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ABSTRACT
Taking screenshots is a common way of capturing screen content
to share it with others or save it for later. Even though all major
desktop operating systems come with a screenshot function, a lot of
people also use smartphone cameras to photograph screen contents
instead. While users see this method as faster and more convenient,
image quality is significantly lower. With ScreenshotMatcher, we
present a system that allows for capturing a high-fidelity screen-
shot by taking a smartphone photo of (part of) the screen. A smart-
phone application sends a photo of the screen region of interest to
a program running on the PC which retrieves the matching screen
region and sends it back to the smartphone. Comparing four fea-
ture matching algorithms and multiple parameters, we identified a
combination of ORB keypoint detection (feature limit 2000) and a
brute force feature matcher using Hamming distance as the best
solution for this task (success rate: 85%, processing time: 90 ms).
This raw performance results in a real-world success rate of 47%
and a mean response time per screenshot of 878 ms as measured in
a remote user study (N=19). Released as open-source code, Screen-
shotMatcher may be used as a basis for applications and research
prototypes that bridge the gap between PC and smartphone.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools.
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1 INTRODUCTION
By taking a screenshot, the content of a computer screen can be
captured to share it with others or to archive it for later use. Orig-
inally, screenshots - physical photographs of computer screens -
were used by researchers working on the first CAD applications at
MIT to show the capabilities of their newly developed system to its
designated users [1]. Today, all major operating systems offer the
ability to take a screenshot by retrieving the screen content from
an internal graphics buffer and saving it as a digital file. Typically,
users can also elect to capture only a certain region or window.

However, many people use their mobile phones for sharing
screenshots with others. Instead of transferring a screenshot to
the phone, they photograph the computer screen with their smart-
phone’s camera and share this photo. By adjusting the camera’s field
of view, the image can already be cropped to a region of interest
while taking the photo.

In a 2020 survey among 66 university students and employees
(31 male, age 19-39), we found that 97% regularly took screenshots
- mostly of pictures, web pages, text documents, and program code.
52% used only the screenshot function of their device, 6% only ever
took photos of their screen, and 42% did both, depending on the
situation. Whereas screenshots were often used for personal docu-
mentation, screen photos were seen as faster and more convenient
when sharing information with others. However, screen photos’
image quality suffers from reflections, perspective distortion, moiré
artifacts, and interference between the camera’s and screen’s re-
fresh rates (Fig. 1). Furthermore, the file size of screen photos is

Figure 1: Degradations that occur in screen photos. From left
to right: Moiré pattern, reflections, perspective distortion.
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significantly higher than that of screenshots with the same content
because of modern smartphone’s high resolution cameras.

To combine the advantages of screen photos and screenshots, we
developed ScreenshotMatcher, an extensible interaction technique
for capturing impeccable screenshots of screen regions by taking a
photo with a smartphone camera. A smartphone app takes screen
photos which are then sent to an application running on the host
computer. The host application applies feature matching to find
the photographed region within the screen contents, extracts the
region of interest and sends it back to the smartphone where it can
be shared with others or stored in the gallery – just like with a
normal camera application. Our research adds to the existing body
of knowledge by demonstrating a new use case, systematically
evaluating suitable combinations of keypoint detection and fea-
ture matching algorithms, and providing an extensible open-source
platform on which further applications can be developed.

2 RELATEDWORK
ScreenshotMatcher extends a large body of research on interaction
with displays via the smartphone camera. In 2004, Madhavepeddy
et al. [13] showed how a mobile phone camera could be used to
interact with content on a computer screen. They displayed mark-
ers encoding information about a Bluetooth service on a screen
and decoded them on the mobile phone, which in term connected
to said service. An example application was a world map where
airports were represented by such markers. By scanning them with
a phone camera, users could book flights. In Sweep and Point &
Shoot [2] Ballagas et al. present an application that uses optical flow
image processing on a phone camera image so it can track relative
movement similar to an optical mouse. They combined this with a
grid of markers encoding absolute coordinates on a large screen so
users could interact with the displayed content by pointing at the
screen with a phone camera. Shoot&Copy by Boring et al. [5] is a
method to capture content of a public display with a phone camera
without relying on markers. Users take a photo of a region on a
large display. The photo is sent to a host computer which searches
for the corresponding region within the image on the display. The
region is calculated by identifying icons displayed on the screen
within the photograph. Each of those icons represents a URL which
is sent back to the phone. To access the content associated with the
icon, received URLs can be sent to a PC via Bluetooth. Baur et al.
[3] propose multi-device interaction techniques that use a smart-
phone as a magic lens. Users can interact with content displayed on
computer screens by touching them in a live camera image on their
smartphone. This way, they can for example move content from
one screen to another or open applications like web browsers or
video players on a secondary screen. To detect screens within the
camera image, SURF [4] is used to find features in screenshots of
all connected displays and the camera image of the smartphone. If
a match is found, a homography between both images is calculated.
With DeepShot [7], Chang and Li present a method to transfer ap-
plication context from one device to another by scanning a screen
with a phone camera. Applications can either be “picked up” with
the phone (Deep Shooting) or “projected” from the phone onto the
screen (Deep Posting). The system automatically recognizes the
captured context and opens it with an appropriate application on

the other device. To identify the region of interest on the computer
screen, a screenshot of the screen’s content and a photo with the
phone’s camera are captured. SURF is used to detect keypoints and
matches are calculated by finding the nearest neighbor for each
point by computing cosine similarity. By calculating a homography,
the region visible in the camera image can be determined within
the screenshot of the computer screen.

Even though several application use computer vision to match
camera images to screen content, to our knowledge, this method
has not been applied to the use case of capturing screenshots yet.

3 SCREENSHOTMATCHER
With ScreenshotMatcher, phone and host PC communicate via an
existing local WiFi network; neither explicit device pairing nor an
internet connection are required. The smartphone application finds
available host PCs via UDP broadcasts. Privacy and security are
ensured as no third party servers or cloud services are used and the
connection to theWiFi network serves as implicit authentication for
capturing screen content. Furthermore, in the secure default setting,
users can only request screenshots of screen regions of which they
have taken a photograph, i.e. of screen content to which they have
physical access. Our architecture supports multiple smartphones
being connected to the same PC, as well as multi monitor setups.

The ScreenshotMatcher smartphone application resembles a
typical camera app (Fig. 2, left). The top right area indicates the
connection status and doubles as a button which opens a list of
available PCs running the ScreeshotMatcher desktop application.
Once the user presses the capture button, the app extracts the cur-
rent image from the live feed, scales it down in resolution, converts
it to grayscale and sends it to the connected PC via HTTP.

On the PC, a cross-platform daemon written in Python 3.9 then
matches the received photo against the contents on its screen and
sends back the corresponding screenshot. Whenever the daemon re-
ceives a screen photo, a screenshot is captured and both images are

Figure 2: The three screens of the Android app: Main Screen
(left): (a) live view of the smartphone’s main camera, (b) cap-
ture button, (c) change settings, (d) display recently saved
screenshots, (e) indicator for the current connection status.
Result Screen (center): (f) result image, (g) buttons to switch
between cropped and full screenshot, (h) buttons to share
or save the image. The Failed-Screen (right) is shown if the
matching process was unsuccessful.
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passed to a feature matching algorithm implemented with OpenCV
4 [6]. The matching algorithm calculates a homography between
both images, extracts the region of the computer screen visible
in the photograph from the actual screenshot, and returns the re-
sulting image to the app, where it gets displayed to the user (Fig.
2, center). Should the matching process not find a result, the app
displays a message box indicating a matching failure (Fig. 2, right)
and users can then either try again or request a full screenshot
from the PC. A full screenshot of all screens can also be obtained
by swiping left or pressing the arrow on the right. As retrieving
a full screenshot via network may leak information, this feature
should only be enabled in trusted environments, however.

We compared different algorithms for keypoint detection and
feature matching and selected the ORB [15] keypoint detection algo-
rithm as it performed faster and more accurately than comparable
ones. A brute force feature matcher using Hamming distance and
the k-nearest neighbours algorithm finds matches between key-
points detected within screen photo and screenshot. A subsequent
Lowe’s ratio test [12] discards any bad matches. The homography
between both images is calculated via RANSAC [9], and the photo-
graph of the screen is aligned with the screenshot via a perspective
transformation. Finally, an axis-aligned bounding box around the re-
sulting region is extracted from the screenshot and the final image’s
dimensions and size are validated to discard false positives.

4 OPTIMIZATION AND EVALUATION

Figure 3: Optimization data set. Each category is represented
by two images (from left: GUI, Icons, Text, Article, Image).

For ScreenshotMatcher to be a usable in practice, the matching
algorithm should deliver the correct screenshots reliably and as
quickly as if the user had only taken a normal photo. Therefore, we
systematically compared keypoint detectors, feature matchers, and
associated parameters in terms of recognition rate and computation
time. We then evaluated the performance of the resulting algorithm
with a data set of screen photos and corresponding screenshots.

To compare the different matching algorithms and later evaluate
the system, a data set of 68 screenshots in 1080p resolution were
captured. They were categorized as GUI, icons, text, article (com-
bination of text and images) or image. The data set was split up
into a optimization data set and an evaluation data set to avoid bias
towards the data set. Two screenshots of each content category
were used to compare the different algorithms (Fig. 3), the remain-
ing 58 screenshots were used for the evaluation of the final system.
We then asked nine colleagues to display each of the screenshots
full-screen on a computer screen and take a photo of an interesting
region as if they were about to share the content with a friend or
colleague. As some of them owned multiple phones or monitors, 16
data sets of 68 photographs (1088 total) could be collected this way.
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Figure 4: Comparison of keypoint detectors for different im-
age sizes in terms of success rate and computation time. As
responsiveness of the system is important, processing times
of over 500 ms were considered as unsuccessful.

To find a matching algorithm suitable for ScreenshotMatcher,
we compared multiple keypoint detection and feature matching
algorithms. Our goal was to achieve a short processing time while
keeping a high success rate. Even though feature extraction with
artificial neural networks is commonplace [10], we restricted our-
selves to comparing standard computer vision algorithms as the
training set requirements and the computational effort are not jus-
tified if an approach with less overhead can deliver sufficiently
accurate results. Shneiderman et al. [17] suggest a system response
time of below one second for “simple frequent tasks” and Seow [16]
categorizes response times of 0.5 to one second as “immediate”. As
the the total response time also includes the round trip time from
capturing the photo until receiving the result on the smartphone,
we aimed for a processing time of below 100 ms.

We included the keypoint detectors SIFT [12], SURF [4] because
of their high accuracy and acceptable speed [14], as well as BRISK
[11] and ORB [15] because of their good balance between compu-
tation time and accuracy [18]. The first variable of interest was
the image size of the scaled-down photograph which should be
minimized while keeping an acceptable success rate, as the trans-
fer of images between devices is the most time-consuming part
of the whole process. Because of the similar aspect ratios of dif-
ferent smartphone cameras, we use the length of an image’s long
edge in pixels as a measure for image size and compared sizes be-
tween 128 and 2048 pixels (Fig. 4). For each keypoint detector, all
suitable feature matching algorithms included in OpenCV were
compared. Furthermore, different thresholds were tested for each
detector/matcher combination. The success rate and processing
time of all matcher/parameter combinations were compared by
computing matches between the photographs and screenshots in
our test data set (Fig. 3) on an HP EliteBook 850 G4 (Intel i7 CPU
with 2.7 GHz, Intel HD Graphics 620, 16 GB RAM).

We found an image size of 512 pixels (long edge) to be the sweet
spot as smaller sizes lead to low success rates and larger sizes hardly
increase success rate. The fastest matching algorithm (mean: 95 ms,
sd: 16 ms) for this image size is an ORB keypoint detector (feature
limit: 2000), together with a brute force matcher using Hamming
distance. This combination achieves a success rate of 89% which
we consider accurate enough for use in an interactive application
where users can repeat the process until they get a positive result.
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The ORB+Hamming algorithm was evaluated using the evalua-
tion data set described above. As we excluded the ten images that
we already had used for selecting the best algorithm, the data set
contains 16 sets of photos of 58 screenshots (928 photos in total).
The evaluation was run on the same hardware as the optimization.
Before the evaluation, all photographs were converted to grayscale
and scaled down so the long side was 512 pixels wide. No further
pre-processing was applied to the images. Each of those images
was then passed to the matching algorithm together with the corre-
sponding original screenshot. We measured how well the matching
algorithm performs on a realistic data set (1), and how processing
time and success rate are affected by the content of the image (2)
and the phone/screen combination used to capturing the photo (3).

(1) Success Rate and Processing Time. The system could de-
tect matches between screenshot and photograph for 86.9% of the
complete data set. Mean computation time was 90 milliseconds
(range: 57 – 336 ms, sd: 24 ms). This confirms the results from
the optimization step. While not sufficient for applications such as
real-time optical tracking, the computation time of the matching
process is short enough to be perceived as responsive [8].

(2) Effect of Image Content. As the success of keypoint de-
tection algorithms is dependent on the content of the image, we
investigated whether the algorithm selected for ScreenshotMatcher
is suitable for all real-world use cases. The screenshots in the eval-
uation data set were divided up into five categories: graphical user
interfaces, text, articles (combination of text an images, e.g. most
websites), icons (e.g. a file explorer) and images (Fig. 3). Both pro-
cessing time (mean: 84 – 93 ms, sd: 11 – 22 ms) and success rate (84%
– 93%) were in a similar range for all categories. For seven individual
screenshots, a success rate below 75% was found. Those screenshots
were spread across all categories but had in common that they were
either very cluttered or contained very few recognizable elements.

(3) Effect of Phone and Screen. The evaluation data set con-
tains photos of nine different screens (laptop and desktop moni-
tors) captured with nine different smartphones (total phone/screen
combinations: 16). Mean computation time was similar for all com-
binations with values between 80 and 90 milliseconds (sd: 9 – 15
ms). For the success rate of the matching process, a bigger influence
of the phone/screen combination could be observed. Success rates
ranged from 71% (Samsung Galaxy A3 + Sony Vaio 17" laptop with
glossy display) to 97% (OnePlus One + Dell 24" matte monitor).

To test ScreenshotMatcher in a real-world context, we asked
19 participants from our computer science department (13 male, 6
female) to use the application over the course of one week however
they wanted. During the study, metadata about each screenshot
taken (participant ID, timestamps, used matching algorithm, and
match success) with ScreenshotMatcher was sent to a log server.
No image data was logged to preserve participant’s privacy. We
also did not collect any feedback during use of the application
in order to not affect how participants used it. After the week of
use, 14 of the 19 participants answered a questionnaire about their
usage of ScreenshotMatcher, their personal assessment of its perfor-
mance and usability, and which problems occurred during the study.
Eleven participants used it to send screenshots from the PC using
the phone’s instant messenger. Four participants had problems with
an unstable connection between phone and PC. Seven participants
reported that the wrong region of the screenshot was extracted on

some occasions. Suggested improvements were the possibility to
further crop the screenshot within the app, annotating the screen-
shot, recording animations, and integrating ScreenshotMatcher in
the default camera app. Twelve of the 14 participants stated that
they would continue using ScreenshotMatcher after the study.

A total of 635 images were captured with ScreenshotMatcher
over the course of the study. However, one participant alone cap-
tured 326 screenshots whereas ten participants captured less than
ten screenshots. Mean processing time (from pressing the capture
button to the result being displayed on the phone) for successful
matches was 878 ms (sd: 806 ms, range: 287 – 6588 ms). Mean pro-
cessing time of the matching algorithm was 178 ms (sd: 235 ms,
range: 41 – 1964 ms), indicating that participants’ computers had
on average less processing power than our reference hardware.
Only 47.4% of screen photos were recognized successfully, much
less than in the technical evaluation ( 85%). As we did not store the
screen photos, we do not know for sure what the reasons are.

5 DISCUSSION AND FUTUREWORK
While previous approaches for smartphone-screen interactions
mostly employed SURF for feature matching, our evaluation in-
dicates that ORB outperforms SURF significantly for finding fea-
tures from screen photos in screenshots. A technical evaluation of
the matching algorithm used for this application has resulted in
a success rate of over 85% and an average processing time of 90
milliseconds which we consider to be sufficient in practice, espe-
cially together with the options to re-take the photo or to retrieve a
screenshot of the whole screen. In our preliminary real-world eval-
uation, average response time for ScreenshotMatcher was less than
one second, making it suitable for everyday use. The evaluation
also showed that real-world recognition rate and processing time
are only half as good as results from the technical evaluation would
indicate. This indicates room for further improving the processing
pipeline and exploring how real-world screen photos differ from
our test data set. For example, the success rate for regions with
a lot of text could be improved by extending the matching algo-
rithm with text based features such as described by Tsai et al. [19].
Furthermore, applying feature-matching algorithms based on arti-
ficial neural networks might be worth considering. One technical
limitation of our current implementationis the requirement for all
devices to be in the same WiFi network. This may restrict the sys-
tem’s use in some public settings. This issue could be addressed e.g.,
by using a STUN server in future versions of ScreenshotMatcher.
We also plan to further optimize processing time so the system
can be used for real-time applications. Source code, data set, and
performance measurements are published under an open source
license at https://hci.ur.de/projects/screenshotmatcher. This allows
for researchers and software developers to develop research pro-
totypes and custom applications that require that a smartphone
knows about screen contents.
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