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1. Introduction

All fields of society, economy and science are thriving for resource saving methods to
make human existence sustainable. One way to save time, energy and essential materials
in science is to simulate possible outcomes of experiments, chemical reactions or weather
and climate forecasts. Life science is more and more dominated by bio-informatics [1].
Vaccines e.g. against SARS CoV-2 are mainly developed virtually on the computer be-
fore they are realized in the laboratory. The computational power that is needed for
such simulations, however, grows faster than the development of new and more effi-
cient, classical computers that are usually built from silicon based computational units.
The need for energy saving and by magnitudes larger computational powers is evident.
Quantum computers (QC’s) could be one possible candidate for solving these problems.
The smallest computing units of QC’s according to classical bits are called quantum bits
(qubits). These can be realized as low dimensional devices of semiconducting material
that is in proximity to a superconductor [2]. While bits as a classical object can only
represent one state at a time, qubits behave as a quantum object. This means it can
represent both states or any linear combination of both states at the same time. Com-
bining more qubits to a quantum circuit the number of states represented simultaneously
grows exponentially. A big challenge, however, of such solid state qubits is its usually
very short decoherence time, which describes the average time after which coherence
and therefore information is lost. Thermal or external electromagnetic noise leads to a
disturbance of the quantum state and hence to its breakdown. Good shielding, filtering
and very low temperatures are necessary to create states with large enough decoherence
times. A very elegant type of qubits that are expected to reach such high stabilities are
realized by Majorana zero modes (MZM). In topological superconductors like Al-covered
InAs nanowires in parallel magnetic fields states at zero energy emerge at the edges of
the wire. Due to the spatial separation of these Majorana zero modes they are very
stable and only decay in an exponentially small overlap region [3]. In two dimensions
braiding operations such as winding one Majorana zero mode around another one can
be used to perform logical operations.
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1. Introduction

In order to establish stable MZM’s in superconducting devices unconventional p-wave
superconductivity is the key ingredient. Confirmed p-wave superconductivity, however,
has been so far only be reported in Sr2RuO4. But even in this compound, there is still
debate whether there is enough evidence to call it p-wave. Another elegant approach
to induce unconventional superconductivity is to use the combined effects of spin-orbit
coupling (SOC) effects, ordinary superconducting s-wave pairing and external magnetic
fields to break time-reversal symmetry [4][5].

The hunt for MZM’s has triggered a lot of effort in material development and theoretical
understanding of the underlying mechanisms, that lead to the fascinating physics of 2D
superconducting/semiconducting hybrids. In such kind of materials many, much more
fundamental effects take place, which give a prospect to possible future, technological
application in superconducting electronics. In a recent work, Ando et al. [6] have impres-
sively shown for the first time, that the interplay of Rashba SOC and superconductivity
in a layered, bulk structure can be used to build a superconducting diode, which is able
to rectify supercurrent analog to the current rectification in classic diodes. As diodes are
one of the most important basic components in an electrical circuit, a superconducting
analogue to the classic one can be seen as a big step towards superconducting electron-
ics. Their findings have triggered very recent theoretical work describing the ability of
superconductors with SOC to rectify supercurrent in an external magnetic field [7][8].

In this work the phenomenology of supercurrent transport in 2-dimensional Al/InAs
heterostructures in external magnetic fields with different relative orientations is inves-
tigated. Although the investigated system is considered very clean, strong indications
for an unexpected BKT-like transition are found. A strong inductive response of the
superconducting condensate is measured in the presence of an out-of-plane field, which
is attributed to the motion of weakly pinned vortices in the superconductor. It will
be shown, that the interplay of superconductivity provided by the thin film of Al and
spin-orbit-coupling arising from the asymmetric AlInAs/InAs/AlInAs 2DEG leads e.g.
to unexpected, anisotropic vortex pinning enhancement in in-plane magnetic fields so far
not reported in literature. Furthermore, a polarity dependent critical current and resis-
tance is found in these kind of superconducting/semiconducting hybrids, when they are
exposed to magnetic fields perpendicular to the current direction. In such a heterostruc-
ture supercurrent rectification and non-reciprocal resistance could be expected due to
the interplay of Rashba SOC and an in-plane field orthogonal to the current direction
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[7][8]. There is, however, also a strong indication towards an anisotropic out-of-plane
spin-orbit field texture, which may arise from a broken crystal symmetry at the Al/InAs
interface. Such spin-textures have so far also not been reported in literature.

The different techniques, most importantly a revised version of a resonator technique
first introduced by Meservey and Tedrow already in 1969 [9] to measure the tiny kinetic
inductance of superconductors will be demonstrated and its dynamics calculated the-
oretically. This work is also intended to work as a guideline for following researchers
working with similar techniques and to draw attention to artifacts and systematic errors
that can occur in the course of daily life lab work. Therefore, possible sources of artifacts
and deviations of the measured quantities from the expected results will be discussed.

Chapter 2 will give a theoretical background of the basic concepts of the complex
impedance of thin film superconductors, SOC related supercurrent rectification pro-
cesses and a novel theory on pinning enhancement in SOC superconductors. In chapter
3 methods of sample fabrication and the different measurement techniques and related
complications are discussed. Chapter 4 will give a short overview over the most im-
portant, physical parameters of the investigated samples. Results of inductance mea-
surements performed on long superconducting meander structures in a RLC circuit are
shown in chapter 6. Chapter 7 polarity dependence of supercurrent and resistance in a
straight wire of Al/InAst in external magnetic fields will be demonstrated. In chapter
7 the presented results will be summarized and discussed together with an outlook to-
wards possible directions for future research. In the appendix, practical challenges and
additional interesting measurement results, which are beyond of the scope of this work
are presented and discussed briefly.
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2. Theoretical Background

2.1. Phenomenology of Superconductivity

Most metals and other conducting materials have a temperature dependent resistance.
For metallic specimen resistivity decreases linearly with decreasing temperature due to
suppression of electron-phonon scattering. At very low temperatures some materials
undergo a phase transition into a different state, which is described by a single collective
wavefunction. This state was first observed by Heike Kamerlingh Onnes in 1911 when
he measured the resistivity of mercury at low temperatures. He found a sharp drop of
resistance to an immeasurably small value below 4.2K. In addition in 1938 Meissner
and Ochsenfeld [10] found out that superconductors also expel external magnetic fields
and therefore are perfect diamagnets. In the center of the superconductor the magnetic
field vanishes. Within the surface the external field is suppressed exponentially with a
characteristic length λL, the so called London penetration depth. The London equations
describing electric fields E and magnetic fields B as well as supercurrent density js are
the basis for most calculations.
The first London equation reads

E = Λ ∂

∂t
js, (2.1)

where Λ = µ0λL
2 is the so-called London parameter. The second London equation can

be written as

−B = Λ∇× js. (2.2)

2.1.1. Kinetic Inductance

Based on the first London equation it is possible to define a reactance associated to the
inertia of Cooper pairs in a superconductor. For a rectangular superconducting wire of
width w, length l and thickness d the electric field that is produced by a voltage U along
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2. Theoretical Background

l is

E = U/l, (2.3)

while the current through the wire is defined via

I

wd
= |~j|. (2.4)

Inserting these two expressions into the first London equation 2.1 and multiplication
with wd on both sides leads to a voltage drop across the wire

U = − l

w

Λ
d
İ, (2.5)

where the ratio l
w
describes the number of squares of the conductor over the length l. The

result is a voltage produced by a temporal change of current, which can be interpreted
as an inductance and is called kinetic inductance. The inductance per square is then
defined as

Ls,� = Λ
d

= µ0
λ2

d
. (2.6)

In order to calculate the dependence of the kinetic inductance on external parameters
such as temperature, current or magnetic field it is necessary to solve the Usadel equa-
tions for the investigated sample geometry within the Eilenberger-Usadel formalism.
Highlighted should be a work by Kubo [11], where dependencies of superconducting
parameters like ∆, λ or jc on external parameters are calculated.
For thin film superconductors the corresponding Usadel equation reads

∆− s√
1 + cot2(φ)

 cot(φ) = ~ωn + Γ, (2.7)

where Γ is the Dynes pair-breaking scattering rate and ~ωn = 2πkBT (n + 1/2) the
Matsubara frequency and s a parameter describing the supercurrent. ∆ needs to fulfill
the self-consistent equation

ln(Tc0
T

) = 2kBT
∑
ωn>0

(
1

~ωn
− sin(φ)

∆

)
. (2.8)

The superfluid density ns and consequently λ are given by
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2.1. Phenomenology of Superconductivity

ns(s,Γ, T )
ns0

= λ0
2

λ(s,Γ, T )2 = 4kBT
∆0

∑
ωn>0

sin2(φ). (2.9)

For the zero bias limit (s→ 0) and in absence of any pair breaking (Γ→ 0) this equation
can be solved and leads to the well-known formular for the penetration depth

λ−2(T )
λ−2(0) = ∆(T )

∆(0) tanh
[

∆(T )
2kBT

]
. (2.10)

The temperature dependence of the total inductance of a real sample in series with an
external inductance L0 is then given by

L(T ) = L0 +Nµ0
λ2(0)
d

[
∆(T )
∆(0) tanh

[
∆(T )
2kBT

]]−1

, (2.11)

where N is the number of squares in series and d the film thickness. The superconducting
gap ∆(T ) can in principle be determined by solving eq. 2.7 and 2.8. For simplicity in
this work an approximation is used for the temperature dependence of the normalized
gap

∆(T )
∆(0) ≈

[
cos

(
πT 2

2T 2
c

)]1/2

. (2.12)

Using eqs. 2.11 and 2.12 allows to fit experimental L(T ) data. The absolute value of
Ls,�(0) and λ(0) can be estimated from the normal state resistance as

Ls,�(0) = R~
π∆(0) = 0.18 R�~

kBTc0
(2.13)

λ(0) =
√
Ls,�(0)d
µ0

=
√

0.18 R�~
kBTc0

d

µ0
(2.14)

2.1.2. Ginzburg-Landau Theory

On the basis of Landau’s work on second order phase transitions, he together with
Ginzburg established a theory describing superconductivity near the transition temper-
ature by introducing a complex order parameter ψ, whose square of the absolute value
represents the density of cooper pairs being zero above and larger than zero below the
transition. In their theory, free energy can be expressed in terms of an expansion in ψ
as
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2. Theoretical Background

F = Fn + α|ψ|2 + β

2 |ψ|
4 + 1

2m |(−i~∇− 2e ~A)ψ|2 + |B
2|

2µ0
, (2.15)

where Fn is the free energy in the normal phase. Minimizing free energy regarding order
parameter and vector potential leads to the so-called Ginzburg-Landau equations

αψ + β|ψ2|ψ + 1
2m(−i~∇− 2e ~A)2ψ = 0 (2.16)

~j = 2e
m
<{ψ∗(−i~∇− 2e ~A)ψ}. (2.17)

Calculation of the rotation of the current density delivers the second London equation

rot~j = −nse
2

m
~B, (2.18)

where ns = |ψ2|. Considering a superconducting material in an external field (Fig. 2.1),
where the magnetic flux is parallel to the z-direction, the resulting differential equation
follows from introducing eq. 2.18 into the Maxwell equation rot ~B = µ0~j:

d2B (x)
dx2 − µ0nse

2

m
B (x) = 0. (2.19)

This equation is solved by

B (x) = B0e−x/λL , (2.20)

where the London penetration depth is defined as

λL =
√

m

µ0nse2 . (2.21)

As the cooper pair density is dependent on temperature, this is also the case for the
penetration depth. In the Ginzburg-Landau theory this dependence is given by:

λL (T ) = λL (0)√
1− T/Tc

. (2.22)

An empirical expression approximately valid over a larger T-range has been found, which
provides the temperature dependence of λL known as ’two-fluid model’ as [13]

λL (T ) ≈ 2λL (0)√
1− (T/Tc)4

. (2.23)
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2.1. Phenomenology of Superconductivity

Vacuum Superconductor

Fig. 2.1: Magnetic field in
a superconductor. Due to
screening currents the mag-
netic field in a superconduc-
tor is suppressed. The ex-
ternal field decreases exponen-
tially towards the center of the
material (adapted from [12]).

Near Tc this is equivalent to the temperature dependence of λL in the Ginzburg-Landau
theory (Eq. 2.22). As a consequence the density of Cooper pairs, which is proportional
to λ−2 is expected to behave like ns ∝ 1− T 4

T 4
c
.

Together with the Ginzburg-Landau coherence length ξ, which is a reference for the
length over which the density of Cooper pairs can vary, and the related coherence length
ξ0, which describes the extension of single Cooper pairs, this is the most important pa-
rameter describing superconductivity.

2.1.3. Superconductivity in Thin Films

Thin metallic films show a very different superconducting behavior than bulk materials.
In their work Ivry et al. have collected data of the past 50 years, which show that in
most cases a reduced film thickness and therefore enhanced disorder leads to a smaller
transition temperature and increased resistivity compared to its bulk value [14]. For thin
Al films, however, Tc increases with disorder as well as for smaller thickness. This is in
contradiction to Anderson’s theorem, which predicts independence of Tc from disorder
up to a certain degree [15]. Deviations from characteristic bulk parameters may also be
a consequence of the fabrication process. The structural quality of thin films strongly
depend on the conditions during deposition.
In a type II or also in thin film type I superconductors flux vortices may appear once
the field exceeds the lower critical field Bc1. Further increase of the field strength above
the upper critical field Bc2 eventually leads to an overlap of vortex cores and thus to
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2. Theoretical Background

destruction of the dissipationless charge transport. In thin films, however, it is possible
that even in absence of an external field flux vortices are created by thermal fluctuations
[16]. Below the so-called Berezinskii-Kosterlitz-Thouless transition temperature TBKT
these vortices are bound in vortex-antivortex pairs and a state of zero resistance is the
consequence. Above TBKT vortices can move freely and generate a finite resistance. One
significant feature of a BKT transition is the discontinuous drop of the superfluid density
ns at TBKT in contrast to a smooth transition in bulk material [17].
Pearl has shown that in thin films (2d� λ) the transverse penetration depth is thickness
dependent as λ⊥ ≈ 2λ2/d [18]. Thus, a reduced film thickness results in a larger pene-
tration depth perpendicular to the surface. Additionally he stated that the long-range
falloff of the circulating sheet current density is only proportional to a power law in the
distance of the core center instead of an exponential decay in bulk.

2.1.4. Vortex Dynamics

Pinning

In a very intuitive picture, vortices can lower their energy by occupation of a sample
volume, where the superconducting order parameter is already lowered by some defects.
In reality a vortex can gain energy from more than one small pinning center. These
pinning sites can be for example crystal defects, impurities, grain boundaries or inter-
faces, provided they suppress the superfluid density . The energy of a vortex, which
has a normal core with a superconducting order parameter equal to zero at the center
is reduced if it is placed at a position, where the superconductor is in the extreme case
normal anyways. In this case less condensation energy has to be paid to break Cooper
pairs in the center of the vortex. The energy of a vortex in a pinning potential can
be calculated as a convolution of a pinning potential Upin(r) and a term describing the
vortex structure |Ψ(r)|2 [19]

ε(u, z) =
∫

d2RUpin|Ψ(r− u)|2. (2.24)

In this case the vortex can save free energy of the order of δF ≈ B2
c,th

2µ0
4
3πr

3
0, where r0 is

the defect radius [20]. This energy corresponds to the condensation energy density mul-
tiplied with the volume of the defect. For the case of defects very small compared with
the extension of a vortex core ξ, which should be the case in relatively clean thin film
superconductors, this energy gain can be rather small. In addition, as Anderson pointed
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2.1. Phenomenology of Superconductivity

out, small non-magnetic defects should not even reduce the local order parameter at all.
Thus this effect alone could not explain the high pinning forces that were measured e.g.
in irradiated superconductors [21].
It was found that there is a second mechanism that produces an effective pinning force,
which is related to a non-local effect of a scattering center on Cooper pairs in its vicinity
[22]. In order to nucleate a vortex, a superconductor has to locally suppress the absolute
value of the order parameter at its core. In that case the defect "helps a superconduc-
tor to sustain deformations of the order parameter up to distances on the order of the
zero-temperature coherence length" [20]. This leads to an effective pinning energy that
is larger than that of the elementary pinning mechanism by a factor of ξ

r0
, which is an

enhancement of some orders of magnitude for defects of r0 ∼ Å. For relatively clean
samples this effect should be the main contribution to the pinning force and strongly
dependent on the microscopic nature of the defects.

(Pinned) Vortices in a superconductor with supercurrent flow jy = ρsvy are subject to a
Lorentz force, that is for a parabolic potential in first approximation compensated by a
viscous force and a linear restoring force

φ0jy = ηvx − kpx, (2.25)

where φ0jy is the driving Lorentz force (Fig. 2.2), ηvx is a friction force caused by the
vortex viscosity η and Fp(x) = kpx is the restoring pinning force. In this approximation
the mass of the vortex is neglected.

Fig. 2.2.: Flux line lattice in a type II super-
conductor. Vortices are subject to a Lorentz
force when a supercurrent is applied. This
causes the vortices to move perpendicular to
the current direction. Picture adapted from
[13].

In elementary core pinning model, the pinning energy is simply proportional to the
condensation energy ∼ B2

c

2µ0
times the volume of the defect [20]. As the thermodynamical
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critical field Bc(T ) empirically follows a
(
1− T 2

T 2
c

)
dependence and kp(T ) ∝ B2

c (T )
2µ0

is
defined as the curvature at the center of the pinning potential, kp(T ) can be written as

kp(T ) = kp0
(
1− (T/Tc)2

)2
. (2.26)

In high-Tc superconductors this temperature dependence of kp was confirmed experi-
mentally [23]. For moderate out-of-plane fields the pinning constant is assumed to be
field-independent. In this case each vortex occupies one single pinning site. For higher
fields i.e. larger vortex concentrations, however, each pinning site can host many vor-
tices. In the collective pinning regime kp is smaller than in the individual pinning case
and field-dependent [24].

Static Case

For a constant current, there will be equilibrium between Lorentz force and pinning
restoring force as long as the supercurrent jy is small enough, so that vortices are still
confined in their pinning potential. Vortices will only be displaced from its original
position without motion (vv = 0). For currents that exceed the sample characteristic
depinning current density jc vortices are no longer pinned and can move freely (vv 6= 0).
In this case one can easily see that energy will be dissipated, which can be measured as
a finite resistance. This resistance is known as flux flow resistance

ρFF = φ0Bz

η
. (2.27)

Dynamic Case

In the case of an alternating current density jy = jy,0 cosω the solution of equation 2.25
leads to the expression for the complex resistivity

ρ = ρFF

(
ω

ω − iω0

)
, (2.28)

where ω0 = kp/η is the depinning frequency. From this equation two limits can be
identified. For ω � ω0 the resistivity is simply ρFF and real. In the low frequency limit
ω � ω0 the impedance is imaginary and equals

ρ = −iφ0Bz

kp
ω. (2.29)
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2.1. Phenomenology of Superconductivity

From this equation a vortex associated inductance per square can be deduced by sub-
stituting the complex resistivity with a reactance ρ = XLd, where XL = −iωLv

Lv = φ0Bz

kpd
. (2.30)

For a typical pinning constant of 100N/m in 150 nm thick Al [25] a vortex inductance
of 141 pH/T per square is expected. This can for moderate fields compete with the
sheet kinetic inductance. The pinning constant in a thin film itself is proportional to
the length of a vortex line and therefore to the film thickness. Hence Lv can exceed Ls
by orders of magnitude in very thin films.

2.1.5. Complex Conductivity

Superconductors show a finite reactance in AC fields. In thin films often the com-
plex surface impedance Zs = Rs + iXs = iωµ0λ̃ is used. Clem and Coffey in detail
describe the surface impedance of type II superconductors [26][27]. They investigated
the influence of excited quasiparticles, vortex pinning and flux creep on the complex
resistivity by generalizing the magnetic penetration depth to a complex valued length
λ̃ that includes the classic field-dependent penetration depth λs, the normal-fluid skin
depth δnf = (2ρnf/µ0ω)1/2 and an effective skin depth that results from vortex motion
δ̃v = (2φ0Bµ̃/µ0ω)1/2. They find a self-consistent solution for the generalized penetration
depth

λ̃(ω,B, T ) =
[
λ2
s(B, T )− (i/2)δ̃2

v(B, T, ω)
1 + 2iλ2

s(B, T )/δnf 2(B, T, ω)

]1/2

. (2.31)

In a more convenient notation this reads [28]

λ̃ =
[

λs
2 + λv

2

1 + 2iλs2/δnf
2

]1/2

, (2.32)

where λs is the condensate penetration depth, δnf the normal fluid skin depth and λv
the vortex penetration depth. B describes a magnetic field perpendicular to the film
surface which induces vortices in the superconductor. In most cases apart from very
near Tc, δnf is much larger than all other length scales and therefore the denominator
reduces to 1. For thin films the complex penetration depth is renormalized by the film
thickness d such that λ̃ is replaced by λ̃2/d and therefore Zs = Rs + iXs = iωµ0λ̃

2/d

This allows to separate real and imaginary parts of the resistivity
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Rs = ωµ0Im(λ̃2)/d = ωµ0/d
φ0B

ω0ηµ0

ω/ω0

1 + (ω/ω0)2

[
1 + χ

(
ω0

ω

)2
]

(2.33)

Xs = iωµ0Re(λ̃2)/d = iωµ0/d

[
λs

2 + φ0B

ω0ηµ0

1− χ
1 + (ω/ω0)2

]
, (2.34)

where ω0 is the so called depinning frequency and χ is the flux creep factor, describing
the strength of flux hopping from one pinning site to another. ω0 is related to the vortex
viscosity η and the pinning constant kp via ω0 = kp

η
. Associating the reactance Xs to an

inductance L = iXs/ω the total inductance of a thin film superconductor in absence of
vortex creep results in a sum of kinetic inductance Ls = µ0λs

2/d and vortex inductance
Lv = φ0B

kpd
1

1+(ω/ω0)2 . For small λs and large δnf eq. 2.32 reduces to

λ̃2 = λs
2 + λv

2. (2.35)

Thus from an electrical point of view the simultaneous presence of kinetic and vor-
tex inductance can be described as a series connection of resistors and inductors. For
frequencies far below ω0 the sheet inductance is independent of ω

L(ω → 0) = µ0λs
2/d+ φ0B

kpd
= 1
d

(
µ0λs

2 + φ0B

kp

)
. (2.36)

Both components are only in first approximation independent from each other as the
pinning constant kp is related to the superfluid density 1/λ2

s but also very much to
microscopic details as defect type and size.
The temperature dependence of the total inductance can by using eqs. 2.10, 2.30 and
2.26 in approximation be written as

L(T ) = Ls(0)∆(T )
∆(0) tanh

[
∆(T )
2kBT

]
+ Lv(0)

(
1− T 2

Tc
2

)−2

(2.37)

In the case of pair-breaking, e.g. by an external parallel magnetic field the superfluid
density 1/λs2 is reduced and hence Ls is increased. The reduction of superfluid stiffness
leads to a reduction of the pinning potential energy and therefore also increases the vortex
inductance. Vortices contribute to the total inductance with a power-law dependence
in T(see eq. 2.26). In unconventional superconductors with nodes in the gap also
the change of the kinetic inductance ∆Ls(T ) = Ls(T ) − Ls(0) follows a power-law.
Therefore it is challenging to discriminate a vortex-associated inductance from a kinetic
inductance in unconventional superconductors. For the measurement of a purely kinetic
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2.2. Two-Level System Loss

inductance it is extremely important to minimize external out-of-plane fields across the
whole sample. This is especially necessary for samples with weak pinning as in this case
the vortex inductance can exceed the kinetic contribution by orders of magnitude.

2.1.6. AC Impedance

The frequency dependent complex conductivity of superconductors in the absence of
vortices in the limit of ωτn � 1, where τn is the elastic scattering time, can be written
as [29]

σ1(ω) = (πns/2m) δ(ω) + nne
2τn/m

σ2(ω) = nse
2/mω

(2.38)

In the two-fluid model the quasiparticle density can be approximated by
nn = n0 exp(−∆(T )/kBT ), the Cooper pair density by ns = n0(1 − exp(−∆(T )/kBT ).
It can be shown that the dissipative component of the complex impedance then can be
calculated as

RS = δ−1σ1/σ
2
2 = RNτn

2ω2 exp(−∆(T )/kBT )
(1− exp(−∆(T )/kBT ))2 , (2.39)

where δ is a skin depth, that can be neglected in thin films. For τn ∼ 10−14 s and
ω ∼ 107 Hz the resulting RS for temperatures not too close to Tc is only of the order
of 10−14RN , which is not measurable in most experiments. As a consequence, whenever
a dissipative resistance is measured in the frequency range of up to 5 MHz used in this
work it cannot be attributed to a Bogoliubov quasiparticle AC resistance, but must have
a different origin.

2.2. Two-Level System Loss
Microwave resonators with large Q-factors are usually built from superconducting ma-
terials in order to minimize losses caused by charge carrier scattering. At low tem-
peratures, however, the electromagnetic fields of the resonator can couple to two-level
systems (TLS) in the substrate or other insulating parts in the vicinity of the super-
conductor [30]. These TLS can for example result from single atoms that can tunnel
between two crystal sites. These states have electric dipole moments that couple to
the electric driving field. This coupling effectively changes the dielectric constant of the
microwave resonator. This leads to losses and therefore a reduction of the quality factor
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as well as to a shift of the resonance frequency. For weak fields, i.e. driving currents,
the internal quality factor of a microwave resonator is given by [31]

1
Qi

= Fδ0
TLS tanh

(
hf

2kBT

)
, (2.40)

where F is called the filling factor of the TLS system in the material close to the resonator.
It is a measure of the ratio of the electric energy stored in the TLS to the total energy in
the resonator [32]. δ0

TLS describes the loss tangent of the medium containing the TLS. It
is defined as the ratio of the dissipative reaction of a medium with complex permittivity
ε = ε′−iε′′ to a electromagnetic wave propagating inside of it. For an insulating material
with small losses the loss tangent can be written as

tan(δ) ≈ δ = ε′′/ε′. (2.41)

For frequencies f � 2kBT
h
∼ GHz for a temperature T = 0.1 K the internal quality

factor limited by the TLS is barely changed. The change of resonance frequency for
weak driving can be calculated as

fr(T )− fr(0)
fr

= Fδ0
TLS

π

[
ReΨ

(
1
2 + hf

2πikBT

)
− ln

(
hf

2πkBT

)]
. (2.42)

For low frequencies the first term reduces to Ψ(1
2) ≈ −1.96 and hence the temperature

dependence results entirely from the second term. f in the ln-term can be set to f0 as
the temperature varies much stronger than f0. From equations 2.40 and 2.42 it follows,
that for low frequencies the quality factor is nearly unchanged by the TLS but there is
a small shift of the resonance frequency.
Eq. 2.42 is valid for microwave resonators, where all the energy is stored in the supercon-
ductor. In this work the resonator consists of a superconductor in series with an external
copper coil with inductance L0 much larger then the kinetic inductance Ls. Hence most
of the energy will be stored in the coil. The characteristic prefactor Fδ0

TLS in eq. 2.42,
in contrast, depends only on the energy in the superconductor. The resonance frequency
f0(T ), however depends on the total inductance Ltotal = Ls + L0 of the sample. A fit
of the measured f0(T ) data to eq. 2.42 will give a fitting parameter Fδ0

TLS that is too
small by a factor of Ls/Ltotal. Fitting parameters for Fδ0

TLS in this work will therefore
be multiplied by the factor Ltotal/Ls and only the corrected number will be given.
The main structure under investigation consists of a thin Al film that is grown epitaxially
on a high mobility 2DEG made from a InGaAs/InAs/InGaAs quantum well. The Al
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2.3. Spin-Orbit Coupling

layer is terminated by a native oxide (AlOx) layer that forms upon controlled oxidation
at low oxygen partial pressures. Most of the supercurrent is flowing in the Al layer
due to its much larger supferfluid stiffness and therefore coupling via electromagnetic
fields should occur mainly at the Al/AlOx interface. Oxygen vacancies at the Al/AlOx
interface can produce TLS and therefore change the resonance frequency of the system
[33][34][35]. Single crystalline Al2O3 dielectrics have been shown to produce much less
two-level fluctuations than amorphous AlOx [36], which either forms by evaporation of
Al in an oxygen atmosphere or by oxidation of Al surfaces by diffusion of oxygen atoms
into the crystal. The latter mechanism forms the oxide layer on top of the Al films in
this work.

2.3. Spin-Orbit Coupling

Spin-orbit coupling (SOC) is a relativistic effect arising from the motion of an electron
in an electric field. A basic example is a free atom, where electrons move in the potential
of a positively charged core [37]. An electron that moves in the Coulomb field of the
atom with velocity v experiences a magnetic field B

B = γ(v× E)/c2, (2.43)

where γ = (1−v2/c2)−1/2. The spin of the electron σ is coupled to this magnetic field via
the Zeeman effect, which leads to an energy contribution to the standard Hamiltonian
of

HSOC = µB
2c2 (v× E) · σ. (2.44)

In atoms each orbital can be filled with either spin-up or spin-down electrons. Therefore
the energetical degeneracy of the two electrons is lifted because of the energy shift
originating from SOC. In free atoms the electric field is produced by the positive charge
of the nucleus. As the effective charge of the atom core is proportional to the atom
number this effect becomes more pronounced for heavier atoms.
This concept can also be translated into solid state physics. From Eq. (2.44) it follows
that in order to have a splitting due to SOC a finite electric field E = −∇Φ(r) has to be
present in the crystal. For bulk and centrosymmetric crystals the electric environment
is relatively isotropic and hence SOC is typically weak. Materials that lack inversion
symmetry in the bulk, however, produce a non-symmetric potential and lead to the
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2. Theoretical Background

intrinsic so called Dresselhaus-SOC with the Dresselhaus parameter β [38]. Also surfaces,
asymmetric heterostructures like 2DEG’s embedded between two different materials or
also gate voltages lead to finite electric fields in the crystal. Splitting of bands due to such
macroscopic anisotropy is called Rashba-SOC [39] with associated Rashba parameter αr.
Of course it is possible that both effects appear at a time. In that case the associated
spin-orbit (SO) field vectors have to be added in order to calculate the total spin-orbit
field

Ω =
√
α2
r + β2 + 2αrβ cos(2θ), (2.45)

where θ is the angle between Rashba and Dresselhaus fields. The associated energy
splitting is calculated as

∆E = 2ΩkF , (2.46)

with kF being the Fermi wavevector. One example of crystals with Dresselhaus SOC
are Zincblende struktures like InAs, InGaAs, GaAs. If such compounds are grown in
[001]-direction their spin-orbit fields lie in the [001] plane. The absolute value of the
Rashba fields are isotropic in the plane with direction their direction perpendicular to
the momementum. Dresselhaus fields have a more complicated ~k-dependence (see Fig.
2.3).
Dresselhaus SO-fields can therefore induce anisotropy in 2-dimensional systems. Park
et al. [41] directly measured the ~k-dependence of the total SOC strength. SOC leads
to a beating pattern when SdH-oscillations are measured. From the position of nodes
of the pattern the total SO parameter can be extracted (Fig. 2.4). In the range of
operation they estimated that the Dresselhaus field was just 5% of the Rashba field.
Anisotropies originating from the Dresselhaus ~k-contribution therefore should be small
but detectable.

2.3.1. Nonreciprocal Transport

In systems where spatial and time-reversal symmetry is broken non-linearities in the
electrical properties emerge. Rikken et. al. [42][43][44] measured this effect, which is
generally known as magnetochiral anisotropy, in resistive systems. Spatial inversion is
broken either an electric field perpendicular to the current direction by charging gate
electrodes or making use of intrinsic electric fields that occur in systems with SOC.
Time-reversal symmetry is broken by application of a magnetic field perpendicular to
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2.3. Spin-Orbit Coupling

Fig. 2.3.: Spin-Orbit fields in Zincblende GaAs/InGaAs quantum wells. The growth di-
rection is [0 0 1]. a) Rashba SO-field vector in the plane of the quantum well is always
perpendicular to k. b) Dresselhaus SO-field vector is parallel/antiparallel to k in [1 0 0] / [0
1 0] directions. The total SO-field is calculated as vector sum over the different contributions.
Taken from [40]

Fig. 2.4.: left: ion milling patterned structure (red) defines the dominating ~k-direction of the
2DEG for three different current (momentum) orientations. With additional gate-electrodes
(yellow) the Rashba SO parameter can be tuned. right: Total SO parameter determined
from beating pattern of SdH-oscillations as a function of momentum direction. For θ = 0
(~k ‖ [110]) the SOC strength is highest. Pictures from [41]

the current and electric field direction. In normal metals this effect is rather small as
it depends on the ratio of energy scales of the involved quantities, i.e. Zeeman energy
Ez = µBB and SOC strength ∆SO = kFΩ with Ω being the total spin-orbit parameter.
Compared to the Fermi energy EF , Ez and ∆SO are small. Therefore the observed
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magnetochrial asymmetry will be small.
Such an anisotropy, however, can also be measured in superconductors. In this case the
relevant energy is the superconducting gap ∆, which is orders of magnitudes smaller
and therefore small Zeeman and SOC energies can lead to a significant magnetochiral
effect in the fluctuation and BKT regime. Ando et. al [6] demonstrated non-reciprocal
transport in an artificially layered SOC superconductor in an in-plane magnetic field
perpendicular to the current direction. They could show that not only resistance was
dependent on the current direction, but also the critical current. This can be viewed
as a pendant to a classical diode, which rectifies normal current. The resistance in the
regime of non-reciprocal transport in such systems can be heuristically written as

R = V

I
= R0

(
1 + γs

(
~B × ~z

)
· ~I
)
, (2.47)

where ~z is a unit vector pointing out of the surface and γs is a parameter, that describes
the magnetochiral anisotropy, which depends on the SOC strength. γs can elegantly be
determined by measuring the first and second harmonic resistance in a low-frequency
AC experiment (see also section 3.3.2). γs can then be calculated as

γs = 2R2ω

RωB‖I
, (2.48)

where Rω and R2ω are the first and second harmonic resistance, B is the magnetic field
and I the current through the sample.

Fluctuation Regime of Superconductors

Hoshino et al. [45] made a comprehensive derivation of various mechanisms that can lead
to non-reciprocal transport in superconductors with spin-orbit coupling. One important
domain, where non-reciprocal transport occurs, is the fluctuation (or paraconductivity)
regime of the superconducting transition in 2D Rashba superconductors. In this regime
an additional contribution to the conductance is produced by thermal fluctuations of
the order parameter. Pure intraband pairing will occur for ∆� ∆SO � EF , where ∆ is
the superconducting gap. In that regime even and odd parity interactions lead to mixed
parity of the superconducting order parameter. The explicit form of theWγS-value (W :
width of sample) corresponding to the parity mixing contribution to the non-reciprocal
charge transport is

WγS = πrt,sS3EFα

eS1T0EFR
. (2.49)
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The parameter rt,s describes the parity mixing and can have both signs depending on
the signs of singlet and triplet pairing interactions. All of the numeric factors in eq. 2.49
are positive and depend on sample parameters. This means that γS can have both signs
depending on the actual pairing interactions. From the current j = σ1E + σ2E

2 the
temperature dependence of γS(T ) can be calculated by replacing σ1 with the fluctuation
conductivity σ1 + σn, where σn is the normal state conductivity. Using the Aslamazov-
Larkin contribution to the conductivity the temperature dependence of γS(T ) ∝ σ2/(σ1+
σn)2 is given by

γS(T ) = γS0

[
1 + 1

c0

σn
e2/h

T − Tc0
Tc0

]−2

(2.50)

BKT Regime

In 2D superconductors the transition from the dissipationless to the dissipative state is
of the Berezinskii-Kosterlitz-Thouless type [46] [47]. This means that above a critical
temperature TBKT thermally activated vortex-antivortex pairs become unbound and can
move freely when driven by a supercurrent. The result is a finite resistance already below
the mean-field critical temperature Tc0. In the temperature range TBKT < T < Tc0, an
in-plane magnetic field leads to non-reciprocal transport in a Rashba superconductor.
The following derivation follows closely the work by Hoshino et al. [45]. In supercon-
ducting Rashba systems an in-plane magnetic field renormalizes the superfluid density
isotropically as [45]

ñs = ns (1 + 4Λ′Bvs0) , (2.51)

where vs0 is the vortex velocity, which depends on the externally applied current and
Λ′ ∼ −

√
m

|E3/2
F |

with m ∼ m∗. At the BKT transition point the attractive force that acts
on the two constituent vortices (antivortices) of a bound pair separated by distance r
are balanced by an entropic force proportional to the temperature

e2ñs
1
m∗r

φ0 = 4kBT̃KT
r

. (2.52)

This means that the effective BKT transition temperature is modified by the external
current and the in-plane magnetic field and depends on the relative orientation of the
two quantities [48].
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T̃BKT = TBKT (1 + αBI) (2.53)

Furthermore an in-plane field leads to an anisotropic renormalization of the vortex vis-
cosity

η = η0 (1 + d0Λ′Bvs0) (2.54)

with d0 = const. and η0 ' πσne
4ξ2. These two effects lead to asymmetric IV-characteristics

at fixed bath temperatures resulting in a finite γS. Surprisingly this can lead - with the
right choice of parameters - to a decreasing linear resistance R = V/I when the current is
increased. In standard superconductors the linear resistance usually only increases with
current due to pair breaking, depinning or heating effects. The temperature dependence
of γS in the limit T → TBKT is given by

γS ∝ (T − TBKT )−3/2 . (2.55)

This means that in the vicinity of TBKT a diverging non-recirprocal signal could be
expected. Near the mean-field critical temperature T → Tc0 the temperature dependence
reads

γS ∝ (T − Tc0)−1 . (2.56)

γS-values resulting from non-reciprocal transport in the BKT-regime always have a pos-
itive sign. In the fluctuation regime, however, γS can have both and negative sign
depending on the sign of the rt,s-parameter. This means that a sign change in the γS(T )
curve can give an indication of the nature of the pairing interactions. As a superconduct-
ing system will upon cooling or heating pass through the fluctuation and BKT regime
in a continuous manner, the different contributions to γs will partly overlap and make
it hard to differentiate if the superconducting transition is sharp.
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2.3.2. Field-Induced Pinning Enhancement in Superconductors with
Rashba SOC

Out-of-plane field introduce vortices in thin film superconductors. As will be seen, the
inductive response of a superconductor in presence of pinned vortices can be by orders
of magnitude larger than the pure kinetic inductance, that is measured in zero field.
Therefore the impact of an in-plane field on the vortex the pinning potential of a vortex
in a system with strong Rashba SOC is of particular interest.
Dr. Denis Kochan from the University of Regensburg has proposed a model which
estimates the effect of an in-plane field on the order parameter near a vortex core in a
2D system with SOC. At the time of writing a manuscript was being prepared for later
publishment. What follows is a direct quote from this work in progress contributed by
Dr. Denis Kochan.
“On the phenomenological level non-centrosymmetric quasi-2D superconductors with
Rashba spin orbit coupling and external magnetic field can be described by the extended
Ginzburg-Landau functional:

F [Ψ,A] = a(T )|Ψ|2 + b

2 |Ψ|
4 + 1

4m(DΨ)∗ ·DΨ + FL[Ψ,A] (2.57)

that apart of the conventional terms includes also the so called (isotropic) Lifshitz in-
variant:

FL[Ψ,A] = −1
2κ(n×B) ·YΨ (2.58)

= −1
2κ(n×B) ·

[
(Ψ)∗DΨ + Ψ(DΨ)∗

]
. (2.59)

In the above expressions Ψ stands for the condensate (Cooper pair) wave function, A
for the vector potential, B = rotA, and D = ~

i
∇ − 2eA for the covariant momentum

operator. The non-centrosymmetry of the quasi-2D film is captured by the isotropic
Rashba Hamiltonian HR = αR(k×n) ·σ, where the unit vector n is normal to the plane
of the superconducting film and the parameter κ reads

κ ' 3αRµB/p2
F , (2.60)

therein µB is the Bohr magneton, and pF Fermi momentum. For the full derivation based
on the microscopic theory including the exact expression for the numerical prefactor of
κ (that is Tc dependent) see [49]. Adding to F [Ψ,A] also the energy density of the
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magnetic field, B2/µ0, one can derive in a standard way the 1st and 2nd Ginzburg-
Landau equations in the presence of non-centrosymmetry:

0 = 1
4m

[
D− 2mκ(n×B)

]2
Ψ +

[
a(T )−mκ2(n×B)2

]
Ψ

+ b|Ψ|2Ψ, (2.61)

0 = rot
[

1
µ0

B− 1
2κn×YΨ

]
− e

2mYΨ + 2κe|Ψ|2n×B. (2.62)

They are given in SI units, where e is elementary charge, m mass of the electron, and
µ0 magnetic permeability.

In what follows we assume the superconducting film is laying in xy-plane, i.e. its unit
normal n = ẑ points along the z-axis, the vortex-generating magnetic field induction
Bz is perpendicular to the film, i.e. Bz = Bẑ, and the in-plane magnetic field induction
Bip is pointing along the y-axis, i.e. Bip = Hŷ. We assume quasi-2D geometry without
crystallographic anisotropies, meaning, Ψ, B and H are functions of the in-plane coor-
dinates only and there aro not preferential in-plane directions. As a comment, B and
H are local fields at the spot and differ from laboratory values B⊥ and B‖. Moreover,
looking for the vortex solution we assume Ψ ' feiϕ, where f is a complex-valued func-
tion (with zero a winding number around the origin) that is varying on the range of the
Ginzburg-Landau coherence length ξ. This is an excellent approximation if the mag-
netic penetration depth λ of the film is much larger than the Ginzburg-Landau coherence
length ξ (assumed tacitly from now). Moreover, we are interested in Ψ inside the vortex
core, i.e for radius r . ξ where |Ψ|2 = |f |2 � ns ≡ |a(T )|/b—the superconducting den-
sity far away the vortex center. Within these assumptions the second Ginzburg-Landau
equation (or more precisely “rot” applied to its left and right sides what is liberating us
from the vector potential A) determines the magnetic field B = Bip + Bz in terms of
|Ψ|2 = |f |2 = ns

|f |2
ns

:

∂2
xyH = 0 (2.63)

∂2
xxH = H

λ2
|f |2

ns

1
1 + 2κ2mµ0|f |2

(2.64)

∆B = B

λ2
|f |2

ns
− Φ0

λ2 δ(x)δ(y), (2.65)

wherein Φ0 = h/(2e) is the superconducting flux quantum, λ−2 = 2e2µ0ns/m is the
inverse square of the magnetic penetration length and δ(x)δ(y) represents 2D Dirac
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delta-function centered in origin. Since inside the vortex core |f |2/ns � 1, we can safely
set in the above equations |f |2/ns to zero, doing so we get the following approximate
solutions: (1) a constant H, whose value is tunable by the laboratory field (with a
partially screened value), and (2) “logarithmically singular” B(r) ' − Φ0

2πλ2 ln r/rcut-off.
This singularity is unphysical and a more involved treatment [50] gives for r = 0 and
the vortex core region a finite value, something of the order of

B(0) ' Φ0

2πλ2 ln
(
λ

ξ

)
. (2.66)

Since our discussion is qualitative we keep B inside the core as a fixed constant not far
from B(0), and determine its low temperature value later.

Knowing H and B that are effectively constants we can proceed further and linearize
the 1st Ginzburg-Landau equation assuming T far below Tc, i.e. a(T = 0) = −|a0| < 0,
magnetic field |Bz| close Bc2, and the non-linear term b|Ψ|2Ψ ' 0. To make a fully
quantitative theory for |Bz| close Bc1 is beyond the scope of this paper while it requires
a numerical solution of the non-linear partial differential equation (lacking rotational
symmetry) what makes a serious complications. The linearized 1st Ginzburg-Landau
equation is gauge invariant, and in order to avoid any z dependence we employ the
vector potential in the Coulomb gauge that depends just on the in-plane coordinates,
particularly A = (−y B/2, xB/2,−xH). Plugging A into the linearized Eq. (2.61) and
shifting the origin of coordinates from (0, 0) to (0,−2mκH

eB
), we get for Ψ (already with

respect to such shifted origin) the following equation:

0 = − ~2

4m∆Ψ + e2B2

4m

[(
1 + 4H2

B2

)
x2 + y2

]
Ψ

+ eB

2mL̂zΨ−
(
|a0|+mκ2H2

)
Ψ, (2.67)

where L̂z is the zth component of the angular momentum operator L̂. To have the
vortex solution we seek Ψ in the following form:

Ψ(x, y) = N (x+ iδ y) exp
[
−α x

2

2 − iβ xy − γ
y2

2

]
, (2.68)
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where α, β, γ, δ and N are unknown real parameters. A direct calculation gives:

α = 2eB
~

δ(H), β =eB
~
, (2.69)

γ = 0, δ(H) =
√

1 + H2

B2 , (2.70)

along with a constraint on the magnitude of B (aka upper critical field):

~e
2m
√
B2 +H2 ' |aκ(H)| ≡ |a0|+mκ2H2. (2.71)

To obtain N one needs to return to the non-linearized 1st Ginzburg-Landau equation,
Eq. (2.61), however as already mentioned due to the lack of the rotational symmetry
(coefficients in front of x2 and y2 in Eq. (2.67) differ) the problem is hard to tackle
analytically. Since we are gliding on a semi-quantitative level we limit ourselves to the
well-known solution for N in the conventional (rotationally symmetric) case, which can
be found, for example, in [50]. To account for the non-centrosymmetry we only change
in those standard formulas |a0| by |aκ(H)|. Based on that “poor-man approach” we can
estimate

N2 ' 4m
~2
|aκ(H)|2

b
. (2.72)

Combining results expressed by Eqs. (2.68)-(2.72) and ignoring terms in higher order
than κ2 we can estimate the in-plane-field dependencies of the superconducting stiffness
curvatures kx and ky, defined for the corresponding directions by the Taylor expansion
of |Ψ|2 around the vortex center, i.e.

|Ψ|2(x, y) ' N2 x2 + (N δ(H))2 y2 ≡ kx x
2 + ky y

2. (2.73)

Looking only at magnetic field scaling one gets:

kx(H) ∝ |aκ(H)|2 ' c1 + c2H
2, (2.74)

ky(H) ∝
[
|aκ(H)| δ(H)

]2
' (c1 + c2H

2)(1 + c3H
2/B2), (2.75)

where the coefficient c2 ∝ κ2 quantifies an “amount of the non-centrosymmetry” of the
Rashba 2D superconductor. It is obvious that kx(H) < ky(H) for H 6= 0 and that both
grow with growing H. As a consequence, if the probing in-plane current is perpendic-
ular [ parallel ] to Bip = Hŷ, then one probes the inductance proportional to 1/ky(H)
[< 1/kx(H) ]. Moreover, if c2 would be zero then the inductance proportional to 1/kx
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2.3. Spin-Orbit Coupling

would not depend on the in-plane field.“

Parameters kx and ky represent the curvature of the order parameter |Ψ(x, y)|2 at the
center of the vortex in the two orthogonal in-plane directions. Pinning energy can be
calculated as a convolution of defect form factor and the order parameter itself. For
δ-like defects the pinning energy as a function of dislocation (x,y) is equivalent to the
order parameter in the vortex. In essence an in-plane field changes the shape of the
order parameter in the vortex by reducing its core width depending on direction and
strength of B‖. Depending on the direction of the driving current (and therefore the
vortex motion), different directions of the pinning potentials are probed, which will be
seen in the measurement.

Initially eq. 2.75 only had two free coefficients c1 and c2. In order to be able to fit our
data a third free parameter c3 had to be added. The vortex inductance Lv = φ0B⊥

kpd
(see

eq. 2.30) resulting from motion of vortices in a pinning potential that is described by
eq. 2.75 should be written in a more convenient way.
In the following Bt defines an in-plane field transverse to the current, Bp refers to an
in-plane field parallel to the current. Lv,p therefore defines the vortex inductance in a
parallel in-plane field. Lv,pt represents a vortex inductance in a transverse field. Lv,p is
then given by

Lv,p(B⊥, Bp) = Φ0

d

B⊥
kx(Bp)

= Φ0

d

B⊥

kp,0

(
1 + B2

p

B̃‖
2

) , (2.76)

where c1 is absorbed in a pinning constant kp,0 at B‖ = 0. c2 is absorbed in a character-
istic in-plane field B̃‖. For a fixed B⊥ eq. 2.76 can be written as

Lv,p(Bp) = Φ0

d

B⊥
kx(Bp)

= Lv,0

1 + B2
p

B̃‖
2

, (2.77)

where Lv,0 is the vortex inductance for Bp = 0.

Lv,t in the case, where the in-plane field is perpendicular (transverse) to the current can
be written as

Lv,t(B⊥, t) = Φ0

d

B⊥
ky(Bt)

= Φ0

d

B⊥

kp,0

(
1 + B2

t

B̃‖
2

)(
1 + c3

B2
t

B2
⊥

) , (2.78)
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For fixed B⊥ eq. 2.78 is simplified to

Lv,t(Bt) = Φ0

d

B⊥
ky(Bt)

= Lv,0(
1 + B2

t

B̃‖
2

)(
1 + c3

B2
t

B2
⊥

) , (2.79)

where c3 scales the strength of the anisotropy of kp.

Lv,p(B⊥) (eq. 2.76) is linear in B⊥ with a reduced slope ∝
(

1 + B2
p

B̃‖
2

)
for |B‖| > 0. For

B‖ = 0, eq. 2.78 predicts also a linear Lv,t(B⊥) similar to eq. 2.30. Taylor expansion
of Lv,t(B⊥) in B⊥ (eq. 2.78), however gives a leading term that is cubic in B⊥ for a
non-zero Bt. The truth probably lies somewhere between these two limits as will be
seen in section 6.2.4.
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2.4. Unconventional Superconductivity

2.4. Unconventional Superconductivity

2.4.1. Pairing States

Cooper pairs are particles that are composed of two spin s = 1/2 particles that follow
Fermi-Dirac statistics. The wave function of a two particle system consisting of two
fermions needs to by antisymmetric upon exchange of the two constituents. The total
wavefunction of a Cooper pair can be written by decomposing it into an orbital (l =
0,1,2...) and a spin component. Cooper pair wave functions that have a symmetric
orbital component thus need to have an antisymmetric spin component. This means
that in this case the two particles have opposite spin (s = 0 singlet). In the simplest
case (l=0) this represents s-wave pairing, which is isotropic in k-space. Spin singlet
inversion symmetric superconductors siwith higher order orbital angular momentum
wave functions are e.g. called d-wave(l = 2). For superconductors with antisymmetric
orbital wave function the spin component needs to be symmetric under exchange (S =
1 triplet). The pairing states for different odd orbital angular momentum are called
p-wave (l = 1) or f-wave (l = 3). In the present samples under investigation, inversion
symmetry is broken, and therefore p-wave admixtures to the order parameter can be
expected [51].

2.4.2. Measureable Signatures of p-Wave Superconductors

Knight Shift

One hallmark that can be used to determine, whether Cooper pairs are spin singlet or
triplet states is the temperature dependence of the Knight shift, which probes spin sus-
ceptibility by using NMR [52]. Magnetic fields produced by charge carriers (mostly due
to its spin) shift the NMR frequency of the nuclei of metallic materials [53]. Spin singlet
superconductors (s-wave, d-wave) show a decrease of the spin susceptibility below Tc,
whereas in triplet paired superconductors (p-wave, f-wave) the measured susceptibility
is constant [54]. For NMR measurements, however, high magnetic fields are crucial.
Hence only superconductors that can sustain such high fields can be measured in this
way. Thin films generally have much higher critical in-plane fields than their bulk coun-
terpart due to the reduced orbital pair breaking effects, but very accurate alignment of
field and film plane have to be assured. This makes Knight-shift measurements as a
probe for unconventional superconductivity challenging.
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2. Theoretical Background

Suppression of Tc by Impurity Scattering

In conventional, isotropic s-wave superconductors scattering with non-magnetic impuri-
ties does not lead to a suppression of Tc. This is commonly known as Anderson’s theorem
[15]. For Cooper pairs with finite angular momentum and therefore broken time-reversal
symmetry, Anderson’s theorem is not valid anymore. This leads to a significant reduc-
tion of the critical temperature for increasing concentrations of non-magnetic impuri-
ties. It was shown theoretically that even in anisotropic (l = 0) s-wave superconductors
non-magnetic impurities lead to a reduction of the transition temperature [55]. Experi-
mentally this effect was shown to be present in the f-wave triplet superconductor UPt3

[56], in the triplet superconductor K2Cr3As3 [57] and in the iron based superconductor
Ba0.8K0.2Fe2As2 [58].

Temperature Dependence of ns at Low T

Unconventional superconductors can have nodes in the superconducting gap for certain
directions in momentum space. Therefore thermally excited quasiparticles persist down
to low temperature. The exponential suppression of thermally excited quasiparticles
in isotropic s-wave superconductors is replaced by a power-law T-dependence in su-
perconductors, that have nodes in the excitation spectrum. Experimentally this can be
addressed by measuring the temperature dependence of the change of kinetic inductance
Ls(T )− Ls(0), which is inversely proportional to the superfluid stiffness.

Parallel Field Tunability

In two-dimensional superconductors SOC mixes spin-singlet and -triplet states as Rashba
and Gor’kov pointed out [51]. Considering p-wave pairing, SOC strengthens influences
the superconducting order parameters for both singlet and triplet states [59][60]. The
ratio of singlet and triplet state therefore depends on SOC strength. An external parallel
magnetic field induces Zeeman splitting in the SOC-split quasiparticle bands. Whereas
the Zeeman field lowers the singlet energy gap, the triplet gap for a fixed SOC strength
stays rather constant (see Fig. 2.5)[61]. Triplet pairing therefore should be favored in
an external parallel field [61]. This would make it possible to field-tune the ratio of the
singlet-triplet mixed order parameter of a p-wave superconductor. The ratio of the two
as observable quantity then of course has to be determined by measurement of some
observable quantity (see other signatures).
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2.4. Unconventional Superconductivity

Fig. 2.5.: left: dependence of spin-singlet and triplet energy gaps on SOC strength in
p-wave superconductors [59]. The interplay of Rashba and Dresselhaus SOC can lead to
anisotropies depending on the relative orientation of both components. right: dependence of
the quasiparticle energies on SOC and Zeeman fields (colored lines). For increasing fields |∆+|
and |∆−| get closer and therefore the singlet energy gap |∆↑↓| = 1

2(|∆+| − |∆−|) decreases,
whereas the triplet gap |∆σσ| = 1

2(|∆+|+ |∆−|) stays rather constant. Picture is taken from
[61].

Enhancement of Vortex Pinning Potential in p-wave Superconductors

Another signature of a field-tunable p-wave superconductor could be the enhancement
of the vortex pinning potential in a Zeeman field. For chiral p-wave superconductors
p+ = (px + ipy), the order parameter around a vortex is isotropic, if the in-plane field is
zero. In finite fields the order parameter turns from the chiral p+ state into a non-chiral
px-state depending on the magnetic field direction (px for B ‖ êx) [62]. This also leads
to a deformation of the vortex core. Its initially circular shape turns into a more elliptic
form with anisotropy of the order parameter. For isotropic pinning centers this also leads
to anisotropy of the pinning potential [63]. It can be investigated by measurement of
the pinning potential for different displacement directions. The displacement of a vortex
under a driving supercurrent is always perpendicular to the current direction. Therefore,
by changing the relative orientations of in-plane field and current the symmetry of the
pinning potential and hence the underlying pairing symmetry can be probed.

As mentioned earlier a Zeeman field can tune the ratio of singlet (s-wave) and triplet
(p-wave) components of the superconducting order parameter for a p-wave pairing inter-
action. Hayashi and Kato have shown that the vortex pinning potential depends on the
pairing state of the superfluid [64][65]. In s-wave superconductors vortices can reduce
their energy by sticking to defects where the order parameter is reduced due to pair
breaking effects or by quasiparticle scattering that helps the superconductor to sustain
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Fig. 2.6.: Dependence of the vortex pinning potential on the dislocation of a vortex from a
defect for different pairing states. Figure taken from [64].

local deformations of the order parameter. Far away from the vortex center Anderson’s
theorem applies and small defects do not change the superconducting order parame-
ter. For p-wave superconductors exactly the opposite is true. In this case Anderson’s
theorem does not apply in the bulk and a defect located at a vortex center also leads
to non-local pair breaking at a distance ∼ ξ0 away from the vortex core. This loss of
condensation energy contributes to the vortex pinning potential. p-wave pairing there-
fore leads to enhanced vortex pinning that could be determined by measurement of the
depinning current or the vortex inductance of such a system. Furthermore it was stated
that at high temperatures the difference between the vortex pinning energy for s-wave
and p-wave superconductors becomes even larger compared with low temperatures (see
Fig. 2.6) [64]. Measurement of the parallel field dependence of the pinning constant
at low and high temperatures offers another approach to acquire information on the
underlying pairing mechanism.
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3.1. Sample Structure and Fabrication
The following section will give a short overview over the crystal growth, structural prop-
erties and lithography of the measured samples. The three different crystal structures
investigated in this work consist of thin Al films grown either on top of an insulating
GaAs substrate or on top of a semiconducting InAs 2DEG with large Rashba spin-orbit
coupling. From the Al/InAs heterostructure samples Al/InAs-M (meander), Al/InAs-
S (strip), Al/InAs-C (circle) and 1D_JJ1 (Josephson junction array) were fabricated.
From the Al/GaAs crystals two meander samples Al/GaAs-M15 and Al/GaAs-M7 were
measured as a reference without spin-orbit coupling to sample Al/InAs-M.

3.1.1. Al/InAs Heterostructure

The material which was mainly investigated in this thesis is an Al/InAs heterostructure
which was grown and provided by the group of Michael Manfra at Purdue University.
The layer stack of the material is depicted in Fig. 3.1. The growth starts from an InP
substrate on which a graded buffer layer is grown in order to produce a virtual InAlAs
substrate. On this virtual substrate a 7 nm thick, asymmetric InGaAs/InAs/InGaAs
2DEG is grown. As a thin surface layer of Al oxidizes rapidly in air 2 − 2.5 nm is
subtracted from the nominal thickness in the quantitative analysis. The asymmetry of
the confinement potential assures Rashba SOC. On top of the 2DEG a two monolayer
thick GaAs layer is grown which acts as an etch stop. The last layer consists of 7 nm
thick Al that grows epitaxially on the GaAs.

39



3. Methods

Fig. 3.1: Layer stack of wafer M10-
08-18.2. The 7 nm thick Al layer is
grown epitaxially on top of an In-
GaAs/InAs/InGaAs structure, which
hosts a high mobility 2DEG (yellow).
The layers are separated by a two
monolayer thick GaAs sheet which
acts as an etch and oxidation barrier.
The heterostructure is on top of an
InAlAs virtual subtrate. From top to
bottom the In content is increased for
the first 33 nm from 0.81 to 0.84 be-
fore it decreases again from 0.84 to
0.52 over a thickness of 900 nm. The
whole stack is grown on a commercial
InP wafer.

40



3.1. Sample Structure and Fabrication

3.1.2. Crystal Lattice Matching in Al/InAs

In the following the symmetries of the two different crystal structures and their relative
position relative to each other are discussed. If certain crystal directions are mentioned
in this work section, they are always to be understood relative to its host lattice. This
means, that the same expression for the crystal direction (e.g. [110]) corresponds to
different directions in real space for the two lattices.
The substrate and the 2DEG are grown in the [001] direction. With the presented atomic
composition ratios and most importantly a GaAs terminated surface the Al was shown
to grow in the fcc [111] direction [66][67]. A top view of the two crystal surfaces is shown
in Fig. 3.2. Zincblende (001) plane has a two fold symmetry and two mirror axes in the
directions [1̄10] and [110] (left side of Fig. 3.2). Therefore thin chips of these crystals
usually break along these directions when they are cleaved. The fcc (111) surface of the
Al on top of the semiconductor has a threefold symmetry with three mirror axes (right
side of Fig. 3.2). One of the in-plane mirror axes of the fcc (111) plane is [1̄1̄2].

Fig. 3.2.: left: top view of the Zincblende (001) surface of the semiconductor. Different
colors correspond to different atomic layers: black -> As atom in first layer, blue -> Ga
atom in second layer, green -> As atom in third layer, red -> Ga atom in fourth layer.
There are two mirror symmetric crystal directions [11̄0] and [110]. right: Top view of the
fcc (111) plane of the Al layer. There is a threefold symmetric structure. The Al [1̄1̄2] axis
is one of the three mirror symmetry axes, whereas the [1̄10] axis lacks mirror symmetry.
Depending on the current direction (red arrow Iω) Cooper pairs experience spin-orbit fields
with threefold symmetry. Right picture taken from [68]

The orientation of the Al in-plane [1̄1̄2] axis was reported to be either parallel to the
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[110] [67] or the [11̄0] [66] axis of the semiconductor. The two possible stackings are
shown in Fig. 3.3. This means that along one of the two Zincblende mirror axes also
the Al has a mirror axis, whereas along the other main Zincblende axis, Al fcc lacks
symmetry. The mismatch of the two lattice structures of the different lattices then
breaks the symmetry of the system at the interface not only in the [001]-direction but
also in the interface plane. Maybe this leads to strain in the structure and therefore
electric fields in the plane. As a consequence, possibly a spin-orbit texture perpendicu-
lar to such fields i.e. out-of-plane is introduced at the Al/GaAs interface (see section 2.3).

Fig. 3.3.: Possible stackings of the Al fcc (111) (dots with lines) and the (001) GaAs (dots)
surface. The semiconductor In the left sketch the fcc [1̄1̄2] mirror axis is parallel to the
zincblende [110] mirror axis. In the right picture fcc [1̄1̄2] mirror axis is parallel to the
zincblende [11̄0] mirror axis. Note that these sketches only show the possible relative orien-
tations of the rotational symmetries of the two lattices. The interatomic distances are not
shown true to scale.

From this point on crystal directions are always to be understood as relative to the
Zincblende lattice. For example, "current is flowing in the [110]-direction" means, that
the current flow in real space is parallel to the Zincblende [110]-direction.
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3.1.3. Lithography

The investigated samples all were either structured by means of optical or electron
beam lithography (EBL). The provided wafer was successively broken into small pieces
of some mm length and width always taking care that the crystallographic main axes
were known. After a cleaning procedure in an ultrasonic Acetone bath and successive
washing in Propanol the clean samples were blown dry with nitrogen. Afterwards the
small rectangular pieces were spin coated with either optical or EBL resist. The samples
were then heated in order to evaporate the solvent of the resist. Lithography was then
performed either with an electron beam in a scanning electron microscope (SEM) or
with UV radiation in a mask aligner setup. After the writing process the samples
were put into resist developing chemicals. In the case of the optical lithography in the
development step at the same time the desired structure was already etched into the Al
layer, because the developer was based on NaOH, which dissolves Al. In the EBL case
the commercially available etchant Transene D was used to selectively remove the Al
layer from the resist-free regions. Afterwards a wet etching solution (orthophosphoric
acid : citric acid : hydrogen peroxide : distilled water = 1.2 : 22 : 2 : 88) was used to
etch deep into the substrate of the layer stack.

3.2. Measurement Setups

Probing superconducting dynamics deep in the superconducting state is featureless in
DC resistance experiments because of the vanishing resistance at low temperatures. In
order to investigate changes of the superconducting properties far away from the phase
boundaries it is necessary to use AC techniques for measurement of the inductive re-
sponse of a superconductor. In this next chapter two techniques that allow the measure-
ment of the complex impedance of a superconducting thin film are introduced. The first
approach was to measure the mutual inductance of two axially symmetric coils with the
thin superconducting film sandwiched in between them. Although reliable results could
be achieved for films with large dimensions, it turned out, that this method was not
suitable for measuring small, patterned devices with high enough resolution. This made
it necessary to establish a second technique based on the measurement of a frequency
shift of a cold RLC circuit incorporating the superconducting structure.
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3.2.1. Mutual Inductance Setup

Design Theoretical Description

The mutual inductance technique was introduced for the first time by Hebard and Fiory
in 1980 [69]. Lemberger et al. [70][71][72] have used this technique to determine λ for
thin Nb films and many other materials and came up with almost the same results as
measured by ubin et al. [73] with a microwave resonance technique. Validity of the
procedure therefore can be stated. In the course of this work two variants of the two
coil setup have been constructed.
The setup of the first generation is sketched in Fig. 3.4. Photographs of the setups
are shown in Figs. 3.5 to 3.7. The two coils wound from 50µm thick copper wire are
always kept at the same distance D from each other. The top part consists of a standard
ceramic chip carrier, in which holes had been burnt in the center and on two corners
with a laser from the electrical workshop of the chemistry department. One of the coils
has then been glued into this hole and the leads put through the two outer holes and
soldered on two contact pads on the inside of the chip carrier. The second coil has
been connected with 4 spring loaded contacts as to be seen in Fig. 3.6, which should
make contact with the gold pads inside of the chip carrier when mounted. In practice
contact problems occurred at these points and the second coil was eventually contacted
by simply soldering wires on two contact pads inside of the chip carrier and connecting
them with two of the springs.

By sending a defined AC current with frequency f through one of the coils, called ’drive
coil’, a magnetic field is generated, which induces a voltage in the second, the ’pickup
coil’. The complex mutual inductance between the two coils is then defined as

M = M1 + iM2 = Uind
Iω

, (3.1)

where I is the current through the drive coil and ω = 2πf the angular frequency of
the drive current. M1 represents the out-of-phase and therefore inductive part of the
response function, M2 the dissipative in-phase component caused by vortex friction,
respectively.
As the direct measurement of the inductance of a superconductor by a standard transport
measurement is challenging at low frequencies, one can make use of the magnetic response
of a superconductor in an external magnetic field. By comparison of measured and
simulated mutual inductances, λ can be computed. The model calculation of M follows
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k
i

l

j
Fig. 3.4: Schematic view of the
measurement setup. Two axially
aligned coils are located on oppo-
site sides of the sample of thick-
ness D consisting of a substrate in-
dicated by the grey bar and a thin
superconducting film with thick-
ness d, depicted as a black bar.
Crosses in the loops are describing
currents flowing into the drawing
plane, dots indicate currents com-
ing out of the plane.

Biot-Savart’s law, which allows to compute the magnetic field at each point induced by
a current density ~J(~r) in the film:

~B(~r) = µ0

4π

∫
V

~J(~r′) ~r − ~r′

| ~r − ~r′ |
d~r′. (3.2)

Clem and Coffey [74] have shown that the mutual inductance between two single, coaxial
coils with radii r1 and r2 on opposite sides of a thin film separated by a distance D in
absence of vortex motion is given by

Msl = πµ0r1r2

∫ ∞
0

Λ
1 + Λe

−DqJ1(qr1)J1(qr2)dq, (3.3)

where Λ = 2λ2/d is Pearl’s effective penetration depth. J1(x) represents the Bessel
function of the first kind. The total mutual induction between the two coils is then
computed by taking the sum over all possible pairs of single loops of both coils. For the
given geometry this leads to

M(λ) =
∑
i

∑
j

∑
k

∑
l

2πµ0r1,kr2,l

∫ ∞
0

q λ
2

d

1 + q λ
2

d

e−Di,jqJ1(qr1,k)J1(qr2,l)dq, (3.4)

where r1k = (0.45 + k · 0.08) mm, r2l = (0.45 + l · 0.08) mm are distances from the
symmetry axis and Dij = (1.261+ i ·0.088+j ·0.065) mm the distance between a specific
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Fig. 3.5.: Top view of the two-coil setup.
The pick-up coil is fixed into a standard chip
carrier and connected with the contact pins.
The chip is then pressed against the bottom
part of the setup (right picture).

Fig. 3.6.: Drive coil and spring loaded con-
tacts. The drive coil is connected with the
springs which lead to the top of the setup.

Fig. 3.7.: Sample (black square) inside the
bottom side of the chip carrier. In the course
of the measurement process a stencil has been
cut with inner sizes of the films to center them
within the setup. In the top and bottom row
of contact pads, there are two solder joints for
contacting the primary coil.

pair of loops. i and j represents the number of turns in the vertical, k and l those in
the horizontal direction. These parameters lead to a calculated mutual inductance of
∼ 28 nH in the limit of infinite penetration depth in absence of superconductivity, which
is in good accordance to the measured value in absence of a superconducting film of
∼ 28.6 nH (Fig. 3.8). This small difference does not much influence the actual results,
as only normalized values are compared. For small λ, M(λ) is approximately quadratic
(see inset of Fig. 3.8).
The summation over single pairs of loops in eq. 3.4 requires the assumption that on
the one hand single loops lie in planes parallel to the sample surface and turns in the
horizontal direction are perfectly ordered next to each other as sketched in Fig. 3.4, on
the other hand. Furthermore it is necessary to assume the single turns to lie in a strictly
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Fig. 3.8.: Simulated dependence of mutual inductance on magnetic penetration depth for the
two investigated diamond films. M(λ) is normalized by the value calculated from eq. 3.4 for
a sample with infinite penetration depth (∼ 28 nH). For λ→∞ the drive field can penetrate
the superconductor without any suppression.

horizontal plane, although the coils have more or less helical shape. For simplicity the
diameter of the wire is neglected. Therefore in the simulation all current flows in the
center of the wire. In the vertical direction 30 loops in 3 layers are wound over a total
length of 2mm, so the distance between a pair of coils is just a sum over D plus the
number of the vertical turns i and j times the average length per turn.

λ is then determined by solvingMmeas(T ) = M(λ) for each point using a numerical solver
included in Scientific Python. As mentioned, this simulation only holds in absence of
vortices. For superconductors in the vortex state a second term, which describes vortex
motion in the film caused by AC fields has to be added to the response resulting from
screening currents

M = Mscr +Mv. (3.5)

The vortex term is proportional to the number of vortices in the sample. Without per-
fectly zeroed out-of-plane field or near TBKT the number of vortices is unknown. Hence,
the vortex contribution is neglected in the calculation. Assuming that there can be a
vortex contribution, calculated λ represents an upper limit for the actual value [74].
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Calibration Measurement and Exemplary Results

Once the film reaches its critical temperature, the out-of-phase signal measured by the
pickup coil is reduced strongly due to the Meissner effect. The dissipative component,
on the other hand, is most dominant near the transition temperature, where vortices are
excited thermally and can move freely before they become bound or pinned by defects
below TBKT . The drive field in all cases was kept small enough of the order of 5µT to
avoid introduction of vortices.
For d� λ the film is assumed to completely screen magnetic field lines produced by the
drive coil, that would go through the sample. Only field lines leaking around the film
then contribute to the signal. As already mentioned, the simulation is only valid for
films of infinite lateral extension without any leakage signal. Therefore it is necessary
to compensate this offset in the induced voltage. To do so, a calibration measurement is
carried out with a 200 nm thick (df � λ) aluminum film (Fig. 3.9), which is assumed to
screen all of the magnetic flux, that would go through the sample. Measurements with
superconducting films of the same cross section are then normalized with these values:

Msim(λ)
Msim(∞) = Mexp(T,B)−Mcal(0)

Mcal(T � Tc)−Mcal(0) . (3.6)

If, on the other hand, the penetration depth is in the range of the film thickness, there is
still a non-zero contribution of the magnetic flux through the film to the measured volt-
age. The resulting net signal is then compared with the simulation for the whole setup
including all geometric factors. For evaluation all the measured curves are normalized to
its magnitude just above Tc and then compared with the simulation mentioned above.
This normalization is important to minimize run to run variations.

Fig. 3.11 shows the temperature dependence of the magnetic penetration depth and the
DC resistance of a nominally 6.5 nm thick Al film that was grown on top of an InAs 2DEG
in the MBE chamber of the workgroup of Dominique Bougeard at UR. The relatively
high transition temperature of 2K and a sheet resistance of 109Ω in the normal state
hints towards some granularity of the film. Together with a measured penetration depth
λ(0) > 1µm the Al film quality turned out not to be a possible platform for artificial p-
wave superconductivity where high quality films and interfaces between superconductor
and 2DEG are needed.
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Fig. 3.9.: Calibration curve for samples with a cross section of 3.1 mm × 3.1 mm. Mcal(0)
shows screening of the thick aluminum film in the superconducting state and is supposed to
represent only magnetic flux leaking around the sample. Above and below Tc a constant mutual
inductance is measured. The difference between these two constants is the effective, maximum
mutual inductance for samples of the same cross section.

Fig. 3.10.: Temperature dependence of mag-
netic penetration depth and DC resistance of
a 6.5 nm thick Al film grown on top of a InAs
2DEG.
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Fig. 3.11.: Zoom near Tc. Resistance is plot-
ted in a logarithmic scale. The temperature
where the DC resistance was not measurable
anymore fairly coincides with the onset of su-
perfluid density although both measurements
were performed in two consecutive cooldowns.

Alternative Setup Designs

Further measurements were performed in the course of a master and state examination
thesis. The results are not shown here. The used mutual inductance setups, however,
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should be introduced here, as they might be useful for future applications. The coils
were all wound by the author. For the measurements in these works a modified version
of the above sketched setup was used. Instead of a single pickup-coil an additional,
equally but counter-wound coils is connected in series with the first pickup coil. With
that compensation pickup of slowly in space varying magnetic AC fields can be reduced
and signal-to-noise ratio is increased. For the numerical calculation on the right hand
side of eq. 3.4 there will be a sum of contributions from the two coils with different
sign. The signal will, however, still be dominated by the first pickup-coil due to the
exponential dependence on the distance between drive and pickup-coil. The coils of the
second generation are wound from 25µm thick copper wire. Photographs through the
optics of a microscope is shown in Fig. 3.12 and 3.13. As such thin wire are easily torn
apart, the winding of such coils is quite challenging.

Fig. 3.12.: Photograph of a still unglued
drive coil. On the left side the two leads can
be seen. The coils are wound from 25µm
thick copper wire. The single turns of the
coil align nicely parallel by keeping a small
tension in the direction opposite to the feed.

Fig. 3.13.: Photograph of a compensated
pair of self-compensated pickup-coils consist-
ing of two counterwound but otherwise simi-
lar single coils. The left coil is already glued
with second glue. Leads can be seen on the
very left and right side of the coils.

The setup used for coil winding is shown in Fig. 3.14. The coil body is clamped in
the drill chucks of a cordless drill that can rotate in both directions. The spool with
the copper wire is placed on a metal rod under the table. The wire is lead through a
constriction of soft foam and finally over a soft edge made from standard duct tape. By
that a small, but sufficient tension in the wire could be achieved, that is necessary for a
proper arrangement of the windings on the coil body. The first lead is glued with duct
tape on the side of the drill chucks before winding. During the winding process the wire
is always kept under tension with a small angle away from the feed direction. With that
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the single turns of the wire automatically arrange parallel to each other. For coils with
more than one layer the wire tension direction has to be adjusted when one end of the
coil body is reached before the reversal of the feed direction. The winding progress can
be watched through an optical microscope. In that way also the number of turn wound
on the coil bodies are counted.

Fig. 3.14.: Setup used for winding of the mi-
crocoils. a: Spool with copper wire. b: Soft
foam constriction producing finite tension on
wire and duct tape changing wire direction.
c: drill chuck holding the coil body. d: cord-
less drill. e: optical microscope. Green line
represents the copper wire during the winding
process.

Fig. 3.15.: Photograph of a fully wound
pickup-coil still mounted in the drill chucks.
On the right side one can see the wire run-
ning across the white duct tape before it is
bent down towards the coil body.

A third version of such a mutual inductance setup was also tested. In that design both
drive and pickup-coil are located at the same side of the superconducting film. The
drive coil in this case is glued symmetrically inside a hole drilled in the center of the
pair of compensated counterwound coils. The signal above Tc is zero as the two parts
of the pickup-coil pick up the same flux from the drive coil which produces equal in-
duction voltages with opposite sign. As a superconductor is placed on one side of the
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setup an additional signal is produced by the inductive response of the thin film. The
flux resulting from the induced Meissner currents in the superconductor decays over the
distance to the film surface. Then a net signal is measured, because the pickup-coil
next to the film will detect more flux than the one further away. The calculation of λ
from the mutual inductance data is very similar to that already mentioned with slight
adjustments. As the signal is nearly zero (depending on the equality of the windings of
the two parts of the pickup-coil, proper arrangement of drive coil inside the pickup-coil
etc...) above Tc this method is especially well suited for small inductive responses as to
be expected in very disordered thin film superconductors. Small voltages allows the use
of high amplification for the detection, which gives good signal-to-noise ratio. Further-
more the relative position of drive and pickup-coil does not need to be changed when
the sample is changed. With that, the run to run fluctuations can be kept much smaller
compared with two separate coils.

At last the self compensated setup gives the possibility to put another coil on the far side
of the thin film. This allows the simultaneous measurement of the inductive response on
both sides of the sample. In the course of this work with the help of bachelor students
Lukas Herrmann, state examine student Christian Gaube and master student Leon
Müller efforts were made to directly measure the anisotropy of the Meissner currents of
thin film d-wave YBCO superconductors. In principle this technique should work for
any superconducting state that has anisotropic Meissner responses to external fields,
which is expected in Al/InAs heterostructures.

For that kind of setup, an arrangement of micro coils were produced by means of electron
beam lithography and evaporation of gold on a Si/SiO2 substrate. These gradiometer
coils were placed on the far side of the film with the center of the arrangement aligned
axially with the drive/pickup-coil. The chip with the microcoils could be rotated in-
situ by a room temperature step motor with a transmission to the sample holder of
a 4K stick. Fig. 3.16 shows two sets of microcoils. The coils are interconnected by
bond wiring in a way that neighboring coils produce opposite voltages so that zero net
voltage should be achieved in a radial symmetric excitation field. Asymmetric fields
resulting from anisotropic Meissner currents in the sample therefore should produce a
finite voltage in the gradiometer coils. By rotating the sample together with drive and
pickup-coil relative to the gradiometer coils symmetries of the supercurrent pattern could
be investigated. The whole setup was put at the very end of a 4K dip stick (Fig. 3.17)

Although the production and calibration of the gradiometer coils were succesful and
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Fig. 3.16.: left: Quadrupol arrangement of on-chip microcoils produced by EBL and gold
evaporation. The linewidth of the coils are in the low µm regime. Picture taken from master
thesis of Leon Müller, April 2020. Right: Octupol arrangement of microcoils. Picture taken
from bachelor thesis of Lukas Herrmann, November 2018.

Fig. 3.17: Photograph of the
sample holder with the gra-
diometer setup (center) and a
standard two-coil setup (left).
Picture taken from master
thesis of Leon Müller, April
2020.

induced voltages could be measured there was no clear signature of anisotropic Meiss-
ner effects in thin film YBCO. In order to achieve reliable results a more dedicated
approach by means of a full-time PhD student working on the topic would be needed to
be employed.

Limits of the Mutual Inductance Technique

The mutual inductance technique to determine the inductance of superconducting thin
films, although well established, has some limitations, which made it inappropriate for
the further use in this work. Firstly, for a good accuracy relatively large (lengthscale
cm) and on that scale also clean samples are needed, because the signal strength de-
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pends on the dimensions of the pick-up coils. Therefore only averages over the whole
sample can be measured. Secondly, it is not possible to simultaneously perform stan-
dard DC transport measurements with a good accuracy or to determine the impact of
superimposed DC currents of a sample. Thirdly, an inductance measurement of small,
structured devices like Josephson junctions or constrictions is not possible. Further-
more, for each sample geometry an individual calibration measurement with an equally
sized, thick superconducting reference sample is needed. At last, the use of a setup with
moveable parts lead to significant run to run fluctuations. All these disadvantages de-
mand a more dedicated setup for measuring the complex impedance of superconducting
microstructures in a reproducible manner.

54



3.2. Measurement Setups

3.2.2. RLC Circuit

The above mentioned limitations of the two-coil method demanded a different setup,
better suited to measure the complex impedance of superconducting microstructures.
The setup design used for that purpose is based on the work of Meservey and Tedrow
from 1969 [9]. They determined the kinetic inductance of long superconducting mean-
ders by measuring the resonance frequency of an RLC circuit, in which the sample was
incorporated. They used an analog counter to determine the frequency of the damped
oscillation after application of a DC puls to the resonator. From the oscillation frequency
they were able to determine the kinetic inductance of the structure. By counting oscilla-
tions instead of absolute voltages, the signal-to-noise ratio can be enhanced significantly.

There are some advantages in using resonators in the MHz regime for probing supercon-
ducting dynamics instead of a microwave experiment performed with a superconducting
stripline resonator. Mhz frequencies are usually far away from the range, where thermally
excited Bogoliubov quasiparticles produce a significant resistance, which would damp
the resonance, as it is the case in microwave resonators. Also the vortex depinning fre-
quency, at which pinned vortices start to dissipate under an AC current, is usually in the
GHz regime. Free vortex motion significantly reduces the quality factor of microwave
resonators, whereas in the present RLC circuit dissipation due to vortex motion is small.
This allows to measure vortex dynamics of weakly pinned vortices in rather high out-
of-plane fields by using MHz frequencies. In a superconducting microwave experiment,
great care needs to be taken to reduce losses caused by quasiparticles. This is achieved
partly by decoupling the microwave resonator from the leads by with small capacitors
in series at the input and output of the stripline. This prevents DC and low-frequency
noise from spoiling the quality factor. This, however, also makes it impossible to study
the impact of DC currents on the superconductor, which is a crucial parameter when
measuring polarity dependent impedances. For a precise measurement of the dynamics
of the complex impedance of superconducting structures, a RLC-resonator in the low
MHz regime is therefore very well suited. The modified version of the resonance tech-
nique of Meservey and Tedrow used in this work and the corresponding electrodynamics
are discussed in the following sections.

55



3. Methods

Circuitry and Electrodynamics

The basic principle of measuring the kinetic inductance and therefore the superfluid
stiffness of a superconductor used in this work is to incorporate the sample into a parallel,
resonant RLC circuit (Fig. 3.18). The sample is placed in series with a constant inductor
L0 and parallel to a constant capacitor C. The inductor is a self-wound coil made from
copper wire. In the superconducting state of the sample, where damping of the resonator
is small and mostly due to the resistance of the coil, the resonator shows a sharp peak at
the resonance frequency f0. f0 and the width of the resonance δf can then be extracted
by fitting the recorded data to a standard resonance curve. From these two quantities,
the complex impedance of the sample can be calculated. Photographs of the two RLC
resonators that were used in this work are shown in Fig. 3.19.

Fig. 3.18: left: Schematic picture of the
RLC resonator. The setup is isolated from
the rest of the cryostat by four resistors
RD. In the RLC parallel resonant circuit
the superconducting sample is connected in
series with a constant inductor L0 and par-
allel to a constant capacitor C. Sample re-
sistance Rs and inductance Ls are varied
by external parameters. CP represents a
stray capacitance between the measurement
leads. The resonator is driven and the pre-
amplified returned signal read out by a digi-
tal lock-in amplifier working in the low MHz
regime. Room temperature π-filters reduces
high frequency noise in the system.

The circuit is isolated from the rest of the cryostat with four resistors RD with a resis-
tance larger than the characteristic circuit resistance at the resonance Zm = L

CRs
. For
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Fig. 3.19.: Left: RLC resonator of first generation used for parts of the measurements.
Decoupling resistors RD are standard 1 kΩ cylinder resistors with nearly constant resistance
down to low temperatures. The air filled coil was wound from 100µm thick copper wire and
has an inductance of Lcoil ≈ 320 nH. The capacitance C consists of two parallel 2.2 nF SMD
capacitors with a total capacitance of 4.42 nF. RHeat is a 1 kΩ SMD resistor, that can be
used to locally heat the sample holder without warming up the mixing chamber. Right: RLC
resonator used for the major part of the inductance measurements. The decoupling resistors
and the heater are 1 kΩ SMD resistors. The capacitance consists of four 1 nF SMD capacitors
in parallel with a total C = 4 nF. The inductor is a coil wound from copper wire on a small
rod of PVC with an approximate inductance of 396 nH, which is fixed on the sample holder
with epoxy. With this unwanted changes of inductance due to accidental bending of the coil
leads during sample exchange can be prevented, which gives good reproducibility.

films and resonators in this work this resistance is of the order of ∼ 300 Ω. If this is ful-
filled the circuit can in good approximation be considered a series circuit with resonance
frequency

f0 = 1
2π

√
1
LC

, (3.7)

where L = L0 + Ls. L0 is the inductance of the small coil in series with all stray
inductances coming from self-inductances of bond wires, cables or loops of conducting
lines.
Quality factor Q of the resonator can be calculated as
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Q = 1
Rs

√
L

C
= f0

δf
. (3.8)

Spectra are taken at constant external parameters such as temperature, magnetic field
or DC current through the sample. With an inductance of typically several hundred
nH of the coil and a capacitance of some nF, a resonance frequency in the low MHz is
achieved, which can be detected with a 5 MHz lock-in amplifier. Spectra are fitted using
a Fano resonance function

|V |2 = V0
2 + A

(
q δf2 + f − f0

)2

(
δf
2

)2
+ (f − f0)2

, (3.9)

where δf is the full width at half maximum and f0 is the center frequency. From the
two fitting parameters f0 and δf , L and Q = f0

δf
and via eq. 3.8 Rs can be determined.

Fano resonances arise from an interference of a continuous spectrum or background with
a discrete one. The continuous spectrum can result from parasitic transmission paths
like stray capacitances between leads or to ground, while the discrete on in the present
case comes from a RLC resonator [75]. The resulting transmission coefficient S21 can be
written as [76]

S21 = a

1 + 2if−f0
δf

+ ib, (3.10)

where the first term describes the RLC resonator while the latter corresponds to an
imaginary background transmission resulting from a stray capacitance or mutual induc-
tance that connects the input resistors RD and the lock-in output and the preamplifier,
respectively. The transmitted power is calculated as

|S21|2 = | a

1 + 2if−f0
δf

+ ib|2 = |
a+ (1 + 2if−f0

δf
)ib

1 + 2if−f0
δf

|2 =
(a− 2bf−f0

δf
)2 + b2

1 + (2f−f0
δf

)2
=

( δf2 a− b(f − f0))2 + (b δf2 )2

( δf2 )2 + (f − f0)2
=

( δf2 )2(a2 + b2)− 2ab δf2 (f − f0) + (b(f − f0))2

( δf2 )2 + (f − f0)2
(3.11)

Comparison of coefficients in formulas 3.11 and 3.9 gives

Aq2 = a2 + b2

2Aq = −2ab.
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Solving this equation for A and q leads to

q = −a
2 + b2

ab

A = a2b2

a2 + b2 .

In the limit of b� a (small parasitics), this gives

q = −a
b

A = b2 = a2

q2 .

In this limit eq. 3.11 is equivalent to eq. 3.9.
A change of inductance and/or resistance of the sample changes the resonance conditions
and therefore the shift or broaden the measured spectra in frequency. In Fig. 3.20 a set
of resonance curves measured in zero magnetic field are shown. The depicted curves are
exemplary for all datasets from which inductance and resistance values are extracted
but not shown.

From the center frequency and the width of the resonance inductance and resistance
values can be determined by using eq. 3.9 and eqs. 3.7 and 3.8. A fit of the data at T =
0.05 K to eq. 3.11, where no approximations are applied, delivers a ratio of b

a
= 0.057.

This shows that the approximation formular 3.9 is valid. The small perturbation b is an
effective value that can result from various sources like capacitances to ground, between
the leads or inductive transmission. The fit only delivers transmission parameters for a
and b, not for a concrete circuit element. Extraction of the real values depend strongly on
the used circuit model. Furthermore, the use of circuit elements with input and output
resistance different from 50 Ω would make the calculation very complex. In most cases
a voltage divider was used at the input with an output resistance of 10 Ω. A concrete
value for the stray transmission in form of an effective capacitance is therefore not easily
accessible.
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Fig. 3.20.: Exemplary resonance spectra measured in zero magnetic field for temperatures
from 0.05 K (highest resonance frequency) to 1.3 K (lowest resonance frequency) in temperature
steps of 0.05 K. Increased temperature leads to a reduction of the resonance frequency as
well as to a damping of the resonance because of pair breaking effects caused by the finite
temperature. Dashed lines represents a fit to a Fano-like resonance curve (eq. 3.9) from which
center frequency and width of the transition can be extracted.

Given by the setup layout, a DC voltage on top of the probing AC voltage applied to
the input resistor leads to a DC current that flows through the inductor and the sample.
With this setup it is possible to probe the DC current dependence of the inductance,
which is in general not possible in microwave experiments. This is because in standard
GHz measurements the superconducting resonators are coupled to the measurement
leads capacitively, which blocks DC currents. A voltage applied to the setup always
produces Joule heating at least of the order of P = V02

RD
, where V0 is the voltage to

ground at the input resistor RD. As there is a thermal resistance between the sample
holder and the mixing chamber, this can lead to a significant heating of the whole setup
and has to be taken into account. The AC current I0 that is flowing through the RLC
circuit to the cold ground is nearly constant and primarily determined by the input
resistor. The circular current, however, that is flowing back and forth in the RLC circuit
and therefore through the sample is frequency dependent and has a maximum at the
resonance
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Imax = QI0 = QV0/(RD + Zm). (3.12)

This can lead to a distortion of the spectra if there are non-linear terms in the current-
inductance dependence, as it is the case for superconductors at high currents. Pair
breaking or depinning effects can lead to such non-linearities and have to be taken
into account in the analysis. If not mentioned otherwise, measurements were always
performed at AC bias voltages, where non-linear effects can be neglected.

Simulation

A symbolic circuit simulator was used for an approximate calculation of the transfer
function of the circuitry. For that also cable resistances and capacities of the cryostat
and room temperature filters were taken into account. A schematic picture of the circuit
is depicted in Fig. 3.21. With measured values for the π-filter capacities of 6.3 nF and
8.2 nF and reasonable estimated guesses of some hundred pH for the line capacities it is
possible to reproduce the measured spectrum of the resonator with a superconducting
sample placed in series with the inductor. The analytical expression calculated with
the circuit simulator consists of hundreds of terms in the numerator and denominator.
Performing a fitting procedure to extract exact values is therefore not easily possible.
The presented circuitry is of course a relatively simplified version of the real circuit. The
main features, however, can be captured qualitatively. This design was used for early
measurements. In later experiments a 100:1 (R1 = 1 kΩ and R2 = 10 Ω) voltage divider
was inserted between the output of the lock-in amplifier and the input π-filter in order
to increase the cutoff frequency at the ingoing side by a factor of 5. This led to a much
flatter spectrum in the whole frequency range of 0 to 5 MHz. With this voltage divider
also noise as well as DC offset voltages of the lock-in amplifier were divided by a factor
of 100. This was especially useful, because the DC offset voltages of the lock-in amplifier
have been on the order of some hundreds of µV and hence produced currents through
the sample of the order of some hundreds of nA. Without this voltage divider it was
necessary to remove the DC offset at the beginning of each session and also to check
from time to time whether the offset was still properly compensated by a finite bias set
in the instrument. By suppressing the small offset by a factor of 100 this compensation
was not needed anymore, because some finite DC currents of some nA did not alter the
inductive response of the sample.
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Fig. 3.21.: Simulated (black line) transfer function and measured spectrum (red points) of
a typical RLC resonator setup used in this work. The part which is highlighted with the
blue dashed box is located inside of the cryostat. The inductance Ltank and the resistance
Rtank of the copper coil are in series with the superconducting sample with inductance Lsample
and resistance Rsample. The inductors together with a parallel capacitor Ctank, form the
RLC circuit. The strong low-pass-like background is caused by capacities of room temper-
ature pi-filters at the input and outputs of the cryostat (C_Pi_in, C_Pi_out). Addi-
tionally, measurement leads in the cryostat also have a capacity to ground (C_linesout).
At the ingoing side the R_LI_out = 50 Ω output resistance of the lock-in amplifier to-
gether with the capacity of a room temperature filter form a RC low-pass with a cutoff
frequency in the high kHz regime. On the other hand, the decoupling resistors Rd on the
outgoing side together with the outgoing line capacity (C_linesout) also form a low-pass-like
element with a cutoff-frequency in the low MHz regime. At the output of the cryostat a
56 dB preamplifier is used to amplify the voltage signal. Numbers for the different circuit el-
ements are: R_LI_out = 50 Ω, C_Pi_in = 6.3 nF, Rd = 1 kΩ, L_tank = 347 nH, C_tank =
4.418 nF, R_tank = 0.32 Ω, L_sample = 0, R_sample = 0, C_linesout = 100 pF, R_op1 =
31500 Ω, R_op2 = 50 Ω, R_opout = 50 Ω, C_Pi_out = 8.2 nH.

3.2.3. Setup for Measurement of Critical Current

In superconductors charge flow is carried by Cooper pairs. At high currents the sum of
the kinetic energy of the two constituent electrons can overcome the superconducting gap
∆, which leads to a breakup of the Cooper pair into two single particles. The current,
at which the Cooper pairs are destroyed, is called the depairing current. In out-of-plane
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magnetic fields vortices are introduced in the system. When a vortex is pinned at a
defect, small currents do not lead to significant vortex motion. At currents high enough
to overcome the maximal pinning force of a vortex, a finite resistance appears due to
the vortex friction. The current needed to push a vortex out of its pinning potential is
called depinning current and is always smaller than the depairing current. Depairing
and depinning current are usually both called critical current.
Reproducible measurements of critical currents of superconducting structures are very
challenging. In presence of a dc-bias current electrical noise, flux jumps in the structure
and other external sources like fast varying magnetic fields can lead to a spontaneous
transition to the normal state. Such events become more and more likely the weaker the
superconducting condensate. At high DC currents a superconductor becomes more and
more fragile and therefore subject to stochastic switching. Hence, slow measurements of
the current-voltage characteristics usually lead to critical currents that are much lower
than the true critical current. Furthermore, the current at which a superconductor
switches to the normal states can vary strongly from run to run. Although averaging
over many runs gives more reproducible average values, the measured switching current
is still smaller than the true critical current.

Very fast ramping of the bias current and simultaneous measurement of the voltage drop
across a superconducting structure can resolve this problem. For ramp times that are
much smaller compared to the time scale between stochastic switching events extracted
critical currents come much closer to the true critical current. Measurements of the
critical current in this work were performed using a Rigol5352 Arbitrary Waveform
Generator as a source for fast DC current ramps and a Tektronix TBS1000C Digital
Oscilloscope for recording IV-traces. Ramp times were usually in the low ms range
and chosen to be fast enough to overcome the problem of stochastic transitions but slow
enough to get enough temporal and therefore current resolution. For each single point of
the parameter space a number of traces are recorded and averaged to reduce noise. Due
to the relatively low 256 points of resolution of the used oscilloscopes, it is only possible
to resolve the jumps to the normal state but, e.g. no vortex dynamics producing voltage
signals below the minimal resolution of the instrument.

3.2.4. Cryostat

The different devices were mounted in a dilution cryostat with a base temperature below
40mK. A mu-metal shield can be placed around the dewar containing the cryostat to
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reduce stray magnetic fields from nearby magnets and/or orther sources of slowly varying
fields. A superconducting magnet coil can produce vertical, bidirectional fields up to
8T. The RLC-circuit and hence the sample plane is aligned parallel with the vertical
magnetic field (from here on z-) direction. In the course of this work a pair of self-wound
superconducting coils was designed and assembled inside of the superconducting magnet,
which can produce magnetic fields with a perpendicular orientation with respect to the
sample plane. The field constant was determined by a calibration measurement, in which
a Hall probe was placed into the center field at the very same location as the samples
under investigation. A theoretical calculation using the geometry and number of turns
delivered an estimated field constant of ∼ 0.105 T/A with a field inhomogeneity of 0.2%
at a distance of ±1 mm in radial direction from the symmetry axis of the coils (see Fig.
3.22). Later measurements, however, showed that the field is supposedly much more
inhomogeneous. As shown in Fig. 3.25 two parts of a sample with a distance of 1mm
showed a difference in the compensation field of a few %. One reason could be that the
center of the sample is not perfectly positioned in the center of the compensation coil
in the radial direction which makes the field more inhomogeneous. Measurement of the
field strength with a hall probe at the position of the sample delivered a field constant
of only ∼ 0.089 T/A, which could also hint towards a non-optimal arrangement of the
sample in the center of the compensation field.

The measurement setup is mounted on a rotatable disc driven by a piezo slip-stick rotor
that allows for orientation of the sample plane with respect to the vertical field. For the
wiring 50µm thick copper wire was used, which is flexible enough to not exert too much
force on the piezo rotator during motion. Due to the wiring and the anisotropic mass
distribution on the rotator, the force needed to rotate the disc by a fixed angle is not
constant. Hence pulse trains with equal numbers of voltage pulses of equal height do
not rotate the system by the same angle. This problem is overcome by using a 3 point
readout line at the back of the rotator which allows the determination of the absolute
angle in most directions. Only in the region between the nominal angle of 335 ◦ and
20 ◦ readout was not possible due to the design of the readout circuit. In this "blind
window" the angle however, could be estimated by comparing compensation fields at a
fixed vertical field in that region (see next paragraph) with compensation fields measured
at both ends of the visible region.
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Fig. 3.22.: Calculated field constant of the compensation coils as a function of radial distance
from the symmetry axis. Especially for large samples not positioned perfectly in the center of
the field inhomogeneities can play a role as they increase with the distance to the center.

3.3. Measurement Procedures

In the following section two important measurement procedures are discussed, that have
been used very often in this work. The first part describes a method that allows to
eliminate out-of-plane field components arising from a misalignment of the sample plane
and z-field. This is done by application of an additional magnetic field perpendicular
to the sample plane produced by a pair of superconducting coils. Typical values for the
misalignment angles are estimated and shown as a function of rotator angle. The second
part explains 2nd harmonic resistance measurements, which are used to determine the
magnetochiral anisotropy in the Rashba Al/InAs. Also influence of a DC offset current
on the second harmonic resistance of superconducting samples near the transition is
discussed.

3.3.1. Compensation of Out-of-Plane Field Components

Due to small misalignments of the different parts of the cryostat, the different setups can
never be mounted in such a way, that the sample plane is perfectly parallel to the z-axis.
Magnetic fields, orientated in z-direction then lead to small out-of-plane magnetic field
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components on the sample. For measurements that demand zero out-of-plane magnetic
fields, these small field components have to be manually compensated using the small
pair of magnet coils. A procedure to find the smallest possible perpendicular field is
to look for a physical feature that is sensitive to absolute perpendicular fields, such as
the magnetic field dependence of resistance near the superconducting transition. In Fig.
3.23 a typical compensation measurement is depicted. In this case the low frequency
and therefore resistive response of a superconductor sample slightly above the critical
temperature is measured, where the resistance is strongly dependent on the perpendicu-
lar field. Perpendicular field sweeps are always performed back and forth to ensure that
the resistive response is non-hysteretic to exclude e.g. flux trapping. The perpendicular
field needed to compensate for a misalignment of the sample with respect to the vertical
magnetic field depends on the angle and the field strength of the in-plane field

Bcomp(B‖) = sin(α)B‖, (3.13)

where α is the angle between the film plane and the in-plane field. α depends on the
rotator position and is typically < 2 ◦.
The field minimum is determined by finding the minimum of a parabolic fit of the data.
With that an uncertainty of the field minimum better than 5µT could easily be achieved.
The compensation coils can produce magnetic fields up to 0.5 T in zero in-plane field.
As the critical current of the compensation coils decreases with increasing in-plane field,
the maximal perpendicular field is limited. Therefore it is not always possible to com-
pensate perpendicular field components completely. For this reason some high-field
measurements are cut-off at an in-plane field, where the compensation was just possible.
Fig. 3.24 shows compensation fields needed to null the out-of-plane field component of
an in-plane field of 0.5T for different rotator positions which set the relative angle of in-
plane field and film plane. Rotating the setup back and forth shows some hysteresis of the
compensation field indicating some long-term drift. The most probable explanation for
this drift would be, that trapped flux in the large magnet creeps upon application of the
compensation field. The difference between compensation fields in the back- and forth-
direction can be of the order of 10 %. Therefore it is not possible to once characterize
the misalignment of the in-plane fields relative to the sample plane and then rely on
linearity and long term stability. In measurement, where B⊥ = 0 is demanded, it is
therefore necessary to carry out a compensation procedure after each change of angle
and/or in-plane field. This makes measurements, where rotator angles or in-plane fields
are changed very lengthy and challenging.
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Fig. 3.23.: left: Typical measurement for determination of the zeroes of the perpendicu-
lar field. Low frequency resistance of a superconducting sample is measured as a function
of perpendicular field at a temperature slightly above the superconducting transition. The
measurement was performed at a nominally absence of a vertical field. A finite offset of the
perpendicular field minimum that results from stray fields of a small residual field in the z-
Magnet, can be observed. The red ellipse in the inset indicates the regime in the R(T )-curve
where the compensation procedure is performed. right: Horizontal compensation field as a
function of the vertical field for three different relative orientations of vertical field an sample
plane. The misalignment angles calculated via α = arcsin(dBcomp

dB‖
) are: red -> α = 1.03 ◦,

yellow -> α = 1.34 ◦, blue -> α = 1.41 ◦

It turned out that the compensation field was not entirely homogeneous across the whole
sample dimensions of some mm in width. In Fig. 3.25 the compensation field in an in-
plane field of 1.2 T for two wires in sample Al/InAs-S (see Fig. 7.1), which are roughly
1mm apart from each other, is shown as a function of rotator angle. The relative
difference of the two fields δB = Bcomp.1−10−Bcomp.110

1/2(Bcomp.1−10+Bcomp.110) is also shown. It can be seen
that the compensation fields needed to null the out-of-plane field component at the two
different regions of the sample deviate by some percent. For high compensation fields,
sample parts that are apart from each other on the mm scale, are subject to some finite
out-of-plane field component of the order of uo to some hundred µT. Measurements
that are extremely sensitive to very small out-of-plane fields are hence difficult when the
sample dimensions are large. This was in fact the case for the zero-perpendicular field
measurements in the Al/InAs meander as well as in sample Al/InAs-S.
If not stated otherwise, from this point on curves with no explicit perpendicular field
present have always been measured with a compensated out-of-plane field component.
Explicit numbers for B⊥ always mean field strength relative to the beforehand deter-
mined minimum if not stated otherwise.
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Fig. 3.24.: Typical angle dependence of the horizontal field needed to compensate the per-
pendicular component of an in-plane field of 0.5T. The angle θ was swept from 320 ◦ to −60 ◦
and back. The different colors mark different sweep directions and the points where sweep
direction was reversed coincide naturally. A small long time drift can be observed by the fact
that both traces are systematically shifted with respect to each other. The grey region marks
the blind window, where readout is not possible. In this regime the angle θ was estimated by
comparison of the measured compensation field at a fixed unknown angle with an interpolated
line between points of the trace on both sides of the shaded area, where readout was possible.

Fig. 3.25: Absolute val-
ues and relative difference
of compensation fields at
two different regions of
sample Al/InAs-S in an in-
plane field of 1.2 T as a
function of the rotator an-
gle. The relative differ-
ence of the compensation
fields are shown on the left
axis and are of the order
of some % of the absolute
value.
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3.3. Measurement Procedures

3.3.2. Second Harmonic Resistance Measurements

Equation 2.47 shows that for systems with non-reciprocal transport properties the ohmic
contribution to the voltage drop, which is linear in the current I, is complemented by a
quadratic in I term. γs, which defines the strength of non-reciprocity can elegantly be
measured in a low-frequency resistance measurement, where besides the linear resistance
Rω also its second harmonic R2ω is recorded. The relation between γs (see eq. 2.48) and
first and second harmonic resistance is not obvious and will be derived in the following.

Starting from the heuristic expression for the resistance

R = R0 (1 + γsBI) , (3.14)

where the first and second terms correspond to the linear and the non-reciprocal resis-
tance, a voltage drop in the presence of a driving current I can be calculated as

V = R0
(
I + γsBI

2
)
. (3.15)

By applying an AC current I = I0 sin(ωt) with amplitude I0 and frequency ω the voltage
drop is

V = R0I0 sin(ωt) +R0γsBI
2
0 sin2(ωt)

= R0I0 sin(ωt) + 1
2γsR0BI

2
0

[
1 + sin(2ωt− π

2 )
]
.

(3.16)

In this equation first harmonic

Rω = Vω
I0

= R0 (3.17)

and second harmonic resistance

R2ω = V2ω

I0
= 1

2γsR0BI0 (3.18)

can be identified. Inserting eq. 3.17 into eq. 3.18 then leads to

γs = 2R2ω

RωBI
. (3.19)

This is a powerful method as it allows to determine possible magnetochiral anisotropy
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with an AC experiment, which has a much better signal-to-noise ratio then DC measure-
ments. It should be noted, that eq. 3.16 implies that in the experiment the quadrature
component of the second harmonic voltage signal is the relevant one, because the mea-
sured second harmonic voltage has a phase shift of π with respect to the driving current.
It is important to compensate small DC current offsets, that pass through the super-
conducting sample, as they produce artifacts in AC transport experiments. For instance
near Tc the V (I)-dependence of a superconductor is typically of power 3. If a current
I = I0 sin(ωt) + IDC is applied, the resulting voltage drop is

V (I) ∝ I3 = (I0 sin(ωt) + IDC)3

= I3
0 sin3(ωt) + I2

0IDC sin2(ωt) + I0I
2
DC sin(ωt) + I3

DC . (3.20)

Using trigonometric relations and sorting the terms according to its frequencies it follows

V (I) ∝ I3 = −1
4I

3
0 sin(3ωt)

− 1
2I

2
0IDC cos(2ωt)

+
(3

4I
3
0 + I0I

2
DC

)
sin(ωt)

+ 1
2I

2
0IDC + I3

DC . (3.21)

In the second line of eq. 3.21 one can find again a 2ω signal phase shifted by π with
respect to the current. When driven by an AC current with a small DC offset V(I)-terms
that have a power of 3 or greater always produce signals with double the excitation
frequency and hence can overshadow even terms in the V-I-characteristic resulting from
the magnetochiral effect.
In principle it should be possible to find a true zero of IDC in absence of a magnetic
field by finding experimentally the minimum of Vω(IDC) = 3

4I
3
0 + I0I

2
DC or the current,

where in absence of magnetochiral anisotropy the second harmonic becomes zero. This
should be done at a temperature where there is a significant cubic component in the
V-I-characteristic. Fig. 3.26 shows the fundamental in-phase signal and the second
harmonic out-of-phase signal of a superconducting sample in zero parallel field near the
critical temperature. A linear dependence of the 2ω-signal is evident.
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Fig. 3.26.: left: Fundamental AC voltage signal for a superconductor near the critical tem-
perature as a function of DC current. Low frequency noise is mainly caused by temperature
fluctuations. right: Second harmonic signal as a function of DC current.

In the case of a finite zero-bias resistance an ohmic contribution V (I) = R0I0 with R0 =
3.8 Ω has to be added to the cubic contribution. In Fig. 3.27 the AC-current dependence
of the fundamental signal is depicted for zero DC bias current. After subtraction of the
ohmic contribution one finds a clear I3

0 dependence as given by eq. 3.21.
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Fig. 3.27: Dependence of Vω − R0I0 with
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rent I0 near the superconducting transition.
Higher order terms in the IV characteristic
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first harmonic signal, which can for higher
I0 be of the order of R0I0.
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4. Important Parameters

In this section the most important parameters for the three investigated wafers are
tabulated.
Sample fabricated from the 15 nm Al/GaAs wafer:

• Al/GaAs-M15 (meander)

Sample fabricated from the 7 nm Al/GaAs wafer:

• Al/GaAs-M7 (meander)

Samples fabricated from the 7 nm Al/InAs wafer:

• Al/InAs-M (meander)

• Al/InAs-S (strip)

• Al/InAs-C (circle)

• 1D_JJ1 (Josephson junction array)

Samples Al/InAs-M, Al/InAs-S and Al/InAs-C are fabricated from the same, nominally
7 nm Al/InAs wafer. The values for electrical and superconducting parameters differ
slightly as the different samples have been produced on pieces from different position
on the wafer. The deviations, however, are small and therefore the values given in the
table for 7 nm Al/InAs can be used.
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Table 4.1.: Table with the most important parameters for the different samples
15 nm Al/GaAs 7 nm Al/GaAs 7 nm Al/InAs

d[nm] 13 7 4.5
R�[Ω] 14.7 3.86 9.22
lel[nm] 2.1 14.8 5.0

λR�
(0)[nm] 351 147 174

Tc0[K] 1.576 1.4 1.502
∆0[µeV ] 239 210 228
λs(0)[nm] 456 167 227
Λ(0)[µm] 33.4 7.96 19.8
Bc2(0)[mT ] 100 37 61
ξ(0)[nm] 50 91 74
L�(0)[pH] 17.1 5.0 9.2
Bc‖(0)[T ] 3 2.9 2.7
Fδ0

TLS 0.0048 0.019 0.012
kp[N/m2] 8.31 91.0 14.9

Description of parameters:
d: effective Al film thickness
R�: normal state resistance for T � Tc0

lel: electric mean free path, calculated via R�dlel = 4× 10−16 Ωm2 [77]
λR�

(0): expected magnetic penetration depth at T = 0 from eq. 2.14
Tc0: critical temperature, defined as temperature, where R = 0.5Rn

∆0: superconducting gap at low temperature ∆(0) = 1.76kBTc0
λs(0): penetration depth measured with RLC resonator at low temperatures in zero field
Λ(0) : Pearl penetration depth calculated via Λ = 2λ

2
s(0)
d

Bc2(0): critical out-of-plane field measured at low T
ξ(0): coherence length calculated as ξ =

√
Φ0

2πBc2

L�(0): sheet kinetic inductance at low T, L� = µ0
λ2

s

d

Bc‖: critical in-plane field measured at low T
F : filling factor in TLS
δ0
TLS: loss tangent in TLS
kp: pinning constant calculated at small B⊥ via kp = Φ0

d

(
∆L

∆B⊥

)−1
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5. Reference Samples Without SOC

In this chapter the inductive response of two superconducting thin Al films without
SOC will be discussed. These measurements were performed in order to characterize
the used RLC setup. The two samples that lack SOC also provide a reference to the
later discussed heterostructure with strong SOC. Also DC resistance characterization
measurements will be shown. Different contributions to the total inductance of the
setup will be introduced and quantified. Apart from the kinetic inductance there can
be geometric contributions from the sample structure and bond wires. Pinned vortices
provide another source of inductance. TLS can change the resonance frequency of the
RLC circuit, which leads to a non-saturating behavior of f0(T ) at low temperatures.
It will be shown that the subtraction of a TLS-correction δfTLS from f0(T ) leads to a
saturating behavior, which follows BCS prediction.

5.1. 7 nm Al/GaAs Meander

The first superconductor investigated is a 7 nm thick Al film with a 1.5 nm thick AlO2

terminating layer, which was grown on top of an insulating GaAs substrate by the group
of Mike Manfra at Purdue University. The film was then patterned into a meander
structure in order to be able to measure a decent amount of squares in series to get a
proper signal-to-noise ratio (see Fig. 5.1). The current flow has a preferred direction and
should from now on be called "current direction". The inductive response will therefore
mainly come from the long sections of the meander. The very same geometry was used
for the other two meander samples that will be treated later.

5.1.1. DC Characterization

DC resistance measurements were carried out upfront and compared afterwards with
inductance measurements. In Fig. 5.2 R(T)-curves are shown for zero parallel field and
in a field of 1.5T for different relative alignments of the field with current direction. In
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Fig. 5.1.: Sample geometry of the Al/GaAs sample. The meander consists of ca. 3074 squares
of Al in series (bright part) with a width of 24µm. The Al on the darker part was etched away.
On the right and left side there are four bondpads for applying bias voltage and voltage
probes. The current has a preferred direction parallel to the long sections. The long sections
are roughly 1.8 mm long. The turning points were designed broader in order to reduce the
current density at these points. This is to ensure that the critical current in the long sections
is much higher compared to the critical current perpendicular to the main direction. Therefore
non-linear effects of the inductive response under high AC or DC bias will mainly arise in the
long sections.

zero field the residual resistance was determined to R = 3.86 Ω. The critical temperature
Tc0 = 1.40 K is defined as the temperature where R = 0.5Rn. In an in-plane field of
B‖ = 1.5 T there is a small difference between the reduced transition temperature for
different angles θ between B‖ and current. The highest Tc can be observed if field
and current are aligned parallel to each other. Rotating the field leads to a monotonic
decrease of Tc. With the given Tc0 the expected sheet inductance calculated via eq. 2.13
is L� = 3.77 pH and the total inductance L = 11.5 nH.
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5.1. 7 nm Al/GaAs Meander

Fig. 5.2.: R(T)-curves in for B‖ = 0 T (black) and B‖ = 1.5 T (colors). The reduced critical
temperature in finite field is slightly different for different field alignments.

5.1.2. Contributions from Geometric Inductance

After DC characterization inductance measurements were performed. The total in-
ductance Ltotal is a sum of kinetic inductance Ls, the coil inductance and geometric
inductances from the sample and wiring. Inductances not originating from the super-
conductor will be called L0. The constant inductance of the copper coil was measured
in a separate cooldown with a short circuit replacing the superconductor. This measure-
ment delivered an inductance L0,cal = 398 nH of the coil. It turned out that this values
is slightly smaller than L0 measured in the meander samples. The discrepancy can be
understood by taking into account geometric contributions to the total inductance of
the RLC resonator resulting from the long meander structure and the cylindrical bond
wires. The geometric inductance of a straight rectangular wire can be calculated as [78]

Lg,rect = 2l
[
ln( 2l

w + t
) + 0.5 + 0.2235

(
w + t

l

)]
nH, (5.1)

with l being the length, t the thickness and w the width of the wire. For instance
one segment of the meander with a length of ∼ 1.8 mm, width of 24µm and thickness
of 7 nm would have a geometric inductance of 1.98 nH. As the single segments are
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located parallel next to each other, most of the magnetic field between them are probably
eliminated due to the pairwise counterflowing currents. Furthermore the internal field in
the Al should be screened partly due to the diamagnetism of the superconductor. The
largest contribution to the total inductance will therefore be provided by the most outer
segments where the magnetic field produced by the current flow is not compensated
entirely by the neighboring segments.
Another source of geometric inductance are the cylindrical Al bond wires. The geometric
inductance of a round, straight wire far away from a ground plane is given by [79]

Lg,round = 2l
[
ln
(

(2l
d

)(1 + x)
)
− x+ µ/4 + d

2l

]
nH, (5.2)

where x =
√

1 + (d/2l)2, l being the length, d the diameter and µ the permeability of
the wire. A wire with diameter of 25µm and lengths of around 1 mm will each have
a geometric inductance of ∼ 0.86 nH. Mostly 4 or even more bond wires are used for
each contact, thus the parallel inductance of more wires should be smaller. Also mutual
inductance between the single bond wires have to be taken into account, however.
The calculations show that a geometric inductance of some nH can be expected. The
value for L0,cal can therefore be seen as a lower limit for L0. As the exact knowledge or
even control of the geometric inductance in the system is challenging and even different
for different samples the values for L0 are always extracted from a BCS fit to the zero
field L(T ) data for each sample separately.

5.1.3. Resonance Shift by Two-Level-Systems

In the low temperature regime RLC measurements show, that the resonance frequency
f0(T ) in most cases slightly increases with increasing temperature. In contrast, BCS the-
ory would predict a saturating behavior at low temperatures. As the sample has to cool
down from higher temperatures before the T-sweep is started from low temperatures,
the simplest explanation would be that the sample has not reached the starting temper-
ature before the measurement. Control measurements on a different sample, however,
show that waiting times of ∼ 30 min before the measurement and ∼ 5 min between two
temperatures were long enough to exclude artifacts from incomplete thermalization.
The reason for initial increse of f0(T ) at low T is most probably due to the influence
of two-level systems (TLS) either in the InAlAs substrate or the AlOx layer on top of
the Al [31]. TLS change the resonance frequency of the system due to coupling of the
electric field in the superconductor to dipole moments in the aluminum oxide layer. Fig.
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5.3 shows f0(T ) data measured in zero field. Approaching low temperatures TLS lead
to a small reduction of the resonance frequency. To account for the small correction
due to TLS, a fit of f0,meas(T ) to eq. 2.42 is performed, which gives a value for the
uncorrected resonance frequency fr at low temperatures and the characteristic strength
of the TLS Fδ0

TLS. The small correction δfTLS(T ) is then subtracted from f0,meas(T )
data. This subtraction then leads to a saturating behavior of f0(T ) at low temperatures.
Due to the weak dependence of δfTLS(T ) on T the impact of the TLS correction on the
temperature dependence of the resonance frequency is small at higher temperatures.
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Fig. 5.3.: Resonance frequency as a function of temperature in zero field. Red markers
represent measured resonance frequency extracted from Fano fits (eq. 3.9) of spectra mea-
sured at different temperatures. Solid line is a fit to eq. 2.42 with fitting parameters
fr = 3.8582 MHz, F δ0

TLS = 0.019. The green crosses show the corrected resonance frequency af-
ter subtraction of δTLS from f0,meas. The dashed line represents a BCS-fit to the corrected data
using eqs. 2.11, 2.12 and eq. 3.7 with three fitting parameters L0 = 409.8 nH, Tc0 = 1.387 K
and λ(0) = 167 nm.

The extracted Fδ0
TLS = 0.019 is rather high compared to values reported for e.g. Nb

resonators on a sapphire subtrate, where Fδ0
TLS ∼ 10−5 [80] or for Nb resonators with

amorphous AlOx grown on top by evaporation of Al in a reactive oxygen atmosphere
at room temperature, where Fδ0

TLS ∼ 10−3 [31]. The absolute value of Fδ0
TLS strongly

depends on the interface and defect concentration of the amorphous dielectric, formed
by oxidation of the Al film at low oxygen pressure. As the AlOx-Al interface forms
within an Al single crystal the electromagnetic coupling may be stronger than in the
investigated AlOx-Nb interfaces.
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5.1.4. BCS T-Dependence of Kinetic Inductance

From the corrected f0(T ) data in Fig. 5.3 the total inductance of the sample can
be calculated. The resulting Ltotal(T ) curve is shown in Fig. 5.4. The curve nicely
follows a standard BCS temperature dependence (eq. 2.11). The extracted value for
λ(0) = 167 nm coincides roughly with the predicted value of λR(0) = 147 nm (eq. 2.14).
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Fig. 5.4.: L(T)-curves in zero field. The solid line represents a 3-parameter fit BCS-fit (eq.
2.10) delivers values for L0 = 409.8 nH, Tc0 = 1.387 K and λ(0) = 167 nm.

Fig. 5.5 shows the change of inductance ∆Ls = Ltotal−Lsat as a function of temperature
defined as the difference of Ltotal and the low temperature saturation value Lsat of the
BCS fit in Fig. 5.4. ∆Ls(T ) shows the expected exponential dependence.
In zero field a standard, exponential BCS-like temperature dependence could be shown in
sample Al/GaAs-M7 with reasonable agreement of estimated λR(0) and measured λ(0).
This shows that with the RLC resonator technique it is possible to produce reliable
results for the kinetic inductance, when the corrections of TLS and contributions from
geometric inductances are taken into account.
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Fig. 5.5.: ∆Ls = Ltotal − Lsat as a function of temperature in zero field. Data show an
exponential dependence.

5.1.5. Vortex Motion and Pair Breaking in Magnetic Fields

Besides the temperature dependence of L, the behavior of the inductive response of
thin film superconductors in external magnetic fields is of peculiar interest. Therefore
measurements in in-plane, out-of-plane and combined in- and out-of-plane fields were
performed. In out-of-plane fields vortices are introduced, that will be pinned at struc-
tural defects at low temperatures. Vortices can store energy when they are disclocated
from their equilibrium position in the pinning potential and hence produce an induc-
tive response. An in-plane magnetic field reduces the superfluid stiffness via orbital pair
breaking which also reduces the vortex pinning strength. This means that arbitrary field
directions the total inductance is expected to increase monotonically with field strength.

In Fig. 5.6 L(B⊥) in zero in-plane field is plotted. There is a crossover from a slightly
sublinear dependence at small B⊥ to linear for 2 mT < B⊥ < 10 mT. For 10 mT <

B⊥ < 25 mT, L(B⊥) increases superlinear. There is a kink in L(B⊥) at B⊥ ≈ 27 mT.
For B⊥ > 30 mT, L(B⊥) diverges. The divergence is roughly consistent with the critical
field value Bc2 = 37 mT, reported by Asbjørn Drachman (private communications) for
this wafer at low temperatures.
For small B⊥ the total inductance increases almost linearly, which is consistent with
the prediction from the individual vortex pinning model, where Lv = Φ0B⊥

dkp
(see section
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Fig. 5.6.: Total inductance as a function of B⊥ in zero in-plane field at low temperature. For
moderate fields (inset) there is a linear dependence suggesting equal contributions from each
single vortex. At B⊥ ≈ 26 mT a kink indicates a crossover to a different pinning regime as will
be seen later also in other samples. For B⊥ > 32 mT no resonance could be observed anymore.

2.1.4). At higher B⊥ a non-linear behavior is found, which is discussed in section A.1.4.
Near Bc2 superconductivity breaks down and hence L(B⊥) diverges.

In the next step, in-plane magnetic fields are applied to the superconductor either in
absence or presence of vortices. Fig. 5.7 shows the sum of kinetic and vortex inductance
as a function of B‖ for the same three relative angles of in-plane field and current/crystal
as in Fig. 5.2. In zero perpendicular field the pure kinetic inductance Ls(B‖) increases
slightly with increasing B‖. Introduction of vortices in small perpendicular field leads to
an increase of the inductance at B‖ = 0. L(B‖) shows a crossover from linear (B⊥ = 0) to
super-linear (B⊥ 6= 0). There is a small anisotropy of L(B‖) for the three different angles,
which is consistent with different critical temperatures in an in-plane field, measured in
DC transport (Fig. 5.2). All curves show a strictly increasing dependence of L(B‖).
This is consistent with pair breaking effects. On the one hand suppression of the order
parameter leads to increased kinetic inductance while on the other hand reduction of
the pinning energy results in an increased vortex inductance.
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5.1. 7 nm Al/GaAs Meander
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Fig. 5.7.: L as a function of in-plane field for out-of-plane fields of 0, 2, 5, 10 mT measured
for three different orientations of in-plane field an film plane. The angles between the main
current direction and in-plane field are 0 ◦ (crosses), 45 ◦ (squares) and 90 ◦ (circles). For all
out-of-plane fields and angles L increases with increasing in-plane field.

For all measured field configurations and relative orientations of the in-plane field induc-
tance strictly increases with field strength. As will be seen later the situation changes
for heterostructures with broken inversion symmetry.
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5. Reference Samples Without SOC

5.2. 15 nm Al/GaAs Meander
In addition to the epitaxial 7 nm thick Al/GaAs film measurements have been performed
on a weakly disordered 15 nm thick Al film that was grown in a metal MBE chamber
by Matthias Kronseder at UR. Sample Al/GaAs-M15 has a normal state resistance of
13.6 Ω, which is a rather high value for Al of this thickness [81]. This hints towards a
certain disorder in the system. Fig. 5.8 shows R(T) curves for different in-plane fields.
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Fig. 5.8.: R(T) for B‖ = 0, 1, 1.5, 2, 2.25, 2.5, 2.75, 2.9, 3 T (right to left). Orbital pair breaking
effects reduce the critical temperature. Inset shows Tc(B‖) determined from the midpoint of
the transition.

Increasing magnetic field reduces the critical temperature due to orbital pair-breaking.
Tc(B‖) is shown in the inset of Fig. 5.8. A zero resistance state could be observed for
B‖ ≤ 3.1 T. The effective sheet thickness of the Al layer is estimated to d = 13 nm.
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5.2. 15 nm Al/GaAs Meander

5.2.1. BCS Dependence and Corrections from TLS

Similarly as in the case of sample Al/GaAs-M7 temperature dependence of the kinetic
inductance was studied by recording resonance spectra at different temperatures. This
sample was measured in a different RLC resonator as the previously discussed one. A
calibration measurement with a short circuit replacing the sample delivered a coil induc-
tance L0,cal = 331 nH. Fig. 5.9 shows the resonance frequency of the RLC as a function
of temperature. The measured f0,meas data are fitted with eq. 2.42. The corresponding
parameters are fr = 3.805 MHz, F δ0

TLS = 0.0048. The resulting δfTLS(T ) is then sub-
tracted from f0,meas(T ). Whereas f0,meas(T ) does not saturate at low temperatures the
corrected f0(T ) = f0,meas(T )− δfTLS(T ) does.
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Fig. 5.9.: Resonance frequency as a function of temperature in zero field. Red markers
represent measured resonance frequency extracted from Fano fits (eq. 3.9) of spectra mea-
sured at different temperatures. Solid line is a fit to eq. 2.42 with fitting parameters
fr = 3.805 MHz, F δ0

TLS = 0.0048. The green crosses show the corrected resonance frequency
after subtraction of δTLS from f0,meas.

From the corrected resonance frequencies L(T ) is calculated. Data are shown in Fig.
5.10. Zero field data (Fig. 5.10) are again fitted using eq. 2.10 and deliver fitting
parameters L0 = 335 nH and λ(0) = 456 nm. The corresponding fit reproduces the
measured data roughly. At low temperatures there is a small difference between fit
and measured data. The fit parameters are very sensible to the data points at higher
temperatures, so a deviation at low temperatures can be expected. Also at intermediate
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5. Reference Samples Without SOC

temperature 0.7 K < T < 1.1 K fit and data do not match perfectly. The whole trace
takes roughly 12 hours to be measured. Possibly during the measurements magnetic
fields or the electromagnetic environment of the sample changed which could affect the
inductance of the sample.
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Fig. 5.10.: L(T)-curves in zero field. The solid line is a two-parameter BCS fit with fitting
parameters L0 = 335 nH and λ(0) = 456 nm and a fixed Tc0 = 1.585 K. The inset shows a
zoom to the low temperature regime, where L saturates. The saturation values for the BCS
fit and the measured data are slightly different.

86



5.2. 15 nm Al/GaAs Meander

5.2.2. Inductive Vortex Response in Crossed Magnetic Fields

Behavior of the vortex inductance for different in-plane fields was also investigated by
measuring resonances at low temperatures with finite B⊥. The results are shown in Fig.
5.11. Again three different regimes can be observed. At low B⊥, L(B⊥) again shows
linear behavior, similar as in sample Al/GaAs-M7 (Fig. 5.6). At higher B⊥ there is
again a kink at B⊥ = 65 mT ≈ 2/3Bc2, where dL

dB⊥
decreases. The kink position shifts

to lower B⊥ with increasing B‖, probably due to the decrease of Bc2 in finite in-plane
fields. At the highest in-plane field measured (B‖ = 1.7 T) the normal state is reached
without showing a kink structure. At high B⊥ the curves diverge.
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Fig. 5.11.: L(B⊥) for in-plane fields of B‖ = 0, 1, 1.3, 1.7 T. The inset shows the crossover
field Bkink as a function of in-plane field.

An in-plane field obviously suppresses the critical out-of-plane field Bc2. This is con-
sistent with pair-breaking theory. B‖ suppresses the superfluid stiffness of the super-
conductor via orbital effects. The reduced superfluid stiffness consequently also reduces
Bc2. The overall characteristic of (B⊥), however, is unchanged.
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6. Spin-Orbit Effects in the Al/InAs
Heterostructure

So far only inversion symmetric superconductors have been investigated. In this chapter
the dynamics of a 2D superconducting Al/InAs heterostructure will be investigated. As
the heterostructure breaks inversion symmetry a possible unconventional admixture to
the total order parameter could result in an anisotropic response to an in-plane field
depending on the in-plane field direction. Nodes in the order parameter would result in
a deviation of the temperature dependence of the kinetic inductance from the standard
exponential BCS-dependence. In section 2.3.2 it was further shown that an in-plane field
applied to a Rashba superconductor can lead to an anisotropic reduction of the vortex
core size. A squeeze of the normal region of a vortex parallel is expected to produce a
steepening of the pinning potential. The so increased curvature of the pinning potential
in an in-plane field is be measured as a decrease of the vortex inductance. By changing
the relative orientation of in-plane field and current also an anistropy of the inductive
response of the vortex lattice is observed.

Sample Al/InAs-M was similarly structured as the ones in the previous section by means
of optical lithography and wet etching. An optical micrograph is shown in Fig. 6.1.
The Wafer was again grown and provided by the group of Michael Manfra at Purdue
university. The dominant current direction is parallel to the [110] axis. θ describes
the angle between the in-plane magnetic field and the current direction. From TEM
measurements on similarly grown Al films with the same nominal thickness an effective
Al thickness after oxidation can be estimated to d = 4.5 nm [66]. This number will be
used for further analysis.
In the following, first DC characterization measurements are discussed from which the
most important parameters can be deduced. In the second part results of AC measure-
ments in the RLC circuit are presented.
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

Fig. 6.1.: Sample structure of the Al/InAs meander. The structure consists of 4 contact pads
for measuring standard 4-point transport properties. The meander consists of roughly 3000
squares in series with a width of 24µm. The main current direction is parallel to the [110]-InAs
crystal axis. θ is defined as angle between current and in-plane field direction.
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6.1. DC-Transport Characterization

6.1. DC-Transport Characterization
Basic transport characterization measurements were performed on sample Al/InAs-M
to determine the most important superconducting parameters. In Fig. 6.2, R(T )-curves
for different in-plane field magnitudes and orientations are shown. All the curves have
been measured after compensating out-of-plane field components a best as possible.
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Fig. 6.2.: left: R(T )-curves for in-plane fields parallel to the main current direction ranging
from 0 T to 2.25 T in steps of 0.25 T. At higher fields the out-of-plane component of the
magnetic field could not be compensated anymore, because critical current of the compen-
sation coils were reached. right: R(T)-curves for in-plane fields perpendicular to the current
direction ranging from 0 T to 2.5 T in steps of 0.25 T and at high fields of 2.6 T,2.65 T, 2.68 T
and 2.7 T. Black lines are fits to the square root cusp formula defined in the main text. At
very high B‖ > 2.6 T no zero-resistance state could be observed. At these fields A finite
resistance tail emerges.

In zero magnetic field the midpoint of the transition to a dissipationless state is at
Tc0 = 1.502 K with a width of the transition of roughly 10 mK. The total resistance above
the transition is 28 kΩ leading to a resistance per square of R = 9.2 Ω. Considering the Al
as the main contributor to the conductivity it is possible to calculate the mean free path
l = 8.2 nm can be determined by using the literature ρl - value for Al ρl = 4 10−16Ωm2

[77]. In the small resistances regime the curves can nicely be fitted by the square root
cusp formula that describes BKT-like transitions [82]

R(T ) ∝ exp(−b(T/TBKT − 1)−1/2), (6.1)

where b is a constant of order unity and TBKT is the Berezinskii–Kosterlitz–Thouless
transition temperature. This already shows that the transition to the normal state is
probably of a BKT-type. At the highest accessible fields it was not longer possible to
achieve a zero resistance state instead a finite resistance tail with a linear slope emerges.
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

This could be the consequence of vortex motion in parts of the sample where B⊥ is
non-zero due to the inhomogeneity of the compensation field (see Fig. 3.25).

From the R(T )-curves Tc(B‖) is extracted by defining the temperature of the midpoint
(R(Tc) = 0.5Rn) of the transition as Tc. From the fits of R(T )-data at the low resistance
tail to eq. 6.1, TBKT (B‖) can be extracted. Tc(B‖) and TBKT (B‖) are shown in Fig. 6.3.
There are two main observations. On the one hand the critical temperatures for the
two orientations show slightly different field dependencies showing that one direction is
more vulnerable to an in-plane field than the other. On the other hand one can find
a broadening of the BKT-transition which indicates that TBKT is suppressed stronger
than Tc by the in-plane field.
At low temperatures an out-of-plane critical field Bc2 = 61 mT was determined from an
R(B⊥)-sweep (not shown here), corresponding to a coherence length ξ = 73 nm.
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Fig. 6.3.: Critical temperature and BKT transition temperature as a function of the in-plane
field for the two main field orientations. Inset: Difference of Tc(B‖) and TBKT (B‖) as a function
of field for the two different orientations. Increased in-plane fields lead to a broadening of the
BKT-transition.
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6.2. Inductive Response of Superfluid

6.2. Inductive Response of Superfluid

Signatures of an unconventional order parameter are difficult to probe at the phase
boundaries with standard DC transport measurements. Therefore it is necessary to
investigate the superconducting dynamics deep in the dissipationless regime, which can
only be accessed with an AC experiment.
In this chapter the main results of AC measurements performed on sample Al/InAs-M
are shown and discussed. The discussion will start with L(T ) measurements in zero
magnetic field. Afterwards results of inductance measurements in the vortex state for
B‖ = 0 will be shown. The impact of a superimposed in-plane field on the vortex
dynamics will be discussed in the third section. In the last part of this chapter an
unexpected non-linearity of the L(B⊥)-dependence in in-plane fields perpendicular to
the current will be analyzed phenomenologically.

6.2.1. BCS Temperature Dependence and TLS Correction

Of particular interest is the investigation of the temperature dependence of the kinetic
inductance. Standard s-wave superconductors exhibit an exponential deviation of Ls(T )
from Ls(0), while unconventional superconductors with gaps in the node follow a power-
law. In samples Al/GaAs-M7 (Fig. 5.3)and Al/GaAs-M15 (Fig. 5.9) a shift of resonance
frequency at low temperatures was found. The same reduction of f0 for low temperatures
is also observed in the Al/InAs heterostructure. Fig. 6.4 shows measured and corrected
resonance frequency as a function of temperature in zero magnetic field. At low tem-
peratures the measured resonance frequencies f0,meas(T ) can again be fitted by using
eq. 2.42. The corresponding fitting parameters are fr = 3.800 MHz, F δ0

TLS = 0.012.
The value for Fδ0

TLS is of the same order as the one measured in sample Al/GaAs-M7
(Fδ0

TLS = 0.019) with no 2DEG. Both Al films were grown in the same chamber under
the same conditions. The good accordance of the two values of Fδ0

TLS indicates that the
resonance shift mainly results from TLS in the AlOx layer and less from the substrate.
The resulting δfTLS(T ) is subtracted from f0,meas(T ) and leads then to a saturating
behavior of f0(T ) at low temperatures after correction. From the corrected resonance
frequencies f0(T ), L(T ) data are calculated via eq. 3.7.

In Fig. 6.5 the total inductance of the RLC resonator is shown as a function of temper-
ature. L(T ) saturates at low temperatures and monotonically increases with increasing
temperature. The peak-to-peak noise level is of the order of 0.5 nH.
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Fig. 6.4.: Resonance frequency as a function of temperature in zero field. Red markers
represent measured resonance frequency extracted from Fano fits (eq. 3.9) of spectra mea-
sured at different temperatures. Solid line is a fit to eq. 2.42 with fitting parameters
fr = 3.800 MHz, F δ0

TLS = 0.012. The green crosses show the corrected resonance frequency
after subtraction of δTLS .

A two-parameter fit of the L(T ) data to eq. 2.11 with fitting parameters L0 = 394.3 nH
and λ(0) = 227.0 nm and a fixed Tc0 = 1.502 K, which was determined from the DC
R(T ) curve (Fig. 6.3), describes data reasonably well. The penetration depth λ(0) is
25% larger than an estimate from the BCS formular λBCS(0) =

(
R�d~

πµ0∆(0)

)1/2
= 174 nm.

In all three samples that were measured in the RLC circuit, the λ(0) value from a BCS
fit is larger than the expected value from eq. 2.14 and therefore seems to be a systematic
problem of the theory.

In zero magnetic field it turns out, that the inductive response of the Al/InAs het-
erostructure basically behaves similarly as in Al films grown on a GaAs substrate.
Although inversion symmetry is broken in sample Al/InAs-M there is so far no clear
indication pointing towards a significant triplet component of the order parameter. As
one would only expect a small triplet admixture to the singlet order parameter [51] it
is not surprising, that L(T ) can still be reproduced properly by a standard s-wave BCS
T-dependence.

Fano fits to the measured spectra do not only deliver values for the resonance frequency
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Fig. 6.5.: L(T)-curves in zero magnetic field. The solid line is a two-parameter BCS fit (eq.
2.11) with fitting parameters L0 = 394.3 nH and λ(0) = 227.0 nm and a fixed Tc0 = 1.502 K.
L(T ) data are in good accordance with a standard BCS theory curve. Inset shows a zoom in
the low temperature regime.

f0, but also for the width of the resonance. Dissipation in the circuit leads to dissipation
and hence reduces the quality factor. By using eq. 3.8 the dissipative component Rs of
the complex impedance of the circuit can be calculated. Fig. 6.6 shows the temperature
dependence of the resistance extracted from both resonator and DC measurements in a
logarithmic scale. At the low-temperature end a background resistance of ∼ 0.3 Ω was
substracted, which mainly comes from the copper coil. Resistance data determined from
either AC and DC measurements are in good accordance near Tc. This shows that the
RLC technique is well suited for expanding the range of resistance measurements by at
least 3 orders of magnitude. In the low temperature regime there is a finite slope indi-
cating already a resistance far below Tc. A quasiparticle contribution can be excluded
due to the low frequency used in this measurement (see section 2.1.6). The reason for
this is unclear so far.
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Fig. 6.6.: Combined resistance data as a function temperature. Dark yellow points are mea-
sured in a standard 4 point DC measurement. Blue and purple curves are extracted from AC
measurements. Both datasets nearly overlap near the critical temperature. Inset shows a zoom
in the overlap region of the DC and AC experiment. The resistance already starts to increase
for T > 0.6 K well below Tc.
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6.2. Inductive Response of Superfluid

6.2.2. Vortex Inductance

In both reference samples (sections 5.1.5 and 5.2.2) it was shown that for out-of-plane
fields of some mT a sizeable inductive response much larger than Ls(B = 0) can be
measured. With an out-of-plane vortices are introduced in the film, which contribute
to the inductance as in the reference samples. Such an inductance occurs when the
vortices are dislocated from the center of their pinning potentials when driven by an AC
supercurrent. Out-of-plane fields additionally induce Meissner currents in the sample.
As in the vortex state most of the sample is field free, the reduction of the superfluid
stiffness due to these currents is mainly relevant at the very edges of the sample [83].

In the following sections, the interpretation of inductance data measured in out-of-plane
fields relies on the assumption that the vortices are pinned individually and hence eq.
2.30 (Lv = Φ0

dkp
) is valid.

Fig. 6.7 shows the out-of-plane field dependence of the inductance at low temperatures.
The total inductance for B⊥ ∼ mT is of the order µH compared with Ls ∼ nH with no
perpendicular field present. For small fields the curve is nearly linear suggesting that
the inductance is simply proportional to the number of vortices and kp is constant. The
slope for small B⊥ is ∆L

∆B⊥
= 118 nH/mT. From the slope of L(B⊥) at small fields pin-

ning constant kp = 14.9 N/m2 can be determined. Compared to samples Al/GaAs-M7
and Al/GaAs-M15 the inductive response in the vortex state is much larger in Al/InAs-
M. The pinning of vortices therefore seems to be very weak. At intermediate fields
20 mT ≤ B⊥ ≤ 38 mT L(B⊥) increases superlinearly. At B⊥ ≈ 38 mT a kink structure
can be observed, beyond which the slope of L(B⊥) decreases. At high fields L(B⊥) di-
verges as B⊥ approaches Bc2. There is a small discontinuity of L(B⊥) at B⊥ ≈ 10 mT.
At two consecutive fields the resonance spectra showed some instabilities, which is re-
flected in a reduced L. The origin is unknown and therefore will not be analyzed further
as the overall behavior seems is not changed.

For B⊥ ≥ 20 mT the simple linear dependence changes to a more complex behavior.
The observed kink structure was also found to be present in both Al/GaAs films, which
were grown on top of a GaAs substrate without 2DEG and therefore seems to be generic
for thin superconducting Al films of this geometry (see Fig. 5.11 and Fig. 5.6). Vortex
dynamics in this regime will be treated in section A.1.4 of the appendix.
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

Fig. 6.7: Inductance as a function of
the out-of-plane field at low tempera-
ture. For small fields L(B⊥) increases
linear with B⊥. Above ∼ 30 mT the
linear dependence evolves into a more
than linear function in B⊥. At an inter-
mediate field of ∼ 38 mT a kink struc-
ture is observed. At very high fields the
inductance diverges as superconductiv-
ity breaks down near the critical out-of-
plane field. Inset shows L(B⊥) in the
low field regime B ≤ 20 mT.

The temperature dependence of the vortex inductance in the regime of individual pin-
ning is of peculiar interest. As was shown the pure kinetic inductance Ls(T ) follows
an exponential dependence. The vortex inductance Lv(T ) ∝ 1

kp(T ) was seen to follow a

power law. Eq. 2.26 predicts a kp(T ) dependence ∝
(
1− (T/Tc)2

)2
.

Fig. 6.8 shows the total inductance as a function of temperature measured in an out-of-
plane field of B⊥ ≈ 6.4 mT. As the vortex contribution exceeds the kinetic inductance
by at least two orders of magnitude, the kinetic contribution is neglected in the analysis.
At T = 0.175 K there is a small jump in L(T ). For T ≥ 0.2 K L(T ) monotonically
increases with a divergence for T ≥ 1.2 K. For temperatures higher than 1.2 K no reso-
nance could be measured anymore. For 0.2 K ≤ T ≤ 0.55 K inductance roughly follows
a L(T ) = L0

(
1− (T/Tc)2

)−2
power-law matching with eq. 2.26. The saturation value

at low temperature is L0 = 0.92µH and Tc was changed to
(
1− B⊥

Bc2

)
Tc0 ≈ 1.36 K with

Bc2 = 61 mT. Above 0.55 K data rather suggest a L(T ) = L0
(
1− (T/Tc)2

)−1
depen-

dence with the same Tc but slightly larger L0 = 1.15µH, which increases weaker than
eq. 2.26.

In the inset, there is a small jump to a slightly lower L at T ≈ 0.175 K. The rea-
son for this discontinuity is most probably attributed to a rearrangement of the vortex
lattice due to thermal fluctuations in the presence of a driving current. As the vor-
tex inductance is large, the pinning potentials are very shallow. In systems with such
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Fig. 6.8: Sum of kinetic and vortex in-
ductance as a function of temperature
in an out-of-plane field of 6.4 mT. For
T > 0.2 K L increases monotonically
and finally diverges for T > 1.2 K. Blue
and yellow curves are fits to power-law
functions described in the main text.
Inset shows a zoom in to the low tem-
perature regime. At T = 0.175 K a
small jump to a lower inductance value
is found.

weak potentials vortices can relatively easy hop from one potential to the other. After
cooldown vortices initially do not only occupy the pinning sites with lowest energy, but
also partly pinning sites with even smaller curvature at the bottom of the potential.
At elevated temperatures or higher currents some vortices move to pinning sites with
slightly deeper pinning potential. This interpretation is supported by measurements
performed with an additional DC current in the same field and temperature regime (see
section A.1.5 in the appendix). As will be seen later, in zero in-plane field the inductive
response of the vortex lattice is very unstable. At higher in-plane fields the measured in-
ductance for fixed out-of-plane field is much more stable (see Figs. A.13, A.14 and A.15).

As mentioned before, for T ≤ 0.55 K, L(T ) is in good accordance with the predicted
temperature dependence for individual vortex pinning [23]. Similar to Fig. 6.7, where a
kink structure was observed in the B⊥-dependence of Lv, also Lv(T ) measured in a fixed
B⊥ shows some kink structure at T = 0.55 K. The slope dLv(T )

dT is reduced at this tem-
perature. The change of characteristic Lv(T ) dependence may again to point towards
a crossover to a different pinning regime that can be reached either by increasing the
temperature for a given B⊥ or by increasing B⊥ at a fixed temperature.

In the Al/InAs heterostructure pinning seems to be much weaker than in the Al films
grown on GaAs. The resulting vortex inductance in an out-of-plane field is at least
2 orders of magnitude larger than the pure kinetic inductance. The precise values of
the kinetic inductance Ls and hence also the interpretation of its dependencies on in-
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

plane fields or temperature strongly depend on a very accurate knowledge of the external
inductance L0. In out-of-plane fields where L is largely dominated by Lv, the uncertainty
of L0 is not so relevant. In the following this large gain in signal is used to measure a
possible effect of an in-plane field on the vortex pinning and therefore the underlying
superconducting order parameter in the presence of Rashba SOC.

6.2.3. Strongly Anisotropic Pinning Enhancement in In-Plane Fields

In sample Al/GaAs-7 it was shown that both in- and out-of-plane fields and the com-
bination of the two lead to an increase of the inductance (see Figs. 5.7 and 5.11). On
the one hand an out-of-plane field introduces vortices, which produce an additional in-
ductive response. Moreover, in-plane fields decrease the superfluid stiffness via orbital
pair-breaking, which also reduces the pinning. This leads to an increase of kinetic and
vortex inductance in the presence of either oriented magnetic fields. In Rashba super-
conductors the pinning constant kp is expected to become dependent on B‖. The main
idea and deduction of the theory is described in section 2.3.2.

The observation of a large vortex inductance as a function of in-plane field offers a good
chance to gain insight into the superconducting phenomenology related to SOC. In the
following, Bp (parallel) describes an in-plane field applied parallel to the current, while
Bt (transverse) defines an in-plane field perpendicular to the current. The analysis and
interpretation of data are all based on the assumption that the measured vortex induc-
tance results from individual pinning described by eq. 2.30 (Lv ∝ 1/kp).

In Fig. 6.9 total inductance of sample Al/InAs-M is shown as a function of in-plane
field for B⊥ = 2 mT. As the kinetic inductance Ls(B‖) is of the order of ∼ 40 nH most
of the inductance results from the oscillation of pinned vortices under an AC driving
current. Therefore the small contribution of Ls will be neglected in the analysis below.
The in-plane field is oriented in directions parallel (red curve) and perpendicular to the
current (blue curve), as indicated in the graph. Vortices under an AC driving current
move perpendicular to the supercurrent. The red curve (I ‖ B‖ → Bp) refers to vortex
motion perpendicular to B‖, while the blue curve (I ⊥ B‖ → Bt) to vortices moving
parallel to B‖.

In the rotator position, where B‖ is perpendicular to the current, four consecutive mea-
surements with zero in-plane field have been performed (see inset of Fig. 6.9). Between
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Fig. 6.9.: Inductance in a perpendicular field of 2 mT as a function of in-plane field for a
transverse Bt (blue) and parallel in-plane magnetic field Bp (red). Inset shows a zoom in to
the low-B‖ regime. The sketch in the upper left corner shows definitions of magnetic field
and current directions. The vortex motion is perpendicular to the current indicated by the
accelerating Lorentz force ~Fv. The anisotropic deformation of initially (B‖ = 0) circular vortex
cores in transverse and parallel magnetic fields is indicated by ellipses.

these measurements the sample was heated up above Tc, the field minimum of B⊥ was
determined and afterwards a field of B⊥ = 2 mT was applied before it was cooled down
again. There is a few % scatter of the measured inductance data (inset of Fig. 6.9),
which shows again the instability of the vortex lattice for B‖ = 0.
For a parallel in-plane field Bp (red curve), L(Bp) increases up to a field of ∼ 0.05 T
before it decreases up to the largest applied field of Bp = 0.5 T. In a transverse field Bt

(blue curve), L(Bt) also decreases monotonically with a much steeper decrease than for
Bp. Because of the above mentioned instability of L(Bt) at very small Bt it cannot be
said, whether there is also an initial increase of L(Bt) as in the red curve. Both curves
are mirror symmetric in B‖.

There is a strong difference between the B‖-dependence of Lv measured in sample
Al/GaAs-M7 (see Fig. 5.7) and in the Al/InAs heterostructure. Sample Al/GaAs-
M7 showed a strictly increasing inductance when either in- or out-of-plane field or both
fields together were applied. This is expected because in a standard s-wave superconduc-
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

tor B‖ leads to orbital pair breaking, which implies a reduction of the pinning constant
kp and hence an increase of Lv. The slight increase of Lv(Bp) for small Bp ≤ 0.05 T
is unlikely to be caused by orbital pair breaking, as this should affect both directions
equally and should be negligible for small in-plane fields (∆Ls(B‖) ∝

B2
‖

Bc‖
2 ). The reason

for the anisotropic increase of Lv for small in-plane fields cannot be explained at the
moment. At higher B‖, Lv(Bt) as well as Lv(Bp) decreases strongly. Furthermore there
is a strong difference between the two measured in-plane field directions. The reduction
of L(Bt) is much stronger than for L(Bp). If eq. 2.30 (Lv ∝ 1/kp) still holds, the indi-
vidual pinning is enhanced anisotropically in the presence of B‖.
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Fig. 6.10.: Inductance for B⊥ = 10 mT as a function of transverse (blue) and parallel (red)
in-plane magnetic field measured at T = 0.1 K. Inset shows a zoom in to the low-B‖ regime.
Definition of the different directions of field and vortex motion is shown in the small sketch on
the lower right similar to Fig. 6.9. Black squares are data measured in sample Al/GaAs-M7
for B⊥ = 10 mT.

Fig. 6.10 show similar data as Fig. 6.9 at higher B⊥ = 10 mT in an expanded B‖-range.
In addition Lv(B‖) measured in sample Al/GaAs-M7, which has no 2DEG, is shown
for comparison. Data are taken at T = 0.1 K. Triangles refer to data taken on sample
Al/InAs-M. Open and filled triangles represent data that were measured in separate
cooldowns. The black squares show L(B‖) measured on sample Al/GaAs-M7 for only
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6.2. Inductive Response of Superfluid

one B‖ direction as there is only very small dependence on the field direction in this
sample. Red triangles refer to parallel in-plane magnetic field, blue triangles are taken
in a transverse in-plane field. Ellipses again indicate the shape of a vortex core relative
to in-plane field (green arrows) and current direction (black arrows).

In a parallel in-plane field, L(Bp) (red curve) increases only very little at small Bp <

25 mT (inset of Fig. 6.10). The red curve intersects the blue curve and then decreases
until a minimum is reached at Bp = 1.5 T. Afterwards L(Bp) increases up to the highest
field of 2 T. At higher in-plane fields the resistance of the sample and hence the damping
was too high to measure a resonance.

In a transverse magnetic field Bt, four consecutive measurements with individual com-
pensation were performed for Bt = 0. In that regime (blue curve in inset of Fig 6.10)
there is again a ∼ 15% scattering of data points. In a small field range of 0.025 T Lv(Bt)
slightly increases and lies above the red curve. The red curve is much stabler in the small
B‖ regime. The blue curve intersects the red one for an in-plane field Bt ≈ 25− 50 mT.
For Bt > 0.025 T, L(Bt) decreases strongly and reaches a minimum at Bt = 2 T. At very
high Bt > 2 T, L(Bt) increases again. For B‖ > 2.5 T no resonance could be measured
anymore as the sample was too resistive to measure a resonance.
The pinning for small in-plane fields is weaker by roughly one order of magnitude in
the heterostructure than in sample Al/GaAs-M7. This can only party explained by the
weaker superfluid stiffness, which is only smaller by a factor of 2-3. The pinning energy
not only depends on the superfluid stiffness but also on microscopic details like defect
size (see section 2.1.4). However, as the Al films in both structures are grown in the
very same chamber under the same conditions, similar defect concentrations and sizes
could be expected. Maybe the descrepancy is related to the 2DEG.
For Bt > 1 T, L(Bt) is reduced even below the value measured in sample Al/GaAs-
M7. A minimum of inductance is observed as a consequence of two competing effects.
On the one hand pinning is enhanced by the in-plane field, on the other hand orbital
pair-breaking reduces the superfluid stiffness and hence also weakens pinning. Once B‖
approaches Bc‖ superconductivity breaks down and Lv(B‖) diverges. The pinning en-
hancement, at least for small B‖ can be explained as a consequence of a deformation of
the vortex core from a circular shape to an ellipsoid produced by the interplay of SOC
and in-plane field (see section 2.3.2). The vortex core is squeezed anisotropically by the
in-plane magnetic field. The pinning potential is modeled as a convolution of the order
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

parameter |Ψ|2(r) and a delta like defect. Convolution of an arbitrary function f(x)
with δ(x) reproduces the shape of f(x). kp therefore describes the inverse curvature of
|Ψ|2(r) at r → 0 and hence increases with B‖. In the direction of B‖ the increase of kp
was shown to be enhanced by a factor (1 + c3B

2
‖/B

2
⊥) (eq. 2.75) with respect to the zero

in-plane field value. The anisotropic, increased kp in an-in-plane field manifests itself in
a decreased, anisotropic inductive response of the vortex lattice.
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Fig. 6.11.: L(B⊥) in an out-of-plane field of 10 mT and theoretically expected reduction of
L as a function of Bt (blue) and Bp (red). Ellipsoids again indicate the squeezed normal core
of a vortex in the presence of an in-plane field. Red dashed line is a fit of Lv(Bp)-data to eq.
2.77, blue dashed line refers to a fit of Lv(Bt) to eq. 2.79.

Fig. 6.11 shows the same experimental data as Fig. 6.10 together with fits to eq. 2.75.
The red dashed line refers to a fit to eq. 2.77, blue line is a fit to eq. 2.79. At first the
red curve is fitted and gives the fitting parameters Lv,0 = 1.22µH and characteristic field
B̃‖ = 0.99 T. Then the blue curve is fitted with Lv,0 and B̃‖ and gives the anisotropy
parameter c3 = 0.0013. For 0.05 T ≤ B‖ ≤ 0.3 T the fit curves agree reasonably well
with measured data. The black solid line is calculated similar as the blue curve with
the same Lv,0 and B̃‖ but with c3 = 1. The additional free parameter c3 is needed to
be able to properly fit the measured data. It was introduced because the simple theory
described in section 2.3.2 strongly overestimates the impact of a transverse field on the
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6.2. Inductive Response of Superfluid

vortex pinning. The initial increase of L(B‖) for B‖ ≤ 0.025 T is not described by the
theory and stays an open question at this point. For large B‖, fits deviate from the
measured data as orbital pair breaking leads to a decrease of the superfluid stiffness and
hence to an increase of kinetic and vortex inductance which is not considered in the
theory.

By dividing eq. 2.77 by eq. 2.77 one finds the theoretical ratio of Lv,p and Lv,t, which is
quadratic in B‖ for a fixed B ⊥

Lv,p(B‖)/Lv,t(B‖) =
(

1 + c3
B2
‖

B2
⊥

)
. (6.2)
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Fig. 6.12.: Lv(Bp)/Lv(Bt) as a function of in-plane field. The anisotropy of the observed
vortex inductance in an in-plane field increases linearly with B‖

This is in contradiction to the experimental data shown in Fig. 6.12. A linear increase
of Lv(Bp)/Lv(Bt) with |B‖| is found in the measurement. This indicates, that although
qualitatively the simple theory is in accordance with the data, the theoretically predicted
quadratic dependence cannot reproduce experimental data and should be reviewed.

To further study the dependence of L(θ) on the angle θ between B‖ and current the
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

sample was rotated by the piezo rotator in a constant in-plane field. In Fig. 6.13, L(θ) in
an in-plane field of 0.5 T is shown for B⊥ = 0 (left graph) and for finite B⊥ = 2, 5, 10 mT
(right graph).

Fig. 6.13.: left: Kinetic inductance Ls(θ) as a function of relative field orientation for an in-
plane field of 0.5 T. On the radial axis inductance is plotted. θ is defined as the angle between
B‖ and current. right: Polar plot of the total inductance Ls + Lv for B⊥ = 2, 5, 10 mT. Note
the different scalings of the radial axis in the two graphs.

For B⊥ = 0, Ls(θ) is almost independent of θ. Already for B⊥ = 2 mT, however, L(θ)
strongly varies with θ. A two-fold symmetry can be found. L(θ) has maxima for B‖ ‖ I
and minima for B‖ ⊥ I. This is in accordance with eq. 2.75, which predicts the strongest
enhancement of kp in the direction of B‖. It turns out, that the vortex inductance is a
suitable measure in order to measure the symmetry of the order parameter in systems
with broken time- and inversion-symmetry.

6.2.4. Fundamental Change of Pinning Mechanism in In-Plane
Fields

So far it was shown, that for a fixed B⊥ the total inductance is strongly reduced by
an in-plane field. It turns out, however, that also the L(B⊥)-dependence changes dra-
matically when a tranverse in-plane fields is applied. A linear dependence of L(B⊥) at
small B⊥ reflects the fact, that each introduced vortex contributes a constant amount
of inductance. Orbital effects of the field or interaction of single vortices are negligible
in that pinning regime. While in zero in-plane field (Fig. 6.7) linearity for small out-
of-plane fields could be shown the situation strongly changes when an in-plane field is
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6.2. Inductive Response of Superfluid

applied.

Fig. 6.14 shows L(B⊥) for different transverse in-plane fields. For Bt ≤ 0.1 T, L(B⊥)
is more or less linear. At higher Bt, L(B⊥) increases super-linearly, but starting with a
smaller slope as for small Bt. The measured data are not mirror symmetric with respect
to B⊥ = 0. The absolute slope of L(B⊥) is higher for negative fields. This is probably
related to hysteresis effects. B⊥ was swept from negative to positive B⊥ without heating
procedure between each single B⊥. B⊥-sweeps, where a heating step was performed after
each B⊥, delivered symmetric results (not shown here).
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Fig. 6.14.: L(B⊥) for Bt = 0, 0.1, 0.3, 0.5, 1, 1.5 T. For Bt ≤ 0.1 T, L(B⊥) is nearly linear. At
higher Bt, L(B⊥) increases super-linearly, but starting with a smaller slope as for small B‖.
Dashed lines are fits to eq. 6.3.

The data are fitted to a phenomenological, polynomial function with constant, linear
and cubic in B⊥ terms

L(B⊥) = a+ b|B⊥|+ c|B⊥|3. (6.3)

Parameter a represents the pure kinetic inductance Ls measured for B⊥ = 0. b ∝ 1
kp

is a
measure of the pinning constant as defined in eq. 2.30. c represents a cubic contribution
to L(B⊥). For Bt ≥ 0.5 T the experimental L(B⊥) increases slower than the polynomial

107



6. Spin-Orbit Effects in the Al/InAs Heterostructure

in eq. 6.3. For Bt = 1 T and Bt = 1.5 T the curves can nicely be reproduced in the
range B⊥ ≥ 20 mT.
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Fig. 6.15.: Fitting parameters of fits to eq. 6.3 of data shown in Fig. 6.14. Dashed lines
represent phenomenological fit curves. The fit functions are described in the main text.

The free fitting parameters a, b, c are shown in Fig. 6.15. Because of the large fitting
range in B⊥ up to 20 mT, a is mainly determined by the extrapolation to B⊥ = 0
and therefore deviates from the measured L(B⊥ = 0). b decreases with Bt and follows
roughly a phenomenological, exponentially decreasing function

b = b0 exp
(
− Bt

B̃t,b

)
, (6.4)

where b0 = 121µH/T is the slope of L(B⊥) for small B⊥ and a characteristic in-plane
field B̃‖,b = 0.177 T. Parameter c can be interpreted as a non-constant, quadratic-in-B⊥
term of the pinning constant, which also decreases with B‖. The curve follows roughly
the same phenomenological function as 6.4

c = c0 exp
(
− Bt

B̃t,c

)
, (6.5)

with c0 = 0.805 H/T3 and characteristic B̃‖,c = 0.133 T. c(B‖) The point at B‖ = 0 has
been excluded from the fit range.

A crossover from slightly sub-linear to a super-linear behavior of Lv(B⊥) has been found
in a transverse in-plane field. As a reference to Fig. 6.14, Lv(B⊥) measured in a parallel
in-plane field is shown together with data measured in the transverse case in Fig. 6.16.
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6.2. Inductive Response of Superfluid

Data in this figure have been recorded in a separate cooldown different from the data
shown in Fig. 6.14. Therefore absolute values in the two datasets for similar magnetic
fields can slightly deviate.
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Fig. 6.16.: Lv(B⊥) for transverse (blue squares) and parallel (red triangles) in-plane fields of
0, 0.2, 0.5 T.

L(B⊥) in zero in-plane field naturally coincide as time reversal symmetry is not broken
for B‖ = 0. As already seen in Fig. 6.14, increasing the transverse in-plane field from
zero to Bt = 0.5 T changes the L(B⊥) dependence from (sub-)linear to superlinear (blue
curve). Qualitatively similarly L(B⊥) in a parallel in-plane field (red curve) changes
from (sub-)linear for Bp = 0 T to linear for Bp = 0.5 T.

It was already seen in Fig. 6.9 and Fig. 6.10, that Lv(Bt) decreases strongly with Bt for
a fixed B⊥. The crossover to a super-linear behavior of L(B⊥) for Bt ≥ 0.3 T is a strong
indication towards a fundamental change of the vortex pinning mechanism caused by
the in-plane field. For low vortex densities at small Bt all vortices produce on average
the same amount of inductance reflected in a linear L(B⊥)-dependence. At higher Bt,
L(B⊥) becomes super-linear in B⊥. For small B⊥, vortices added to the system only
contribute with a very small amount to the total inductance. Increasing the number of
vortices with B⊥ leads to an increasing average inductance contribution per vortex. This
means, that there have to be defects with differently strong pinning potentials. Once
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6. Spin-Orbit Effects in the Al/InAs Heterostructure

vortices are added to the system, defect sites with the strongest pinning are occupied
first. As more vortices are created by increasing B⊥, more shallower pinning potentials
are filled. The vortices at weaker pinning sites then contribute with a larger inductance
on average. The high-B⊥-field regime is barely affected by the in-plane field (see section
A.1.4 in the appendix).

Besides an effect that increases the pinning strength at individual pinning centers ac-
cording to eq. 2.30, non-linearity of L(B⊥) in an in-plane field could be a consequence
of the orbital effect of the perpendicular field. An out-of-plane field produces Meissner
currents at the edges of the sample, which creates potential walls for vortices. Vortices
would therefore accumulate at the center of the strip. This eventually could lead to
non-linear contributions to the inductance. In-plane fields in Rashba superconductors
can lead to additional in-plane anomalous screening currents that flow at the edges of
the sample in one direction and return in the center of the strip [84]. Furthermore a
spin texture, which rotates in the plane perpendicular to the sample plane when going
from one edge to the other, is predicted [84]. The repulsion of vortices by the anomalous
edge currents and the magnetic moments resulting from the out-of-plane spin texture
could possibly lead to a crowding of vortices on one side of the strip. As a result, non-
linearities in L(B⊥) could arise.

The question whether the non-linear L(B⊥) arises from supercurrents induced by the in-
and out-of-plane fields or from non-linearities in B⊥ of the individual pinning potentials
as calculated in section 2.3.2 stays an open question. The exact mechanism responsible
for this change of the L(B⊥)-behavior in in-plane fields has still to be determined. The
theory elaborated in eq. 2.75 section 2.3.2 captures the qualitative behavior, namely
anisotropy and suppression of Lv(Bt) and Lv(Bp) measured in a fixed B⊥ (Fig. 6.11).
L(B⊥)-data, however, indicate a polynomial L(B⊥)-dependence with linear and cubic in
B⊥ terms for a tranverse in-plane field rather than a purely non-linear dependence as
predicted by eq. 2.79. As the theory is based on a Ginzburg-Landau type of approach it
should be only valid at the phase boundary, where ∆ is small. This is the case for B → Bc

or T → Tc. Data shown in this chapter, however, are measured at low temperatures
and low fields. However, the theory should also be at least qualitatively correct further
away from the phase boundary. A more detailed, quantitative theory valid deep in the
superconducting state, which also takes into account interaction of vortices and orbital
effects, would be desirable.
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7. Critical Currents and
Non-Reciprocal Transport in
Al/InAs

In systems with broken inversion symmetry magnetic fields perpendicular to the current
direction can produce polarity dependent resistance [45]. External fields can also lead
to critical currents that depend on their polarity [6][7][8]. A short introduction into the
phenomenology of non-reciprocal transport was given in section 2.3.1. This chapter will
shows results of critical current and 2nd-harmonic resistance measurements performed
on straight rectangular strips of Al/InAs. An increase of the vortex depinning current
in in-plane fields perpendicular to the current directions is found. Furthermore it will
be shown that in-plane and unexpectedly also out-of-plane fields lead to polarity depen-
dent resistance and critical current. The role of the crystal direction on non-reciprocal
tranport properties will be discussed.

Sample Al/InAs-S was fabricated by electron-beam-lithography and wet etching by
Christian Baumgartner. An optical micrograph of the sample is shown in Fig. 7.1.
It consists of three straight stripes parallel to different crystal axes ([110], [11̄0], [100]).
The strips have a length of 200µm and a width of 2.3µm resulting in a total number of
squares of ∼ 87. The fabrication process consists of two lithography and etching steps
(see section 3.1.3). In the first step bondpads, leads and 5 nominally equal straight
strips are written for each of the three crystal directions. The unexposed areas are then
etched deep into the substrate. From the 5 straight lines the one with the least defects is
identified with scanning electron microscope. After a second lithography step the other
4 strips are etched away.

The current flow in most measurements is from I+ to I−, while the voltage drop across
the wires in different crystal directions is measured differentially using the corresponding
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Fig. 7.1.: Optical micrograph of sample Al/InAs-S. Ocher parts are Al/InAs, in the greyish
regions the sample was etched deeply into the insulating substrate. The large ocher areas are
bondpads and leads for electrical contacts. The single straight sections are 2.3µm broad and
200µm long. There are three wires parallel to the different crystal directions [110], [11̄0], [100]
indicated by blue lines. Black lines are bond wires attached to the sample. Annotation I and
V in the bond pads indicate voltage and current electrodes for the different directions.

voltage contacts. It was shown that there is no mutual heating effects from one segment
to the other at high currents. Being able to measure the transport properties of wires
with a current flow in different crystal directions simultaneously, allows to efficiently
investigate a possibly anisotropic character of the non-reciprocal transport properties.
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7.1. Critical Current Measurements

7.1.1. Exemplary IV-Characteristics and Methodology

Inductance measurement on sample Al/InAs-M showed that the vortex pinning is strongly
enhanced when an in-plane field perpendicular to the current is applied (see Fig.6.9).
Another quantity which is strongly correlated to the vortex pinning is the depinning
current, which is always lower than the depairing current and can be determined by fast
DC measurements (see section 3.2.3). The depinning current describes the maximal cur-
rent a superconductor in the vortex state can sustain before a finite resistance develops.
The depinning current is reached once the Lorentz force produced by the driving current
overcomes the maximal pinning force. The pinning force is proportional to the spatial
derivative of the pinning potential. There is an importance difference in the interpre-
tation of inductance and depairing current measurements in the vortex regime. While
the inductance measurement is sensitive to the curvature at the bottom of the pinning
potential, the depinning current measures the point of maximal slope of the potential.
The two quantities are conceptually different and therefore cannot be identical.

Critical currents are determined from DC current-voltage-characteristics. A voltage in
the sample is produced by applying fast DC current ramp pulses to one of the wires
shown in Fig. 7.1. The voltage drop is amplified with a differential voltage amplifier.
The resulting signal is measured with an oscilloscope.

Fig. 7.2 shows an example of the measured IV characteristics from which the critical
currents Ic are extracted. For each B⊥-value 50 IV traces are measured and averaged
afterwards. As the voltage drop and the voltage applied to a preresistor that defines the
current is measured with an oscilloscope, the resolution in both axes are limited which
leads to substantial noise in the extracted Ic data. The current resolution is of the order
of 6µA, the voltage resolution of the order of 4 mV for a single trace. Averaging enhances
the voltage resolution.

From IV-data, exemplary shown in Fig. 7.2, Ic is determined by using a threshold
condition of Vth ≈ 10 mV. This means, Ic is defined as the current needed to produce
an absolute voltage of at least Vth. Ic is therefore the first point in the IV-trace that lies
above (or below if V < 0) the threshold voltage upon increasing the current in either
direction. As the oscilloscope has only a resolution of 128 points for either positive and
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Fig. 7.2.: Exemplary IV characteristics at low temperatures for nominal out-of-plane fields
B⊥ ranging from −1 mT to 0.8 mT in steps of 0.2 mT and B‖ = 0. The absolute minimum of
B⊥ is at a nominal field of ∼ 0.2 mT. Dashed lines correspond to positive fields, solid lines
represent negative fields. The horizontal dashed-dotted lines represent the threshold voltage
|Vth| = 10 mV, which defines Ic.

negative voltage range of 1 V, only discrete voltage steps of ∼ 8 mV can be measured.
Averaging slightly extends the resolution of measurable voltage values.

7.1.2. Enhancement of Depinning Current in In-Plane Magnetic
Fields

In section 6.2.3 a strong decrease of the vortex inductance was observed in the presence
of an in-plane field that was aligned perpendicular to the supercurrent direction. This
was attributed to an increase of the pinning constant kp, which is proportional to the
curvature at the bottom of the pinning potential. In this section it will be shown that
in the presence of an in-plane field not only the curvature of the pinning potential is
increased, but also the maximal pinning force.

The maximal pinning force can be determined by the measurement of the critical current
in the presence of an out-of-plane field. For that, IV-curves similar to those shown in
Fig. 7.2 have been recorded by sweeping B⊥. Additional in-plane fields were applied
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perpendicular to the current to identify a possible enhancement of Ic with B‖. From
the measured IV-curves Ic(B⊥) is extracted by using the above mentioned threshold
criterion.
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Fig. 7.3.: Positive and negative critical currents in the [11̄0] direction as a function of B⊥ for
transverse in-plane fields B‖ = 0(black), 0.1(green), 0.3(red), 0.5(blue) T. For |B⊥| ≤ 1.2 mT
measured data follow the dashed line, which is a fit to eq. 7.2.

In Fig. 7.3 the critical current in the [11̄0] direction is plotted as a function of per-
pendicular field for different in-plane fields at low temperatures. B⊥ was swept from
negative to positive values and at each point IV traces for both current directions have
been performed succesively. Back and forth sweep showed small hysteresis effects (not
shown here) that do not alter the qualitative outcome.

The critical current at low temperatures for a superconductor in the dirty limit can be
calculated via [77]

Ic0 = wd
8π2√2π
21ζ(3)e

(
(kBTc)3

~vFρ(ρl)

)1/2

, (7.1)

where w is the width of the sample and vF = 1.3 × 106 m/s. With the parameters
determined from DC transport measurements (see table 4.1) the expected critical pair-
breaking current in zero magnetic field at low temperatures is ∼ 1 mA. Eq. 7.1 is valid
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

for bulk superconductors. The discrepancy between the theoretically expected and mea-
sured Ic0 ≈ 300µA of a factor of ∼ 3 might be due to the 2D-character of the Al thin
film. As was shown in Fig. 6.2 the superconducting transition is probably BKT-like.
Maybe the existance of bound or pinned vortex-antivortex pairs, persistent up to low
temperatures, are responsible for the suppression of Ic. In that case the transition to
the normal state will not take place at the pair-breaking current, but at the current
needed to dissociate or depin the vortex-antivortex pairs, which is always smaller then
the depairing current.

For B‖ = 0, Ic(B⊥) decreases for |B⊥| ≤ 1.2 mT following the empirical equation

Ic(B⊥) = Ic0

(
1 + B⊥

B̃⊥

)−1

, (7.2)

with Ic0 = 302µA and characteristic B̃⊥ = 0.54 mT. For |B⊥| > 1.2 mT the measured
Ic(B⊥) decreases slower than eq. 7.2. For B‖ > 0, Ic(B⊥) for most B⊥ is larger than in
the case of zero in-plane field. This tells that the critical depinning current is increased
when an in-plane field perpendicular to the current is applied.

To further illustrate the enhancement of Ic(B⊥) in an orthogonal in-plane field, Fig. 7.4
exemplarily shows the ratio of the depinning current measured for B‖ = 0.1, 0.3 T and
the one for B‖ = 0 at B⊥ = 2 mT. Points are calculated from the data shown in Fig.
7.3. For better visibility only the first quadrant is shown.

For 0.5 mT < B⊥ < 9 mT the depinning current is larger for B‖ = 0.1 T and 0.3 T.
The maximal increase of Ic(B⊥) is of the order of 15% measured at B⊥ ≈ 2.5 mT. For
B⊥ > 2.5 mT the relatice increase of the depinning current reduces more or less linearly.
For B‖ ≥ 0.5 T, Ic(B⊥ = 2 mT) is reduced again below the zero in-plane field Ic (see
inset of Fig. 7.4).

Although the data are relatively noisy, a clear trend towards an increase of the depin-
ning current for moderate in-plane fields B‖ ≤ 0.5 T perpendicular to the current can
be observed. This indicates that not only the curvature at the bottom of the pinning
potentials increase with B‖ (see section 6.2.3), but also the maximal pinning force at
a distance r0 away from the center of the pinning potential. Whereas the vortex in-
ductance Lv(B‖) decreases up to a transverse in-plane field of B‖ = 2.5 T, the maximal
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Fig. 7.4.: Critical currents Ic(B⊥) measured at B‖ = 0.1 T (red curve) and B‖ = 0.3 T (light
blue curve) normalized with Ic,B‖=0(B⊥) measured in zero in-plane field. Arrow indicates
B⊥ = 2 mT. Dashed line is a guide to the eye indicating linear decrease for B⊥ > 2 mT Inset:
IV-characteristic at B⊥ = 2 mT for in-plane fields of 0, 0.1, 0.3, 0.5 T.

enhancement of the depinning current is already reached at B‖ ≈ 0.3 T. The impact
of the in-plane field on the curvature in the center of the pinning potential is therefore
differently strong than the influence of B‖ on the maximal slope of the pinning potential.

7.1.3. Anisotropic Vortex Pinning

So far it was shown, that moderate in-plane fields perpendicular to the current tend to
increase the vortex depinning current. In this section the focus will be on the symmetry
of the vortex pinning potential under the influence of a magnetic field. At first it will
be demonstrated, that pure out-of-plane fields already produce a polarity dependent
depinning current, which hints towards asymmetric pinning. This rectification of super-
current is additionally enhanced by an in-plane field perpendicular to the current.

Fig. 7.5 shows Ic(B⊥) data measured for B‖ = 0 in the [11̄0]-direction of sample Al/InAs-
S. The same data are used as in Fig. 7.3. The B⊥-dependence of the critical current
was already discussed in section 7.1.2. The upper two insets of Fig. 7.5 show small
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

differences of |I+
c | and |I−c | for |B⊥| ≤ 2 mT. |I+

c | appears to be slightly larger than |I+
c |

for most of the B⊥-range. The curves are nearly point symmetrical with respect to the
origin. This can be seen by mirroring I−c (B⊥) to −I−c (−B⊥) (lower left panel). After
the mirroring, curves for I+

c (B⊥) and −I−c (−B⊥) almost coincide.
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Fig. 7.5.: Main panel: Ic(B⊥) for B‖ = 0 at low temperatures. The shown data are the same
as in Fig. 7.3. I+

c is the critical current measured in the positive direction, I−c the one in
negative direction. Dashed line is a phenomological fit to eq. 7.2. In the insets I+

c is shown in
red, I−c in blue. Upper insets show zooms into the region of |B⊥| ≤ 2 mT. In the two upper
insets I−c has been mirrored to the upper two quadrants for better comparison. Lower left
inset shows I+

c together with I−c , which was point mirrored at the origin.

The measured data shown in Fig. 7.5 look quite similar to results from critical current
measurements performed on a superconducting strip with artificial pinning centers (Fig.
7.6) by Yu et al. [85]. In this work polarity dependent depinning currents were mea-
sured, which are the consequence of a structural anisotropy. Their sample consists of a
two-layer superconductor, where in the upper layer sawtooth-shaped channels perpen-
dicular to the current direction have been etched away. By that, they have created an
anisotropic pinning potential in the direction of vortex motion. The differences of |I+

c |
and |I−c | measured in the present thesis are much less pronounced compared to [85].
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7.1. Critical Current Measurements

Fig. 7.6.: Main panel: Ic(B⊥) measured in a superconducting strip with artificial, asymmetric
pinning potentials. The curves are point symmetric with respect to the origin. Upper left inset
shows a zoom in the low field region of Ic(B⊥). The two right insets show absolute values
of critical currents of both polarities in the 2nd and 3rd quadrant of the main panel. Picture
taken from [85].

For better visibility of a polarity-dependent critical current, ∆Ic = |I+
c | − |I−c | as well as

the relative difference defined as

δIc = |Ic+| − |Ic−|
1
2(|Ic+|+ |Ic−|)

(7.3)

can be investigated. Data are shown in Fig. 7.7.
The curve seems to be shifted by roughly 1.1µA to positive ∆Ic indicated by the dashed
line. This shift is very likely due to an offset of the zero current line measured by
the oscilloscope. The current resolution of this measurement is of the order of ∆I =

10 V
26.7 kΩ = 2.9µA. A constant offset c when subtracting the absolute value of two functions
f+(x) = |g1(x) + c| and f−(x) = |g2(x) + c| can lead to a constant offset in ∆f(x). For
example for |g2(x)| > c the difference ∆f(x) is

∆f(x) = |g1(x)+c|−|−g2(x)+c| = g1(x)+c− (g2(x)−c) = (g1(x)−g2(x))+2c. (7.4)
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

A small offset of the order of µA therefore can be expected considering the given current
resolution. In the calculation of δIc(B⊥), shown on the right side of Fig. 7.7, this offset
was subtracted from ∆Ic beforehand. In the following characteristics of ∆Ic(B⊥) are
therefore to be understood relative to the dashed line, shifted by 1.1µA with respect to
∆Ic = 0.
Although ∆Ic(B⊥) is relatively noisy a basic trend of ∆Ic(B⊥) can be observed. In an
out-of-plane field regime of |B⊥| . 3 mT, the sign of ∆Ic depends on the sign of B⊥.
For |B⊥| . 1 mT, ∆Ic(B⊥) increases with |B⊥|. At higher |B⊥| ∆Ic(B⊥) decreases again
and becomes unmeasurably small for |B⊥| > 3 mT. The maximum of relative anisotropy
δIc(B⊥) is of the order of 5% at B⊥ ≈ 1.1 mT.
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Fig. 7.7.: Left: ∆Ic as a function of B⊥ for B‖ = 0 at T = 0.1 K calculated from the data
shown in Fig. 7.5. The dashed line indicates a systematic offset. The dashed dottet line is a
guide to the eye. Inset shows a zoom in the low field region |B⊥| ≤ 2.5 mT. Right: Relative
anisotropy δIc = |Ic

+|−|Ic
−|

1
2 (|Ic

+|+|Ic
−|) as a function of B⊥.

This measurement shows that for small B⊥ the critical current depends on its polarity.
This indicates an asymmetric pinning potential. The exact origin for this asymmetry
is however unclear. Possibly, spin-orbit fields arise at the Al/InAs interface due to the
symmetry breaking of the crystal lattice (see Fig. 3.2). While the InAs (001)-plane
is has a cubic unit cell, the Al on top grows in [111]-direction, which has a trigonal
structure. This mismatch breaks inversion symmetry at the inferface and hence could
probably lead to a spin-orbit field pointing in the out-of-plane direction. Application
of B⊥ would then lead to a Zeeman splitting, besides introducing vortices. In trigonal
systems such out-of-plane spin textures have already been demonstrated by measuring a
polarity dependent resistance in the fluctuation regime of the transition [68][86]. Perhaps
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7.1. Critical Current Measurements

there is an out-of-plane analog to the case of the supercurrent rectification in Rashba
supercondutors in in-plane magnetic fields [7][8], which arises from the interplay of B‖
and the in-plane Rashba fields. For spin-textures that point out-of-plane probably the
same mechanism could take place in out-of-plane fields leading to a polaritiy dependent
depairing current, which in return affects the vortex depinning current. As will be seen
later, measurements performed in the fluctation regime of sample Al/InAs-S indeed show
a non-reciprocal resistance in the presence of an out-of-plane field pointing towards an
out-of-plane spin component (see section 7.2.2). This hypothesis is affirmed additionally
by the fact that a polarity-dependent critical current was also measured at low tem-
peratures in a Josephson junction array produced from the same material (see section
A.3.3). In that case, the critical current is not limited by vortex depinning, but by the
critical current of the Josephson junction. This shows, that the polarity dependence
of the critical current must be, at least partly, a direct consequence of the interplay
between B⊥ and the spin-orbit fields of the superconductor. A theoretical analysis of a
possible out-of-plane spin-texture at the interface would be desirable at this point.

So far asymmetry of the pinning potential was shown in presence of B⊥ only. Now the
impact of an additional in-plane field on the polarity dependence of the critical current
should be discussed. From the Ic(B⊥) at finite in-plane fields perpendicular to the cur-
rent shown in Fig. 7.3, ∆Ic is calculated. The results are shown in Fig. 7.8.

The polarity of ∆Ic(B⊥) clearly depends on the sign of B‖ as curves for B‖ = 0.5 T and
B‖ = −0.5 T show. There is an overall trend that ∆Ic increases with increasing B‖.
For |B⊥| & 5 mT ∆Ic(B⊥) is of the order of the noise level and a further interpreta-
tion therefore not sensible. A fluctuation pattern showing one main peak and two side
peaks, somehow reminiscient of a Fraunhofer-like shape, can be observed. The peaks
are indicated by numbers, (2) representing the main peaks, (1) and (3) the side-peaks.
The absolute heights of peaks (1) are smaller than those of peaks (3). The peaks look
point symmetric with respect to the origin. This becomes even more pronounced when
∆Ic(B⊥) for positive B‖ is plotted in a graph together with a point-mirrored version of
∆Ic(B⊥) measured for negative B‖ (lower left inset). After the mirroring, the curves
strikingly overlap. Even small features, that look like noise on the first sight, are most
likely real. The reason for this oscillation is an open question at the moment.

The maximal ∆Ic ≈ 58µA for B‖ = 0.5 T is measured near B⊥ = 0. The relative asym-
metry δIc(B⊥) as defined as in eq. 7.3 reaches values of almost 40% for |B‖| = 0.5 T
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Fig. 7.8.: ∆Ic(B⊥) calculated from Ic(B⊥) data shown in Fig. 7.3 for in-plane fields B‖ =
0, 0.1, 0.3, 0.5,−0.5 T at low T = 0.1 K. B⊥ is applied perpendicular to the current. Numbers
indicate local maxima. Lower left inset shows ∆Ic(B⊥) measured for B‖ = 0.5 T and B‖ =
−0.5 T, where the latter was mirrored at the origin. Lower right inset shows relative asymmetry
δIc(B⊥) as defined as in eq. 7.3 for B‖ = ±0.5 T.

(lower right inset) at |B⊥| ≈ 1.4 mT. For B‖ > 0.5 T ∆Ic(B⊥) becomes much noisier
and are therefore not treated here.

This measurement shows that ∆Ic(B⊥) not only depends on B⊥ alone, but also even
much stronger on B‖. The presented data suggest a "8-octant"-problem resulting from
presumably odd symmetries in I, B⊥ and B‖, which makes analysis challenging. For a
more quantitative analysis, measurements with higher resolution in basically all involved
quantities (V , I, B⊥) would need to be carried out. A polarity dependent critical current
for Rashba superconductors in presence of an in-plane field perpendicular to the current
was described theoretically recently [7][8]. So far there is no theoretical work on the
behavior of Ic in such systems in presence of an additional out-of-plane field. A more
detailed theoretical description would be desirable. In order to investigate the behavior
of ∆Ic(B‖) without even a tiny out-of-plane field would require a dedicated measurement,
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which is performed for B⊥ = 0 directly after the compensation procedure described in
section 3.3.1 without sweeping B⊥.

7.2. Field Induced Non-Reciprocal Transport in
Fluctuation Regime

So far the behavior of the critical current at low temperatures in presence of exter-
nal magnetic fields was investigated. Not only the critical current can become polarity
dependent in magnetic fields, but also the resistance can become non-reciprocal in a
regime where R is finite (see section 2.3.1). The origins of the two effects occurring at
very different temperatures are presumeably closely related. It is the interplay of an in-
plane field aligned parallel with the spin-orbit field that leads to the polarity dependent
effects. The non-zero resistance can in zero field either result from thermally activated
vortex motion (BKT-regime) or from an ohmic contribution (fluctuation regime). With
non-zero B⊥ also vortex motion can produce a resistance below Tc, if the current is large
enough to depin the vortices.

Non-reciprocal transport effects in these regimes can elegantly be investigated by mea-
suring the second harmonic resistance R2ω produced by an AC excitation current IAC ∝
sin(ωt). In symmetric systems the second harmonic is zero, whereas in systems with
broken time- and inversion symmetry the signal can become non-zero. The strength
of non-reciprocity can then be characterized by the parameter γs = 2R2ω

RωBI
(see eq.

2.48). There have been a large number of publications in which non-reciprocal trans-
port in external magnetic fields in the above mentioned regimes have been demonstrated
[6][48][86][87][88][89].
In the Al/InAs heterostructure inversion symmetry is broken in the [001]-direction, which
results in a Rashba SOC (see section 2.3.1). An in-plane field in that case should lead
to a polarity dependent resistance in the BKT- and fluctuation regime. This effect will
be shown to be present in sample Al/InAs-S in the first part of this section.
In section 7.1.3 an indication towards a B⊥-dependent ∆Ic in zero in-plane field was
found. As the polarity-dependent critical current and the non-reciprocal resistance seem
to be closely related it is intuitive to investigate the impact of a solely out-of-plane field
on the 2nd-harmonic response in the BKT- and fluctuation regime. In the second part
it will be shown that a small B⊥ indeed leads to a even larger γs as in the in-plane field
case.
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In the third part of this section 2nd-harmonic measurements in combined in- and out-
of-plane fields will be discussed.
Temperature dependence of γs is discussed at the end of the section. Important exper-
imental details are described in sections 3.3.1 and 3.3.2. Although in most cases not
shown in the following, for each R2ω(T ) also a Rω(T )-curve was recorded in the same
temperature sweep.

7.2.1. Non-Reciprocal Resistance in In-Plane Fields

First behavior of first (Rω) and second (R2ω) harmonic resistance in the presence of an
in-plane field perpendicular to the current directions will be investigated. An in-plane
field perpendicular to the current leads to a significant 2ω-resistance signal in an R(T )-
measurement. Fig. 7.9 shows a typical measurement of the temperature dependence of
the first and second harmonic resistance for different current and in-plane field directions
(see Fig. 7.1 for current directions). The applied AC current was I = 500 nA.
For B‖ = 0 (black curves) there is barely any R2ω-signal. Only a some small oscillation
can be found for 1.465 K < T < 1.48 K in the regime where Rω(T ) decreases strongly.
In the case where a moderate in-plane field B‖ = 0.3 T is applied perpendicular to the
current (red curves) a strong positive R2ω-signal with a peak value of R2ω,max = 2.5 Ω
at T ≈ 1.454 K is found in the range 1.445 K < T < 1.465 K. At lower temperatures a
negative signal can be observed at T ≈ 1.435 K.
When B‖ = 0.3 T is applied parallel to the current (blue curve) only a small R2ω-signal
is measured in the fluctuation regime for 1.45 K < T < 1.465 K.

The absolute values of Rω in the normal state for T > 1.5 K differ for the shown curves,
because they have been measured in several cooldowns with different contact configu-
rations. This figure, however, should only qualitatively show the basic aspects of the
experiment and therefore small discrepancies in the absolute values are not important.

It can be seen that only in the case where B‖ ⊥ I a significant R2ω can be measured
in the temperature range where Rω(T ) decreases strongly with decreasing temperature.
For B‖ ‖ I and B‖ = 0 only small oscillations can be measured. They are most probably
artifacts from not perfectly compensated DC offset currents (see 3.3.2) or out-of-plane
fields. As will be seen later, even very small B⊥ also produce a strong R2ω signal.
Although great care has been taken to compensate possible offsets of either DC current
or B⊥, it was never possible to measure absolutely no R2ω even for B‖ = 0.
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Fig. 7.9.: Rω(T ) and R2ω(T ) measured for different current and field directions. The applied
AC current was 500 nA at a frequency of 117 Hz. Dashed lines represent Rω(T ), solid lines
R2ω(T ). Grey arrows indicate the corresponding y-axes. Black curves have been measured
with a current in the [11̄0]-direction in zero in-plane field. Red curves have been recorded with
current in the [11̄0]-direction in a field B‖ = 0.3 T perpendicular to the current. Blue curves
have been measured with current in the [110]-direction in a field B‖ = 0.3 T parallel to the
current.

The strong R2ω-signal for B‖ ⊥ I is expected as non-reciprocal transport in Rashba
superconductors should only appear when the in-plane field is parallel to the Rashba
spin-orbit field [45]. At the temperature where R2ω(T ) is maximal, the linear resistance
Rω is roughly a quarter of the normal state resistance.

In the following the change of R2ω(T ) with varying in-plane fields will be discussed. Fig.
7.10 shows R2ω as a function of temperature for different in-plane fields perpendicular to
the [11̄0] current direction. For better clarity, Rω(T )-data are not shown in this graph.
The graph shows that the sign of R2ω(T ) depends on the direction of B‖. For each
field two distinct peaks can be found. With increasing |B‖| peaks are shifted to lower
temperatures due to the depression of Tc caused by orbital pair breaking. The largest
R2ω is found for B‖ = 0.3 T. The maximal R2ω decreases with |B‖| and the width of the
R2ω(T )-peaks, especially the one at lower temperatures, broadens in higher fields. For
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Fig. 7.10.: R2ω(T ) for the [11̄0] current direction for B‖ = −0.5,−0.3,−0.2, 0, 0.2, 0.3, 0.5 T.
The in-plane field is perpendicular to the applied AC current I = 500 nA. Inset shows data
measured at B‖ = −0.75,−1,−1.25 T

|B‖| > 0.5 T the signal becomes very irregular (inset of Fig. 7.10).

The characteristics of the non-reciprocal resistance resulting from the interplay of mag-
netic and spin-orbit field presented here are very similar to the result reported in different
systems [6][48][86][87][88][89]. In the given literature it was shown, that R2ω is only lin-
ear for a certain magnetic field range, and reduces for higher fields as it is the case in
the present sample, too. The origin of a second peak in the fluctuation regime is still
unclear so far. As will be seen later, linearity or R2ω in I in sample Al/InAs-S is in
fact only given up to a current of 100 nA (see 7.2.2). R2ω(T ) measurements in pure
in-plane and combined in- and out-of-plane fields unfortunately were only carried out
with a current of 500 nA The principle characteristics, nonetheless should be meaningful
from the presented data at higher currents.

From the maxima of the R2ω(T ) curves shown in Fig. 7.10 and the corresponding Rω,
γs = 2R2ω,max

RωBI
can be calculated for the different in-plane fields. Fig. 7.11 shows γs as a
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function of B‖.
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Fig. 7.11.: γs calculated from data shown in Fig. 7.10 as a function of in-plane field.

γs is maximal for small |B‖| ≈ 0.1 − 0.2 T. The maximum is of the order of 4.5 ×
105 T−1A−1. Normalized with respect to the width w = 2.3µm of the superconducting
strip this gives wγs ∼ 1 T−1A−1m, which is comparable to other materials (0.05 T−1A−1m
in [6], 80 T−1A−1m in [88]). For B‖ > 0.3 T γs decreases very fast.

7.2.2. Non-Reciprocal Vortex Resistance or Unexpected Spin
Texture?

Not unexpectedly non-reciprocal transport in the fluctuation regime in sample Al/InAs-
S could be measured in the presence of an in-plane field perpendicular to the current
direction. This is in accordance with the observation of a polarity dependent critical
current at low temperatures in the same field configuration as these two effects probably
have the same origin. At low temperatures it was shown that also in pure out-of-plane
fields a slightly polarity dependent critical could be measured (see Fig. 7.7). This raises
the question if at higher temperatures a non-reciprocal resistance could be also be mea-
sured in solely out-of-plane fields.
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

Similar kind of 2nd-harmonic resistance measurements as in the in-plane field case (see
previous section) were performed in small out-of-plane fields for different current direc-
tions. An exemplary graph for R2ω(T ) as a function of temperature is shown in Fig.
7.12. Not all measured fields are shown in the graph. The field scales of B⊥, on which
non-reciprocal transport can be observed, are of the order of 0.1 mT. This is much
less as compared to the in-plane field case (typical field scale B‖ ∼ 0.1 T). Again the
polarity of R2ω(T ) depends on the sign of B⊥. The peaks of R2ω(T ) are highest for
B⊥ ≈ 0.2 − 0.3 mT. The temperature, where R2ω(T ) peaks is shifted to lower tem-
peratures with increasing field due to a slight suppression of Tc. For B⊥ = 0 (black
curve) almost no signal can be measured. For B⊥ = ±0.5 mT there is a sign change at
T ≈ 1.465 K (black arrow).
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Fig. 7.12.: R2ω(T ) measured in the [100]-direction and a current of 100 nA for B⊥ =
−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5 mT. Grey arrow indicates a sign change for B⊥ = ±0.5 mT.

This measurement shows that qualitatively the same characteristic R2ω(T ) can be mea-
sured if instead of an in-plane field (Fig. 7.10) an out-of-plane field is applied perpendic-
ular to the current. The field scale, however, is reduced by roughly a factor of 1000. A
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7.2. Field Induced Non-Reciprocal Transport in Fluctuation Regime

non-reciprocal signal in the fluctuation regime of a Rashba superconductor is, however,
only expected for in-plane fields perpendicular to the current as the Rashba spin-orbit
fields are in-plane [45]. In TMD structures, where the spin-orbit field point out-of-plane,
a polarity dependent resistance is expected in the presence of B⊥. It is in principle based
on the same mechanism as for Rashba superconductors in an in-plane field. The relevant
ingredient is a Zeeman term in the Hamiltonian. The observation of a sizeable R2ω(T )
in an out-of-plane field therefore suggests an unexpected out-of-plane spin texture in the
Al/InAs heterostructure.

In Fig. 7.12 it is shown that R2ω,max(B⊥) has a maximum for B⊥ ≈ 0.2 − 0.3 mT. In
order to check for linearity in B⊥ and I, R2ω(T )-curves for various out-of-plane fields,
currents and crystal directions were measured. From all these curves R2ω,max have been
extracted. At first linearity of R2ω,max(I) as a function of current will be investigated.

Exemplarily for all three investigated crystal directions, Fig. 7.13 shows R2ω,max(B⊥)
as a function of out-of-plane field for different AC currents, which are extracted from
corresponding R2ω(T )-curves similar to Fig. 7.12. Data are shown for the [11̄0]-direction.
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Fig. 7.13.: Left: R2ω,max(B⊥) for AC driving currents of 50, 75, 100, 200, 500 nA in the [11̄0]-
direction. Right: same data normalized with the driving current. Up to a current of 200 nA
and |B⊥| ≤ 200µT all data lie on a single curve.

Left side of Fig. 7.13 shows linearity of R2ω,max(B⊥) for B⊥ ≤ 200µT. Plotting the
same data but normalized with the driving current gives information about the linearity
of R2ω,max as a function of I (right side in Fig. 7.13). The different R2ω,max(B⊥) collapse
to a single curves for I ≤ 200 nA, indicating linearity in this current regime. The same
range of linearity in I is found for the other two current directions (not shown here).
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

For I > 200 nA R2ω,max slightly decreases again.

In the linear current range the influence of the current direction on R2ω,max(B⊥) is of
peculiar interest as it might give information about the possible out-of-plane spin-orbit
field texture in different current (momentum) directions. Fig. 7.14 shows the out-of-
plane field dependence of R2ω,max(B⊥) for the three different current directions at a
current of 100 nA.
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Fig. 7.14.: R2ω,max as a function of B⊥ for the three investigated current directions and a
driving current of 100 nA. Current directions are drawn and labeled with different colors. The
signal is linear for out-of-plane fields up to 200µT in all three directions.

Linearity in B⊥ is given in all three directions up to a field of about 200µT. At higher
fields R2ω,max(B⊥) slightly decreases again as it is also the case for currents larger than
200 nA. The curves are different regarding magnitude as well as sign. For the [110]
(green) and [100] (red) current-direction R2ω,max(B⊥) is positive for negative B⊥ and
vice versa. The absolute slope of R2ω,max(B⊥) for |B⊥| ≤ 0.2 mT is larger for [100] than
for [110]. In [11̄0]-direction R2ω,max(B⊥) has the opposite with respect to the other direc-
tions. The absolute value of the slope for |B⊥ ≤ 0.2 mT in [11̄0]-direction is somewhere
between the corresponding curves for [110] and [100].
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7.2. Field Induced Non-Reciprocal Transport in Fluctuation Regime

Fig. 7.14 shows clearly that the non-reciprocity in presence of B⊥ in the fluctuation
regime depends on the current and hence on the momentum direction with respect to
the crystal axes. This indicates an anisotropic out-of-plane spin-texture in the Al/InAs
heterostructure. Measurements for many more current directions, however, did not yet
show a clear systemics regarding the symmetry the anisotropy (see section A.3.2).

The absolute value of R2ω,max(B⊥) for small out-of-plane fields is quite comparable to the
one measured in the in-plane field case (Fig. 7.10) but the field scale is roughly 3 orders
of magnitude smaller. Assuming a similar mechanism responsible for a non-reciprocal
resistance in small B⊥ analog to the in-plane field case, γs(R2ω,max) = 2R2ω,max

RωB⊥I
can be

calculated. This is the same equation as eq. 2.48 with B‖ being replaced by B⊥. For this
calculation also Rω data, measured simultaneously with R2ω(T ), are used. γs(R2ω,max)
as a function of B⊥ for the 100-direction, where non-reciprocity is strongest, is shown in
Fig. 7.15.
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Fig. 7.15.: γs(R2ω,max) in the fluctuation regime as a function of B⊥ for the [100] current
direction and driving currents up to 200 nA. γ is nearly constant for small B⊥ and breaks
down for higher fields.
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

γs(B⊥) curves for the other current direction are quite similar. As can be already
guessed from Fig. 7.14, |γs,max|(B⊥) is smaller for [100] and [11̄0] (curves not shown
here). The maximum of γs(B⊥) is at a field of 0.15− 0.2mT and reaches values as high
as |γs,max| ≈ 1.5×109 T−1A−1 or normalized with the width |wγs,max| ≈ 3450 T−1A−1m,
which is large compared to the in-plane field case (γs,B‖ ∼ 1 T−1A−1). This means
that, under the assumption of a similar mechanisms responsible for the non-reciprocal
resistance in the in- and out-of-plane field case, the associated spin-orbit field directing
out-of-plane must be orders of magnitudes larger than in the in-plane case.

7.2.3. Complex Field Dependence of Non-Reciprocal Tranport for
Combined In- and Out-of-Plane Fields

So far non-reciprocal transport was studied in both in- and out-of-plane fields. Combin-
ing both field directions leads to a polarity dependent critical current at low temperatures
resulting in a "8-octant" problem, that was discussed in section 7.1.3. Non-reciprocal
resistance at higher temperatures in superimposed in- and out-of-plane fields therefore
can be expected.

In the same kind of manner as discussed in sections 7.2.1 and 7.2.2, Rω(T ) and R2ω(T )
curves have been recorded in various field configurations. The curves were measured be-
fore it was found that linearity in of R2ω(T ) in the current is only given up to I = 200 nA.
The shown data are all measured with an AC current of 500 nA and therefore are not in
the linear regime anymore. Qualitatively, however, this does not make a big difference.
For better comparison, in the following, Rω(T ) and R2ω(T ) curves recorded for the same
B⊥ in different field and current configurations are plotted in the same colors. Curves
for B⊥ = 0 are drawn in black. Dark blue corresponds to B⊥ = −2 mT, light blue
to B⊥ = +2 mT. Red curves were recorded for B⊥ = −5 mT, dark yellow curves for
B⊥ = +5 mT.

In Fig. 7.16 Rω(T ) and R2ω(T ) in the [11̄0]-direction is shown in out-of-plane magnetic
fields |B⊥| ≤ 5 mT. The transition shifts towards lower temperatures at higher B⊥ due
to the suppression of Tc. As was already seen in Fig. 7.12, the sign of R2ω(T ) depends
on the polarity of B⊥ and is nearly mirror symmetric with the temperature axis. A
not perfectly compensated DC current offset is most probably responsible for the slight
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Fig. 7.16.: Rω,R2ω as a function of temperature for the [11̄0] current direction for out-of-
plane fields B⊥ = −5, 2, 0, 2, 5 mT. Rω(T ) is associated to the left axis, R2ω(T ) to the right
axis (indicated by arrows).

asymmetry of R2ω(T ) measured for opposite polarities of B⊥. For the same reason a
small R2ω(T )-signal can be measured for B⊥ = 0 (black curve). Rω(T ) for fields of the
same magnitude but opposite polarity are on top of each other and therefore are sym-
metric in B⊥. For B⊥ = 0, Rω(T ) is very sharp with a small shoulder at T = 1.457 K.
The reason for this kink is still unclear. For small B⊥ the onset of Rω(T ) is linear in a
logarithmic scale and therefore indicates an exponential dependence.

Fig. 7.16 so far shows nothing new besides the exponential increase of Rω(T ) at the
onset of resistance most probably caused by thermal activation of pinned vortices. An
additional in-plane field, however, strongly changes the observed behavior. Fig. 7.17
shows Rω(T ) and R2ω(T ) for the same B⊥ as in Fig. 7.16 in an in-plane field of 0.3 T.

In contrast to the zero in-plane field case, Rω(T ) is not symmetric in B⊥ anymore. For
B⊥ < 0 the onset of resistance is shifted to lower temperatures. In this case zero re-
sistance is not even reached for B⊥ = −5 mT. The slope of Rω(T ) for small resistance
is smaller for B⊥ < 0 than for B⊥ > 0. R2ω(T )-curves for |B⊥| ≥ 2 mT are all on the
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Fig. 7.17.: Rω, R2ω as a function of temperature for the [11̄0] current direction for out-of-
plane fields B⊥ = −5, 2, 0, 2, 5 mT. An in-plane field of B‖ = 0.3 T is applied perpendicular to
the current (indicated in the graph). Rω(T ) is associated to the left axis, R2ω to the right axis
(indicated by arrows).

positive side of the resistance axis very opposite to the case of zero in-plane field (see
Fig. 7.16). The temperatures, where R2ω(T ) is maximal are different for B⊥ of oppo-
site polarities. For B⊥ < 0 the peaks are at slightly lower temperatures compared to
B⊥ > 0. Also the peak heights differ strongly for opposite out-of-plane field directions.
For B⊥ = 0 their is a peak in the negative direction caused only by the in-plane field as
was already seen in section 7.2.1.

Inverting B‖ leads to a graph that looks like a version of Fig. 7.17, where R2ω(T )-signals
are mirrored to the opposite side of the R2ω-axis and corresponding B⊥ are exchanged
with the opposite polarity (see left side of Fig. 7.18). This again shows the complex
"8-octant" symmetry of the problem.

On the right side of Fig. 7.18, Rω and R2ω are shown in [110]-direction with B‖ applied
parallel to the current direction as a reference to Fig. 7.17. In this field configuration
R2ω(T ) is barely changed compared to the zero in-plane field case (Fig. 7.16). Also the
Rω(T ) curves for opposite B⊥ are only slightly different. These even small differences
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most probably arise from a not perfectly perpendicularly oriented in-plane field with
respect to the current.
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Fig. 7.18.: Left: Rω, R2ω as a function of temperature for the [11̄0] current direction for out-
of-plane fields B⊥ = −5, 2, 0, 2, 5 mT. An in-plane field of B‖ = 0.3 T is applied perpendicular
to the current. Right: Rω, R2ω as a function of temperature for the [110] current direction for
out-of-plane fields B⊥ = −5, 2, 0, 2, 5 mT. An in-plane field of B‖ = 0.3 T is applied parallel
to the current.

This measurement shows that there is a complex interplay of the non-reciprocal effects of
both in- and out-of-plane magnetic fields. The asymmetry of Rω(T ) in B⊥ in the presence
of an in-plane field again hints towards anisotropic pinning caused by the interplay of
Rashba SOC and B‖, which is also reflected in the asymmetric R2ω(T )-signal. An in-
plane field of 0.3 T is enough to push the asymmetry to one side of the R2ω-axis. This
means that the rectification of vortex motion caused by asymmetric pinning is dominated
by the in-plane field as was already seen in Fig. 7.8 at low temperatures. A theoretical
model would be useful at this point.
Unfortunately only the above shown B⊥ fields were measured in the presence of an
additional in-plane field. Investigation of the evolution of the polarity of R2ω(T ) as
a function of B⊥ in a fixed in-plane field might reveal further information about the
relative strengths of in- and out-of-plane rectification.
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7. Critical Currents and Non-Reciprocal Transport in Al/InAs

7.3. Non-Reciprocal Resistance at the Crossover of
Fluctuation and BKT-Regime

So far the behavior of R2ω and γs was mainly studied at the absolute maximum of R2ω(T )
for different magnetic field orientations. It should be noted that, although often seen
in literature, this choice of comparing R2ω,max is kind of arbitrary as the maximum of
R2ω(T ) not necessarily coincides with the maximum of γs(T ). In fact, in nearly all cases,
even in the fluctuation regime, the two corresponding temperatures differ by some mK.
Therefore it is instructive to look at the full γs(T )-dependence for different temperature
and field regimes.
In section 2.3.1 different temperature regimes have been discussed theoretically. In 2D
systems, where the transition to the superconducting state is of BKT-type, γs should
diverge as (T − TBKT )−3/2 for T → TBKT . A second divergence is expected at the mean
field critical temperature γs ∝ (Tc − T )−1 for T ≤ Tc [45]. Considering a right handed
coordinate system γs(T ) in this regime has always a positive sign. In the fluctuation
regime of the superconductor, however, the sign of γs(T ) depends on the pairing inter-
action and can also be negative (see eq. 2.49). The ratio of singlet and triplet pairing
determines the sign of γs(T ) in the fluctuation regime.

Fig. 7.19 shows R2ω(T ) curves measured in the [100]-direction for several B⊥. This mea-
surement is exemplary and the results are qualitatively the same for the other direction.
Similar kind of curves have also been measured with an in-plane field perpendicular to
the current instead of B⊥. The discussion is therefore valid for all current directions
and for either in- or out-of-plane fields. The current was 500 nA and therefore not in
the linear regime. Such a large current was however needed to increase signal to noise-
ratio as the noise of γs = 2R2ω

RωBI
is doubled by the measured resistance noise (Rω and R2ω).

This figure again shows oddness of R2ω(T ) in B⊥. Maximal R2ω is observed at |B⊥| =
0.3 mT. There are sign changes of R2ω(T ) at temperatures always below the highest
peak of the corresponding curve. The width of the peaks are broadened with increasing
B⊥.

From the data shown in Fig. 7.19 and the corresponding Rω(T ), γs(T ) = 2R2ω(T )
Rω(T )B⊥I

can
be calculated. The results are shown in Fig. 7.20. It can be seen that for |B⊥| ≤ 0.3 mT,
γs(T ) has two negative peaks. Two peaks have also been seen in Fig. 7.10 in an in-plane
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Fig. 7.19.: R2ω(T ) measured in the [100]-direction and a current of 500 nA. The applied
out-of-plane fields are B⊥ = −5,−4,−3,−2,−1,−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5, 1, 2, 3, 4, 5 mT.

field perpendicular to the current. The origin for this two peaks, that one can associate
to the fluctuation regime is still unclear. At a temperature range some 10 mK below
the main peaks, γs(T ) reverses its sign and diverges. For |B⊥| ≥ 0.5 mT the negative
peaks decrease strongly and the divergence at lower temperatures also becomes flatter
and broader.

This divergence can be attributed to a BKT-like transition, where γs(T ) follows a
(T − TKT )−3/2 dependence near TBKT (eq. 2.55). Strong indications that the transi-
tion to the normal state is BKT-like could already be seen in the R(T )-dependence of
sample Al/InAs-M in zero magnetic field (see Fig. 6.2). This is unexpected as this kind
of transition usually is observable only in disordered 2D superconducting systems, where
the transition is very broad. In the present material, however, the transition measured
in the R(T )-dependence is only 10 mK in zero magnetic field. A foot structure at the
very onset of the resistance in a R(T ) measurement can have various reasons like inho-
mogeneities in the sample or flux flow due to a finite out-of-plane field. These kind of
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Fig. 7.20.: γs(T ) calculated from data shown in Fig. 7.19. Main panel shows data for
|B⊥| ≤ 1 mT. γs(T ) for higher fields are shown in the inset.

resistances, however, are usually independent of the polarity of the current. The pres-
ence or absence of a second harmonic resistance therefore offers a good decision criterion
in the discussion of a possible BKT-like transition in a systems with broken time- and
inversion symmetry. The observation of a diverging γs(T ) in such systems is a strong
indication towards a BKT-like transition.

Because of the continuous crossover from the fluctuation regime for T > Tc to the BKT
regime (TBKT < T < Tc) it is difficult to fit data properly to the theory, which would be
needed for a quantitative analysis. Eq. 2.55 goes to zero at higher temperatures, however
a second divergence is expected for T → Tc (eq. 2.56). This second divergence, however,
in reality appears only as a kink in the γs(T ) dependence [88]. For samples, where the
sign of γs(T ) is the same in the BKT- and the fluctuation regime for small magnetic field,
a fit to Eq. 2.55 can deliver good agreement with the data. This was shown in gated
SrTiO3 [88] and for a topological insulator/superconductor heterostructure SrTiO3 [48].
The sign changes in γs(T ) measured in the present sample, however, make a proper
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fit to eq. 2.55 or 2.56 impossible as there is no interpolation formula which smoothly
interconnects fluctuation and BKT-regime for temperatures T > Tc → Tc. As the sign
of γs(T ) in the fluctuation regime depends on the sign and the ratio of the singlet and
triplet pairing interaction (eq. 2.49) a detailed analysis of γs(T ) with the support of a
theory group could give valuable information on the pairing Hamiltonian and hence the
functional form of the order parameter [45].
The broadening of the divergence of γs(T ) with increasing magnetic field was also already
seen in the DC R(T ) characterization of sample AL/InAs-M (Fig. 6.3). A theoretical
treatment of this broadening would be very interesting as so far not much experimental
data have been published on the impact of a magnetic field on the BKT-transition
characteristics. Of special interest would be in this case the influence of the interplay of
SOC and magnetic field on the width of the transition.
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8. Discussion and Outlook

Different aspects of the superconducting properties of 2D Al/InAs heterostructures with
large Rashba SOC such as anistropic vortex inductance in an in-plane magnetic field or
non reciprocal resistance and critical current have been examined and compared with
two Al/GaAs reference samples with no SOC. In zero field BCS temperature depen-
dence of the kinetic inductance has been shown. At low temperature small shifts of the
resonance frequency have been observed which can be traced back to relatively strong
coupling of the Al with two-level-systems in the amorphous AlOx top layer. It may
be interesting to compare this effect with measurements on Al thin films with in-situ
deposited Al2O3 oxide layer, which can be grown at University of Regensburg.

In sample Al/InAs-M an in-plane field decreases the superfluid stiffness, however, arti-
facts from an inhomogeneous compensation field seem to play a dominant role at higher
in-plane fields and hence make it challenging to discriminate them from other features
caused by the field (see section A.1.2). A better field homogeneity would be needed to
avoid artifacts in the measurement of the Ls(B‖)-dependence. Possible improvements of
the used setup are discussed in section A.4 in the appendix.
In small out-of-plane fields a very strong inductive response has been measured and was
attributed to a vortex inductance produced by the motion of pinned flux lines in the
thin film. The large inductance of the order of µH can be tuned continuously with out-
of-plain fields of only some mT. This could offer the possibility to design a self-contained
electrical component consisting of a tunable inductor in form of a weak-pinning supercon-
ductor meander and a small superconducting magnet-coil. Such a nearly dissipation-less,
tunable inductor would be a step further towards superconducting electronis.
Counterintuitively, the vortex inductance in the Al/InAs heterostructure decreases with
an additional in-plane magnetic field, which could be explained by a strengthening of the
pinning force. Furthermore, it was found that this effect is strongly dependent on the
relative orientation of in-plane field and current (vortex displacement) direction. Such
an anisotropic increase of vortex pinning at low temperatures has not been reported so
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8. Discussion and Outlook

far. These findings could be caused by a change of the vortex core shape by the interplay
of an in-plane magnetic field and SOC. The reduction of the vortex core size can lead to
an increase of the pinning force in both directions, namely parallel and perpendicular to
the in-plane field. In a Ginzburg-Landau approach a model was established which cap-
tures the main experimental findings. The presented theoretical functional dependence,
however, does not yet quantitatively match with experimental data. A revision of the
model would be desirable.

The presence of SOC in the Al superconducting film was independently confirmed by
measuring signatures of non-reciprocal transport in the fluctuation regime of the super-
conducting transition. In Rashba superconductors this is explained by the simultaneous
presence of singlet and triplet pairing states.
Non-reciprocal transport was not only measured in the fluctuation regime T > Tc but
also in the BKT regime. A divergence of γs(T ) in external magnetic field indicates a
BKT-like transition [48]. R(T )-curves, that were measured in sample Al/InAs-M are
nicely reproduced by BKT theory curves and hence also indicate a BKT-like transition
6.2. This shows that despite the good quality of the Al film the transition to the normal
state is of BKT-type in that specimen. In-plane magnetic fields lead to a broadening of
the BKT transition, which could be measured both in R(T ) (Fig. 6.3) and R2ω(T ) (Fig.
7.20) measurements.

In Rashba superconductors only in-plane fields are expected to produce non-reciprocal
transport as the field needs to be aligned with the effective spin-orbit fields in order
to produce a Zeeman splitting. Transport measurements in finite out-of-plane fields,
however, have shown non-reciprocal behavior that is even stronger as in the in-plane
case. This indicates the existence of out-of-plane spin-orbit field components in these
kind of heterostructures, so far not mentioned in literature for that kind of material.
Also in Josephson junction arrays out-of-plane fields lead to non-reciprocal transport
indicating an ouf-of-plane spin-orbit field component present in the semiconducting InAs
weak link (see section A.3.3). A theoretical model of this finding is still missing.
Similar to the non-reciprocal transport near the superconducting transition, polarity
dependence of the critical current was demonstrated in in- and out-of-plane magnetic
fields as well as in the combined-fields case at low temperatures. In Rashba supercon-
ductors in-plane magnetic fields perpendicular to the current are expected to make the
critical current polarity dependent [7][8], which was found in sample Al/InAs-S (see
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chapter 7). In small out-of-plane fields strong indication towards asymmetric pinning is
found, maybe caused by an out-of-plane spin texture resulting from the different lattice
symmetries of the Al and the 2DEG. Critical current measurements in different crystal
directions (e.g. on sample Al/InAs-C) in finite B⊥ with higher resolution could shed
light on the crystal symmetries. A theoretical modeling of the Al/2DEG interface for
different crystal directions could be enlightening.

It was found that there is a polarity dependence and anistropy of the DC resistance and
critical current in sample Al/InAs-S in an external magnetic field. A very interesting
question would be, if such anisotropies can also be found in the inductive response of
the superfluid. For that an asymmetric meander structure with a main current direction
would be needed. Asymmetry in such a meander could be achieved by making the
aspect ratio of the long segments directing in one direction larger than that of the
opposite direction (compare Fig. 6.1). Adding a DC current to the AC excitation would
then allow to measure a possible polarity dependence of Ls or Lv in the presence of
external magnetic fields, which is not possible for an almost symmetric structure as
sample Al/InAs-M. As the vortex lattice in the heterostructure shows a very strong
inductive response, polarity dependence and anisotropies of the pinning mechanism at
low temperatures could be probed with a high resolution.
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A. Appendix

In this chapter data worth presenting are shown, which are difficult to explain yet and not
the main subject of this thesis. Furthermore, challenges that occured in the laboratory
are discussed.

A.1. Inductance Measurements

A.1.1. Artifacts in the Inductive Response

During the measurement process various systematic features and artifacts were observed,
which should be discussed in this section. In Fig. A.1 the dependence of the kinetic
inductance of sample Al/InAs-M on in-plane fields of different orientations are depicted.
At small fields of around 10mT for all the different field orientations small jumps of
about 1.1 nH can be observed, which are probably connected to the increase of geomet-
ric inductance at the superconducting to normal transition of the Al bond wires that
have a critical field of ∼ 10 mT. In the superconducting state the magnetic field pro-
duced by the current through the wire is screened from the interior of the wires and
therefore do not contribute to the geometric inductance between. Furthermore there
will be some effective mutual inductance due to Meissner expulsion of the magnetic field
produced by the current in one wire in a second one. The kinetic inductance of a 1 mm
long Al wire of 25µm diameter is of the order of 1 pH and therefore negligible. In the
normal state the magnetic field can penetrate into the wires and store magnetic energy
and hence increase the geometric inductance. Also the mutual inductance between two
superconducting wires will change when they make a transition to the normal state. As
this jump is observed in most of the measurements it is believed to be systematic and
therefore can calculated out in the data analysis if accuracy in the nH regime is needed.

In zero magnetic field L should be independent of the rotator position. Inductances
from the leads connecting the rest of the cryostat with the sample holder should not
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Fig. A.1: L as a function
of in-plane field for two al-
most perpendicular in-plane
field directions. Near |B‖| ≈
10 mT a sharp increase of
∆L = 1.1 nH is observed
for both directions probably
caused by a transition to the
normal state of the Al bond
wires (Bc,Al ≈ 10 mT.) The
minimal value for both direc-
tions differs slightly by about
0.6 nH.
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Fig. A.2: L as a function of
rotator position in zero mag-
netic field and low tempera-
tures. Rotation of the sample
leads to a continuous variation
of the smallest measurable in-
ductance with a peak-to-peak
difference of ∼ 0.6 nH without
magnetic field present.
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contribute to the RLC parameters as they are decoupled with resistors, which are also
mounted directly on the sample holder and move together with the RLC circuit and the
sample. It has turned out, however, that the minimal inductance L(B = 0) at constant
temperature T = 0.1 K varies with the rotator position. Fig. A.2 shows the smallest
measurable L as a function of rotation angle. A rotation of 180 ◦ shows a peak-to-peak
spread of L of ∼ 0.6 nH. The reason for this variation is still unclear but must be solely
due to geometric changes of the setup during rotation as there is no magnetic field acting
on the superconductor. A possible origin could be a small mutual inductance between
the RLC circuit and the flexible leads connecting the sample holder and the cryostat
that changes when the sample holder is rotated.
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Fig. A.3: Rs as a function
of in-plane field for two al-
most perpendicular in-plane
field directions. Near |B‖| ≈
10 mT a jump in the resistance
of ∆Rs = 28 mΩ is measured.
In contrast to the inductance
shown in Fig. A.1 Rs(B‖ = 0)
is the same for both directions.

Fig. A.1 shows Rs extracted from the width of the resonance curves via eq. 3.8 as a
function of in-plane field extracted from the same dataset as in Fig. A.1. The resistance
in zero field is the same for both directions and therefore indicates that the variation
of L in zero field at different rotator positions comes from a mutual inductance source
which does not provide any effective resistance. At the same |B‖| ≈ 10 mT, where a
jump is observed in L also a sharp increase of Rs can be observed. The magnitude of
the jump ∆Rs = 28 mΩ is in agreement with an estimate for the bond wire resistance.
From the datasheet of the manufacturer ”Heraeus” the Al bond wires have a Si content
of roughly 1% and a specific resistance of 3µΩcm at room temperature. A wire of 1 mm
length and diameter of 25µm would have a resistance of 61 mΩ at room temperature.
Considering that few bond wires of several mm length are used for contacting the I+

and I− contacts and that the specific resistance of the AlSi probably only decreases
slightly with temperature, the magnitude of ∆Rs seems reasonable. Moreover, a change
of contact resistance could be considered, as the contacts between the chip carrier and
the bond wires change from S-N (superconducting AlSi - gold) to N-N (AlSi - gold). The
contact between bond wire and sample also changes from either S-S (superconducting
sample - superconducting AlSi) to S-N (superconducting sample - AlSi) if the contact
is between the Al thin film and the AlSi bond wire. More likely the bond wires form
electrical contact to the semiconductor. In that case the SM-S (semiconducting 2DEG
- superconducting AlSi) contact changes to SM-N (semiconducting 2DEG - AlSi) as the
AlSi turns normal.
Fig. A.4 shows kinetic inductance L as a function of the angle between field and current
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for different fields at low temperatures. For small fields ≤ 0.075 T there is almost no
dependence on the relative orientation of field and current if the systematic oscillatory
contribution (see left side of Fig. A.4) is subtracted. For the highest field of 0.3 T there
is a peak near B ‖ I. At this angle, however, also the misalignment of the sample plane
with the magnetic field produced by the large magnet and therefore the field needed to
compensated the out-of-plane field component is maximal (see right side of Fig. A.4). It
was shown earlier that the compensation field has an inhomogeneity of ∼ 5% measured
at two points separated by 0.8 mm. At the point of minimal inductance the out-of-plane
field component is compensated as best as possible in the center of the sample. At the
outer parts of the sample, however, a compensation field of 4 mT probably leads to an
effective out-of-plane field of very roughly 0.05 ∗ 4 mT = 0.2 mT. L strongly depends
on the absolute value of the out-of-plane field (see Fig. 6.7). Event though only a
small part of the sample will experience a finite out-of-plane field component L can
increase significantly. With a dL

dB⊥
= 118 nH/mT and an estimated number of squares of

10% subject to the above calculated out-of-plane field component L increases by 2.4 nH.
Although this estimation is very rough uncertainties in L at higher in-plane fields of
some nH seem to be realistic.
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Fig. A.4.: Left: Kinetic inductance L as a function of the angle between field and current
for in-plane fields B‖ = 0, 0.03, 0.075, 0.3 T at T = 0.1 K. From the raw data the oscillatory
contribution to L shown in Fig. A.2 was subtracted. For B‖ > 0 additionally ∆L = 1.1 nH
was subtracted. Right: Out-of-plane field component for B‖ = 0.3 T. Near B ‖ I the
measured kinetic inductance as well as the compensation field has a peak.

In Fig. A.5 the out-of-plane field needed to compensate for the parasitic, perpendicular
field from the large magnet is shown for three different rotator positions. It shows that
the fields needed to compensate an in-plane field in the [110]-direction is significantly
larger than in the [11̄0] orientation. For rotational angle with larger misalignment be-
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tween sample plane and B‖ higher effective perpendicular field components act on the
sample due to the inhomogeneity of the compensation field. For a rotator angle of 245.5 ◦

the misalignment is minimal. The dependence of L(B‖) for this orientation is quadratic
and therefore is in accordance with orbital pair breaking in an in-plane field. The pair
breaking parameter Γ for a thin film in a parallel field is quadratic in B‖ for moderate
fields [11][29]. The superfluid density ns(Γ) = ns0(1 − Γ) is nearly linear for not too
large Γ. The field dependence of L ∝ 1/ns can for moderate in-plane fields be written
as

L(B‖) ∝
1

ns(0)(1− Γ) ∝ L(0)/(1−B2
‖/B̃

2
c ), (A.1)

where B̃c is a characteristic pair breaking field which depends on sample parameters and
should be of the order of Bc‖. In Fig. A.5 only the curve with minimal compensation
field is quadratic in B‖ whereas in the other cases L(B‖) is more linear probably due to
vortex inductance resulting from uncompensated areas of the sample.
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Fig. A.5.: Left: Inductance as a function of the in-plane field for the two main field orienta-
tions (red,blue) and at an angle where the compensation field needed to null the out-of-plane
field component is minimal (green). The dashed line is a parabola according to pair breaking
in moderate in-plane fields with Lpb(B‖) = L̃(0)/(1 − B2

‖/B̃
2
c ), characteristic B̃c = 3.2 T

close to Bc,‖. Red and blue curves are almost linear in B‖ Right: Compensation field as a
function of in-plane field for the two main relative orientations and at an angle θ = 245.5 ◦,
where Bcomp(B‖) is minimal. In the B ‖ [110] configuration much higher fields are needed to
compensate the perpendicular component from the in-plane field as in the [11̄0] orientation.
The misalignment angles between sample plane and magnetic field produced by the large
magnet are 1.10 ◦ for B ‖ [110] and 0.45 ◦ for B ‖ [11̄0]. The misalignment for the green
curve is only 0.083 ◦.

Fig. A.6 shows L as a function of B‖ for fields up to 0.5 T. In the case where B‖ ‖ I,
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Fig. A.6: Inductance as a function of
the in-plane field for the two main field
orientations in fields up to 0.5 T. For
fields above 0.1 T the curves diverge
probably due to vortex contribution to
L from only partly compensated areas
of the sample. The difference at higher
fields result on the one hand from dif-
ferent misalignment angles of field and
sample plane which lead to a different
number of stray vortices for the two field
directions. On the other the enhance-
ment of vortex pinning in an in-plane
field is also different for the two orien-
tations.
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L(B‖) increases for small fields linearly up to 0.1 T before nearly staying constant. For
B‖ ‖ I L increases non-linearly up to 0.5 T. The curves diverge above 100mT. The
difference however could be explained by an inductance contribution of vortices due to
an incomplete compensation of outer parts of the sample at higher fields. The plateau-
like dependence in the case of B‖ ⊥ I can be explained by two competing mechanisms.
On the one hand increasing B‖ leads to an increased number of vortices at the outer
parts of the sample which leads to an increase of L. On the other hand an in-plane
field perpendicular to the current direction strongly enhances the pinning of vortices
and hence reduce the inductance per vortex (see Fig. 6.10). The enhancement of the
pinning strength with B‖ ‖ I is much weaker and the misalignment of B‖ and sample
plane is larger compared with the first case (see Fig. A.5). This leads to a larger num-
ber of vortices with a higher inductance per vortex. In sum this can lead to the strong
difference between the two curves.

It is not excluded that there are anisotropic effects of B‖ on Ls. From the experimental
findings, however, it is not sensible to draw definite conclusions. A repetition of the
measurement in a more homogeneous out-of-plane field would need to be carried out,
in order to exclude artifacts. The same holds for data of Ls(T ) measured in moderate
in-plane fields, which are discussed in the following section.
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A.1.2. Role of In-Plane Magnetic Fields

A commonly accepted feature for proving unconventional pairing with nodes in the gap
is a power-law dependence of the superfluid stiffness (or inverse kinetic inductance) on
temperature. In zero parallel field no hint towards such a dependence could be found.
Application of an in-plane field breaks time reversal symmetry and hence anisotropies
of the inductive response could be expected. The appearance of nodes of the supercon-
ducting gap in parts of the momentum space, induced by the in-plane field, could result
in a non-exponential T-dependence of the kinetic inductance.

The temperature dependence of the kinetic inductance in different in-plane fields per-
pendicular to the main current direction is depicted in Fig. A.7. The magnetic field
increase the low-T saturation value L(0) due to orbital pair-breaking effects and re-
duces the critical temperature leading to a shift of the divergence of Ls(T ) to lower
temperatures.
For B‖ ≤ 0.3 T, Ls(T ) can nicely be reproduced by eq. 2.10. Although eq. 2.10 is
strictly only valid in absence of any pair-breaking, it should be valid also for small
B‖ = 0.3 T ≈ 0.1Bc‖. For B‖ ≥ 0.75 T, eq. 2.10 grows slower than experimental data.
Of course, in the presence of pair breaking, eq. 2.10 does not hold anymore and the
functional dependence cannot be solved analytically anymore. Fitting of the data in
this cases becomes technically challenging.
As it is known, that the compensation field is inhomogeneous, it is intuitive to check
whether there is a signature of a finite out-of-plane at higher in-plane-fields. In this
case the pure kinetic inductance would be complemented by a small portion of vortex
inductance according to eq. 2.37. Data for B‖ ≥ 0.75 T are fitted to this equation
with fixed critical temperatures, determined from DC R(T )-measurements (Fig. 6.3). It
turns out that experimental data can nicely be reproduced if a hypothetic small vortex
inductance of Lv(0)B=0.75 T = 2.46 nH and Lv(0)B=1 T = 4.2 nH is taking into account.
These contributions would correspond to an effective out-of-plane field of 21µT and
36µT respecitvely, which does not seem unrealistic considering an absolute compensation
field of the order of few mT (Fig. A.5).
Again, there is no evidence, that there is no unconventional in-plane field dependence of
Ls(T ). A clear power-law behavior suggesting such an unconventional behavior besides
from presumable vortex motion can not be resolved undoubtedly, however.
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Fig. A.7.: Temperature dependence of the kinetic inductance for in-plane fields of B‖ =
0, 0.3, 0.75, 1 T. Solid lines are fits to eq. 2.10 with Tc(B‖) as determined in Fig. 6.3 with
free parameter λ(0). For B‖ ≤ 0.3 T BCS fits reproduce experimental data. At higher fields
experimental L increases faster than BCS curves. Dashed lines correspond to 2-parameter fits
to eq. 2.37 with fitting parameters λ(0) and Lv(0), which accounts for a vortex contribution to
L resulting from uncompensated areas of the sample. The contribution of vortices at low tem-
peratures are Lv(0)B=0.75 T = 2.46 nH and Lv(0)B=1 T = 4.2 nH corresponding to an effective
out-of-plane field of 21µT and 36µT respectively.
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A.1.3. Duffing Oscillation for Large Driving Currents

Not only magnetic fields, temperature or DC currents can affect the inductive AC re-
sponse of the superconducting film but also the AC current itself. In most cases the AC
current is kept as high as possible for good signal to noise ratio but small enough not
to have an impact on the inductance. A high AC current can increase the inductance
either due to pair breaking effects reducing the superfluid stiffness, due to nonlinear
displacement of vortices caused by the Lorentz force or because of heating effects.
Fig. A.8 shows spectra measured at low temperatures in zero in-plane field for different
AC excitations ranging from 2 nA to 20µA in a vortex-free and a vortex-carrying state
in sample Al/GaAs-M15.
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Fig. A.8.: Resonance spectra measured with excitation currents Vbias/RD ranging from 2µA
to 20µA in steps of 2µA with (red) and without vortices (blue) present in the sample. The
measurement was performed in zero in-plane field at low temperatures. Up to the maximal
bias current the shape of the response in the vortex-free state remains harmonic.

For B⊥ = 0 the spectrum is only stretched in magnitude but the resonance frequency
as well as its width stays constant. In a finite out-of-plane field, where the inductance
is dominated by the response of pinned vortices the situation is strongly different. With
increasing AC current the curves increase less and less in magnitude due to enhanced
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damping and the frequency at which the signal is maximal shifts to lower frequencies
due to an enhanced effective inductance due to pair breaking and non-linear vortex
displacement. Furthermore the shape of the spectra are tilted towards lower frequencies
which is the consequence of the non-constant AC current that flows in the sample branch
of the RLC circuit. For f < f0 the AC current increases with frequency peaking at the
resonance frequency before decreasing again for high frequencies. If the current itself
affects the inductance of the sample this creates a feedback and produces a Duffing-like
oscillation, where higher order terms affect the vortex potential.
More in-depth studies on these non-linear effects could indeed be interesting as it could
reveal more details of the non-linear pinning potentials in this system. As in this method
one is often restricted to currents low enough that no Joule heating is induced in the
decoupling resistors, increasing the AC current is a convenient tool for investigation of
higher order current effects. This can be advantageous over the use of high DC currents,
because the AC current which is flowing through the sample is amplified within the
circuit as Ires ≈ QVbias

RD
, whereas only the current IAC = Vbias/RD heats up the preresistor.
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A.1.4. Comparison of Vortex Dynamics in Different Meander
Structures

Low-Field Vortex Pinning

The inductance measured at low temperatures as a function of out-of-plane field gives
information about the pinning forces and mechanism in the different samples. Fig. A.9
shows L(B⊥) curves measured on meander structures of the same geometry for the three
different Al films. All curves show a kink-like structure at a moderate field Bkink, which
indicates probably the crossover to a different pinning regime. At this point the slope
of L(B⊥) is reduced, however, maintaining a positive curvature. The corresponding
inductance Lkink at this crossover point differs for the three curves and therefore an
artifact resulting from a wrong data extraction procedure from the RLC resonance at
high L can be excluded.
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Fig. A.9.: Inductance as a function of B⊥ for the three measured Al films. All three curves
start with a linear dependence (inset), which is consistent with an individual pinning model.
At higher fields the increase of L with B⊥ increases up to a crossover field where there is a
kink. From this point on L(B⊥) shows again accelerating behavior but with a decreased slope
before it diverges near Bc2.

From the slopes at low fields pinning constant kp = φ0
d

(
∆L

∆B⊥

)−1
can be extracted, which

is a measure for the strength of the individual defects in the different films. Dependence
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of kp on film thickness d is shown in Fig. A.10. The pinning constant can be estimated
via [28]

kp ≈ χ
B2
c2
µ0

, (A.2)

where the prefactor χ depends on the detail of the pinning. For core pinning where the
defect size is of the order of the length of the vortex χ ≈ 0.25. In that type of pinning
regime, the vortex is displaced from its equilibrium position without changing its length.
For elastic vortices near strong pinning sites, however, there can be an additional pinning
energy associated to the energy needed to deform the vortex and hence elongate it. In
this case the vortex is fixed near the defect, while further away in the direction of the
magnetic field the vortex is rather unpinned. Then the pinning is governed by the vortex
line tension. In that limiting case χ should be much smaller. In general a mixture of
both types is expected.
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Fig. A.10.: Pinning constant kp and prefactor χ from eq. A.2 for the different Al films. The
thinnest and thickest films show a small χ, which hints towards a pinning mechanism mainly
governed by elastic deformation of the vortices, while in the 7 nm film χ is larger and hints
towards a stronger contribution from core pinning.

Besides different absolute values for kp the different Al films show different scaling factors
χ used in eq. A.2. The thinnest and thickest Al films have a small value of χ, which can
be a hint towards pinning that is mainly controlled by the elasticity of the vortex, while
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in the film with intermediate thickness pinning may be mainly governed by core pinning.
In the 15 nm thick film it can be understood from small defects that locally pin the vortex
while most of the rest of the vortex can be displaced relatively easily. In the thinnest
film this should be suppressed strongly. Taking into account, however, that there is a
proximitized superconducting layer in the 2DEG underneath the Al the effective length
of the vortex can be much longer. While defects are expected to be mainly in the Al
layer or at the interfaces to the AlOx or the semiconductor the vortex in the 2DEG can
stay relatively unpinned and hence restoring forces due to elastic deformation should be
the main source of pinning.
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High-Field Vortex Pinning

At higher out-of-plane fields it was shown that there is a crossover to a different pinning
regime in the Al/InAs heterostructure which changes the slope of the L(B⊥)-dependence
of sample Al/InAs-M (see Fig. A.11). In this regime the impact of an additional in-
plane field is strongly different than in the low-B⊥-regime. Whereas the low-field B⊥-
dependence is strongly affected by B‖, the high-field regime seems to be less affected. For
fields B‖ ≤ 0.5 T, the L(B⊥)-dependence changes strongly from linear to superlinear,
whereas the crossover field is barely altered. At larger B‖ the field B⊥ at which L

finally diverges is shifted towards lower values. This is consistent with a pair-breaking
contribution from the in-plane field, which reduces the superfluid stiffness and thus also
Bc2.
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Fig. A.11.: Inductive response of the Al/InAs heterostructure as a function of B⊥ for different
in-plane fields perpendicular to the driving current. For moderate B‖ high-field L(B⊥) is nearly
uneffected.

One possible explanation would be that at high B⊥ vortex core size ∼ 2ξ increases
[90] and hence the influence of single defect pinning reduces. Furthermore as Λ = 2λ2

d

increases at higher fields interaction of vortices with other vortices and Meissner currents
at the edges of the sample become stronger, which could eventually become dominant
over single defect pinning.
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Fig. A.12 shows the dependence of the crossover field Bkink normalized with Bc2 as a
function of normalized in-plane field. For B‖ = 0 the crossover field is of the order of
∼ 2

3Bc2. In-plane field dependence was measured for the Al/InAs heterostructure and
the 15 nm thick Al/GaAs film and seem to more or less have the same dependence.
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Fig. A.12.: Dependence of crossover field Bkink normalized with Bc2 as a function of nor-
malized in-plane field B‖/Bc‖. The curves look similar with a characteristic crossover field of
∼ 2

3Bc2 in zero in-plane field.
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A.1.5. Stabilization of Vortex Lattice in In-Plane Fields

Another important parameter in the context of superconducting properties is the applied
current. A finite current on the one hand accelerates the superfluid which leads to pair
breaking effects and hence usually increases the kinetic inductance. On the other hand in
the presence of an out-of-plane magnetic field a current produces a finite Lorentz force
on the vortices either displacing them from their equilibrium position in the pinning
potential or for high enough currents pushing them out of the pinning potential. The
presence of vortices in a DC transport measurement can only be cofirmed when there
is already a finite resistance. In the dissipationless regime, the presence or absence of
vortices cannot be probed in DC. Measurement of the commplex impedance of pinned
vortices can only be done with an AC experiment.
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Fig. A.13.: Vortex inductance as a function of superimposed DC current in a transverse in-
plane field of 0.05T. Arrows indicate the sweep direction, curves labeled with the same color
of the corresponding number were performed in a single sweep. Numbers 1 to 4 represent con-
secutive sweep sections. Between the measurements in negative and positive current direction
the sample was heated up, the proper field was set before it was cooled down again in absence
of any DC or AC bias. On top of a parabolic dependence on the DC bias small jumps to lower
inductance values are observable. Inset shows magnified L(IDC) at the beginning of the two
sweeps.

In order to shine light on the symmetries of the system inductance was measured as
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Fig. A.14.: Vortex inductance as a function of superimposed DC current in an in-plane field
of 0.5T perpendicular to the current. Compared with Fig. A.13 the curves are much flatter
without big jumps and the relative increase of Lv with DC current is much less.

a function of applied DC current. Non-reciprocal effects of the vortex pinning and/or
motion should then be reflected as asymmetries when a DC current is superimposed
on the AC excitation. Fig A.13 shows measurements of the vortex inductance in an
out-of-plane field of 6.5 mT and an in-plane field perpendicular to the main current
direction of 0.05 T. Starting from IDC = 0, Lv(IDC) at first decreases probably due to
hopping of only weakly pinned vortices occupying shallow pinning potentials to pinning
sites with deeper potential. A more or less parabolic, monotonic dependence of the
vortex inductance on the DC bias follows with distinct jumps to smaller inductance
values. These jumps may result from rearrangement of initially stronger pinned vortices
to even deeper pinning potentials. Although the curves are not totally symmetric, no
clear sign for a non-reciprocal behavior can be found in this measurement. Probably
the DC current is simply to large and way above the linear regime of non-reciprocal
behavior. Much more importantly the sample is nearly symmetric in the main current
direction. In the sample there is only one segment more that carries current in the
[110]-direction than segments with current in the opposite direction. This means that
non-reciprocal effects that arise from a two-fold antisymmetric effect should cancel out
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almost completely..
What this measurement shows, however, is that especially for small in-plane fields and
small currents there is a steep decrease of the inductance at the very beginning of the
measurement. This reflects again the very unstable vortex lattice in small in-plane fields.
This is also consistent with the large run-to-run scattering of the measured inductance
values in finite out-of-plane fields and small in-plane fields in Fig. 6.10. Furthermore it
shows that increased in-plane field reduces strongly the dependence of Lv on the applied
DC current. This shows that not only the inductance produced by the vortex lattice is
reduced strongly in the case where vortices sit in the minimum of the pinning potential
(IDC = 0) but also when vortices are displaced by a DC current.
Fig. A.15 shows the temperature dependence of the mixed vortex and kinetic inductance
for constant vortex density (B⊥ = 10 mT) in an in-plane field of 0.5T. As already
seen, there is a strong reduction of the inductance when the in-plane field is applied
perpendicular to the current direction. The overall behavior can nicely be reproduced
by eq. 2.37. The data taken with an in-plane field perpendicular to the current is rather
flat and therefore pinning is enhanced strongly.

Fig. A.15.: Temperature dependence of vortex inductance for B⊥ = 10 mT in an in-plane
field of 0.5T parallel (red) and transverse (blue) to the current direction. Solid lines are fits
to eq. 2.37.
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A.2. Temperature Dependence of Non-Reciprocal
Supercurrent

For a single in-plane field of 0.3 T perpendicular to the [11̄0] current critical currents
were measured for elevated bath temperatures. Fig. A.16 displays Ic(B⊥) measured
for different temperatures. The threshold condition for Ic leads to artifacts when the
sample is in the normal state (for high fields or temperatures), because then the normal
resistance already is sufficient to produce a voltage larger than Vth at a current Isat =
Vth/Rn. At high fields this leads to a saturation of the extracted critical current at Isat.
This needs to be kept in mind when further analyzing Ic data.

 !""

 #""

 $""

"

$""

#""

!""

% &
'(
)
*
+

 $"  , " , $"

-.'(/0+

-'.'%'($ $'"+

-1'2'"3!'0

'04/54678964

'"3$':' '"3;':'

'"3!':' '$3$':'

'"3,':' '$3#':

'"3<':'

'

'

'

Fig. A.16.: Evolution of critical currents with temperature in an in-plane field of 0.3T. Mea-
sured temperatures were 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.2, 1.3 K. The critical current was extracted
from IV-curves where Ic was defined as the current producing a certain threshold voltage Vth.

From the data of Fig. A.16 the critical current for both positive (I+
c ) and negative

polarity (I−c ) can be extracted at B⊥, where I+
c (B⊥) is maximal. Ic(B⊥) for opposite

polarities of the current are shown in Fig. A.17. For both polarities Ic decreases with
temperature as the critical current depends on the superfluid stiffness which decreases
with temperature. Ic(T ) roughly follows a T-dependence

Ic(T ) = Ic(0)
(
1− T 2/Tc

2
)3/2

(A.3)
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with Ic(0) = 280µA and Tc = 1.49 K proposed by Bardeen [91].
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Fig. A.17.: Critical currents as a function of temperature for an in-plane field of 0.3 T per-
pendicular to the [11̄0] current direction. The dashed line is a phenomenological fit eq. A.3.
The inset shows the relative difference of the critical current defined in eq. 7.3.

The absolute and relative differences ∆Ic(T ) and δIc(T ) is shown in Fig. A.18. ∆Ic(T )
is highest at low temperatures and initially decreases with increasing temperature. For
T > 0.9 K, δIc(T ) increases again. Temperature dependence of the rectification of super-
current in Rashba superconductor exposed to a transverse in-plane field was calculated
recently in a clean system and predicts a decrease of δIc = ∆Ic

|Ic| ∝
√

1− T
Tc

near Tc
[8]. The expected decrease of δIc(T ) with temperature is found in the experiment at
intermediate temperatures. At higher temperatures, however, the measurements shows
a steep upturn. As the transition is probably BKT-like, there could be deviations from
the theory near TBKT .
Critical current values and the relative difference for opposite directions for B⊥ =
0.5, 1 mT as a function of temperature are shown in Fig. A.19. δIc(T ) decreases with
increasing temperature for B⊥ = 1 mT. In the model of Hoshino et al. [45] for a vortex
ratchet effect in trigonal systems, a 1/T dependence for T → 0 of the non-reciprocal
coefficient γ is predicted. Although γ in this case is related to the magnetochiral effect of
the resistance, an impact of the in-plane field on the depinning current can be expected.
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Fig. A.18.: Left: ∆Ic at B⊥(I+
c,max) ≈ 0 as a function of temperature. The blue dot was

measured as a reference in an in-plane field of −0.5 T. Right: Normalized δIc(T ) as defined
in eq. 7.3 in an in-plane field of B‖ = 0.3 T. Dashed line is a Ginzburg-Landau theory curve
calculated in [8].

As one probes the point of maximal slope of the pinning potential with the critical cur-
rent, there is a strong indication that pinning is indeed asymmetric and decreasing with
temperature for tranverse in-plane magnetic fields.
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Fig. A.19.: Left: |Ic| as a function of temperature for B‖ = 0.3 T and B⊥ = 0.5, 1 mT.
Right: Relative anisotropy δIc as defined in eq. 7.3 as a function of temperature.
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A.3. Non-Reciprocal Transport Measurements

A.3.1. Asymmetric Pinning Probed by Slow IV-Measurements at
High Temperatures

At higher temperatures due to the much smaller critical current superfluid and vortex
dynamics instead of applying fast current ramps can be probed by standard 4-point DC
measurements providing the full information of the resistive response to a DC driving
current. Fig. A.20 shows IV-characteristics for the [11̄0] current direction in a transverse
in-plane field of−0.3 T. A constant DC offset of the multimeter of∼ −1µV was carefully
subtracted for each curve.
For temperatures slightly below the critical temperature 1.42 K < T < 1.445 K, a clear
signature of magnetochiral anisotropy of the resistance can be found. For temperatures
above and below that region the branches for positive and negative branches collapse.
This is in good agreement with findings that the γs - value, which is responsible for the
rectification process, has its maximum near Tc0 and/or near TBKT in the 2D Rashba
systems.

In an additional small out-of-plane field B⊥ = ±2 mT vortices enter the system. The
resistive response is then mainly given by viscous vortex motiont. Corresponding IV-
traces are shown in Fig. A.21. There again a strong splitting of the positive and
negative branches of the IV-characteristic can be observed. The strongest splitting for
both B⊥ directions is at T = 1.26 K. Again the IV-characteristic depends on the relative
orientation of in- and out-of-plane magnetic field. Therefore the two graphs are different
under reversal of B⊥. The origin for the splitting could be either non-reciprocal viscous
vortex flow when pinning is still weak near Tc or asymmetric pinning [45].
Measured data again are strongly reminiscent of measurements on systems with artificial
asymmetric pinning potentials (Fig. A.22) [85].
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Fig. A.20.: IV-characteristic for the [11̄0] current direction for different temperatures ranging
from 1.4 K to 1.485 K in steps of 0.005 K in an in-plane field of -0.3T. For comparison negative
branches of the IV-curves are mirrored from the third quadrant to the first. The mirrored
curves |V −|(−I) are reaching a constant voltage level systematically at higher currents (on the
right side) than |V +|(I).
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Fig. A.21.: IV-characteristics for mixed in- and out-of-plane magnetic fields for different
temperatures ranging from 1.1 K (right) to 1.4 K (left) in steps of 0.02 K. Each color corre-
sponds to a fixed, constant temperature. For better visibility data for the negative current
and voltage branch are mirrored into the positive quadrant. For most temperatures not too
far away from Tc negative and positive branches are split. The splitting is systematic, i.e.
for each temperature the mirrored negative branch of the curve is either left or right of the
positive branch. B‖ = −0.3 T, B⊥ = 2 mT in the left graph, B⊥ = −2 mT in the left graph.

Fig. A.22: IV-characteristics measured in a
small out-of-plane field in a superconducting
strip with artificial asymmetric pinning poten-
tial. Picture taken from [85].
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A.3.2. Non-Reciprocal Transport in Al/InAs - Field vs. Crystal
Orientation

As was shown in Fig. 7.14, the sign and strength of non-reciprocity in out-of-plane fields
depends on the current and therefore crystal direction. For that reason sample Al/InAs-
C was designed to measure the dependence of the non-reciprocal transport properties
of the material as a function of the relative orientation of current with respect to the
crystallographic axes. The sample was again designed and produced by Christian Baum-
gartner. An optical micrograph of the sample is shown in Fig. A.23. A quite similar
sample design as for sample Al/InAs-S was used, however, instead of etching out only
three different strips, 21 conducting channels were etched out of the material. Each of
the segments has a difference in angle with respect to the neighboring wires of 15 ◦.

Rω and R2ω was measured as a function of temperature and perpendicular field for all
the different current directions. Fig. A.24 shows data for an out-of-plane field of 0.2 mT.

There is clear indication that the non-reciprocal signal strongly depends on the relative
current direction with respect to the crystal axes. The peaks of the second harmonic
resistance show both signs depending on the orientation and also sign changes within
one temperature sweeps occur at some angles. Depending on the sign of γS for the
fluctuation or BKT regime, the R2ω curve either shows a negative and positive peak or
a single extremum with only one peak. As the temperature regimes continuously evolve
from one into the other, it is difficult to discriminate one from each other in order to
be able to draw a picture of the maximal achievable R2ω as a function of angle between
current and crystal axis.

It can be stated that although it is difficult to draw definite conclusions regarding the
symmetries of the system there seems to be some kind of systematics. As for most current
directions the shape of the R2ω(T ) curves do not change dramatically from one angle to
the next, the curves do not seem to be totally randomn. In the supplementary material
of [92] no systematic dependence of the asymmetry of critical current of a Josephson
junction on crystal orientations is reported. In this publication, however, critical currents
have only be analyzed at the maxima of the Fraunhofer pattern side lobes at rather
high B⊥ > 1 mT in finite in-plane fields of different orientation. Measurement of the
present sample in a more homogeneous out-of-plane field in a vector magnet and better
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Fig. A.23.: Optical micrograph of sample Al/InAs-C. The bright parts are the pristine film,
the darker parts have selectively been etched away. The sample consists of 21 stripes with a
length of 200µm and a width of 2.3µm. The voltage drop produced by a driving current can
be measured for each segment separately. The relative current directions with respect to the
crystal axes change by 15 ◦ from segment to segment covering a total range of 270 ◦.

temperature control could shine light on the symmetry of the system. Discriminating
anisotropic vortex motion or out-of-plane spin components as possible origins of the
measured features could be crucial to understand the superconducting properties of the
Al/InAs heterostructures. Especially a possible perpendicular spin-texture, so far not
treated in literature for this system, could strongly affect interpretation of data collected
in devices of this kind of material in out-of-plane fields.
There is one experimental finding that should still be mentioned here. Before measur-
ing the single segments of the sample test measurements were performed, where voltage
probes were kept the same while the current was applied to the sample through different
contact pads. For example, voltage was measured over segment 15 while for the bias
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Fig. A.24.: R2ω as a function of temperature for different current directions in a constant
out-of-plane field of 0.2mT. For clarity the curves have been separated vertically by 2Ω. An
angle of 0 ◦ corresponds to current in the direction of segment 19 in Fig. A.23 i.e. in the
horizontal direction.

current once contacts at the very end of the ring were used. At a subsequent measure-
ment contact pads directly neighboring the voltage probes were used. As expected the
Rω signal turned out to be unaffected, R2ω in contrast was strongly altered. Further
measurements revealed that this was due to a change of the DC bias offset current that
via frequency mixing strongly affects R2ω. After carefully nulling the DC offset for each
single contact configuration similar curves could be recorded. The origin for the differ-
ent DC current offsets for the different contact configurations are unclear. As the used
measurement leads are all of the same material and passing through the same kind of
copper powder filters thermal voltages can be excluded.
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A.3.3. Out-of-Plane Spin Texture in Josephson Junction Arrays

Polarity dependent critical current and resistance was measured in sample Al/InAs-S in
out-of-plane fields at low and high temperatures, respectively. It is assumed that these
effects arise from an out-of-plane spin texture resulting from broken crystal symmetries
at the interface of Al and 2DEG. As the Al layer alone should not have significant SOC,
it is of special interest if the unexpected out-of-plane spin texture has its origin in the
2DEG. In order to probe a possible polarity dependence of resistance or supercurrent in
the 2DEG, the natural choice is to measure the 2nd-harmonic resistance of a Josephson
junction in a small out-of-plane field, where the resistance and critical current is mainly
determined by the semiconducting weak link, which hosts the 2DEG.
Sample 1D_JJ1 was designed and produced by Christian Baumgartner. It consists of a
chain of 2250 Al/InAs/Al Josephson junctions made from the same Al/InAs material.
The chain is 3.15µm wide, the single junctions are 100 nm long, which makes them
behave as junctions in the short ballistic limit. Fig. A.25 shows a microscopic picture of
the sample and a Fraunhofer pattern characterizing the dependence of critical current
of the chain on an external out-of-plane field. The sample was intended to measure the
effect of an in-plane field on the junction behavior. With the findings in sample Al/InAs-
S in mind, however, also a potential emergence of non-reciprocal transport caused by an
out-of-plane field could be expected in such kind of structures.

Fig. A.25.: Left: Optical Microcgraph of sample 1D_JJ1 taken by Christian Baumgartner.
The structure consists of 2250 Josephson junctions in series that have been etched into the
7 nm thick Al/InAs. The weak link of the junctions consist of 200 nm wide areas of pure
InAs where the Al has been etched away selectively. Right: Fraunhofer pattern measured
by Christian Baumgartner at low temperatures showing dependence of critical currents of
the junction array on an external out-of-plane field. Yellow lines indicate the AC current
amplitude used for the measurement of non-reciprocal transport.

After the pre-characterization by recording a Fraunhofer pattern (right side of Fig. A.25)
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an AC excitation of 200 nA was applied large enough to overcome the critical current
in parts of the investigated B⊥ range. Beforehand the DC offset current was carefully
nulled to exclude artifacts in the V2ω signals (see section 3.3.2). Second harmonic sig-
nals resulting from bad DC offset compensation, however, are easily distinguished from
field induced asymmetries, because they can be measured even in zero magnetic field.
Therefore it is possible to compensate the DC offset by finding the absolute minimum of
the second harmonic signal as a function of DC current with an AC current amplitude
high enough to overcome Ic in zero field.

First and second harmonic voltage responses as a function of out-of-plane field are shown
in Fig. A.26.

Fig. A.26.: First (Vω) and second harmonic (V2ω) signals as a function of out-of-plane magnetic
field measured at low temperatures. At fields where IAC > Ic finite voltages can be measured
as the lock-in amplifier then probes resistive parts of the IV-characteristics. Finite second
harmonic signals indicate asymmetries in the IV characteristics sensitive to the field direction.

For out-of-plane fields where IAC > Ic(B⊥), a finite Vω is observed due to the finite re-
sistance for currents > Ic. Vω(B⊥) shows an oscillating behavior as the Ic(B⊥) becomes
small in the nodes of the Fraunhofer spectrum. Vω(B⊥) is symmetric in B⊥ similar to the
Fraunhofer pattern. V2ω(B⊥) shows positive and negative peaks whenever also Vω(B⊥)
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is non-zero. A second harmonic voltage can only be measured if the critical current is
polarity dependent. As the sign of V2ω(B⊥) depends on the polarity of B⊥, this cannot
be an artifact of bad compensation of a DC current offset. This measurement therefore
shows evidence for a supercurrent rectification in Josephson junctions in Al/InAs het-
erostructures induced by an out-of-plane field at low temperatures.

Non-reciprocal transport in purely out-of-plane fields was also reported for a Josephson
junction made from a similar heterostructure with a 20 nm thick Al film in [93]. In
this work a finite difference of differential resistance ∆R = R(+B⊥) − R(−B⊥) at a
fixed DC current for opposite directions of B⊥ is shown, which is another hint towards
a non-trivial out-of-plane spin texture. A B⊥-direction dependent differential resistance
∆R in the main lobe of an asymmetric SQUID was also reported in a similar kind of
Al/InAs heterostructure with a 10 nm thick Al film [94].

The observations in Fig. A.26 has various consequences. First it shows that the rectify-
ing process is not only present in the fluctuation regime of the superconducting transition
(in this case of the transition of the Josepson junctions), that relies on an already finite
resistance, but it is directly affecting the critical current making it a ’true’ supercon-
ducting diode tunable with an out-of-plane field. Second, it proofs that non-reciprocal
transport in out-of-plane fields can not only be measured in structures where the 2DEG
is covered with Al but also in parts of the material where the InAs is uncovered. In
a previous work it was shown that in-plane fields lead to a strong second harmonic
signal in the fluctuation regime of the transition of a Josephson junction array due to
the large Rashba fields in the semiconductor weak link [95]. As the Josephson effect
strongly depends on the properties of the semiconducting weak link and the resistance
of the device is dominated by the junction resistances there is strong indication that
either ouf-of-plane spin-orbit field components also could exist in the 2DEG itself or
that the spin-orbit fields in the Al banks strongly affect the junction behavior. More
importantly these findings show that in Josephson junction experiments the role of the
out-of-plane field as a pure source of phase difference between the two Al banks has to
be complemented by a direct effect of B⊥ on the transport properties of the junction.
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A.4. Challenges of Inhomogeneous Compensation Fields
There are several hints towards an inhomogeneous field produced by the pair of small
compensation coils. Because the coils are assembled inside the big magnet solenoid they
have a small diameter and are far away from being in Helmholtz configuration. This
leads to inhomogeneities on the mm scale. For large samples in finite in-plane fields
this can become problematic, because then it is not possible to compensate an out-
of-plane field component, produced by a small misalignment of the vertical field and
sample plane, equally precise over the whole area of the sample. For high-inductance
samples like Josephson-Junction arrays or vortex lattices in finite out-of-plane fields
this inhomogeneity can be neglected most of the time. However, also in large arrays
of Josephson junctions, different effective B⊥ on the sample, can for example lead to a
dispersion of higher order lobes when measuring Fraunhofer patterns as in [96].
In this study most of the effects arising from a nominally pure in-plane field can at
moderate and high fields be explained by vortex dynamics at parts of the sample where
the out-of-plane field component is not compensated perfectly. This makes it nearly
impossible to reliably measure small changes of Ls in in-plane fields as the inductance
produced by unintendedly introduced vortices is orders of magnitudes larger.
One possibility to reduce the error arising from the inhomogeneous compensation field
would be to use compensation coils that are assembled outside of the big magnet with
much larger dimensions. Even if in this way Helmholtz configuration cannot be achieved
neither, the scale on which the field is inhomogeneous can be increased significantly.
Another possibility would be to use a 2D or 3D commercial vector magnet with sufficient
homogeneity.
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Subsequent Changes

Following subsequent changes have been made in the presented manuscript:

• In eq. 2.2 a "-" sign was added on the left side of the equation.

• On page 16 the sentence "For the case of very small defects compared with the
extension of a vortex ξ..." was changed to "For the case of defects very small
compared with the extension of a vortex core ξ...".

• On page 23 the sentence "For bulk and centrosymmetric crystals the electric en-
vironment is isotropic and translational invariant and hence SOC is absent." was
changed to "For bulk and centrosymmetric crystals the electric environment is
relatively isotropic and hence SOC is typically weak.".

• On page 118 the sentence "...much less pronounced as in the reported work." was
changed to "...much less pronounced compared to [85]."
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