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Injectivity results for coarse homology theories

Ulrich Bunke, Alexander Engel, Daniel Kasprowski and Christoph Winges

Abstract

We show injectivity results for assembly maps using equivariant coarse homology theories with
transfers. Our method is based on the descent principle and applies to a large class of linear
groups or, more generally, groups with finite decomposition complexity.
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1. Introduction

For a group G, we consider a functor M : GOrb → C from the orbit category of G to a
cocomplete ∞-category C. Often one is interested in the calculation of the object colimGOrb M
in C, or equivalently, in the value M(∗) at the final object ∗ of GOrb. Given a family of
subgroups F of G, one can then ask which information about this colimit can be obtained
from the restriction of M to the subcategory GFOrb of orbits with stabilizers in F . To this
end, one considers the assembly map

AsmblF,M : colim
GFOrb

M → colim
GOrb

M.

If M is algebraic or topological K-theory, then such assembly maps appear in the Farrell–Jones
or Baum–Connes conjectures; see, for example, Lück and Reich [27] and Bartels [2].

In the present paper, we show split injectivity results about the assembly map by proving
a descent principle. This method was first applied by Carlsson and Pederson [15]. For the
application of the descent principle, on the one hand, we will use geometric properties of the
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group G like finite decomposition complexity as introduced by Guentner et al. [17, 18]. On the
other hand, we use that M extends to an equivariant coarse homology theory with transfers
as introduced in [11]. The main theorem of the paper is Theorem 1.11.

We now start by introducing the notation which is necessary to state the theorem and its
assumptions in detail. Let G be a group and F be a set of subgroups of G.

Definition 1.1. The set F is called a family of subgroups if it is non-empty, closed under
conjugation in G, and taking subgroups.

Let F be a family of subgroups of G.

Definition 1.2. (i) GSet denotes the category of G-sets and equivariant maps.
(ii) GFSet denotes the full subcategory of GSet of G-sets with stabilizers in F .
(iii) GOrb denotes the full subcategory of GSet of transitive G-sets.
(iv) GFOrb denotes the full subcategory of GFSet of transitive G-sets with stabilizers in

F .

The ∞-category of spaces will be denoted by Spc. For any small ∞-category C (ordinary
categories are considered as ∞-categories using the nerve), we use the notation PSh(C) :=
Fun(Cop,Spc) for the ∞-category of Spc-valued presheaves.

Definition 1.3. We denote by EFG the object of the presheaf category PSh(GOrb),
which is essentially uniquely determined by

EFG(T ) �
{
∗ if T ∈ GFOrb

∅ else

In [12, Definition 3.14], we defined the notion of G-equivariant finite decomposition
complexity (G-FDC) for a G-coarse space (Definition 3.6). G-FDC is an equivariant version
of the notion of finite decomposition complexity FDC which was originally introduced by
Guentner et al. [18].

For S in GSet, we let Smin denote the G-coarse space with underlying G-set S and the
minimal coarse structure (see Example 3.8). In the definition below, ⊗ denotes the Cartesian
product in the category GCoarse of G-coarse spaces.

Let F be a family of subgroups of G and X be a G-coarse space.

Definition 1.4. X has GF -equivariant finite decomposition complexity (abbreviated by
GF -FDC) if Smin ⊗X has G-FDC for every S in GFSet.

We will consider the following families of subgroups.

Definition 1.5. (i) Fin denotes the family of finite subgroups of G.
(ii) VCyc denotes the family of virtually cyclic subgroups of G.
(iii) FDC denotes the family of subgroups V of G such that Vcan has VFin-FDC.
(iv) CP denotes the family of subgroups of G generated by those subgroups V such that

EFinV is a compact object of PSh(V Orb).
(v) FDCcp denotes the intersection of FDC and CP.

Remark 1.6. The notation Vcan in the definition of the family FDC refers to the group V
with the canonical coarse structure described in Example 3.8.

In order to see that FDC is a family of subgroups, we use that the condition that Vcan has
VFin-FDC is stable under taking subgroups, see Lemma 2.4.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1621

An object A of an ∞-category D is called compact if the functor Map(A,−) : D → Spc
commutes with filtered colimits. The word compact in the definition of CP is understood in
this sense.

The family of subgroups of G generated by a set of subgroups of G is the smallest family
containing this subset. The condition that EFinV is compact is not stable under taking
subgroups. Hence the family CP may also contain subgroups V ′ with noncompact EFinV

′.

Let C be a cocomplete ∞-category and let

M : GOrb → C (1.1)

be a functor. Let F and F ′ be families of subgroups such that F ′ ⊆ F .

Definition 1.7. The relative assembly map AsmblFF ′,M is the morphism

AsmblFF ′,M : colim
GF′Orb

M → colim
GFOrb

M

in C canonically induced by the inclusion GF ′Orb → GFOrb.
If F ′ = Fin and F = All, then we omit the symbol All and call AsmblFin,M simply the

assembly map.

In order to capture the large-scale geometry of metric spaces like G (with its word metric),
we introduced the category of G-bornological coarse spaces GBornCoarse in [10, 13]. We
further defined the notion of an equivariant coarse homology theory. All this will be recalled
in detail in section 3.

We can embed the orbit category GOrb into GBornCoarse by a functor

i : GOrb → GBornCoarse,

which sends a G-orbit S to the G-bornological coarse space Smin, max; see Example 3.8. Note
that the convention is that the first index specifies the coarse structure while the second
index specifies the bornology. We say that a functor M : GOrb → C can be extended to
an equivariant coarse homology theory if there exists an equivariant coarse homology theory
F : GBornCoarse → C such that M � F ◦ i.

We will need various additional properties or structures for an equivariant coarse homology
theory.

(1) The property of continuity of an equivariant coarse homology theory was defined in [13,
Definition 5.15], see Lemma 3.19.

(2) The property of strong additivity of an equivariant coarse homology theory was defined
in [13, Definition 3.12], see Remark 5.13.

(3) The additional structure of transfers for an equivariant coarse homology theory is
encoded in the notion of a coarse homology theory with transfers which was defined in [11],
see Definition 5.5.

Let Gcan,min denote the G-bornological coarse space consisting of G with the canonical coarse
and the minimal bornological structures; see Example 3.8. We furthermore consider a stable
∞-category C and an equivariant coarse homology theory (see Definition 3.13)

E : GBornCoarse → C.

To E and Gcan,min we associate a new equivariant coarse homology theory

EGcan,min : GBornCoarse → C, X �→ E(Gcan,min ⊗X)

called the twist of E by Gcan,min; see Definition 3.16.
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1622 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

We can now introduce the following assumption on a functor M : GOrb → C.

Definition 1.8. We call M a CP-functor if it satisfies the following assumptions.

(i) C is stable, complete, cocomplete, and compactly generated.
(ii) There exists an equivariant coarse homology theory E satisfying:

(a) M is equivalent to EGcan,min ◦ i;
(b) E is strongly additive;
(c) E is continuous;
(d) E extends to a coarse homology theory with transfers.

Remark 1.9. We call M a CP-functor since the above assumptions will allow us to apply
methods similar to those from Carlsson and Pedersen [15].

Example 1.10. (i) We claim that the equivariant K-theory functor

KAG : GOrb → Sp

associated to an additive category with G-action A (see [6, Definition 2.1]) is an example of a
CP-functor. Indeed, by [13, Corollary 8.25], we have an equivalence

KAG � KAXG
Gcan,min

◦ i,
where KAXG : GBornCoarse → Sp denotes the coarse algebraic K-homology functor. By
[11, Theorem 1.4], the functor KAXG admits an extension to an equivariant coarse homology
theory with transfers. Furthermore, KAXG is continuous by [13, Proposition 8.17] and strongly
additive by [13, Proposition 8.19].

(ii) For a group G, let P be the total space of a principal G-bundle and let A denote the
functor of nonconnective A-theory (taking values in the ∞-category of spectra). Then P gives
rise to a GOrb-spectrum AP sending a transitive G-set S to the spectrum A(P ×G S). By
[14, Theorem 5.17], AP is a CP-functor.

(iii) More generally, every right-exact ∞-category with G-action C gives rise to a functor
KCG : GOrb → Sp. Taking C = Chb(A) or C = Sp, this recovers KAG and AEG, but one
may also consider categories of perfect modules over an arbitrary ring spectrum. Also in this
generality, KCG is a CP-functor. See [9] for details and proofs.

We can now state the main theorem of this paper. Let G be a group and M : GOrb → C
be a functor. Let F be a family of subgroups.

Theorem 1.11. Assume that M is a CP-functor (Definition 1.8). Furthermore, assume that
one of the following conditions holds.

(i) F is a subfamily of FDCcp such that Fin ⊆ F .
(ii) F is a subfamily of FDC such that Fin ⊆ F and G admits a finite-dimensional model

for Etop
FinG.

Then the relative assembly map AsmblFFin,M admits a left inverse.

Remark 1.12. By Elmendorf’s theorem, the homotopy theory of G-spaces is modeled by
the presheaf category PSh(GOrb). More precisely, we have a functor

Fix: GTop → PSh(GOrb), (1.2)

which sends a G-topological space X to the Spc-valued presheaf which associates to S in GOrb
the mapping space �(MapGTop(Sdisc, X)). Here Sdisc is S considered as a discrete G-topological
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1623

space, MapGTop(Sdisc, X) in Top is the topological space of equivariant maps from Sdisc to X,
and � : Top → Top[W−1] � Spc is the localization functor inverting the weak equivalences in
Top in the realm of ∞-categories. Let WG be the morphisms in GTop which are sent by the
functor Fix to equivalences. Then Elemendorf’s theorem asserts that Fix induces an equivalence
of ∞-categories

Fix : GTop[W−1
G ] �→ PSh(GOrb). (1.3)

A model Etop
F G for a classifying space EFG of a family F is a G-CW complex X whose fixed

point spaces XH are contractible for all subgroups H in F and empty otherwise. Such a model
is uniquely determined up to equivariant homotopy equivalence. It represents the object EFG
from Definition 1.3 under the equivalence (1.3).

Let G be a group and M : GOrb → C be a functor.

Corollary 1.13. If M is a CP-functor, then the relative assembly map AsmblVCyc
Fin,M admits

a left inverse.

Proof. Every virtually cyclic subgroup V admits a compact model for EFinV . Furthermore,
it has VFin-FDC; see Example 2.1. We conclude that Fin ⊆ VCyc ⊆ FDCCP and hence the
corollary follows from Case (i) of Theorem 1.11. �

For algebraic K-theory (Example 1.10), Corollary 1.13 was first proven by Bartels [1].
Let G be a group and M : GOrb → C be a functor.

Corollary 1.14. Assume that:

(i) M is a CP-functor;
(ii) G admits a finite-dimensional model for Etop

FinG;
(iii) Gcan has GFin-FDC.

Then the assembly map AsmblFin,M admits a left inverse.

For algebraic K-theory (Example 1.10), this was first proven in [21].

Proof. The corollary follows from Case (ii) of Theorem 1.11. �

As an application of Theorem 1.11, we also obtain the following new injectivity result for
algebraic K-theory.

Theorem 1.15. Suppose G is relatively hyperbolic to groups P1, . . . , Pn. Assume that each
Pi is contained in FDC or satisfies the K-theoretic Farrell–Jones conjecture. Furthermore,
assume that each Pi admits a finite-dimensional model for Etop

FinPi. Then AsmblFin,KAG admits
a left inverse.

Proof. Let F be the smallest family of subgroups of G that contains all finite subgroups
and all Pi. By [30, Theorem 1.1], there is a cocompact model for Etop

F G. Since there are only
finitely many Pi, there is a uniform upper bound on the dimension of Etop

FinH for all H in F .
By Lemma 1.16, there is a finite-dimensional model for Etop

FinG.
Let P be the smallest family of subgroups of G that contains all virtually cyclic subgroups

and all Pi. By [3, Theorem 4.4], the assembly map AsmblP,KAG is an equivalence. Thus by the
transitivity principle [5, Theorem 2.4], the assembly map AsmblP∩FDC,KAG is an equivalence
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1624 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

(here we have to use the assumptions on the groups Pi as well as that the Farrell–Jones
conjecture passes to subgroups [6, Theorem 4.5]). By Theorem 1.11, the relative assembly map
AsmblP∩FDC

Fin,KAG admits a left inverse. The theorem now follows by combining these results. �

Let G be a group and let F and F ′ be families of subgroups of G such that F ′ ⊆ F . We
denote the restriction of F ′ to a subgroup H of G by F ′(H); see Definition 2.3.

Lemma 1.16. If G admits a finite-dimensional model for Etop
F G and all subgroups H in F

admit a model for Etop
F ′(H)H with a uniform upper bound on their dimension, then G admits a

finite-dimensional model for Etop
F ′ G.

Proof. By assumption, there exists n in N and an n-dimensional G-simplicial complex X
modeling Etop

F G. Choose a set of representatives S for the G-orbits of vertices in X. Again by
assumption, there exists for some k in N and every s in S an at most k-dimensional simplicial
complex Y (s) modeling Etop

F ′(Gs)
Gs. Then the projections Y (s) → ∗ induce a G-equivariant

map

υ0 : Y :=
∐
s∈S

G×Gs
Y (s) →

∐
s∈S

G×Gs
∗ ∼= X0.

Now apply the construction of [33, Definition 2.2] to obtain a G-simplicial complex X[Y, υ0]
whose dimension is bounded by nk + n + k. After observing that this construction is compatible
with taking fixed points in the sense that X[Y, υ0]H ∼= XH [YH , υH

0 ] for all subgroups H of G,
[33, Corollary 2.5] implies that X[Y, υ0] is a model for Etop

F ′ G. �

Remark 1.17. Most of the groups for which the Farrell–Jones conjecture is known by now
also have finite asymptotic dimension. But, for example, for CAT(0)-groups, which satisfy the
Farrell–Jones conjecture [32], this is an open problem. Hence taking some Pi to be CAT(0)-
groups that are not known to have FDC and some Pi to be groups that have FDC but for
which the Farrell–Jones conjecture is not known, we obtain examples of groups for which
Theorem 1.15 applies and the split-injectivity was not known before.

2. Injectivity results for linear groups

In general it is not an easy task to verify the assumptions on the group G and the family F
appearing in Theorem 1.11 and its corollaries. In this section, we provide various cases where
the required properties can be shown. Furthermore, we show how Theorem 1.11 can be applied
to linear groups.

For a family F of subgroups of G, we consider the G-coarse space SF,min consisting of the
G-set SF :=

⊔
H∈F G/H with the minimal coarse structure. Let X be a G-coarse space. The

condition that X has GF -FDC is equivalent to the condition that SF,min ⊗X has G-FDC.
The space (G/H)min ⊗X has G-FDC if and only if the space X has H-FDC. This can

be seen by taking an H-equivariant decomposition of X and extending it G-equivariantly to
(G/H)min ⊗X. Hence morally, SF,min ⊗X has G-FDC if and only if X has H-equivariant
FDC for every group H in the family F in a uniform way. More precisely, the condition that
SF,min ⊗X has G-FDC is equivalent to the condition, formulated in [23], that the family
{(X,H)}H∈F has FDC.

Applying this equivalence of conditions we can transfer the results from [23]. We consider the
case X = Gcan and F = Fin. Then we see that Assumption (iii) of Corollary 1.14 is equivalent
to the condition that the family {(G,H)}H∈Fin has FDC. In [23] instead of general coarse
spaces only metric spaces were considered. For a countable group G, the canonical coarse
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1625

structure agrees with the metric coarse structure for any proper, left invariant metric d on G;
see [13, Remark 2.8]. Given a proper, left invariant metric d on G, we can define a metric dH
on the quotient H\G for every subgroup H of G by setting

dH(Hg,Hg′) := min
h∈H

d(g, hg′).

By [23, Proposition A.7], {(G,H)}H∈Fin has FDC if and only if the family {H\G}H∈Fin has
(unequivariant) FDC (for any proper, left invariant metric on G). This reformulation is the
statement proved in the references given in the next example.

Example 2.1. Assumption (iii) of Corollary 1.14 is satisfied for finitely generated linear
groups over commutative rings with unit and trivial nilradical [23, Theorem 4.3].

By [25, Theorems 2.13, 5.3, 5.21 and 5.28], Assumption (iii) of Corollary 1.14 is satisfied for
groups with a uniform upper bound on the cardinality of their finite subgroups, and belonging
to one of the following classes.

(i) Elementary amenable groups.
(ii) Countable subgroups of GLn(R), where R is any commutative ring with unit.
(iii) Countable subgroups of virtually connected Lie groups.
(iv) Groups with finite asymptotic dimension.

See Hillman [20] for the definition of the Hirsch length h(G) of an elementary amenable
group G. If G has a finitely generated abelian subgroup A of finite index, then h(G) is the rank
of A by definition. In particular, h(G) = 0 if G is finite.

Example 2.2. Let G be a finitely generated, linear group G over a commutative ring with
unit or a finitely generated subgroup of a virtually connected Lie group. By [22, Proposition
1.3; 23, Proposition 1.2], there exists a finite-dimensional CW-model for the space EFinG if
and only if there is a natural number N such that the Hirsch length of every solvable subgroup
A of G is bounded by N .

Combining Corollary 1.14 with Example 2.1 and Example 2.2, we obtain injectivity results
for linear groups over commutative rings with unit and trivial nilradical and for subgroups of
virtually connected Lie groups with a uniform upper bound on the cardinality of their finite
subgroups. We will now extend these to recover the injectivity results from [22, 23] for algebraic
K-theory; see Corollary 2.11.

Before we start, we show that the family FDC is closed under subgroups.
Let G be a group and let H be a subgroup of G. Let F be a family of subgroups of G.

Definition 2.3. By

F(H) := {F ∈ F | F � H},
we denote the restriction of the family F to H.

Lemma 2.4. If Gcan has GFin-FDC, then Hcan has HFin(H)-FDC.

Proof. Fix a proper, left invariant metric on G and consider its restriction to H.
Recall from the discussion preceding Example 2.1 that Hcan has HFin(H)-FDC if and only

if {F\H}F∈Fin(H) has FDC.
Each element of {F\H}F∈Fin(H) is a subspace of an element of {F\G}F∈Fin(H) which

is contained in {F ′\G}F ′∈Fin. If Gcan has GFin-FDC, then {F ′\G}F ′∈Fin has FDC. Hence
{F\H}F∈Fin(H) has FDC by [18, Coarse Invariance 3.1.3]. �
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1626 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

We now consider a functor M : GOrb → C. Recall Definition 1.8 of a CP-functor.

Definition 2.5. We call M a hereditary CP-functor if M ◦ Resφ is a CP-functor for every
surjective homomorphism φ : G → Q.

Example 2.6. (i) Recall that KG
A is a CP-functor by Example 1.10. It is also a hereditary

CP-functor since by [6, Corollary 2.9] we have KG
A ◦ Resφ � KQ

indφ A for every surjective
homomorphism φ : G → Q.

(ii) The functor AP from Example 1.10 is also a hereditary CP-functor by [14, Theorem
5.17].

We will need the following well-known facts about the Hirsch length, for a proof see [20,
Theorem 1]. For a subgroup H of G, we have h(H) � h(G) and, if H is normal in G, h(G) =
h(H) + h(G/H). Recall that, for finitely generated abelian groups, the Hirsch length coincides
with the rank of the group.

Lemma 2.7. Every countable virtually abelian group G of finite Hirsch length n has GFin-
FDC.

Proof. Fix a left invariant, proper metric on G. It suffices to show that {F\G}F∈Fin has
FDC; see the discussion preceding Example 2.1. More precisely, we will show that this family
has asymptotic dimension at most n. Then it has FDC by [18, Theorem 4.1].

Let G′ be a normal, abelian subgroup of finite index k.
Now let R > 0 be given. Let H denote the subgroup of G′ generated by all elements of

distance at most R from the neutral element. Since H is a finitely generated abelian group of
rank at most n, it has asymptotic dimension at most n. Moreover, there is an upper bound
on the cardinality of the finite subgroups of H. Hence by [24, Corollary 1.2], the family
{F ′\H}F ′∈Fin(H) has asymptotic dimension at most n. In particular, there is S > 0 such that
for every F ′\H there is a cover UF ′

0 ∪ . . . ∪ UF ′
n , such that for every i in {0, . . . , n} the subset

UF ′
i is an R-disjoint union of subspaces of diameter at most S.
Let F be a finite subgroup of G′ and h, h′ be elements of H. If the condition d(Fh, Fh′) < R

holds in F\FH, then there exists an element f of F with d(h, fh′) < R, or equivalently,
d(e, h−1fh′) < R. It follows that h−1fh′ ∈ H and therefore f ∈ H. Hence we get that d((F ∩
H)h, (F ∩H)h′) < R in (F ∩H)\H. Therefore, for every i in {0, . . . , n}, the image of UF∩H

i

under the canonical bijection q : (F ∩H)\H → F\FH is still an R-disjoint union of subspaces
of diameter at most S.

Let F be a finite subgroup of G′, let h, h′ be elements of H and let g, g′ be elements of G. If
we have d(Fgh, Fg′h′) < R in F\G′, then there is an f in F with d(e, h−1g−1fg′h′) < R, and
hence h−1g−1fg′h′ ∈ H. Therefore, g−1fg′ ∈ H, so FgH = Fg′H. Hence the quotient F\G′ is
an R-disjoint union of spaces of the form F\FgH.

For g in G, we set F g := g−1Fg. For every h in H, we have the equalities

min
f∈F

d(gh, fgh′) = min
f∈F

d(h, g−1fgh′) = min
f ′∈F g

d(h, f ′h′),

that is, the map F\FgH → F g\F gH,Fgh �→ F gh is an isometry. Hence we can use the covers
for the spaces F g ∩H\H as g varies to obtain for every F\G′ a cover U0 ∪ . . . ∪ Un, such that
for every i in {0, . . . , n} the subset Ui is an R-disjoint union of subspaces of diameter at most
S. This shows that {F\G′}F∈Fin(G′) has asymptotic dimension at most n.

For g in G and F a finite subgroup of G′, F\FgG′ is isometric to F g\G′ as above. Since
G′ is normal in G, the group F g is again a finite subgroup of G′. Therefore, every element of
{F\G}F∈Fin(G′) is a union of at most k subspaces isometric to elements of {F\G′}F∈Fin(G′).
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1627

Hence also {F\G}F∈Fin(G′) has asymptotic dimension at most n by the Finite Union Theorem
of [7].

Every finite subgroup F of G has a normal subgroup F ′ of index at most k contained in G′.
Then F ′\F acts isometrically on F ′\G with quotient F\G. Hence we can again apply [24,
Corollary 1.2] to see that {F\G}F∈Fin has asymptotic dimension at most n. �

Let

1 → S → G
φ−→ Q → 1

be an extension of countable groups and let S′ be a subgroup of S that is normal in G.

Lemma 2.8. Assume:

(i) S is elementary amenable with finite Hirsch length n;
(ii) Q admits a k-dimensional model for Etop

Fin(Q)Q.

Then G/S′ admits an n + k + 2-dimensional model for Etop
Fin(G/S′)G/S′.

Proof. Consider the extension

1 → S/S′ → G/S′ p−→ Q → 1.

Then h(S/S′) � h(S) = n and also for every finite subgroup F of Q, we have

h(p−1(F )) = h(S/S′) + h(F ) � n + 0 = n.

Hence by Flores and Nucinkis [16, Corollary 4 and the discussion preceding it], there
exists a model for Etop

Fin(p−1(F ))p
−1(F ) of dimension at most n + 2. Since Q admits a

k-dimensional model for Etop
Fin(Q)Q and for every finite subgroup F of Q, there exists a model

for Etop
Fin(p−1(F ))p

−1(F ) of dimension at most n + 2, there is an n + k + 2-dimensional model

for Etop
Fin(G/S′)G/S′ by [26, Theorem 5.16]. �

Let

1 → S → G
φ−→ Q → 1

be an extension of groups. Denote by Fin(Q) the family of finite subgroups of Q. By
φ−1(Fin(Q)), we denote the family of subgroups of G whose image under φ belongs to Fin(Q).
Let M : GOrb → C be a functor.

Theorem 2.9. Assume:

(i) M is a hereditary CP-functor;
(ii) S is virtually solvable and has Hirsch length n < ∞;
(iii) Q admits a finite-dimensional model for Etop

Fin(Q)Q.

Then the relative assembly map Asmblφ
−1(Fin(Q))

Fin,M admits a left-inverse.

Proof. We argue by induction on the derived length k of S.
If k = 1, then S is virtually abelian and every group in φ−1(Fin(Q)) is virtually abelian of

Hirsch length at most n, too. Hence the statement follows from case (ii) of Theorem 1.11 since
its assumptions are verified by Lemma 2.7 and Lemma 2.8 applied with S′ the trivial group.

Now suppose that the statement holds for k and assume S has derived length k +
1. Note that [S, S] is normal in G and has derived length k. We set G′ := G/[S, S].
Then there is a finite-dimensional model for Etop

Fin(G′)G
′ by Lemma 2.8. We consider the
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1628 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

factorization of φ as

φ : G
ψ→ G′ p→ Q.

The inclusions
Fin ⊆ ψ−1(Fin(G′)) ⊆ φ−1(Fin(Q))

of families of subgroups of G induce a factorization

Asmblφ
−1(Fin(Q))

Fin,M � Asmblφ
−1(Fin(Q))

ψ−1(Fin(G′)),M ◦ Asmblψ
−1(Fin(G′))

Fin,M

of the relative assembly map. Because Asmblψ
−1(Fin(G′))

Fin,M admits a left-inverse by the induction

assumption, it remains to show that Asmblφ
−1(Fin(Q))

ψ−1(Fin(G′)),M admits a left-inverse. We have a
commuting diagram of categories

where the vertical functors are the fully faithful inclusions induced by the inclusions of families
Fin(G′) ⊆ p−1(Fin(Q)) and ψ−1(Fin(G′)) ⊆ φ−1(Fin(Q)). We now note that the horizontal
maps are fully faithful inclusions as well and cofinal. We obtain an induced square in C

The existence of a left-inverse of Asmblp
−1(Fin(Q))

Fin(G′),M◦Resψ
again follows from the case k = 1 since

M ◦ Resψ is also a CP-functor. �

Remark 2.10. For algebraic K-theory KAG (see Example 1.10) in place of M and under
the same assumptions on S and G as in Theorem 2.9 the existence of a left-inverse for
Asmblφ

−1(Fin(Q))

Fin,KAG has been shown by combining the split-injectivity of the relative assembly
map from finite to virtually cyclic subgroups with the Farrell–Jones conjecture for solvable
groups, cf. [22, Proposition 4.1]. With the new techniques to understand relative assembly
maps developed in this article, the use of the Farrell–Jones conjecture can be avoided.

For convenience, we repeat the arguments from [22, 23] to obtain split-injectivity for finitely
generated subgroups of linear groups and of virtually connected Lie groups with a finite-
dimensional classifying space.

Let M : GOrb → C be a functor.

Corollary 2.11. Assume:

(i) M is a hereditary CP-functor;
(ii) G admits a finite-dimensional model for Etop

FinG;
(iii) G is a finitely generated subgroup of a linear group over a commutative ring with unit

or of a virtually connected Lie group.

Then the assembly map AsmblFin,G is split injective.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1629

Proof. Let G be a finitely generated subgroup of a virtually connected Lie group. The adjoint
representation induces an extension with abelian kernel and quotient a finite index supergroup
Q of a finitely generated subgroup of GLn(C). The group Q has QFin-FDC by Example 2.1.
Since G admits a finite-dimensional model for Etop

FinG, so does Q using the characterization from
Example 2.2. By Corollary 1.14, the assembly map AsmblFin(Q),M◦ResGQ

is split-injective. This
assembly map is equivalent to Asmblp−1(Fin(Q)),M , where p : G → Q is the projection. Because

the kernel of p is abelian, the assembly map Asmblp
−1(Fin(Q))

Fin,M is split-injective by Theorem 2.9.
Now let G be a finitely generated subgroup of a linear group over a commutative ring R

with unit. Let n be the nilradical of R. Then we have an extension

1 → (1 + Mn(n)) ∩G → G
p−→ Q → 1,

where Q is a finitely generated subgroup of GLn(R/n). Arguing as above, the assembly map
Asmblp−1(Fin(Q)),M is split-injective by Example 2.1 since R/n has trivial nilradical. Since

the group (1 + Mn(n)) is nilpotent, the assembly map Asmblp
−1(Fin(Q))

Fin,M is split-injective by
Theorem 2.9. �

3. G-bornological coarse spaces and coarse homology theories

In this section, we recall the definition of the category GBornCoarse of G-bornological coarse
spaces and provide basic examples. We further recall the notion of an equivariant coarse
homology theory, in particular its universal version Yos with values in the stable ∞-category
GSpX of equivariant coarse motivic spectra. Most of this material has been developed in [13]
(see also [10] for the nonequivariant case).

In the definitions below, we will use the following notation.

(1) For a set Z, we let P(Z) denote the power set of Z.
(2) If a group G acts on a set X, then it acts diagonally on X ×X and therefore on P(X ×

X). For U in P(X ×X), we set

GU :=
⋃
g∈G

gU.

(3) For U in P(X ×X) and B in P(X), we define the U -thickening U [B] by

U [B] := {x ∈ X | ∃y ∈ B : (x, y) ∈ U}.
(4) For U in P(X ×X), we define the inverse by

U−1 := {(y, x) | (x, y) ∈ U}.
(5) For U, V in P(X ×X), we define their composition by

U ◦ V := {(x, z) | ∃y ∈ X : (x, y) ∈ U ∧ (y, z) ∈ V }. (3.1)

Let G be a group and let X be a G-set.

Definition 3.1. A G-coarse structure C on X is a subset of P(X ×X) with the following
properties.

(i) C is closed under composition, inversion, and forming finite unions or subsets.
(ii) C contains the diagonal diag(X) of X.
(iii) For every U in C, the set GU is also in C.

The pair (X, C) is called a G-coarse space, and the members of C are called (coarse) entourages
of X.
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1630 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Let (X, C) and (X ′, C′) be G-coarse spaces and let f : X → X ′ be an equivariant map between
the underlying sets.

Definition 3.2. The map f is controlled if for every U in C we have (f × f)(U) ∈ C′.

We obtain a category GCoarse of G-coarse spaces and controlled equivariant maps.

Definition 3.3. A G-bornology B on X is a subset of P(X) with the following properties.

(i) B is closed under forming finite unions and subsets.
(ii) B contains all finite subsets of X.
(iii) B is G-invariant.

The pair (X,B) is called a G-bornological space, and the members of B are called bounded
subsets of X.

Let (X,B) and (X ′,B′) be G-bornological spaces and let f : X → X ′ be an equivariant map
between the underlying sets.

Definition 3.4. The map f is proper if for every B′ in B′ we have f−1(B′) ∈ B.

We obtain a category GBorn of G-bornological spaces and proper equivariant maps.
Let X be a G-set with a G-coarse structure C and a G-bornology B.

Definition 3.5. The coarse structure C and the bornology B are said to be compatible if
for every B in B and U in C the U -thickening U [B] lies in B.

Definition 3.6. A G-bornological coarse space is a triple (X, C,B) consisting of a G-set
X, a G-coarse structure C, and a G-bornology B such that C and B are compatible.

Definition 3.7. A morphism f : (X, C,B) → (X ′, C′,B′) between G-bornological coarse
spaces is an equivariant map f : X → X ′ of the underlying G-sets which is controlled
and proper.

We obtain a category GBornCoarse of G-bornological coarse spaces and morphisms. If the
structures are clear from the context, we will use the notation X instead of (X, C,B) in order
to denote G-bornological coarse spaces.

Let X be a G-set.

Example 3.8. If W is a subset of P(X ×X), then the G-coarse structure generated by W
is the minimal G-coarse structure containing W , that is, it is the coarse structure C〈{GU | U ∈
W}〉 generated by the set of invariant entourages GU for all U in W .

We can define the following G-coarse structures on X

(i) The minimal coarse structure on X is the G-coarse structure generated by the empty
family. It consists of all subsets of diag(X). We denote the corresponding G-coarse space by
Xmin.

(ii) The canonical coarse structure on X is the G-coarse structure generated by the
entourages B ×B for all finite subsets B of X. We denote the corresponding G-coarse space
by Xcan.

(iii) P(X ×X) is the maximal coarse structure on X. We denote the corresponding G-coarse
space by Xmax.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1631

(iv) If X comes equipped with a quasi-metric† d, then the metric coarse structure on X
is generated by the subsets {(x, y) | d(x, y) � r} of X ×X for all r in [0,∞). We denote the
corresponding coarse space by Xd. If the quasi-metric d is G-invariant, then we obtain a
G-coarse structure and Xd is a G-coarse space.

If A is a subset of P(X), then the G-bornology generated by A is the minimal G-bornology
containing A, that is, it is the bornology B〈{gB | g ∈ G,B ∈ A}〉 generated by the set of all
G-translates of elements of A.

We can define the following G-bornologies on X.

(i) The minimal G-bornological structure consists of the finite subsets. We denote the
corresponding G-bornological space by Xmin.

(ii) The maximal G-bornological structure consists of all subsets. We denote the corre-
sponding G-bornological space by Xmax.

(iii) If X comes equipped with a quasi-metric d, the metric bornology on X is generated
by the sets {y | d(x, y) � r} for all x in X and r in [0,∞). We denote the corresponding
bornological space by Xd. If d is G-invariant, then we obtain a G-bornology and Xd is a
G-bornological space.

Taking any pair of compatible coarse and bornological structures as above, we can form a
G-bornological coarse space. These will be denoted by two subscripts, where the first subscript
refers to the coarse structure and the second subscript to the bornology. Examples include
Xcan,min, Xcan,max, Xmin,min, Xmin,max, Xmax,max and, if X comes equipped with an invariant
metric, Xd,d.

Let X be a G-coarse space with coarse structure C. Then

RC :=
⋃
U∈C

U (3.2)

is an invariant equivalence relation on X.

Definition 3.9. We let π0(X) denote the G-set of equivalence classes with respect to RC .
The elements of π0(X) are called the coarse components of X.

Definition 3.10. A G-coarse space (X, C) is coarsely connected if π0(X) is a singleton set.

We now introduce the notion of an equivariant coarse homology theory; see [13, Section 3]
for details.

Let X be a G-bornological coarse space.

Definition 3.11. An equivariant big family on X is a filtered family of G-invariant subsets
(Yi)i∈I of X such that for every entourage U of X and i in I there exists j in I such that
U [Yi] ⊆ Yj .

An equivariant complementary pair (Z,Y) on X is a pair of a G-invariant subset Z of X
and an equivariant big family Y = (Yi)i∈I on X such that there exists i in I with Z ∪ Yi = X.

Let g, f : X → X ′ be two morphisms in GBornCoarse. Then we say that f is close to g if
(f × g)(diag(X)) is a coarse entourage of X ′. This notion will be used in Condition (i) of the
definition below.

†The notion of a quasi-metric generalizes the notion of a metric. The difference is that for a quasi-metric we
admit the value ∞.

 1460244x, 2020, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12380 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1632 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Let X be a G-bornological coarse space.

Definition 3.12. The space X is flasque if it admits a morphism f : X → X such that

(i) f is close to idX ;
(ii) for every entourage U of X, the subset

⋃
n∈N

(fn × fn)(U) is an entourage of X;
(iii) for every bounded subset B of X, there exists an integer n such that GB ∩ fn(X) = ∅.
We say that flasqueness of X is implemented by f .

The category GBornCoarse has a symmetric monoidal structure ⊗; see [13, Example 2.17].
If X and Y are G-bornological coarse spaces, then X ⊗ Y has the following description.

(1) The underlying G-coarse space of X ⊗ Y is the Cartesian product in GCoarse of the
underlying G-coarse spaces of X and Y . More explicitly, the underlying G-set of X ⊗ Y is
X × Y with the diagonal G-action, and the coarse structure is generated by the entourages
U × V for all coarse entourages U of X and V of Y .

(2) The bornology on X ⊗ Y is generated by the products A×B for all bounded subsets A
of X and B of Y .

Note that X ⊗ Y in general differs from the Cartesian product X × Y in GBornCoarse.
Let C be a cocomplete stable ∞-category and let

E : GBornCoarse → C

be a functor. If Y = (Yi)i∈I is a filtered family of G-invariant subsets of X, then we set

E(Y) := colim
i∈I

E(Yi). (3.3)

In this formula, we consider the subsets Yi as G-bornological coarse spaces with the structures
induced from X.

If Z is another invariant subset, then we use the notation Z ∩ Y := (Z ∩ Yi)i∈I .
Let C be a cocomplete stable ∞-category and consider a functor

E : GBornCoarse → C.

Definition 3.13. A G-equivariant C-valued coarse homology theory is a functor

E : GBornCoarse → C

with the following properties.

(i) (Coarse invariance) For all X in GBornCoarse, the functor E sends the projection
{0, 1}max,max ⊗X → X to an equivalence.

(ii) (Excision) E(∅) � 0 and for every equivariant complementary pair (Z,Y) on a
G-bornological coarse space X, the square

is a push-out.
(iii) (Flasqueness) If a G-bornological coarse space X is flasque, then E(X) � 0.
(iv) (u-Continuity) For every G-bornological coarse space X, the natural map

colim
U∈CG(X)

E(XU ) → E(X)
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1633

is an equivalence. Here XU denotes the G-bornological coarse space X with the coarse structure
replaced by the one generated by U , and CG(X) is the poset of G-invariant coarse entourages
of X.

If the group G is clear from the context, then we will often just speak of an equivariant
coarse homology theory.

We have a universal equivariant coarse homology theory

Yos : GBornCoarse → GSpX
(see [13, Definition 4.9]), where GSpX is a stable presentable ∞-category called the category
of coarse motivic spectra. More precisely, we have the following.

Proposition 3.14 [13, Corollary 4.9]. Restriction along Yos induces an equivalence between
the ∞-categories of colimit-preserving functors GSpX → C and C-valued equivariant coarse
homology theories.

The symmetric monoidal structure ⊗ descends to GSpX such that Yos becomes a symmetric
monoidal functor [13, Lemma 4.17].

Example 3.15. The following is an illustrative example of the usage of some of the axioms
of a coarse homology theory for Yos. Let X be in GBornCoarse. On R ⊗X, we consider
the subset Z := [0,∞) ×X and the big family Y := ((−∞, n] ×X)n∈N. Then (Z,Y) is a
complementary pair on R ⊗X. By the excision axiom, we get a push-out square

(3.4)

We now observe that Z is flasque with flasqueness implemented by the map f(t, x) := (t + 1, x).
Similarly, all members of Y are flasque. Since Yos vanishes on flasques, we get Yos(Z) �
0 and Yos(Y) � 0. The inclusion X ∼= {0} ×X → R ×X induces an equivalence of X with
every member of Z ∩ Y. Consequently, we have a canonical equivalence Yos(X) � Yos(Z ∩ Y).
Therefore, the push-out square in (3.4) is equivalent to a push-out square

This square provides an equivalence

ΣYos(X) � Yos(R ⊗X). (3.5)

Let E : GBornCoarse → C be a functor and let X be a G-bornological coarse space.

Definition 3.16. The twist EX of E by X is the functor

E(X ⊗−) : GBornCoarse → C.

Lemma 3.17. If E is an equivariant coarse homology theory, then the twist EX is an
equivariant coarse homology theory, too.
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1634 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Proof. This follows from [13, Lemma 4.17]. �

Let (X,B) be a G-bornological space.

Definition 3.18. A subset F of X is locally finite if F ∩B is a finite set for every B in B.

Continuity is an additional property of an equivariant coarse homology theory E. We refer to
[13, Definition 5.15] for the precise definition. For our purposes, it suffices to know the following.

Let X be a G-bornological coarse space and let L(X) denote the poset of all G-invariant
locally finite subsets of the underlying bornological space of X. We consider F in L(X) with
the G-bornological coarse structure induced from X.

Lemma 3.19 [13, Remark 5.16]. If E is continuous, then the canonical map

colim
F∈L(X)

E(F ) → E(X)

is an equivalence.

In order to capture continuity of equivariant coarse homology theories motivically, we
introduce the universal continuous equivariant coarse homology theory

Yosc : GBornCoarse → GSpXc (3.6)

whose target GSpXc is the stable presentable ∞-category of continuous equivariant motivic
coarse spectra (see [13, Definition 5.21]).

Proposition 3.20 [13, Corollary 5.22]. Restriction along Yosc induces an equivalence
between the ∞-categories of colimit-preserving functors GSpXc → C and C-valued continuous
equivariant coarse homology theories.

We have a canonical colimit-preserving functor

Cs : GSpX → GSpXc (3.7)

such that Yosc � Cs ◦ Yos (see [13, (5.6)]).

Definition 3.21. A morphism in GSpX or GBornCoarse is a continuous equivalence if
it becomes an equivalence after application of Cs or Yosc, respectively.

Two morphisms in GSpX or GBornCoarse are continuously equivalent if they become
equivalent after application of Cs or Yosc, respectively.

4. Cones and the forget-control map

In this section, we recall the cone construction and the cone sequence. We further introduce
the forget-control map and show its compatibility with induction and twisting.

We start with discussing G-uniform bornological coarse spaces and the cone construction.
Let X be a G-set.

Definition 4.1. A G-uniform structure on X is a subset U of P(X ×X) with the following
properties.

(i) Every element of U contains the diagonal.
(ii) U is closed under inversion, composition, finite intersections, and supersets.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1635

(iii) For every U in U , there exists V in U with V ◦ V ⊆ U .
(iv) For every U in U , we have

⋂
g∈G gU ∈ U .

The first three conditions define the notion of a uniform structure, and the last condition
reflects the compatibility with the action of G. A G-uniform space is a pair (X,U) of a G-set
X and a G-uniform structure U .

Let (X,U) and (X ′,U ′) be G-uniform spaces and f : X → X ′ be an equivariant map between
the underlying sets.

Definition 4.2. f is uniform if f−1(U ′) ∈ U for every U ′ in U ′.

Let X be a G-set with a G-uniform structure U and a G-coarse structure C.

Definition 4.3. We say that U and C are compatible if U ∩ C is not empty.

Definition 4.4 [13, Definition 9.9]. A G-uniform bornological coarse space is a tuple
(X, C,B,U), where (X, C,B) is a G-bornological coarse space and U is a G-uniform structure
which is compatible with C.

Definition 4.5. A morphism between G-uniform bornological coarse spaces

f : (X, C,B,U) → (X ′, C′,B′,U ′)

is a morphism between G-bornological coarse spaces f : (X, C,B) → (X ′,B′, C′) which, as a
morphism (X,U) → (X ′,U ′), is uniform.

We obtain the category GUBC of G-uniform bornological coarse spaces. We have the
forgetful functor

F : GUBC → GBornCoarse (4.1)

which forgets the uniform structure.

Example 4.6. Let X be a G-set with a quasi-metric d. Then we get a uniform structure on
X generated by the subsets {(x, y) ∈ X ×X | d(x, y) < r} for all r in (0,∞). We let Xd denote
the corresponding uniform space. If d is invariant, then we obtain a G-uniform structure and
Xd is a G-uniform space.

Expanding the notation for G-bornological coarse spaces, we use triple subscripts to indicate
G-uniform bornological coarse spaces, where the first subscript indicates the G-uniform
structure, the second subscript indicates the G-coarse structure, and the third subscript
indicates the G-bornology.

In particular, if X is a G-set with an invariant quasi-metric d, then we obtain the G-uniform
bornological coarse spaces Xd,d,d and Xd,max,max.

Example 4.7. Let S be a G-set. Then the G-bornological coarse space Smin,min equipped
with the uniform structure containing all supersets of the diagonal is a G-uniform bornological
coarse space which we denote by Sdisc,min,min.

Let X be a G-uniform bornological coarse space and let Y = (Yi)i∈I be an equivariant big
family. Let C and U denote the coarse and uniform structures of X.
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1636 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Definition 4.8 [13, Definition 9.15]. An order-preserving function

ψ : I → P(X ×X)G

(where we consider the target with the opposite of the inclusion relation) is U -admissible if for
every U in UG there is i in I such that ψ(i) ⊆ U . Given a function ψ : I → P(X ×X)G, we
define the entourage

Uψ :=
⋃
i∈I

[(Yi × Yi) ∪ ψ(i)].

The hybrid structure Ch on X is the G-coarse structure generated by the entourages U ∩ Uψ

for all U in CG and all U -admissible functions ψ.
We let Xh denote the bornological coarse space obtained from X by forgetting the uniform

structure and replacing the coarse structure by the hybrid coarse structure.

Since Ch ⊆ C by construction, we have a morphism of G-bornological coarse spaces Xh →
F(X), where F is the forgetful functor (4.1).

Definition 4.9. We have the functor

O∞
geom : GUBC → GBornCoarse

which sends a G-uniform bornological coarse space X to the G-bornological coarse space

O∞
geom(X) := (R ⊗X)h,

where R := Rd,d,d is the G-uniform bornological coarse space with structures induced from the
standard metric and the trivial G-action. The subscript h stands for the hybrid coarse structure
associated to the equivariant big family ((−∞, n] ×X)n∈N; see Definition 4.8.

If f : X → X ′ is a morphism in GUBC, then O∞
geom(f) : O∞

geom(X) → O∞
geom(X ′) is given by

the map idR ×f : R ×X → R ×X ′.

Definition 4.10. The functor

O∞ := Yos ◦O∞
geom : GUBC → GSpX

is called the cone-at-infinity functor.

Definition 4.11. The cone functor

O : GUBC → GBornCoarse

sends a G-uniform bornological coarse space X to

O(X) := ([0,∞) ×X)O∞
geom(X),

where the subscript indicates that we equip the subset with the structures induced from
O∞

geom(X). In particular, O(X) is a subspace of O∞
geom(X).

Remark 4.12. We refer to [13, Sections 9.4 and 9.5] for more details and properties of
these functors. Note that O∞

geom is denoted by O∞
− in the reference. The definition of O∞ given

above is equivalent to [13, Definition 9.29] in view of [13, Proposition 9.31].

By [13, Corollary 9.30], we have a fiber sequence of functors GUBC → GSpX
· · · → Yos ◦F → Yos ◦O → O∞ ∂→ ΣYos ◦F → . . . , (4.2)
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1637

which is called the cone sequence. The first map of the cone sequence is induced by the inclusion
X → [0,∞) ×X given by including the point 0 into [0,∞). The second map is induced by the
inclusion O(X) → O∞

geom(X). Finally, the cone boundary ∂ is given by

Yos(O∞
geom(X)) → Yos(R ⊗F(X)) � ΣYos(F(X)), (4.3)

where the first map is induced by the identity of the underlying sets, and the equivalence is
the equivalence (3.5) explained in Example 3.15. We use [13, Proposition 9.31] in order to see
that this description of the sequence is equivalent to the original definition from [13, Corollary
9.30].

In various constructions, we form a colimit over the poset of invariant entourages CG(X) of a
G-bornological coarse space X. In order to suppress these colimits in an appropriate language,
we use the following procedure. We let GBornCoarseC denote the category of pairs (X,U),
where X is a G-bornological coarse space and U is an invariant entourage of X containing the
diagonal. A morphism (X,U) → (X ′, U ′) is a morphism f : X → X ′ in GBornCoarse such
that (f × f)(U) ⊆ U ′. We have a forgetful functor

GBornCoarseC → GBornCoarse, (X,U) �→ X. (4.4)

Let

F : GBornCoarseC → C

be a functor to a cocomplete target C and let E be the left Kan extension of F along (4.4).
The evaluation of E on a G-bornological coarse space X is then given as follows.

Lemma 4.13. We have an equivalence

E(X) � colim
U∈CG(X)

F (X,U).

Proof. By the pointwise formula for the left Kan extension, we have an equivalence

E(X) � colim
((X′,U ′),f : X′→X)∈GBornCoarseC/X

F (X ′, U ′).

If ((X ′, U ′), f : X ′ → X) belongs to GBornCoarseC/X, then we have a morphism

(X ′, U ′) → (X, f(U ′) ∪ diag(X))

in GBornCoarseC/X. This easily implies that the full subcategory of objects of the form
((X,U), idX) of GBornCoarseC/X with U in CG(X) is cofinal in GBornCoarseC/X. �

Construction 4.14. Let X be a G-bornological coarse space and let U be an invariant
entourage of X. Then we can form the G-simplicial complex PU (X) of finitely supported
U -bounded probability measures on X (see [13, Definition 11.1] and the subsequent text). We
equip PU (X) with the path quasi-metric in which every simplex has the spherical metric. The
path quasi-metric determines the uniform and the coarse structure on PU (X). We equip PU (X)
with the bornology generated by all subcomplexes PU (B) of measures supported on B for a
bounded subset B of X. The resulting G-uniform bornological coarse space will be denoted by
PU (X)d,d,b. We denote by PU (X)d,b the underlying bornological coarse space. Note that the
bornology in general differs from the metric bornology which would be indicated by a subscript
d in the last slot.

Let f : X → X ′ be a morphism of G-bornological coarse spaces and U ′ be an invariant
entourage of X ′ such that (f × f)(U) ⊆ U ′. Then the push-forward of measures induces a
morphism

f∗ : PU (X)d,d,b → PU ′(X ′)d,d,b
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1638 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

in a functorial way. We have thus constructed a functor

P : GBornCoarseC → GUBC, (X,U) �→ PU (X)d,d,b.

If we compose the functor P with the fiber sequence (4.2), then we obtain a fiber sequence
of functors GBornCoarseC → GSpX which sends (X,U) to

Yos(PU (X)d,b) → Yos(O(PU (X)d,d,b)) → O∞(PU (X)d,d,b)
∂→ ΣYos(PU (X)d,b). (4.5)

Definition 4.15. We define the fiber sequence of functors GBornCoarse → GSpX
F 0 → F → F∞ ∂−→ ΣF 0

by left Kan extension of (4.5) along the forgetful functor (4.4).

In order to justify this definition, note that a colimit of a diagram of fiber sequences in
a stable ∞-category is again a fiber sequence. Since a fiber sequence of functors can be
detected objectwise, it is a consequence of the pointwise formula for the Kan extension that
a Kan extension of a fiber sequence of functors with values in a stable ∞-category is again a
fiber sequence.

If S is a G-set, then we have a twist functor

TS : GBornCoarse → GBornCoarse, X �→ Smin,min ⊗X. (4.6)

By [13, Lemma 4.17], the twist functor extends to a functor

TMot
S : GSpX → GSpX

on motives such that

(4.7)

commutes. Note that TMot
S � Yos(Smin,min) ⊗−, and this functor is equivalent to the left Kan-

extension of Yos ◦TS along Yos, so in particular it commutes with colimits.
We can extend the twist functor to a functor

T C
S : GBornCoarseC → GBornCoarseC , (X,U) �→ (Smin,min ⊗X,diag(S) × U).

Then we have a commuting diagram

The twist functor (4.6) further extends to a twist functor

TU
S : GUBC → GUBC, X �→ Sdisc,min,min ⊗X

for uniform bornological coarse spaces.

Lemma 4.16. We have a natural isomorphism of functors

TU
S ◦ P ∼=−→ P ◦ T C

S : GBornCoarseC → GUBC.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1639

Proof. For (X,U) in GBornCoarseC we construct an isomorphism of G-simplicial
complexes

S × PU (X)
∼=−→ Pdiag(S)×U (Smin,min ⊗X) (4.8)

which induces the desired isomorphism of G-uniform bornological coarse spaces. Let (s, μ) be
a point in S × PU (X). Then there is some n in N, a collection of points x0, . . . , xn in X and
numbers λi ∈ [0, 1] such that (xi, xj) ∈ U for all pairs i, j,

∑n
i=0 λi = 1 and

μ =
n∑

i=0

λiδxi
.

The map (4.8) sends the point (s, μ) to the point
∑n

i=0 λiδ(s,xi) in Pdiag(S)×U (Smin,min ⊗X).

In order to see that this map is invertible, note that if ν =
∑n′

i=0 λ
′
iδ(si,x′

i)
is a point

in Pdiag(S)×U (Smin,min ⊗X), then si = s0 for all i = 1, . . . , n′ and (x′
i, x

′
j) ∈ U for all i, j.

Therefore, the inverse of the isomorphism (4.8) sends ν to the point (s0,
∑n′

i=0 λ
′
iδx′

i
).

It is straightforward to check that the isomorphism is G-equivariant, natural in (X,U), and
compatible with the bornologies. �

Lemma 4.17. We have a commuting diagram of functors GUBC → GBornCoarse

Proof. We first discuss the isomorphism in the case of O∞
geom. For X in GUBC the desired

isomorphism

Smin,min ⊗ (R ⊗X)h
∼=−→ (R ⊗ Sdisc,min,min ⊗X)h

is induced by the natural bijection of G-sets

f : S × (R ×X)
∼=−→ R × (S ×X), (s, (r, x)) �→ (r, (s, x)).

We need to verify that the coarse structures agree.
For an admissible function ψ : N → P((R ×X)2)G, define

ψS : N → P((R × S ×X)2)G

as the function sending n to the image of diag(S) × ψ(n) under the identification induced by
f . Then we have

diag(S) × (U ∩ Uψ) = (diag(S) × U) ∩ UψS

for all admissible functions ψ, so the bijection f induces a controlled map.
Conversely, let p : R × S ×X → R ×X be the projection map. If φ : N → P((R × S ×X)2)G

is an admissible function, then the function φ′ : N → P((R ×X)2)G sending n to (p× p)(φ(n))
is also admissible. Moreover, we have

diag(S) × (U ∩ Uφ′) = (diag(S) × U) ∩ (f × f)−1(Uφ)

for every admissible function φ and coarse entourage U of R ⊗X. Hence, the generating
entourages of Smin,min ⊗ (R ⊗X)h and (R ⊗ Sdisc,min,min ⊗X)h agree under the identification
induced by f .

The other isomorphisms are induced by the same bijection of underlying G-sets, restricted
to [0,∞) for the case O and to {0} for the case F . Then the diagram commutes. �
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1640 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Lemma 4.18. We have a commuting diagram of functors GUBC → GSpX

(4.9)

Proof. In a first step we postcompose the diagram from Lemma 4.17 with Yos and
precompose it with the functor P : GBornCoarseC → GUBC. Then we get a corresponding
diagram of functors GBornCoarseC → GSpX . We apply the left Kan extension along the
forgetful functor GBornCoarseC → GBornCoarse and get the commuting diagram

(4.10)

Using (4.7) and the fact that TMot
S preserves colimits, the upper line of (4.10) is equivalent to

the upper line of the diagram (4.9). It remains to identify the lower line.
We use Lemma 4.16 to identify the lower line of (4.10) with

LK(Yos FPT C
S ) → LK(Yos OPT C

S ) → LK(O∞PT C
S ) → ΣLK(Yos FPT C

S ). (4.11)

Let E denote any one of the functors Yos ◦F , Yos ◦O or O∞. Because the restrictions of
LK(EPT C

S ) and LK(EP )T C
S to GBornCoarseC are equivalent, the universal property of the

left Kan extension provides a transformation from (4.11) to

LK(Yos FP )T C
S → LK(Yos OP )T C

S → LK(O∞P )T C
S → ΣLK(Yos FP )T C

S .

We show that this transformation is an equivalence. To this end, we use the pointwise formula
from Lemma 4.13. We therefore must show that the natural morphism

colim
U∈CG(X)

E(Pdiag(S)×U (Smin,min ⊗X)) → colim
V ∈CG(Smin,min⊗X)

E(PV (Smin,min ⊗X))

is an equivalence. This is clear since U �→ diag(S) × U is an isomorphism of posets from
CG
diag(X) to CG

diag(Smin,min ⊗X). We therefore get the desired identification of the lower line of
the diagram (4.10) with the lower line in (4.9). �

If H is a subgroup of G, then we have an induction functor

IndG
H : HSet → GSet, X �→ G×H X. (4.12)

The elements of G×H X will be written in the form [g, x] for g in G and x in X, and we have
the equality [gh, h−1x] = [g, x] for all h in H. We have a natural projection

G×X → IndG
H(X) = G×H X, (g, x) �→ [g, x]. (4.13)

This induction functor refines to an induction functor

IndG
H : HBornCoarse → GBornCoarse (4.14)

for bornological coarse spaces. If X is some H-bornological coarse space, then IndG
H(X) becomes

a G-bornological coarse space with the following structures.

(1) The bornological structure on IndG
H(X) is generated by the images under (4.13) of the

subsets {g} ×B of G×X for all g in G and bounded subsets B of X.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1641

(2) The coarse structure is generated by the entourages IndG
H(U), which are the images of

the entourages diag(G) × U of G×X under the projection (4.13), for all coarse entourages U
of X.

The induction functor extends to motives

IndG,Mot
H : HSpX → GSpX (4.15)

such that

(4.16)

commutes; see [13, Section 6.5].

Lemma 4.19. The functor YosG ◦ IndG
H : HBornCoarse → GSpX is an H-equivariant

coarse homology theory.

Proof. By (4.16), we have an equivalence YosG ◦ IndG
H � IndG,Mot

H ◦YosH . In view of Propo-
sition 3.14, it suffices to show that IndG,Mot

H preserves colimits. This is the case since IndG,Mot
H

is a left adjoint functor (see [13, Section 6.5]). �

We can extend the induction functor to a functor

IndG,C
H : HBornCoarseC → GBornCoarseC , (X,U) �→ (IndG

H(X), IndG
H(U)).

Then we have a commuting diagram

The induction functor (4.14) further extends to an induction functor

IndG,U
H : HUBC → GUBC (4.17)

for uniform bornological coarse spaces. If X is an H-uniform bornological coarse space, then
the uniform structure on IndG,U

H (X) is generated by the images of the entourages diag(G) × U
of G×X for all uniform entourages U of X under the projection (4.13).

In the following lemma, PG and PH are the versions of the functor P from Construction 4.14
for the groups G and H, respectively.

Lemma 4.20. We have a natural isomorphism of functors

IndG,U
H ◦PH

∼=−→ PG ◦ IndG,C
H : HBornCoarseC → GUBC.

Proof. For (X,U) in HBornCoarseC we construct an isomorphism of G-simplicial
complexes

G×H PU (X)
∼=−→ PIndG

H(U)(IndG
H(X)) (4.18)

which induces the desired isomorphism of G-uniform bornological coarse spaces. Let [g, μ]
be a point in G×H PU (X). Then there are some n in N, a collection of points x0, . . . , xn
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1642 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

in X, and numbers λ0 . . . , λn in [0,1] such that (xi, xj) ∈ U for all pairs i, j,
∑n

i=0 λi = 1,
and

μ =
n∑

i=0

λiδxi
.

The isomorphism sends the point [g, μ] to the point
∑n

i=0 λiδ[g,xi] in PIndG
H(U)(IndG

H(X)).

In order to see that this map is invertible, note that if ν =
∑n′

i=0 λ
′
iδ[gi,x′

i]
is a point in

PIndG
H(U)(IndG

H(X)), then in view of the definition of IndG
H(U) there exist elements hi in

H for i = 0, . . . , n such that gih
−1
i = g0. Consequently, ν =

∑n′

i=0 λ
′
iδ[g,hix′

i]
, and we have

(hix
′
i, hjx

′
j) ∈ U for all i, j. Therefore, the inverse of the isomorphism sends ν to the point

[g,
∑n′

i=0 λ
′
iδhix′

i
].

It is straightforward to check that the isomorphism is G-equivariant, natural in (X,U),
and compatible with the bornologies. From the explicit description of the coarse and uniform
structure on the induction, it follows that G×H PU (X)d,d,b ∼= (G×H PU (X))d,d,b and hence
IndG,U

H ◦PH
∼= PG ◦ IndG,C

H as claimed. �

In the following statement, we again added subscripts G or H in order to indicate on which
categories the respective versions of the functors F , O and O∞

geom act.

Lemma 4.21. We have a commuting diagram of functors HUBC → GBornCoarse

Proof. We first discuss the isomorphism in the case of the functor O∞
geom. For X in HUBC

the isomorphism is induced by the natural bijection of G-sets

f : G×H (R ×X)
∼=−→ R × (G×H X), [g, (r, x)] �→ (r, [g, x]),

which is obviously an isomorphism of G-bornological spaces. We need to show that the hybrid
coarse structures agree under f .

Let p : G× R ×X → G×H (R ×X) and q : R ×G×X → R × (G×H X) denote the projec-
tion maps. For an admissible function ψ : N → P((R ×X)2)G, define

ψG : N → P((R × (G×H X))2)G

as the function sending n to the image of (p× p)(diag(G) × ψ(n)) under the identification
induced by f . Then we have

(p× p)(diag(G) × (U ∩ Uψ)) = (p× p)(diag(G) × U) ∩ UψG

for all admissible functions ψ, so the bijection f induces a controlled map.
Conversely, if φ : P((R × (G×H X))2)G is an admissible function, then the function φ′ : N →

P((R ×X)2)G sending n to (q × q)−1(φ(n)) ∩ (R × {1} ×X)2 is also admissible. Moreover, we
have

(p× p)(diag(G) × (U ∩ Uφ′)) = (p× p)(diag(G) × U) ∩ (f × f)−1(Uφ)

for every admissible function φ and coarse entourage U of R ⊗X.
Hence, the generating entourages of IndG

H(R ⊗X)h and (R ⊗ IndG,U
H (X))h agree under the

identification induced by f .
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1643

The other isomorphisms are induced by the same bijection of underlying G-sets, restricted
to [0,∞) for the case O and to {0} for the case F . Then the diagram commutes. �

Lemma 4.22. We have a commuting diagram of functors HUBC → GSpX

Proof. The proof is, mutatis mutandis, identical to the proof of Lemma 4.18. More precisely,
one replaces TS by IndG

H , starts with the diagram from Lemma 4.21 instead of the one from
Lemma 4.17, and uses Lemma 4.20 instead of Lemma 4.16. �

5. A descent result

The main result of the present section is Proposition 5.16. Morally it is a descent result stating
that a certain natural transformation from fixed points to homotopy fixed points is an equiva-
lence. The proof is based on the interplay between the covariant and contravariant functoriality
of coarse homology theories encoded in their extensions to the ∞-category GBornCoarsetr
of G-bornological coarse spaces with transfers. This ∞-category was introduced in [11]. It
extends the category GBornCoarse, which only captures the covariant behavior of coarse
homology theories.

We start by briefly recalling the construction of the category GBornCoarsetr. Let X be a
G-bornological coarse space. Then we let C(X) and B(X) denote the coarse and bornological
structures of X. For a subset B of X, we let [B] denote the coarse closure of B, that is, the
closure of B with respect to the equivalence relation RC(X); see (3.2).

Let now X and Y be G-bornological coarse spaces and f : X → Y be an equivariant map
between the underlying G-sets.

Definition 5.1 [11, Definition 2.14]. The map f is called a bounded covering if:

(i) f is a morphism between the underlying G-coarse spaces;
(ii) the coarse structure C(X) is generated by the sets (f × f)−1(U) ∩ Uπ0 , where U is in

C(Y ) and

Uπ0 :=
⋃

W∈π0(X)

W ×W ; (5.1)

(iii) for every W in π0(X) the restriction f|W : W → f(W ) is an isomorphism of coarse
spaces between coarse components;

(iv) f is bornological, that is, for every B in B(X) we have f(B) ∈ B(Y );
(v) for every B in B(X) there exists a finite bound (which may depend on B) on the

cardinality of the sets

{W ∈ π0(X) | π0(f)(W ) = V,W ∩B �= ∅}
(the coarse components of X over V which intersect B nontrivially) for all V in π0(Y ).

Note that a bounded covering is not a morphism of bornological coarse spaces in general,
since it may not be proper. The composition of two bounded coverings is again a bounded
covering; see [12, Lemma 2.18].
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1644 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Remark 5.2. Conditions (iii) and (v) in Definition 5.1 together are equivalent to the
following single condition: for every B in B(X) there exists a finite coarsely disjoint partition
(Bα)α∈A of B, that is, a finite partition (Bα)α∈A of B such that [Bα] ∩ [Bα′ ] = ∅ for all α �= α′,
such that f[Bα] : [Bα] → [f(Bα)] is an isomorphism of the underlying coarse spaces.

Our phrasing of Definition 5.1 separates the assumptions on the coarse structures from the
conditions on the bornologies.

Example 5.3. Let h : S → T be a map between G-sets and X be a G-bornological coarse
space. Then the map

h× idX : Smin,min ⊗X → Tmin,min ⊗X

is a bounded covering; see [11, Example 2.16].
Let XC be a G-coarse space with two compatible G-bornological structures B and B′ such

that B′ ⊆ B. We let X and X ′ denote the corresponding G-bornological coarse spaces. Then
the identity map of the underlying sets is a bounded covering X ′ → X; see [11, Example 2.17].
If B′ �= B, then it is not a morphism of G-bornological coarse spaces.

Construction 5.4. We recall the ∞-category GBornCoarsetr from [11, Definition 2.29].
Let Tw : Δ → Cat denote the cosimplicial category which sends [n] to Tw([n]) = [n]op � [n]),
the twisted arrow category of [n] (as a simplicial set, this is the edgewise subdivision). We
denote by ˜GBornCoarse the category whose objects are G-bornological coarse spaces and
whose morphisms are morphisms of the underlying G-coarse spaces.

Then GBornCoarsetr is a certain sub-simplicial set of the simplicial set

Fun(Tw, ˜GBornCoarse) : Δop → Set, [n] �→ Fun(Tw([n]), ˜GBornCoarse).

Since it turns out that GBornCoarsetr is 2-coskeletal [11, Lemma 2.30], we content ourselves
with describing 2-simplices. They are given by diagrams of the form

such that all morphisms going left are bounded coverings, all morphisms going right are proper
and bornological and such that the square in the middle is a pullback on the level of the
underlying G-coarse spaces. This ∞-category is an effective Burnside category in the sense of
Barwick [4, Definition 3.6]; see [9, Definition 4.40 & Remark 4.41].

We have a functor

m : GSetop ×GBornCoarse → GBornCoarsetr, (5.2)

which admits the following description. Consider the functor

m′ : GSet × ˜GBornCoarse → ˜GBornCoarse, (S,X) �→ Smin,min ⊗X.

We have a cosimplicial ∞-category ν : Δ → Cat∞ which sends [n] to the nerve of [n].
Then ν corepresents the identity functor on Cat∞, while (−)op ◦ ν corepresents the functor
(−)op : Cat∞ → Cat∞. Moreover, we have a transformation of cosimplicial ∞-categories
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1645

π : Tw → ((−)op ◦ ν) × ν. From this, we obtain the functor

GSetop × ˜GBornCoarse ×−→ Fun(((−)op ◦ ν) × ν,GSet × ˜GBornCoarse)

π∗
−→ Fun(Tw, ˜GBornCoarse).

In fact, this functors restricts to a functor

m̃ : GSetop × ˜GBornCoarse → Aeff( ˜GBornCoarse),

where the target is the effective Burnside category of ˜GBornCoarse; here we use that the
effective Burnside category Aeff is defined for every category with pullbacks [4, Definition
3.6]. We compose m̃ with the endofunctor P of Fun(Tw, ˜GBornCoarse) which takes each
simplex to the simplex represented by the same diagram of G-coarse spaces, but where we
replace the bornologies on all entries which are the domain of a map by that bornology which
turns the morphism going right into a bornological morphism. For example, in a diagram as
in Construction 5.4, we equip Z with the bornology pulled back from Y and we equip U and
V with the bornologies pulled back from W .

Using Example 5.3, one now checks that the composition m := P ◦ m̃ defines a functor
GSetop ×GBornCoarse → GBornCoarsetr. The restriction of m to the object pt of GSetop

induces a functor

ι : GBornCoarse → GBornCoarsetr, (5.3)

cf. [11, Definition 2.33].
Let C be a cocomplete stable ∞-category and let E : GBornCoarsetr → C be a functor.

Definition 5.5 [11, Definition 2.53]. E is called a C-valued equivariant coarse homology
theory with transfers if E ◦ ι : GBornCoarse → C is a C-valued equivariant coarse homology
theory (in the sense of Definition 3.13).

Let E : GBornCoarsetr → C be a functor.

Definition 5.6. We define the functor

E := E ◦m : GSetop ×GBornCoarse → C.

Assume now that E is a coarse homology theory with transfers. For every G-set T , we have
an equivalence

E(T,−) � (E ◦ ι)Tmin,min(−)

of functors GBornCoarse → C; see Definition 3.16 for notation. The right-hand side is a twist
of an equivariant coarse homology theory and therefore again an equivariant coarse homology
theory by Lemma 3.17. By Proposition 3.14, we can extend E along Yos to a functor (denoted
by the same symbol for simplicity)

E : GSetop ×GSpX → C,

which preserves colimits in its second argument.
From now on until the end of this section, we assume that the ∞-category C is stable,

cocomplete and complete, and that E is a C-valued equivariant coarse homology theory with
transfers.

Definition 5.7. We define the functor

Ẽ : PSh(GSet)op ×GSpX → C
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1646 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

as a right Kan extension of E along the functor

yoop × idGSpX : GSetop ×GSpX → PSh(GSet)op ×GSpX .

From now on we consider Ẽ as a contravariant functor in its first argument.

Remark 5.8. Since the Yoneda embedding is fully faithful, we have a commuting diagram

As PSh(GSet) is the free colimit completion of GSet ([28, Theorem 5.1.5.6]), the functor Ẽ
is essentially uniquely characterized by an equivalence

Ẽ ◦ (yo× idGSpX ) � E

and the property that it sends colimits in its first argument to limits.
Consequently, if A : I → GSet and X : J → GSpX are some functors from small categories

I and J , then we have a canonical equivalence

Ẽ(colim
I

yo(A), colim
J

X) � lim
I

colim
J

Ẽ(yo(A), X).

Note that the order of the limit and the colimit matters in general.

Let A be in PSh(GSet) and let E be a C-valued equivariant coarse homology theory with
transfers.

Lemma 5.9. If A is compact, then the functor Ẽ(A,−) : GSpX → C preserves colimits.

Proof. We have an equivalence Ẽ(yo(S),−) � E(S,−) of functors from GSpX to C.
Therefore, Ẽ(yo(S),−) preserves colimits for every G-set S. Since A is compact, it is a retract
of a finite colimit of objects of the form yo(S) with S in GSet by [28, Proposition 5.3.4.17].

If A in PSh(GSet) is a finite colimit of representables, then Ẽ(A,−) is a finite limit of colimit
preserving functors. Since C is stable, finite limits in C commute with arbitrary colimits [29,
Proposition 1.1.4.1]. Hence Ẽ(A,−) preserves colimits.

If A is a retract of a finite colimit A′ of representables, then Ẽ(A,−) is a retract of
Ẽ(A′,−). Consequently, the relevant comparison maps for Ẽ(A,−) are retracts of the analogous
comparison maps for Ẽ(A′,−). Since the comparison maps for Ẽ(A′,−) are equivalences and
retracts of equivalences are equivalences, the lemma follows. �

Recall that GOrb denotes the full subcategory of GSet of transitive G-sets; see Defini-
tion 1.2.

Remark 5.10. By Elmendorf’s theorem, the homotopy theory of G-spaces is modeled
by the presheaf category PSh(GOrb); see Remark 1.12. This category is equivalent to the
category of sheaves Sh(GSet) with respect to the Grothendieck topology on GSet given by
disjoint decompositions into invariant subsets. We prefer to identify the sheafification morphism
PSh(GSet) → Sh(GSet) with the restriction morphism along the inclusion r : GOrb → GSet
since in our special situation it has an additional left adjoint r! which is not part of general
sheaf theory.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1647

The inclusion

r : GOrb → GSet (5.4)

induces an adjunction

r! : PSh(GOrb) � PSh(GSet) : r∗ (5.5)

by [28, Proposition 5.2.6.3]. Later in the proof of Lemma 5.14 we will need a formula for the
counit

r!r
∗ → id (5.6)

of the adjunction (5.5). To this end we consider a G-set S and let S ∼= ⊔
R∈G\S R be the

decomposition of S into transitive G-sets.

Lemma 5.11. The counit

r!r
∗ yo(S) → yo(S)

is equivalent to the morphism ∐
R∈G\S

yo(r(R)) → yo(S), (5.7)

induced by the family of inclusions (r(R) → S)R∈G\S .

Proof. We start with the morphism∐
R∈G\S

yo(r(R)) → yo(S)

induced by the collection of inclusions (r(R) → S)R∈G\S . We claim that it becomes an
equivalence after application of r∗. Indeed, for T in GOrb we have a commuting square

The lower horizontal map is an equivalence since the functor MapGSet(r(T ),−) commutes with
coproducts since r(T ) is a transitive G-set.

Since the counit of an adjunction is a natural transformation, we get the following commuting
diagram

It remains to show that the left vertical arrow is an equivalence. To this end we consider the
diagram
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1648 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

The left square commutes by the usual relation between the unit and the counit of an
adjunction. Since r! commutes with colimits and r! yo(R) � yo(r(R)) by adjointness, the
horizontal morphisms on the right are equivalences. Since r is fully faithful, the unit appearing
at the left is an equivalence. Hence, the counit on the right is an equivalence as claimed. �

In order to simplify the notation in the arguments below we introduce now the following
abbreviation. Let pt denote the one-point G-bornological coarse space.

Definition 5.12. We define the functor

Ẽpt := Ẽ(−,Yos(pt)) : PSh(GSet)op → C.

We consider Ẽpt as a contravariant functor from PSh(GSet) to C which sends colimits
to limits.

The counit (5.6) induces a transformation

u : Ẽpt → Ẽpt ◦ r! ◦ r∗. (5.8)

Remark 5.13. Recall from [11, Definition 2.61] that we call a coarse homology theory
with transfers strongly additive if its sends free unions (see [13, Example 2.16]) of families of
G-bornological coarse spaces to products. Note further that for S in GSet the G-bornological
coarse space Smin,min is the free union of the family (Rmin,min)R∈G\S . This is used to see that
the morphism (5.9) below is an equivalence.

Lemma 5.14. If E is strongly additive, then the transformation (5.8) is an equivalence.

Proof. Let S be in GSet. Using Lemma 5.11 and the fact that Ẽpt sends colimits to limits,
the specialization uS of (5.8) to S is given by the map

Ẽpt(S) →
∏

R∈G\S
Ẽpt(r(R)).

Recall from Example 5.3 that the inclusions Rmin,min → Smin,min are bounded coverings. Then
by the definition of Ẽpt this map is equivalent to the map

E(Smin,min) →
∏

R∈G\S
E(Rmin,min)

obtained from the transfers along the inclusions of the orbits of Smin,min. Since Smin,min is
discrete, we have an isomorphism

Smin,min
∼=

free∐
R∈G\S

Rmin,min

of G-bornological coarse spaces. By strong additivity of E, the map

E(Smin,min) � E

⎛⎝ free∐
R∈G\S

Rmin,min

⎞⎠ →
∏

R∈G\S
E(Rmin,min) (5.9)

is an equivalence. Therefore, uS is an equivalence. �

The following lemma is the crucial technical ingredient in the proof of the main result of
the present section (Proposition 5.16). It allows us to move G-sets from one argument of the
functor Ẽ to the other.

We consider a G-set S.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1649

Lemma 5.15. There is an equivalence

s : Ẽ(−,Yos(Smin,min)) → Ẽpt(−× yo(S))

of contravariant functors from PSh(GSet) to C.

Proof. Using the canonical isomorphisms of functors

(−)min,min ⊗ Smin,min
∼= (−× S)min,min

∼= (−× S)min,min ⊗ pt

from GSetop to GBornCoarsetr, we obtain an equivalence of functors

m(−, Smin,min) � m(−× S,pt).

We compose this equivalence with E and form the right-Kan extension along the functor
yoop : GSetop → PSh(GSet)op. We obtain an equivalence

RK(E(. . . ,Yos(Smin,min)))(−) � RK(E(. . .× S,pt))(−) (5.10)

of contravariant functors from PSh(GSet) to C which send colimits to limits. Here RK denotes
the right-Kan extension in the variable indicated by . . ., and − is the argument of the resulting
functor. By definition of Ẽ, we have an equivalence

RK(E(. . . ,Yos(Smin,min)))(−) � Ẽ(−,Yos(Smin,min)). (5.11)

For the right-hand side, we note the equivalence yo(. . .× S) � yo(. . . ) × yo(S), and that the
functor −× yo(S) preserves colimits. This implies a natural equivalence

RK(E(. . .× S,pt))(−) � Ẽpt(−× yo(S)) (5.12)

since both functors send colimits to limits and coincide on representables. Inserting (5.11) and
(5.12) into (5.10), we obtain the desired equivalence. �

We now state the main result of the present section. Recall that C is a complete and
cocomplete, stable ∞-category. Furthermore, E is an equivariant C-valued coarse homology
theory with transfers. We let Ẽ be defined as in Definition 5.7. We consider an object A in
PSh(GSet) and a transitive G-set R in GFOrb. Let

pR : Ẽ(∗,Yos(Rmin,min)) → Ẽ(A,Yos(Rmin,min)) (5.13)

be the map induced by A → ∗

Proposition 5.16. Assume:

(i) E is strongly additive (see Remark 5.13);
(ii) r∗A in PSh(GOrb) is equivalent to EFG.

Then the morphism pR in (5.13) is an equivalence.

Proof. We consider the following commutative diagram in C:

 1460244x, 2020, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12380 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1650 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Here s is the natural equivalence from Lemma 5.15, and the morphism u from (5.8) is a natural
equivalence by Lemma 5.14.

We further use the canonical equivalence r∗ yo(r(R)) � yo(R) for the lower left vertical
equivalence, and in addition the fact that r∗ preserves products for the lower right vertical
equivalence. The lower horizontal morphism is an equivalence since

r∗A× yo(R) � EFG× yo(R) � yo(R),

where the first equivalence holds true by Assumption (ii) and the second equivalence follows
from the fact that R has stabilizers in F , also by assumption. �

Remark 5.17. As explained in Remark 1.12, the ∞-category PSh(GOrb) is a model for
the homotopy theory of G-spaces. Compactness of EFG as a presheaf on GOrb will play a
crucial role in our arguments. This condition is closely related to the existence of a G-compact
model Etop

F G of EFG.
Identifying presheaves on GOrb with sheaves on GSet, we can consider EFG as an object

of PSh(GSet) which satisfies the sheaf condition. But compactness of EFG as an object
of PSh(GSet) is a too strong condition. For this reason we consider compact objects A
in PSh(GSet) which after sheafification, that is, after application of r∗, become equivalent
to EFG. The existence of such an object is an important assumption in the following. In
Lemma 10.4, we will show that the existence of a finite-dimensional model for Etop

F G (a much
weaker condition than G-compactness) implies the existence of such a compact presheaf A.

A G-simplicial complex is a simplicial complex on which G acts by morphisms of simplicial
complexes. We denote by GSimpl the category of G-simplicial complexes and G-equivariant
simplicial maps. Let K be a G-simplicial complex.

Definition 5.18. K is G-finite if it consists of finitely many G-orbits of simplices.

We let GFSimplfin denote the full subcategory of GSimpl of G-finite G-simplicial complexes
with stabilizers in F .

We have a canonical functor

k := (−)d,d,d : GFSimplfin → GUBC

which equips a G-simplicial complex with the structures induced by the spherical quasi-metric.
Hence we have a functor

O∞ ◦ k : GFSimplfin → GSpX ,

where O∞ denotes the cone-at-infinity functor from Definition 4.10.
Let A be in PSh(GSet).

Proposition 5.19. Assume:

(i) E is strongly additive;
(ii) A is compact;
(iii) r∗A is equivalent to EFG.

Then the natural transformation

Ẽ(∗, (O∞ ◦ k)(−)) → Ẽ(A, (O∞ ◦ k)(−))

of functors from GFSimplfin to C induced by A → ∗ is a natural equivalence.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1651

Proof. For R in GFOrb, the object (O∞ ◦ k)(R) of GSpX is equivalent to ΣYos(Rmin,min)
by [13, Proposition 9.35]. Since Ẽ(∗,−) and Ẽ(A,−) preserve colimits in the second argument
by Lemma 5.9, the map Ẽ(∗, (O∞ ◦ k)(R)) → Ẽ(A, (O∞ ◦ k)(R)) is equivalent to the map
ΣẼ(∗,Yos(Rmin,min)) → ΣẼ(A,Yos(Rmin,min)), which is an equivalence by Proposition 5.16.

The functor k sends equivariant decompositions of G-finite G-simplicial complexes to
equivariant uniform decompositions of G-uniform bornological coarse spaces by [13, Lemma
10.9]. The functor O∞ is excisive for those decompositions by [13, Corollary 9.36 and Remark
9.37]. Furthermore, it is homotopy invariant by [13, Corollary 9.38].

Since Ẽ(∗,−) and Ẽ(A,−) preserve colimits in the second argument by Lemma 5.9, the
functors Ẽ(∗, (O∞ ◦ k)(−)) and Ẽ(A, (O∞ ◦ k)(−)) are excisive for equivariant decompositions
of G-finite G-simplicial complexes. Furthermore, they are both homotopy invariant.

A natural transformation between two such functors which is an equivalence on G-orbits
with stabilizers in F is an equivalence on G-finite G-simplicial complexes with stabilizers in
F : by induction on the number of equivariant cells, this follows from application of the Five-
Lemma to the Mayer–Vietoris sequences arising from the pushout squares describing simplex
attachments. This implies the assertion. �

6. Duality of G-bornological spaces

In this section, we develop a notion of duality for G-bornological spaces that we will use later
to compare certain assembly and forget-control maps.

The category GBorn (see Definitions 3.3 and 3.4) of G-bornological spaces and proper
equivariant maps has a symmetric monoidal structure ⊗. If Y and X are G-bornological spaces,
then Y ⊗X is the G-bornological space with underlying G-set Y ×X (with diagonal action)
and the bornology generated by the subsets A×B for bounded subsets A of Y and B of X.
Note that this tensor product is not the Cartesian product in GBorn.

Recall that a subset L of a G-bornological space X is called locally finite if L ∩B is finite
for every bounded subset B of X; see Definition 3.18.

For a set A, we let |A| in N ∪ {∞} denote the number of elements of A.
For a subset L of X ×G, we consider

L1 := L ∩ (X × {1}) (6.1)

as a subset of X in the natural way.
Let X be a G-bornological space and L be a G-invariant subset of X ×G.

Lemma 6.1. L is a locally finite subset of X ⊗Gmax if and only if
∑

g∈G |L1 ∩ gB| < ∞ for
every bounded subset B of X.

Proof. The subset L of X ⊗Gmax is locally finite if and only if L ∩ (B ×G) is finite for
every bounded subset B of X. Since L is G-invariant, we have bijections

L ∩ (B ×G) ∼=
⊔
g∈G

L ∩ (B × {g−1}) ∼=
⊔
g∈G

L ∩ (gB × {1}) ∼=
⊔
g∈G

L1 ∩ gB.

This implies the assertion. �

Let X be a G-bornological space and L be a G-invariant subset of X ×G.

Lemma 6.2. L is a locally finite subset of X ⊗Gmin if and only if L1 ∩ gB is finite for every
bounded subset B of X and every g in G.
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1652 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Proof. The subset L of X ⊗Gmin is locally finite if and only L ∩ (B × {g}) is finite for every
bounded subset B of X and g in G. Since L is G-invariant, we have bijections

L ∩ (B × {g}) ∼= L ∩ (g−1B × {1}) ∼= L1 ∩ g−1B.

This implies the assertion. �

Let X and X ′ be two G-bornological spaces with the same underlying G-set.

Definition 6.3. We say that X is dual to X ′ if the sets of G-invariant locally finite subsets
of X ⊗Gmax and X ′ ⊗Gmin coincide.

If X and X ′ are two G-bornological coarse spaces, then we say that X is dual to X ′ if the
underlying G-bornological space of X is dual to the one of X ′.

Remark 6.4. Note that duality is not an equivalence relation. In particular, the order
is relevant.

Example 6.5. Let S be a G-set with finite stabilizers.

(i) Smin is dual to Slax, where Slax (lax stands for locally max) is S with the bornology
generated by the G-orbits.

(ii) Slin is dual to Smax, where Slin (lin stands for locally min) is S with the bornology given
by subsets which have at most finite intersections with each G-orbit.

Let X be a G-bornological space.

Definition 6.6. X is called G-bounded if there exists a bounded subset B of X such that
GB = X.

Definition 6.7. X is called G-proper if the set {g ∈ G | gB ∩B �= ∅} is finite for every
bounded subset B of X.

If X is a G-bornological space, then we let Xmax denote the G-bornological space with the
same underlying G-set and the maximal bornology.

Let X be a G-bornological space and Y be a bornological space (which we consider as a
G-bornological space with the trivial G-action).

Lemma 6.8. Assume:

(i) X is G-proper;
(ii) X is G-bounded;

Then Y ⊗X is dual to Y ⊗Xmax.

Proof. Let L be a G-invariant subset of Y ×X ×G. In view of Lemma 6.1 and Lemma 6.2,
local finiteness of L in Y ⊗X ⊗Gmax or Y ⊗Xmax ⊗Gmin is characterized by conditions on
the subset L1 of Y ×X; see (6.1) for notation.

We must check that the following conditions on L1 are equivalent.

(i) |(A×X) ∩ L1| < ∞ for every bounded subset A of Y .
(ii)

∑
g∈G |(A× gB) ∩ L1| < ∞ for all bounded subsets A of Y and bounded subsets B of

X.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1653

We assume that L1 satisfies Condition (i). Let B be a bounded subset of X and A be a
bounded subset of Y . Since X is G-proper, the family (gB)g∈G has finite multiplicity, say
bounded by m in N. We get∑

g∈G

|(A× gB) ∩ L1| � m|(A×X) ∩ L1| < ∞.

Consequently, L1 satisfies Condition (ii).
We now assume that L1 satisfies Condition (ii). Let A be a bounded subset of Y . Since X

is G-bounded we can choose a bounded subset B of X such that GB = X. Then

|(A×X) ∩ L1| �
∑
g∈G

|(A× gB) ∩ L1| < ∞.

Hence L1 satisfies Condition (i). �

The following lemma explains why the notion of duality is relevant. Assume that X and X ′

are G-bornological coarse spaces with the same underlying G-coarse space. Recall the notation
Yosc for the universal continuous equivariant coarse homology theory, see (3.6).

Lemma 6.9. If X is dual to X ′, then we have a canonical equivalence in GSpXc

Yosc(X ⊗Gcan,max) � Yosc(X
′ ⊗Gcan,min).

Proof. This lemma is a special case of the following Lemma 6.10 for the case I = ∗. �

We will need a functorial variant of Lemma 6.9. We consider a small category I and a functor
X0 : I → GCoarse. Assume further that we are given two lifts X,X ′ of X0 to functors from I
to GBornCoarse along the forgetful functor GBornCoarse → GCoarse as depicted in the
following diagram:

Extending the notion of continuous equivalence (Definition 3.21), we call two functors I →
GBornCoarse continuously equivalent if they become equivalent after application of Yosc.

Lemma 6.10. If X(i) is dual to X ′(i) for every i in I, then X ⊗Gcan,max and X ′ ⊗Gcan,min

are continuously equivalent.

Proof. For i in I, let LX(i) and LX′(i) be the posets of invariant locally finite subsets
of X(i) ⊗Gcan,max and X ′(i) ⊗Gcan,min equipped with their induced structures, respectively.
We first show that the assumption of the lemma implies an equality of posets LX(i) = LX′(i).
Indeed, the assumption says that the collections of underlying sets of the elements of LX(i) and
LX′(i) are equal. In addition, for L in LX(i) its coarse structure coincides with the one induced
from X ′(i) ⊗Gcan,min. Finally, in view of the definition of the notion of local finiteness, the
induced bornological structures from X(i) ⊗Gcan,max and X ′(i) ⊗Gcan,min are the minimal
one in both cases.

We have a functor I → Poset which sends i in I to the poset LX(i) and i → i′ to the map
LX(i) → LX(i′) induced by the proper map X(i) → X(i′). We let IX be the Grothendieck
construction for this functor.
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1654 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

We have a functor from IX to spans in GBornCoarse which evaluates on the object (i, L)
of IX with L ∈ LX(i) to

X(i) ⊗Gcan,max ← L = L′ → X ′(i) ⊗Gcan,min.

Here L′ is the set L considered as an element of LX′(i).
We now apply Yosc and form the left Kan extension of the resulting diagram along the

forgetful functor IX → I. Then we get a functor from I to the category of spans in GSpXc

which evaluates at i in I to

Yosc(X(i) ⊗Gcan,max)
�←− colim

L∈LX(i)

Yosc(L) = colim
L′∈LX′(i)

Yosc(L
′) �−→ Yosc(X

′(i) ⊗Gcan,min).

By continuity of Yosc, see Lemma 3.19, the left and the right morphisms are equivalences as
indicated. Therefore, this diagram provides the equivalence claimed in the lemma. �

7. Continuous equivalence of coarse structures

In general, the value of an equivariant coarse homology theory on G-bornological coarse spaces
depends nontrivially on the coarse structure. In this section, we show that in the case of a
continuous equivariant coarse homology theory, one can change the coarse structure to some
extent without changing the value of the homology theory. This is formalized in the notion of
a continuous equivalence; see Definition 3.21.

Let X be a G-bornological space with two compatible G-coarse structures C and C′ such
that C ⊆ C′. We write XC and XC′ for the associated G-bornological coarse spaces.

Lemma 7.1. Assume that for every locally finite subset L of X the coarse structures on L
induced by C and C′ coincide. Then idX : XC → XC′ is a continuous equivalence.

Proof. Let L denote the poset of locally finite subsets of X. Then the claim follows from
the commutative square

The horizontal maps are equivalences by continuity; see Lemma 3.19. The left vertical map is
an equivalence since LXC = LXC′ for every L in L by assumption, where LXC indicates that
we equip L with the coarse structure induced from XC . �

The identity on the underlying sets induces a morphism

Gcan,max → Gmax,max (7.1)

of G-bornological coarse spaces. If X is a G-bornological coarse space, then we get an induced
morphism

X ⊗Gcan,max → X ⊗Gmax,max. (7.2)

Lemma 7.2. If X is G-bounded, then the morphism (7.2) is a continuous equivalence.

Proof. Let L be a G-invariant locally finite subset of the underlying bornological space of
X ⊗Gcan,max. By Lemma 7.1, it suffices to show that the coarse structure induced on L from
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1655

X ⊗Gmax,max is contained in the coarse structure induced from X ⊗Gcan,max (since the other
containment is obvious).

Since X is G-bounded (see Definition 6.6) by assumption, there exists a bounded subset A
of X such that GA = X. Let U be an invariant entourage of X containing the diagonal. It will
suffice to show that (U × (G×G)) ∩ (L× L) is an element of the coarse structure induced on
L by X ⊗Gcan,max. Note that there is an implicit reordering of the factors in the product to
make sense of the intersection.

Note that U [A] is bounded in X and that U ⊆ G(U [A] ×A). Because L is locally finite,
L′ := L ∩ (U [A] ×G) is finite. Let W be the projection of L′ to G. It is a finite subset of G.
We claim that

(U × (G×G)) ∩ (L× L) ⊆ (U ×G(W ×W )) ∩ (L× L).

Indeed, the condition that

(ga, ga′, h, h′) ∈ (G(U [A] ×A) × (G×G)) ∩ (L× L)

with a ∈ U [A] and a′ ∈ A is equivalent to

(a, a′, g−1h, g−1h′) ∈ ((U [A] ×A) × (G×G)) ∩ (L× L).

This implies that g−1h ∈ W and g−1h′ ∈ W , and hence (h, h′) ∈ G(W ×W ).
Hence we conclude that the restriction of U × (G×G) to L is contained in the entourage

(U ×G(W ×W )) ∩ (L× L) induced from X ⊗Gcan,max. �

Definition 7.3. We let GSpXbd denote the full subcategory of GSpX generated under
colimits by the images of G-bounded G-bornological coarse spaces under Yos.

Example 7.4. Let K be a G-simplicial complex. We consider the G-uniform bornological
coarse space Kd,d,d obtained from K with the structures induced by the spherical path quasi-
metric. We claim that if K is G-finite, then O∞(Kd,d,d) belongs to GSpXbd. Indeed, K has
finitely many G-cells. In view of the homological properties of O∞ we know that O∞(Kd,d,d)
is a finite colimit of objects of the form O∞(Sdisc,min,min) for S in GOrb; compare the proof of
Proposition 5.19. Because O∞(Sdisc,min,min) � ΣYos(Smin,min) by [13, Proposition 9.35] and
Smin,min is G-bounded, we conclude the claim.

The morphism (7.1) in turn induces a natural transformation between endofunctors

−⊗Gcan,max → −⊗Gmax,max : GSpX → GSpX . (7.3)

Corollary 7.5. If X belongs to GSpXbd, then (7.3) induces a continuous equivalence

X ⊗Gcan,max → X ⊗Gmax,max.

Proof. This follows directly from Lemma 7.2 since the symmetric monoidal structure ⊗ on
GSpX commutes with colimits in each variable separately; see [13, Lemma 4.17]. �

Recall Definition 3.9 of the G-set of coarse components π0(X) of a G-coarse space X.
Let X be a G-set with two G-coarse structures C and C′ such that C ⊆ C′. We write XC,max

and XC′,max for the associated G-bornological coarse spaces with the maximal bornology.

Lemma 7.6. If the canonical map π0(XC) → π0(XC′) is an isomorphism, then the morphism

XC,max ⊗Gcan,min → XC′,max ⊗Gcan,min

is a continuous equivalence.
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1656 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Proof. Let L be a locally finite subset of the underlying G-bornological space of XC,max ⊗
Gcan,min. By Lemma 7.1, it suffices to show that every entourage of the coarse structure induced
on L by XC′,max ⊗Gcan,min is contained in an entourage of the coarse structure induced from
XC,max ⊗Gcan,min.

Let W := G(B ×B) be an entourage of Gcan,min for some bounded subset B of Gcan,min.
We can assume that B contains the neutral element and is closed under inverses since this will
only enlarge the entourage W . Furthermore, let V be in C′. It suffices to show that (V ×W ) ∩
(L× L) is contained in an entourage of the form (U ×W 2) ∩ (L× L) for some entourage U in
C, where W 2 := W ◦W denotes the composition of W with itself, see (3.1). Note that we are
implicitly permuting the factors of the products to make sense of the intersection.

The subset B′ := W [B] of G is finite. Note that L1, see (6.1), and hence also B′L1 are
finite. Since π0(XC) ∼= π0(XC′), there exists an invariant entourage U of X such that V ∩
(L1 ×B′L1) ⊆ U . We show that this implies

(V ×W ) ∩ (L× L) ⊆ (U ×W 2) ∩ (L× L).

Indeed, for l, l′ in L1 the condition ((gl, g), (g′l′, g′)) ∈ V ×W implies (g, g′) ∈ W . Hence there
exists h in G such that hg and hg′ are contained in B. Then (hg′, 1) and thus (g−1g′, (hg)−1) are
in W . Since hg is in B, so is (hg)−1. Hence g−1g′ is in W [B] and g′ is in gW [B] = gB′. We write
g′ = gb for b in B′. Then ((l, 1), (bl′, b)) ∈ U ×W 2 and hence also ((gl, g), (g′l, g′)) ∈ U ×W 2

by G-invariance of U and W 2. �

8. Assembly and forget-control maps

Morally, an assembly map is the map induced in an equivariant homology theory by the
projection W → ∗ for some G-topological space W with certain relations with classifying
spaces. In the present section, W will be the Rips complex associated to a G-bornological
coarse space X.

On the other side, the prototype for a forget-control map is the map F∞(X) → ΣF 0(X)
induced by the cone boundary.

These two maps will be twisted by G-bornological coarse spaces derived from the G-set G
equipped with suitable coarse and bornological structures. The notation for the assembly map
associated to a G-bornological coarse space will be αX , and the forget-control map will be
denoted by βX .

In this section, we compare the assembly map αX and the forget-control map βX . The main
results are Corollary 8.25 and Corollary 8.31.

The comparison argument will go through intermediate versions of the forget-control map
denoted by βπ0

X and β
πweak
0

X . The structure of the comparison argument is as follows.

(1) βX and βπ0
X are compared in Lemma 8.12.

(2) βπ0
X and β

πweak
0

X are compared in Lemma 8.13.

(3) β
πweak
0

X and αX are compared in Lemma 8.24.

The combination of these results yields one of the main results (Corollary 8.25).
Before we consider the forget-control maps themselves, we investigate preliminary versions

of them defined on G-simplicial complexes. Let GSimpl denote the category of G-simplicial
complexes. A G-simplicial complex K comes with the invariant spherical path quasi-metric
which induces a G-uniform bornological coarse structure on K. We refer to Example 3.8 and
Example 4.6 for the corresponding notation. We thus have the following functors

kd,d,d, kd,d,max, kd,max,max : GSimpl → GUBC, K �→ Kd,d,d,Kd,d,max, kd,max,max, (8.1)
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1657

and

kd,d, kd,max, kmax,max : GSimpl → GBornCoarse, K �→ Kd,d,Kd,max,Kmax,max.

Note that F ◦ kd,d,d � kd,d, F ◦ kd,d,max � kd,max, and F ◦ kd,max,max � kmax,max, where F is
the forgetful functor (4.1).

We consider the transformations between functors GSimpl → GSpX obtained by precom-
posing the cone boundary map (4.2) with kd,d,d or kd,max,max:

βmax : (O∞ ◦ kd,max,max) ⊗Gcan,min → (ΣYos ◦kmax,max) ⊗Gcan,min (8.2)

and

βd : (O∞ ◦ kd,d,d) ⊗Gmax,max → (ΣYos ◦kd,d) ⊗Gmax,max. (8.3)

Recall Definition 5.18 of the notion of G-finiteness of a G-simplicial complex K.

Definition 8.1. A G-simplicial complex K is G-proper if the G-bornological space Kd is
G-proper (see Definition 6.7).

We let GSimplconn,prop,fin denote the full subcategory of GSimpl of connected, G-proper,
and G-finite G-simplicial complexes.

Extending the notion of continuous equivalence (Definition 3.21), we call two transformations
between GSpX -valued functors continuously equivalent, if they become equivalent after
application of Cs; see (3.7).

Proposition 8.2. The restrictions of the transformations βmax (8.2) and βd (8.3) to
GSimplconn,prop,fin are canonically continuously equivalent.

Proof. Let K be an object of GSimplconn,prop,fin. Then we have a commuting square

which is natural in K. The left vertical map is an equivalence since Kd,d,max → Kd,max,max is a
coarsening and O∞ sends coarsenings to equivalences [13, Proposition 9.33]. The right vertical
map is a continuous equivalence by Lemma 7.6 because both Kd,max and Kmax,max are coarsely
connected. Note that this is the only place where we use that K is connected.

We now claim that we can apply Lemma 6.10 in order to conclude that the map

O∞(Kd,d,max) ⊗Gcan,min → ΣYos(Kd,max ⊗Gcan,min)

is canonically continuously equivalent to the map

O∞(Kd,d,d) ⊗Gcan,max → ΣYos(Kd,d ⊗Gcan,max).

Recall from Definition 4.8 the hybrid coarse structure Xh associated to a G-uniform bornolog-
ical coarse space X. Moreover, recall from (4.3) that the cone boundary is given by the
map

O∞(Z) � Yos((R ⊗ Z)h) → Yos(R ⊗F(Z)) � ΣYos(F(Z)),

where the second map is induced by the identity of the underlying sets, and the third
equivalence follows from excision.

We apply Lemma 6.10 to the index category

I := GSimplconn,prop,fin × Δ1
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1658 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

and the functor X0 : I → GCoarse given on objects by

(i) (K, 0) �→ [(R ⊗Kd,d,max)h]C and
(ii) (K, 1) �→ [R ⊗Kd,max]C ,

where the notation [. . .]C indicates that we take the underlying G-coarse spaces. While
the action of this functor on the morphisms in I coming from morphisms K → K ′ in
GSimplconn,prop,fin is clear, it sends the morphism (K, 0) → (K, 1) coming from 0 → 1 in Δ1

to the map

[(R ⊗Kd,d,max)h]C → [R ⊗Kd,max]C

given by the identity on the underlying sets. The lifts X and X ′ of this functor to
GBornCoarse are given on objects by

(i) (K, 0) �→ (R ⊗Kd,d,max)h
(ii) (K, 1) �→ R ⊗Kd,max

for X, and by

(i) (K, 0) �→ (R ⊗Kd,d,d)h
(ii) (K, 1) �→ R ⊗Kd,d

for X ′, while the lifts on the level of morphisms are clear.
We claim that for every (K, i) in I the value X(K, i) is dual to X ′(K, i). Indeed, since the

G-bornological space Kd is G-proper and G-bounded (since K is G-finite), Kd is dual to Kmax

by Lemma 6.8 (applied with Y a point). Furthermore, the G-bornological space R ⊗Kd is
dual to R ⊗Kmax, again by Lemma 6.8 (applied with Y = R). This finishes the verification of
the claim.

Finally, we have the natural commuting square

The right vertical map is a continuous equivalence by Lemma 7.2 since Kd,d is G-bounded.
Since K is G-finite, by Example 7.4 we know that O∞(Kd,d,d) ∈ GSpXbd. Hence the left vertical
morphism is a continuous equivalence by Corollary 7.5. �

If the G-simplicial complex K is not connected, then the proof of Proposition 8.2 establishes
a modified assertion. For its formulation we first introduce some notation.

Let X be a G-coarse space and let Uπ0 be the entourage from (5.1).

Definition 8.3. We let Xπ0 denote the G-set X with the G-coarse structure Cπ0 generated
by Uπ0 .

Note the following.

(1) The identity of the underlying set yields a controlled map X → Xπ0 which induces an
isomorphism π0(X)

∼=−→ π0(Xπ0).
(2) If X is coarsely connected, then Xπ0

∼= Xmax.

We actually obtain functors

kd,π0,max : GSimpl → GUBC, K �→ Kd,π0,max
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1659

and

kπ0,max : GSimpl → GBornCoarse, K �→ Kπ0,max.

Similar to the transformation βmax from (8.2), we define a natural transformation of functors
GSimpl → GSpX

βπ0 : (O∞ ◦ kd,π0,max) ⊗Gcan,min → (ΣYos ◦kπ0,max) ⊗Gcan,min. (8.4)

Let GSimplprop,fin denote the full subcategory of GSimpl of G-proper and G-finite
G-simplicial complexes. The proof of Proposition 8.2 shows the following proposition.

Proposition 8.4. The restrictions of the transformations βπ0 from (8.4) and βd from (8.3)
to GSimplprop,fin are canonically continuously equivalent.

The following definition is adapted from [31, Definition 3.24]. Let X be a bornological coarse
space.

Definition 8.5. X is uniformly discrete if the bornology is the minimal bornology (see
Example 3.8) and for every entourage U of X there is a uniform bound for the cardinalities of
the sets U [x] for all points x in X.

Remark 8.6. In [10] we called this property strongly bounded geometry. It is not invariant
under coarse equivalences. The adjective strongly distinguishes this notion from the notion of
bounded geometry which is invariant under coarse equivalences.

Example 8.7. The G-bornological coarse space Gcan,min is uniformly discrete.

Remark 8.8. Let X be a G-bornological coarse space and U be an invariant entourage of
X. The condition that X is uniformly discrete has the following consequences.

(i) PU (X) is a finite-dimensional, locally finite simplicial complex. Furthermore, for
X = Gcan,min the G-simplicial complex PU (Gcan,min) is G-finite, that is, it belongs to
GFin(G)Simplfin; see Definition 5.18.

(ii) Since X carries the minimal bornology and PU (X) is locally finite, the bornology on
PU (X)b (which by definition is generated by the subsets PU (B) for all bounded subsets B of
X) coincides with the bornology PU (X)d induced from the spherical path quasi-metric.

Let X be a G-bornological coarse space and let U be an invariant entourage of X.

Definition 8.9. We let Cπweak
0

denote the coarse structure on PU (X) generated by the
entourage ⋃

W∈π0(X)

PU (W ) × PU (W ).

We have obvious inclusions of G-coarse structures

Cπ0 ⊆ Cπweak
0

⊆ Cmax (8.5)

on PU (X). The coarse structure Cπ0 was introduced in Definition 8.3 and depends on the coarse
structure of PU (X)d given by the path quasi-metric. In contrast, the coarse structure Cπweak

0
is

given by Definition 8.9 using the coarse structure of X. In analogy to Construction 4.14, we
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1660 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

have functors

Pπ0 : GBornCoarseC → GUBC, (X,U) �→ PU (X)d,π0,max (8.6)
and

Pπweak
0

: GBornCoarseC → GUBC, (X,U) �→ PU (X)d,πweak
0 ,max. (8.7)

In view of the first inclusion in (8.5), we have a natural transformation

Pπ0 → Pπweak
0

. (8.8)

The following construction is analogous to Definition 4.15. If we precompose the fibre sequence
(4.2) with one of (8.6) or (8.7), then we obtain fiber sequences of functors GBornCoarseC →
GSpX which send (X,U) to

Yos(PU (X)π0,max) → Yos(O(PU (X)d,π0,max)) → O∞(PU (X)d,π0,max)
∂−→ ΣYos(PU (X)π0,max)

(8.9)

and to

Yos(PU (X)πweak
0 ,max) →Yos(O(PU (X)d,πweak

0 ,max))

→O∞(PU (X)d,πweak
0 ,max)

∂−→ ΣYos(PU (X)πweak
0 ,max), (8.10)

respectively. The transformation (8.8) induces a natural transformation of fiber sequence from
(8.9) to (8.10).

Definition 8.10. We define fiber sequences of functors GBornCoarse → GSpX
F 0
π0

→ Fπ0 → F∞
π0

∂−→ ΣF 0
π0

(8.11)
and

F 0
πweak
0

→ Fπweak
0

→ F∞
πweak
0

∂−→ ΣF 0
πweak
0

(8.12)

by left Kan extension of (8.9) and (8.10) along the forgetful functor (4.4), respectively.

Again we have a natural transformation of fiber sequences from (8.11) to (8.12).
Let X be a G-bornological coarse space. The morphisms in the following definition are

induced by the natural transformation denoted by ∂ in Definition 4.15 or Definition 8.10.

Definition 8.11. The map

βX : F∞(X) ⊗Gmax,max → ΣF 0(X) ⊗Gmax,max (8.13)

in GSpX is called the forget-control map.

The maps

βπ0
X : F∞

π0
(X) ⊗Gcan,min → ΣF 0

π0
(X) ⊗Gcan,min (8.14)

and
β
πweak
0

X : F∞
πweak
0

(X) ⊗Gcan,min → ΣF 0
πweak
0

(X) ⊗Gcan,min (8.15)

are intermediate versions of the forget-control map and used in the comparison argument.
Let X be a G-bornological coarse space.

Lemma 8.12. Assume:

(i) X is uniformly discrete;
(ii) X is G-proper;
(iii) X is G-finite, that is, G\X is a finite set.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1661

Then the maps βX and βπ0
X in (8.14) and (8.15) are canonically continuously equivalent.

Proof. In view of Definition 4.15 and Lemma 4.13, the morphism βX is given as a colimit
of the diagram of morphisms

O∞(PU (X)d,d,b) ⊗Gmax,max → ΣYos(PU (X)d,d,b) ⊗Gmax,max (8.16)

indexed by the poset CG(X) (obtained by precomposing (8.3) with the functor
P−(X) : CG(X) → GSimpl). Similarly, the morphism βπ0

X is given as a colimit of the diagram
of morphisms

O∞(PU (X)d,π0,max) ⊗Gcan,min → ΣYos(PU (X)d,π0,max) ⊗Gcan,min. (8.17)

indexed by CG(X) (again obtained by precomposing (8.4) with the functor P−(X)).
Since X is uniformly discrete and G-finite, for every U in CG(X) the G-simplicial complex

PU (X) is G-finite. In addition, the bornology induced from the metric coincides with the
bornology induced from X; see Remark 8.8. Finally, since X is G-proper, the G-simplicial
complex PU (X) is also G-proper. Hence PU (X) belongs to GSimplprop,fin.

We can now apply Proposition 8.4 and conclude that the diagrams (parametrized by U in
CG(X)) of morphisms (8.16) and (8.17) are canonically equivalent. Therefore, their colimits
βX and βπ0

X are canonically equivalent, too. �

Let X be a G-bornological coarse space.

Lemma 8.13. Assume:

(i) X is uniformly discrete.
(ii) X is G-proper;
(iii) X is G-finite.

Then βπ0
X and β

πweak
0

X are canonically continuously equivalent.

Proof. We consider an invariant entourage U of X and form the commutative square

in GSpX , where the vertical morphisms are induced by (8.8). In view of Lemma 4.13, after
taking colimits over U in the poset CG(X), the horizontal maps become equivalent to βπ0

X and

β
πweak
0

X , respectively.
The left vertical morphism is an equivalence since it is obtained by applying O∞ to a

coarsening and O∞ sends coarsenings to equivalences by [13, Proposition 9.34].
It remains to show that the right vertical map becomes a continuous equivalence after taking

the colimit over CG(X). We let F(U) denote the poset of invariant locally finite subsets of the
G-bornological space PU (X)max ⊗Gmin. We then consider the following commutative diagram
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1662 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

where the subscript indicates from which space the bornological coarse structure on L
is induced. In view of Lemma 3.19, continuity of Yosc implies that the vertical maps
are equivalences.

For L in F(U) we know that L1 := L ∩ (PU (X) × {1}) is finite. There exists an invariant
entourage U ′ of X such that U ⊆ U ′ and such that the condition on a subset F of L1

• F is contained in PU (W ) for some W in π0(X)

implies the condition

• F is contained in a single simplex of PU ′(X).

Then the coarse structures induced on L from PU ′(X)π0,max ⊗Gcan,min and
PU ′(X)πweak

0 ,max ⊗Gcan,min coincide. By a cofinality consideration the upper horizontal
map is hence an equivalence. It follows that the lower horizontal map is an equivalence as
desired. �

Recall from Remark 1.12 that we have functors

GTop �−→ GTop[W−1
G ] Fix−−→� PSh(GOrb). (8.18)

Let C be a cocomplete stable ∞-category and H : GTop → C be a functor.

Definition 8.14. The functor H is an equivariant homology theory if it is equivalent to
the restriction along (8.18) of a colimit-preserving functor PSh(GOrb) → C.

Remark 8.15. Note that in [13, Definition 10.3] we use the term strong equivariant
homology theory for the objects defined in Definition 8.14 in order to distinguish it from
the classical notion of an equivariant homology theory as defined [13, Definition 10.4]. For the
purpose of the present paper, we will employ the more natural definition above and drop the
word strong.

In view of the universal property of presheaves, the ∞-category Funcolim(PSh(GOrb),C)
of colimit-preserving functors is equivalent to the ∞-category Fun(GOrb,C). Therefore, in
order to specify an equivariant homology theory or such a colimit preserving functor essentially
uniquely, it suffices to specify the corresponding functor in Fun(GOrb,C)

Definition 8.16. We define

Õ∞
hlg : GTop[W−1

G ] → GSpX
to be the colimit-preserving functor essentially uniquely determined by the functor

GOrb → GSpX , S �→ O∞(Sdisc,max,max).

Furthermore, define the equivariant homology theory

O∞
hlg := Õ∞

hlg ◦ � : GTop → GSpX (8.19)

Remark 8.17. Note that the functor O∞
hlg differs from the functor (denoted by the same

symbol) defined in [13, Definition 10.10]. Both versions of this functor coincide on CW-
complexes. In the present paper, we prefer to use the definition above since it fits better
with the needs in section 10.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1663

In view of [13, Proposition 9.35] the functor Õ∞
hlg is equivalent to the functor essentially

uniquely determined by the functor

GOrb → GSpX , S �→ ΣYos(Smin,max).

In analogy to Construction 4.14, we consider the functor

P top : GBornCoarseC → GTop[W−1
G ], X �→ �(PU (X)),

where PU (X) in GTop is the underlying G-topological space of the G-uniform space PU (X)d
and � is the localization as in (8.18).

Definition 8.18. We define the Rips complex functor

Rips : GBornCoarse → GTop[W−1
G ]

as the left Kan extension of the functor P top along the forgetful functor (4.4).

If X is a G-bornological coarse space, then by Lemma 4.13 we have:

Corollary 8.19. The Rips complex of X is given by

Rips(X) ∼= colim
U∈CG(X)

�(PU (X)).

Remark 8.20. Note that the present definition of the Rips complex differs from the
definition given in [13, Definition 11.2]. In the reference, we defined the Rips complex of X as
the G-topological space colimU∈CG(X) PU (X). This definition fits well with the version of O∞

hlg

used there; see Remark 8.17. In contrast, in the present paper we replace the colimit by the
homotopy colimit.

For a G-bornological coarse space X, we consider π0(X) as a discrete G-topological space.
For every U in CG(X), we have a projection

PU (X) → π0(X)

of G-topological spaces. Applying � and forming the colimit over CG(X), we obtain a canonical
projection morphism

Rips(X) → �(π0(X)) (8.20)

in GTop[W−1
G ].

In the following, we calculate the Rips complex of the bornological coarse space Gcan,min

explicitly.

Lemma 8.21. We have an equivalence

Fix(Rips(Gcan,min)) � EFinG,

where Fix: GTop[W−1
G ] → PSh(GOrb) denotes the equivalence from (1.3).

Proof. We must verify that Fix(Rips(Gcan,min)) satisfies the condition stated in Defini-
tion 1.3. Because colimits in presheaves are formed objectwise and the equivalence Fix preserves
colimits, by Corollary 8.19 we have the equivalence

Fix(Rips(Gcan,min))(S) � colim
U∈CG(Gcan,min)

Fix(�(PU (Gcan,min)))(S)

for every transitive G-set S. By definition of Fix, we have

Fix(�(PU (Gcan,min)))(S) � �(MapGTop(Sdisc, PU (Gcan,min))).

 1460244x, 2020, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12380 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1664 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Since all stabilizers of points in PU (Gcan,min) are finite, we see that

MapGTop(Sdisc, PU (Gcan,min)) ∼= ∅,
if S has infinite stabilizers. If S has finite stabilizers, then the argument given in the proof of
[13, Lemma 11.4] shows that

colim
U∈CG(Gcan,min)

πn(MapGTop(Sdisc, PU (Gcan,min)))

is trivial for all n in N. This implies

colim
U∈CG(Gcan,min)

�(MapGTop(Sdisc, PU (Gcan,min))) � ∗. �

Definition 8.22. The assembly map αX is the map

αX : Õ∞
hlg(Rips(X)) ⊗Gcan,min → O∞

hlg(π0(X)) ⊗Gcan,min (8.21)

induced by the projection (8.20).

Note that on the target of this map we used (8.19) in order to suppress the symbol �.
Let GSimplfin denote the category of G-finite G-simplicial complexes. Recall the functor

kd,max,max defined in (8.1).

Lemma 8.23. We have a canonical equivalence of functors GSimplfin → GSpX
(O∞

hlg)|GSimplfin � (O∞ ◦ kd,max,max)|GSimplfin .

Proof. The functor O∞ ◦ kd,max,max (see (8.1)) is excisive for decompositions of G-simplicial
complexes by [13, Lemma 10.9, Corollary 9.36]. Furthermore, it is homotopy invariant by [13,
Corollary 9.38]. The functor O∞

hlg has the same properties. By Definition 8.16, we have an
equivalence

(O∞
hlg)|GOrb � (O∞ ◦ kd,max,max)|GOrb.

for S in GOrb. This implies the desired equivalence. �

Let X be a G-bornological coarse space.

Lemma 8.24. Assume:

(i) X is uniformly discrete;
(ii) X is G-proper;
(iii) X is G-finite.

Then αX and β
πweak
0

X from (8.21) and (8.15) are canonically equivalent.

Proof. The assumptions on X imply that PU (X) is G-finite for every invariant coarse
entourage U of X. Therefore, by Lemma 8.23 we have a canonical equivalence

O∞
hlg(PU (X)) � O∞(PU (X)d,max,max).

Similarly, we have a canonical equivalence

O∞
hlg(π0(X)) � O∞(π0(X)disc,max,max).
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1665

These equivalences yield the lower square in the following diagram. The upper square is induced
by a coarsening. Therefore the vertical maps are equivalences by [13, Proposition 9.33].

(8.22)

By Corollary 8.19, (8.19), and the fact that Õ∞
hlg preserves colimits, we have the equivalence

Õ∞
hlg(Rips(X)) � colim

U∈CG(X)
O∞

hlg(PU (X)).

Hence the lower horizontal map in (8.22) is equivalent to αX as indicated.
The upper horizontal arrow from (8.22) fits into the commutative square

Here the right vertical map is an equivalence by [13, Proposition 9.35].
We now show that the lower horizontal map is an equivalence. The argument is similar to

[13, Lemma 10.7]. By choosing a representative in PU (X) for every element of π0(X), we obtain
a map π0(X) × {1} → PU (X) × {1}. This map has a unique extension to a G-equivariant map
π0(X) ×G → PU (X) ×G. We now observe that this map is a morphism of G-bornological
coarse spaces

s : π0(X)min,max ⊗Gcan,min → PU (X)πweak
0 ,max ⊗Gcan,min.

It is a right inverse of the projection

p : PU (X)πweak
0 ,max ⊗Gcan,min → π0(X)min,max ⊗Gcan,min,

and the composition s ◦ p is close to the identity by construction. It follows that p is a coarse
equivalence and this implies that lower horizontal map is an equivalence.

It follows that the upper horizontal map in (8.22) is equivalent to β
πweak
0

X . �

Let X be a G-bornological coarse space. Combining 8.24, 8.13, 8.12, we obtain the following
corollary.

Corollary 8.25. Assume:

(i) X is uniformly discrete;
(ii) X is G-proper;
(iii) X is G-finite.

Then the assembly map αX and the forget-control map βX from (8.21) and (8.13) are
canonically continuously equivalent.
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1666 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

In the following, we derive a version of Corollary 8.25 without the assumption of G-finiteness.
To this end, we must modify the definition of the forget-control map.

Let GBornCoarsefin denote the full subcategory of GBornCoarse consisting of G-finite
G-bornological coarse spaces. Let E : GBornCoarsefin → C be some functor to a cocomplete
target C.

Definition 8.26. We define Efin as the left Kan extension

along the inclusion functor GBornCoarsefin → GBornCoarse of the restriction of E to
GBornCoarsefin.

We have a canonical transformation of functors

Efin → E : GBornCoarse → C. (8.23)

Let X be a G-bornological coarse space. By K(X), we denote the poset of all invariant
G-finite subspaces of X with the induced G-bornological coarse structures.

Lemma 8.27. We have a canonical equivalence

colim
W∈K(X)

E(W ) � Efin(X).

Proof. By the objectwise formula for the left Kan extension, we have

colim
(W→X)∈GBornCoarsefin/X

E(W ) � Efin(X).

Since the image of a G-finite subspace under a morphism of G-bornological coarse spaces
is again G-finite the subcategory K(X) is cofinal in GBornCoarsefin/X. This implies the
assertion. �

Recall Definition 8.5 of the notion of uniform discreteness. In the following, we con-
sider the transformation (8.23) for the functor E := Õ∞

hlg ◦ Rips: GBornCoarse → GSpX .
Let GBornCoarseudisc be the full subcategory of GBornCoarse of uniformly discrete
G-bornological coarse spaces.

Lemma 8.28. The restriction of the transformation

(Õ∞
hlg ◦ Rips)fin → Õ∞

hlg ◦ Rips

to GBornCoarseudisc is an equivalence.

Proof. If X is uniformly discrete, then for every U in CG(X) the complex PU (X) is a locally
finite G-simplicial complex. Consequently, PU (X) as a G-topological space is a filtered colimit
over its G-compact subsets. In fact, this filtered colimit is a homotopy colimit, so it is preserved
by the functor �. The subsets PU (L) of PU (X) for invariant G-finite subsets L of X are cofinal
in the G-compact subsets of PU (X). All this is used below to justify the equivalence marked
by !. At this point we further use the fact that Õ∞

hlg preserves colimits in GTop[W−1
G ]. Hence
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1667

if X is uniformly discrete, then we have the following equivalences (the first one is due to
Lemma 8.27)

Õ∞
hlg(Rips(X))fin � colim

L∈K(X)
Õ∞

hlg(Rips(L))

� colim
L∈K(X)

Õ∞
hlg( colim

U∈CG(X)
�(PU (L)))

� colim
L∈K(X)

colim
U∈CG(X)

Õ∞
hlg(�(PU (L)))

� colim
U∈CG(X)

colim
L∈K(X)

Õ∞
hlg(�(PU (L)))

!� colim
U∈CG(X)

Õ∞
hlg(�(PU (X)))

� Õ∞
hlg( colim

U∈CG(X)
�(PU (X)))

� Õ∞
hlg(Rips(X)). �

We now consider the functor O∞
hlg ◦ π0 : GBornCoarse → GSpX . A similar argument as for

Lemma 8.28 shows:

Lemma 8.29. The transformation

(O∞
hlg ◦ π0)fin → O∞

hlg ◦ π0

is an equivalence.

We do not need to restrict to uniformly discrete spaces here since a discrete G-topological
space is always a filtered (homotopy) colimit of its G-finite subspaces.

In the following, we use the abbreviations F x
fin for (F x)fin for x ∈ {∅, 0,∞}, and we write

βX,fin for the image of βX under the (−)fin-construction.
Let X be a G-bornological coarse space.

Proposition 8.30. Assume:

(i) X is uniformly discrete;
(ii) X is G-proper.

Then the assembly map

αX : Õ∞
hlg(Rips(X)) ⊗Gcan,min → O∞

hlg(π0(X)) ⊗Gcan,min

is canonically continuously equivalent to the forget-control map

βX,fin : F∞
fin(X) ⊗Gmax,max → ΣF 0

fin(X) ⊗Gmax,max.

Proof. Since every invariant subspace of X is again uniformly discrete and G-proper,
the proposition follows immediately from Corollary 8.25, Lemma 8.27, Lemma 8.28, and
Lemma 8.29. �

Let X be a G-bornological coarse space and let S be a G-set.

Corollary 8.31. Assume:

(i) X is uniformly discrete;
(ii) X is G-proper;
(iii) X is coarsely connected.
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1668 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Then the S-twisted assembly map

αX,S : Õ∞
hlg(�(Sdisc) × Rips(X)) ⊗Gcan,min → O∞

hlg(Sdisc) ⊗Gcan,min

is canonically continuously equivalent to the forget-control map

βSmin,min⊗X : F∞
fin(Smin,min ⊗X) ⊗Gmax,max → ΣF 0

fin(Smin,min ⊗X) ⊗Gmax,max.

Proof. As in the proof of Lemma 4.16, for every U in CG(X) we have the natural isomorphism
of G-simplicial complexes

Pdiag(S)×U (Smin,min ⊗X) ∼= Sdisc × PU (X).

We now apply � and use that �(Sdisc × PU (X)) � �(Sdisc) × �(PU (X)) (note that � preserves
products since all G-topological spaces are fibrant). We then form the colimit over U in
CG(X) and use that �(Sdisc) ×− preserves this colimit since GTop[W−1

G ] (being equivalent
to PSh(GOrb)) is an ∞-topos. We eventually obtain the isomorphism

Rips(Smin,min ⊗X) ∼= �(Sdisc) × Rips(X)

in GTop[W−1
G ].

Since X is coarsely connected, the projection Smin,min ⊗X → Smin,min induces a bijection
on π0. Furthermore, π0(Smin,min) ∼= Sdisc. The corollary now follows from Proposition 8.30. �

9. Induction

Let H be a subgroup of G. Then we have various induction functors.

(1) IndG
H : HSet → GSet; see (4.12).

(2) IndG,top
H : HTop → GTop, X �→ Gdisc ×H X.

(3) IndG,htop
H : HTop[W−1

H ] → GTop[W−1
G ], the derived version of IndG,top

H .
(4) IndG

H : PSh(HOrb) → PSh(GOrb), the left-adjoint of the restriction functor
ResGH : PSh(GOrb) → PSh(HOrb). The latter is given by restriction along the functor
(IndG

H)|HOrb : HOrb → GOrb;
(5) IndG

H : HBornCoarse → GBornCoarse; see (4.14).
(6) IndG,Mot

H : HSpX → GSpX ; see (4.15).
(7) IndG,U

H : HUBC → GUBC; see (4.17).

We also have an analogous list of restriction functors ResG,−
H .

Remark 9.1. Using the description of Fix given in Remark 1.12, the adjunction

IndG
H : HTop � GTop : ResGH

implies that we have natural equivalences

ResGH(Fix(X)) � �(MapGTop(Gdisc ×H S,X)) � �(MapHTop(S,ResG,top
H (X)))

� Fix(ResG,htop
H (X))

for X in GTop. So ResGH and ResG,htop
H correspond to each other under Fix. It then follows

that also their left adjoints IndG
H and IndG,htop

H become identified under Fix.

Let X be an H-bornological coarse space. We can consider the G-bornological coarse spaces
Gmin,min ⊗Hmin,min ⊗X and Gmin,min ⊗X, where G acts both times on the first factor. In
the following, let BH denote the H-completion functor which replaces the original bornology
of a space by the bornology generated by HB for all originally bounded subsets B. For a
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1669

G-bornological coarse space Y , we denote by Ymax−B the same coarse space equipped with the
maximal bornology. In the lemma below, the group H acts on G×X by h(g, x) := (gh−1, hx).

Lemma 9.2. The following is a coequalizer in GBornCoarse:

(Gmin,min ⊗Hmin,min ⊗X)max−B ⇒ BH(Gmin,min ⊗X) → IndG
H(X),

where the first two maps are given by (g, h, x) �→ (gh, x) and (g, h, x) �→ (g, hx), respectively.

Proof. This is [13, Remark 6.6]. �

Let Y be a G-bornological coarse space and let X be an H-bornological coarse space.

Lemma 9.3. We have an isomorphism

IndG
H(ResGH(Y ) ⊗X) ∼= Y ⊗ IndG

H(X), (9.1)

which is natural in Y and X.

Proof. Consider the G-bornological coarse spaces ((G×H)min,min ⊗ Y ⊗X)max−B and
BH(Gmin,min ⊗ Y ⊗X), where G acts on the first factor, and (Y ⊗ (G×H)min,min ⊗X)max−B
and BH(Y ⊗Gmin,min ⊗X) where G acts now diagonally on the first two factors. The
isomorphisms

((G×H)min,min ⊗ Y ⊗X)max−B → (Y ⊗ (G×H)min,min ⊗X)max−B

given by (g, h, s, x) �→ (ghs, g, h, x) and

BH(Gmin,min ⊗ Y ⊗X) → BH(Y ⊗Gmin,min ⊗X)

given by (g, s, x) �→ (gs, g, x) induce an isomorphism of the coequalizer diagrams for
IndG

H(ResGH(Y ) ⊗X) and Y ⊗ IndG
H(X) from Lemma 9.2. In the case of Y ⊗ IndG

H(X), we
implicitly use the facts (which can both be checked in a straightforward manner) that
the functor Y ⊗− : GBornCoarse → GBornCoarse preserves colimits of colim-admissible
diagrams in GBornCoarse in the sense of [13, Definition 2.20], and that the coequalizer
diagram in Lemma 9.2 is colim-admissible. �

The equivalence from Lemma 9.3 extends to equivariant coarse motivic spectra in the Y -
variable. Thus let Y be in GSpX and let X be as before.

Corollary 9.4. We have an equivalence

IndG,Mot
H (ResG,Mot

H (Y ) ⊗X) ∼= Y ⊗ IndG
H(X), (9.2)

which is natural in Y and X.

Proof. This follows from Lemma 9.3 and the fact that the operations IndG
H , ResGH and

−⊗X all descend from GBornCoarse to GSpX . �

Remark 9.5. We have versions of Lemma 9.3 for

(i) Y a G-coarse space, X a H-coarse space, and the isomorphism (9.1) for G-coarse spaces,
and

(ii) Y a G-set, X a H-set, and the isomorphism (9.1) for G-sets,

with the same isomorphism on the level of underlying sets.
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1670 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Let Y be an H-invariant subset of a G-coarse space X. We consider Y as an H-coarse space
with the structures induced from X. For every coarse entourage U of X, we define the coarse
entourage UY := (Y × Y ) ∩ U of Y .

Lemma 9.6. The set of entourages {UY | U ∈ CG(X)} is cofinal in CH(Y ).

Proof. By definition of C(Y ), the set {UY | U ∈ C(X)} is cofinal in (actually equal to)
C(Y ). Since CG(X) is cofinal in C(X) (since C(X) is a G-coarse structure), it then follows that
{UY | U ∈ CG(X)} is cofinal in CH(Y ). �

Lemma 9.7. The inclusion Hcan,min → ResGH(Gcan,min) induces an equivalence

F 0
fin(IndG

H(Hcan,min)) → F 0
fin(IndG

H(ResGH(Gcan,min)))

Proof. Note that IndG
H(Hcan,min) is G-finite so that we can omit the index fin on the

domain of the morphism. It suffices to show that the inclusion of IndG
H(Hcan,min) into any

G-invariant G-finite subset of IndG
H(ResGH(Gcan,min)) induces an equivalence after applying F 0.

We now observe that G-finite subsets of IndG
H(ResGH(G)) correspond to H-finite subsets of G.

We furthermore use that IndG
H commutes with F 0 by Lemma 4.22. It then remains to show

that for every H-invariant and H-finite subset L of G containing H the inclusion i : H → L
induces an equivalence F 0(Hcan,min) → F 0(LGcan,min).

Let L be an H-invariant and H-finite subset of G containing H. We choose an H-equivariant
left-inverse s : L → H of the inclusion i. For every orbit R in H\L we pick a point lR in the
orbit R. Since H\L is finite, the subset V := H{(s(lR), lR) | R ∈ H\L} of G×G belongs to the
coarse structure C(Gcan,min). We set C′ := {U ∈ CG(Gcan,min) | V ⊆ U}, UL := (L× L) ∩ U .
By Lemma 9.6, the set {UL | U ∈ C′} is cofinal in CH(L). In view of Lemma 4.13 applied to
E = Yos ◦F and Definition 4.15 of F 0, it therefore suffices to show that the morphism

Yos(PUH
(Hcan,min)d,b) → Yos(PUL

(LGcan,min)d,b) (9.3)

induced by i is an equivalence for every entourage U in C′.
Since L is H-finite, the map s is automatically a morphism LGcan,min → Hcan,min. We argue

that the morphism

Yos(PUL
(LGcan,min)d,b) → Yos(PUH

(Hcan,min)d,b)

induced by s is an inverse to (9.3).
The composition s ◦ i is the identity. By definition of U , the composition

PUL
(LGcan,min)d,b

s→ PUH
(Hcan,min)d,b

i→ PUL
(LGcan,min)d,b

has distance at most 1 from the identity. Since Yos is coarsely invariant, its sends this
composition to a morphism which is equivalent to the identity. This finishes the proof. �

In the following, we indicate by a subscript G or H for which group the Rips complex functor
is considered.

Lemma 9.8. We have an equivalence of functors from GBornCoarse to HTop[W−1
H ]

ResG,htop
H ◦RipsG ∼= RipsH ◦ ResGH .

Proof. This immediately follows from the obvious isomorphism

ResG,top
H (PU (X)) ∼= PU (ResGH(X))
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1671

for every X in GBornCoarse and U in CG(X), Corollary 8.19, the equivalence

(� ◦ ResG,top
H )|GSimpl � (ResG,htop

H ◦�)|GSimpl,

and the observation that CG(X) is cofinal in CH(ResGH(X)). �

Lemma 9.9. We have an equivalence of functors from HBornCoarse to GTop[W−1
G ]

IndG,htop
H ◦RipsH ∼= RipsG ◦ IndG

H .

Proof. For every X in HBornCoarse and U in CH(X) we have by Lemma 4.20 a natural
isomorphism

IndG,top
H (PU (X)) ∼= PIndG

H(U)(IndG
H(X)).

We now apply Corollary 8.19, the equivalence

(� ◦ IndG,top
H )|HSimpl � (IndG,htop

H ◦�)|HSimpl,

and the observation that the induction map IndG
H : CH(X) → CG(IndG

H(X)) on the level of
posets of entourages is cofinal. �

Lemma 9.10. The inclusion Hcan,min → ResGH(Gcan,min) induces a continuous equivalence

F∞
fin(IndG

H(Hcan,min)) ⊗Gmax,max → F∞
fin(IndG

H(ResGH(Gcan,min))) ⊗Gmax,max.

Proof. By Proposition 8.30 (using only the continuous equivalence of the domains), the map
is continuously equivalent to

Õ∞
hlg(RipsG(IndG

H(Hcan,min))) ⊗Gcan,min → Õ∞
hlg(RipsG(IndG

H(ResGH(Gcan,min)))) ⊗Gcan,min.

Using Lemma 9.8 and Lemma 9.9, we see that this map is equivalent to

Õ∞
hlg(IndG,htop

H (RipsH(Hcan,min))) → Õ∞
hlg(IndG,htop

H (ResG,htop
H (RipsG(Gcan,min))))

twisted by Gcan,min. The latter map is an equivalence since the map

RipsH(Hcan,min) → ResG,htop
H (RipsG(Gcan,min))

induced by the inclusion of H into G is mapped by the equivalence Fix to the essentially unique
equivalence EFinH � ResGH(EFinG); see Lemma 8.21. �

10. The main theorem

The main result of the present section is Theorem 10.1. Before giving its proof, we will show
how to deduce Theorem 1.11 from Theorem 10.1.

The structure of the proof of Theorem 10.1 is as follows.

(1) Proposition 10.13 reduces the proof to the verification that a certain morphism L(S) →
MA(S) is an equivalence for every S in GFOrb.

(2) Proposition 10.14 identifies this morphism with the composition of a descent morphism
and a forget-control map depending on subgroups H in the family F .

(3) In Theorem 10.9, we use the descent result to show that the descent morphism is an
equivalence, and therefore reduce the problem to the verification that forget-control maps are
equivalences for subgroups H in the family F . This step employs transfers.

(4) In Theorem 10.11, we use the geometric assumptions on the subgroups H in order to
deduce from [12] that the forget-control maps in the H-equivariant context are equivalences.

Let G be a group and let M : GOrb → C be a functor. Let A be in PSh(GSet) and let F
be a family of subgroups.
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1672 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Theorem 10.1. Assume that:

(i) M is a CP-functor (see Definition 1.8);
(ii) r∗A is equivalent to EFinG in PSh(GOrb) (see (5.5) for the definition of r∗);
(iii) for all H in F the object ResGH(A) of PSh(HSet) is compact;
(iv) F is a subfamily of FDC (see Definition 1.5.(iii)) such that Fin ⊆ F .

Then the relative assembly map AsmblFFin,M (Definition 1.7) admits a left inverse.

Before we begin with the proof, we will first deduce Theorem 1.11 from Theorem 10.1.

Remark 10.2. For every group K, the functor r! : PSh(KOrb) → PSh(KSet) induced by
r : KOrb → KSet (see (5.5)) preserves compacts since it has a right-adjoint r∗ which preserves
all colimits.

We claim that for any subgroup H of K the functor

ResKH : PSh(KSet) → PSh(HSet)

preserves compacts. The claim follows from the fact that ResKH preserves representables and
colimits. Here are some more details: for any S in KSet the restriction ResKH(yo(S)) is
represented by the H-set ResKH (S). It follows that ResKH (yo(S)) is representable again. We
now use that a compact object A in PSh(K) is a retract of a finite colimit of representables.
Since ResKH preserves colimits, we conclude that ResKH(A) is again a retract of a finite colimit
of representables.

In the following, we write rK! and rH! for the corresponding functors for subgroups K and
H of G. We then have a commuting diagram

(10.1)

Lemma 10.3. For every subgroup H of G in the family CP (see Definition 1.5.(iv)), the
object ResGH(r!EFinG) of PSh(HSet) is compact.

Proof. Let H in CP be given. Then there exists a subgroup H ′ of G containing H such that
EFinH

′ is compact. Using (10.1) and obvious relations between various restriction functors,
we obtain the equivalences

ResGH(r!EFinG) � ResH
′

H ResGH′(r!EFinG) � ResH
′

H (rH
′

! (ResGH′(EFinG))) � ResH
′

H (rH
′

! (EFinH
′)).

Since ResH
′

H and rH
′

! preserve compacts by Remark 10.2, this implies that ResGH(r!EFinG) is
compact as claimed. �

Recall from Remark 1.12 that Etop
F G denotes a G-CW complex modeling the classifying

space of the family F . Let � : GTop → GTop[W−1
G ] be the localization; see Remark 1.12.

Lemma 10.4. Assume that there exists a finite diagram S : I → GFSet such that

�(Etop
F G) � colim

I
�(Sdisc).

†Then there exists a compact object A in PSh(GSet) such that r∗A is equivalent to EFG (see
(5.5) for the definition of r∗).

†In classical terms, this assumption is equivalent to the assumption that hocolimI Sdisc has the homotopy

type of Etop
F G.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1673

In particular, such an A exists if one can represent Etop
F G by a finite-dimensional

G-CW complex.

Proof. In analogy to the functor Fix from (1.2), we define the functor

F̃ix : GTop → PSh(GSet), X �→ �(MapG((−)disc, X)).

We then note that r∗ ◦ F̃ix � Fix � Fix ◦�.
Since r∗ and Fix preserve colimits,

EFG � Fix(�(Etop
F G)) � Fix(colim

I
�(Sdisc)) � colim

I
Fix(�(Sdisc))

� colim
I

r∗F̃ix(Sdisc) � r∗ colim
I

F̃ix(Sdisc).

By definition we have an identification F̃ix(Sdisc) � yo(S). It follows that if we define A :=
colimI yo(S), then A is a compact object of PSh(GSet) with r∗A � EFG.

The last assertion of the lemma follows from the more general claim that for every finite-
dimensional G-CW-complex X with stabilizers in F there exists a finite diagram SX : IX →
GFSet such that �(X) � colimIX �(SX,disc).

Given such a G-CW-complex X, there exists a finite-dimensional G-simplicial complex K
with stabilizers in F which is equivariantly homotopy equivalent to X (this works as in the
non-equivariant case which can for example be found in [19, Thm. 2C.5]). After one barycentric
subdivision, we may assume that K is locally ordered. Then we may regard K as a diagram
S : Δ�dim(K)

inj → GFSet, that is as a finite-dimensional semi-simplicial G-set with stabilizers in
F . The homotopy colimit over this finite diagram is equivalent to the barycentric subdivision
of K; this can be verified explicitly using the Bousfield–Kan formula for the homotopy colimit
[8, Ch. XII.2]. Consequently, colim

Δ
�dim(K)
inj

�(Sdisc) � �(X). �

Remark 10.5. The argument for Lemma 10.4 shows that if there exists a finite G-CW-
model Etop

F G, then one can choose A in PSh(GSet) such that it is given as a colimit of a finite
diagram with values in G-finite G-sets with stabilizers in F .

Proof of Theorem 1.11. Theorem 1.11 is a special case of Theorem 10.1, where under the
Assumption 1.11.(i) we can use r!EFinG for A by Lemma 10.3. Here we use that r∗r! � id
since r in (5.4) is fully faithful. Under Assumption 1.11.(ii), we use Lemma 10.4 and that ResGH
preserves compacts by Remark 10.2. �

We now prepare the proof of Theorem 10.1.
Recall Construction 5.4 of the ∞-category of G-bornological coarse spaces with transfers

and the inclusion functor (5.3). Let H be a subgroup of G.

Lemma 10.6. The induction functor (4.14) extends to a functor

IndG,tr
H : HBornCoarsetr → GBornCoarsetr

such that

commutes.
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1674 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

Proof. Recall from Construction 5.4 that HBornCoarsetr and GBornCoarsetr are
built from certain spans whose vertices belong to GBornCoarse and whose morphisms are
controlled. We apply the functor IndG

H (for bornological coarse spaces) to the vertices and obtain
the maps from the version of the induction for the underlying H-sets. We must show that this
construction preserves the conditions on the morphisms for the simplices of HBornCoarsetr
and GBornCoarsetr as specified in [11, Definition 2.27]. In particular, this amounts to showing
that induction preserves morphisms in GBornCoarse, bounded coverings, and Cartesian
squares in GCoarse.

We have seen in section 4 that induction preserves controlled and proper morphisms. Next
we discuss bounded coverings.

Let X,Y be in HBornCoarse and let f : X → Y be an H-equivariant bounded covering.
Then we must show that IndG

H(f) : IndG
H(X) → IndG

H(Y ) is again a bounded covering. We
verify the properties listed in Definition 5.1.

(i) The coarse structure of IndG
H(X) is generated by the images IndG

H(U) of diag(G) × U
in IndG

H(X) for U an entourage of X. We now observe that

(IndG
H(f) × IndG

H(f))(IndG
H(U)) = IndG

H((f × f)(U)),

which is an entourage of IndG
H(Y ) by definition. This shows that IndG

H(f) is controlled.
(ii) We write Uπ0(X) :=

⋃
U∈C(X) U . Then we have the equality

Uπ0(IndG
H(X)) =

⋃
U∈C(X)

IndG
H(U) = IndG

H(Uπ0(X)).

For U in C(Y ), we furthermore have

(IndG
H(f) × IndG

H(f))−1(IndG
H(U)) ∩ Uπ0(IndG

H(X)) = IndG
H((f × f)−1(U) ∩ Uπ0(X)).

Since f is a bounded covering, this shows that C(IndG
H(X)) is generated by the entourages of

the form (IndG
H(f) × IndG

H(f))−1(U) ∩ Uπ0(IndG
H(X)) for all U in C(IndG

H(Y )).
(iii) We consider a class {g, x} in IndG

H(X) (we use {, } to denote H-orbits in G×X since
we want to reserve [−] for coarse components). Its coarse component is then given by

[{g, x}] = {{g′, x′} | (∃h ∈ H | g′h = g, h−1x′ ∈ [x])}.

It follows that the map [{g, x}] → [x] sending {g′, x′} in [{g, x}] to g−1g′x′ in [x] is a bijection
which identifies IndG

H(f)|[{g,x}] with f|[x]. Therefore, IndG
H(f)|[{g,x}] is an isomorphism of coarse

spaces.
(iv) Let g be in G and B be bounded in X. Then the image Bg of {g} ×B in IndG

H(X)
is a bounded subset of IndG

H(X) by definition of the bornology. Since IndG
H(f)(Bg) = f(B)g,

its image under IndG
H(f) is also a bounded subset of IndG

H(Y ). This implies that IndG
H(f) is

bornological.
(v) We have to show that for every bounded subset B of IndG

H(X) the cardinality of the
fibers of the induced map π0(B) → π0(IndG

H(X)) has a finite bound (which may depend on
B). Let {g, y} be in IndG

H(Y ) and consider the component [{g, y}] in π0(IndG
H(Y )). Then,

as seen in (iii), we have [{g, x}] ∈ π0(IndG
H(f))−1[{g, y}] if and only if [x] ∈ π0(f)−1([y]). If

[{g, x}] ∩Bg �= ∅, then in addition [x] ∩B �= ∅. Since f is a bounded covering, there is a finite
bound on the cardinality of the sets {[x] ∈ π0(X) | π0(f)([x]) = [y], [x] ∩B �= ∅}.

The argument for (iv) shows that induction preserves bornological maps.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1675

We finally show that induction preserves Cartesian squares in GCoarse. Let

be a Cartesian square in GCoarse. We first show that

is a Cartesian square on the level of underlying G-sets. Indeed, IndG
H(X) is the subset of

elements ({g, y}, {g′, z}) in IndG
H(Y ) × IndG

H(Z) such that there exists h in H with g = g′h and
φ(y) = ψ(h−1z). This is in bijection to the set of elements {g, (y, z)} in IndG

H(X), where we
consider X as a subset of Y × Z. Let U and V be entourages of Z and Y , respectively. Then
we have the equality

(IndG
H(U) × IndG

H(V )) ∩ (IndG
H(X) × IndG

H(X)) = IndG
H((U × V ) ∩ (X ×X)).

The entourages on the left generate the coarse structure on IndG
H(X) such that the square above

is Cartesian in GCoarse. The entourages on the right generate the induced coarse structure
on IndG

H(X). Hence both structures coincide. �

Recall the construction of the functor m from (5.2). In the following, we put an index G or
H in order to indicate the respective group.

Lemma 10.7. We have a commuting square

in Cat∞.

Proof. We freely use the notation that was used in the definition of m. Recall that the
effective Burnside category Aeff is defined for every category with pullbacks [4, Definition 3.6],
and that Aeff is functorial with respect to pullback-preserving functors [4, 3.5]. Therefore, the
proof of Lemma 10.6 shows that IndG

H induces a functor

IndG,eff
H : Aeff( ˜HBornCoarse) → Aeff( ˜HBornCoarse).

Then we can use Remark 9.5 to obtain a natural equivalence

IndG,eff
H ◦m̃H ◦ (ResGH × id) � m̃G ◦ (id× IndG

H).

Hence it suffices to show that the endofunctor P from the definition of m is compatible with
IndG,eff

H in the sense that PG ◦ IndG,eff
H � IndG,tr

H ◦PH . This is clear since the application of P
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1676 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

amounts to pulling back certain bornologies, and the isomorphism in Lemma 9.3 is compatible
with this operation on bornologies. �

For the rest of the section, we fix a CP-functor M : GOrb → C. According to Definition 1.8,
there is a C-valued strongly additive and continuous equivariant coarse homology theory E
with transfers (see Definition 5.5) such that

M � (E ◦ ι)Gcan,min ◦ i. (10.2)

Using the functor IndG,tr
H from Lemma 10.6, we can define the composition

EH := E ◦ IndG,tr
H : HBornCoarsetr → C. (10.3)

Because of Lemma 4.19 and Lemma 10.6, the functor EH is again a C-valued coarse homology
theory with transfers. Applying Definition 5.7 to EH , we obtain a functor

ẼH : PSh(HSet)op ×HSpX → C.

We will consider ẼH as a contravariant functor in its first argument sending colimits to limits.
The following lemma clarifies the relation between ẼH and Ẽ.

Lemma 10.8. For every subgroup H of G there is an equivalence

Ẽ(−, IndG,Mot
H (−)) � ẼH(ResGH(−),−)

of functors PSh(GSet)op ×HSpX → C.

Proof. Recall Definition 5.6 of E and EH . By the universal property of PSh(GSet) and
since both functors send colimits to limits in their first arguments (note that the functor
ResGH : PSh(GSet) → PSh(HSet) preserves colimits), it suffices to provide an equivalence

E(−, IndG,Mot
H (−)) � EH(ResGH(−),−)

of functors GSetop ×HSpX → C. In view of the definitions of E and EH , it is enough to
provide an equivalence

mG(−, IndG
H(−)) � (IndG,tr

H ◦mH)(ResGH(−),−)

of functors

GSetop ×HBornCoarse → GBornCoarsetr.

This equivalence is exactly the assertion of Lemma 10.7. �

Recall from Definition 3.16 what it means to twist an equivariant coarse homology theory
by a G-bornological coarse space. For better readability we introduce the abbreviation

EG := EGmax,max (10.4)

for the twist of E with Gmax,max. Note that ẼG denotes the result of Definition 5.7 applied
to EG. We further abbreviate EH

G := (EG)H ; see (10.3). Note that the order of constructions
matters. We first twist by Gmax,max and then precompose with the induction from H to G.

Since E is strongly additive and extends to a coarse homology theory with transfers, also
EG is strongly additive and extends to a coarse homology theory with transfers by [13, Lemma
3.13] and [11, Example 2.57]. Recall the definition of ι : HBornCoarse → HBornCoarsetr
from (5.3). Then EH

G ◦ ι is an H-equivariant coarse homology theory, and hence extends to
a functor HSpX → C which we again denote by EH

G ι. In this way, the morphism (10.5) in
Theorem 10.9.(ii) below is well defined.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1677

Let H be a subgroup of G. The map (10.6) in the statement of the next theorem is induced
by the projection ResGH(A) → ∗ and the cone boundary ∂ : F∞(Hcan,min) → ΣF 0(Hcan,min);
see (4.15).

Theorem 10.9. We assume:

(i) there exists an object A in PSh(GSet) such that r∗A is equivalent to EFinG in
PSh(GOrb) and ResGH(A) is compact in PSh(HSet);

(ii) for every H-set S with finite stabilizers the forget-control map βEH
G ,Smin,min⊗Hcan,min

EH
G ι(F∞(Smin,min ⊗Hcan,min)) → ΣEH

G ι(F 0(Smin,min ⊗Hcan,min)) (10.5)

is an equivalence.

Then the map

ẼH
G (∗, F∞(Hcan,min)) → ΣẼH

G (ResGH(A), F 0(Hcan,min)) (10.6)

is an equivalence.

Proof. By construction, the map (10.6) is the composition

ẼH
G (∗, F∞(Hcan,min)) !−→ ẼH

G (ResGH(A), F∞(Hcan,min))

!!−→ ΣẼH
G (ResGH(A), F 0(Hcan,min)).

We will show that both morphisms are equivalences.
Since ResGH(A) is compact, by Lemma 5.9, Definition 4.15, and Lemma 4.13 we see that the

morphism marked by ! is a colimit over U in CH(Hcan,min) of morphisms

ẼH
G (∗,O∞(PU (Hcan,min)d,d,b)) → ẼH

G (ResGH(A),O∞(PU (Hcan,min)d,d,b)). (10.7)

Since Hcan,min is uniformly discrete, the H-simplicial complex PU (Hcan,min) belongs to
HFin(H)Simplfin and the bornology on PU (Hcan,min)d,d,b agrees with the one induced from
the spherical path quasi-metric; see Remark 8.8. Note that EG

H is strongly additive since EG is
so and, as one easily checks, the induction IndG

H preserves free unions (see [13, Example 2.16] for
the notion of a free union). To conclude that (10.7) is an equivalence, we apply Proposition 5.19
with

(i) EH
G in place of E,

(ii) ResGH(A) in place of A,
(iii) Fin(H) in place of F ,
(iv) and using

r∗ ResGH(A) � ResGH(r∗A) � ResGH(EFinG) � EFin(H)H (10.8)

in order to verify Assumption (iii) of Proposition 5.19.

It follows that the morphism ! is an equivalence.
We consider the morphism marked by !!. The object ResGH(A) in PSh(HSet) is equivalent

to the colimit of some diagram obtained from S : I → HSet by composing with the Yoneda
embedding HSet → PSh(HSet).

We claim that S(i) ∈ HFin(H)Set for every i in I. If i in I, then there exists a morphism
yo(S(i)) → ResGH(A). Hence we get a morphism r∗ yo(S(i)) → r∗ ResGH(A). Let R be some H-
orbit in S(i). Because r∗(yo(r(R))) � yo(R), we get a morphism yo(R) → r∗ ResGH(A), that is,
(r∗ ResGH(A))(R) �= ∅. Because r∗ ResGH(A) is equivalent to EFin(H)H by (10.8), we conclude
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1678 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

that R ∈ HFin(H)Orb. Since R was an arbitrary H-orbit in S(i) this implies that S(i) ∈
HFinSet as claimed.

Since equivalences are stable under limits, and since ẼH
G in its first argument sends colimits

to limits, in order to show that !! is an equivalence it suffices to show that the forget-control
map

βEH
G (yo(S),−),Hcan,min

: ẼH
G (yo(S), F∞(Hcan,min)) → ΣẼH

G (yo(S), F 0(Hcan,min))

is an equivalence for every S in HFin(H)Set. Inserting the definition of ẼH
G , this morphism is

equivalent to the morphism

EH
G ι(Smin,min ⊗ F∞(Hcan,min)) → ΣEH

G ι(Smin,min ⊗ F 0(Hcan,min)).

By Lemma 4.18, this morphism can furthermore be identified with the morphism

βEH
G ,Smin,min⊗Hcan,min

: EH
G ι(F∞(Smin,min ⊗Hcan,min)) → ΣEH

G ι(F 0(Smin,min ⊗Hcan,min))

which is an equivalence by Assumption (ii). �

Remark 10.10. Assume ResGH(A) in PSh(HSet) is a colimit of a diagram obtained
from S : I → HSet with values in H-finite H-sets by composing with the Yoneda embedding
HSet → PSh(HSet). Then, by inspection of the argument, it suffices to require Assumption
(ii) of Theorem 10.9 only for H-finite H-sets S with finite stabilizers.

Recall the standing assumption that M is a CP-functor and that E is a strongly additive
equivariant coarse homology theory satisfying (10.2).

Theorem 10.11. If Hcan has HFin-FDC, then Assumption (ii) of Theorem 10.9 is fulfilled.

Proof. We apply [12, Theorem 1.1] with

(i) the group H in place of G;
(ii) the H-bornological coarse space, Smin,min ⊗Hcan,min in place of X;
(iii) the C-valued H-equivariant coarse homology theory EH

G ◦ ι in place of E.

We can conclude that Assumption (ii) of Theorem 10.9 is fulfilled if the following conditions
are satisfied.

(i) EH
G ◦ ι is weakly additive.

(ii) EH
G ◦ ι admits weak transfers.

(iii) C is compactly generated.
(iv) Smin,min ⊗Hcan,min has H-FDC.
(v) H acts discontinuously on Smin,min ⊗Hcan,min.

It follows from the assumption that M is a CP-functor that C is compactly generated.
Furthermore, by the standing assumption, E is a strongly additive coarse homology theory
with transfers. As noticed above, then EH

G is also strongly additive and admits transfers.
By [12, Section 2.2] strong additivity implies weak additivity and by [11, Lemma 2.59] the
existence of transfers implies the existence of weak transfers.

If Hcan has HFin-FDC , then Smin,min ⊗Hcan,min has H-FDC by definition. And finally, H
acts discontinuously on Smin,min ⊗Hcan,min for every S in GSet, in particular for every S in
GFinSet. �
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1679

Let A be in PSh(GSet). Recall the notation (−)fin from Definition 8.26. We define the
following functors from GOrb to C:

L := ẼG(∗, F∞
fin((−)min,min ⊗Gcan,min)), (10.9)

M∗ := ẼG(∗,ΣF 0
fin((−)min,min ⊗Gcan,min)), (10.10)

MA := ẼG(A,ΣF 0
fin((−)min,min ⊗Gcan,min)), (10.11)

The boundary of the cone sequence (see Definition 4.15) induces a transformation L → M∗,
and the map A → ∗ induces a transformation M∗ → MA.

Proposition 10.12. The transformation L → M∗ is equivalent to the transformation

(EGcan,min
ι)(Õ∞

hlg(�(−)disc × Rips(Gcan,min))) → (EGcan,min
ι)(O∞

hlg((−)disc))

induced by the projection Rips(Gcan,min) → ∗.

Proof. By definition of ẼG (see (10.4) and Definition 5.7), the map L → M∗ is equivalent
to the map

Eι(F∞
fin((−)min,min ⊗Gcan,min) ⊗Gmax,max) → ΣEι(F 0

fin((−)min,min ⊗Gcan,min) ⊗Gmax,max).

By the Corollary 8.31 and the assumption that E ◦ ι is continuous (note that Gcan,min is
G-proper, uniformly discrete and coarsely connected), this map is equivalent to the map

Eι(O∞
hlg(�(−)disc × Rips(Gcan,min))) ⊗Gcan,min) → Eι(O∞

hlg((−)disc) ⊗Gcan,min)

induced by the projection Rips(Gcan,min) → ∗. Since twisting by Gcan,min commutes with
precomposition by ι, this is the map in the statement of the proposition. �

Let A be in PSh(GSet). Let F be a family of subgroups of G such that Fin ⊆ F . Recall
Definition 1.7 of the relative assembly map.

Proposition 10.13. Assume that L(S) → MA(S) is an equivalence for all S in GFOrb.
Then the relative assembly map AsmblFFin,M admits a left inverse.

Proof. Forming the colimit over GFOrb, the assumption implies that the composition

colim
S∈GFOrb

L(S) → colim
S∈GFOrb

M∗(S) → colim
S∈GFOrb

MA(S)

is an equivalence. Hence the first morphism

colim
S∈GFOrb

L(S) → colim
S∈GFOrb

M∗(S) (10.12)

admits a left inverse. Since C is stable, it suffices to show that the morphism (10.12) is equivalent
to the suspension of the relative assembly map AsmblFFin,M .

By Proposition 10.12, the map (10.12) is equivalent to the map

colim
S∈GFOrb

EGcan,minι(Õ∞
hlg(�(Sdisc) × Rips(Gcan,min))) → colim

S∈GFOrb
EGcan,min(O∞

hlg(Sdisc)). (10.13)

We now use the equivalence

�(Etop
F G) � colim

S∈GFOrb
�(Sdisc). (10.14)

in GTop[W−1
G ]. Since EGcan,minι (as a functor on GSpX ) and the functors

−× Rips(Gcan,min) : GTop[W−1
G ] → GTop[W−1

G ]

 1460244x, 2020, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12380 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1680 ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI AND CHRISTOPH WINGES

and Õ∞
hlg preserve colimits, the map (10.13) is equivalent to the map

EGcan,minι(Õ∞
hlg(�(E

top
F G) × Rips(Gcan,min))) → EGcan,minι(Õ∞

hlg(�(E
top
F G))). (10.15)

By Lemma 8.21, we have an equivalence Rips(Gcan,min) � �(Etop
FinG). Furthermore, since

Fin ⊆ F we have an equivalence

�(Etop
F G) × �(Etop

FinG) � �(Etop
F G× Etop

FinG) � �(Etop
FinG)

induced by the projection Etop
F G → ∗. Consequently, the map (10.15) and hence the map

(10.12) are further equivalent to

EGcan,minι(Õ∞
hlg(�(E

top
FinG))) → EGcan,minι(Õ∞

hlg(�(E
top
F G))).

Using (10.14) again and its analogue for the family Fin, and Definition 8.16 of Õ∞
hlg, this map

is equivalent to

colim
S∈GFinOrb

EGcan,minι(O∞(Smax,max)) → colim
S∈GFOrb

(EGcan,min ◦ ι)(O∞(Smax,max)).

By [13, Proposition 9.35], this map is equivalent to

colim
S∈GFinOrb

ΣEGcan,minι(Smin,max) → colim
S∈GFOrb

ΣEGcan,minι(Smin,max).

Using (10.2), we can rewrite this morphism further in the form

colim
S∈GFinOrb

ΣM(S) → colim
S∈GFOrb

ΣM(S). (10.16)

By comparison with Definition 1.7, we see that (10.16) is the suspension of the relative assembly
map AsmblFFin,M as desired. �

Let H be a subgroup of G.

Proposition 10.14. The map

ẼH
G (∗, F∞(Hcan,min)) → ΣẼH

G (ResGH(A), F 0(Hcan,min))

from (10.6) is equivalent to the map

L(G/H) → MA(G/H), (10.17)

where L and MA are as in (10.9) and (10.11).

Proof. By Lemma 10.8, the map (10.6) is equivalent to the composition

ẼG(∗, IndG,Mot
H (F∞

H (Hcan,min))) → ΣẼG(∗, IndG,Mot
H (F 0

H(Hcan,min))) (10.18)

→ ΣẼG(A, IndG,Mot
H (F 0

H(Hcan,min))),

where we also use the notation from Lemma 4.22. By Lemma 4.22, induction commutes with
F∞ and F 0. Since H is H-finite, E is continuous and EG is the twist of E with Gmax,max (by
convention (10.4)), the map IndG

H(Hcan,min) → IndG
H(ResGH(Gcan,min)) induces an equivalence

from the first map in (10.18) to

ẼG(∗, F∞
fin(IndG

H(ResGH(Gcan,min))) → ΣẼG(∗, F 0
fin(IndG

H(ResGH(Gcan,min))))

by Lemma 9.10 and Lemma 9.7.
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INJECTIVITY RESULTS FOR COARSE HOMOLOGY THEORIES 1681

We now investigate the second map in (10.18). By Lemma 9.7 and since H is H-finite, the
map IndG

H(Hcan,min) → IndG
H(ResGH(Gcan,min)) induces an equivalence from the second map in

the composition (10.18) to

ΣẼG(∗, F 0
fin(IndG

H(ResGH(Gcan,min)))) → ΣẼG(A,F 0
fin(IndG

H(ResGH(Gcan,min)))).

We conclude that (10.18) is equivalent to

ẼG(∗, F∞
fin(IndG

H(ResGH(Gcan,min))) → ΣẼG(∗, F 0
fin(IndG

H(ResGH(Gcan,min)))) (10.19)

→ ΣẼG(A,F 0
fin(IndG

H(ResGH(Gcan,min)))).

Now using the isomorphism

IndG
H(ResGH(Gcan,min))

Lemma 9.3∼= IndG
H(pt) ⊗Gcan,min

∼= (G/H)min,min ⊗Gcan,min

and invoking (10.9) and (10.11), we obtain an equivalence from the composition (10.19) to

L(G/H) → M∗(G/H) → MA(G/H)

as claimed. �

Proof of Theorem 10.1. By Proposition 10.13, we have to show that L(S) → MA(S) is an
equivalence for all S in GFOrb. By Proposition 10.14 and Theorem 10.9, it hence suffices to
show that the assumptions of Theorem 10.9 are satisfied for every H in F . Assumption (i) from
Theorem 10.9 follows from Assumptions (ii) and (iii) of Theorem 10.1. Since F was assumed
to be a subfamily of FDC, Assumption (ii) of Theorem 10.9 follows from Theorem 10.11. �

We observe that the FDC-assumption on F in Theorem 10.1 is used to verify Assumption (ii)
of Theorem 10.9. If one is interested in the case F = All and assumes that Etop

FinG has a finite
G-CW-model, then we can reformulate Assumption (ii) of Theorem 10.9 as an assumption that
certain forget-control maps for H-equivariant coarse homology theories introduced below are
equivalences for all finite subgroups H of G.

For an equivariant coarse homology theory E : GBornCoarse → C and a finite subgroup
H, we define an H-equivariant coarse homology theory HE and its twist HEH by Hmax,max

(compare with (10.4)) by
HE := E ◦ IndG

H , HEH := (HE)Hmax,max . (10.20)

Let G be a group, let E : GBornCoarse → C be an equivariant coarse homology theory,
and set M := EGcan,min ◦ i : GOrb → C.

Theorem 10.15. Assume that:

(i) C is stable, complete, and cocomplete;
(ii) E is continuous and strongly additive;
(iii) E extends to an equivariant coarse homology theory with transfers Etr;
(iv) Etop

FinG can be represented by a finite G-CW complex;
(v) The forget-control map

HEH(ResG,Mot
H (F∞(Gcan,min))) → ΣHEH(ResG,Mot

H (F 0(Gcan,min)))

is an equivalence for every finite subgroup H of G.

Then the assembly map AsmblFin,M admits a left inverse.
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Remark 10.16. Note that the first three conditions together are almost equivalent to the
condition that M is a CP-functor (see Definition 1.8). The assumption that C is compactly
generated is omitted because it is only used in Theorem 10.11.

Our reason to use the equivariant coarse homology E as the primary object in this
formulation is because it appears explicitly in Condition (v).

Proof. In the proof of Proposition 10.13, we have shown that the suspension of
the assembly map AsmblFin,M is equivalent to the morphism colimS∈GAllOrb L(S) →
colimS∈GAllOrb M∗(S). Since the object G/G is final in GAllOrb, this morphism is equivalent
to the morphism L(G/G) → M∗(G/G). Therefore in order to show that it admits a left inverse,
it suffices to show that the composition L(G/G) → M∗(G/G) → MA(G/G) is an equivalence.
By Proposition 10.14, we can equivalently show that the assumptions of Theorem 10.9 with
H := G are satisfied.

Assumption (i) of Theorem 10.9 follows from Lemma 10.4 applied to the family F = Fin and
Assumption (iv). In view of Remark 10.5 and Remark 10.10, it suffices to verify Assumption
(ii) of Theorem 10.9 for all G-finite G-sets S with finite stablizers.

Using EG := EGmax,max � (Etr)GGι by Definition (10.3), we see that the map (10.5) in
Assumption (i) of Theorem 10.9 is the map

EG(F∞(Smin,min ⊗Gcan,min)) → ΣEG(F 0(Smin,min ⊗Gcan,min)). (10.21)

We must show that (10.21) is an equivalence for every G-finite G-set S with finite stablizers.
By Lemma 4.18, we can interchange the twist by Smin,min with F∞ and F 0. Hence (10.21) is
equivalent to

EG(Smin,min ⊗ F∞(Gcan,min)) → ΣEG(Smin,min ⊗ F 0(Gcan,min)). (10.22)

Since S is a finite union of G-orbits, in order to show that (10.22) is an equivalence, by excision
we can assume that S = G/H ∈ GFinOrb. Then Smin,min

∼= IndG
H(∗). By Lemma 9.3, we get

IndG
H(ResGH(Gmax,max) ⊗ ∗) ∼= Gmax,max ⊗ Smin,min.

The inclusion Hmax,max → ResGH(Gmax,max) is an equivalence in HBornCoarse. Consequently,
Gmax,max ⊗ Smin,min is equivalent to IndG

H(Hmax,max) in GBornCoarse. In view of the
definition (10.4) of EG, we can replace (10.22) by

E(IndG
H(Hmax,max) ⊗ F∞(Gcan,min)) → ΣE(IndG

H(Hmax,max) ⊗ F 0(Gcan,min)). (10.23)

Using Corollary 9.4 and (10.20), we can rewrite (10.23) in the form
HEH(ResG,Mot

H (F∞(Gcan,min))) → ΣHEH(ResG,Mot
H (F 0(Gcan,min)))

which is an equivalence by Assumption (v). �
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