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In lateral force microscopy (LFM), implemented as frequency-modulation atomic force microscopy, the tip oscillates parallel to the

surface. Existing amplitude calibration methods are not applicable for mechanically excited LFM sensors at low temperature. More-

over, a slight angular offset of the oscillation direction (tilt) has a significant influence on the acquired data. To determine the

amplitude and tilt we make use of the scanning tunneling microscopy (STM) channel and acquire data without and with oscillation

of the tip above a local surface feature. We use a full two-dimensional current map of the STM data without oscillation to simulate

data for a given amplitude and tilt. Finally, the amplitude and tilt are determined by fitting the simulation output to the data with

oscillation.

Introduction

Frequency-modulation atomic force microscopy (AFM) is a
non-contact atomic force microscopy technique where the fre-
quency shift (Af) of an oscillating tip is detected [1]. The fre-
quency shift is a measure of the total force gradient acting on
the tip, which includes both long-range and short-range contri-
butions. A typical experimental setup is to study an isolated sur-
face feature, for instance, a defect or an adsorbate, on a flat
terrace. In case of “normal” AFM, where the tip oscillates per-

pendicular to the surface, long-range forces including electro-

static and van der Waals forces contribute to the measured Af
signal, which have to be subtracted in order to isolate the short-
range contributions from the surface feature [2]. If the cantile-
ver is rotated by 90° so that the tip oscillates lateral to the sur-
face, long-range forces with large vertical components do not
contribute to the Af signal [3]. This microscopy technique is
called lateral force microscopy (LFM) (Figure 1). One advan-
tage to LFM is that it is highly sensitive to short-range interac-

tions. A drawback is that it is not a suitable technique for
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Figure 1: (a) Sketch of the gPlus sensor in LFM orientation with amplitude A and the sensor tilt 8. (b) Photograph of a gPlus sensor glued perpendicu-

larly on a sensor holder shown by the white substrate.

approaching a sample or determining the sample tilt. Here a
complementary technique such as STM (used in our setup) or

biaxial AFM with normal force detection is required.

Experimentally, there are several methods for performing fre-
quency-modulation lateral force microscopy, what we refer to
as LFM in this manuscript. In 2002, Pfeiffer and co-workers
excited a silicon cantilever in the first torsional mode [4]. This
has been used to achieve atomic resolution of a sample that is
laterally stiff and vertically soft [5]. It has also been used under
ultrahigh-vacuum conditions [6] as well as in liquid to yield
atomic resolution [7]. Also in 2002, Giessibl and co-workers
performed LFM using a gPlus sensor as shown in Figure 1b [8].
In our group, we have used this method to quantify molecular
stiffness at low temperature [9] and to evaluate the potential
energy landscape above a molecule at room temperature [10].
More recently, we used LFM with a CO-terminated tip to inves-
tigate the internal structure of a molecular adsorbate [11,12].
Moreover, other methods, including the use of a long tip on a
qPlus sensor that oscillates laterally at a higher flexural mode

are also possible [13].

In LFM or normal AFM, the recorded frequency shift Af is
related to the force gradient ki in the direction of the tip oscilla-
tion. For a sensor oscillating in the x-direction,

_OF U
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where F is the component of force in the x-direction and U is
the potential energy. In general, the relevant force gradient at a
spatial coordinate (x, z) for a tip oscillating at an angle 6 with

respect to the x-direction is:

2 2
ki (x,2) = %ﬁ’z)cosz 9+%sin2 0.

6]

The frequency shift is related to the sensor parameters and the
weighted average of the force gradient over the tip oscillation,
(kis)(x0, 20), where x( and z( define the average tip position over

one oscillation cycle [14]:
A _Jog
f(xO,Zo) 2k< ts)(xO,Zo). (2)

Here, fj is the resonance frequency of the sensor away from the
surface and k is the stiffness of the sensor. The weighted aver-

age must also take into account the direction of the tip oscilla-

tion:
4
2 .
(ki )(x0-20) = — _[ ki (x0 — g cos 0,29 —gsinBW 4% —¢ dg, (3)
-4

where A is the oscillation amplitude. Extracting force and
potential energy from the measured Af is a complex inversion
problem requiring deconvolution. Several deconvolution
methods include a matrix inversion method developed by
Giessibl [15], a Laplace transform method developed by Sader
and Jarvis [16], and a Fourier method developed by Seeholzer
and co-workers [17]. All of these methods require the know-
ledge of the oscillation amplitude A of the cantilever.

Amplitude determination means determining a calibration factor

that relates the recorded amplitude signal of the oscillation in
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volts to the real oscillation amplitude in meters. At room tem-
perature the thermal excitation of the sensor can be used to cali-
brate the amplitude [18]. For low temperatures, another method
has to be used since the thermal energy to excite the sensor is
very small and mechanical vibrations can dominate the excita-
tion [19]. For low-temperature LFM, the lattice of the substrate
can be used to calibrate the amplitude if the periodicity of the
lateral features is known [20]. For electrically excited piezoelec-
tric-based sensors, the energy input required to maintain the
oscillation amplitude constant can be measured to calculate the
calibration factor [21]. Besides these experimental methods, the
amplitude can be also calibrated by calculating the electro-me-
chanical properties of the cantilever [22]. This theoretical
method, however, does not take the real geometry of the sensor
and electrodes into account. At low temperatures, the most
common method is to use STM to calibrate the amplitude, pro-
vided that STM is available and that the sample is conducting.
This method is often used for normal AFM, where the cantile-
ver oscillates vertically to the surface, and the current is related
to the vertical position z of the tip above the sample, via
I = Ipexp(-2kz), where I is the current at z = 0 m and « is the
decay constant [23]. For non-conducting surfaces Af spectra
with different oscillation amplitudes can be used [23].

Comparing the effect of tilt on normal versus
lateral force microscopy

In addition to the amplitude, the tilt 6 of a LFM sensor is of
great importance. Usually, 0 is ignored in normal AFM experi-
ments because it has a smaller effect on the observed values of
Af. This can be seen by modelling (k) of a normal AFM sensor
and comparing it to the signal of a LFM sensor. The position of

the tip at time ¢, as it oscillates around a point x, z(, is given by

x(t,xg ) = Acos(2nft)cos B+ xg, 4)
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z(t,zo):Acos(2rcf)sin6+zo, 5)

where ¢ is the time, 0 is the tilt of the sensor as defined above
and f = fy + Af. We model the interaction between the tip and a
surface feature as a Morse potential:

U(r)=Eg {exp[—z%)—%xp(—%ﬂ: ©)

where Ep is the binding energy, o is the equilibrium distance,
and A is the decay length. The position of the tip, x and z, yield
the distance to the surface feature r = (x? + z2)/2 (i.e., the fea-
ture is located at (0, 0)).

We used the following parameters for the Morse potential:
Eg =100 meV, 0 = 500 pm and A = 50 pm. We first calculated
the z-dependence of (k) for a tip with no tilt oscillating verti-
cally above the center of the adsorbate. For 6, as defined in
Figure 1a, being 90°, the calculated values of (k) are shown in

Figure 2a (red dashed curve).

We also calculated (k) with a small tilt from the vertical so
that 6 = 86°, shown in Figure 2a by the blue solid curve. The
similarity of the two curves shows that the tilt has little influ-

ence on normal AFM data.

We then calculated the x-dependence of (k) for a LFM tip with
no tilt, where 0 = 0°, shown in Figure 2b by the red dashed
curve at zy = 560 pm, and contrasted it to the LFM signal with a
tilt of 6 = 4°, shown in Figure 2b by the blue solid curve. The
tilted LFM signal is strongly asymmetric with a lower local
minimum and a higher one. Also, the peak at x = 0 pm is
slightly shifted.
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Figure 2: Simulated Morse potential interaction for a LFM setup and comparison to normal AFM. 8 is defined by Equation 1. (a) Simulated force
gradient (kis) of a vertically oscillating tip above an atom with 8 = 86° shown by the blue solid curve and without tilt (8 = 90°) shown by the red
dashed curve. The atom was simulated by a Morse potential. (b) (kis) of a laterally oscillating tip above an atom with sensor tilt 8 = 4° shown by the
blue solid curve and without (8 = 0°) shown by the red dashed curve at height zg = 560 pm. The height zg is defined according to Equation 5. The
ratio of the difference between the minima of the curve with tilt and without tilt to the overall curve without tilt is 14.2%. (c) (kis) of a vertically oscil-
lating tip following the path of the laterally oscillating tip at the same height with a tilt (6 = 86°, blue solid curve) and without a tilt (8 = 90°, red dashed
curve). The ratio of the difference between the minima of the curve with tilt and without tilt to the overall curve without tilt is 3.3%.
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Figure 2¢ shows a vertically oscillating tip following the tip
path of the laterally oscillating tip from Figure 2b at the same
height with 6 = 90° displayed by the red dashed curve and with
0 = 86° displayed by the blue solid curve. The ratio of the
difference between the minima of the curve with tilt and the
curve without tilt to the overall curve without tilt is 3.3%, in
contrast to the ratio of the LFM curves in Figure 2b, which is
14.2%. This larger difference between the LFM curves shows
that sensor tilt is more visible in LFM data.

Effect of amplitude and tilt on the STM signal
in LFM

In the following the influence of tip oscillation and tip tilt on the
current signal is demonstrated for LFM. Due to the bandwidth
of the STM channel, the recorded signal (I) is the average of the
current over the motion of the tip [24]:

T

(I)(xo,zo):%jl(x(r,xo),z(r,zo))dr, )
0

where T = 1/f is the period. I(x, z) is the tunneling current at
time 7 at the coordinates x and z of the tip described by Equa-
tion 4 and Equation 5. Consider a surface feature that appears
with no oscillation as a Gaussian curve as shown in Figure 3a.
With large oscillation amplitudes (A > o) the current curve
becomes wider with two maxima, as shown by the blue solid
curve in Figure 3b for an oscillation amplitude of A = 500 pm.
At an amplitude of 900 pm the distance between the maxima in-
creases as shown by the blue solid curve in Figure 3c. When we
vary 0 and set it to, for example, 0 = 1°, the two local maxima
become vertically shifted, one higher and the other one lower as
depicted by the green dotted curve in Figure 3b and in
Figure 3c. With a tilt of 6 = 2°, the two local maxima become
even more separated as illustrated by the red dashed curve in
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Figure 3b,c. The differences in current of the local maxima are
related to the tilt of the sensor and the horizontal distance

depends on the oscillation amplitude.

In this paper we present a method to calibrate the amplitude and
determine the tilt of the LFM sensor. The method is based on
collecting STM data of a surface feature both without and with
tip oscillation, as was proposed in [20]. The data without oscil-
lation is used as input to a simulation that calculates expected
STM data with oscillation as a function of A and 0. A and 0 are
then determined by fitting the calculated data to the experimen-
tal data. A two-dimensional current map is used.

Experimental

Measurements were performed with a low-temperature STM/
AFM system (CreaTec Fischer GmbH, Berlin, Germany) oper-
ating in ultra-high vacuum at 5.6 K equipped with a gqPlus
sensor [25]. The sensor was equipped with an etched tungsten
tip, which was repeatedly poked into a Cu(111) surface to
generate well-defined tip apex configurations. Cu(111) was
cleaned by standard sputtering and annealing cycles. Single iron
adatoms were evaporated with a custom-built evaporator onto
the cold sample. Carbon monoxide (CO) was leaked in at a
partial pressure of 5 x 1078 mbar for 5 min.

Results and Discussion

Determining A and 6 with a 2D current map

In the following, a method to determine A and 0 is presented.
As shown before, A and 0 influence the shape of the average
current signal, {I). Initially, the current I above a surface fea-
ture is recorded without oscillation, as sketched in Figure 4a. In

the next step, current data acquired with oscillation can be

. . . 1 . .
simulated at a given height z, <I>;aecz o using Equation 7,
»0,20,Xoff

with A, 0, and xyffser @S parameters. By varying zg, A, 0, and

. 1 .
Xoffsets We fit (7 >;a’ec’20’x0ff to the measured (/) to determine the

amplitude and tilt.

(a) 8 A=0pm

Current (pA)
S o

N

(c) | A=900pm
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X (nm)

Figure 3: Simulating the effect of a laterally oscillating tip with different amplitudes and tilt angles on the STM signal. (a) With no oscillation. (b) With
an amplitude of 500 pm and 6 = 0°, shown by the blue solid curve, 8 = 1°, shown by the green dotted curve, and 6 = 2°, shown by the dashed red
curve. With increasing oscillation amplitude, two peaks evolve, which differ in height in dependence on the tilt angles. (c) With an amplitude of 900 pm
and 0 = 0°, displayed by the blue solid curve, 8 = 1°, displayed by the green dotted curve, and 6 = 2°, displayed by the red dashed curve. With a

higher oscillation amplitude the difference between the two peaks increases.

520



X (nm)

Beilstein J. Nanotechnol. 2021, 12, 517-524.

4.1 (C) 300
250
<
o
= 200
[

o

0.08 £ 150

~ o

g 100

o 50

g 0 2 4 6 8
3

Figure 4: Two-dimensional (2D) current map without oscillation and calculated and recorded curve with oscillation. (a) Sketch of the tip taking a 2D
dataset of a surface feature (red circle) at different heights z;. (b) 2D current map of an iron adatom on Cu(111) taken with a metal tip. The dashed
white line indicates the current line at zg at which the 2D current map is used to calculate the curve with oscillation. The inset shows a constant cur-
rent STM image of an iron adatom on Cu(111), which is used for the 2D current map. (c) Line profile of a constant-height scan of an iron adatom on
Cu(111) with oscillation shown by the red solid curve. The fit uses the 2D current map yielding an amplitude A = 1050 pm + 2% and a sensor tilt of

0 =1.59° + 2% shown by the blue dashed curve.

To do this we first acquired a full two-dimensional current map
without oscillation, as sketched in Figure 4a, to measure I(x, z).
Figure 4b shows I(x, z) above a single iron adatom on Cu(111)
taken with a metal tip. The similarity with the simulated curves
shown in Figure 3 can be seen. However, small discrepancies
are visible. The reason for the discrepancies are Cu(111)
surface states and nearby CO molecules, which were captured
in the data. The inset in Figure 4b shows an STM image
of a single iron adatom [26]. The red solid curve in Figure 4c
shows the current profile (I along a line in the x-direction
over a single iron adatom on Cu(111) with tip oscillation.

The blue dashed curve is the fitted <I>CalC . yielding

A4,0,2(,%,
A =1050 pm £ 2% and 6 = 1.59° £+ 2%. The difference be-
1
tween (/) and <1>iig’20,xOff was 0.48%.

The tip tilt angle is defined by the tilt relative to the flat sample,
as shown in Figure 1a. Different regions on the sample can have
different sample tilts, which would change the relative tip tilt.
To account for this, the sample tilt must be accounted for before
measuring.

To efficiently determine the best-fit parameters, an automated
fitting algorithm was programmed. This algorithm minimizes
the least squares error between the calculated curve and the re-
corded curve with oscillation. A common problem when deter-
mining the least squares error is to find the global minimum
(best fit). Tests with different starting values revealed that the
error landscape has many local minima. These local minima
have higher least squares errors than the global minimum,
which can be fitted to a much lower least squares error. By
defining a sufficiently low error limit ey 1, many of the local
minima with higher least squares error can be ruled out. A good
start is a value of ep v = 0.5% to find parameters that can be
used as starting parameters for further runs of the software. For

the consecutive runs, ey jy; can be reduced by 0.1% for each run

until an acceptable fit is found. Note that the program will not
converge to a solution if ey is too small because of noise and
factors such as drift.

Another problem is the choice of starting values. To try differ-
ent combinations with equal probability, random starting values
within a definable interval were generated. Care has to be taken
at the definition of the intervals. Our tests showed that these
intervals have to cover the final fitted values for A, 0, and z to
find the best fit. Therefore, reasonably chosen starting values
are necessary. An estimate of the amplitude can be made by
considering data with oscillation of a single feature, as sketched
in Figure 3. The data will show the feature spread by a lateral
extent of approximately 2A. The relative heights of the feature
are indicative of the tilt, which can be estimated by comparing
to Figure 3b,c.

Figure 5 shows the structure of the fitting algorithm. The outer
“while” loop starts the fitting with the random starting parame-
ters as long as eprt > e M-

The parameters are changed in the direction in which the least
squares error gets smaller. The order in which the parameters
are changed has significant impact on the convergence of the
error. The x5 parameter is the lateral offset of the calculated
curve to the data taken with oscillation. Since a variation of z
leads to a higher variation of the least squares error than a varia-
tion of A, 0, or xyffset, Zg 1S determined first, followed by A, 0,
and then Xxyffser, as it is shown in Figure 5. After this iteration,
the whole loop is started over again with a higher precision and
efrr 1s calculated.

The numeric implementation requires a discretization of the

oscillation cycle dividing the period T into a number of points.

Lower errors can be obtained with a higher number of
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While error,,; > error,,,

Random starting values
within given intervals

,M Minimize error with z,

|

2nd iteration

[z, - dz; z, + dZ] L[99 Minimize error with A \Agtrgglsﬁlgr?r
[A-dA; A+ dA]
N Loop| A .
[0-do: 6 +do] > Minimize error with 6
0; Offset,
[ wnd N Loop| Minimize error with Off

Figure 5: Structure of the fitting algorithm to avoid a local minimum. Random starting values within definable interval are used to start the first itera-
tion to minimize the least squares error for zg, A, 6, and “offset” until the total error egjt < e m-

discretization points up to a certain limit. Our tests showed that
a number of discretization points of 250 is a good compromise

between fitting accuracy and computation time.

The fitting algorithm yields a very high repetitive accuracy if
erM is low enough. To test how robust our algorithm is, we
performed five fits using starting values in a range of £30% of
the actual values. This led to almost equal values determined by
the algorithm for A and 0, depending on the set error. In the case
of our fits, we used e v = 0.1%, which resulted in a spread of
A of 0.2%.

To estimate the uncertainty of the fitted values of A and 6 we
calculated the error as a function of A and 6 as shown by the
blue circles in Figure 6a,b. In Figure 6a the error as a function
of the amplitude is shown. The other parameters 0, zg, and
Xoffset Were kept constant. The fitted amplitude value of

1050 pm is indeed a minimum, since the error around this value
increases. To calculate the uncertainty we fitted a parabolic
function according to E(A) = a(A — b)? + ¢ to the data points. a,
b, and c are the fitting parameters of the parabola. b represents
the location of the minimum. The Matlab function “fit” outputs
the variation of the fitting parameters with confidence bounds
of 95%. From this confidence bounds the uncertainty for b was
calculated yielding a very small value of 0.002 pm for the
amplitude.

The same procedure was applied to estimate the uncertainty for
0. The blue circles in Figure 6b show the calculated error as a
function of 0. The other parameters A, z(, and x ;e Were kept
constant. The error increases around the fitted minimum of
1.59°. The red curve shows a parabolic fit according to the
equation E(0) = g(0 — h)% + i. This yielded also a very small
uncertainty for 4 of 0.001°.

0.58 0.6 1200
(a) (b) (c)
0.56 1000
0.54 0.55 S 800
S S 3
= 0.52 g 2 600
2 <] 5
£ E g
w
05 w < 400
0.5
0.48 S 200
0.46 0
1046 1048 1050 1052 1054 1056 156 157 158 159 1.6 161 1.62 0 10 20 30 40 50 60 70 80 90
Amplitude (pm) 0 (degree) Input signal (pV)

Figure 6: Error as a function of A and 6. (a) The blue circles show the calculated error for varying amplitudes. The other parameters 8, zg, and Xoffset
were kept constant. The red curve shows a parabolic fit through the points to estimate the uncertainty of the fitted A and yielded a value of 0.002 pm.
(b) The calculated error for varying 8 shown by the blue circles. The other parameters A, zg, and X,fset Were kept constant. The red curve shows a

parabolic fit through the points to estimate the uncertainty of the fitted 6 and yielded a value of 0.001°. (c) Amplitude as a function of the drive signal.
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The method inherently yields a very small uncertainty for both
the amplitude and tilt. However, it relies upon the (x, y)-calibra-
tion of the microscope, which we assume to the be the largest
source of uncertainty. The position calibration typically has a
precision of the order of a few percent, which is why we
propose an uncertainty of 2%. A similar argument for accuracy
holds for the tilt estimate. It relies on the calibration of x, y, z,

and sample tilt; again, we estimate an uncertainty of 2%.

Figure 6¢ shows the amplitude of the oscillation as a function of
the drive signal. It is linear, meaning that the calibration ampli-
tude we determine for large amplitudes of the order of 1 nm is
also valid for amplitudes under 100 pm, where we typically

acquire high-resolution data.

To demonstrate that this method can be applied to more com-
plex systems, calibration data was taken of a CO molecule on
Cu(111) with a CO tip. When lateral forces act on the CO mole-
cules on the tip and the surface, they tend to act as a torsional
spring and bend [27,28]. While this makes the signal more com-
plex than that over the Fe adatom (compare Figure 7b to
Figure 4c¢), the CO bending does not affect the measurements.
In general, if CO bending occurs, it is present in the data both
with oscillation and without as the CO bends faster than the
cantilever moves. At the heights where we performed the ampli-
tude calibration, we did not observe a LFM signal, meaning that
the lateral forces were insignificant. Also, the excitation fre-
quency of the frustrated translational mode is in the terahertz
range [29,30] and is not excited by the tip, which oscillates in
the kilohertz range.

Figure 7a shows the I(x, z) current map without oscillation.
In the inset, an STM image of a CO molecule with a CO

(a) 200

0 x (nm) 8.0

Beilstein J. Nanotechnol. 2021, 12, 517-524.

tip is shown [31]. The red solid curve in Figure 7b shows the
current profile (I along a line in x-direction over a CO mole-
cule on Cu(111) with a CO tip. The dashed blue curve in
Figure 7b is (1)3"15’20%ff and yielded A = 890 pm = 2% and
6 =2.00° £ 2%.

Conclusion

A method of determining the oscillation amplitude and tilt of a
LFM sensor was presented by analyzing the tunneling current
above a surface feature. The method requires a 2D current map
without tip oscillation and an isolated line profile with oscilla-
tion. It fits a calculated averaged current curve that considers
the tip oscillation to a constant height current curve with oscilla-
tion to determine A and 6. The method can be applied, in prin-
ciple, to any surface feature such as, for example, a commonly
used PTCDA molecule or a surface defect. The fitting of the pa-
rameters for the 2D current map method was done by a fitting
algorithm written in MATLAB, and details of the algorithm
were explained. A MATLAB file is included in Supporting

Information File 1.

Supporting Information

Supporting Information File 1

MATLARB file of the fitting algorithm.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-12-42-S1.m]
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monoxide molecule (CO) on Cu(111) taken with a CO molecule adsorbed on the tip (CO tip). The dashed white line indicates the current line at zg at
which the 2D current map is used to calculate the curve with oscillation. The inset shows a constant current STM image of a CO on Cu(111), which is
used for the 2D current map. (b) Line profile of a constant-height scan of a CO molecule on Cu(111) with a CO tip with oscillation shown by the red
solid curve. The fit uses the 2D current map yielding an amplitude A = 890 pm + 2% and sensor tilt of 8 = 2.00° + 2% shown by the blue dashed
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