
Chaotic and localization properties of a realistic generalization of the complex SYK
model

I. INTRODUCTION

SYK blablabla

II. THE MODEL

As the goal of this notes is to derive a realistic, poten-
tially experimentally accessible Hamiltonian, we will de-
rive an effective Hamiltonian from the well known quartic
complex SYK model.

Its Hamiltonian is in general given as

HcSYK =

N∑
i,j,k,l

Jijklc
†
i c
†
jckcl. (1)

The kernel Jijkl is a complex valued matrix with ran-
domly distributed elements sampled from a Gaussian
distribution with zero mean and variance 〈J2

ijkl〉 =

J2/(3N3). Antisymmetry is enforced to ensure hermitic-
ity of the Hamiltonian.

This Hamiltonian is known to exhibit quantum chaotic
dynamics and to follow predictions from random matrix
theory, whose details depend on the specific parameters
of the Hamiltonian, i.e. the number of flavors N and the
particle content Nf .

This model is exactly solvable and has very interest-
ing properties, such as being an exact model for a non-
Fermi liquid. However, there is no known experimen-
tal realization, which primarily is due to the fact that
Coulomb interactions are known to be restricted to den-
sity interactions. Here, though, we observe the presence
of off-diagonal elements, in the sense that the interaction
changes the occupation configuration of a state in Fock
space.

However, here we try to derive a model, which over-
comes these obvious shortcomings while still preserving
important signatures of the original SYK model.

First, we state to consider finite size systems, mean-
ing that - in contrary to the conformal and large flavor
limit of the analytical solution carried out in literature
we focus on systems where N is finite.

Analysing the structure of the Hamiltonian we can
make a rather obvious observation: There are three
cases which are distinct with respect to their overall
structure:
(i) All four indices i, j, k, l are pairwise distinct. This
means the corresponding terms in the Hamiltonian
feature a ”pairwise hopping” between flavor sites.
(ii) Only three indices are distinct. A density of a single
flavor site mediates one-particle hopping. At this stage
this is not what is known as a kinetic hopping term, but
features a similar physical effect.

(iii) Only two indices are distinct. The corresponding
terms only include density interactions. These terms
can be found in nature, e.g. in the Coulomb interaction.

Case (i) cannot be included in a regular Coulomb type
interaction. For the proposed effective model we discard
all those terms. This of course is a mayor simplification,
since these terms dominate in the large N limit.

Case (iii) can be realized in a realistic model. However,
we know that the Hamiltonian in Fock space is diagonal
if we only include these terms. Hence it is impossible
to exhibit spectral properties as those found in the SYK
model or random matrices, where spectral correlations,
e.g. in the form of Wigner-Dyson Level statistics occur.
Hence we need to include case (ii) in some way.

We do this as follows: Introducing additional correla-
tions to the matrix elements, enforcing elements of the
type Jijjk to be independent of the density operator in-
dex j, can lead to an intresting identity. We label these
additionally correlated matrix elemnts Jijjk = tik. Then
we can write

H =
∑
i,j,k

Jijjkc
†
i cknj =

∑
i,j,k

tikc
†
i cknj

=
∑
ij

tijc
†
i ck

∑
j 6=i,k

nj =
∑
ij

tikc
†
i ck(N̂ − 1). (2)

Here nj is the number operator at site j and N̂ is the total
number operator. Since the total number of particles is
conserved by the Hamiltonian, it can be replaced with
its eigenvalue, assuming we only consider one symmetry
block, i.e. a specific filling of the system.

In this case we transformed case (ii) of the SYK Hamil-
tonian to a quadratic – and hence in principle realizable –
kinetic term. Defining Uij = Jijji we write for the model
Hamiltonian which is in the following tested with respect
to its SYK properties

H = a(Nf − 1)
∑
ij

tijc
†
i cj +

∑
ij

Uijninj . (3)

In order to investigate this model with respect to the im-
portance of the different terms, i.e. to the interaction
strength we introduce the parameter a. When a = 1
we recover the effective model derived from the complex
SYK, when a → 0 we have a purely density interac-
tion Hamiltonian (which in some sense is trivial) and if
a → ∞ it converges towards a non-interacting but all-
to-all hopping model. Note that there are no quadratic
onsite terms, which distinguishes the limit a → ∞ from
a quadratic complex SYK model.
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FIG. 1. Convergence of the LSS towards GUE prediction.
We calculate the bulk LSS of the effective SYK-like model
(a = 1) for a quater filling and different system sizes. The
disorder average is carried out for N = 12 over Navg = 5000,
for N = 16 over Navg = 200 and for N = 20 over Navg = 20
realizations. The dashed lines represent the Poission distri-
bution pP (s) which predicts LSS of integrable systems, and
the GUE Wigner-Dyson curve pGUE(s) predicting the LSS of
Gaussian unitary ensembles. As the system size increases, the
LSS converges to the SYK and GUE prediction.

III. LEVEL SPACING STATISTICS

We turn to calculating the level spacing statistics of
this model. This is a first important test, if we are at
all able to reproduce SYK physics with this simplified
effective model. For the bare SYK Hamiltonian (1) we
use the very well-known prediction from random matrix
theory which states that the level statistics should follow
random Gaussian ensembles. In practice we calculate
the mean level spacing si of the bulk spectrum, for the
finite size Hamiltonian, by exact diagonalization. A first
study in Fig. 1 shows, that for a = 1 the spectrum
converges to the RMT prediction for a Gaussian unitary
ensemble (GUE) when the system size is increased. This
suggests that the effective model described above is at
least capable of reproducing the SYK behavior of the
level correlations.

Subsequently we calculate the level spacing ratio, de-
fined as

ri =
min(si, si+1)

max(si, si+1)
. (4)

The average value 〈r〉 is a measure for the ”distance” of
a LSS distribution from the integrable (Poissonian) or
chaotic (RMT) phase.

In order to investigate the importance of the various
terms of the Hamiltonian (2) we vary a and measure 〈r〉.
By this we should see if there are phase transitions from
a chaotic (in the SYK like parameter regime) phase to
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FIG. 2. Phase transition between Poisson- and WD-LSS. We
vary a and measure 〈r〉 for different system sizes at a quarter
filling. The dashed baselines are obtained using RMT Pois-
sonian and GUE ensembles. We observe a sharpening phase
transition from a Poissonian phase at a = 0 to a chaotic phase
at a = O(1) plus a transition to another Poissonian phase at
a → ∞.

an integrable (in the pure interaction, so a → 0) phase.
The results of such study are shown in Fig. 2.

Here we see two jumps in the parameter 〈r〉 which
correspond to phase transitions from a SYK like phase
to Poissonian phases. The nature of the latter has to be
investigated further. It is clear that the limit a = 0 is
rather trivial since the Hamiltonian is then diagonal in
the Fock space and does not obey Level repulsion. It is
certainly integrable. The SYK like phase is supposed to
be delocalized and chaotic, indicating a resemblence of
the original SYK Hamiltonian. This is already a major
result, since it shows the possibility to obtain SYK like
physics with a much more realistic model as derived in
Eq. (2).

IV. WAVE FUNCTION STATISTICS

The phase at a→∞ is not clear so far. Since we want
to investigate all the different states and phases in the
context of many-body localization we will calculate the
wave function statistics.

In particular, we want to see if the wave functions are
localized in Fock space, or delocalized. This can be seen
in the context of an insulator-conductor transition.

We will look at the wave function moments:

Iq =
1

ν

∑
i

〈| 〈i | ψ〉 |2q δ(Eψ)〉, (5)

where the average is taken over all eigenvectors |ψ〉 and
disorder realizations, ν =

∑
ψ δ(Eψ) is the density of

states at zero energy and |i〉 labels the Fock basis states.
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FIG. 3. Localization of the wave function. Shown is the
avaerage value of I2 versus the interaction strength paramter
a. The lower baselines are obtained by diagonalizing random
unitary hermitian matrices of the appropriate size. We see
a strong localization transition when the interaction becomes
stronger, which is consistent with the transition we found in
the LSS. At strong hopping there is no such clear transition.
Instead we find an intermediate state, where the wave func-
tions are rather delocalized, but do not saturate the RMT pre-
diction. A weak localization can be observed. The disorder
average for N = 12 (N = 16) is performed over Navg = 5000
(Navg = 200) realizations. We fix the the particle number to
fulfill a quarter filling.

We take only the central part of the spectrum and assume
a constant density of states. For the second moment we
obtain an approximate formula

I2 =
∑
i

〈| 〈i | ψ〉 |4〉. (6)

It can be easily verified that for completely localized
wave functions, it holds Iq = 1 while for delocalized,
ergodically distributed ones we will obtain the so called
Porter-Thomas (PT) distribution

Iq = q!D1−q, (7)

where D = 2N is the Fock space dimension. This states
that the components of the wave functions are inde-
pendtly distrubted Gaussian variables.

In Fig. 3 we observe a localization transition when
increasing the relative strength of the interaction. The
phase transition is consistent with what we found in the
previous section analyzing the spectrum.

However, for larger a we do not observe such a tran-
sition. Where we expect the phase transtition to occur,
according to the previous section, an interesting interme-
diate phase is assumed, where the localization is present
but very weak. This essentially non-interacting phase has
to be analyzed more carefully in the following section.
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FIG. 4. Spectral form factor of different phases. We present
the spectral form factor for the three different parameter
regimes described above. We find for the ”trivial” limit –
pure density interactions – no ramp, which points at chaotic
behavior. The plateau is assumed immediately. For inter-
mediate a – well within the WD-LSS and delocalized phase,
the spectral form factor follows the prediction from RMT and
SYK: It has a clear linear ramp. In the quadratic limit, we see
a superlinear, also super-power law behavior resembling the
exponential ramp described for integrable many-body systems
which emerged from a single-particle chaotic model. N = 16,
Nf = 4.

V. SPECTRAL FORM FACTOR

Since we obtained a very strange but intriguing result
in the last section, namely, the quadratic limit a → ∞
has delocalized states but Poissonian statistics, we calcu-
late the spectral form factor, giving access to the exact
chaotic dynamics in a regime called ”ramp” regime.

The SFF at infinity temperature is given by

K(T ) =
〈| Z(iT ) |2〉
〈| Z(0) |2〉

, (8)

where Z(iT ) is the partition function given at iT and
the average is performed over disorder realizations. The
quantity K(T ) can be interpreted as a Fourier trans-
formed correlator between energy levels.

Here, for chaotic dynamics we expect a linear ramp,
while for integrable or other systems there is different
behavior. I.e. in the case of the quadratic Majorana
SYK model it was shown to exhibit an exponential ramp,
indicating a large symmetry class and hence rather inte-
grable, and Poissonian dynamics.

Particularly interesting will be the regime a → ∞
which exhibits delocalized or only very weakly localized
states but Poissonian statistics, indicating a non-trivial
phase between chaos and integrability. In Ref. [? ] the
authors look at a model like the one we obtain in the
latter limit. (Note however the absence of onsite en-
ergies.) They populate a chaotic single particle level,
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which is certainly true also in our case, since the single
particle Hamiltonian with a random hopping is identi-
cal to a Gaussian unitary ensemble, with many parti-
cles. Thereby, they obtain a phase, where the statistics
of level spacings is Poissonian, indicating integrability.
This affects the spectral form factor in such a way that
the chaotic linear ramp between the Heisenberg time and
the plateau time for the chaotic single particle Hamilto-
nian transforms to a exponential ramp, indicating inte-
grability.

This is a very interesting behavior in the context of
random matrix theory. It quantifies, additionally to the
wave function statistics discussed above, the difference
between the two Poissonian phases of the model (2)
when performing the limit a → ∞ and a → 0, since the
latter phase does not have a ramp in the sense of single-
or many-body chaos.

In Fig. 4 we report the exact spectral form factor
K(T ) for different parameter regimes of a. We see a clear
distinction between the previously seen different phases.
The pure interaction model is trivial, it exhibits no ramp
to indicate quantum chaos. The non-interacting limit
has an interesting behavior consistent with Ref. [? ],
which reports an exponential ramp for a similar model,
indicating integrability in a many-particle system, where
the single particle Hamiltonian – identival to a GUE
ensemble – is chaotic. This is also in perfect agreement
with what we found in the level spacing statistics.

In the intermediate regime, where we obtained previ-
ously a WD-phase with delocalized states, we expect the
SYK prediction to hold. This means we should observe a
linear ramp, indicating quantum chaos. This prediction
holds very nicely.

VI. CONCLUSION

We derived a potentially realizable candidate for a non-
Fermi liquid in the spirit of the complex SYK model.
This only features a hopping term, known from simple
condensed matter physics, as well as a density interac-
tion, known from the Coulomb interaction. In principle
it should be possible to realize this Hamiltonian (2) in
nature.

Subsequently we checked if this model is capable of re-
producing some key features of the original SYK model,
particularly its quantum chaotic properties. This is in-
deed possible, as the system size increases.

Additionally, we investigated how changing the rela-
tive strength of the interaction term varies the physical
properties of the model when analyzing quantum chaos.

We saw that this model features three distinct inter-
esting phases:
(i) In the pure interaction model, the Hamiltonian be-

comes trivial. It is diagonal in occupation basis, hence
the energy levels are uncorrelated, and the states local-
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FIG. 5. Convergence of the LSS in the derived model. We fix
the filling to a sixth of the site number N and calculate the
bulk LSS for system sizes up to N = 24. We see an agreement
of the convergence described in the main text, since for larger
N the statistics still resemble the Wigner-Dyson distribution.
The disorder average is performed over Navg = 10000, 500, 1
realizations, respectively.

ized in Fock space.
(ii) Increasing the hopping strength we observe a phase
transition into a thermalizing, delocalized phase, where
SYK physics happens.
(iii) In the non-interacting limit, we observe again inte-
grabiliy, however it is still a complex phase: Even though
Poissonian eigen value statistics are assumed, states are
rather delocalized and a ramp in the spectral form factor
is assumed which is distinct from phase (i) and (ii), so
exponential and in agreement with the literature.

Appendix A: Thermodynamic limit for approximate
SYK model

We take a = 1, so we have the originally derived SYK
model. In order to confirm the LSS convergence to a
GUE Wigner-Dyson distribution, we perform a study
where we fix the filling to be a sixth of the sites num-
ber N . Hence we are able to go to higher system sizes
than before, since the Fock space dimension is smaller. In
Fig. 5 we observe – similarly to Fig. 1 – a convergence for
large N when keeping the density of particles constant.
Since we can perform this up to N = 24 in the case of a
small filling, this is additional evidence for the coonver-
gence of the model 2 to the GUE statistic, and hence the
eigenvalue behavior of the original complex SYK model.
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