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High-mobility graphene hosting massless charge carriers with linear dispersion provides a promising platform
for electron optics phenomena. Inspired by the physics of dielectric optical micro-cavities where the photon
emission characteristics can be efficiently tuned via the cavity shape, we study corresponding mechanisms for
trapped Dirac fermionic resonant states in deformed micro-disk graphene billiards and directed emission from
those. In such graphene devices a back-gate voltage provides an additional tunable parameter to mimic different
effective refractive indices and thereby the corresponding Fresnel laws at the boundaries. Moreover, cavities
based on single-layer and double-layer graphene exhibit Klein- and anti-Klein tunneling, respectively, leading
to distinct differences with respect to dwell times and resulting emission profiles of the cavity states. Moreover,
we find a variety of different emission characteristics depending on the position of the source where charge
carriers are fed into the cavites. Combining quantum mechanical simulations with optical ray tracing and a
corresponding phase-space analysis, we demonstrate strong confinement of the emitted charge carriers in the
mid field of single-layer graphene systems and can relate this to a lensing effect. For bilayer graphene, trapping
of the resonant states is more efficient and the emission characteristics do less depend on the source position.

I. INTRODUCTION

Due to its linear energy-momentum relation for low-energy
excitations, graphene provides an ideal low-dimensional
condensed-matter platform for Dirac electron optics: Com-
paring graphene’s linear dispersion E(k) = ±h̄vFk with the
Planck-Einstein relation for photons in vacuum, E(k) = h̄ck,
optics-like electron physics in graphene is naturally expected.
Here c is the speed of light and vF is the Fermi velocity of elec-
trons in graphene. Hence, the electronic states in graphene
carry certain features of photons but, at the same time, re-
spond to external electric and magnetic fields. Furthermore,
graphene electronics is similar to semiconductor physics with
respect to its carrier polarity. However, the gapless energy
band structure of graphene makes it much easier to switch be-
tween n- and p-type states by electrical charging and deplet-
ing, enabling efficient gating of graphene hetero-junctions.
As a result, the combination of these various special proper-
ties, i.e. that charge carriers in graphene partly behave like
photons, are deflected by magnetic fields, are reflected or
diffracted at p-n junctions and propagate dispersionless, has
opened up the swiftly expanding field of Dirac electron optics
based on ultraclean ballistic graphene devices. Correspond-
ingly, optics analogues comprise Klein tunneling in single-
layer graphene p-n-p junctions1–7, p-n junctions8–10, or Fabry-
Pérot type settings7,11,12 as well as anti-Klein tunneling in bi-
layer graphene1,13–17 where in particular circular p-n junk-
tions were considered18. Collimation8,19, various electron
lensing20–23 and guiding24–30 phenomena were investigated in
this context.

FIG. 1. Quantum mechanically calculated local current density for
a current injected from a point-like source located at the center of
a disk-shaped bilayer graphene cavity (diameter 1µm), which is at-
tached to four wide transparent leads in order to suppress boundary
scattering. The dashed line marks the mid field region (rm = 2µm).
The hexagonal emission profile reflects the underlying band structure
symmetry, see Sec. IV C.

Complementary to the use of top gates in several of
the aforementioned electron steering experiments, recently a
scanning tunneling setting has been employed to create disk-
like cavities in graphene defined by circular p-n junctions and
to probe whispering-gallery type resonant states that are most
stable against decay from the cavity via Klein tunneling31; in
a first subsequent theory work non-reciprocity of these whis-
pering gallery modes was predicted32.

In earlier theoretical works on differently-shaped, open
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(a) (b)

(c) (d)

FIG. 2. Particle-wave correspondence in (single-layer) graphene bil-
liards of limaçon shape in the near and mid field region. The origin
of polar coordinates (r,φ) and mid field coordinates (rm,φm) is in-
dicated in (a), and a typical mid field boundary rm (dashed line) in
(b,d). (a,c) Particle trajectory simulations, source positions (yellow
dot) at (x,y) = (−0.17,0) and (x,y) = (1.23,0), respectively. The
light blue area marks the billiards. (b,d) Wave simulations for the
same source positions as in (a,c). The color scale in (a,c) shows the
total intensity I of summed Fresnel-weighted rays in cells with center
(φm,rm). In (b,d) the color scale is the local electronic current density
J. Classical dynamics and wave results agree semi-quantitatively and
both show a pronounced collimation of electrons leaving the cavity
to the left (a,b) or right (c,d). The reason is a lensing effect in this
SLG billiards with n=-1.

graphene cavities, the influence of the character -integrable
versus chaotic - of the classical charge carrier density dynam-
ics were studied on resonant states in transport33 and in closed
graphene cavities on their sprectra34.

The intriguing, novel setup of Ref.31 uses a scanning-
tunneling probe to define p-n junction-based billiards. This
will allow for experimentally controlling the size and local
carrier density of such well-defined ballistic graphene cavi-
ties and has been motivating us to consider generalizations
of such systems beyond the disk geometry, aiming at charge
trapping and controlled directed carrier emission from de-
formed cavities. To this end we adopt and generalize ideas
and techniques from the field of optics in photonic micro-
cavities. There, corresponding settings for electromagnetic
radiation had been successfully used to achieve and control
highly directional emission from asymmetrically shaped, las-
ing cavities35–37. Such deformed dielectric microcavity bil-
liards are characterized by an optical refractive index n. In
these systems light is at least partially confined by total inter-
nal reflection in so-called whispering-gallery type modes36.
Breaking of the rotational symmetry was found37,38 to lead
to directional emission from the microcavity. Analyzing the
ray-wave correspondence yielded a profound understanding
of the behaviour in the optical case based on the nonlinear ray
dynamics: The cavity geometry determines the phase space

structure of the rays inside the cavity in the classical, ray limit
of optics. This phase space is typically mixed, i.e. comprising
co-existing regular and chaotic phase space regions that affect
wave-optical emission from the cavity via Fresnel’s law. Tun-
ing the ray phase space by deformation of the cavity allowed
one for steering directional emission and lasing in the optics
context.

Hence it is tempting to explore such a behavior in graphene
billiards using a related trajectory-wave correspondence-
based approach for electrons in graphene. Recently, such con-
cepts from mesoscopic optics have been employed for certain
single-layer graphene cavity setups: Based on the photonic
annular geometry used in Ref.36 and assuming a ferromag-
netic exchange field it was shown in Ref.39 that the corre-
sponding internal dynamics of spin-up and -down electrons
can strongly differ, leading to specific quantum scattering and
polarization features. In Ref.40 the decay features of inte-
grable disk- and chaotic stadium-type cavities were studied
based on classical ray tracing.

In the present work we analyze charge carrier trapping
and (directed) emission of deformed graphene micro-disks
by considering the full particle-wave correspondence through
classical and quantum simulations for leaky graphene-based
billiards. They are defined by the geometry of a p-n interface
that in turn is determined by a gate voltage step from VL to VR
where VL is related to VR by an effective index n of refraction,
VL = nVR. The introduction of a refractive index n is moti-
vated by its aforementioned optical counterpart for deformed
dielectric microcavities. The possibility to easily realize neg-
ative refractive indices in graphene adds to the fascination of
such a study.

Moreover, we also compare single-layer graphene (SLG)
and bilayer graphene (BLG) based ballistic cavities exhibiting
distinctly different Klein tunneling behavior at their bound-
aries: Since the p-n-based boundary in SLG exhibits Klein
tunneling, quantum states in a disc with predominantly ra-
dial excitation are expected to be short lived, while circular
”whispering gallery”-type modes should be longer-lived, as
for the photonic analogue. On the contrary, anti-Klein tunnel-
ing for certain parameters of the p-n BLG interface implies the
opposite transmission characteristics, implying trapped radial
”bouncing ball” modes due to suppressed Klein tunneling, a
mechanism that does not exist in graphene’s optical counter-
part.

Photonic and Dirac-fermionic settings also differ in the way
resonant states can be created. Optical pumping in the former
could be replaced by local charge carrier injection, for exam-
ple by vertical injection through a point contact on top of the
sample41, in the latter. This amounts to generalize exisiting
ray tracing and wave simulations to the case of local (point)
sources in the SLG and BLG cavities, where the source posi-
tion turns out to be particularly relevant for the emission char-
acteristics. Figure 1 illustrates the peculiar emission profile of
such a point source in the center of a BLG disk.

For the specific simulations for a deformed disk we use
graphene billiards of the so-called limaçon shape, see the
sketch in Fig. 2(a). For the optical case, a robust and
resonance-independent directional far-field emission was ob-
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(a) (b)

FIG. 3. Fresnel transmission coefficient T = 1−R , with R the reflec-
tion coefficient, for (a) the optical case, n = 3.3 and TM (full line)
and TE (dashed line, Brewster angle feature at T = 1) polarisation.
(b) Single-layer graphene, n =−1 (full line, smoothed potential), bi-
layer graphene n = −1 (dashed line) and n = −3 (light dotted line).
A steplike potential and a voltage VR =20 meV was used for the bi-
layer graphene data.

served for both wave and ray simulations37. The correspond-
ing investigation and explanation in the case of graphene is
one main subject of this paper that is organized as follows. In
Sec. II we introduce the trajectory modelling of graphene bil-
liards by introducing Fresnel’s and Snell’s law for graphene
p-n interfaces in Sec. II A and apply it to ray-tracing simula-
tions in Sec. II B, while we comment on the wave simulations
in Sec. II C. In Sec. III we compare our ray and wave simu-
lations results and discuss ray-wave correspondence for SLG
billiards. We extend this concept to BLG cavities and high-
light the ray-dynamic origin of the different behaviour in Sec.
IV and summarize our findings in Sec. V.

II. ELECTRON-TRAJECTORY MODELLING OF
GRAPHENE BILLIARDS

A. Fresnel’s and Snell’s law for graphene

We model the graphene cavities as so-called limaçon bil-
liards that allow for tuning the deformation based on disk-
shape and have proven convenient in the photonic case42. In
polar coordinates (r,φ) the billiard boundary reads r(φ) =
R0(1+ ε cosφ ) with mean radius R0 and the deformation pa-
rameter ε set here to 0.43. For the optical case, a robust
and resonance-independent directional far-field emission was
observed for both wave and ray simulations, as well as in
experiments37,42–45.

A close correspondence between optical billiards for light
and graphene billiards for electrons can be established by
generalizing Fresnel’s and Snell’s law to graphene interfaces,
cf. Fig. 3. While in the optical case a step in the refractive
indices defines a dielectric cavity (typically with refractive in-
dex n > 1 embedded in air with n0 = 1), a p-n step defines
the graphene billiard interface. Here, the dominating feature
is Klein tunneling1,8,46. It yields perfect transmission T = 1
for electrons with normal incidence onto the interface in SLG,
in contrast to T = T (n) = 1− ((n−n0)/(n+n0))

2 in the opti-
cal counterpart. BLG adds even more variability to Fresnel’s
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FIG. 4. Lensing effect in the mid field ray intensity I(rm,φm) for
SLG billiards with effective index of refraction n =−1. The contri-
butions of very short rays (l < 1.5, green/light full lines) and all rays
(red dashed lines) are distinguished and shown with wave simulation
results J (blue/dark full lines). (a) Source position at xs =−0.17 (see
inset). The position of the highest peak (rm = 1.3± 0.1) in ray and
wave simulations is almost equal to the analytically calculated posi-
tion r f = 1.24. (b) Same for xs = 1.23. Again, rm = 1.7± 0.1 and
r f = 1.61 correspond well.

law with the realization of anti-Klein tunneling (T = 0 at nor-
mal incidence)1,13 and, moreover, the possibility to realize the
transition from anti-Klein to Klein tunneling16.

Here, we use Fresnel laws for single- and bilayer graphene
that are obtained from numerical calculations of the angle-
resolved transmission function across a smooth p-n junction
based on the real-space Green’s function approach47 within
the tight-binding framework. See Ref. 48 for technical de-
tails. The resulting Fresnel laws are shown in Fig. 3 and were
numerically implemented as boundary conditions for our clas-
sical ray simulations used below where wave propagation is
approximated by ray tracing of electron trajectories inside the
billiards. We point out that the effect of the electron’s spin can
be neglected in the present study as the spin-orbit coupling ef-
fect in graphene is of the order of only several micro eV such
that the Fresnel laws will practically be the same for both spin
species.

Similar to Fresnel’s law, Snell’s law can be generalized to
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the graphene case as well. It reads

VL

VR
sinα = nsinα = sinβ , (1)

where α is the angle of incidence of a light ray inside the
cavity and β is the angle of the refracted ray leaving the cavity.
Both are measured with respect to the boundary normal. The
voltages VL and VR define the potential step and are related
to the Fermi energy EF and the potential step height V0 by
EF =−VL and V0 =VR −VL, yielding

n =
EF

EF −V0
(2)

as an alternative expression for the effective refractive index n.
In the following, values n =−1 and n =−3 are used (n0 = 1).
Note that the Fresnel transmission coefficient may depend not
only on the voltage ratio but also on the voltage value itself as
in the case of BLG.

SLG and optical billiards show, qualitatively, a similar be-
haviour of the transmission coefficient T as a function of the
angle of incidence α , cf. Fig. 3. In particular, and despite
the presence of Klein tunneling, the transmission T drops to
zero as α reaches grazing incidence, just as known for total
internal reflection at optical interfaces for angles larger than
the critical angle αc = arcsinn0/n. Consequently, we expect
a certain analogy in (the interpretation of) the behaviour of
optical and SLG billiards, concerning e.g. the importance of
whispering-gallery type resonances.

BLG shows, in general, smaller transmission coeffi-
cients T with zero transmission T = 0 at normal incidence,
cf. Fig. 3(b). Therefore, the confinement of electrons in BLG
billiards is expected to be better than in the SLG case, in par-
ticular for higher effective refractive indices. This will be im-
portant when interpreting ray modelling results of BLG vs.
SLG electron sources below.

B. Trajectory simulations

Particle trajectory simulations according to SLG and BLG
Fresnel’s and Snell’s law (Fig. 3 and Eq. (1)) have been per-
formed numerically. To mimic the electronic source, 4000
ray-like trajectories were started at the position of the point-
like source in random directions. Their trajectories and inten-
sity evolution across the graphene billiards were followed, and
each of them was reflected at the p-n interface up to 70 times
or until its intensity I dropped below 5× 10−6 of the initial
intensity I0. Every time a particle is reflected at the p-n step,
Snell’s and Fresnel’s law for graphene interfaces are used to
calculate the angle of refraction and the reflected and refracted
intensities. The current density in mid field is calculated us-
ing the number of trajectories crossing one of the 360 cells
in mid field at radius rm, weighted by their Fresnel intensity.
Note that the origin of mid field polar coordinates (rm,φm) is
in the apparent center of the billiards, cf. Fig. 2(a), and differs
from the origin of the (r,φ) coordinates used to describe the
billiards boundary.

Ray simulations for optical billiards in the so-called sta-
tionary regime have proven to be a useful and reliable con-
cept to describe the far field emission characteristics of lasing
microcavities38,42, and generalization to mid fields is straight-
forward. Note, however, that here a source-driven billiards has
to be considered in contrast to uniformly pumped microcavity
lasers in the stationary regime. In the ray picture, the latter are
described by long trajectories that have reached the stationary
regime, which is an exponential decrease of the total intra-
cavity intensity. Then, the far field emission characteristics
is determined by the so-called natural measure (or Fresnel-
weighted unstable manifold or steady probability distribution)
in phase space37,38,42,49. We point out that the transient regime
occurring prior to reaching the stationary regime had to be
abandoned in these cases. It is characterized by faster-than-
exponential decay due to loss of all (randomly and with unit
intensity started) trajectories that are not confined by total in-
ternal reflection and leave the billiards “right away”. Once the
trajectories have adopted the system-specific intensity distri-
bution, that is, have arrived at the natural measure, the correct
far field characteristics could be obtained.

In the presence of sources, new particles (or rays) are con-
stantly being fed into the system and, therefore, short paths
cannot be neglected. So simulations for billiards with sources
have to be extended by the short trajectories that were left out
before. To this end, we divide the paths contributions in those
from short trajectories with l < 1.5 or l < 3, intermediate long
trajectories with 3 < l < 20, and long trajectories l > 20 when
discussing the results of ray simulations in the following sec-
tions. All lengths are measured in units of the mean cavity ra-
dius R0 (that is typically set R0 = 1). Source positions within
the cavity are described in (xs,ys) coordinates (same origin
as (r,φ)) while sources along the cavity boundary are given
through their polar angle φs (same origin as (rm,φm)).

C. Wave simulations

For wave simulations we consider a square-shaped scatter-
ing region attached to four semi-infinite leads of width W to
model the cross bar depicted in Figs. 5(a,c). The cross bar can
be made of SLG and BLG, both of which can be straight-
forwardly described by tight-binding models in real-space.
To consider the experimentally feasible size (W = 2 µm and
mean limaçon radius R0 = 0.5 µm in all wave simulations),
we adopt the scalable tight-binding model28 with the scaling
factor s f = 8 for SLG and s f = 4 for BLG. In addition to
the four planar semi-infinite leads that work as drain termi-
nals, the point-like injector is modeled by a vertical lead with
a disk cross section of radius about 24 nm, adopting the same
method used in Ref. 21.

We compute the spatially resolved quantum-mechanical
probability current density using two different but consistent
methods. For SLG, we apply the nonequilibrium Green’s
function method47 in the limit of equilibrium using our own
code, same as Ref. 21. For BLG, we use the open-source code
KWANT50 to compute the local current density. All wave
simulations are done at zero temperature.
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FIG. 5. Numerical wave simulation of graphene billiards. (a) Top
view of periodically etched bottom gates (gray) and the edge con-
tacts (yellow). The dashed cross bars mark four graphene samples
attached to four contacts each, one of the cross bars is magnified in
(c). The white dashed square in (c) indicates the considered scatter-
ing region for quantum transport simulations and is attached to four
semi-infinite leads of width W . (b) Possible experimental realiza-
tion of a graphene device containing the limaçon cavity, showing the
cross-sectional side view along the green line in (a) and indicating
the point contact (orange), hexagonal boron niride (hBN) dielectric
layers (light blue), graphene sample (black), the holey bottom gate
(gray, Vo), the SiO2 substrate (pink), and the global back gate (brown,
Vi).

The setup modelled is closely related to the experi-
mental realization of a limaçon shaped graphene billiards,
cf. Fig. 5(b). Due to screening, the global backgate applied
with gate voltage Vi influences only the central part of the
graphene sample inside the limaçon cavity, while the holey
bottom gate applied with gate voltage Vo controls the region
outside the cavity. Combination of gate voltages Vi and Vo
allows us to electrostatically and controllably induce at the
center of the graphene sample a limaçon-shaped cavity. At
the boundary of the cavity, the gate-induced carrier density
is expected to smoothly transition from ni in the inner re-
gion to no in the outer region, with the smoothness depending
mainly on the thickness of the bottom hexagonal boron nitride
(hBN) layer. The carrier density profile is exemplarily shown
based on a model function in Fig. 5(c). All wave simula-
tions are based on such a four-terminal structure, considering
W = 2 µm, R0 = 0.5 µm, and ni =−6×1011 cm−2 =−no. In
addition, we will assume reflectionless contacts such that we
may model the cross bar by considering a square scattering
region marked by the white dashed box in Fig. 5(c)] attached
to four semi-infinite leads. In ray simulations, on the other
hand, the system is further simplified to a boundless graphene
sample, to be explained in section II B.

III. PARTICLE-WAVE CORRESPONDENCE IN
SINGLE-LAYER GRAPHENE BILLIARDS

A. Lensing effect

For source positions xs along the x-axis (symmetry axis of
the cavity, ys = 0), a semi-quantitative agreement between tra-
jectories and wave simulations can be observed as shown in
Fig. 2. Both intensity distributions show a very pronounced
peak in mid field emission whose position depends on the
source position xs. We now investigate this behaviour in detail
by scanning the source position xs along the x-axis.

The results are presented in Fig. 4. In order to resolve the
peak evolution, the mid field observation radius rm was varied.
Clearly, a pronounced peak in the emission intensity develops
in a tiny range of mid field radii rm. Its dominating emis-
sion directionality φm depends on the source position xs; see
Fig. 4(a,b). Note that this peak is mainly caused by short rays
with trajectory lengths l < 1.5. This finding reflects the fact
that the SLG system is very open because, according to its
Fresnel law, rays with normal incidence onto the p-n step are
fully transmitted, and confinement by total internal reflection
is only reached for relatively large angles of incidence α .

While the appearance of pronounced preferred emission di-
rections in the wave simulations, Fig. 2 (b),(d), might on first
sight suggest a coherence effect that cannot be captured by a
naive ray model description, it turns out that the opposite is
true: the ray model nicely explains it as a lensing effect of the
(almost) perfect graphene lens with n = −1 as we shall see
now.

Using the approximation for rays near the optical axis51, we
find the following relation for a thick graphene lens of refrac-
tive index n =−1,

1
f
=

1
s
+

n−1
rc

(3)

where rc is the (local) radius of curvature of the cavity near
the source (rc = 2.3 for ϕ = π and rc = 1.1 for ϕ = 0), f is
the distance of the lens’ focal point to the edge of the cavity
and s is the distance between the source and the edge. The
analytical results for the position of the focal point r f = f +
R0 = f +1 correspond very well to peak positions obtained in
the trajectory and wave simulations; cf. Fig. 4.

B. Varying source positions

Next, we want to investigate the influence of the source po-
sition on the formation of the lensing effect in more detail.
More generally, the objective is to characterize the dynamics
of the ray model for arbitrary source positions by discussing
the contributions from the transient and the stationary regime,
or shorter and longer paths, respectively. The results are sum-
marised in Fig. 6 for SLG billiards with n =−1.

In Fig. 6(a), the source position φs is varied along the bil-
liard’s boundary. Note that electrons have to be reflected at
least once before transmission. The main emission originates
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FIG. 6. SLG billiards trajectory intensity I(rm = 2,φm) for vary-
ing source position xs and paths of different lengths: short paths
l < 3 (green/grey full line), intermediate length paths 3 < l < 20
(yellow/light grey) and long paths l > 20 (purple/dark grey) for (a)
different source positions φs along the billiards boundary and (b) dif-
ferent source positions xs along the x-axis (with ys = 0). (c) Same
as (b) but wave simulations results for the wave intensity J which
shows, qualitatively, a very similar behaviour.
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FIG. 7. Particle-wave correspondence in BLG billiards. Wave reso-
nances in BLG for source positions (a) xs = 0.43 and (b) xs = 1.23
(left panels) and corresponding mid field emission as polar plot (right
panels). The anti-Klein tunneling prevents trajectories emerging
from the source and hitting the boundary at normal incidence to
directly leave the cavity, in contrast to SLG. Rather, a whispering-
gallery type mode along the system’s boundary can form in BLG. (c)
Mid field intensity into direction φm for wave simulations (blue/dark
solid line, VR = 100 meV, n=-1) and the corresponding ray simu-
lation result (short rays (all rays) indicated by the green/grey solid
(dashed) line. for source position (xs,ys = 0) and mid field radius
rm = 2. We find semi-quantitative agreement and the main emission
directions well reproduced within the classical model, in particular
by long paths.
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from rays that have crossed the billiards just once and leave
opposite the source. Shifting the source position continuously
from φs = 0o to 180o yields a smooth shift of the mid field
emission peak. We point out that the emission mechanism is
very different from the lensing effect discussed before.

This source-related main emission peak is dominated by the
short paths (green) curve in Fig. 6(a). However, all longer tra-
jectories (purple) contribute to a background with characteris-
tic mid field emission directions φm = 120o and 240o. These
can be explained by the Fresnel-weighted unstable manifold
for graphene billiards (see Fig. 12 below). They correspond
to the stationary, source independent emission characteristics
of the system. Notice that the long-path results are practically
independent from the source position and are symmetric37,42,
even if the source is not placed at the x-axis.

In Figs. 6(b) and (c), the source position is varied along the
x-axis. We compare the trajectory simulation result (b) and
the wave simulation result (c) and find very close and reason-
able agreement. The dominance of short path contributions
(green line) to the overall intensity is clearly visible. Around
xs = 0.5, that is, when the source crosses the apparent center
of the limaçon cavity (i.e., the origin of the (rm,φm) coordi-
nates), the output peak related to the lensing effect switches
from φm = 180o (for smaller xs) to φm = 0o as illustrated in
Figs. 2 and 4. We point out that for central source positions
the emission is almost uniform and does not reflect the broken
rotational symmetry of the cavity. The reason is that central
source positions induce predominantly normal incidence onto
the boundary such that Klein-tunneling initiated perfect trans-
mission carries most of the ray intensity outside within very
few reflections. Consequently, the peak intensity is smallest
at central source positions around xs = 0.5, cf. Figs. 6(b) and
(c). For source positions closer to the boundary, larger angles
α of incidence become typical and support longer trajectories.

IV. BILAYER GRAPHENE BILLIARDS

A. Particle-wave correspondence

We now turn to BLG systems and start by investigating
the classical-wave correspondence, cf. Fig. 7. Typical res-
onance patterns and their polar emission plots are shown in
Figs. 7(a,b) on the left and right, respectively. The forma-
tion of a whispering-gallery type mode is evident, in agree-
ment with the importance of long trajectories in the simu-
lated intensity: the anti-Klein tunneling feature of BLG al-
lows the electrons emitted from the central source to remain
inside the cavity despite their nearly normal incidence onto
the boundary. Their subsequent dynamics in a cavity with
nonlinear (chaotic) dynamics eventually allows the formation
of whispering-gallery type modes that coexist with the source
emission. Therefore, the emission pattern is a superposition
of the long path contributions that can be associated with the
Fresnel-weighted unstable manifold of the system (see the dis-
cussion in Sec. V A below), and short path contributions asso-
ciated with the presence of a source. We will investigate and
deepen the interesting features arising here in a separate work.
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FIG. 8. (a) Short and (b) long trajectory contributions to the mid
field emission characteristics I(rm = 2,φm) of bilayer (VR = 20 meV,
n = −1, green and n = −3, orange) and single-layer (n = −1, pur-
ple) graphene billiards for varying source position (xs,ys = 0). (c)
Optical case, TE polarization, for comparison. Short orbits dominate
the emission especially for SLG in (a), while long orbits determine
the emission characteristics of BLG in (b), reflecting the stronger
confinement of electrons in BLG.
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(a)

(b)

(c)

(d)

FIG. 9. BLG disk billiards (ε = 0) with source at central position
(xs,ys) = (0,0) and V = 0.1 eV for different asymmetry parame-
ters U . (a) U = 0 eV (anti-Klein tunneling) (b) U = 0.05 eV, (c)
U = 0.075 eV, and (d) U = 0.15 eV modelled with full wave cal-
culations. Left panels: local current density J in real space, right
panels: mid field emission polar plot (rm = 2). Note that a trajectory-
modelled source would not at all emit in (a) and would emit isotropi-
cally in (b,c,d), where wave simulations reveal the underlying hexag-
onal symmetry. Certain parameters U allow for efficient focusing
such as in (c).

In Fig. 7(c) the trajectory (wave) mid field emission I (J) is
shown for different source positions (xs,ys = 0). A reasonable
agreement between classical and wave simulations is found.
For central peak positions such as xs = 0.4, the simulations
reveal emission peaks towards φm = 0o and 180o in agreement
with Fig. 7(a).

We point out the importance of short trajectories in the case

of near-boundary source positions, Fig. 7(a). It is those orbits
that form of the strong emission peak into φm = 0o (and, not
shown, into direction φm = 180o for a source at the opposite
boundary). While this behaviour is reminiscent of SLG, long
trajectories dominate otherwise as argued above.

B. Emission characteristics: Role of Fresnel laws

While we have illustrated the intricate interplay between
the electron’s dynamics and the Fresnel law for the orbit-
based emission characteristics in various examples, we will
now directly compare SLG and BLG systems. Both possess
very different Fresnel laws, cf. Fig. 3, and we will focus on
how this affects their emission patterns using trajectory simu-
lations; cf. Fig. 8.

BLG has the interesting and remarkable property to per-
fectly reflect rays with normal incidence to the p-n interface
and, thus, keep them inside the billiards. Consequently, the
lensing effect disappears, and we expect the ray (and conse-
quently the electron wave function or current density) inten-
sity to become more independent from the source position.
This is illustrated in Fig. 8 for BLG in comparison to SLG
and the optical case. To this end we compare the contribu-
tion of short trajectories, see Fig. 8(a) and long trajectories,
see Fig. 8(b), for SLG (green line) and BLG (blue and orange
lines for effective refractive indices n = −1 and n = −3, re-
spectively) systems.

We begin our discussion with short trajectories, Fig. 8(a),
where we recover the lensing effect for SLG (green line). As
expected, the lensing effect disappears for BLG (blue and or-
ange lines). At the same time, the importance of longer ray
trajectories for bilayer systems is visible in Fig. 8(b), while
long trajectories contribute very little to the mid field inten-
sity for SLG (green line). Moreover, for BLG we find that
the main emission directions depend on the refractive index n
chosen. This is directly related to the changes in the Fresnel
coefficients, cf. Fig. 3.

The optical case (TE polarisation, Fig. 8(c)), is reminiscent
of the behaviour of BLG. However, the optical mid field emis-
sion drops for central source positions around xs = 0.5, in
stark contrast to the BLG case. The reason is the consider-
ably better confinement for central source positions for BLG,
resulting in normal ray incidence at the first reflection point.
BLG yields perfect reflection in that case, while the optical
reflection coefficient is smaller than one. For near-boundary
optical sources, we observe the expected universal, source-
position independent emission characteristics described in37.

C. Bilayer graphene disks: beyond particle-wave
correspondence

We have demonstrated the usefulness of a trajectory-based
approach to graphene billiards. However, we will now illus-
trate the limits of particle-wave correspondence to be expected
in a system of relativistic electrons on a honeycomb lattice. To
this end we choose the example of circular (disk-like) BLG
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(a)

(b)

(c)

(d)

FIG. 10. Same as Fig. 9 but with the source placed near the upper
boundary at (xs,ys) = (0,0.8). Note the crossing beams that emerge
in (a,b,c) near the source. They can be related to anti-Klein tunneling
T (α = 0) = 0 flanked by a maximumn of the Fresnel transmission
coefficient for intermediate angles of incidence α . The effect is lost
when the regime of Klein tunneling is reached in (d).

billiards (deformation parameter ε = 0). We will contrast a
central source position that respects the rotational symmetry
of the system, and source positions near the boundary. In all
cases we vary the asymmetry parameter U52 such that we can
freely scan from anti-Klein-tunneling for U = 0 to situations
between anti-Klein and Klein tunneling for U > 0. We shall
find an interpretation in terms of the Fresnel coefficient (in

(a)

(b)

(c)

(d)

FIG. 11. Same as Fig. 9 but with the source placed near the right
boundary at (xs,ys) = (0,0.8). Although the geometry is symmet-
ric with respect to the xs = x-axis, the intensity distribution J is not
since the x-axis is not a symmetry axis of the underlying BLG lat-
tice. This yields deviations of the emission pattern in comparison to
Fig. 10 although the characteristic qualitative features – main emis-
sion originating near the source, emergence of specific patterns – are
comparable.

particular those for normal incidence) still useful, but at the
same time other effects to become important.

Figures 9, 10, 11 display a manifold of internal intensity
distributions and mid field emission patterns as source posi-
tion and asymmetry parameter U are varied. We begin our
discussion with a central source position, Fig. 9. For U = 0,
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Fig. 9(a), we are in the regime of anti-Klein tunneling. There-
fore, a trajectory simulation would show no emission into
the mid field at all as all orbits emerging from the source
will hit the boundary under normal incidence, i.e., a van-
ishing transmission coefficient. In Fig. 9(b,c,d), where anti-
Klein tunneling is lifted, an isotropic trajectory emission is
expected. However, the full wave simulation results display
distinct emission directions. This can be understood by a scat-
tering argument: The current is injected isotropically from
the point source. The reflected waves (anti-Klein tunneling)
return to the point injector which now acts like a scatterer.
However, the scattered waves are not simply s-wave-like, be-
cause the Fermi contour becomes non-circular for finite en-
ergies in BLG. Hexagonal contributions to the Fermi contour
E(~k) implies six predominant velocity directions ~v =~∆~kE(~k)
as function of the wave vector~k, see Ref.11. This allows for
the specific realization of patterns with highly focused emis-
sion directionality in few directions such a in Fig. 9(c) even if
the geometry is literally concentric.

The situation changes when the source is placed near the
system boundary as in Figs. 10 and 11. For all U considered,
the main emission direction is related to the source position
and pointing away from the source originating at the boundary
position closest to the source. For a source placed near the up-
per boundary, Fig. 10, the resulting pattern is fully symmetric
as is the underlying electronic BLG lattice. The electronic in-
tensity is distributed over the whole disk, except for the case of
Fig. 10(d) where a triangular pattern is formed. The mid field
emission directions possess peaks in specific directions that
are, however, different from those found for a central source
position in Fig. 9.

A striking feature are the crossing beams leaving upwards
in Fig. 10(a,b,c). Rays leaving the source will hit the bound-
ary under different angles of incidence. For normal incidence
there is no transmission due to anti-Klein tunneling. For in-
creasing angles of incidence, the Fresnel transmission coef-
ficient develops a maximum, cf. Fig. 3. This explains this
crossing beam feature for n = −1. In Fig. 10(d), the maxi-
mum transmission is at normal incidence resulting in a single
emerging beam.

Finally, we discuss a source placed near the right boundary,
Fig. 11. The interplay of Fresnel-induced features with those
originating in the electronic BLG lattice becomes particularly
evident here. First of all, the geometric (shape) symmetry is
not reflected in the intensity and mid field pattern, although
the generic features discussed in Fig. 10 can still be recog-
nized. This nicely illustrates the limits of a ray interpretation
and ray-wave-correspondence in BLG systems and needs fur-
ther consideration in another work.

V. CONCLUSION AND SUMMARY

A. Emission characteristics: Role of carrier dynamics and
Poincaré surface of section

We end our discussions with a trajectory-based analysis of
our findings before the summary. All deformed systems under

(a)

0.001
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300

330
far field
mid field

(b)

FIG. 12. (a) Trajectory-intensity weighted Poincaré surface of sec-
tion for long orbits (l > 20) in SLG with n = −1. Short paths are
omitted in order to emphasize the filamentary structure of the natural
measure originating from the unstable manifold of the ray dynam-
ics. The filaments correspond to far field emission as indicated. (b)
Farfield (continuous lines) and mid field (dotted lines) emission. One
emission peak is caused by two peaks in the Poincaré map.

investigation had the same geometry – a limaçon with defor-
mation parameter ε = 0.43. Therefore, the classical nonlinear,
chaotic dynamics is the same in all (graphene and dielectric)
systems considered here. This dynamics can be most effi-
ciently captured in the so-called Poincaré surface of section
(PSOS)53. The PSOS is a mapping of trajectories from four-
dimensional phase space to a two-dimensional space spanned
by the so-called Birkhoff coordinates, that is the arclength s
along the billiard’s circumference of a reflection point and
the sine of the corresponding angle of incidence, sinα; see
Fig. 12(a). This representation comprises the location of the
boundary reflection points and their tangential momentum for
all trajectories and allows to visually access the system dy-
namics, e.g., to easily distinguish periodic (localized features
in the PSOS) from chaotic dynamics.

Since the PSOS is the same for all systems considered
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here, all differences observed have to originate in the different,
system-specific Fresnel laws. To include these into the PSOS,
we weight the rayw by the respective Fresnel coefficient R(α)
at this reflection point to yield their intensity I. This way dif-
ferent regions in the PSOS become differently important de-
pending on the underlying material system’s Fresnel law. The
existence of a critical angle for total internal reflection in op-
tical billiards, the perfect reflection at normal incidence for
BLG, as well as the lesser confinement in SLG become vis-
ible in a ray-intensity weighted Poincaré surface of section;
Fig. 12(a) for SLG (n = −1, long rays). The fading intensity
towards normal incidence (sinα = 0) corresponds to the in-
creasing transmission coefficient (lesser ray confinement) for
small angles of incidence α . In turn, regions with grazing
incidence have higher ray intensities. The system’s emission
characteristics, cf. Fig.12(b), is determined by the transmit-
ted intensity, i.e. by the filaments in the transmitting regions
of the PSOS. Note that these filaments represent the unsta-
ble manifold of the system that will be populated by long ray
trajectories37. Each filament in the PSOS can be assigned a
corresponding emission peak. Their far field emission direc-
tion is indicated by the angles given in Fig. 12(a).

These considerations explain the specific emission patterns
for SLG, BLG, and optical billiards straightforwardly. It also
reveals the expected slight deviation in the mid and far field di-
rections and the better collimation of long rays in the far field.
For other systems, the population of the Fresnel-weighted
Poinceré surface of section will be different and reflect the
underlying Fresnel law, and so will be the resulting emission
characteristics.

B. Summary

To summarize, we have studied the emission characteristics
of single and bilayer graphene billiards with internal sources
based on dynamical modelling that we justified by particle
(ray)-wave correspondence and the use of appropriate Fresnel
laws that were derived from exact wave considerations. We
have outlined an experimental setup where our findings could
be verified.

We found that the presence of sources and their position
within the system may change the trajectories that dominate
the emission into the mid/ far field from long trajectories
that cover the description of optical microcavity lasers and
bilayer-graphene billiards to short trajectories for single-layer
graphene with central source positions. Which paths are of
relevance depends on the structure of the Fresnel law (angular
dependence of the transmission coefficient) in interplay with
the Poincaré surface of section representing the system geom-
etry. The dominance of short paths for single-layer graphene
billiards with internal sources on the symmetry axis enables
the manipulation of the mid field emission characteristics by
a lensing effect made possible by the specific refractive in-
dex n =−1 in single-layer graphene. By adjusting the source
position, a strong focal-type collimation of ray intensity is re-
alized in the mid field and semi-quantitatively confirmed by
wave calculations. This effect can be further enhanced and
manipulated by precisely engineering the boundary curvature
of the billiard beyond the simple limaçon shape considered
here.
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C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and
F. Capasso, New Journal of Physics 11, 125018 (2009).

43 Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao,
Phys. Rev. A 80, 041807 (2009).

44 C.-H. Yi, M.-W. Kim, and C.-M. Kim, Applied Physics Letters
95, 141107 (2009).

45 S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and
T. Harayama, Phys. Rev. A 80, 031801 (2009).

46 O. Klein, Zeitschrift für Physik 53, 157 (1929).
47 S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge

University Press, Cambridge, 1995).
48 M.-H. Liu, J. Bundesmann, and K. Richter, Phys. Rev. B 85,

085406 (2012).
49 S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, Phys.

Rev. A 72, 061801 (2005).
50 C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, New

Journal of Physics 16, 063065 (2014).
51 E. Hecht, Optics (Addison-Wesley, 2002).
52 E. McCann and M. Koshino, Reports on Progress in Physics 76,

056503 (2013).
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