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Abstract

The primary aim of this study was to extend existing theory on the relationship between

chance-level performance and the number of alternatives and trials in closed-set, forced-

choice speech audiometry and sound localization methods. When calculating chance per-

formance for closed-set, forced-choice experiments with multiple trials, the binomial distribu-

tion should be preferred over the simple 1/a probability, as the latter is appropriate only for

single trial experiments. The historical use of constant hit rates for determining chance per-

formance has been based upon the assumption that random hits are distributed evenly

across multiple trials. For any closed-set, forced-choice task with 2 to 10 alternatives and 2

to 100 trials, we calculated the probability of obtaining any given hit rate due to random

guessing alone according to the binomial distribution. Hit rates with probabilities p > 0.05

were interpreted as being likely to occur due to random chance alone, whereas hit rates with

probabilities of p� 0.05 were interpreted as being unlikely to occur due to chance alone. For

sound localization experiments with speakers at fixed positions, the expected probability of

a random hit was also calculated using the binomial distribution. The expected angular root

mean square (rms) error in sound localization resulting from the random selection of sound

sources was investigated using Monte Carlo simulations. A new aspect in the interpretation

of test results was identified for situations in which the observed number of hits is much

lower than would be expected due to chance alone. For test methods incorporating a rela-

tively low number of alternatives and a sufficiently high, yet clinically feasible, number of tri-

als, both upper and lower thresholds for chance-level performance could be identified. This

lower threshold represents the lowest hit rate which can be expected through random

chance alone. Extending interpretation of results to include this lower threshold affords the

ability to not only identify performance significantly superior to that of chance, but also that

significantly poorer than chance and thereby represents a simple method for the objective

detection of malingering.
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Introduction

Audiometry involves the use of listening tasks to assess a person’s ability to detect, discrimi-

nate, localize or recognize various aspects of acoustic stimuli. Though comprising some of the

most ecologically valid methods within the standard audiological test battery, both speech

audiometry and sound localization tasks are nonetheless affected by a number of factors inde-

pendent of the listener’s hearing status. One factor, which despite its relevance has received rel-

atively limited attention, is the likelihood that the listener might correctly perform a given task

by chance alone. This test characteristic is especially influential when implementing closed-set,

forced-choice methodologies, such as is routinely done in both clinical and research capacities

for patients of all ages. In contrast to open-set speech audiometry, where the listener is tasked

with producing one response out of effectively unlimited alternatives, in closed-set, forced-

choice speech testing, possible responses are limited to a small number of known response

options. As the number of response options (alternatives) is limited and the listener is required

to provide a response for every trial (forced-choice), the probability of randomly guessing the

correct response (hit) may become significant.

As the number of alternatives falls, the probability of correctly performing a task by chance

alone rises. A test result can be interpreted as being superior to chance performance if the pro-

portion of hits (hit rate) is higher than the chance level. Traditionally, chance level has been

defined as a fixed probability, calculated from the reciprocal of the number of alternatives (1/

a). However, the nature of this relationship is more dynamic than is commonly assumed. Only

in instances of a single trial or infinitely many trials does chance-level performance equal the

reciprocal of the number of alternatives. This is due to variation in the distribution of random

hits across multiple trials. Rather than being constant, the number of hits achieved by guessing

will change from multiple trial assessment to multiple trial assessment, varying around the

chance-level probability of a single trial (1/a). It is of some concern, then, that in the over-

whelming majority of publications using closed-set, forced-choice methods with multiple

trials, the chance level hit rates are misinterpreted to be constant and identical with the proba-

bility of success in a single trial (1/a), irrespective of the number of trails conducted in the test.

Examples of well-cited papers accepting this assumption are [1–3], to name a few. Addition-

ally, it has even been used to define the lower asymptote of closed-set speech intelligibility

functions [4].

The primary aim of this study was to extend existing theory on the relationship between

chance-level performance and the number of alternatives and trials in closed-set, forced-choice

speech audiometry and sound localization methods through recognition of the random nature

of guessing across multiple trials. This extension is grounded in the mathematics of the bino-

mial distribution, wherein its standard deviation describes the inherent scatter of hit rates

achieved by chance in multiple trial measurements, which occur with certain probabilities

based of the binomial distribution. Applying the binomial distribution, the influence of chance

on the test results can be calculated to get an exact probability of chance occurrence for each

test result. It is applicable to all closed-set, forced-choice assessments with binary outcomes

(right or wrong, true or false, 1 or 0) and multiple trials.

Leveraging properties of the binominal distribution to interpret speech audiometry results

is not entirely new. Hagerman was the first to use the binomial distribution in modeling the

reliability of speech audiometry [5] and Thornton and Raffin, producing likely the most-cited

paper on the topic, described the calculation of significant critical differences of two speech

audiometry results based on the confidence limits of binomial distributions [6]. Carney and

Schlauch revised the results of Thornton and Raffin, which were based on the theoretical

framework of the binomial distribution, by applying additional computer simulations of
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random error using the binomial distribution [7]. The simulation of possible test results

improved the precision of the calculation of critical differences, because such calculations can

also be used in cases in which the statistical properties of some measures are not fully known.

For example, Thornton and Raffin used an approximation to the variance of difference scores

to construct their table. Gelfand proposed a method to optimize the reliability of speech audio-

metric scores, also on the basis of the binomial distribution, by increasing the number of items

by counting every correct syllable of a word individually instead of the whole word [8]. The

method presented in this paper is different than those previous methods because it is designed

to assist in the improved estimation of chance performance and objective detection of malin-

gering in closed-set tasks, whereas the previous works have been aimed towards identifying

thresholds for significant differences between repeated speech recognition assessments. Our

method can therefore be applied for diverse audiometric purposes, such as interpreting results

of closed-set, n-alternative forced-choice word recognition testing or localization experiments

with a limited number of loudspeakers. Additionally, the methods presented in this study pro-

vide the clinician with a means not only to identify performance significantly superior to that

of chance, but also to identify performance significantly poorer than chance, a clinically-mean-

ingful capability given that some patients might feel incentivized to deliberately provide incor-

rect responses (malingering). The new method presented here also helps to identify

unintentional, systematic errors on the part of listeners as well as technical problems through

the objective basis of statistical significance testing, and extends the portfolio of methods in

clinical decision-making.

The following sections provide a brief introduction to the theory and application of the

binomial distribution in closed-set audiometric procedures. Generally, the probability of ran-

domly selecting a correct answer (hit) from a given set of alternative response options in a sin-

gle trial has been defined as p = 1/a, where a is the number of available response options. As

such, the probability of hits by random guessing remains constant for all single trials within a

multiple-trial, closed-set, forced-choice test, as long as a does not change and unless there is a

systematic influence of effects such as learning or fatigue across assessments (which in this

work we assume will not occur). The probability distribution of such a binary random variable

which takes the value 1 (hit, success) with probability p and the value 0 (miss, wrong answer)

with probability q = 1 − p is subject to the Bernoulli distribution, which is a special case of the

binomial distribution for a single trial (n = 1, Bernoulli trial).

For multiple independent Bernoulli trials (1< n<1), the binomial distribution results in

probabilities of hits due to chance which depend on the number of alternatives (a) and the

number of trials (n). Even if the probability of a hit by chance is constant in every single trial

and the inherent probability of hits due to chance does not vary, the measured number or pro-

portion of hits (hit rate) due to chance certainly varies across many multiple-trial assessments.

This variation is a fundamental property of chance. Hence, in multiple-trial assessments, the

number of hits or the hit rate by chance should not be assumed to be constant, calculated

according to the probability of success in a single trial (1/a). This holds only for a single trial or

an infinite number of trials (The Law of Large numbers for Bernoulli Trials), but not for small

data sets with a limited number of trials. Rather, in multiple-trial measures, the single-trial

probability 1/a is the mean (expected) hit rate by chance (see Eq 6). But the hit rates between

multiple multi-trial assessments with the same numbers of alternatives and trials vary ran-

domly around this mean. The result is an interval of possible hit rates by chance with different

probabilities around the mean hit rate, corresponding to the standard deviation of the bino-

mial distribution. A significant advantage of recognizing the random nature of random guess-

ing using the binomial model arises from the possibility of calculating exact probabilities for

various chance-based hit rates depending on the number of trials and alternatives. Hence, the
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probability of observing a given hit rate due to chance alone can be calculated and the question

of whether a certain test result is significantly influenced by chance can be answered with the

well-known methods of single-sided or two-sided interpretations of significance.

To calculate the probability of observing a given hit rate due to chance alone as a binomial

variable, the hit rate H will be defined according to the textbooks of statistic as the proportion

k of hits relative to the number of trials n (e.g. number of presented single-word stimuli)

H ¼
k
n

ð1Þ

and the probability p of success due to chance for a single trial as

p ¼
1

a
: ð2Þ

The probability P(k) of observing a hit rate H of k hits in n trials purely by chance is given

by the probability mass function of the binomial distribution

P kð Þ ¼
n
k

� �
pkð1 � pÞn� k; ð3Þ

for k = 0, 1, 2, . . ., n, with

n
k

� �
¼

n!

k!ðn � kÞ!
: ð4Þ

The mean number of hits (kμ) of the binomial distribution is

km ¼ n � p ð5Þ

and the mean hit rate Hμ is equal to the single trial success probability p:

Hm ¼
km
n
¼

n � p
n
¼ p: ð6Þ

Using Eqs 2 and 3, the exact probability P(k) for k observed hits by chance of assessments

with different numbers of alternatives a and trials n can be calculated.

With the calculated probability of the random occurrence of a given hit rate, both one-

sided and two-sided tests of significance can be performed to identify results with low-likeli-

hood of having occurred due to chance alone. In this study, for any combination of a and n, in

one-sided testing the largest hit rate by chance with p> 0.05 is defined as the upper threshold

of random guessing (U). Usefully, for certain combinations of a and n, an additional lower

threshold (L) for hit rates by chance, for which p> 0.05, can also be identified. In the case of

two-sided testing, the critical value of p will be p> 0.025, because the probability of p> 0.05 is

divided into the upper and lower tail of the binomial distribution. In single-sided testing, only

observed hit rates outside one side of the interval between upper or lower boundaries are of

interest, which occur with chance probabilities of p� 0.05, so that they deviate significantly

from the expected hit rates on the basis of purely random guessing. In two-sided testing,

observed hit rates outside either the upper or lower boundaries are relevant and p� 0.05 is the

sum of the probabilities for significantly deviating hit rates outside the interval divided into

p� 0.025 each for hit rates above the upper or below the lower boundary.

In this way, two clinically relevant observations are made possible by single-sided testing of

significance: First, if the observed hit rate is above U, the result can be interpreted as being sig-

nificantly better than chance. Second, if the proportion of observed hits is lower than L, the

result will be significantly lower than chance and malingering or systematic errors on the part
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of the equipment, the examiner, or the listener, might be suspected. Sometimes, a listener is

not willing to perform correctly in a closed-set, forced-choice task and deliberately selects.

This behavior can be detected by the fact that, with a sufficiently high number of trials and a

small number of alternatives, a certain number of hits can be expected by chance with a

probability > 0.05. In this way, the lower threshold L meaningfully increases the interpretative

power of closed-set methods because malingering or aggravation of hearing loss can be

detected with the precision of statistical significance.

In the first part of this paper, U and L are calculated for chance-level hit rates for typically

used numbers of alternatives and trials in closed-set, forced-choice audiometric methods and

for root mean square (RMS) errors in closed-set, forced-choice sound-source localization

experiments. In the second part, the proposed method of significance testing for malingering

will be presented.

Methods

For any closed-set, forced-choice task with 2 to 10 alternatives and 2 to 100 trials, we calculate

the probability of hit rates due to random guessing using Eq 3. The absolute number of hits (k)

is transformed into hit rates H by Eq 1.

The decision as to whether observed hit rates were significantly free of chance can be based

either on single-sided (one-tailed) or two-sided (two-tailed) tests of significance. Hit rates with

chance probabilities P(k)> 0.05 will be interpreted as significantly influenced by chance in

single-sided testing. Hence, hit rates with chance probabilities of P(k)� 0.05 will be inter-

preted as significantly free of chance. For certain combinations of number of alternatives (a)

and number of trials (n), the lower threshold (L) of random guessing is the smallest hit rate H
for which the chance probability is P(k)> 0.05. The upper threshold (U) is defined as the larg-

est hit rate with P(k)> 0.05. Single-sided testing is used when the observed results may differ

from those expected by chance in only one direction. For example, single-sided significance

testing would be appropriate if one were only interested in cases with hit rates either larger or

lower than U. This is the case in the vast majority of clinical issues. In this example, the proba-

bility for randomly guessed hit rates either higher than U or lower than L would be P(k)� 0.05

in each case.

Two-sided testing can be conducted when results in both possible directions are of interest.

That is to say, when one is interested in both hit rates larger than U or smaller than L. For two-

sided statistics, the total probability of randomly guessed hit rates both above U and below L is

P(k)� 0.05, which yields P(k)� 0.025 for each threshold. The higher and lower thresholds, U
and L, are therefore the largest and smallest hit rates which can be achieved by chance alone

with a probability of P(k)> 0.025 for each of the thresholds. Observed hit rates higher than U
or lower than L, thereby occurring with a probability of P(k)� 0.05 for each threshold in the

case of single-sided testing and P(k)� 0.025 in the case of two-sided testing, will be defined as

being significantly independent of chance.

U and L will also be calculated for RMS errors by pure chance in sound-source localization

experiments applying Monte Carlo simulations. In the first step, one speaker will be set as the

target sound source out of the number a of available speakers. Then a random selection is

made from the available loudspeakers, which is simulated by the binomial distribution (Eq 3)

with the probability p = 1/a of a random hit. If random selection by the binomial distribution

corresponds to a hit in the current simulation run, the next run is started until a predefined

number of failed attempts are performed. If the random selection is incorrect (no hit), an

incorrectly selected loudspeaker is determined by a random number distribution with uniform

probability of 1/a in a second selection run (response). Now it has to be checked that the set
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and the randomly selected loudspeaker (response) are actually different, otherwise a new ran-

dom selection will be made. Only in case of a wrong random selection, the angle between the

set and the wrong selected speaker will be determined as angle error. This loop is repeated

until the given number of n trials with false responses has been reached. In the end, the simu-

lated random angle errors will be averaged as RMS error over the number of trials. Different

Monte Carlo simulations were carried out for typical combinations of numbers of speakers,

angles between them and numbers of trials. For each configuration of speakers and number of

trials, the number of simulated subjects was 100,000 to calculate a reasonable exact forecast of

random RMS errors. U and L were calculated from the parameter of the resulting distribution

of RMS errors to get the upper and lower thresholds of RMS errors for single- and two-sided

tests of significance. The Monte Carlo simulation was performed with PTC Mathcad Prime 5.0

(PTC, Boston MA).

Results

Upper (U) and lower (L) thresholds of hit rates by chance

An example calculation of single-sided and two-sided probabilities of hit rates by pure random

guessing for a test with four alternatives and 20 trials is given in Table 1.

The complete set of U and L of hit rates by chance for tests with 2 to 10 alternatives and 2 to

100 trials for single-sided testing is presented in Table 2. If an observed hit rate for a certain

combination of number of trials n (rows) and alternatives a (columns) is either higher than U
or lower than L, the result can objectively be interpreted as being significantly different from

Table 1. Probabilities P(k) of k-hits and the resulting hit rates by pure random guessing for a test with four alter-

natives and 20 trials. Hit rates with P(k)� 0.05 (dark grey fields) are interpreted as significant different from random

guessing in single-sided and P(k)� 0.025 (light grey fields) in two-sided tests of significance.

a = 4 alternatives, n = 20 trials

k-Hits Hit Rate P(k)

0 0,00 0,003��

1 0,05 0,021��

2 0,10 0,067

3 0,15 0,134

4 0,20 0,190

5 0,25 0,202

6 0,30 0,169

7 0,35 0,112

8 0,40 0,061

9 0,45 0,027�

10 0,50 0,010��

11 0,55 0,003��

12 0,60 0,001��

13 0,65 0,000��

14 0,70 0,000��

15 0,75 0,000��

16 0,80 0,000��

17 0,85 0,000��

18 0,90 0,000��

19 0,95 0,000��

20 1,00 0,000��

https://doi.org/10.1371/journal.pone.0231715.t001
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results which would be expected due to chance alone. The probability of observing hit rates

either higher than U or lower than L by chance alone is P(k)� 0.05. U and L for two-sided test-

ing are presented in Table 3. Two-sided assessments of results are of significant clinical inter-

est, as hit rates both lower than L and higher than U can be considered valid and meaningful.

For example, a given participant’s hit rate can be lower than, higher than, or between the

thresholds for random guessing. In those measurements, the sum of the probabilities for hit

rates by chance less than L and greater than U is P(k)� 0.05. Hence, the overall probability of

P(k)� 0.05 for hit rates outside the expected range for chance results is divided between the

upper and lower thresholds, resulting in P(k)� 0.025 for any threshold. Two-sided testing

increases the range of hit rates possible through chance alone (e.g. Table 3), as compared with

single-sided testing (e.g. Table 2). In general, the higher the number of trials, the smaller the

difference between the upper and lower thresholds and, consequently, the range of hit rates

Table 2. One-sided testing: Lower (L) and upper (U) thresholds (limits) of the distribution of insignificant different hit rates from random guessing (p> 0.05) for

one-sided testing and different numbers of alternatives (a) and number of trials (n). To reach results significantly free of random guessing, the observed hit rates must

be higher than U or lower than L.

a = 2 a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10

n L U L U L U L U L U L U L U L U L U

2 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500

4 0.000 1.000 0.000 0.750 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.250

6 0.167 0.833 0.000 0.667 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.333 0.000 0.333 0.000 0.333 0.000 0.333

8 0.250 0.750 0.125 0.625 0.000 0.500 0.000 0.375 0.000 0.375 0.000 0.375 0.000 0.375 0.000 0.250 0.000 0.250

10 0.300 0.700 0.100 0.600 0.000 0.500 0.000 0.400 0.000 0.400 0.000 0.300 0.000 0.300 0.000 0.300 0.000 0.300

15 0.333 0.667 0.133 0.533 0.067 0.400 0.067 0.333 0.000 0.333 0.000 0.267 0.000 0.267 0.000 0.267 0.000 0.200

20 0.350 0.650 0.200 0.500 0.100 0.400 0.050 0.350 0.050 0.300 0.050 0.250 0.000 0.250 0.000 0.200 0.000 0.200

25 0.360 0.640 0.200 0.440 0.120 0.360 0.080 0.320 0.040 0.280 0.040 0.240 0.040 0.240 0.000 0.200 0.000 0.200

30 0.367 0.633 0.233 0.433 0.133 0.367 0.100 0.300 0.067 0.267 0.067 0.233 0.033 0.200 0.033 0.200 0.033 0.167

40 0.400 0.600 0.250 0.425 0.150 0.325 0.125 0.275 0.080 0.250 0.075 0.225 0.050 0.200 0.050 0.180 0.025 0.175

50 0.420 0.580 0.260 0.400 0.180 0.320 0.120 0.260 0.100 0.210 0.080 0.200 0.060 0.180 0.040 0.180 0.040 0.160

100 0.460 0.540 0.290 0.380 0.210 0.290 0.160 0.240 0.120 0.210 0.100 0.180 0.080 0.160 0.070 0.150 0.060 0.140

https://doi.org/10.1371/journal.pone.0231715.t002

Table 3. Two-sided testing: Lower (L) and upper (U) thresholds (limits) of the distribution of insignificant different hit rates (p> 0.05) for two-sided testing and dif-

ferent numbers of alternatives (a) and number of trials (n). To reach results significantly free of random guessing, the observed hit rates must be higher than U or lower

than L.

a = 2 a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10

n L U L U L U L U L U L U L U L U L U

2 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500

4 0.000 1.000 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500

6 0.167 0.833 0.000 0.833 0.000 0.667 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.333 0.000 0.333

8 0.125 0.875 0.000 0.630 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.375 0.000 0.375 0.000 0.375 0.000 0.375

10 0.200 0.800 0.100 0.600 0.000 0.500 0.000 0.500 0.000 0.400 0.000 0.400 0.000 0.300 0.000 0.300 0.000 0.300

15 0.267 0.733 0.133 0.533 0.067 0.467 0.000 0.400 0.000 0.333 0.000 0.333 0.000 0.267 0.000 0.267 0.000 0.267

20 0.300 0.700 0.150 0.500 0.100 0.450 0.050 0.350 0.000 0.350 0.000 0.300 0.000 0.250 0.000 0.250 0.000 0.250

25 0.320 0.680 0.160 0.480 0.120 0.400 0.080 0.360 0.040 0.320 0.040 0.280 0.000 0.240 0.000 0.200 0.000 0.200

30 0.333 0.667 0.200 0.467 0.100 0.400 0.067 0.333 0.067 0.300 0.033 0.267 0.033 0.233 0.000 0.200 0.000 0.200

40 0.375 0.625 0.200 0.450 0.125 0.375 0.100 0.300 0.080 0.275 0.050 0.250 0.050 0.225 0.025 0.200 0.025 0.200

50 0.380 0.630 0.220 0.440 0.140 0.360 0.100 0.300 0.080 0.260 0.060 0.220 0.040 0.200 0.040 0.200 0.002 0.180

100 0.430 0.570 0.260 0.400 0.190 0.310 0.140 0.260 0.110 0.220 0.090 0.200 0.070 0.180 0.060 0.160 0.050 0.150

https://doi.org/10.1371/journal.pone.0231715.t003
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possible by chance. Fig 1 displays example results of the decreasing range of hit rates by chance

for increasing numbers of trials (2–100) for a test setup consisting of five alternative responses.

The narrowing range of insignificant results demonstrates the trend towards the mean (1/a) of

the probability distribution for increasing numbers of trials. At the same time, L increases

from zero and opens a range for results below L that deviate significantly from the hit rates by

chance.

Lower thresholds (L), which represent the dividing lines separating results high enough to

be potentially due to chance from those so poor that they are likely independent of chance,

only occurred in cases where the number of alternative responses was low and the number of

trials was high. Fig 2 demonstrates the general relationship between the number of alternative

responses (a) and the U and L. For a closed-set speech audiometry assessment consisting of 20

words (20 independent trials) and 2–10 alternative responses possible per trial, the probability

of no hits (hit rate = 0) due to chance was P(k)� 0.05 in single-sided testing when 2–7

Fig 1. Upper and lower thresholds (black lines) of hit rates by chance (p> 0.05, single-sided testing) for closed-sets with 5 alternatives. Only observed hit rates

higher than the upper or lower than the lower thresholds are significantly free of guessing (p� 0.05). The mean of the distribution of hit rates by chance which is used

by the traditional 1/a-rule gives a constant probability of random guessing of p = 0,2 (broken line) and is at the middle of the insignificant results area. The higher the

number of trials the narrower the insignificant results area.

https://doi.org/10.1371/journal.pone.0231715.g001
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alternatives were provided. As the number of alternatives decreased, the probability of random

hits increased and results with no or very few chance-related hits became less common. Even

in the absence of audibility, a listener is required by the nature of forced-choice testing to select

a response. If this selection can be assumed to occur randomly, the listener should successfully

complete the task at p> 0.05. A complete lack of hits is to be expected only in instances of

technical malfunction, misunderstanding of the task, or intentionally poor performance on

the part of the listener. The range of significant results below the lower threshold can be

increased for the same number of alternatives by increasing the number of trials. Fig 3 gives an

example for a test utilizing 50 trials. The lower range of significant results is markedly extended

and the range of insignificant results is decreased in comparison to 20 trials (see Fig 2). The

connected course of the relationship between the two variables, the number of alternatives and

trials, is shown in Fig 4 as a 3D plot of U and L.

Fig 2. Dependency of results area for hit rates with a probability of random guessing of p> 0.05 (gray area) on the number of alternatives for 20 trials and single-

sided testing. For low numbers of alternatives (2 to 7) a lower threshold of insignificant results exists (lower limit of gray area). For 8 and more alternatives a hit rate of

0% is also possible by pure random guessing with a probability of p> 0.05. Results within the white areas can be interpreted as significantly free from random guessing

(p� 0.05).

https://doi.org/10.1371/journal.pone.0231715.g002

PLOS ONE Hit rates by chance and significant detection of malingering

PLOS ONE | https://doi.org/10.1371/journal.pone.0231715 April 21, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0231715.g002
https://doi.org/10.1371/journal.pone.0231715


Application for the interpretation of localization testing

The potential clinical benefit of incorporating the hit rates’ true scatter with the binomial

model presented in this study, as opposed to the commonly used constant hit rate by chance

model (1/a), was evaluated by a re-evaluation of published data describing the localization abil-

ities of children with bilateral cochlear implants [9]. The primary task in that study consisted

of n = 30 trials in which the sequentially-implanted children were asked to identify a target

loudspeaker out of a = 3 alternatives. The children were evaluated in 3 listening conditions: 1)

binaural, or using both cochlear implants, 2) monaural, using only the first-implanted ear, and

3) monaural, using only the second-implanted ear.

In the re-evaluation, the proportion of test results significantly better or worse than would

be expected by chance alone was determined for each condition (Fig 5). The criteria for signifi-

cance were defined either by the binomial model with a = 3 and n = 30 or the conventional (1/

a) model. The binomial limits for significantly better results (single-sided testing) were found

Fig 3. Dependency of results area for hit rates with a probability of random guessing of p> 0.05 (gray area) on the number of alternatives for 50 trials and single-

sided testing.

https://doi.org/10.1371/journal.pone.0231715.g003
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to be 0.433 for U and 0.233 for L. Therefore, only results outside these limits can be considered

significantly independent of chance. The conventional model resulted in a single, constant

threshold of 0.33, with results above this threshold being described as significantly better than

chance.

The proportion of children with results which could be described as significantly better

than chance was lower for the binomial model than the conventional model for all 3 listening

conditions, a difference which suggests that clinical interpretation of the dataset depends in

large part on the manner in which random chance is modelled. For example, of the 18 children

who completed testing when using the most recently implanted cochlear implant monaurally

(mono 2nd CI), 16 performed better than the conventional chance threshold of 0.33. More

precise results obtained using the binomial model and single-sided testing reveal performance

Fig 4. Course of U and L as a function of the number of alternatives and trials.

https://doi.org/10.1371/journal.pone.0231715.g004
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significantly better than chance in only 13 ears. Therefore, the individual probability of a child

to significantly improve localization with a second implant was 16/18 (89%) in the instance of

constant chance level modelling and 13/18 (72%) using the more precise binomial model. It is

possible then, that use of the conventional model resulted in an overestimation of the localiza-

tion abilities and the probability of individual improvements of the children in this test condi-

tion. The finding that the most commonly used calculation method overestimates the number

of better than chance results in comparison to the interval of hit rates by chance of the bino-

mial distribution can be generalized.

RMS angular error in localization experiments

As a result of a localization measurement, not only the hit rates of the correctly detected loud-

speakers can be evaluated, but also the RMS (root mean square) angle errors. Here, the angle

between the target and the incorrectly selected loudspeaker is determined and the RMS error

is calculated over several trials. In the Monte Carlo simulation, the angle error expected by

Fig 5. Proportion of children with results significantly better than chance in a localization test in sequentially cochlear implanted children (reevaluation of data

from [9]). Three alternative loud speakers (90˚ separated) had to be identified in 30 trials for each of three aided conditions (binaural CI: with both implanted ears,

mono1st CI: unilateral with early implanted ear, mono2nd CI: unilateral with late implanted ear). Criteria of individual results significantly better than chance where

due to the conventional 1/3 probability of chance (light gray bars) and the more precise binomial model (black and dark grey bars). A remarkably lower proportion of

children had significant better scores than expected by chance calculated with the binomial model in comparison to the conventional 1/3 probability. In case of

unilateral localization with the later implanted second CI (mono2nd CI), a significant lower proportion of children performed better than chance according to the

binomial model. One child performed significant worse with the late implanted second implant alone, maybe because of unwillingness or fatigue.

https://doi.org/10.1371/journal.pone.0231715.g005
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random guessing is calculated with the hit probability from the binomial distribution. If the

test runs are repeated several times in multi-trial experiments, this results in an interval of

angle RMS errors with defined probabilities. From this, L and U for random RMS errors were

calculated for popular loudspeaker arrangements and one-sided and two-sided testing

(Table 4). These limits can be used to determine whether observed RMS errors are significantly

different from the values expected for random guessing.

Discussion

Randomly selecting 1 of a alternative targets in any given trial is subject to the Bernoulli distri-

bution. For measurements with multiple trials (n> 1), however, the Bernoulli distribution

changes into the binomial distribution and the observed hit rates guided by chance alone vary

randomly from assessment to assessment. The conventional use of the constant hit rate 1/a,

independent of the number of trials, is only accurate for instances in which either only 1 or

infinitely many trials are conducted. In the latter case, the binomial probability converges to 1/

a. In assessments with a limited number of trials, such as is common to clinical audiometric

testing, the random hit rate is not constant, but rather varies according to the standard devia-

tion of the binomial distribution. An advantage of recognizing the influence of the binomial

distribution is that it provides an exact probability for observed hit rates in cases of pure ran-

dom guessing. Thus, significance testing can be performed to determine whether a result is

objectively better or worse than would be expected by chance alone. In the majority of closed-

set, forced-choice audiometry studies with multiple trials, all hit rates above the single trial

Table 4. Lower (L) and upper (U) thresholds of insignificant RMS errors for single- and two-sided testing as a function of the number of loudspeakers and trials.

The total angle span of the speaker arrangement was 180˚ or 140˚ (angle span) and the speakers are separated by angles between 90˚ and 10˚ (angle between speakers).

Every speaker is to be set as target and the random selection is repeated 2 to 20 times (repetitions). The number of trials (test runs) is determined by the product of the

number of loudspeakers and the number of repetitions.

number of speakers angel span angel between speakers repetitions trials mean RMS error stand. dev. single-sided

testing

two-sided testing

L U L U

3 180˚ 90˚ 2 6 101,0˚ 23,9˚ 61,7˚ 140,4˚ 54,2˚ 147,9˚

3 180˚ 90˚ 3 9 102,0˚ 19,1˚ 70,7˚ 133,5˚ 64,7˚ 139,6˚

3 180˚ 90˚ 5 15 103,0˚ 14,6˚ 79,0˚ 126,9˚ 74,4˚ 131,5˚

3 180˚ 90˚ 10 30 103,5˚ 10,2˚ 86,7˚ 120,3˚ 83,5˚ 123,5˚

3 180˚ 90˚ 20 60 103,7˚ 7,1˚ 91,9˚ 115,4˚ 89,7˚ 117,7˚

5 180˚ 45˚ 2 10 88,6˚ 15,9˚ 62,5˚ 114,7˚ 57,5˚ 119,7˚

5 180˚ 45˚ 3 15 89,1˚ 12,8˚ 68,0˚ 110,2˚ 63,9˚ 114,2˚

5 180˚ 45˚ 5 25 89,4˚ 9,9˚ 73,2˚ 105,6˚ 70,1˚ 108,8˚

5 180˚ 45˚ 10 50 89,7˚ 6,9˚ 78,3˚ 101,2˚ 76,1˚ 103,4˚

5 180˚ 45˚ 20 100 89,8˚ 4,9˚ 81,8˚ 97,9˚ 80,2˚ 81,8˚

19 180˚ 10˚ 2 38 80,6˚ 10,1˚ 64,0˚ 97,2˚ 60,8˚ 100,4˚

19 180˚ 10˚ 3 57 80,8˚ 8,2˚ 67,4˚ 94,3˚ 64,8˚ 96,8˚

19 180˚ 10˚ 5 95 81,0˚ 6,3˚ 70,6˚ 91,4˚ 68,7˚ 93,4˚

19 180˚ 10˚ 10 190 81,1˚ 4,4˚ 73,8˚ 88,4˚ 72,4˚ 89,8˚

19 180˚ 10˚ 20 380 81,2˚ 3,1˚ 76,0˚ 86,3˚ 75,0˚ 87,3˚

15 140˚ 10˚ 2 30 60,8˚ 6,1˚ 50,7˚ 70,9˚ 48,7˚ 72,8˚

15 140˚ 10˚ 3 45 60,9˚ 5,0˚ 52,6˚ 69,1˚ 51,1˚ 70,7˚

15 140˚ 10˚ 5 75 61,0˚ 3,9˚ 54,6˚ 67,4˚ 53,4˚ 68,6˚

15 140˚ 10˚ 10 150 61,0˚ 2,7˚ 56,5˚ 65,6˚ 55,6˚ 66,4˚

15 140˚ 10˚ 20 300 61,1˚ 1,9˚ 57,9˚ 64,2˚ 57,3˚ 64,8˚

https://doi.org/10.1371/journal.pone.0231715.t004
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chance level of 1/a have been erroneously considered significantly free of random effects and

thus valid. In this study, however, recognition of the variable effectiveness of random guessing

allowed for the definition of thresholds (U and L), which allow for a precise objective, test-spe-

cific distinction between results significantly affected by chance from those significantly differ-

ent from the results expected by chance alone.

A new significance test-based method for the objective detection of

malingering

The investigation and interpretation of hit rates better than chance probability is common

practice. However, it is often neglected to interpret hit rates that are lower than those that can

be expected by chance. Application of the binomial distribution allows for a new significance

test-based method for the objective interpretation of results below chance levels. With the

binomial model, it is possible that a carefully balanced combination of number of trials and

alternatives provides two thresholds for hit rates, U and L, beyond which the results deviate

significantly from hit rates by pure guessing. The upper threshold U determines the maximum

hit rate. However, the lower threshold L, which determines the minimum hit rate to be

expected solely from random guessing, is of particular importance. This is a new aspect in the

interpretation of chance-level performance that leads to more information through the appli-

cation of the binomial distribution. For a clinical trial, it would therefore be advisable to use

test conditions where both U and L can be used to interpret the test results. Doing so offers a

clinically useful advantage, as the lower threshold can be applied as a means of assessing results

for malingering or systematic technical or procedural errors. For instances in which closed-set

speech audiometry is used for the purpose of determining the extent of hearing damage for a

work-related injury case, for example, this method provides an objective means for the clini-

cian to better interpret both good and poor results. Obtaining results significantly poorer than

would be expected due to chance alone (below L) might be an indication that a patient is simu-

lating a complete loss of speech understanding by intentionally selecting incorrect answers.

The method would also be beneficial in differentiating between patients with poor speech

understanding abilities and those performing poorly due to lack of understanding of the task.

Irrespective of the cause of the poor performance, for closed-set, forced-choice tests with the

optimized characteristics of low alternative and high trial numbers, the lower threshold of

guessing (L) represents a valuable, new source of information for the statistically valid inter-

pretation of speech audiometry results.

The following example illustrates the benefit of the lower threshold for significant different

hit rates from random guessing. During the localization tests, one child stood out due to severe

fatigue. He had to be especially motivated for the last test (monaural listening with 2nd CI).

His test result was then so low that it was well below the lower limit of the hit rate by chance, L

(Fig 5). This gives a strong indication that this test result should not be considered in the evalu-

ation and can be identified and treated as an outlier generated by individual factors.

In addition to clinical use, utilization of the binomial model also influences interpretation

of research results. Fig 5 demonstrates how the interpretation of test results can be meaning-

fully affected through use of the random hit rate interval between U and L. A smaller propor-

tion of children was identified as having performed better than would be expected by chance

alone when using the binomial model thresholds U and L, as compared to the constant 1/a
model (13/18 vs. 16/18). This finding suggests that the effect of sequential cochlear implanta-

tion on lateralization performance might have been substantially overestimated if the unrealis-

tic constant hit rate equal to the chance probability 1/a of a single trial is assumed for multi-

trial measurements.
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The use of constant hit rates to define chance-level performance in multi-trial closed-set,

forced-choice testing is based upon the untenable assumption that randomness does not apply

to hit rates across trials. By accounting for the random distribution of success and failure across

trials, the clinician is provided with a simple, objective tool to further support decision-making.

Conclusion

The conventional handling of random guessing in closed-set, forced-choice testing as a con-

stant variable should be limited to single-trial methods. In conventionally multi-trial methods,

like speech audiometry or localization experiments with many words or sound directions per

assessment, the probability of hits by pure guessing varies randomly. This results in an range

of possible hit rates by chance that can be calculated from the binomial distribution and which

depend upon both the number of alternatives and the number of trials. The use of the binomial

distribution adds more exact probabilities for hit rates or RMS localization errors by random

guessing. Using certain combinations of low numbers of alternatives and sufficently high, yet

clinically practical, numbers of trials leads to a lower threshold of hit rates or RMS localization

errors than is likely to be achieved by guessing alone. Hit rates or RMS localization errors

smaller than these lower limits can be interpreted as significantly free of random guessing.

This may allow the simulation of a severe hearing disorder to be detected with the precision of

tests of significance. In this way the application of the binomial model extends the interpreta-

tion of multi-trial, closed-set methods.
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