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We investigate the twist-angle and gate dependence of the proximity exchange coupling in twisted
graphene on monolayer Cr2Ge2Te6 from first principles. The proximitized Dirac band dispersions of
graphene are fitted to a model Hamiltonian, yielding effective sublattice-resolved proximity-induced
exchange parameters (λAex and λBex) for a series of twist angles between 0° and 30°. For aligned layers
(0° twist angle), the exchange coupling of graphene is the same on both sublattices, λAex ≈ λBex ≈ 4 meV,
while the coupling is reversed at 30° (with λAex ≈ λBex ≈ −4 meV). Remarkably, at 19.1° the induced
exchange coupling becomes antiferromagnetic: λAex < 0, λBex > 0. Further tuning is provided by a transverse
electric field and the interlayer distance. The predicted proximity magnetization reversal and emergence of
an antiferromagnetic Dirac dispersion make twisted graphene=Cr2Ge2Te6 bilayers a versatile platform for
realizing topological phases and for spintronics applications.

DOI: 10.1103/PhysRevLett.128.106401

Van der Waals (vdW) heterostructures composed of
twisted monolayers [1–4] promise great tunability of
electronic, optical, and magnetic properties. The most
prominent example is magic-angle twisted bilayer gra-
phene, exhibiting magnetism and superconductivity due to
strong correlations [5–19]. Other platforms for correlated
physics are offered by trilayer graphene [20–29] and
twisted transition metal dichalcogenides (TMDCs) [30].
However, twistronics has yet to demonstrate its potential

for proximity effects [31], enabling phenomena such as
superconductivity [32,33], magnetism [34–52], and strong
spin-orbit coupling (SOC) [53–69] in materials—most
notably graphene—lacking them. Magnetism in graphene
can be induced by proximity exchange coupling with a
ferro- or antiferromagnet. Of particular interest are mag-
netic insulators (semiconductors) such as Cr2Ge2Te6
[39,58,70] (CGT) or CrI3 [40,49,71,72], which can modu-
late the band structure of graphene (or another nonmagnetic
material) without significant charge transfer and without
contributing additional transport channels. Proximity
exchange effects in graphene can be observed by quantum
anomalous Hall effect [73], magnetoresistance [74], or
nonlocal spin transport experiments [75]. Joined with
strong SOC in ex-so-tic heterostructures [76,77] proximity
exchange can also induce spin-orbit torque [70,78–80].
We already know that proximity exchange coupling in

graphene can be tuned by gate [34,81]. Can we also tune it
by twisting? A recent study shows the sensitivity of the
spin polarization, magnetic anisotropy, and Dzyaloshinskii-
Moriya interaction to the twist angle in graphene/2H-VSeTe
heterostructures [82]. Similarly, tight-binding studies predict
that the strength of proximity SOC in graphene/TMDC

heterostructures [83,84] can be tuned by the twist angle. It is
then natural to expect that the strength of the proximity
exchange could change depending on the twist angle.
We show here that not only the magnitude, but also the

orientation and even the character (ferro- or antiferromag-
netic) of the proximity exchange can depend on the twist
angle. Employing first-principles calculations, we study the
twist-angle dependence of the proximity exchange cou-
pling in large graphene/CGT supercells. From the proxi-
mitized Dirac band dispersions of graphene, which we fit
to a model Hamiltonian, we extract sublattice-resolved
exchange parameters λAex and λBex for a series of twist angles
between 0° and 30°. We find that one can tune the ferro-
magnetic (uniform) exchange couplings (λAex ≈ λBex) from
about 4 to −4 meV by twisting the layers. This reversal of
the induced spin polarization by the twist angle is surprising
when considering that the CGT magnetization orientation is
unchanged.
Even more surprising is the emergence of antiferromag-

netic (staggered) proximity exchange coupling at 19.1°,
where λAex < 0 and λBex > 0. At this twist angle there is a
delicate balance in the orbital hybridization of the spin-up
and spin-down CGT bands with the carbon pz orbitals,
which makes the exchange coupling highly sensitive to
the atomic registry. By laterally shifting the two layers,
ferromagnetic couplings can be realized as well. Graphene/
CGT stacks thus form a versatile platform for engineering
proximity exchange coupling in graphene.
Finally, we also study the influence of strain, interlayer

distance, and (transverse) electric field on the doping level,
band offsets, and proximity exchange parameters, for
different twist angles. We point out the crucial role of

PHYSICAL REVIEW LETTERS 128, 106401 (2022)

0031-9007=22=128(10)=106401(9) 106401-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6239-3271
https://orcid.org/0000-0002-3009-4525
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.106401&domain=pdf&date_stamp=2022-03-10
https://doi.org/10.1103/PhysRevLett.128.106401
https://doi.org/10.1103/PhysRevLett.128.106401
https://doi.org/10.1103/PhysRevLett.128.106401
https://doi.org/10.1103/PhysRevLett.128.106401


both momentum backfolding and interlayer orbital hybridi-
zation when tracing the microscopic mechanism for the
observed proximity exchange tunability. One important
message that our results convey is that the knowledge of
the twist angle is crucial when reporting experiments on
magnetic proximity effects: not only the orientation of the
induced spin polarization, but also the apparent magnetic
ordering (ferro- or antiferromagnetic) need not correspond
to the substrate magnetic layer.
Crystal structures.—We consider vdW heterostructures

of graphene and CGT, with a series of twist angles, ranging
from 0° to 30° in steps of roughly 3°, between the two
monolayers, see Fig. 1. In order to form commensurate
supercells for periodic density-functional theory (DFT)
calculations, we strain the monolayers in the twisted
heterostructures. In Table S1 we summarize the main
structural information for the twist angles we consider,
see Supplemental Material [85]. After relaxation of the
heterostructures, we find an average interlayer distance
dint ≈ 3.55 Å and a graphene rippling Δzgrp < 1 pm nearly
independent of the twist angle.
Effective low-energy Hamiltonian.—From our first-

principles calculations we extract the low-energy band

structure of the proximitized graphene. The systems we
consider have broken time-reversal symmetry with C3

structural symmetry. The following Hamiltonian, derived
from symmetry [34,110,111], is able to describe the
graphene bands in the vicinity of the Dirac points when
proximity exchange is present:

H ¼ H0 þHΔ þHex þ ED; ð1Þ

H0 ¼ ℏvFðτkxσx − kyσyÞ ⊗ s0; ð2Þ

HΔ ¼ Δσz ⊗ s0; ð3Þ

Hex ¼ ð−λAexσþ þ λBexσ−Þ ⊗ sz: ð4Þ

Here vF is the Fermi velocity and the in-plane wave vector
components kx and ky are measured from �K, correspond-
ing to the valley index τ ¼ �1. The Pauli spin matrices are
si, acting on spin space (↑;↓), and σi are pseudospin
matrices, acting on sublattice space (CA, CB), with i ¼
f0; x; y; zg and σ� ¼ 1

2
ðσz � σ0Þ. The staggered potential

gap is Δ and the sublattice-resolved proximity-induced
exchange parameters are λAex and λBex. The four basis states
are jΨA;↑i, jΨA;↓i, jΨB;↑i, and jΨB;↓i. The model
Hamiltonian is valid close to the Fermi level at zero energy.
Charge transfer between the monolayers in the DFT
calculation is captured by the Dirac point energy ED,
which adjusts the Dirac point with respect to the Fermi
level.
Proximity-induced exchange in twisted structures.—In

Fig. 2(a), we show the global band structure for the
graphene/CGT heterostructure for a twist angle of 30°;
the results for other angles and effects of interlayer charge
transfer are summarized in the Supplemental Material [85].
In agreement with recent calculations [39,58,70], we find
the Dirac cone located at the Fermi level and close to the
conduction-band edge of the CGT.
In Figs. 2(b)–2(d) we present enlargements to the Dirac

bands, which exhibit proximity exchange splitting, along
with the calculated spin polarizations on graphene. For the
aligned heterostructure (0°) the exchange splitting is
ferromagnetic, with uniform spin polarization on A and
B sublattices. The fitted exchange parameters are λAex≈
λBex ≈ 4.2 meV. The Dirac bands look similar for the 30°
twist angle, but the spin polarization on graphene is
reversed, with the parameter values of λAex ≈ λBex≈
−3.6 meV. This is rather surprising considering that the
ferromagnet in both cases has the same magnetization
orientation.
However, the most remarkable case is the 19.1° twist

angle, shown in Fig. 2(c). The Dirac band structure does not
resemble a ferromagnetic graphene at all. Instead, the spin
splittings of the bands are compatiblewith antiferromagnetic
exchange. Indeed, a fit to the low-energy Hamiltonian (1)
yields staggered exchange couplings, λAex ≈ −2.1 and
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FIG. 1. 3D view of CGT on graphene, where we define the
interlayer distance dint and the rippling of the graphene layer
Δzgrp. We twist CGT by an angle ϑ around the z axis, with respect
to graphene. The proximitized Dirac dispersions are sketched for
three most relevant twist angles. Red bands are polarized spin-up
(defined by the CGT magnetization M along z direction), while
blue bands are polarized spin-down. The spin polarizations on the
graphene lattice, resulting from these Dirac bands at the given
Fermi level (dashed line), are also sketched.
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λBex ≈ 1.3 meV. In other words, graphene proximitized by a
ferromagnetic substrate can behave as an antiferromagnet,
with alternating spin polarization on A and B sublattices.
To get the full picture of proximity exchange, we plot in

Fig. 3 the twist-angle dependence of ferromagnetic λF ¼
ðλAex þ λBexÞ=2 and antiferromagnetic λAF ¼ ðλAex − λBexÞ=2
couplings (listed in Tables S2 and S4 [85]); the magneti-
zation of CGT is kept in the same direction for all studied
angles. We find a rather continuous tunability of the
ferromagnetic exchange from 4 to −4 meV, when twisting
from 0° to 30°. Antiferromagnetic exchange emerges only
at 19.1°. Figure 3 also shows data for structures, where
only graphene is strained (CGT is kept unstrained), to

demonstrate the robustness of these findings against strain;
we note that strain controls mainly the band offsets and
related charge transfer, see Supplemental Material [85].
Tunability by electric field.—We now consider the

graphene/CGT stacks with different twist angles and apply
a transverse electric field between �1.5 V=nm. The pos-
itive direction of the field is indicated in Fig. 1. We wish to
answer the question: Can one tune the proximity-induced
exchange coupling by gating?

FIG. 2. (a) DFT-calculated band structure of the graphene/CGT heterostructure along the high-symmetry pathM-K-Γ for a twist angle
of 30°. Red (blue) solid lines correspond to spin-up (spin-down). Gray disk indicates anticrossing of Dirac and CGT bands.
(b) Enlargement of the DFT-calculated (symbols) low-energy Dirac bands near the K point with a fit to the model Hamiltonian (solid
lines) for a twist angle of 0°. Inset: the calculated spin polarization on graphene, considering Dirac states in the energy window of about
�2.5 meV around the indicated Fermi level (dashed line). (c),(d) Same as (b), but for 19.1° and 30°.
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FIG. 3. Calculated twist-angle dependence of the (top) ferro-
magnetic λF and (bottom) antiferromagnetic λAF proximity
exchange coupling of the graphene/CGT bilayers. We summarize
the results for heterostructures with both layers strained and with
only graphene strained.
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FIG. 4. Calculated electric-field and twist-angle dependence
of the (top) ferromagnetic λF and (bottom) antiferromagnetic
λAF proximity-induced exchange coupling (interpolated from
Table S5 [85]). Vertical dashed lines indicate regions of strong
ferro- or antiferromagnetic exchange. The spin polarizations on
the graphene lattice are sketched (see also Fig. 1).
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In Fig. 4 we summarize the calculated electric-field and
twist-angle dependence of the proximity-induced ferro-
magnetic and antiferromagnetic exchange coupling, as
listed in Table S5 [85]. While the qualitative picture of
spin-polarization reversal at 30° and appearance of anti-
ferromagnetic polarization at 19.1° remains unchanged, the
applied electric field can tune the proximity magnetization
rather significantly for some twist angles. A striking
example is the 12.2° twist angle: Even though the proximity
exchange parameters are small, they can be tuned from
positive to negative by the gate field. The antiferromagnetic
proximity exchange at 19.1° stays, but is weakly tunable by
the field. Overall, we find that both gating and twisting are
two efficient knobs to tailor the signs and magnitudes of the
proximity-induced exchange couplings in graphene/CGT
bilayers. We expect similar tunabilities (although at differ-
ent twist angles) for other graphene/ferromagnetic-insulator
heterostructures.
Sensitivity to interlayer distance and atomic registry.—

We find that the interlayer distance strongly influences the
proximity exchange, see Table S6 [85]. Tuning dint by
�0.1 Å, the exchange parameters can be tuned by about
∓ 30%. Such tunability has recently been measured for
the proximity SOC in graphene=WSe2 heterostructures
[69,86]. The atomic registry does not play a role for
proximity exchange couplings for 0° and 30° twist angles.
However, as we show in the Supplemental Material [85],
shifting the layers relative to each other, while keeping the
twist angle at 19.1°, one can get both staggered and uniform
exchange couplings. At this angle the heterostructure
supercell is relatively small (24 atoms), making the
proximity exchange coupling particularly sensitive to the
atomic registry. Further encapsulation of graphene within
two CGT layers provides additional boost and tailoring of
proximity exchange, see [85].
Mechanism of twist-angle dependence of proximity

exchange.—The twist-angle dependence of proximity
SOC in graphene/TMDC heterostructures has been
explained by downfolding the tight-binding model of
coupled bilayers [83,84]. The main mechanism there is
the tunability of the interlayer interaction connecting the
graphene K point with TMDC Bloch states at different k
points for different twist angles. Comparison with recent
large scale DFT calculations [112,113] points to the
importance of both spectral variations of the TMDC band
structure in the Brillouin zone, but also of the interlayer
orbital hybridization.
Can we deduce the rather striking reversal of the spin

polarization of the Dirac electrons by considering the
spectral variations only? The calculated spin-resolved
electronic band structure of monolayer CGT, with back-
folded graphene K points, is shown in Fig. 5. Second-order
perturbation theory predicts level repulsion, so considering
energy bands only, Fig. 5 indicates for 0° that spin-up Dirac
bands are pushed above spin-down bands, and vice versa

for 30°. This is opposite to what is predicted in Figs. 2(b)
and 2(d).
The CGT bands in Fig. 5 are weighted by their z-like

orbitals content. Those are most likely to overlap with the
lobes of graphene’s pz orbitals. There does not appear any
discernable pattern here that would predict the DFT-
calculated behavior in Fig. 2. But what Fig. 5 does reveal
is that one would need to consider many bands—and both
the energies and overlaps with Dirac band pz orbitals—
around the CGT gap at the corresponding backfolded K
point, to be able to reproduce the DFT results. For example,
for 0° the nearest valence bands are formed by Te px þ py

orbitals whose overlap with graphene pz is weak. We
elaborate more on this point in the Supplemental Material
(see Fig. S19) [85].
The relevance of high-energy bands for the spin polari-

zation at the Dirac point is revealed by the heterostructure
dispersion of, for example, the 30° structure in Fig. 2(a).
One finds a pronounced anticrossing (gray disk) signaling
a particularly strong coupling of spin-down carbon pz
orbitals and the lowest CGT spin-down conduction-band
states (formed by Ge pz and Cr d orbitals). This coupling,
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FIG. 5. Top: Backfolding of the graphene Dirac point at K to k
points of CGT for different twist angles. The black (red)
hexagons represent the graphene (CGT) Brillouin zones. Bottom:
The DFT-calculated band structure of monolayer CGT, where the
vertical dashed lines indicate the k points, to which the Dirac
states couple to, according to the backfolding. The black dots are
the locations of the Dirac point for the different twist angles from
Table S4 [85], when CGT is unstrained. We also indicate the main
orbital contribution of the bands close to the black dots. The line
thicknesses are weighted by the sum of projections onto
z-extended orbitals (Te pz, Ge pz, and Cr dz2 þ dxzþyz).
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which is nicely seen in the density plots in Fig. S12 [85],
justifying the effective model Hamiltonian, lowers the spin-
down more than spin-up Dirac states, in agreement with
Fig. 2(d). Even though the anticrossing is at about 500 meV
above the Dirac point, the corresponding high-lying CGT
band provides a sizable spin splitting of the Dirac band
structure due to the strong coupling. Similar observations
hold for 0° and 19.1° cases, see Supplemental Material [85].
Since the heterostructure unit cells comprise many

carbon atoms, it is not obvious that the calculated spin-
split Dirac bands, which arise due to couplings to high-
lying CGT bands, map to a local proximity magnetization
pattern in the graphene layer. The DFT-calculated local spin
polarizations of the conduction-band electrons in proximi-
tized graphene are plotted as insets in Figs. 2(b)–2(d).
There is a perfect correspondence between the spin-split
bands and the local spin-polarization pattern—with the
emerging pseudospin-resolved polarization—justifying our
effective Hamiltonian (1).
Conclusions.—Employing DFT on large supercells, we

show that one can engineer the proximity exchange of
Dirac electrons in graphene/CGT stacks by twisting, which
should be useful for spin transport experiments—spin
Hanle effect, spin relaxation anisotropy, spin torque—as
well as for realizing topological states [40,87,114] requir-
ing both SOC and (ferro- or antiferromagnetic) exchange in
graphene. Our results also stress the importance of docu-
menting the twist angle when employing magnetic vdW
heterostructures in experiments.

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB
1277 (Project No. 314695032), SPP 2244 (Project
No. 443416183), and the European Union Horizon 2020
Research and Innovation Program under Contract
No. 881603 (Graphene Flagship).

*klaus.zollner@physik.uni-regensburg.de
[1] Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux,

Mitchell Luskin, and Efthimios Kaxiras, Twistronics:
Manipulating the electronic properties of two-dimensional
layered structures through their twist angle, Phys. Rev. B
95, 075420 (2017).

[2] Zachariah Hennighausen and Swastik Kar, Twistronics: A
turning point in 2d quantum materials, Electronic structure
and magnetism of inorganic compounds 3, 014004 (2021).

[3] Rebeca Ribeiro-Palau, Changjian Zhang, Kenji Watanabe,
Takashi Taniguchi, James Hone, and Cory R. Dean,
Twistable electronics with dynamically rotatable hetero-
structures, Science 361, 690 (2018).

[4] Stephen Carr, Shiang Fang, and Efthimios Kaxiras,
Electronic-structure methods for twisted moiré layers,
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