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Figure 1: We introduce a visual analytics tool that supports cyber forensic experts to decide which parts of a system need further
investigation. The tool provides four interactive views: Search Parameters & Filters (A1, A2), brushable Overview bar chart (B),
interactive Node-Link diagram (C) to perceive the system’s activities, and a supporting Details-on-Demand view (D1, D2, and D3).

ABSTRACT

Performing a live digital forensics investigation on a running sys-
tem is challenging due to the time pressure under which decisions
have to be made. Newly proliferating and frequently applied types
of malware (e.g., fileless malware) increase the need to conduct
digital forensic investigations in real-time. In the course of these
investigations, forensic experts are confronted with a wide range of
different forensic tools. The decision, which of those are suitable for
the current situation, is often based on the cyber forensics experts’
experience. Currently, there is no reliable automated solution to
support this decision-making. Therefore, we derive requirements for
visually supporting the decision-making process for live forensic in-
vestigations and introduce a research prototype that provides visual
guidance for cyber forensic experts during a live digital forensics
investigation. Our prototype collects relevant core information for
live digital forensics and provides visual representations for con-
nections between occurring events, developments over time, and
detailed information on specific events. To show the applicability of
our approach, we analyze an exemplary use case using the prototype
and demonstrate the support through our approach.
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1 INTRODUCTION

Conducting live digital forensics (LDF) investigations is becoming
increasingly important in the context of cyber forensics. While tradi-
tional forensic analysis methods are primarily applied to switched
off devices (static analysis), LDF focuses its investigation on run-
ning devices [19]. The need for this alternative approach originates
from a variety of recent developments. One of them is that live (i.e.,
real-time) forensics is imperative to analyze some specific malware
types like fileless malware. This type of malware exists primarily in
memory [24]. As soon as the infected device is turned off to perform
a static forensic investigation, evidence of essential importance will
be lost. Other examples where LDF is necessary are mission-critical
or very large systems that cannot be shut down due to their impor-
tance to business operations. Thus, these reasons force forensic and
security experts to act directly by collecting evidence while an attack
is happening [15].

Experts for Digital Forensics (DF) conducting the live investiga-
tions have a wide range of forensic tools at their disposal, which
they mainly apply according to their own experience. The tools are
highly specified to collect and analyze a specific type of evidence
and, therefore, differ widely [26]. During an LDF investigation,
the targeted use of tools is essential to minimize the possibility of
corrupting or even destroying evidence. For this reason, any use
of a forensic tool on the device under investigation must be well-



considered [8]. However, since the target device continues to be
operational during the investigation, it is at the same time necessary
to decide about the tools to be used timely. If the decision is made
too slowly, this poses the risk that evidence will be corrupted or that
the malware continues to spread. The live environment also leads to
a high volume and velocity of data on which to base a decision for
specific forensic tools.

As mentioned before, after having identified indicators for an
attack or threat, forensic analysts need to decide which specialized
forensic tools they should apply to work through the attack and
collect evidence. This decision is based mainly on the experts’ ex-
perience without any reliable automated solutions to support this
decision-making. Therefore, in the context of a live forensic investi-
gation, it is necessary to support domain experts in quickly getting an
idea where on the device the attack manifests. From these locations,
evidence can then be collected and analyzed. In cyber forensics,
much of the respective evidence is related to the file system and
changes in the file system. In a static forensic investigation, it is
only possible to analyze user data on the persistent data storage,
assuming that it has not yet been overwritten by further operation.
However, in an LDF investigation, specific changes to persistent
files, including the resulting file versions, can be incorporated into
the analysis. Additionally, file system activities are often related
to network communication (command & control server, leakage
of information, or lateral movement of malware). It is, therefore,
necessary for experts to be able to correlate the changes in the file
system and the network activities of the device under investigation to
identify indicators and decide on specialized forensic tools to apply.
These observations lead to the main research question of our work:

RQ 1 How can core information needed for Live Forensic investi-
gations be acquired and systematically visualized for DF experts in
order to support their decision-making?

Our contribution to this research question is two-fold. In a first
step, we derive general design requirements for an LDF investigation
decision-support tool. Afterward, we present a prototypical visual
decision-support tool that enables DF experts to analyze relevant
volatile data from a compromised device. This approach differs from
traditional DF as we provide a visualization pipeline that collects,
pre-processes, and visualizes data that would no longer be available
for post-mortem analysis. We collect the relevant data from a live and
operative device, with physical access to the device being the only
requirement. This information enables experts to make informed
and justifiable decisions regarding the forensic tools to be applied.

2 RELATED WORK

Several visual analytics (VA) tools exist that can be used for forensic
purposes, such as malware or volume analysis. We show only a
short selection of recent approaches that are related to our work.

The visual representations of the forensic analysis tool Change-
Link 2.0 allow experts to comprehend changes over time within
shadow volume data [14]. Therefore, the authors propose metaphors
to visualize directory structures, directories, file content, and direc-
tory metadata. While Change-Link 2.0 provides insight into temporal
changes of a file system, it does not show processes responsible for
these changes and their external communication.

FIMETIS is a tool allowing to interactively explore file system
snapshots [1]. The tool provides a security analyst with simple and
straightforward analysis views for file system records, the temporal
sequence of events, and data clusters. Although detailed insights
into the file system are provided, the tool can’t be applied for LDF
as, in this context, file system snapshots are usually not available.

The research prototype MalViz is a tool for analyzing the behav-
ioral patterns of malware [21]. Its intended use is to investigate
the relationships and dependencies of a system’s processes with an
active malware. Using MalViz, DF experts can identify unusual

patterns within the processes’ activity more efficiently. MalViz can
be applied for live forensics. However, users only gain an under-
standing of process activities without much-needed context about
other relevant activities.

Another approach for forensic analyses of malware was intro-
duced with Eventpad [4]. Eventpad’s advantage is its capability to
significantly reduce the complexity within network traffic samples
to quickly understand the networking behavior of malware samples.
Eventpad has proven to be highly effective for network data, but it
does not help domain experts to identify internal indicators.

Furthermore, innovative approaches for the analysis of network
packet captures (PCAPs) have been proposed [25]. They feature
a web-based visualization design meant to support malware ana-
lysts and administrators in their tasks that frequently involve PCAP
analyses. Although this tool is not explicitly designed with forensic
analyses in mind, network traffic analysis is vital for live foren-
sics but needs to be combined with information about the internal
communications of a device.

Most of the existing visual designs in the context of forensic
analysis focus on either static analysis, on a single data source, or at
least on a specific type of data (e.g., network traffic or volume data).
While this is undoubtedly helpful for the forensic analyst, especially
concerning further investigation, there is no way to get a quick,
initial overview of a system’s activities during an LDF investigation.
Thus, there is no support for domain experts in live forensics to help
them make decisions on the forensic tool to apply.

The need for a separate visual tool is even more stressed through
our design proposal within the cybersecurity field [2]. We partially
build on this design idea as a reference point [20]. However, the
existing design falls significantly short in several regards. First
of all, it is a purely theoretical design. Thus, there is no proof
that a respective tool would be feasible, especially concerning data
availability. Second, our previous work is narrowed down to the
proposed design and, therefore, not generalizable. It is possible and
necessary to derive comprehensible requirements leading the design
and development of respective visual tools.

3 DESIGN METHODOLOGY

In this work, we design and implement a visual tool to support
DF experts in deciding on the analysis tools to collect and analyze
evidence. We follow the design methodology proposed by Meyer
et al. [17]. Their method is strongly problem-oriented. Thus, it
enables the derivation of appropriate design proposals. Additionally,
an important reason for applying this methodology is to bridge the
gap between domain and visualization experts [3, 23], and, to some
extent, help to resolve the dichotomy of security visualization in the
area of cyber forensics [16].

We identify the domain problem based on existing academic
results, our own experience, and discussion with DF experts. All of
these highlighted the need of experts for support in the tool selection
during an LDF investigation. Again and again, the experts are
confronted with not knowing which specialized forensic tool (e.g.,
volatility 1, autopsy 2, Cellebrite UFED 3) they should use. They
need to balance between acting as quickly as possible and at the
same time not damaging or even destroying evidence by using the
wrong tool. Although the DF experts are not directly involved in
the design process, their precious input during informal discussions
helped us determine their needs regarding data sources, possibly
helpful visualization designs, and the tasks they need to fulfill and,
thus, derive general requirements.

In Section 4, we firstly determine the data to be presented. In
addition, in this step, we determine the concrete target group of the
design proposal and define the essential tasks of this target group in

1https://www.volatilityfoundation.org/
2https://www.sleuthkit.org/autopsy/
3https://www.cellebrite.com/en/ufed/
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the context of the domain problem. Finally, and building on these
findings, general requirements for visual decision-support tools for
LDF are derived.

Section 5 introduces the visual encodings we identify suitable to
support the previously defined users’ tasks. Our proposed design
consists of multiple interactively interlocked visual representations
allowing DF experts to comprise an investigated device’s internal
and external activities. Therefore, the prototype allows exploratory
analysis leading to well-considered decisions regarding the forensic
tools to apply in further and more detailed analyses.

Finally, Section 6 gives an insight into the technical implementa-
tion of the design proposal in the context of the research prototype
created in this project. An agile development process is applied,
in which the design is repeatedly discussed with the involved DF
experts and, if necessary, adapted. An exemplary use case of the
intended use of the prototype during an LDF investigation is high-
lighted in Section 7.

4 REQUIREMENTS ANALYSIS

In this section, we define the available data, the intended users, and
their tasks as a basis for deriving requirements for actual visualiza-
tion designs [18].

4.1 Data: System activities, File Versions, and Network
activity

During an LDF investigation, a comprehensive picture of the current
situation needs to be obtained. For this purpose, it is important
to collect information about running applications, write and read
operations on volatile as well as persistent storage media, and all
outgoing and incoming signals (e.g., network traffic). This data must
be retrieved in its raw form so that integrity is not compromised
during the investigation process. In a subsequent step, this informa-
tion must be correlated in a meaningful way so that the analyst can
understand the relations.

We define the data at hand, which is relevant to provide a visual
design supporting users in the problem domain. Analyzing a run-
ning and probably infected system is challenging. Available data
during an LDF is limited to data acquired with little interaction and
without installing additional software. Otherwise, the attacker could
recognize that the system is being analyzed and initiate anti-forensic
measures. Additionally, too much interference with the operating
device might also cause evidence to be corrupted. Intending to sup-
port the decision-making process during a live investigation and to
remain as undetected as possible, we identify the following data
sources as relevant:

• S1: System Logs. Data about the activities of a running sys-
tem can be used to support the decision-making process on
the appropriate forensic tool. In this context, the analysis and
evaluation of system logs play an important role. The system
logs can be used to identify common and unusual events and
to target the forensic analysis.

• S2: Process information. In addition to the system logs,
continuous monitoring of the running processes is essential.
This allows detecting irregularities in the running applications,
such as a high CPU utilization or a high memory requirement.
These are common indicators for an infection of the system.

• S3: In- and outgoing network traffic. Furthermore, informa-
tion about the network activities of the device is important to
detect communication with a Command & Control server or
information leakage. This shows which process has sent data
over which port to which destination address at what time.

• S4: File-system activities. Looking at the activities of the
file-system provides deep insights into what files are used and

modified during the execution of an application. The gathering
of the file-system events does not include the actual content of
the consumed or modified files but provides meta-information
about the activities.

• S5: Copy of modified files. The acquired evidence is at the
heart of a digital forensic investigation. The previously men-
tioned artifacts relate to volatile evidence. Those traces are not
stored permanently on the disk and need to be captured and
stored in a forensically sound way. We apply an additional tool
for capturing the actual file content of modified files during
the LDF investigation. This differs from the recording of meta-
data of the file-system by providing a snapshot of every file
version. Although this form of backup can have an immense
storage overhead, we use this data for the LDF. This makes it
possible to examine the actual file contents for unusual changes
in the content. Also, with this approach, a large base of usable
digital evidence can be created, which can be used to prepare
the DF report and consequently in court.

In order to identify suspicious activities on the system and the
processes of an active attack, it is vital to understand the context of
the various data sources. Only then is it possible for DF experts to
apply the appropriate DF analysis tool in a targeted manner. The
provided list of data sources highlights the most suitable ones but
depending on the actual situation, it might be feasible to include
additional data sources.

4.2 Users: Digital Forensics experts
After we are clear about the underlying data, defining the intended
user group for the visual design is necessary. Subsequently, the
target group has been delineated, defining the tasks they need to
perform with the visual representation in the next step.

Since visual analytics is inherently user-driven, meeting the needs
of users is critical. A thorough understanding of the users’ needs,
tasks, and work environment are required to achieve this. However,
this is not easy to accomplish because problems in this area are
ambiguous and, therefore users can be described in many ways.

We identify DF domain experts as the intended target group.
There is a need for supporting their decision-making process, which
forensic methods and tools apply during LDF. Forensic investiga-
tions are not to be carried out by security novices, as these analyses
require considerable domain knowledge, which is only available
among DF experts [3]. Thus, we expect the users to have the exper-
tise to decide which forensic tool best fits the current activities on
the device when supported adequately.

These experts are rarely exposed to enormous time pressure in
the classic forensic investigation because they do not operate on a
live system. Instead, they can perform the necessary static analyses
based on memory dumps and similar static artifacts. With these
copies, it is also possible to prevent evidence from being corrupted
due to incorrect tool decisions by making a forensically sound copy
of the hard drive apriori. However, this is not possible in the con-
text of a live forensic investigation, and once corrupted, evidence
is unrecoverable. In addition, any activity of the still-operational
device can potentially corrupt evidence. This characterizes the target
group of the intended visual decision-support tool as forensic do-
main experts who have to make a quick decision under time pressure
in an ever-changing and possibly unfamiliar environment. In sum-
mary, the target group has solid domain knowledge but only limited
operational knowledge regarding complex visualizations [6].

4.3 Tasks: Support forensic tool selection
The overarching task we want to support visually is to make a well-
informed and thoughtful decision about the use of forensic methods,
tools, and artifacts in the course of an LDF investigation. The goal is
to accelerate and improve decision-making for domain experts. The



experts need to effectively identify potential indicators of malware
or unusual activity to guide their further analysis process. The Live
Forensic approach plays a vital role and recording volatile data
or evidence that would be lost if the device were turned off. The
analysis of volatile memory and the device’s network activity is
especially important in this as described in Section 4.1. For these
tasks, experts have a wide variety of specialized forensic tools in their
repertoire. In the real-time environment of an LDF investigation,
a quick overview of the situation on the device plays a significant
role. It is important to note that both from a technical perspective
and increasingly from a legal perspective, continuous collection of
the necessary data to support live forensics is not possible. Instead,
the experts need a way to activate real-time data collection in case
of suspicion and collect data from that moment on [16].

Figure 2: Forensic analysis process according to [13].

The related tasks of domain experts can be derived from the
results of existing work [2, 19]. In this paper, we use a process
model for LDF (see Fig. 2) to group the relevant tasks by commonly
established process phases of a DF investigation. In the following,
we describe the tasks in the context of the respective process phase:

1. Data Acquisition: DF experts need to decide what data from
the suspicious device or other systems needs to be acquired
for the investigation. This is not a simple task, especially in
a live investigation since the decision needs to be made fast,
and the situation can change quickly. Furthermore, the expert
needs to decide if additional software needs to be installed to
acquire appropriate data for the DF investigation. Any system
interaction can be detected by an active attacker and lead to
possible concealment actions. Usually, the amount of data that
can be acquired without previously installed DF software is
limited to the tools provided by the operating system. This
leads to DF experts starting with limited data and successively
acquiring additional information by selecting a suitable tool.

2. Establish Intelligence: Although DF investigations have a
similar overall process, each attack confronts experts with dif-
ferent situations. During this process step, the skill is very
much dependent on the expert’s prior knowledge to initiate the
correct next analysis step. No evidence is analyzed in-depth,
but it is decided which areas are helpful for the investigation.
There can also be a return to the previous task in which fur-
ther sources are included to evaluate targeted areas. A visual
representation of the current situation on the device under in-
vestigation supports analysts either decide which areas to focus
on for further analysis or which additional data sources need
to be acquired. A well-considered and well-informed decision
at this stage is an essential success factor in resolving an attack.

3. Memory & Data Analysis: The previously found and clas-
sified data is analyzed in detail in this step. The data and
information are put into context to create a comprehensive
picture of the current situation. In particular, unusual pro-
cesses and correlations can be detected. At this stage of a
(live) forensic investigation, mainly specialized tools to are
applied. Nevertheless, the domain experts still profit from a
high-level overview of the device’s live status to guide their
analysis in the right direction.

4. Documentation: The appropriate and accurate documenta-
tion of the analysis, including every step of the expert, is a

crucial aspect of the credibility of the acquired evidence. A
comprehensive report supports the presentation of the facts in a
court of law and the admissibility of specific evidence obtained
after interacting with the compromised system.

In summary, these tasks clearly show that forensic scientists
must make decisions regarding more advanced data acquisition or
specialized tools at several points in the forensic analysis process.
These decisions must be made repeatedly, especially in the second
(Establish Intelligence) and third (Memory & Data Analysis) step
of the process in an LDF investigation. It requires a clear overview
of the data that can be collected without deep intervention on the
investigated device. A visual representation of the data can support
this overview and the associated decision-making process.

4.4 Requirements
Concluding the first part of our contribution, we derive a list of
general requirements for decision-support tools within live forensic
investigations. These requirements need to be fulfilled to support the
users’ tasks described in Section 4.3. They not only serve as a basis
for a sound visualization design in the further course of this work
but can be used for LDF decision-support applications in general:

• R1: Retrieve and visualize only relevant, accessible data.
Each analysis has different prerequisites and, therefore, also
different data is available in the Data Acquisition phase. Con-
sequently, to keep the interference with the running system
as low as possible, it is vital to retrieve only the data relevant
and accessible within the DF analysis. This could be the usage
of network activities, file-system activities, and information
about running processes.

• R2: Provide visual representations of the data in a timely
manner. As little time as possible should elapse between
the retrieval of the data, its preparation, and the presentation.
Thereby, a workflow of a real-time or (near-) real-time process-
ing needs to be achieved to support the Establish Intelligence
and Memory & Data Analysis phase.

• R3: Document origin of and changes to the raw data. The
procedure for retrieving the files from the system must be
explained in a comprehensible manner. If the analysis process
results in modifications to the system and thus to the retrieved
data, these must be meticulously documented. This strengthens
the credibility of the data and allows the artifacts to be admitted
as evidence. Additionally, it is a good approach to acquire and
save the original data in its raw format in the Data Acquisition
phase. All steps and findings must be recorded within the
Documentation phase.

• R4: Show significant behavioral changes over time. All
retrieved information has to be shown during the Establish
Intelligence phase in a way that allows DF experts to detect
significant changes (in- and decrease) in the device’s behavior
over time.

• R5: Display available information in its situational con-
text. Information obtained from different data sources must
be correlated with each other. The correlation can take place
via timestamps and further attributes (e.g., process IDs). The
resulting correlations should be visible during the Establish
Intelligence step to the experts in the visual representation.

• R6: Highlight conspicuous anomalies. If, for example, pro-
cesses or other entities of the monitored device behave con-
spicuously, this behavior should be visually identifiable. Con-
spicuous behavior can be when a process sends large amounts
of data to a remote recipient via a wide variety of ports or



performs unusual processing of files. These findings move the
focus from the Establish Intelligence phase to a deep Memory
& Data Analysis.

• R7: Allow exploratory analysis of the data. Information is
supposed to be visually abstracted for an analysis process so
that an overview of a specific situation can be obtained within
the Establish Intelligence phase. However, users should be
able to explore the data and receive additional details when
necessary through a Memory & Data Analysis.

5 VISUAL DESIGN

This section describes the visualization techniques we employ for
our proposed solution. The designs aim to make the data described
in Section 4.1 accessible and understandable for DF experts based on
the requirements from Section 4.4. With the help of the interactive
design, DF experts can quickly grasp the essential indicators during
an LDF investigation and decide on which other tools they need to
employ for the analysis. Although data is captured and pre-processed
in a real-time manner within our processing pipeline (see Sec. 6), the
different views of our prototype are not updated automatically when
new data from the monitored device becomes available. Instead,
analysts must manually change the selected time window within
A.1 to get the latest available data. In this context, the role of a DF
expert differs from that of a security analyst who would have to react
immediately. Therefore, we made this decision to ensure that the DF
experts can focus on the analysis of the selected time range without
being interrupted by live updates.

Thus, the design of the visualization techniques and the inter-
actions follows the central guideline of the Information Seeking
Mantra [22]. The overall design is depicted in Fig. 1. The period
of interest is first determined by the search parameters (Fig. 1.A1).
Users can then use the Overview diagram (Fig. 1.B) to get a first
impression of the overall activity within the time period. More de-
tailed information about the activities as well as the entities involved
(processes, ports, files, etc.) can then be analyzed in more detail in
the node-link diagram (Fig. 1.C) using the appropriate filters (Fig.
1.A2). The Details-on-Demand view (Fig. 1.D1 - D3) supports the
overview as long as no entity is selected and otherwise displays de-
tailed information about the selected object. The following sections
are structured according to Fig. 1 and go into more detail on the
designs regarding these visual representations.

Figure 3: Search parameters (A.1) and available filters (A.2).

5.1 View A: “Search Parameters & Filters”
Fig. 3 shows search and filtering options available within our pro-
totype. The Search Parameters (A.1) is the actual starting point of
the design. Users select the start and end times for their analysis.

Afterward, only the data that lies within this time window will be
considered in the other views (R2, R7).

Fig. 3.A2 shows the Legends & Filters for the node-link diagram
described in Section 5.3 including comprehensive filtering options
(R7). As used in our prototype, a major disadvantage of node-link
diagrams is that they tend to display only a ”hairball” when the num-
ber of nodes is high or when the nodes are highly interconnected
(high number of edges). Such networks can no longer be perceived
by users and are thus almost useless. This shortcoming affects net-
work diagrams regardless of the layout algorithm used. To address
this drawback in some way, we implement a series of interactive
filters that can be used to hide or show individual nodes, edges, or
even entire classes of nodes or edges. This allows users to influence
the graph’s layout themselves and reduce the number of elements
displayed if the automatic layout no longer produces satisfactory
results. In addition to the possibility of explicitly filtering types of
nodes and edges in the graph, we also offer users other interactive
filters, which we describe in Section 5.3.

Figure 4: Bar chart for an overview of all activities with a specific time
range brushed.

5.2 View B: “Overview”

The Overview chart presents the overall activity of the device in
terms of file versions (S4) and network traffic (S3) for the time
period selected in the Search Parameters. For this purpose, a simple
bar chart is used in our prototype. Each bar represents the number
of activities within a certain period of time. The size of this period
is dynamically determined depending on the size of the total time
window selected in the Search Parameters. The bar chart allows
users to quickly perceive when the device has conspicuously high or
very low activity (R4).

The bar chart for an overview of the device’s activities is inter-
actively interlocked with all overviews. A Brush interaction allows
analysts to select a time window from the overall graph window.
Fig. 4 respectively shows the Overview with an active Brush selec-
tion. The node-link diagram (see Section 5.3) and the detailed views
(see Section 5.4) display only the activities within this brushed time
frame (R7).

Figure 5: Detailed views of the node-link diagram. One showing the
ungrouped display (left) and the other showing a highlighted node
with its neighbors (right). Ports are displayed as rectangles, files as
triangles, and processes as circles.



5.3 View C: “Node-link diagram”
The node-link diagram gives insight into the activities of the device
during the time window selected in the Overview. If no brush
selection is made, it displays the entire time range from the Search
Parameters. The network-based encoding allows DF experts to
perceive very active nodes (i.e., nodes with a high number of links)
or suspiciously inactive nodes vice versa. Thus, users can identify
possible indicators for further and more detailed analyses (R5, R6).

We apply a directed, compound node-link diagram that uses the
fCoSe-layout to arrange nodes in the available display space. fCoSe
is an improved version of the original CoSe layout algorithm [7].
While maintaining good results even for relatively large datasets
through a force-directed layout scheme, fCoSe is more efficient and
works well for directed graphs. To ensure a smooth user experience
and enable exploration of parts of the graph for DF experts, the
network diagram supports zooming and panning (R7).

Different data elements intended to be displayed are processes
(S2), files (S4), and ports including the host the ports belong to (S3).
These data elements are represented as vertices, and different glyphs
indicate their type. They are colored based on the host to which they
can be allocated. Most of the ports, all files, and all processes belong
naturally to the device that is being monitored. However, other
relevant hosts become apparent through the network connections as
the device sends or receives network packages to or from their ports.
When the Grouping-option (see Fig. 3.A2) is activated, the hosts are
displayed explicitly as parent nodes for ports, processes, and files.
When this option is switched off, the hosts are not displayed and
indirectly influence the display through the categorical coloring of
the vertices. Nodes are draggable to ensure that users can adjust the
layout according to their needs or if the layout algorithm does not
produce an apt result. To further give the possibility to reduce the
number of nodes to be displayed, filter options are available to hide
specific node types ( “Node Types” filter in Fig. 3.A2) or to hide
nodes of a specific host. Selecting a node displays more details (see
Sec. 5.4) and highlights incoming and outgoing links from this node
as well as its 1st-degree neighbors (R5, R7).

Three different types of links connecting the nodes are present
as can be seen in Fig. 5 (R5). Each link type represents a specific
activity on the investigated device:

1. “FileVersion”-links from a Process-node to a File-node indi-
cate that the respective process edited at least one new version
of this file (S2, S4).

2. “NetworkActivity”-links between two Port-Nodes represent
network communication from one node to the other (S3).

3. “PortActivity”-links from a Process-node to a Port-node mark
the attempt of a process to open a network connection via the
respective port (S1, S2, S3).

Each type of link is displayed as a different line. Not every activity
is drawn as a particular link but unique links where the respective
activities are accessible through the Details-on-Demand window
after selecting the link (R7). “PortActivities” are not colored, as
no additional information is available. We only know whether a
process used a specific port or not. However, “FileVersions” and
“NetworkActivities” are colored according to their weight concerning
all other displayed links of the same type (R6). The weight for
“FileVersions” is calculated as the number of bytes edited by the
process (source of the link) in the file (target of the link) divided
by all file edits made within the selected time range. The weight
for “NetworkActivities” is determined similarly by the sum of the
package size of all packages that went through the respective link
divided by the number of bytes sent between ports overall. We use a
quantile color scale with only five different colors for each link type.
Although this reduces the level of detail, it makes anomalous links

stand out much more clearly. Types of links can, analogously to
nodes, be hidden through a filter (“Link Types” filter in Fig. 3.A2),
but also specific quantiles of link weights can be hidden to only view
very high or very low weighted links (“Network Activity” and “File
Version” filter in Fig. 3.A2).

Figure 6: Scatterplot to support users in identifying abnormal network
and file system activities.

5.4 View D: “Details-on-Demand”
This part of the prototype’s interface serves a two-fold objective.
First, it supports experts in gaining an overview of the ongoing
activities as long as no specific element in the node-link diagram
is selected. Second, when experts click a node or link, it displays
further details about this element.

When supporting the overview task, the Details-on-Demand view
displays three additional charts:

1. System Activity (Fig. 1.D1): This stacked bar chart gives a
close-up view of the overall system activity within the brushed
time period. File version activities and network activities are
distinguishable through distinct colors in this chart (R4).

2. Network Activity (Fig. 6.D2): This scatter plot renders one
dot for each host the investigated system has communicated
with. This dot indicates a sent-receive-ratio in terms of bytes
sent to or received from the respective host. The x-axis of this
plot maps the total amount of bytes sent to a host, while the
y-axis marks the sum of bytes received from it. This helps
users to very efficiently spot conspicuous connections either
which differ from benign behavior (S3, R6). One example is
the dot on the far right of Fig. 6.D2 indicating that the device
sent a lot more data to this host than to others.

3. File Versions (Fig. 6.D3): This scatter plot displays additional
information about the file versions. Each dot depicts a specific
file. The x-axis shows the number of times this file was edited,
while the y-axis shows the sum of overall added or deleted
bytes. This is calculated simply by summing up the byte
differences from one version of a file to the next one. This
again helps DF experts to explore the data and spot anomalous
activities (S4, R6). A high number of files touched one time
might indicating an ongoing data leakage action.

For details on a selected element, the charts D1, D2, and D3
are replaced with the view shown in Figure 7. This view shows all
available attributes of the selected element. When the analyst clicks
a link, all underlying events are accessible through this view (R7).



Figure 7: Displayed details after a link is selected. Clicking the “eye”
symbol brings up a modal with further details on all relevant activities.

File versions can also be downloaded for further investigation with
specific forensic tools (S5).

6 RESEARCH PROTOTYPE

We finally take a closer look at the implementation of our prototype.
This includes a significant amount of work to acquire the relevant
data with as little interference as possible to fulfill both R1 and
R2. This section describes our data acquisition approach, how
the information is processed and finally sheds light on the actual
implementation of the above-described visual representations. The
structure of this section is based on the visualization pipeline [5]. The
visualization design introduced in Section 5 represents the technical
outcome of this pipeline rendered on the client-side of our prototype.

Fig. 8 shows the basic architecture of our prototype, including
the applied technologies. Before we explicitly discuss the individual
steps of the pipeline within our prototype, we briefly describe its
overall structure. It is designed as a client4-server5 application with
an underlying document-oriented database6 for persisting the raw
data acquired from the Data Collection and the pre-processed data.
The pre-processed data is the output of the Data Analysis step, in
which a Python script continuously prepares newly available raw
data. Further data analysis is performed by the specialized appli-
cation SauvegardeEx, and the results are available to our prototype
through an interface. A Node.js application represents the central
component of the server for Filtering and partial Mapping (i.e., cor-
relation) of the pre-processed data. The client’s interface to the
server is implemented through a GraphQL API. The client itself
is a React-based application. Two different frameworks are used
for the client-side rendering of the data in the form of interactive
visualizations. On the one hand, the framework VisX7 is used to
display the bar chart, scatterplot, and alike. On the other hand, due to
the potential complexity of the network graphs to be displayed, we
resort to the specialized graph analysis framework cytoscape.js [12].

6.1 Raw data collection
A general requirement in the context of live forensics is that the
system under investigation should be affected as little as possible by
the investigation (R1). This poses a significant challenge, especially
for the collection of data. For our prototype, we focus on appro-
priate data collection for mobile devices. In discussions with the
experts involved, it became clear that these devices, in particular,
are currently causing difficulties for DF experts, as there are few
established procedures for collecting data for live forensics from
active mobile devices. In most cases, the appropriate software must
be integrated into the device before the investigation. With our

4https://github.com/bof64665/LDF_ReactFrontend
5https://github.com/bof64665/LDF_GraphQLServer
6https://www.mongodb.com/
7https://airbnb.io/visx

approach, we trade-off between a highly detailed data collection
and the need to install additional functionality or application on the
device. Our prototype’s complete data collection process can be
performed using already available functionalities on a mobile device.
The only requirement for this is physical access to the device to
apply various forensic hard- and software.

Our prototype acquires data from an Apple iPhone operating on
iOS 14.5. It allows extraction of information about active processes,
file editing activities, and information about the ports used by the
processes for communicating over the network from this smartphone.
The respective information is collected using different appliances:

syslog: First of all, we acquire all system-logs by using libimo-
biledevice 8 and save them in JSON format (S1).

ps: Second, meta-information (like the underlying services’
names, CPU usage, among others) of processes are collected using
the Linux-tool ps which we use to extract a list of active processes
every 5 seconds. ps is a lightweight tool and does not affect the
device’s performance significantly. It fulfills the data-source (S2).

PCAP: Besides this detailed information about the processes’
activities (i.e., internal activities), we connect the iPhone to a network
access point collecting network activity information (i.e., PCAP
files). Acquiring and incorporating the in- and outgoing network
traffic refers to data (S3).

syslog: Since the netstat service to receive information about the
network communication of individual ports is not available on iOS
14.5, we include the syslog-appliance in our data collection process.
Syslog can be used to collect Syslog information from the system.
Besides much other information, they also contain information about
processes opening and closing a network connection over a specific
port. Although we do not get any information about the destination
of the network connection, we at least can collect some rudimentary
data about the processes network communications (S3).

fsmon: Highly volatile information about the file editing activ-
ities of processes and the resulting file versions is extracted using
the fsmon-appliance (S4) and forwarded to SauvegardeEx which is a
specialized application to process fsmon information. This mecha-
nism creates a copy of every modified file on the system (S5). We
will describe its functionalities within Section 6.2.

The above-described approach for data collection targets the use
of existing data sources (R1) in a direct and timely processing of
the data (R2) in an indirect manner. To fulfill the requirement (R3)
of recording the origin and all changes of the data for proper trace-
ability and documented we store the data in the following manner:
All the collection processes can be triggered via a command-line
instruction on the device and simply connecting the iPhone to the
PCAP-collection access point. Besides the information extracted
with fsmon, all raw data from this process step is forwarded in JSON
format into a central MongoDB database.

6.2 Data Analysis
The Data Analysis step of our prototype mainly comprises a correla-
tion of the previously collected raw data. This is necessary because
the raw data itself does not allow visualization of connections be-
tween processes, file edits, and network communication. Therefore,
two components in our architecture perform the data analysis: the
Python pre-processing script and the SauvegardeEx application.

Python pre-processing : We apply an iterative, continuous pre-
processing, which includes several steps for every raw data source.
We will only describe exemplary ones briefly in this work. Any new
document (i.e., new raw data element) that is pushed to the database
by the command line tools applied in the Data Collection-step is
further processed to ensure the data can be adequately visualized.
As ps does only allow to extract its data encoded, we need to decode
this data and reduce the amount of respective information by only
persisting the relevant information for the processes (i.e., process

8https://libimobiledevice.org/
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Figure 8: Architecture of the prototype.

id, name, CPU, and memory usage at a given point in time). Simi-
larly, we parse and filter the syslog messages as only the messages
containing information about processes opening or closing network
connections via a specific port. A data reduction similar to the one
applied to ps-data is also performed on the PCAP information. Al-
though PCAPs contain a highly detailed description of each package
leaving or reaching the iPhone, we are only interested in a compar-
atively small part of this description. We thus pre-process every
PCAP transferred to our raw data storage and remove any currently
unnecessary fields. Note that raw data is not overwritten in our
process, as it might become relevant for further analysis. Thus, all
pre-processed data is persisted separately from the raw data (R3).

SauvegardeEx: To gain useful insights into the generation and
alteration of relevant files during the operation of a live system,
we incorporate the tool SauvegardeEx 9. SauvegardeEx has been
used and extended in our previous works [9, 10] to support a digital
forensic investigation. The client version of SauvegardeEx and sends
every single file alteration with the actual file content to the server.
Thereby, a specific file can be restored at any captured point of
time, and the challenge of overwriting a freed storage area (due to
deletion or updating a file on the file system) is addressed. This
information can be retrieved from the SauvegardeEx web server
through a well-defined API. Having this mechanism in place during
the LDF investigation, content-specific information of every file-
version can be obtained and used for the visualization.i

6.3 Filtering

Filtering in the prototype is done entirely on the server-side. Based
on the user’s input at the start and end time of the time window to
be analyzed, the relevant information is retrieved from the database
and the SauvegardeEx API in this step.

6.4 Mapping

Due to the potentially tremendous amount of data that can still be rel-
evant after the filtering, we also perform the Mapping almost entirely
in the backend. This keeps the computational load for the frontend
as low as possible and ensures that the interactive visualizations can
be operated smoothly. The first step in the mapping process is thus
the correlation of the data sets. Here, we correlate all data sources
and obtain a data set with information about the file versions, the
processes responsible for them, the ports used by the processes, and
the network activities originating from these ports. The correlation is
done based on the timestamps and various attributes, which allow a
clear assignment of the individual events. The second sub-step is an
aggregation of the correlated information into containers. Currently,

9github.com/LudwigEnglbrecht/sauvegardeEX

we use a fixed number of 100 containers, whose size is dynamically
determined depending on the selected time window.

The actual mapping and thus the last step maps the now available
filtered and aggregated information to nodes and edges and all other
geometric forms needed for the visualizations. However, each ele-
ment additionally retains its original data to ensure access to details
on-demand. This geometric information is then made available to
the client via the GraphQL API.

7 USE CASE

The prototypical implementation of the visual designs (see Section 6)
contributes to the decision-making process according to an optimal
first-hand tool by displaying the available information in its temporal
and situational context (cf., R4 and R5 in Section 4.4). By applying
our tool during an LDF investigation, preserving important evidence
can also be supported by storing volatile data in a dedicated database.
To illustrate the applicability of the prototype, we highlight its key
features through an exemplary use case.

The attack pattern in this use case is based on the “Jeff Bezos
Hack”, where attackers applied various fraudulent techniques to
obtain data from the personal iPhone X of the Amazon founder and
CEO Jeff Bezos. After a meeting between Bezos and the crown
prince of Saudi Arabia, Mohammad bin Salman in 2017, they ex-
changed phone numbers and wrote ordinary messages via WhatsApp.
Shortly after Bezos received a video sent by bin Salman in 2018,
his smartphone started sending large amounts of data via the Safari
Mobile browser and the Apple mail program. The subsequent in-
vestigation and forensic analysis of the smartphone [11] brought to
light that the compromised video (probably) contained malicious
code. To this date, this was a zero-day vulnerability. The Pegasus
and Galileo spyware were the most likely tools used in this attack.

We use this incident as a potential scenario for our prototype
and describe the procedure during a forensic investigation from an
expert’s point of view with the help of the decision-support tool.
We rely on the publicly available report from FTI Consulting [11]
published in 2019 and extend it with additional details concerning
activities of the file-system. Please note that there is no official
data available from the “Jeff Bezos Hack” that would allow the
comprehensive reproduction of the incident. We instead derive a
set of artificial data which is available within the code repositories
of our prototype. Thus, the following sections do not describe an
in-depth evaluation of our prototype but rather a possible scenario
where the prototype could have been applied. In the following
subsections, we describe relevant steps that must be performed
during an LDF analysis of similar cases. Where appropriate, relevant
indicators (and their recognition) are presented and linked to the
visual representations of our prototype.

github.com/LudwigEnglbrecht/sauvegardeEX


7.1 Initialization
First, the device’s user might have noticed suspicious events about
half a year after receiving the WhatsApp message with a video
attached. This manifested itself in strangely ambiguous WhatsApp
messages (GIFs, pictures, videos) from Mohammad bin Salman,
which reflected current situations from Jeff Bezos’ private life that
were not known to the public at that time (e.g., divorce from his
wife). Ultimately, such messages prompted the victim to initiate a
forensic analysis of his device. This initial suspicion is used as a
starting point in the exemplary application of our prototype. After
the initialization of the investigation, the core process steps (see Fig.
2) are explained and related to our prototype.

7.2 Data acquisition
In a first analysis step, the smartphone is acquired and physically
available for an investigation. An initial analysis of the suspected
video attachment in WhatsApp does not highlight any indications
of active malware. However, there still is a possibility that Ad-
vanced Persistent Threats (APT) are used. Therefore, DF experts
decide to perform a further forensic investigation. Based on these
findings, a live forensic investigation is applied to extract both a
decrypted and encrypted forensic image of the iPhone X. Since the
forensically-sound copy of the iPhone X requires higher rights (root),
the software Cellebrite UFED 4PC is used to gain root access with-
out the necessity to reboot the device. After a forensically-sound
copy of the current state has been stored, an in-depth live analysis of
the running (and eventually compromised) system can be conducted.
At this point, the raw data collection of our prototype is initiated.

7.3 Establish Intelligence
Narrow the analysis time-frame. In our prototype, in the Search
Parameters (see Fig. 3.A1) the last 20 minutes are selected. With
no additional filters applied, the views display all respective data.
Meanwhile, data will be pushed continuously into the database and
is available for further visual analysis. In this step, the system is
intentionally left running without performing any actions. This
enables to capture as much background activity (including unusual,
suspicious activity) as possible. Since the attacker can be active
during this time, valuable indicators and traces can be obtained. At
this stage, the expert can spot and select a time-frame with a high
amount of system activities in the Overview (Fig. 4.B).

Identify conspicuous network activity. In this step, the network
scatter plot (Fig. 6.D2) reveals that the device is sending an unusually
large amount of data to a specific IP address. This is illustrated by
the far right dot on the referred figure. A further analysis of the
traffic using Wireshark10 provides more details about the amount of
the data that is transmitted. Consequently, an expert can choose in
this situation Wireshark as the following suitable, DF tool to apply.

Correlate network activity with processes and file system ac-
tivity. The high-level insight by using the scatter plot (Fig. 6.D2)
brings up the need for a deeper analysis of the actual data content of
the connections as it seems that the device is sending a lot of data
to one specific host. In the node-link diagram (Fig. 5), an expert
can see that a process establishes connections to an endpoint using
port 443 and sends a considerable amount of data to this site. The
related application at the iPhone is the web browser Safari. Since
the device is not used at that time of investigation to browse websites
that correspond to the displayed connection, it can be concluded that
this is an unusual occurrence. To investigate this, an expert could
decide to use, for example, the Telerik Fiddler11 tool for a detailed,
in-depth inspection of the traffic. By doing this, it is possible to
confirm the previously gained knowledge with Wireshark and to
increase the level of certainty of the evidence.

10https://www.wireshark.org/
11https://www.telerik.com/fiddler

Determine files for in-depth analysis. By observing and con-
firming large output data on specific connections that emerged from
the network analysis in the steps before, the expert now goes further
by taking a close look at the file system and created file versions. In
Fig. 6.D3 the scatter plot shows that more files have been created but
only few files have been modified during the period of investigation.
This procedure makes it possible to see whether data has been copied
to a temporary directory, are compressed (zip file) or split up, to
be exported via exfiltration vectors (e-mail client, safari mobile).
Such file operations and the copies of all created file versions with
their content can further be investigated using the tool The Sleuth
Kit which is the expert’s decision for the next tool.

7.4 Memory & Data Analysis
Based on the selected forensic tools, the actual in-depth forensic
analysis takes place here. In the considered use case, the memory
and the extracted data of the iPhone X are examined with the tools.
This enables the expert to find out more precisely what happened
(e.g., fileless malware sent via WhatsApp). The interactions with
the DF tools are not in the scope of our prototype.

7.5 Documentation
Our prototype brings together relevant data for a specific point in
time to help experts deciding what DF tool is the most suitable in
this specific situation. In our exemplary application of the proto-
type to the use case, only a small selection of tool decisions was
presented. In the documentation phase, the data and the investiga-
tion proceedings are to be summarized in a report and conclude the
analysis. This task is not directly addressed within our approach, but
the supporting aspect of our prototype was illustrated.

8 CONCLUSION

The proposed and implemented research prototype provides cyber
forensic experts with decision-support during an LDF investigation.
Thus, the developed tool provides a solution that supports the initial
selection of more specific forensic tools.

The design of the tool followed a problem-oriented approach.
Further, the requirements of the application are sharpened through a
requirements analysis which is divided into the areas (1) Data, (2)
Users, and (3) Tasks. This methodical approach allows us to derive
general design requirements applying to visual decision-support
systems for live forensics. We implement the requirements in a
prototype showcasing how they can support forensic analysts in
investigating a mobile device. We extract relevant data from an
iPhone within the prototype, pre-process this data, and display it in
an interactive web application. The user interface features different
possibilities for the experts to explore the data and identify targets
for further, in-detail forensic analysis. Several bar charts and scatter
plots are arranged and interactively interlocked with a node-link
diagram to ensure this support of users’ tasks. An exemplary use
case underlines that the research prototype fulfills the requirements.

Only little empiric evidence of the design’s effectiveness is cur-
rently available. It is yet to be evaluated in a real-world setting.
To do this in an appropriate way, we are integrating our prototype
into an existing professional learning, hands-on workshop for DF
experts. The existing workshop will be extended to include our
decision-support tool. This requires a considerable amount of addi-
tional work. However, in this way, workshop participants come into
contact with possible visualizations supporting their work. Thus,
empirical data can be collected about the prototype. Based on this
data, further development of the prototype can then be carried out.
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