 0, hence

DΦ(0) ∈ {z1 = 0}.

Now the image of Φ is a subset of some linear subspace, so this implies that the whole
image of Φ lies in the boundary face {z1 = 0}. Because F , as a diffeomorphism, maps
boundary faces to boundary faces, this would also imply that, locally, we have that the
image im B̂ ⊂ {zn′+1 = 0}.

But this is obviously not true because there exist arbitrarily small non-zero points
(x, r) ∈ [0,∞)× U × [0,∞) for which

B̂n′+1(x, r) =
rx

‖(x, φ(x̃))‖
6= 0,

i. e. their images doe not lie in the boundary face {zn′+1 = 0}. This is a contradiction,
and therefore im(B̂) cannot be a submanifold.

To get a better intuition of the different situations considered in the general proof, we
want to give another basic example where the image is a wib-submanifold:

Example 3.5. Let M := R3
1 = R1

1×R2, let Q := (0,−1, 0) +
(
R2

1 × {0}
)
, P := R1

1×{0}
and let β be the double blow-down map [M : Q,P ]→M . In an abuse of notation, we will
write R1

1 instead of R1
1×{0} and B instead of BM,Q,P . In the double blow-up [M : P,Q],

there are essentially 4 types of points x ∈ [M : Q,P ] one can find in a neighbourhood
around blown-up P in [M : Q,P ] (as locally depicted in figure 3.1):

• Type 1: (β(x) 6∈ P ∪Q, β(x) 6∈ ∂M)
At such points, every small enough neighbourhood will look like R3 and will not
intersect with P or Q. Thus, each of the blow-ups is basically just given by the
interior of M , which is modelled by R3. So, locally, the product map is given by
the diagonal

B : R3 → R3 × R3

x 7→ (x, x),

whose image is known to be a wib-submanifold.

• Type 2: (β(x) ∈ P, β(x) 6∈ ∂M)
These points lie on the boundary of a cylinder, so their local model in [M : P,Q]
and in [M : P ] is R3

1; [M : Q], however, is locally modelled by R3 outside of Q.
Hence, the product map takes the form

B : R3
1 → R3

1 × R3

x 7→ (x, x1φ(x̃)),
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3 Submanifold properties of iterated blow-ups

Figure 3.1: The model-case blow-up
[
R3

1 : R1
1

]
where, as before, φ is the polar coordinate function and x̃ := (x2, x3). This is
because, in a neighbourhood of x , the two blow-ups [M : P,Q] and [M : P ] are
the same, and the induced map component is just the identity. In the second
component, we essentially have a blow-down map.

We can now compose with the local diffeomorphism R3
1 × R3 → R3

1 × R3, (x, y) 7→
(x, y − x1φ(x̃)) from (3.1) in order to obtain the easier description of B as a pro-
jection:

B : R3
1 → R3

1 × R3

x 7→ (x, 0).

Here we see that the image of B is actually a p-submanifold, in particular a wib-
submanifold.

• Type 3: (β(x) 6∈ P, β(x) ∈ ∂M)
The local model around such a point is R3

1 and all three blow-ups involved are
trivial. So we obtain the diagonal map

B : R3
1 → R3

1 × R3
1

x 7→ (x, x),

whose image is a wib-submanifold.

• Type 4: (β(x) ∈ P, β(x) ∈ ∂M)
These points lie on the one-dimensional intersection sphere of the cylinder of
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3.2 Iterated blow-up of nested p-submanifolds

[M : P ] and the boundary face of M . So their local model in [M : P ] is R3
2 whereas

in M it is just R3
1. The coordinates we need to choose in the blow-up are cylindrical

coordinates, so up to diffeomorphism, the product map is given by

B : R3
2 → R3

2 × R3
1

(x1, x2, x3) 7→ (x1, x2, x3, x1, x2 cosx3, x2 sinx3).

After permuting coordinates

B : R3
2 → [0,∞)2 × [0,∞)× R× R2

(x1, x2, x3) 7→ (x1, x1, x2, x3, x2 cosx3, x2 sinx3),

we see that the image of B is a combination of a diagonal and a map of the form
x 7→ (x, φ(x)) as seen before (here, φ is again the polar coordinate map). Hence,
this is also a wib-submanfold.

Of course, there are also points which lie in a neighbourhood of Q in [M : Q,P ], but the
arguments at these points are very similar, since everything is local.

3.2 Iterated blow-up of nested p-submanifolds

Since we now have a good understanding of when the image of the product map is a
wib-submanifold in the disjoint case, we may consider more complicated situations, e. g.
two nested p-submanifolds. Therefore we recall Lemma 4.10 from [2, p. 23]:

Lemma 3.6 (nested blow-up). Let M be a manifold with corners, let Q be a p-submani-
fold of P and P a p-submanifold of M . Then there exists a unique, smooth, natural map

ζM,Q,P : [M : Q,P ] := [[M : Q] : [P : Q]]→ [M : P ]

which restricts to the identity on M \ P . Furthermore, the product map

BM,Q,P :=
(
ζM,Q,P , β[M : Q],[P : Q]

)
: [M : Q,P ]→ [M : P ]× [M : Q]

is proper in each component, its image is a weak submanifold and BM,Q,P is a diffeo-
morphism onto its image.

As in the disjoint case, it was believed that a stronger version of this lemma holds,
namely that the image is actually a wib-submanifold. However, this turns out to be
wrong:

Proposition 3.7. Let M , P and Q be as in 3.6 and for Z ∈ {M,P,Q} and q ∈ Q
let dim(Z, q) denote the dimension of Z at q. Then, if there exists a q ∈ Q such that
dim(Q, q) < dim(P, q) < dim(M, q), the image of the map BM,Q,P is not a submanifold.

In order to prove this, we need to define special kinds of sphere orthants (see [2, p. 22]):
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3 Submanifold properties of iterated blow-ups

Definition 3.8. Let k, k′, n, n′ ∈ N. Then we define

Sn,n
′

k,k′ := Sn+n′ ∩
(
Rnk × Rn

′+1
k′

)
.

It is important to remark that

Sn,n
′

k,k′ = Sn+n′ ∩
(
Rnk × Rn

′+1
k′

)
∼= Sn+n′

k+k′ = Sn+n′ ∩ Rn+n′+1
k+k′ ,

so this new kind of sphere orthant is obtained by the classical one using a diffeomorphism
permuting the coordinates.

Proof of Proposition 3.7. We will use results obtained in the proof of the original lemma
in [2]. First, using 3.3 and the dimension inequality in 3.7 itself, we can assume that we
are in the following model case: 

M := Rmkm × Rpkp
P := {0} × Rpkp
Q := {0}.

Using the local description of the blow-up, we obtain:

[M : P ] ' Sm−1
km
× Rp+1

kp+1,

[M : Q] ' Sm,p−1
km,kp

× [0,∞) ,

[[M : Q] : [P : Q]] ' Sm−1
km
× Spkp+1 × [0,∞) .

Under these diffeomorphisms, the blow-down map β[M : Q],[P : Q] becomes

β[M : Q],[P : Q] : Sm−1
km
× Spkp+1 × [0,∞)→ Sm,p−1

km,kp
× [0,∞)

(φ, ψ, t) 7→ (ψ1φ, ψ̃, t).
(3.6)

The other factor of the product map is given by

ζM,Q,P : Sm−1
km
× Spkp+1 × [0,∞)→ Sm−1

km
× Rp+1

kp+1

(φ, ψ, t) 7→ (φ, tψ)

If we put all this together, we obtain the following local description of the product map:

BM,Q,P : Sm−1
km
× Spkp+1 × [0,∞)→ Sm−1

km
× Rp+1

kp+1 × Sm,p−1
km,kp

× [0,∞)

(φ, ψ, t) 7→ (φ, tψ, ψ1φ, ψ̃, t).

Now let N := Sm−1
km
× Spkp+1 × [0,∞) and M := Sm−1

km
× Rp+1

kp+1 × Sm,p−1
km,kp

× [0,∞), i. e.

BM,Q,P : N → M . Furthermore let S := im(BM,Q,P ). If S were a submanifold of M , it
would satisfy the following:

For every p ∈ ∂S ∩ ∂M and every inward-pointing vector X ∈ TpS ⊂ TpM , which is
tangential to the boundary of TpM , there exists an integral curve in ∂M , i. e. a smooth
map γ : [0, ε)→M with γ̇(0) = X and γ(0) = p.

We show that this is not the case by constructing an inward-pointing vector X ∈ TpS
at a particular point p ∈ ∂S ∩ ∂M satisfying two conditions:
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3.3 Iterated blow-up along clean semilattices

1. X is tangential to the boundary of TpM .

2. Every integral curve γ of X fulfils γ(s) 6∈ ∂M for every s > 0. In other words, the
image of any integral curve lies in the interior of M except for the starting point p.

It is clear that both statements together contradict the above mentioned statement
for submanifolds. The question now is which point p and tangent vector X one should
take. The construction works as follows:

Let Φq ∈ ∂Sm−1
km

, Ψq ∈ ∂Spkp+1 and set q := (Φq,Ψq, 0) ∈ ∂N . The desired point p

is then given by p := BM,Q,P (q) and the tangent vector X is defined as dBq(Φ0,Ψ0, t0),
where Φ0 and Ψ0 are inward-pointing tangent vectors at Φq and Ψq, respectively, and
t ∈ R>0.

Now we can prove the first statement by showing that X is tangential to the boundary
in the Rp+1

kp+1-component. Therefore we denote the corresponding component of BM,Q,P

by B2. Then
dqB2(Φ0,Ψ0, t0) = 0 · Φ0 + t0 ·Ψq,

which is tangential to the boundary of Rp+1
kp+1 because Ψq itself is.

For the second statement we consider any integral curve γ of X and use that BM,Q,P

is an immersion and a homeomorphism onto its image. This implies that τ := B−1
M,Q,P ◦γ

is a smooth curve in N with dBq(τ̇(0)) = X. By the choice of Φ0,Ψ0 and t0, we have
that τ(s) ∈ N̊ for every s > 0, hence:

∀s > 0 BM,Q,P (τ(s)) = γ(s) ∈ M̊.

Since γ was chosen arbitrarily, this shows the second statement and therefore the overall
claim.

3.3 Iterated blow-up along clean semilattices

The last generalisation of iterated blow-ups considered in this thesis is the one along so-
called clean semilattices which we will now introduce by recalling definitions and results
of [2, Section 2.3]. In the following, let M always be a manifold with corners.

Definition 3.9 (clean intersection). 1. We say, p-submanifolds X1, . . . , Xk of M in-
tersect cleanly or have a clean intersection if

a) Y := X1 ∩ . . . ∩Xk is a p-submanifold of M (possibly empty),

b) for all x ∈ Y , TxY = TxX1 ∩ . . . ∩ TxXk.

2. For a locally finite (unordered) set F of p-submanifolds of M , we call F a cleanly
intersecting family if any X1, . . . , Xj ∈ F have a clean intersection.

Definition 3.10 ((meet) semilattice). A (meet) semilattice is a partially ordered set L
such that, for every two x, y ∈ L, there is a greatest common lower bound x∩ y ∈ L of x
and y. For our purposes, the partial order will always be the ordinary inclusion of sets
and the lower bound of any two elements is obtained by the usual intersection.
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3 Submanifold properties of iterated blow-ups

Definition 3.11 (clean semilattice). A subset ∅ ∈ S ⊂ P(M) of closed p-submanifolds
of M is called a clean semilattice if it is a cleanly intersecting family and a semilattice
with respect to the set-theoretic inclusion.

The important thing about clean semilattices of p-submanifolds is that we can iter-
atively blow up minimal elements. In this blow-up, the original semilattice lifts to a
family of p-submanifolds which form again a clean semilattice. Precisely, we have

Proposition 3.12 (blowing up minimal elements). Let S be a clean semilattice of p-
submanifolds of M and let P be a minimal element of S \{∅}. Setting Q′ := [Q : P ∩Q],
the set

S ′ :=
{
Q′ | Q ∈ S

}
is a clean semilattice of [M : P ] with ∅ = ∅′ = P ′ ∈ S ′.

With this result in mind, it is only natural to order a clean semilattice such that it
is compatible with the inclusion. Because then we can blow up iteratively while being
sure to have a clean semilattice at each step.

Definition 3.13. An ordering (Pi)
k
i=1 = (P1, . . . , Pk) of S \ ∅ is called compatible with

the inclusion if
Pi ⊂ Pj ⇒ i ≤ j.

Proposition 3.14. Let S be a clean semilattice and (Pi)
k
i=1 be an ordering of S \ ∅

compatible with the inclusion. Then
[
M : (Pi)

k
i=1

]
is defined.

The last object we need to introduce for the main theorem of this section is the graph
blow-up as in [2, p. 17, Def. 3.1]:

Definition 3.15. Let F be a locally finite set of closed p-submanifolds of the manifold
with corners M . Then, the graph blow-up {M : F} of M along F is defined by

{M : F} :=
{

(x, . . . , x) | x ∈M \
⋃
F
}
⊂
∏
Y ∈F

[M : Y ] .

Now we have introduced everything to give a similar statement about the image of
a suitable product map for the iterative blow-up of a clean semilattice, as stated in [2,
p. 26, Theorem 4.12]:

Theorem 3.16. Let S = (Pj)j=1,...,k be a clean semilattice of closed p-submanifolds of
M . Then, for each P ∈ S, there exists a unique smooth map φS,P : [M : S] → [M : P ]
which restricts to the identity on M \

⋃
Q∈S , and the induced map

BS := (φS,P0 , . . . , φS,Pk) : [M : S]→
k∏
j=0

[M : Pj ]

is proper in each component. Furthermore, the image of BS is a weak submanifold of∏k
j=0 [M : Pj ] and BS maps [M : S] diffeomorphically onto {M : S}, i. e.

[M : S]
∼→ {M : S} .
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3.3 Iterated blow-up along clean semilattices

And, as before, we can actually give a stronger statement about the image of the
product map:

Theorem 3.17. In the situation of 3.16, the image of the product map BS is a subma-
nifold if and only if the following holds: There do not exist elements Q ⊂ P ⊂ M in S
and a point q ∈ Q such that dim(Q, q) < dim(P, q) < dim(M, q). Additionally, at every
point in M the local model of the iterated blow-up (which is just a single blow-up because
of the above dimension restriction) is of the form[

Rnk × Rn
′
k′ : R

n
k × {0}

]
,

where either n′ = 1 or n′ ≥ 2 and k′ = 0. In these cases, it is actually also a wib-
submanifold.

Proof. This proof is rather easy, since we can use the results from 3.2 and 3.7. The
procedure will be an induction on the number k+ 1 of elements in S = (Pj)j=0,...,k, as in
the proof of 3.16, which can be found in [2, p. 26f.]. First of all, the case k = 0 is trivial,
so consider k > 0. Then we have three different cases:
Case k = 1: If S contains 1 + 1 = 2 elements, we have S = (∅, P ) and the product map
is the same as in 3.2, therefore obtaining the same result.
Case k = 2: If S contains 2 + 1 = 3 elements, we have S = (∅, Q, P ) with either Q ⊂ P
or Q ∩ P = ∅. If they do not intersect, we are again in the same case as in 3.2, whereas
otherwise we have the nested situation from 3.7. So, in the disjoint case, the fact whether
or not the image of the product map is a submanifold, depends on the same parameters
as in said Proposition. But in the nested case, the image will never be a submanifold.
This is why we demand the p-submanifolds in the semilattice S to be pairwise disjoint.
Case k ≥ 3: Suppose, we know the statement for k − 1 and that the elements of S are
ordered compatible with the inclusion. Then, the first element P1 is minimal in S \ ∅
with respect to ⊂. Therefore, using the definition

S ′ :=
{
P ′j := [Pj : P1] | j = 2, . . . , k

}
of the blown-up lattice, the blow-up [M : S] is defined and the product map is given by

[M : S] :=
[
[M : P1] : S ′

] BS′−→ k∏
j=1

[[M : P1] : [Pj : P1]]

Φ−→ [M : P1]×
k∏
j=2

([M : P1]× [M : Pj ]),

where Φ := id×
∏k
j=2 BM,P1,Pj . Now either Pj and P1 are disjoint for any j or there

exists some j ∈ {2, . . . , k} such that P1 ⊂ Pj . So, again, in the disjoint case, all of the
components of this map arise from product maps as in 3.2.

Similarly, in the nested case, there is at least one pair of factors which are the same
as in 3.7, which means that the results of said propositions generalise to the current
setting. Indeed, the proof presented there can be applied to the i- and j-components in
the very same way, leading to the same result. This shows the claim.
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4 Lifting vector fields to blow-ups

As mentioned in [2, p. 32f, Example 5.13], in the N -body problem, one considers the
manifold X := Rn (where n := 3N) and the subspaces

Yj := {x = (x1, x2, . . . , xN ) ∈ R3N | xj = 0} and

Yij := {x = (x1, x2, . . . , xN ) ∈ R3N | xi = xj}.

So in this notation, every xi ∈ R3 stands for the position of a single particle in three-
dimensional space and the subspaces Yi and Yij are these configurations of theN particles
where one particle flies into the nucleus or two particles collide, respectively.

The spaces Y i and Yij form a finite clean semilattice S of p-submanifolds of the so-
called spherical compactification X of X, which will be introduced later (see [2, p. 31,
equation (29)]).

We are now interested in the corresponding iterated blow-up
[
X : S

]
or more precisely,

in the first step of this iteration: the blow-up
[
Rn : ∂V

]
, where V is a minimal element

of S with respect to the inclusion.
On Rn, there a two obvious types of vector fields: translation vector fields and – more

generally – affine maps. The question is whether or not we can extend these vector fields
to the spherical compactification Rn and if these extensions then lift into the blow-up[
Rn : ∂V

]
.

But before we can investigate this, we first of all try to classify when a general vector
field lifts into a given blow-up. Therefore, it is crucial to introduce a suitable notion of
vector fields on manifolds with corners:

Definition 4.1 (Vector fields on manifolds with corners). Let M be a manifold with
corners, let BM := {H1, . . . ,Hk} be the set of its boundary hyperfaces and for every
H ∈ BM let iH : H →M be the immersion of H into M . Then we define

VM := {X ∈ Γ(TM) | ∀H ∈ BM : i∗(X) ∈ Γ(TH)},

the vector space of all vector fields on M which are tangent to all boundary hyperfaces
(see [1, p. 12]).

As blow-ups come naturally with a blow-down map, a lift of a vector field should be
a vector field in the blow-up, whose push-forward along the blow-down map coincides
with the original vector field. More generally, we can consider lifts of vector fields along
any surjection between manifolds with corners (similar to [1, p. 12f]):

Definition 4.2 (Lift of a vector field). Let M , N be manifolds with corners, let
β : M → N be a smooth surjective map and let X ∈ VN . Furthermore, let dβ de-
note the differential of β.
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4 Lifting vector fields to blow-ups

Then, we say X lifts to W ∈ VM if and only if

dβ(W ) = X ◦ β

As said before, we wonder whether or not a given vector field on a manifold with
corners lifts to a blow-up along a p-submanifold. An answer was given in [1, p. 14,
Prop. 3.2], and it nicely characterises exactly those vector fields admitting a lift:

Proposition 4.3 (Lifting vector fields). Let M be a manifold with corners, let P ⊂M
be a p-submanifold and let X ∈ VM . Then, X admits a lift W ∈ V[M : P ] if and only if

X|P ∈ Γ(TP ), (4.1)

i. e. X is tangential to P .

Proof. One direction is rather obvious: Suppose, X lifts to a vector field W ∈ V[M : P ].

Then, by definition, W is tangent to the boundary hyperfaceNM
+ (P ). Hence, the pushed-

forward vector field X ◦ β = dβM,PW has to be tangent to the image of NM
+ (P ) under

βM,P , which is precisely P . For the converse, we use that lifting vector fields is a local
property, so we may restrict to the model case

V := Rnl × Rn
′
l′ ,

P := Rnl × {0}.

with the blow-down map β : [V : P ]→ V .
Now suppose X|P ∈ Γ(TP ), that means we have Xn+1...n+n′(x, 0) = 0 for all x ∈ Rnl .

We want to construct a lift of X by setting values on the spherical normal bundle of the
blow-up. In the notation of above, let Q be the orthogonal complement of P in V , i. e.
Q = {0}×Rn′l′ . Then the blow-up of this model case in its original definition is given by

[V : P ] := V \ P t (P × SQ),

and therefore we need to define the lift on P × SQ.
First of all, we realize that X can be decomposed with respect to P and Q:

X = XP +XQ,

where XP and XQ are the projections of the vector field X onto TP and TQ respectively.
For any point (x, ξ) ∈ V , the differential of XQ at (x, ξ) is a homomorphism from V

to Q, i. e.
d(x,ξ)XQ ∈ Hom(V,Q),

and its restriction to P vanishes:

d(x,ξ)XQ|P = 0.

Therefore, we can view this differential as an endomorphism of Q ∼= V/P :

d(x,ξ)XQ ∈ Hom(V/P,Q) ∼= Hom(Q,Q).
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Hence, since SQ ⊂ Q ⊂ V , one can consider this at ξ ∈ SQ and decompose it into a
radial part and a part tangential to SQ at ξ:

d(x,ξ)XQ(ξ) = λ(ξ) · ξ + X̂(ξ),

where λ ∈ C∞(SQ) and X̂ ∈ Γ(SQ). Since P × SQ is going to be a boundary hyperface
in the blow-up, the lift of X needs to be tangential to it. In other words, for the lift we
set

X̃ : [V : P ] = (V \ P ) t (P × SQ)→ T [V : P ] = T (V \ P ) t T (P × SQ)

V \ P 3 (x, y) 7→ X(x, y)

P × SQ 3 (x, ξ) 7→
(
XP (x, ξ), X̂(ξ)

)
,

where we replaced XQ at the boundary by the non-radial part of its differential.
Surely, this map is well-defined and smooth in V \ P as well as on P × SQ in all

directions which are tangent to this boundary hyperface. Hence, it only remains to
check that X̃ is smooth on P × SQ in radial direction.

Therefore, we recall the map κ from (2.2), which endowed the blow-up with its smooth
structure:

(V \ P ) t (P × SQ)
∼←−
κ

P × SQ× [0,∞)

(x, rξ)←[ (x, ξ, r)(if r > 0),

(r, ξ)←[ (x, ξ, 0).

Now, on V \ P , the pulled-back vector field of X along κ is given by

dκ−1(X(x, rξ)) = Dκ−1(x, rξ) ·X(x, rξ)

=

1n 0
0 1

r (1n′ − ξ ⊗ ξ)
0 ξT

 ·X(x, rξ)

=

 XP (x, rξ)
1
rπξ(XQ(x, rξ))
ξ ·XQ(x, rξ),


where πξ := 1n′ − ξ ⊗ ξ.

Since we are given XQ(x, 0) = Xn+1...n+n′(x, 0) = 0, we may transform the expression
in the middle of the upper vector to

1

r
· πξ(XQ(x, rξ)−XQ(x, 0))

= πξ

(
1

r
· (XQ(x, rξ)−XQ(x, 0))

)
r→0−→ πξ

(
∂(0,ξ)XQ(x, 0)

)
= πξ(DXQ(x, 0) · (0, ξ))
= πξ

(
d(x,0)XQ(ξ)

)
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4 Lifting vector fields to blow-ups

In total, we obtain

dκ−1(X(x, rξ)) =

 XP (x, rξ)
1
rπξ(XQ(x, rξ))
ξ · (XQ(x, rξ))


r→0−→

 XP (x, 0)
πξ
(
d(x,0)XQ(ξ)

)
0


= dκ−1

(
XP (x, ξ)

πξ
(
d(x,ξ)XQ(ξ)

))
= dκ−1

(
X̃(ξ)

)
,

so it exactly fits with our definition of X̃. This proves the claim.

We now want to apply this to the case, whereM is a particular kind of compactification
of Rn, the so-called spherical compactification (see also [2, p. 28f]):

Definition 4.4. Let n ∈ N. Then, as a set, the spherical compactification Rn of Rn is
defined as

Rn := Rn t Sn−1.

We endow it with a smooth structure by pulling back the natural smooth structure of
Sn1 along the bijection

Θn : Rn → Sn1

Rn 3 x 7→ 1

‖(1, x)‖
(1, x),

Sn−1 3 v 7→ (0, v)

with the inverse

Θ−1
n : Sn1 → Rn

(y0, . . . , yn) 7→ 1

y0
(y1, . . . , yn) if y0 > 0,

(0, v) 7→ v.

In the following, we will fix M = Rn for some n ∈ N and P = ∂V , where V ⊂ Rn is a
k-dimensional linear subspace.

Definition 4.5 (Translation vector field). For any X ∈ Rn, the translation vector field
of X, also denoted by X, is defined as

X : Rn → TRn

x 7→ X,

where X is viewed as an element in TxRn using the canonical vector space isomorphism
Rn ∼= TxRn. It is clear that X ∈ VRn , since it is smooth as a constant map and Rn has
no boundary hyperfaces.
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The first thing to ask now is whether or not this vector field extends to Rn. Therefore,
we consider the global chart Θn of Rn which endowed it with the structure of a smooth
manifold:

Θn : Rn −→ Sn1

Rn 3 x 7→ 1

‖(1, x)‖
(1, x),

Sn−1 3 v 7→ (0, v).

Using this chart, we can push forward X to a vector field on Sn1 \ ∂Sn1 and look for a
possible extension there. For all y = (y0, . . . yn) ∈ Sn1 with y0 > 0, we calculate this
pushed-forward vector field using the shorthand notation y := (y1, . . . , yn):

((Θn)∗X)(y0, . . . , yn) = d 1
y0
yΘn

(
X

(
1

y0
y

))
= d y

y0

Θn(X)

= DΘn

(
y

y0

)
·X.

If we want to extend ((Θn)∗X) to all of Sn1 , we need to look at the limit y0 → 0.
Therefore, we compute the differential above:

DΘn(x) =

 − x
‖(1,x)‖3(

δij
‖(1,x)‖ −

xixj
‖(1,x)‖3

)
i,j


=

1

‖(1, x)‖

(
− x
‖(1,x)‖2

1n − x⊗x
‖(1,x)‖2

)
.

If x = y
y0

, we have ‖(1, x)‖ =
∥∥∥(1, yy0

)∥∥∥ = ‖y‖
y0

and

DΘn

(
y

y0

)
=

1∥∥∥(1, yy0

)∥∥∥
 − y

y0

∥∥∥(1, y
y0

)∥∥∥2
1n − y⊗y

y20

∥∥∥(1, y
y0

)∥∥∥2


=
1∥∥∥(1, yy0

)∥∥∥
− y

‖y‖
∥∥∥(1, y

y0

)∥∥∥
1n − y⊗y

‖y‖2


We are now interested in the limit of this differential for y0 → 0 whilst maintaining the
constraint y ∈ Sn1 . Therefore, for any (0, y) ∈ ∂Sn1 we consider the meridian

γy : [0, 1)→ Sn1
t 7→

(
t,
√

1− t2y
)
.
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4 Lifting vector fields to blow-ups

Let us now fix an arbitrary bounded sequence (yk)k∈N with yk ∈ Sn1 and a sequence
(tk)k∈N with tk > 0 and limk→∞ tk = 0.

Then, for any k ∈ N, the differential DΘn along Θ−1
n ◦ γyk at tk is given by

DΘn

(
Θ−1
n (γyk(tk))

)
= DΘn

(
γyk(tk)

γyk(tk)0

)

= DΘn


√

1− t2k
tk

yk



=
1∥∥∥∥(1,

√
1−t2k
tk

yk

)∥∥∥∥
 −

√
1−t2kyk∥∥∥∥∥

(
1,

√
1−t2

k
tk

yk

)∥∥∥∥∥
1n − (1− t2k)yk ⊗ yk


A short and straightforward investigation shows that this expression converges to zero

for k →∞. Hence, also DΘn

(
y
y0

)
·X decays to zero for y0 → 0 if y 6= 0.

Note that we could assume y0 6= 0 without any loss of generality since y is a point on
a sphere and this inequality is true in any neighbourhood of ∂Sn1 which does not contain
the north pole.

To sum it up, the only possible extension of X to Rn is the extension by zero on the
sphere, i. e. X(v) := 0 for v ∈ Sn−1. Since the extension of DΘn to y0 = 0 is smooth,
this also holds for the vector field X; hence, X ∈ VRn .

As said previously, we would like to know whether or not X lifts to the blow-up[
Rn : ∂V

]
, where V ⊂ Rn is a linear subspace. But this is now trivial: Since ∂V ⊂

∂Rn = Sn−1 and X|Sn−1 = 0, we can apply 4.3, which yields the desired lift of X to[
Rn : ∂V

]
.

So, translations seem to be rather easy - they always lift to a blow-up of the given
kind. A more general type of vector fields on Rn, however, are affine maps:

Definition 4.6 (affine maps, motions). An affine map on Rn is a vector field in VRn of
the form MA,X : x 7→ A · x+X, where A ∈Mn(R) and X ∈ Rn.

MA,X is called a motion if A ∈ O(n).

This is motivated by the fact that, more generally, a motion is an isometry of a metric
space, and the isometries of Euclidean space are precisely the orthogonal affine maps
(see also [3, p. 21, Def. 4.1.1]).

Similar to translations, we may now wonder whether or not affine linear maps extend
to Rn, and, as a next step, if they also lift to blow-ups at infinity. We recall the definition
of Rn:

Rn := Rn t Sn−1.

Our goal now is to give a reasonable extension of MA,X to Rn by defining values on
Sn−1.
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First of all, the translation part X is going to vanish at infinity, so let us just consider
MA,0: As Sn−1 ⊂ Rn, we can restrict the vector field MA,0 to Sn−1 and decompose it
into a radial component and one tangential to the sphere:

MA,0 : Sn−1 → TRn

x 7→ A · x = λ(x) · x+B(x),

where λ ∈ C∞(Sn−1) and B ∈ Γ(Sn−1).
Since the extension of MA,0 and hence of MA,X should be an element of VRn , it has

to be tangent to the boundary hyperface at infinity, i. e. tangent to Sn−1. Thus, the
contribution of λ has to vanish, and therefore we set

MA,X : Rn = Rn t Sn−1 → TRn = TRn t TSn−1

Rn 3 x 7→ A · x,
Sn−1 3 v 7→ B(v),

where B(v) is defined as before.
This vector field now turns out to be smooth: Indeed, it is clearly smooth in the

interior of Rn, as x 7→ A · x is smooth; and the extension is smooth on ∂Rn in every
direction tangential to the boundary hyperface, because B is smooth.

Hence, it remains to check if the extension MA,X is smooth in the radial direction
at the boundary. Therefore, we consider the chart Θn from before and compute the
pushed-forward vector field along Θn:

(Θn)∗MA,X(y0, . . . , yn) = d y
y0

Θn

(
A · y

y0
+X

)
= d y

y0

Θn

(
A · y

y0

)
+ d y

y0

Θn(X).

As said before, in the limit y0 → 0 the second summand vanishes as it is a translation.
The first summand computes:

d y
y0

Θn

(
A · y

y0

)
= DΘn

(
y

y0

)
·A · y

y0

=
1

y0

∥∥∥(1, yy0

)∥∥∥
− y

‖y‖
∥∥∥(1, y

y0

)∥∥∥
1n − y⊗y

‖y‖2

 ·A · y
=

1

‖y‖

− y

‖y‖
∥∥∥(1, y

y0

)∥∥∥
1n − y⊗y

‖y‖2

 ·A · y.
Similar to before, in order to show that the extension is smooth in radial direction at
infinity, we again consider the meridian γy for y ∈ ∂Sn1 . Also, let (yk)k∈N with yk ∈ Sn1
be again a convergent sequence, whose limit y lies in ∂Sn1 , and let (tk)k∈N be a sequence
with tk > 0 and limk→∞ tk = 0.

41



4 Lifting vector fields to blow-ups

Then, for any k ∈ N, we compute

1

γyk(t)0
DΘn

(
γyk(tk)

γyk(tk)0

)
=

1

tk
DΘn


√

1− t2k
tk


=

1

tk

∥∥∥∥(1,

√
1−t2k
tk

yk

)∥∥∥∥
 −

√
1−t2kyk∥∥∥∥(1,
1−t2

k
tk

yk

)∥∥∥∥
1n − (1− t2k)yk ⊗ yk



=

 −
√

1−t2kyk∥∥∥∥(1,
1−t2

k
tk

yk

)∥∥∥∥
1n − (1− t2k)yk ⊗ yk


k→∞−→

(
0

1n − y ⊗ y

)
.

So, the smooth limit of MA,X at points v ∈ ∂Rn = Sn−1 is precisely the image of A · v
under the projection πy : Rn|Sn−1 → TSn−1, which is B:

MA,X : Sn−1 → TSn−1

v 7→ (1n − v ⊗ v) ·A · v = B(v).

This shows that the extension MA,X of MA,X is smooth. Since it is unique, we will just
denote it by MA,X in the following.

As said previously, we would like to know when MA,X lifts to
[
Rn : ∂V

]
, where V ⊂ Rn

is a k-dimensional linear subspace. Proposition 4.3 tells us that this is the case if and
only if MA,X is tangential to ∂V . But by definition of the extension, this is equivalent
to A · v ∈ V ∩ Sn−1 for every v ∈ V ∩ Sn−1. Since A is linear, we obtain:

MA,X lifts to
[
Rn : ∂V

]
⇔ A(V ) ⊂ V.

Hence, we can now summarise the results of this chapter in the following proposition:

Proposition 4.7. Let n ∈ N, let V ⊂ Rn be a linear subspace, let A ∈ Mn(R) and let
X ∈ Rn. Furthermore, let Rn and V be the spherical compactifications of Rn and V ,
respectively.

Then, the following hold:

1. The translation vector field X smoothly extends to Rn by zero at infinity, and this
extension always lifts to the blow-up

[
Rn : ∂V

]
.

2. The affine map MA,X : x 7→ A · x + X smoothly extends to Rn by setting Sn−1 3
v 7→ (1n − v ⊗ v) · A · v, and this extension lifts to the blow-up

[
Rn : ∂V

]
if and

only if A(V ) ⊂ V , i. e. A restricts to an endomorphism of V .

Remark 4.8. Since the second part of the previous proposition is an extension to the
first one, it is important to note that their statements coincide if A = 0. In this case,
A(V ) = {0} ⊂ V is true, so both parts yield that translations lift into the blow-up[
Rn : ∂V

]
.
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5 Summary

We have seen that manifolds with corners inherit many of the properties of ordinary
manifolds and plenty of the definitions and theorems are fairly straightforward. But on
the other hand, there is not only one good notion of a submanifold, but rather several
different ones with different properties.

This came particularly clear when considering blow-ups, since a sensible definiton of
this construction can only be given for p-submanifolds, but their images under injective
immersions such as the product map B are, in general, not even submanifolds.

This was discussed further in the next section where it turned out that no nesting
of the p-submanifolds is allowed for the image of B to be a submanifold. It led to the
theorem that the statement only holds for “trivial” clean semilattices, i. e. those whose
elements were all pairwise disjoint. And even in this case, many restrictions to the local
models of the p-submanifolds had to be given.

So, the conjecture in [2, p. 28, Rem. 4.14] turns out to be wrong in general, since,
if the image of B is not a submanifold, in particular, in can neither be a wib- nor a
b-submanifold.

In the last section, we investigated lifts of vector fields on manifolds with corners,
leading to two main results:

First, a vector field on M lifts to [M : P ] if and only if it is tangential to P at P . And
second, translations and affine maps on Rn extend to Rn. But while translations always
lift to

[
Rn : ∂V

]
, where V is a linear subspace of Rn, general affine maps only do if they

restrict to an endomorphism of V .
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