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Abstract

In order to avoid costly machine breakdowns, proactive schedules are often put
in place to substitute wear parts regularly. Currently, the contrary approach of
Predictive Maintenance is receiving a lot of attention, as it promises needs-based
maintenance. Currently, successful implementations are mainly found in highly
standardized industries with a vast history of failure data. These conditions are
not fulfilled for custom-built machines, namely here bottling machines. This thesis
proposes an approach of combining machine learning with physical knowledge to
compensate for missing error data. The approach is applied to bottle transport
error cases in filling machines.

First, a physical intuition for the machine and the possible error cases is ob-
tained by creating an analytical physical model, avoiding the need for extensive
numerical simulations. Second, errors are detected via one-shot semi-supervised
anomaly detection, guided by the physical intuition to narrow down suitable algo-
rithms. The one-shot setup involves a particularly short training phase, with only a
single healthy sample. The results of the scoring process are anomaly probabilities
that are calculated by comparing new samples with the training sample. Samples
with high anomaly probabilities continue into the third step, the classification. The
anomalous patterns are compared to error sketches, which are drawn by domain
experts and enriched by physical knowledge. This approach has so far not been
reported in literature.

This thesis demonstrates that this strategy can pave the way to Predictive Main-
tenance for custom-built machines. It creates reliable results and allows transfer
learning to similar machines naturally. It also allows feedback to domain experts
in order to improve the machine construction.
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1 | Challenges of Machine Learning
in the Bottling Industry

A long machine failure during production time is one of the worst scenarios for
most manufacturing plants in the bottling industry. Water or soft-drink bottlers
have very small profit margins on their products, and are thus creating profit by
producing around the clock. Beer or milk bottlers risk changes in the product
quality during long machine failures. Additionally, a lot of manufacturers hold
contracts with supermarkets, which obligate timely delivery. In order to avoid
this situation, a proactive maintenance schedule is in place. This implies that all
wear parts are changed after specific predefined intervals, for example every 1000
operating hours. These intervals include a safety margin in order to guarantee as
little failures as possible between maintenance windows. This concept is - for sure
- not very sustainable, as most wear parts are exchanged much more often than
actually necessary. Additionally, spare parts and long maintenance windows are
costly. As a consequence, new solutions are trying to be found. If it was possible,
to detect error cases before they lead to a machine stop, production time could be
increased, and concepts like Predictive Maintenance could be set in place. Further
on, in case of an unplanned machine failure, giving machine operators a detailed
failure description and a troubleshooting guide could enable a faster repair, even
by lower qualified staff. In order to find such solutions, the highest expectations
are at the moment set on machine learning or “artificial intelligence”.

In other industries, such solutions are already in place. Though, notably, the
vast majority of successful implementations have been for highly standardized
machine parts like motors or turbines in power generators. The most common
implementations are “intelligent” vibration sensors, which are able to detect bear-
ings defects far ahead of the motor breaking [33, 59, 112, 94]. Other successful
use cases can be found in industries with very high failure cost, which make highly
specialized solutions financially viable.

At first surprisingly, very few of such solutions already find broad usage in the
bottling industry. In contrast to the previously mentioned power generation in-
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CHAPTER 1. CHALLENGES OF MACHINE LEARNING IN THE BOTTLING
INDUSTRY

Figure 1.1: Overview over different Krones machines, clockwise from top left: Blower,
Filler, Labeller, Palletizer, Brew House, Warehouse, Bottle Washer and Packer.[68]

dustry, a large variety of bottling machines exist. There are about 80 different ma-
chine types [68], of which each is highly specialized on its task. To give examples,
a blowing machine for PET bottles works completely different from a glass bottle
beer filler or a tray packer. Additionally, every machine is further customized for
needs of the bottler to suit the intended filling and packing application. Thus, the
machine specifications vary from production line to production line. Furthermore,
every machine is assembled by hand, thus, even if the machine specifications were
similar, exact duplicates don’t exist. Thus, transferring a machine learning model
from one machine to the next without retraining is not possible, or at least limited
to very few exceptions. Instead, transfer learning methods, which allow the trans-
fer of knowledge acquired from one machine to a similar machine, need to be put
into focus.

In order to build a reliable machine learning or deep learning model for one
machine, a large data set is usually needed, in which a variety of error cases is
marked. As Krones (the data provider of this thesis) is the manufacturer but not
the owner of the machines, data about “non-lab” error cases are rather rare. Even
if data is collected, activities on-site are very difficult to track because not every
crash or mechanical modification is documented in a structured accessible way. In
fact, even for a number of producers in Germany, failure protocols are still written
and shared on paper. Another challenge poses the regular modification of the

4



machines. Especially during the yearly overhaul, the whole machine is de- and
reassembled in order to exchange all wear parts. Thus, the rate of mechanical
modifications is in some cases higher than the actual appearance of error cases.
As a consequence, a very flexible model is needed, which can be adapted very fast
to machine modifications, and does not require any or very little error data.

This thesis aims to take the first steps towards building models, which ful-
fill those criterion. In order to compensate for the lack of error data, this thesis
chooses the approach of combining physical knowledge with machine learning.

The chosen error case will be introduced and motivated in Chapter 2. Addi-
tionally, information about the data acquisition is provided, and a new approach
for preprocessing the data is proposed. For a better understanding of the physical
properties of the machine part and its error cases, Chapter 3 is devoted to the
physics of the monitored machine parts. The first goal in this thesis is the reliable
and stable detection of error cases and further modifications in the machine. For
that, Chapter 4 provides an extensive introduction into semi-supervised anomaly
detection and discusses possible downsides and improvements. This physical and
algorithmic knowledge is applied on the use case in Chapter 5. In an intensive
comparative study, the best anomaly method is searched, which just requires one
healthy sample. The second goal of this thesis is providing a classification of the
error case. Chapter 6 introduces a completely new approach, which is, to our
knowledge, not yet reported in literature: the Physics- and Expert driven Error
Sketch Recognition (PEESR). Error patterns are assigned to error descriptions by
comparing them to expert error sketches, which are enriched with physical knowl-
edge. The last Chapter 7 summarizes the thesis and gives an outlook for further
developments.
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2 | Use Case and Data Processing

2.1 Analysis of most frequent Machine Errors

Every production line consists of a number of machines (usually ranging between
six and fifty), which are connected via conveyors. Every machine operates inde-
pendently of the others, except for weak coupling by the content of the conveyors.

This thesis will be based on the most essential, and the most widely distributed
machine of every production line: the Filler. Additionally, the filler is especially
interesting as it is usually in the TOP 3 machines, which cause the most and longest
unplanned line stops. Analyzing the fault statistics of a brewery over the course of
a year, the filler caused more than 12% of the faults, which is a lot considering the
line setup with about 40 machines. One reason for it is that the filler is the slowest
and most inflexible machine in the line and thus has a direct influence on the line
performance. The filling process is very sensitive and cannot be accelerated or
slowed down substantially. In contrast, other machines can compensate for short
malfunctions as they are able to run faster than the line speed and have large
conveyor buffers before/after the machine.

There are two major construction styles in the filler: The base-handling for
glass bottles and the neck-handling for PET bottles. In this thesis, we concen-
trate on base-handling fillers for the reasons of availability of data and intensive
contact to the bottlers. A photo and a schematic image of a base-handling filler
can be found in Figure 2.1. The bottles follow a predefined path and are always
held by a star or conveyor - depending if they are moved in a circle or a line.
The bottles enter the machine on the “infeed conveyor”, are spaced apart by the
“infeed worm”, and are then transported via the “infeed star” to the “main filler
carousel”. The “main filler carousel” fills the bottles. The filled bottles are further
transported by the “outfeed filler carousel” directly to the “capper” or “crowner”
wheel (depending on the closure type), which close the bottles. The bottle leaves
the filler via the “outfeed starwheel”. It is further transported via conveyors to the
next machine. The names “star”, “starwheel” and “carousel” will be used in the
following interchangeably. The name “station” refers to the slot of a star in which

7



CHAPTER 2. USE CASE AND DATA PROCESSING

Figure 2.1: Photo [67] and schematic image of a Filler (modified from [68])
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2.2. SYNCHRONIZATION ERROR

a bottle is held. Small stars usually have in the order of 26 stations, the larger
filler carousel above 100.

Considering the mechanical properties of the depicted filler, every star has its
own servo motor. These motors drive most of the mechanical parts with the ex-
ception of the filling and capping process. This makes them the perfect candidates
for monitoring most of the machine’s movement. They also have the advantage
that there are already built-in sensors, which for instance record the motor cur-
rent. Adding new sensors is usually associated with high costs, as the sensors have
to fulfill high food industry standards. Also, the data quality from added sensors
inevitably decays over time, as they are not directly needed for production, and
thus are not part of the maintenance cycle.

Analyzing the most frequent error cases of the filler itself, the transport mech-
anism causes 47% of all occurrences, the biggest part by far, and also 42% of the
total error time. Over the course of a year, in total 35.8 h of production time are
lost in those error cases. In this time, about 1.4 million bottles could have been
produced, resulting in lost earnings. Thus, detecting, predicting and classifying
those error cases has the potential to save a lot of money.

2.2 Synchronization Error

There is a collection of possible transport error cases, as we will discuss later in
Chapter 6. For context, we introduce here the most common error case, which is
called “Synchronization Error”.

A synchronization error appears when the stations of two stars (e.g. infeed star
and filler carousel) are not synchronized perfectly. During the transfer process
between the two stars, the bottle is moved from a station of the one star to a
station of the next star. In the best case, the both openings line up perfectly and a
smooth handover happens. In contrast, if the openings are slightly shifted against
each other, a small crash happens. The machine cannot solve a synchronization
error on its own, and thus, a crash is continuous happening with every handover
of a bottle.

There are several causes of synchronization errors, of which we want to intro-
duce two. First, it can be caused, when a bottle is lying on the infeed conveyor. It
crashes into the infeed worm, blocking its rotation. This causes the infeed worm
to rotate on its mounting, and thereby loose synchronization with the rest of the
machine. An emergency stop will usually be triggered by this event, but this does
not fix the resulting synchronization error between infeed worm and infeed star.
The error persists even after removing the problematic bottle and restarting the
system. Well-trained operators can detect this misalignment, but it is occasion-
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CHAPTER 2. USE CASE AND DATA PROCESSING

ally overlooked. Second, product changes include exchanging some parts of the
stars, as these are customized for each bottle type (for example 0.33l versus 0.5l).
After product changes, the synchronization should be checked, but is sometimes
forgotten due to time pressure.

A long lasting synchronization error has a huge influence on the health of the
machine. Extremely high wear of stars, gears and motors increases maintenance
costs and the risk of a sudden breakdown, leading to production loss.

2.3 Data Acquisition

Most data used in this thesis originates from built-in sensors in the servo motors,
measuring for example the electrical current or angular position. The data cannot
be acquired directly from the sensors, but is provided by the machine control. The
main job of the machine control is running and controlling the machine in real-
time. Thus, although the control accesses the data in a high resolution, it provides
the data in a rather low resolution of 100-200 ms for external systems, in order to
not endanger the main job. Receiving data in a higher resolution would imply an
extensive project with mirroring all communication packages and ensuring that
no packages get lost or delayed. In this thesis, we try to find solutions with the
limited resolution that the control provides directly.

Some additional information such as high-level machine state (for example
production or cleaning) is also provided by the control.

For long term data collection, an on-site edge device connects to the control,
collects the data and sends it via a secured channel to encrypted storage in AWS
Cloud Services.

2.4 Data Preprocessing: High Resolution via
Statistics

For all following analysis, the acquired data is preprocessed in a two-step system.
In the first preprocessing step, all non-production times are removed from the

data. Just times in which the machine is running and filling bottles, the so-called
“production”, are interesting for detecting transport issues. Additionally, start and
stop ramps are discarded, as during acceleration and deceleration a variety of
forces are acting that are unrelated to the bottle transport.

The second - and by far more interesting - preprocessing step tackles the huge
limiting factor of the sampling resolution. One revolution of an infeed star takes

10



2.4. DATA PREPROCESSING: HIGH RESOLUTION VIA STATISTICS

Figure 2.2: Transformation of low-resolution data into a high resolution pattern via pre-
processing: Filter by production state with ignoring stop and start ramps (top right).
Extract current-angle pattern (bottom right). Create statistical high-frequency pattern by
binning and averaging (bottom left).

11



CHAPTER 2. USE CASE AND DATA PROCESSING

about 2.7 sec, and within that time 26 bottles are transferred. With acquiring
only about 27 measurements in this time interval, detailed analysis of the data is
restricted to statistical evaluations.

In order to recover an effective higher sampling rate, we propose following
procedure: In addition to the sensor information, the control provides information
about the carousel angle of that time point. With collecting the angle-sensor pair
over a longer time period, a statistical evaluation can be made. As long as the
sampling and revolution period have no common small multiples, a few thousand
measurements (spanning 1-2 hours) will cover all possible angles with statistical
relevance. The angle is binned into intervals, and for each interval the average
sensor value is calculated. The number of bins is chosen in a way that every
handover can be resolved with sufficient detail. A resolution of about 15 bins per
handover was found to be a sufficient for characterizing the shape. This method
can be applied to sensor data, which is not averaged in the control, such as the
electrical current. The created curve is surprisingly close to real high-frequency
data that is processed in the machine (which, as mentioned above, cannot be
routinely measured for this application).

This trick enables transformation of low resolution data into a statistical high-
frequency pattern. The preprocessing can extract pattern that appear in the course
of the chosen angle, here the carousel round.

2.5 Model Deployment

All algorithmic models in this thesis are executed directly on the on-site edge de-
vice. This opens the possibility for inexpensive real-time scoring, as just the scoring
result, and not the full data set, is sent into the cloud in real-time. However, this
comes with the downside that all models must fulfill some rather strict require-
ment, as other processes on the edge-device must not be disturbed by the model
evaluation. The resource usage has to be evaluated for every model.

Further details about the overall architecture can be found in [124], which was
published as a side project of this work.

2.6 Hardware and Software environment

All following calculations are performed on a Laptop with the operating system
Microsoft Windows 10 Pro, an Intel(R) Core(TM) i7-6500U CPU processor with
2.50GHz, 2592 MHz, 2 cores, and 4 logical processors. The physical RAM is 32.0
GB.

12



2.6. HARDWARE AND SOFTWARE ENVIRONMENT

All numerical calculations are implemented in Python 3.7 in an Anaconda en-
vironment (conda version 4.9.1). The calculations and visualizations make use
of the python packages Numpy 1.18.5 [48], Pandas 1.2.1 [84, 111], Scipy 1.5.0
[115], Sklearn 0.23.1 [91], Matplotlib 3.2.2 [55] and Seaborn 0.11.0 [120]. Fur-
ther packages are explicitly cited when used.
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3 | Physics of Bottle Transfer

To get a better idea about the system, we will consider the basic physical forces,
which act on a bottle during the transportation process in a star. We will examine
what happens during a normal handover and the effects that a misalignment of
the stars can have. The results will be compared to measured data of the machine.

3.1 Conservation measure: Position-based Velocity

One main task of the control is keeping all stars of the machine synchronized at
any time. The machine can only produce and transport bottles without crashes
when all stars are in full synchronization. This synchronization is also necessary
for a safe shutdown of the machine. In order to not endanger the life of any
person close to the machine in the event of a defect, the machine has to be able
to stop within about two seconds, and that must be possible without damaging
the machine, and all bottles within. This can imply that some motors even have
to accelerate briefly during the emergency stop in order to keep synchronization
with the neighbor stars and to avoid crashes that would destroy the machine. This
demonstrates how sensitive the synchronization must be.

To be able to keep synchronization, a control steers all stars. As the control
cannot measure the synchronization directly, the stars are initially synchronized
manually. The control is then told that the current state is synchronized, and it
saves the rotational position of every star:

Claim 1. At time t = 0, the position of each star - and thus the synchronization
between the stars - is saved.

Starting from that time point, the control has a reference point for the motor
of every star. The only exception in which this claim is not fulfilled is during
an huge-impact machine crash, during which the star shifts independently of the
motor reference point, without the knowledge of the control.

In normal production, the control steers each motor by continuously passing a
target position. The motor attempts to reach that target position in time, either

15



CHAPTER 3. PHYSICS OF BOTTLE TRANSFER

by accelerating or slowing down. This also applies for conveyor belts. Thus, the
conservation measure is a position-based velocity:

Claim 2. In a specific time ∆t, the stations of every star rotate by the same circum-
ferential target distance ∆s.

For example, in a constant time ∆thandover, two stars rotate the same distance,
which is the distance between two adjacent stations ∆sstations. In this way, the
stations always meet for handovers:

∆sstations, Infeed Star =
2πrInfeed Star

nInfeed Star
=

2π · 0.36 m
26

= 0.087 m

∆sstations, Filling carousel =
2πrFilling carousel

nFilling carousel
=

2π · 2.16 m
156

= 0.087 m (3.1)

⇒ ∆sstations, Infeed Star ≈ ∆sstations, Filling carousel

with r being the radius and n the number of stations of the star. Notably, the
rotated angle differs due to the different circumferences.

In addition to that very general rule that applies for every machine, the filler is
also restricted to very specific production speeds:

Claim 3. During production, the target filler speed is kept constant at very specific
values.

As already described, bottle filling is a very sensitive process, which cannot be
substantially accelerated or slowed down in most cases. Usually, the filler is only
able to drive two production speeds per product. As the filler is often the slowest
machine in the line, the faster production speed is driven whenever possible. The
lower production speed is mainly used for ramp down phases. Thus, for almost all
chosen time windows, the target filler speed is constant.

The further physical investigation is based on these three claims.

3.2 Bottle Transport

We start by evaluating the radial transport process of a bottle in a star, ignoring
the handovers to different stars for the moment. For that, we examine the forces
which act on the bottle and the mechanical parts of the machine.

According to Claim 3, the speed of the star is constant, and because the bottle
is fixed to the star the speed of the bottle is also constant. In the rotating frame
of reference fixed to the star, both the star and the bottle are stationary. Newton’s
first law of motion has to be fulfilled: For a non-accelerating object, forces in all
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Figure 3.1: Schematic picture of the forces which act on the bottles (blue) while being
transported in the star (black). For simplicity, just five bottles are sketched in the star.

directions are balanced. We split up the forces into the forces acting parallel and
perpendicular to the tangential transportation direction (see Figure 3.1):

1. Radial forces:
To keep the bottle balanced in radial direction, the centrifugal and cen-
tripetal forces have to be balanced.
To get a better feeling for the magnitude of the acting forces, we perform
a short quantitative estimation for an exemplary star. An outfeed star in a
brewery transports filled beer bottles with a mass ofm = 0.85 kg on a circular
path of radius r = 0.36 m with a rotation time of about T = 1.56 s :

FZf = FZp

= mω2 r = m
(2π

T

)2
r (3.2)

= 0.85 kg ·
( 2π

1.56 s

)2
· 0.36 m

= 4.96 N.

Looking at the construction of the machine, the counterpart to the centrifu-
gal forces is implemented via a railing, which does not allow the bottle to
leave the star. In comparison to a centrifuge, the railing here is fixed in place
and does not follow the rotational movement.

2. Tangential forces:
Parallel to the transportation direction, friction forces act on the bottle and
various mechanical parts. We introduce two main origins:
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(a) In the small stars, the glass bottles stand on a metal mounting that
does not move. The star bottoms are not actively lubricated, although
the bottles carry over some lubrication from the conveyors. In addition
to the friction of the bottom, the side of the bottle is pressed by the
centrifugal forces against the railing and rubs along it. The railing -
also called “wear profile” - is usually constructed from a polymer, which
has a very small friction coefficient with the glass bottle.
For a rough estimation, we assume that bottles slide and do not rotate
in the transport process. Literature proposes friction coefficients for
glass on copper of µk1 = 0.53 [8], and glass on the polymer PEEK of
µk2 = 0.17 [9].

Ffriction bottle = µk1 FG + µk2 FZp

= µk1 mg + µk2 FZp (3.3)

= 0.53 · 0.85 kg · 9.81 m/s2 + 0.17 · 4.96 N

= 5.26 N.

(b) All driving mechanical parts are affected by friction. The fast rotating
motor, gears and bearing dissipate heat and wear off long term. Even
with perfect lubricants, friction is inevitable.
An estimation is complicated due to a long list of influential parameters:
material, lubrication, cleanliness of the lubrication, speed, temperature,
magnitude of the load and the bearing type [26]. Information about
most parameters is not available for this thesis due to internal domain
knowledge of Krones and the motor producer. Additionally, the param-
eters change over the lifetime of the mechanical parts. In literature,
the estimation of friction parameters is still an ongoing research topic
[90, 39]. A further examination exceeds the scope and goal of this
thesis. For simplicity, we will summarize those friction forces as

Ffriction mech = Ffriction motor + Ffriction bearings + Ffriction gears. (3.4)

As noted above, these forces have to be balanced with the force of accelera-
tion provided by the motor Faccl motor.

During production (Claim 2 and Claim 3 fulfilled), all mentioned forces are
time independent. The only exception are the friction forces in the warming-up
phase of the motor, which are not considered in this work. The time independent
forces should lead to a stable motor current, and thus no particular pattern in
the electrical current is expected due to the bottle transport alone (when ignoring
handovers).

18



3.3. BOTTLE HANDOVER

3.3 Bottle Handover

As a second step, we examine the physics of a bottle being handed over from one
star to the next. We proceed in three steps: At first, we examine general properties
of an handover, then we continue with the friction-less analysis, and close with a
brief discussion of friction.

3.3.1 General Behavior

During a bottle handover, the bottle is pushed into the neighbor star on a mutual
tangential trajectory. The base of the continuing star is always slightly lower than
the base of the first star in order to allow an easy transfer. Due to the tangential
trajectory, the transfer time can be approximated by taking the diameter of the
bottle bottom 2 · rbottle and its speed vbottle into account:

ttransfer =
2 · rbottle

vbottle

=
2 · 0.03065 m

1.44 m/s
(3.5)

= 0.0426 s.

Putting this into relation with the time of a full revolution Tsmall star, this implies
that the star is busy with handovers with each adjacent star about 70 % of the time:

ttransfer · nstations

Tsmall star
=

0.0426 s · 26

1.58 s
= 0.70 (3.6)

As a consequence, the effects of an handover can be separated from the next.
Considering the receive and release process, those two processes always over-

lap. The degree of overlapping depends on the arrangement of the stars to each
other.

3.3.2 Bottle Handover without Friction

Next, we examine a simplified handover without any friction. This allows us to
develop a better feeling for the essential physics behind it. We assume a perfect
handover, which implies that no unexpected crashes happen during the handover.
Different aspects during the process of an handover are considered:

1. As sketched in Fig 3.2, the bottle enters and leaves each star or conveyor on
a tangential trajectory. In this way, there is no abrupt change in velocity, but
rather a smooth transfer between two radial arcs.
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Figure 3.2: left: Schematic handover of a smaller star (bottom) to a bigger star (top).
The gray bars symbolize the railings that keep the bottles in the circular paths.
right: Photo of an handover [68] with the railings marked with blue arrows. The first star
is holding the bottle in the middle, the other at top and bottom. In this way, there is a
position in which the bottle is held by both stars at the same time.

2. According to Claim 2, all stars move with the same circumferential speed.
This implies that the bottle also moves with that speed, and that the speed
of the bottle does not change in the process of an handover. The angular
speed, in contrast, does vary, as the different stars have different radii.

3. The main effect during an handover is the change of path curvature. Similar
to the above discussed bottle movement in the star, the railing introduces a
centripetal force to the bottle to change its direction. In this way, the value
and sign of the angular momentum of the bottle changes and the bottle feels
forces perpendicular to the movement, similar to riding a roller coaster. As
the interaction of the bottle with the railing is in this consideration friction-
less, it has no effect on the speed of the bottle. The railing positioning is
assumed to be perfect, which avoids frontal collisions with the bottle.

Summarized, there are no forces acting on the bottle in the direction of the move-
ment. The bottle is completely decoupled from the star and the motor. The whole
system can be reduced to a bottle with conserved speed and frictionless railings
which define the direction. The motor does not feel any distortion from a bottle
handover and thus variations in the motor current are not expected.

3.3.3 Bottle Handover with Friction

In the realistic handover process with friction, a number of processes influence
the system. Even with ideal conditions and designs, friction cannot be avoided.
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The bottle is never rigidly coupled to the star, which results in an uncontrolled
movement of the bottle and small crashes with the star and the railing. Addition-
ally, the synchronization is fixed manually, which makes small misalignment errors
unavoidable.

Those effects are very similar to the synchronization error as described in Sec-
tion 2.2, but with a by far smaller intensity. Thus, we will directly examine the
physical properties of the error case, as the model will also cover the normal case
of handover with friction.

3.4 Faulty Handover (mathematical description)

3.4.1 Introduction

As already briefly described in Section 2.2, the synchronization error is an error
case that happens frequently in production. It describes the state in which two
stars don’t line up during an handover, which causes small crashes between the
two stars at every handover. As a consequence of Claim 1 (the initial position is
saved), an imprecise initial synchronization leads to persistent misalignment for
the next several hours of production. As the control is not aware of the misalign-
ment, it cannot be fixed automatically.

When an incorrect synchronization is saved, each handover involves a pair
of opposing forces acting on the stars. On the one hand, an handover without
alignment is not possible as both - the glass bottle and the stars - are rigid objects.
Thus, alignment of the two stars is enforced by slowing down or speeding up one
of the stars (usually the one with smaller mass). On the other hand, this enforced
alignment increases the discrepancy between the target motor position given by
the control and its actual motor position. In order to reduce this discrepancy
(Claim 2), the motor tries to compensate by speeding up or slowing down.

As the synchronization error cannot be corrected by the machine, the two ef-
fects are constantly working against each other during production. The antag-
onists are active at every transfer of a bottle. A simplified mathematical model
illustrates the effects.

3.4.2 System Modeling

The handover is modeled from a small star “A” to a high mass star “B”, and we
examine the influences on the small star (see Figure 3.3):
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Figure 3.3: Sketch of the model setup for a handover from star “A” to star “B”. The
handover happens in the interval (−β,+β). The misalignment is modeled by an abrupt
stop of star A, involving a waiting time of ∆tdelay. The angles −ε1and ε2 are checkpoints,
at which the position of the carousel is forced to match the target position of the control.
For better visualization, all angles are chosen larger than realistically.

• The bottle handover of star “A” happens in the angle area of (−β,+β), which
is fixed by the construction of the star.

• Due to the synchronization problem, a crash happens at the angle−β and the
star is forced to be stationary for a time delta of ∆tdelay until the two stars are
aligned. This time delta allows to adjust the severity of the synchronization
problem. For a non-faulty handover, the time delta is rather small.

• During the handover, the two stars are coupled together, and they drive the
same tangential speed. The speed in this phase is set to the fixed production
speed v (Claim 3).

• For modeling the constant position-based velocity of Claim 2 of the control,
two checkpoints at the angles −ε1 and ε2 are introduced. The star reaches
those checkpoints at the times determined by the control.

As a side comment, the bottle and the handover process cannot be handled in the
calculation as point-like because there is a substantial time period in which the
bottle couples the two stars together. The approximation Eq. 3.6 showed that a
bottle is being transferred 70% of the time.
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3.4.3 Solution by Lagrangian Formalism

The equations of movement for the carousel are formulated by the Lagrange for-
malism. Transforming the system into cylindrical coordinates, we realize that the
movement of the bottle is independent of the radius r and the height z. We can
describe the movement simply by the angle α.

The conditions set up by the two antagonists (as described above) are modeled
as the four constraints g1 to g4:

1. The first checkpoint α = −ε1 is reached at the time t = 0:

α(t = 0) = −ε1
⇒ g1(α, t) = (α + ε1) · δ(t) = 0 (3.7)

with δ(t) being the Dirac delta function.

2. The second checkpoint α = ε2 is reached at the scheduled time t =
ε1 + ε2
v

.

The control assumes that the angle interval [−ε1, ε2] is driven with constant
angular speed v:

α(t =
ε2 + ε1
v

) = ε2

⇒ g2(α, t) = (α− ε2) · δ(t−
ε2 + ε1
v

) = 0. (3.8)

3. As the speed at the handover is taken to be constant, the handover in the an-
gle range of α = [−β, β] can be modeled by two additional fixed points that
are reached at the planned time plus the time delay ∆tdelay > 0 representing
the synchronization problem:

α(t =
ε1 − β
v

+ ∆tdelay) = −β

⇒ g3(α, t) = (α + β) · δ(t− ε1 − β
v
−∆tdelay) = 0 (3.9)

α(t =
ε1 + β

v
+ ∆tdelay) = β

⇒ g4(α, t) = (α− β) · δ(t− ε1 + β

v
−∆tdelay) = 0. (3.10)

with ε1, ε2 > β.
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Having formulated the constraints, we will construct the equations of motion for
this system. Due to the already fixed velocity in the time window of α ∈ (−β, β),
the system can be split into two uncoupled parts with α ∈ [−ε1,−β] and α ∈ [β, ε2].
For each of them, we solve the Lagrangian formalism:

d
dt
∂L

∂q̇i
− ∂L

∂qi
+
∑
j

λj
∂gj
∂qi

= 0. (3.11)

L = T − V is the Lagrangian, with T being the kinetic and V being the potential

energy. Here, it is q = α, T =
1

2
mα̇2 and V = mgz

z=0
= 0.

Starting with the angle interval of α ∈ [−ε1,−β], this angle window is equiva-

lent to the time window t ∈ [0,
ε1 − β
v

+ ∆tdelay]. The corresponding constraints g1
and g3 yield

mα̈ = λ1 δ(t) + λ3 δ(t−
ε1 − β
v
−∆tdelay). (3.12)

Integrating over α leads the equation of motion of

α̇(t) =λ1 θ(t) + λ3 θ(t−
ε1 − β
v
−∆tdelay) + b1 (3.13)

α(t) =λ1 t θ(t)

+ λ3 (t− ε1 − β
v
−∆tdelay) θ(t−

ε1 − β
v
−∆tdelay) (3.14)

+ b1t+ b2

with θ being the Heaviside step function and using
∫
dt δ(t − a) = θ(t − a) and∫

dt θ(t− a) = (t− a) θ(t− a).

The equation of motion can be solved by inserting Eq. 3.14 into the constraint
1 (Eq. 3.7)

(
λ1 t θ(t) + λ3 (t− ε1 − β

v
−∆tdelay) θ(t−

ε1 − β
v
−∆tdelay) (3.15)

+b1t+ b2 + ε1

)
· δ(t) = 0.

This equation is fulfilled for all t 6= 0 due to the Dirac delta function. Consider-

ing the case t = 0, the first two terms in the bracket yield zero, as
ε1 − β
v

+∆tdelay >

t. This leaves us with:

b2 + ε1 = 0. (3.16)
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Inserting Eq. 3.14 into the third constraint Eq. 3.9 yields

(
λ1 t θ(t) + λ3 (t− ε1 − β

v
−∆tdelay) θ(t−

ε1 − β
v
−∆tdelay) + b1t+ b2 + β

)
·δ(t− ε1 − β

v
−∆tdelay) = 0.

(3.17)

Similarly as before, this is fulfilled for all t 6= ε1 − β
v
−∆tdelay, which leaves us with

t =
ε1 − β
v

+ ∆tdelay and Eq. 3.16

λ1 (
ε1 − β
v

+ ∆tdelay) + b1(
ε1 − β
v

+ ∆tdelay)− ε1 + β = 0

λ1 + b1 =
ε1 − β

ε1−β
v

+ ∆tdelay
. (3.18)

The results of the two constrains Eq. 3.16 and Eq. 3.18 are inserted into the
equation of motion Eq. 3.14, taking the angle area of α ∈ [−ε1,−β] into account:

α(t) =
ε1 − β

ε1−β
v

+ ∆tdelay
t− ε1 (3.19)

α̇(t) =
ε1 − β

ε1−β
v

+ ∆tdelay
. (3.20)

The angle interval of α ∈ [β, ε2] with the equivalent time window t ∈ [
ε1 + β

v
+

∆tdelay,
ε1 + ε2
v

] works in an equivalent way. The full calculation can be found in

Appendix 7. It yields the result

α(t) =
ε2 − β

ε2−β
v
−∆tdelay

(t− ε1 + β

v
−∆tdelay) + β (3.21)

α̇(t) =
ε2 − β

ε2−β
v
−∆tdelay

. (3.22)

Combining these results, the angular velocity and position of the system can be
described by:

α̇(t) =



α̇1(t) =
ε1 − β

ε1−β
v

+ ∆tdelay
t ∈ [0,

ε1 − β
v

+ ∆tdelay]

α̇2(t) = v t ∈ [
ε1 − β
v

+ ∆tdelay,
ε1 + β

v
+ ∆tdelay]

α̇3(t) =
ε2 − β

ε2−β
v
−∆tdelay

t ∈ [
ε1 + β

v
+ ∆tdelay,

ε1 + ε2
v

]

(3.23)
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α(t) =


α̇1(t) t− ε1 t ∈ [0,

ε1 − β
v

+ ∆tdelay]

α̇2(t) (t− ε1 − β
v
−∆tdelay)− β t ∈ [

ε1 − β
v

+ ∆tdelay,
ε1 + β

v
+ ∆tdelay]

α̇3(t) (t− ε1 + β

v
−∆tdelay) + β t ∈ [

ε1 + β

v
+ ∆tdelay,

ε1 + ε2
v

].

(3.24)

3.4.4 Comparison Model Results with Reality

The model is a strong simplification of reality. We want to challenge the result
of the model in three different aspects: Is the solution physical, does the order
of magnitude roughly fit with reality, and does the simulated pattern yield some
similarities to real measured error cases?

Physicality

Starting with the physicality, the model is clearly a strong simplification of reality.
The choice of the constraints leads to just three driven velocities with discontinu-
ous transitions. The discontinuity at angle −ε1 does not directly compromise the
model, as this position should represent a rather sudden stop of the carousel. All
other transition points have to be handled as approximations. In the further steps
of this evaluation, all transitions are smoothed with a Gaussian filter in order to
obtain a more physical solution.

Compare magnitude with reality

In a next step, we compare how well the calculated velocities represent reality.
For this, we record velocity data at a brewery (as described in Section 2.3) and

ask the personnel to measure the corresponding synchronization offset during an
error case. Combining this information with constructional details of the machine
allows the calculation of the three velocities with Eq. 3.23, which can then be
compared with the recorded velocity data.

Carousel The star has a radius of rcarousel = 360 mm. Averaged over 40 turns, one

turn takes tcycle = 2.7 s. This leads to an angular velocity of v =
2π

tcycle
=

2.3 rad/s . In one turn, nbottles = 26 bottles are transferred.

Handover The two stars are coupled for the time interval it takes to transfer the
bottle. In real life, this coupling is not as strong as assumed as the diameters
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of glass bottles can vary up to 3.0 mm, and they need to have slack of at least
1.0 mm on each side within the star. In this way, the strong coupling of the
two stars lasts for about the bottle diameter dbottle = 61.3 mm minus the slack
of each of the two stars, with up to dslack = 2 · 5.0 mm. This distance is used

as the direct representation for the angle β =
dbottle − dslack

2 · rcarousel
= 0.07 rad. A

handover takes about ∆t2β =
2β

v
= 60.6 ms.

Misalignment The personnel of the brewery measured a misalignment of ldelay =

3 mm. This corresponds to a delay time of ∆tdelay =
ldelay

v
=
ldelay · tcycle

2π rcarousel
=

3.5 ms.

Checkpoints We assume that each handover is not influenced by the previous
or following handover. This restricts the maximum angle between the two

checkpoints to ε1 + ε2 ≤
2π

nbottles
. Additionally, the checkpoints have to be

outside of the handover region with ε1, ε2 > β. In order to simulate different
strengths of bottle crashes, we introduce the parameter wcrash strength ∈ (0, 0.5]

which represents the weighting of ε1 and ε2. The smaller the wcrash strength,
the more rapid is the crash and - for simplicity - the longer the regeneration
phase:

ε1 = β + wcrash strength · (
2π

nbottles
− 2β) (3.25)

ε2 = β + (1− wcrash strength) · ( 2π

nbottles
− 2β).

In order to get a better feeling for the numbers, the maximum time between
the two checkpoints is about 103.0 ms. This leaves about 42.4 ms for the
regularization of the velocity.

Inserting all parameters into Eq. 3.23 results in the velocities depicted in Figure
3.4. The velocity curve is plotted for three different weighting factors wcrash strength.
During the crash (between −ε1 and −β), the velocity in the model is decreased
drastically by 22 % − 36 % of the target speed. After slight physical smoothing,
the decrease is still about 21 % − 25 %. After the handover (between β and ε2),
the machine drives in average about 10 − 13 % faster to catch up with the target
position. As soon as the process is finished for one bottle, it is repeated for the
next.

For comparing the result to measured values, the motor speed is recorded,
and processed with respect to the angle, as described in Section 2.4. For each
angle, a minimum, maximum and average value is calculated. In order to receive
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Figure 3.4: Calculated for a real life synchronization problem, the speed of the small star
differs by up to 10− 13 % from the target speed during the acceleration phase between β
and ε2 depending on the weighing factor wcrash strength (here w).

Figure 3.5: left: The measured motor speed relative to the angle during an handover,
averaged over all handovers that occurred in 10 curves, each of which covers a 2 hour
period of production. This is performed once in an healthy time period (green dashed)
and once during a documented synchronization error (orange). Just a very slight variation
over the course of the handover can be detected. However, the range between minimum
and maximum values rises from about 16 rounds/min to 93 rounds/min in the error case,
which is an increase of more than 500 %.
right: The measured motor speed relative to the angle during a full round, averaged over
the same 10 curves. A distinct pattern over the course of the full round can be detected.
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a representative handover, 10 curves measured during production are averaged.
This is carried out for an error case with similar strength as above, and a healthy
period. The reported error case discussed above could not be used, as it was
promptly detected and fixed before enough data could be collected. As illustrated
in Figure 3.5 left, the averaged faulty curve (orange) just shows slight variations
in comparison to the averaged healthy (dashed green) curve within one handover.
It is expected that the variations are weakened, as an instantaneous speed cannot
be measured in a machine, but is calculated as a position difference over time.
More importantly, the speed is provided to our data recording device in a lower
frequency (500 − 600 ms instead of 100 ms). The different acquisition time also
results in a substantial lower accuracy, when assigning a speed value to an angle.
Thus, every angle bin consists of speed information of a variety of angles, and the
pattern is averaged out. It is promising that the average speed of the healthy state
and the error case are very similar as this finding supports the Claim 2.

The minimum and maximum value also loose the pattern information, but
in contrast, they still show the overall extremes of the curve. As depicted in
Figure 3.5 left, the synchronization error has a strong influence on the mini-
mum and maximum values; the amplitude increases from about 16 rounds/min
to 93 rounds/min by more than 500 %. In the healthy case, the maximum is 0.5 %

higher than the average speed, and the minimum 0.6 % lower than the average.
This is substantially increased in the error case, with 2.8 % for the maximum and
4.0% for this minimum. This increase/decrease fits qualitatively very well to the
behavior of the model. Quantitatively, the model strongly exceeds the measured
values by a factor of about four. This has several reasons. First, as already men-
tioned, speed can’t be measured instantaneously, but is calculated over a time win-
dow, and is therefore averaged. This implies that the measured speed variations
actually underestimate the true variations. Second, the model exaggerates the
variations, as the available acceleration power of a servo motor and the regulat-
ing influence of the control are not taken into account. Additionally, the coupling
between the bottle and the star is not as strong as assumed.

This result is consistent to the examination of the speed over the course of a
full round in Figure 3.5 right. Interestingly, a distinct pattern in the frequency of
half a round appears. The origin can not be explained with the model above and
can only be conjectured.

As a last examination of the speed magnitude, we examine the effect of dif-
ferent synchronization offsets on the model. Therefore, we fix wcrash strength = 0.2

and vary ∆tdelay. The variation between ∆tdelay = 1.2 − 11.8 ms corresponds to a
realistic lag of ldelay = 1.0 − 10.0 mm. Figure 3.6 illustrates that, in comparison to

29



CHAPTER 3. PHYSICS OF BOTTLE TRANSFER

Figure 3.6: Illustration of the influence of different delay times ∆tdelay on the model. The
crash strength parameter is set to wcrash strength = 0.2.

the variation of wcrash strength, all transition points stay at the same position, but the
variations of the speed strongly increase with higher values of ∆tdelay.

Compare pattern with reality

In a final step, we compare the modeled speed pattern with an electrical current
pattern acquired in a brewery. The electrical current is chosen as it is a measured
signal which is not further processed in the control, and should thus show an
angle-dependent pattern. For that - equivalent to above - we collect data from 10
labeled synchronization error cases, process the current as described in Section
2.4, and average over all handovers and error cases to produce one representative
faulty handover.

In order to be able to compare the speed and the electrical current curve, we
briefly have to go into detail how the motor steering works, as shown in Figure
3.7. Claim 2 states that the motor always tries to reach a defined time-dependent
target position, which is set by the target generator in the main control. In order
to reduce the error between the target and the actual position as quickly as possi-
ble, a motor control translates the error in an actuating signal, which defines the
behavior of the motor, e.g. a current or frequency signal (depending on the type
of motor). Thereby, the strength of the actuating signal depends on the size of the
error term.

So far, we have modeled the motor control only as boundary conditions (start
and end position), and ignored the detailed behavior. This approximation is jus-
tifiable, as the influence of the motor control can be neglected during mechanical
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Figure 3.7: Details on the control system of the motor. The main control provides a
command variable, which is continuously compared to the controlled variable. Depending
on the error and its history, the motor control modifies the strength of the actuating signal.
In the case of the servo motors, the position is controlled, and the actuating signal is, for
instance, the current or the frequency. External influences like crashes can overrule the
behavior of the motor control and modify the actual position strongly. So far, we have
modeled the crashes, with the error term taken as a boundary condition.

error cases; during crashes or times of strong mechanical coupling, the physics de-
fine the behavior and overrule the motor control. Only in the acceleration phase,
the motor control strongly influences the speed in order to minimize the error
term. This phase is modeled above in a simplified way, and deviations to the
measured signal can be expected.

Even if the actuating signal cannot change the behavior of the machine during
crashes and coupling phases, the motor control nevertheless tries to react to the
error term at all times. This reaction influences the electrical current. In the
following, we will model the resulting actuating signal depending on the error
term between target and actual position. The detailed response of the motor to the
actuating signal strongly depends on the kind of the motor and thus we determine
a generalized ’feedback signal’, which should reflect the current in a qualitative
way. The motor control is modeled as the popular PID-controller, which tries to
minimize the error e(t) by combining a proportional (P), integral (I) and derivative
(D) feedback:

u(t) = Kpe(t) +Ki

∫ t

t0

e(t′) dt′ +Kd
de(t)

dt
, (3.26)

The three terms are summed with weighting factors Kp, Ki and Kd. The pro-
portional term tries to minimize the present error, the integral term considers
the past, and the derivative the future. In servo motors, the controller is usually
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Figure 3.8: The two figures represent a single handover, consisting of a crash, strong
coupling with the other star and, in the end, the acceleration phase. With respect to Figure
3.4, the plot shows the angle spectrum from −ε1 = 0.086 rad to ε2 = 0.155 rad. left: The
calculated actual position of the star (dashed orange) and target position (green) during a
crash is shown with respect to time. At the start of an handover, a crash causes the target
and actual position to diverge. During the handover, the angular difference stays roughly
the same. After the handover, the actual angle catches up with the target. right: From
the angle difference, an estimated PID-response of the control is shown (dashed red),
and compared to the measured electric current pattern (blue). The PID response take a
proportional (P), integral (I) and derivative (D) feedback into account. The two patterns
show strong similarities, despite the highly simplified model.

32



3.4. FAULTY HANDOVER (MATHEMATICAL DESCRIPTION)

constructed in a more complicated way with using a cascade loop of minimizing
position, speed and current [116]. The here modeled PID-controller simplifies the
system by reducing the number of weighting factors.

For simplicity, we choose the weighting factors such that the three terms con-
tribute in similar strengths. Numbers are not given as the weighting factors have
different units and thus are not comparable or meaningful without context. In
addition, the integral and derivative parts are restricted to a small time window
(about 20 % of the handover). Even without parameter optimization, similarities
between the measured electrical current and the optimization response of the con-
trol can be seen in Figure 3.8 right. With optimized weighting factors and time
window, even further similarities could be shown. This has not been performed at
this point, as the real control settings are not known, and thus the optimizations
cannot add any new insights.

Taking the highly simplified model into account, the two curves match surpris-
ingly well. The initial steeper ascending part and slightly slower descending part
are reproduced accurately. Additionally, the peak and the shoulder can be found
in both curves. The main difference between the two curves is length of the shoul-
der, and thus the width of the curve. The model assumes a longer strong coupling
phase between the two stars than the electrical current pattern shows. Thus, the
coupling between the two stars seems to be overestimated by the model.

3.4.5 Potential Model Enhancements

The described model is based on a number of simplifications and assumptions,
which restrict the model to qualitative interpretation. Some of the constraints
could be improved upon:

• Lagrangian improvement:
At the moment, the Lagrangian solution is discontinuous in velocity, and
Gaussian smoothing is performed afterwards in order to achieve a more
physical solution. Adding velocity constraints for all transition points ti to
the Lagrangian would improve the result:

α̇(t = ti) = 0 for ti = {t−ε1 , t−β, tβ, tε2}. (3.27)

• System improvements:

– As described above, the motor control is not considered in the model
yet. In the final acceleration phase, the motor control could contribute
an important factor for the curve shape. Modeling the cascade control
of position, velocity and current controller would allow a more detailed
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analysis. Choosing the weighting factors similar to the ones in the ma-
chine, could improve the output of the model.

– The current model describes the handover process as continuous strong
coupling between the two stars. In an more accurate model, the stars
are just joined with a bottle, which transfers torque between the stars.
As the bottle moves on the tangential of the star, the applied force on
the neighbor star act with an angle at the beginning and the end. This
should lead to weaker coupling. As improvement, an angle-dependent
coupling strength could be modeled during the handover process.

– Most stars perform handovers with two stars (receive and release). So
far, just the faulty handover was considered, and the other one taken as
negligible. In an improved model, the two handovers would be modeled
with different intensities. The overlay of the two handovers could lead
to interesting effects, like forwarding the error to the next star.

• Quantitative improvements:

– Numeric simulations are one possibility to achieve quantitative results.
Specifics of the motor, gears and control can be taken into account with
realistic parameters. In particular, the resulting current can be directly
calculated and compared to the measured data.

– A different option is via improving the data quality. As control-control
communication is possible in high resolution, adding a new control for
data acquisition can increase the data resolution with minimal increase
of the computational load on the production system. Otherwise, a high
resolution can be achieved by mirroring the existing communication
protocols between motor and gear. However, it has to be guaranteed
that no packages are being lost or delayed. Both cases need a powerful
computer in order to manage the data recording and storing.

3.5 Summary

In this chapter, we introduced the physical principles of transporting a bottle in a
star and its handover to a neighbor star. Three observed claims guided the model-
ing of an handover. The equations of motion were determined via the Lagrangian
formalism, and the resulting speed variations were qualitatively compared to the
measured speed in a producing filler in a brewery. For comparing the pattern
with the measured electrical motor current, a simplified model of a motor con-
trol allowed the translation of the speed pattern into an actuating feedback signal.
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Despite the highly simplified models, both comparisons showed undeniable sim-
ilarities on a qualitative level. Mainly, the assumed strong coupling of the two
stars during an handover seems to be exaggerated. Additionally, it was shown in
the model that the variations in speed are directly dependent on the crash inten-
sity (modeled by ∆tdelay and wcrash strength). Potential further improvements were
discussed.

Thus, one can conclude that small crashes caused by a synchronization error
lead to a pattern and behavior similar to the one measured in the electrical mo-
tor current. Without a quantitative analysis, the origin of the electrical current
pattern cannot be uniquely assigned to the synchronization error. Nevertheless,
during a synchronization error, the crashes seem to be a main contributor to the
electrical current pattern. In the following, we will use that insight and the better
understanding of the handover process for choosing anomaly measures in Chapter
5, and for creating error sketches in Chapter 6.
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4 | Semi-supervised Anomaly
Detection - Methods

The last chapter established a physical understanding for the basic principles of
bottle transfer in a filler. A strongly simplified model represented the reality in
surprising detail. Nevertheless, in order to build a machine learning model, which
detects error cases in an early stage, more detailed error data is needed. This
cannot be achieved with a physical model on this approximation level.

An algorithmic approach for detecting error cases without the need of any
error data, is offered by anomaly detection. With no or little error data abnor-
mal deviations can be detected. Though, interestingly, anomaly detection is also
affected by the No Free Lunch Theorem: “[...] averaged over all optimization
problems, without re-sampling, all optimization algorithms perform equally well”
[1]. Consequently, there is no algorithm, which fits all fields of application, but
basic knowledge about the system and a rough idea of error characteristics is al-
ways needed for achieving the best result. In the following, this knowledge will
be extracted from the physical model. Therefore, the simplified model of the last
chapter should give a good intuition for the system and the error characteristics.
This will be used for choosing suitable anomaly algorithms.

In the following, we start with an introduction of anomaly detection in gen-
eral. Then, we establish a popular architecture of semi-supervised anomaly detec-
tion. In the following, a variety of state-of-the-art methods for feature extraction,
anomaly algorithms and anomaly evaluation are introduced. We concentrate on
time series data, and focus on methods which succeeded in comparable fields. In
the end, some selected methods are evaluated, and improvements are proposed.
The next chapter applies the introduced methods on the above described use case.

4.1 Definition of Anomaly Detection

Depending on the application, anomaly detection is known under a lot of differ-
ent names: Outlier Detection, Novelty Detection, Deviation Detection, Exception
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Mining or Change Detection [3]. Analogous to the different names, there is also
a huge variation of slightly different definitions of anomaly detection. One rather
widely accepted was published by Hawkins [49]: “An anomaly is an observation
which deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism”. Esling [29] adds another important feature
to the definition: “Anomalies [. . . ] can be a surprising or unexpected behavior
which is previously not known. It may or may not be harmful.” This implies that
anomalies are in the beginning always neutral, the origin of the new behavior can
be of “unhealthy” origin or can just be a normal behavior which was not seen in
the training data.

In the field of anomaly detection, setups and algorithms can be divided into
three groups depending on the available training data [16, 42] (see visualization
in Figure 4.1):

Supervised Anomaly Detection In the supervised case, normal and abnormal
data is available and marked in the data. The main challenge in this case
is the strongly unbalanced data set, as anomalies are rare events. In terms
of algorithm, a variety of “standard” supervised machine learning methods
can be used, a typical method is Support Vector Machine (SVM) [99]. The
algorithms usually result in a classification of the categories “healthy” and
“anomaly”.

Semi-supervised Anomaly Detection In the semi-supervised case, only data of
the category “healthy” is available. The goal is to classify significant devia-
tions from the healthy data, often also named as reference, as anomaly. The
data in this thesis belong to this category. An variety of different algorithms
will be introduced in detail in the following sections. Depending on the
model, the result will be either a classification or an anomaly score, which
expresses the probability that an anomaly just occurred.

Unsupervised Anomaly Detection In the unsupervised case, data without any
classification is available. Anomalies are declared on the assumption that
the majority of the data is healthy, and anomalies are rare. Statistical Near-
est neighbor based algorithms (e.g. K-Nearest Neighbors) or cluster based
methods (e.g. Cluster-Based Local Outlier Factor (CBLOF)) can be used to
detect this kind of anomaly [42]. Due to the missing reference, the result of
the algorithm is usually a probability score.

Additional to the different data setups, the anomalies themselves can be clas-
sified in different kinds [16, 42]:
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Figure 4.1: Different data setups of anomaly detection[42]

Point Anomaly: A single measurement behaves different than the majority or the
healthy state.
For example, a body temperature above 39°C is a clear anomaly as it deviates
from the normal body temperature.

Collective Anomaly: Not every data point has to be an anomaly by itself, but the
combination or sequence of data points is marking an anomaly.
As example, one transaction of 99 Euro on the bank account is not suspicious.
In contrast, having 100 transactions of 99 Euro within a few seconds can be
a sign for a fraud.

Contextual Anomaly: Depending on the context the data point is classified as
normal or anomaly.
Snow in winter would be normal, whereas in summer it would be definitely
an anomaly.

The majority of anomaly detection algorithms is optimized on point anomalies. In
order to detect collective and contextual anomalies, the data is often transformed
in a way that those anomalies appear as point anomalies. For collective anomalies,
point-like features can be extracted via methods like correlation, aggregating and
grouping. Hence, patterns are encoded in the extracted features. For contextual
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Figure 4.2: Visualization of the steps and iterations in the “CRoss-Industry Standard Pro-
cess for data mining” (CRISP-DM) ([58] adapted from [57])

anomalies the context (here the season or month) can be added as additional
feature.

Thus, it is important to notice, that depending on the transformations, specific
anomalies can be detected or not. For every anomaly detection application, it has
to be considered, which kind of anomalies should be detected.

In the following, we will concentrate on the semi-supervised anomaly detec-
tion. We will introduce the basic architecture, and then, in the following, a selec-
tion of transformations and anomaly algorithms. The words “healthy” and “refer-
ence” data will be used as synonyms, as will “failure” or “error” data.

4.2 Architecture of Semi-supervised Anomaly
Detection

The architecture to set up a semi-supervised anomaly detection is very similar to
the normal supervised machine learning setup, but differs widely in some details.
As basic architecture the widely accepted “CRoss-Industry Standard Process for
data mining” (CRISP-DM) [17, 122] is used (see Figure 4.2) and adapted with
specifics for anomaly detection:
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1. Business understanding:
The first essential step is to understand the goal and motivation of the project.
In the case of anomaly detection, this also includes collecting expert knowl-
edge about possible characteristics of error cases, and understanding in which
cases an alarm leads to added value. Small physical models like in Chapter
3 can provide additional insights.

2. Data understanding:
Data Understanding includes collecting data and gaining basic knowledge
about the data. It is closely linked to Business Understanding, and usually
several iterations between Business and Data Understanding are necessary.
As result of those two phases, the field of the anomaly detection (supervised,
semi-supervised, unsupervised) and the kind of anomalies (point, collective,
contextual) should be defined.
As result of Chapter 2, the goal of this study is to detect collective anomalies
in the angle curve with methods of semi-supervised anomaly detection.

3. Data preparation:

(a) Define reference data:
Semi-supervised anomaly detection is based on training data without
any error cases. This implies that some criteria are needed to select
suitable healthy reference data. The creation of this reference data set
varies a lot from use case to use case. In some cases, questionable data
points can be excluded by data cleaning, while in some others expert
knowledge is necessary. Sometimes, the current state is simply defined
as reference. This step marks a difference to supervised machine learn-
ing.

(b) Preprocessing:
Before the data can be passed to an algorithm, some preprocessing steps
are needed. This can include a variety of different methods like filtering,
normalizing, transforming, resampling or filling missing values.

(c) Feature extraction:
Extracting the characteristics of the data before feeding them into a
model can enhance the results drastically. There are many different
possibilities, depending on the kind of data. The simplest methods are
statistical methods like the average or standard deviation. More com-
plex features like non-linear or blind source methods can also be used.
Section 4.3 will give an introduction to that field for continuous time
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series data and for patterns with fixed length. This step is especially
necessary to detect collective anomalies.

4. Modeling:
Based on the extracted features, a (or several) model is trained. In the case
of semi-supervised anomaly detection, the model generally tries to learn a
representation of the normal state. It also defines a measure to detect vari-
ations from the learned normal state in order to classify them as anomaly.
Section 4.4 will give insights into different algorithms.

5. Evaluation:
The evaluation of different algorithms is one of the trickiest parts of anomaly
detection. Two different layers of complexity have to be considered:

(a) High dependency on use case:
Depending on the use case, the definition of an anomaly and the toler-
ance for false alarms or missed anomalies is different. In some cases, it
is more important to detect and examine every anomaly, even if some
of them are false alarms. This applies, for example, for medical appli-
cations. It is preferred to perform additional tests and prove the person
actually healthy, rather than missing a person with spreading cancer. In
contrast, there are fields that are very sensitive to false alarms, as every
examination is very cost intensive. In a wind farm, some maintenance
can be only performed by an expert flown to the wind turbine via heli-
copter, which makes false alarms prohibitively expensive. In this case,
missing some anomalies has a smaller impact.
As a consequence, in some cases, a specific amount of false alarms can
be allowed. In other cases, multiple algorithms have to be very certain
about the anomaly for a longer time before the alarm is triggered.

(b) Availability of labels:
Use cases differ in terms of availability of failure data. In the semi-
supervised case, there is often no or very little failure data available.
If no error data is available, the anomalies have to be evaluated with
respect to use case specific criteria. One possibility is splitting the refer-
ence data into a training and test set. The number of anomalies, which
are found in the test set, corresponds to the number of false alarms. An-
other approach is using further unclassified data, followed by a manual
evaluation of the detected anomalies by an expert.
If some failure documentation is available, this information can be used
for choosing the best algorithm and tuning of the parameters. However,
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failure documentation for anomalies (or in general predictive use cases)
often cannot be handled the same way as labels in the supervised ma-
chine learning case. The failure documentation just gives information
about the timing, when the failure was detected, whereas the goal of
anomaly detection is to detect the misbehavior ahead of time. A pos-
sible approach to deal with this kind of failure documentation, will be
discussed in Section 4.5.

6. Deployment:
The best performing model (or the collection of models) is deployed and
used for scoring. For every evaluation, the data runs through the same pre-
processing and feature extraction as the training data. The chosen algorithm
determines if the new data is normal or abnormal, and triggers the alarm
when suitable.

7. Feedback cycle:
The user feedback is very essential for anomaly detection. With the infor-
mation, whether the triggered alarm was a false alarm or if actual alarms
were missed, the model can be improved over time. As soon as there are
enough high-quality labels for a specific error case, a supervised machine
learning model can be trained on the failure data. For most cases, the semi-
supervised model will still stay operational, as there are usually new error
cases that are not yet contained in the training data.

In the following section, we will concentrate on the state-of-the-art algorithms for
feature extraction, semi-supervised anomaly models and anomaly evaluation.

4.3 Feature Extraction

In anomaly detection, the feature extraction is a very important part of the analy-
sis, especially in order to detect collective anomalies. This chapter reviews various
state-of-the-art methods. At first, we will concentrate on two groups of features,
which were proven successful in the field of machine failures, namely frequency
and blind source separation based features. Then, we will introduce an approach,
which is based on calculating a huge variety of features. Different packages will
be discussed for this extensive feature extraction approach.

All presented features are global features, which imply that they take the whole
time series into account with which they were fed. They can be easily transferred
to local features, by splitting in the time series in several pieces.
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4.3.1 Frequency based Features

Fast Fourier Transform (FFT)

The standard method to transform a signal into the frequency domain is the
Fourier transform. In particular, the discrete Fourier transform calculates the dis-
crete frequency spectrum X(ωk) with frequencies ωk from a uniformly sampled
signal x(t) of finite length N :

X(ωk) =
N−1∑
n=0

x(tn)e−iωktn , k = 0, 1, 2, . . . , N − 1. (4.1)

The most common numerical optimization, the Fast Fourier Transform (FFT),
was published by Cooley and Tukey in 1965 [24].

The FFT has been proven successful in detecting machine failures, which show
characteristic fault frequencies in the signal. The most prominent examples are
bearing faults [43].

Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) [53] - also called Hilbert-Huang trans-
form - is an empirical method, which allows the extraction of the energy-time-
frequency information of time series. In comparison to the time-independent
Fourier spectrum, the EMD extracts time-dependent amplitudes, split up by differ-
ent frequency bands (as visualized in Figure 4.3). Those bands are called Intrinsic
Mode Functions (IMF). They form a complete and nearly orthogonal basis for the
original signal.

A huge advantage of this approach is the possibility to handle signals with
changing statistical distributions and frequencies over time - the so-called non-
stationary signals. Additionally, the decomposition of non-linear signals is possible
with the EMD.

The extraction of the IMFs is performed in a fully empirical process called
“sifting”:

1. Identify all local maxima and minima of the signal x(t).

2. Determine the upper envelope emax(t) and the lower envelope emin(t) by
cubic spline interpolation.

3. Compute the mean of the lower and the higher envelope: m(t) = (emax(t) +

emin(t))/2.
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Figure 4.3: Example of the extracted IMFs (bottom rows) of the original signal (top row).
The first two IMFs resemble the noise on the signal. IMF3, IMF4 and IMF5 represent the
main frequencies with their modulations over time. IMF6 can be ignored due to the small
amplitudes. The last IMF extracts the trend of the data. It can be noted, the empirical
extraction process sometimes leads to modes with similar frequencies (IMF4 and IMF5),
an effect which is called mode mixing.

4. Extract d(t) = x(t)−m(t).

5. Iterate over the steps 1 to 4 with taking the residual m(t). Stop, when m(t)

is a trend with just one extreme.

Ideally, all d(t) fulfill the criteria of an IMF: First, the number of extrema and zero
crossings must be either equal, or differ at most by one. Second, the envelope
should be symmetric in respect to zero. The first IMF is usually extracting the
noise of the signal, the last the trend.

The EMD comes with some limitations like end effects, mode mixing or a high
computational effort. End effects imply that the EMD is not working properly at
the start and end time points. Mode mixing refers to the situation when an IMF has
components of different frequencies. In order to tackle those drawbacks, several
improvements were developed. We want to mention here the approach of “En-
semble Empirical Mode Decomposition” (EEMD) [125]. The EEMD adds different
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variations of white noise to the signal, calculates the EMD for each variation and
averages over them. This methods allows to reduce edge effects and mode mixing.

For applying the EMD in the field of machine failures, specific features need
to be extracted from the IMFs. The review of Lei [74] presents a large number
of successfully proven features. Further features are still being discovered and
evaluated, e.g. in [126]. In the following, we introduce three common feature
groups:

• The energy content of each IMF Ei and the total energy of all IMFs Etot are
very regularly used features [22, 78, 94, 108]. They are defined as the sum
of all squared values of the IMF

Ei =
N∑
n=1

xi(n)2 and Etot =
I∑
i=1

Ei (4.2)

with N being the length of the IMF and I the number of IMFs. In order
to reduce the influence of the edge artifacts, the edges of the IMF are often
ignored.

• With the help of the Hilbert transform H [23, 47] the IMFs can be trans-
formed into analytic signals. This implies that a real signal x(t) is being
transformed into a complex signal with a non-negative frequency compo-
nent:

x(t)→ x(t) + iH(x(t)) = A(t) · eiφ(t). (4.3)

Thereby, the Hilbert transform introduces a -90° phase shift to the original
signal. The analytic signal allows to extract a time-dependent frequency φ(t)

and an amplitudeA(t), the so-called instantaneous frequency and amplitude.
The average and standard deviation of those two measures were proven as
successful descriptive features. [22, 80]

• Some error cases show their characteristics in the high-frequency spectrum,
mixed into noise. The Teager-Kaiser Energy-tracking operator (TKEO) [83]
is a method to decrease the noise in the high-frequency IMFs, and thus ex-
tract the characteristic anomalies for a specific time t

TKEO t = x2t − xt−1xt+1 (4.4)

with xt being one of IMFs at time t.
To detect high-frequency defects in roles or bearing, Tabrizi [107] calculated
the TKEO for the first three IMFs, summed up each mode, and normalized
the 3d-vector.
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According to literature, the EMD features achieve very good results when the ma-
chine failures give advance notice in the frequency space, e.g. bearing, gear, or
rotor failures.

To be noted, most studies extract the features for one long streak of data. This
stands in contrast to the continuous monitoring that is necessary to detect failures
ahead of time. In this case, the EMD can show an unfavorable behavior: Every
time the EMD extracts the IMFs for the last time period, the IMFs can contain
different or shifted frequency bands. When taking the feature values per IMF as a
vector, this implies that also the extracted feature vector does not stay consistent
over time, but specific frequencies can appear in varying vector entries. We will
discuss this in further detail in Section 4.6.1 and provide a solution for it.

4.3.2 Blind Source Separation - Non-negative Matrix
Factorization (NMF)

The next group of methods - Blind Source Separation (BSS) - are rather generic
methods, whose goal is to separate influences of different origins in the data.

A popular example for visualization is the so-called “cocktail party effect”: Even
if a lot of people are talking, our brain is capable to decompose the incoming signal
into the underlying origins. This allows a listener in a crowded party to focus on
one conversation, or to switch attention to a different one. In a similar way, the
goal of the algorithms is to separate the different sources.

Basic Idea

Mathematically, n recordings of the system with the length m are summarized
to the matrix Vn×m. Thereby, it is most important that the recordings differ
slightly, and show effects of all different origins in different weightings. This can
be achieved by measuring at different spots or times. The number of recordings
has to be equal or larger than the number of sources k which should be sepa-
rated. In order to separate the different origins, Vn×m is being decomposed into
the characteristic modes Hk×m and the weights Wn×k:

Vn×m = Wn×kHk×m with k ≤ n (4.5)

The k modes of Hk×m are representational modes of the different origins. The
weights matrix Wn×k is the superposition weightings for each recording (see Fig-
ure 4.4 for illustration). The heart is the decomposition, for which different algo-
rithms with different properties exist.
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V W
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Figure 4.4: The four 6-dimensional measurements in matrix V4×6 are decomposed into
H2×6 with two 6-dimensional characteristic modes and a weighting matrix W4×2. (modi-
fied from [93])

In order to use BSS as features for semi-supervised anomaly detection, it is
assumed that the weighting vector of the modes in the error case differs from ones
in the healthy case. Thus, in the training phase, the modes Hk×m are fixed and the
weights of healthy samples are learned. In the scoring phase, the new measure-
ment Ṽ1×m is decomposed in the fixed modes Hk×m and the weights W̃1×k, which
are used as features. For that, Ṽ1×m is multiplied with the inverse of (Hk×m)−1:

W̃1×k = Ṽ1×m · (Hk×m)−1 (4.6)

As the inversion (Hk×m)−1 often does not exist, usually the Moore-Penrose
Pseudo-Inverse [92] is used.

Non-negative Matrix Factorization (NMF)

There are a lot of different algorithms grouped within the Blind Source Separation
- mainly differing in the conditions the different characteristic modes Hk×m have
to fulfill. Here, we will just briefly introduce the Non-negative Matrix Factoriza-
tion (NMF). This method stands out for its interpretive modes, which can be very
empowering.

The defining characteristic of the NMF is that all three matrices V, W and H

must be non-negative. This banning of negative values ensures physical proper-
ties. In a physical environment, each effect is usually non-negative and the total
measurement is the positive superposition of all effects. In terms of numerical
implementation, Lee and Seung’s multiplicative update rule [73] is most popular.

In Literature, NMF is used for a variety of tasks. In mechanical engineering,
bearing faults in labs [38] and copper ore crushers [123] are detected as the
NMF learned the characteristic failure pattern of the frequency information. This
approach is especially valuable when several error patterns start to overlap. Addi-
tionally, the NMF succeeded as feature selection method for machine fault diagno-
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Figure 4.5: The “hctsa” package extracts more than 7700 features of each time series (in
this example 1000 features). With the help of labels, the most characteristic features are
selected, which allow an efficient differentiation of the two time series x1 and x2. (extract
from [35])

sis [76]. Interestingly, for facial recognition, the NMF is able to extract different
characteristic features like noses or eyes [72, 19].

4.3.3 Massive Feature Extraction

The most prominent work in the field of generic supervised feature based time
series analysis comes from Fulcher [36, 35, 34]. Instead of focusing on very spe-
cific features, Fulcher’s “hctsa” (Highly comparative time series analysis) matlab-
toolbox covers a collection of more than 7700 different kinds of features. These
include a large variety of statistical measures, linear correlations, stationary mea-
sures, entropy measures, and linear and non-linear model parameters. By provid-
ing a labeled data set, the most characteristic features can be found and used for
classification. With interpreting the extensive feature vector as “DNA” of the data,
the package even allows to find time series with similar behavior acquired in a
completely different field [37].

This work inspired Lubba [79], who reduced the huge number of measures to
a set of 22 features in the C-package “catch22”. Those features were chosen in an
automated manner by minimizing redundancy between the features. When being
tested with over 40 labeled data sets, the package performed just slight worse than
the hctsa package, but gained a speed increased of a factor of 600. Interestingly,
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most of the features are not easily intuitively interpretative, for example “Change
in correlation length after iterative differencing”.

The R package “tsfeatures” [56] has only 16 features that allow a by far easier
interpretation, for instance “entropy”. It is slightly outperformed by the “catch22”
package [79].

Finally, the package tsfresh [21] closes the gap in terms of programming lan-
guage. The Python package has 63 feature algorithms implemented, which effec-
tively provide in total 794 features considering different standard configurations.
To give an example, the feature “percentile” is implemented and evaluated for
four different percentages. This package also allows an automated reduction to
the most important features, for labeled data sets.

So far, these toolboxes have been mainly used as basis for supervised classi-
fication algorithms. With the help of labels, the huge amount of features can be
reduced to the most characteristic set. For classification tasks, this set can then be
fed into later algorithm stages, such as a Random Forest [54, 63, 104].

In the case of semi-supervised anomaly detection - to our knowledge - none
of the packages was used so far. The main reason is that feature reduction is not
possible with unknown characteristics of error cases. Nevertheless, the catch22
features could lay a new foundation for features, and the ability to find time se-
ries with similar behavior in completely different fields could allow to determine
features without any knowledge of the data.

4.4 Semi-supervised Anomaly Measures

Once features are extracted from a time series, the next step for semi-supervised
anomaly detection is the definition of an anomaly measure.

As described in Section 4.2, the models generally try to learn a rich representa-
tion of the normal healthy state. A new incoming measurement is compared with
the learned healthy state, and depending on the deviation, a 1d anomaly proba-
bility is assigned to it. Depending on the probability, the data point is classified as
healthy or anomaly.

In terms of literature, there are barely any papers or reviews explicitly about
semi-supervised anomaly detection, especially in comparison to the rather huge
field of unsupervised anomaly detection [42, 60, 86]. Also survey papers about
anomaly detection introduce the different setup types, but barely reference to
them later-on [16, 127]. The main reason is that methods optimized for one group
can be also used under specific conditions for a different group. To give an exam-
ple, under the assumption that semi-supervised training sets are never completely
clean of anomalies, unsupervised methods can be used by setting the anomaly ra-
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Figure 4.6: Overview over different classes of point anomaly methods, and classification
by the author if the algorithms are mainly thought or implemented for supervised, semi-
supervised or unsupervised applications. (class structure from [16])

tio to a very small number. Similarly, there are few supervised algorithms, which
can handle partly labeled data, even if just one class got labeled [6]. Even if the
transfer is often possible, it is always important to be aware of the assumption the
algorithm is based on, as the result strongly depends on them. For that reason,
we will mark all semi-supervised algorithms, which were originally implemented
for the unsupervised case - though this information is often not explicitly given in
literature.

Anomaly detection is a very active research field with a lot of publications per
year. In terms of algorithms, though, the leading survey was written by Chandola
in the year 2009 [16]. Since then just few completely new ideas were added. The
main research is about applying the existing methods in a variety of new fields
[2, 28, 133] and optimizing them for special cases, like huge data sets, a very high
number of dimensions or mixed data types [127].

As none of the extreme cases will apply to the data in this study, we will fol-
low the main structure of Chandola [16] as shown in Figure 4.6. The section will
present different classes of anomaly algorithms, briefly introduce their premise,
and explain one or two algorithms each. We restrict ourselves to point anomalies
as the preceding feature extraction already transformed the contextual and collec-
tive information into a feature vector. Just two methods for collective anomalies
will be mentioned in the end.

4.4.1 Statistical Measures

The most intuitive measures are the statistical measures. The main assumption is
that “normal data instances occur in high probability regions of a stochastic model,
while anomalies occur in the low probability regions of the stochastic model.”
[16]. There are two different classes of stochastic models:

• For the class of parametric techniques, the stochastic model is defined by
a parametric distribution, e.g. a Gaussian distribution. Typical methods
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Figure 4.7: Illustration of Mahalanobis Distance. The larger the distance, the more likely
the point is an anomaly. (extract from [31])

include the box plot rule [114], Grubb’s test [44], student’s t-test. [105,
106], χ2 - statistic [128] or Gaussian Mixture Model.

• For non-parametric techniques, the model structure is generated by his-
tograms or kernel functions. A good overview can be found in [16].

The most important question for the success of the model is always the choice of
the stochastic model: Can the normal data be estimated with Gaussian distribu-
tions, or does it follow a different distribution pattern?

In the following, we introduce an anomaly measure based on the Mahalanobis
distance, which is a rather simple measure for n-dimensional Gaussian distributed
data. Despite its simplicity, is shows great results in quite a few studies [14, 133].

The measure calculates the distance to a fixed reference point with taking the
different variance in each dimensions into account. The reference point can be
fixed in different ways. Popular choices are the average or median of the training
data

~µ = (µ1, µ2, µ3, . . . , µN)T (4.7)

with µi being the average or median of the i -th dimension in respective. The dis-
tance measure - the so-called Mahalanobis distance - is defined by the covariance
matrix S, which takes the variances in the different dimensions into account:

DM(~x) =
√

(~x− ~µ)TS−1(~x− ~µ). (4.8)

This one-dimensional distance measure DM can be interpreted as an anomaly
probability. The further the point away, the more likely it’s an anomaly. With the
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help of the healthy reference data, a border between normal and anomaly can be
defined.

This anomaly measure is very successful for Gaussian-distributed reference
data, but fails for more complex structure. Another drawback is that there are
cases, in which the calculation of the covariance matrix is tricky. To give an exam-
ple, the covariance matrix cannot handle data, which is constant in one dimension
in the reference data, though this dimension might be the most characteristic one
for error cases.

The Mahalanobis distance is implemented in the python package sklearn [96],
there called “Elliptic Envelope”. The border is defined by specifying the ratio of
anomalies in the training data. This allows the algorithm to be used in an unsu-
pervised and a semi-supervised setup - depending on the chosen ratio.

4.4.2 Classification Measures

The next class of algorithms originates from supervised machine learning algo-
rithms. In a supervised classification use case, every measurement is assigned to
a specific class, e.g. cat, dog or parrot. In the case of anomaly detection, there
are in principle just two classes: normal or anomaly. This allows the adaption
of some supervised machine learning algorithms for anomaly detection. Meth-
ods reach from one-class classification algorithms over Bayesian networks to rule
based algorithms [16].

In comparison to the statistical measures, most classification algorithms can
handle reference data which form complex structures in the n-dimensional space.
Some algorithms can also deal with categorical data. The main disadvantage is
that no probabilistic score is being calculated. Additionally, there are cases, in
which the reference data form several classes, often called multi-class anomaly
detection. Though quite a few algorithms were developed for those cases [7, 27],
they are tricky to use in a semi-supervised setup as labeling of the different classes
within the reference data is needed.

In the following we will give an brief overview over different recent develop-
ments in one-class classification algorithms:

One-class Support Vector Machine (OC-SVM) In general the Support Vec-
tor Machine (SVM) uses the ability to lift the data points xi, i ∈ [1..n] into a higher
dimensional feature space F. In this space, non-linear decision boundaries can be
created simply by hyper planes. In the case of the One-class Support Vector Ma-
chine (OC-SVM) according to Tax and Duin [110], the data is transformed into
the feature space with the goal of finding circular boundaries that are laid around
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Figure 4.8: The One-class Support Vector Machine lifts data points in a higher dimension,
in which the healthy data can be contained by circular boundaries with center a and radius
R.[45]

the data. As visualized in Figure 4.8, the radius R between the center a and the
outer boundaries is minimized with allowing a soft margin via a slack variable ξ
and a penalty parameter C to avoid overfitting:

min
R,a

(
R2 + C

n∑
i=1

ξ
)

(4.9)

with constraints ||xi − a|| ≤ R2 + ξi, ξi ≥ 0 for all i = 1, ...n

According to Bengio [10], one-class SVM reach their limits when being applied
to very complex and high dimensional data sets.

One-class Neuronal Network In the case of complex and high dimensional
data sets, different approaches, which can be summarized by One-class Neuronal
Network (OC-NN), are an ongoing research topic. In some cases, hybrid ap-
proaches use Autoencoder for deep feature extraction, which are then fed into
OC-SVM [103, 28]. In other cases, OC-NN use a one class SVM as a loss function
of the neural network [15, 97].

4.4.3 Clustering Measures

Clustering algorithms are in general unsupervised methods with the focus on find-
ing cluster structures in the data. Under specific assumptions, those methods - or
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Figure 4.9: left: For a SOM, the distance to the closest cluster centroid or the closest
neuron is taken as anomaly measure.
right: In Assumption 3, the large cluster 1 and the small cluster 3 would be defined as
anomalies.

variations of them - can be also used for anomaly detection. The algorithms can
be categorized in three different kind of assumptions [16]:

• Assumption 1: Normal data instances belong to a cluster, while anomalies do
not belong to any cluster.
Methods following this assumption are for example DBSCAN [30], OPTICS
[5] or the FindOut algorithm [130]. Those methods are often computation-
ally not optimized for anomaly detection. Additionally, their main focus is
on unsupervised anomaly detection, as the main goal is to find anomalies in
the data.

• Assumption 2: Normal data instances lie close to their closest cluster centroid,
while anomalies are far away from their closest cluster centroid.
One of the most popular and successful methods in this category are Self-
Organizing Maps (SOM) [65]. The positions of the neurons are trained with
the reference data. As illustrated in Figure 4.9 (left), for a new data point,
the distance to the nearest neuron or the closest cluster centroid is taken as
anomaly measure. This method works especially good in the semi-supervised
setup.

• Assumption 3: Normal data instances belong to large and dense clusters, while
anomalies either belong to small or sparse clusters.
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Figure 4.10: This image visualizes the difference between global and local nearest neigh-
bor techniques: For global measure, the sparse cluster 1 will be classified as anomalies,
whereas for local measures not.

The Cluster-Based Local Outlier Factor (CBLOF) [50] or k-d trees [18] make
use of this definition. An example is shown in Figure 4.9 (right). Cluster 1
and Cluster 3 are declared as anomalies in this definition. Those methods
are exclusively used for unsupervised anomaly detection.

4.4.4 Nearest Neighbor Measures

The nearest neighbor techniques are also mainly optimized for the unsupervised
case. The assumption is that normal data group in dense neighborhoods, whereas
anomalies occur far from their closest neighbor [16]. The premise is thus similar
to some clustering algorithms, but the dense areas are not expected to form well-
behaved clusters.

The methods can be split into global and local methods. The global methods
take the density of all points into account for the anomaly classification. Methods
are e.g. the distance to the k-th nearest neighbor or the average to the k-nearest
neighbors. In comparison to that, local methods compare the density of the new
point to the density of its neighbors. Methods are e.g. Local Outlier Factor (LOF)
[12] or Connectivity- based Outlier Factor (COF) [109]. Figure 4.10 visualizes
the difference between local and global measures, local measures will handle the
imaged cluster Cluster 1 as normal, whereas global measures are likely to classify
Cluster 1 as anomalies.
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4.4.5 Spectral Measures

Spectral anomaly detection is one of the few methods, which is explicitly devel-
oped for the semi-supervised setups. They follow the premise that data can be
transformed into a lower dimensional subspace, in which “normal instances and
anomalies appear significantly different” [16]. We will have brief look into two
methods:

• Principal Component Analysis (PCA)
The PCA is usually known as dimensionality reduction method. The algo-
rithm searches for a set of linearly uncorrelated variables called principal
components, and orders them according to their variance. For reducing the
number of components, the ones with the least variance are ignored. The
error, which is caused by that reduction is called reconstruction error.
In case of anomaly detection [100], the reference data is also projected on
a lower dimensional set of principal components and the corresponding re-
construction error is noted. For new data points, the same transformation
is applied and the reconstruction error is monitored. A high reconstruction
error is a sign for an anomaly. Interestingly, for anomaly detection, one can-
not just leave out the components with the least variance but also other sets
like the ones with the highest variance. In this way, anomalies significant in
different components can be also detected.
This method is a very easy and fast anomaly measure but works best for
ellipsoidal shaped training data.

• Autoencoder
Autoencoder are neuronal networks which try to reduce the number of nec-
essary neurons without loosing much information. It consists of two parts:
the encoder compresses the data and the decoder tries to reconstruct the
original again. As training measure, the reconstruction error is used. In this
way, the goal of an Autoencoder is to find the balance between a very com-
pact representation and a small reconstruction error.
This network is perfectly suitable for semi-supervised anomaly detection.
The neuronal network learns a compressed version of the healthy reference
data. If the reconstruction error raises during scoring, the data point is de-
clared as anomaly. There is a variety of different configuration of Autoen-
coder, especially good results were found with Variational Autoencoder [4].
The hidden layers of an Autoencoder allow to learn complex structures of
the training data. But this goes hand in hand with high computational com-
plexity and a black-box model, which cannot be visualized as easily as most
of the other methods.
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Those methods have the big advantage that they can also handle high dimensions
and complex structure. They are especially popular as a preprocessing step. Nev-
ertheless it is often difficult to prove that the premise is fulfilled. Additionally, for
Autoencoder, the high computational complexity cannot be neglected.

4.4.6 Information theoretic Measures

Anomaly detection techniques based on information theory assume that anoma-
lies induce irregularities in the information content of the data set [16]. There
are different possibilities how to calculate the information criterion. Here, three
concepts will be introduced:

• In information theory, the “Kolomogorov complexity” [75] declares a group
of measures, which describe the computational resources. An interesting
example is using the size of the compressed data file as anomaly measure.

• The Spearman rank-order correlation coefficient is a non-parametric mea-
sure of the monotony of the relationship between training data set X and
the scoring data set Y . For the calculation the data sets are each ordered in
size and each value is assigned to a rank number rgx and rgy. The Spearman
coefficient is based on the Pearson correlation coefficient (see next Subsec-
tion 4.4.7), but with using the ranks in place of the actual values [66]:

rs = corr(rgx, rgy) (4.10)

In comparison to Pearson correlation coefficient, the two data sets don’t need
to be normally distributed.

• The Kullback-Leibler (KL) divergence and the Jensen-Shannon (JS) diver-
gence are entropy measures, which compare the distributions of two data
sets. In the semi-supervised anomaly context the new data distribution is
compared to the healthy reference data and provide fast information if the
data is drawn from the same distribution.
The KL divergence is used in a lot of different fields, and is also known as
information gain. It is a measure how well information is being compressed.
For discrete distributions P (x) and Q(x), the KL divergence is defined as
[81]:

DKL(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (4.11)

The JS divergence improves the KL divergence by transforming the score into
a symmetric smoothed measure between zero and one:

JSD(P ‖ Q) =
1

2
DKL(P ‖M) +

1

2
DKL(Q ‖M) (4.12)
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with M =
1

2
(P +Q).

Those information measures can be powerful tools, but the result - for sure - de-
pends strongly on the choice of the information measure.

4.4.7 Collective Anomaly Measures

So far, all introduced methods detected point-like anomalies, with ignoring the
temporal or sequential information.

The number of methods for collective anomalies is limited as usually the data
is being transformed by the above described feature extraction methods. In this
way, collective anomalies show up as point anomalies.

To complete the picture, we introduce two direct anomaly methods for collec-
tive anomalies. They are based on the constraint that the patterns are aligned and
have a constant length.

• One method is to learn the average curve and its confidence interval. As
soon as the curve deviates too often or too far from the learned curve, an
anomaly is present. This method is good if the confidence interval of the
curve varies within the curve and small details are not of huge importance.

• Another method is the Pearson correlation coefficient. It gives a fast intuition
about the linear correlation of the training curve X and the scoring curve Y
[121]

corr(X, Y ) =
cov(X, Y )

σXσY
(4.13)

with cov(X, Y ) being the covariance of these two variables and σ the corre-
sponding standard deviation.
The correlation coefficient gives a fast and easy method to detect differences
in the shape. In comparison to the above method, the correlation coefficient
just takes one healthy curve. Thus, confidence intervals should be reason-
ably small. Additionally, just the shape is taken into account, the amplitude
is ignored.

4.5 Anomaly Evaluation

In this section, we introduce a method for comparing the different anomaly algo-
rithms for the case of Predictive Maintenance. The main challenge is the unknown
timing when the failure actually started. Often, the only available information
is the time stamp when the error was detected by the on-site staff and repaired.
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Figure 4.11: Scoring example of NAB score. The stars represent the detected anomalies
by the algorithm, and the blue curve is the sigmoid weighting function for the error cases
detected at t = 0. Here, the NAB score calculates as −1.0AFP + 0.999ATP − 0.8093AFP −
1.0AFP with ATP and AFP being the weighting constants for True-Positive and False-
Positive. [70]

This makes a special evaluation method necessary, which rewards early detection
and punishes random anomalies. Commonly used evaluation scores like confusion
matrix are not able to take those aspects into consideration and their results can
be thus misleading.

Numenta Anomaly Benchmark (NAB) [70] is a score which can tackle those
conditions. It is based on the assumptions that anomalies are rare events, and
that a maximum time window between the failure start and the detection can be
defined, a so-called “anomaly window”. The earlier the algorithm detects the error
case within the anomaly window, the higher the found anomaly is rewarded. As
pictured in Figure 4.11, every anomaly window is modeled by a sigmoid function
with the zero-crossing at the event time y:

σA(t) =
(
ATP Θ(y < 0) + AFP Θ(y > 0)

) ( 2

1 + exp(5y)
− 1
)
. (4.14)

0 ≤ ATP , AFP ≤ 1 are respective the weighting for True-Positives and False-
Positives and y the relative position of the detection in the given anomaly window.
Θ represents the Heaviside function. As every event should be just considered
once, just the earliest detected occurrence counts. This implies that a failure de-
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tected at the beginning of the anomaly window contributes with approximately
+1, a failure detected at the same time as the on-site people contributes with 0,
and a random anomaly without context of an event is rated with -1. For an overall
score, all individual scores are summed up, with additionally adding the number
of missed events f weighted by a false-negative constant −1 ≤ AFN ≤ 0 :

SA =
(∑
y∈Y

σA(y)
)

+ AFNf. (4.15)

In order to receive a score between 0 and 100, the score is normalized with “per-
fect” detector SAperfect and the “null” detector SAnull:

SANAB = 100 · SA − SAnull

SAperfect − SAnull

(4.16)

A very essential part of the algorithm is fixing the weightings of True-Positives
ATP , False-Positives AFP and False-Negatives AFN . As already introduced in Sec-
tion 4.2, use cases differ strongly in their tolerance for false alarms or missed
anomalies. In cases in which false alarms cause high costs, the weighting of False-
Positives should be increased. In cases in which undetected failures are not accept-
able, the weighting of False-Negatives should be enhanced. This allows a flexible
adjustment to different use cases.

As noted in [102], the respective formula for Eq. 4.14 was erroneous in the
original paper [70]. Thus, it was corrected here according to example in the paper
and the implemented code on which [70] is based on.

The NAB evaluation method was proven successful in other use cases [2],
but was also harshly criticized from Singh [102]. Points of criticism were the
difficult choice of the anomaly window size, the unexplained magic number of
“5” in Eq. 4.14, and the implementation, which cannot handle non-equidistant
data. Whereas the choice of the anomaly window can be fixed for every use case
with expert knowledge, and small modifications of the implementation allow non-
equidistant data, a major drawback was surprisingly not mentioned by Singh. Al-
though the NAB score is explicitly designed for real-world data, it can run into
problems for a labeled data set acquired in a non-academic context. For instance,
some error cases are detected and repaired right after emerging, even before they
can show any signature in the data. If this happens more often (which is a sign for
well trained staff), the NAB score can prefer a random generator over any data-
based anomaly score. We will discuss and illustrate this drawback in further detail
in Section 4.6.2 and provide an improvement.
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4.6 Improvements Methods

In the following, we will pick two of the above discussed methods and provide
some improvements in terms of stability and usability for semi-supervised anomaly
detection.

4.6.1 EMD for Semi-supervised Anomaly Detection

As described in Section 4.3.1, the Empirical Mode Decomposition (EMD) decom-
poses a signal into its Intrinsic Mode Functions (IMF), each of which contains
information of a specific frequency band. Applying the EMD to a signal at sepa-
rate time intervals, the EMD optimizes the IMFs for each time interval separately.
Consequently, a specific frequency band is not always represented by the same
IMF, but can vary in different time intervals. This happens in particular, when
specific frequencies don’t appear all the time (like error frequencies).

This leads to a major problem for semi-supervised anomaly detection. Taking
the anomaly measure “energy per IMF” as an example, the energy vectors over
time have the energy for specific frequencies at different positions in the vector.
Comparing those vectors directly easily leads to misinterpretation. This can be
seen in Figure 4.12, the IMF2 carries completely different frequency information
on the left (104 Hz) than on the right (152 Hz). Additionally, the number of ex-
tracted IMFs can vary, which makes a comparison of vectors with different lengths
very difficult.

This challenge has already been reported in a couple of papers in different
contexts. Zhao [132] reports a similar issue for data from multiple sources and
uses a multivariate EMD in order to tackle it. Faltermeier [32] aims to monitor
time series in a continuous manner, and therefore proposes a new approach of a
Sliding EMD.

In this thesis, a different approach is proposed for the case of semi-supervised
anomaly detection. First, the EMD extracts the IMFs in a normal manner, then, a
small matching algorithm assigns each IMF to a specific order number depending
on its frequency:

1. Create Reference IMF (RIMF):
In the training process, the EMD decomposes the signal during a healthy
time period into its IMFs. Those are used in the following as Reference IMFs
(RIMFs). The Hilbert-Huang Transform (HHT) extracts the instantaneous
frequencies of each IMF. If the average frequency for an IMF differ less than
10% to another one, they are summarized to one IMF. For that the new IMF is
the sum of the old IMFs, and the frequency is the mean of the old frequencies.
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Figure 4.12: Extract from a Reference IMF and a Scoring IMF, and their matching via the
average instantaneous frequencies. All IMFs, whose frequencies differ by maximum 10 %,
are matched together. Scoring IMFs, whose frequencies are not represented in the Refer-
ence IMF, receive the negated next higher order number. If several IMFs are mapped to
the same order number, they are summed and considered as one IMF for the following fea-
ture extraction. This allows direct comparability between IMFs extracted independently
for different time intervals.
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Thus, RIMFs with similar frequency bands are summarized to one RIMF.
Additionally, all IMF with negative frequencies are summarized to one IMF.
According to the algorithm, negative frequencies are not possible, but small
negative frequencies appear nevertheless due to numerical inaccuracies.
As result, each RIMF is mapped to a distinct frequency and an order number
[1, .., n], which sorts the RIMFs by frequency.

2. Map to Reference IMF:
During the scoring process of a new time interval, the new IMFs are mapped
to the RIMFs. Equivalently to the training, the HHT extracts the mean fre-
quencies of each IMF. If the frequency varies less than 10% to a reference
frequency, the IMF is mapped to the according RIMF, and receives its order
number. All IMFs that cannot be mapped to a RIMF, use the order number
of the next higher RIMF, and negate it. It can happen that several IMF are
mapped to same order number. In this case, they are summed to one IMF.
Same as for the RIMFs, all IMFs with negative frequencies are summed to
one IMF. Thus, every IMF is matched to an order number, which is posi-
tive in case the frequency band occurred in the RIMFs, and negative if the
frequency lies between two frequency bands in the RIMFs.

This matching algorithm maps all similar IMFs to a specific order number, which
allows comparison. It has to be noted that every IMF is assigned to an order num-
ber, but not every order number is assigned to an IMF. This has to be considered
for the evaluation of the EMD features.

For visualization, the vector “average instantaneous amplitude per IMF” for the
Reference and Scoring IMFs in Figure 4.12 is a vector of the length 13 with the
order numbers {−6, ..,−1, 1, .., 7}. All order numbers which do not appear, are
replaced with zeros. Thus, the two vectors look like:

~aRIMF =
[
0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.04 0.01 0.01 0.00 0.00 0.16
]T

~aScoring IMF =
[
0.00 0.00 0.02 0.00 0.00 0.03 0.06

0.00 0.00 0.66 0.00 0.06 0.71
]T
.

These features vectors are directly comparable and can be used as basis for
semi-supervised anomaly detection algorithms.
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4.6.2 Improve NAB score for real-world Labels (iNAB)

As already mentioned in Section 4.5, the Numenta Anomaly Benchmark (NAB)
score can run into problems for a labeled data set acquired in a non-academic
context. We will introduce possible characteristics of such a data set, visualize the
effects on the NAB score, and then provide an improved NAB score.

Data sets published in academia usually have rather high quality labels, as they
are mainly used for comparing newly developed algorithms to a reference. This
stands in contrast to labels acquired in industry. Particularly three aspects decrease
label quality significantly:

Some error cases are not documented. The job of the machine staff is to keep
the machine running, and not to provide a full documentation. In some
stress situation, it can happen that documentation is missing or incomplete.
Additionally, maintenance activities performed outside of production times
are just fragmentary documented, as they are not needed for internal man-
agement reports.

Staff repairs error cases right after emerging. Faults often don’t build up over
a long time, but are caused by an unrelated machine crash. When check-
ing the machine afterwards, the staff directly detects and repairs the error.
Technically, those error cases should not be considered for any algorithmic
evaluation. Distinguishing between sudden faults and faults which build up
over time is often not possible by the labels. Even with the corresponding
documentation, it is difficult to determine if only the crash, or the crash in
combination with a pre-damage lead to the final error. Thus, there are al-
ways documented error cases, which - by principle - cannot be detected in
the data.

Some error cases cannot be detected in the available data. As example, a mo-
tor failure can be caused by either a mechanical or an electrical origin.
Whereas mechanical origins usually show characteristic patterns in the torque
and temperature of the motor, an electrical short-circuit or a problem in the
machine network leave those sensor data rather unaffected. Excluding those
error cases from the evaluation is not possible. Even with a detailed error
description, nobody can guarantee that the error case cannot be seen in the
data without examining the data in great detail.

Those three effects can lead to undesirable consequences when comparing dif-
ferent anomaly algorithms via the NAB score. Figure 4.13 illustrates this by cal-
culating the NAB score for a data-driven score and a Random Generator on ex-
emplary data. Non-documented error cases (in the Figure case 2) decrease the
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Figure 4.13: Visualization of the three possible cases, case 1 (t = 3.5) appears in the labels
(red vertical lines) and the data, case 2 (t = 8.0) appear just in the data, case 3 (t = 13.0)
just in the labels. The NAB score is evaluated exemplary once for an anomaly probability
created by a data driven algorithm (2nd row), and once for a random generator (3rd
row). Anomalies (orange stars) are extracted from the anomaly probability by defining
a limit. As NAB weighting factors, the standard profile is taken: ATP , ATN = 1 and
AFP , AFN = −1. The top figure shows the sigmoid function with which every found
anomaly is multiplied. The anomaly window is chosen to ∆t = 3.3. The data-driven
anomaly score calculated via 0.64 ·ATP − 7 ·AFP + 1 ·AFN yields to a score of −7.36. The
NAB score for the random generator outperforms with (0.99+0.86)·ATP−4·AFP = −2.15

substantially the score for the data-driven anomalies. Nevertheless, both scores perform
worse than the null reference SAnull = −2, which leads each to the normalized score of
SANAB = 0. Consequently, by using the definition of Lavin [70], it can happen that the NAB
score does not carry any relevant information.
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score drastically, as every detected anomaly separately counts as false-positives,
whereas every detected error case just counts as one true-positive. Thus, scores
can loose their information content, and even worse, can be outperformed by ran-
dom generators or the null reference.

In reality, the influence of the extreme punishment varies strongly with the
data set, and usually a random generator is not explicitly used as anomaly algo-
rithm. Nevertheless, some anomaly algorithms usually fail and their results re-
semble strong similarities with a random generator. Consequently, the NAB score
cannot be fully trusted, and the result of the winning anomaly algorithm always
has to be rechecked manually.

In order to receive a more reliable result, we suggest the following three im-
provements to the NAB score (iNAB):

Ignore single anomalies within anomaly windows. Only if at least N anoma-
lies are detected in a row, the earliest one is used for the score. The pa-
rameter N has to be adjusted to the nature of the data. Due to statistics,
even N = 2 or N = 3 has a large impact on the quality of the NAB score.
This small change decreases the chance of a random generator to achieve
a true-positive drastically. As side effect, anomaly algorithms producing a
“smoothed” anomaly score will be privileged over noise scores, as they usu-
ally fulfill the additional rule faster. To enable noise scores also to win, single
hits in the window are ignored and not punished.

Add data-driven error cases. The principle is based on majority voting. If the
large majority of algorithms is pretty sure about an anomaly, or some algo-
rithms are extremely sure, an additional error case is marked in the data. For
this, we propose following procedure: Every anomaly score is normalized by
its 98 percentile to guarantee comparability. In case the average score of all
scores exceeds 80%, the final time point will be added to the documentation
of error cases. This procedure can be performed only if a sufficient number
of algorithms is evaluated, which additionally examine different characteris-
tics of the data. As guideline, at least 20 different settings should be used.
This should not pose a problem, as the NAB score is explicitly designed for
comparing a number of different algorithms. Additionally, it is based on the
assumption that the large majority of algorithms produce meaningful results
and just a small minority acts as random generator.

Add artificially created reference scores for comparison. In order to get a bet-
ter feeling how well the scores are really performing, we propose adding
several references created by Random Generators, which are based on dif-
ferent distributions. All algorithms which perform similar or worse than any
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of those references should be taken with caution. To be noted, the additional
references should be added after determining data-driven error cases to not
influence the result.

Figure 4.14 applies the improvements to the example above, and calculates the
iNAB scores. Adding the additional data-driven error case increases significantly
the data driven score. Additionally, ignoring single anomalies in anomaly windows
has a large impact on the Random Generator, as not a single true-positive can be
generated. Thus, the data-driven score is now able to significantly outperform the
Random Generator.

Summarized, the NAB score [70] can fail in handling real-world label effects,
though claimed in the publication. With three improvements, the improved NAB
score (in the following iNAB) has the potential to be a by far more stable and
meaningful score. In order to ensure the functionality on real-life data and labels,
the two scores will be compared and evaluated in Section 5.4.

4.7 Summary

In this chapter, an introduction into the field of anomaly detection was given,
with a focus on the semi-supervised kind. After defining the meaning of anomaly,
the different steps of a study were explained on the basis of the CRISP-DM cy-
cle, and differences between a machine learning study and an anomaly detection
study were pointed out. After that, algorithms for different steps of a study were
introduced. For extracting characteristics of the data, a variety of feature extrac-
tion methods was presented, which already proved successful in related use cases.
Based on the extensive review study of Chandola [16], an exemplary selection of
semi-supervised anomaly methods was established with emphasizing the differ-
ent premises. For comparing the different anomaly methods, an approach called
NAB score was introduced, and critically analyzed. In the last section, a new ap-
proach was discussed, which allows using the EMD in a semi-supervised anomaly
setup. Additionally, improvements on the NAB score were suggested and proven
successful on a small exemplary data set.

This chapter was just able to give a brief overview over the very broad field
of anomaly detection. The choice of algorithms depends a lot on the use case,
and the kind of anomalies which should be detected. A contribution to the further
development on anomaly detection was made.
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Figure 4.14: Evaluation of the NAB improvements on the example in Figure 4.13, all pa-
rameter are set accordingly.
First, the second error case is detected in the data and added to the list of error cases. Sec-
ond, all single anomalies in an anomaly window are ignored with N = 3 (black crosses).
This improves the NAB score for the data driven anomalies significantly from −7.36 to
(0.64 + 0.89) · ATP + 1 · AFN = 0.53, leading to SAiNAB = 58.8. The random generator
cannot generate a hit for any error cases, and looses with 3 · AFP + 3 · AFN = −6 and
SAiNAB = 0. The small example demonstrates the effect of the improvements, and show
their effectiveness. The data-driven anomaly score is now clearly the winner.
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5 | One-shot Semi-supervised
Anomaly Detection - Study

This chapter will link together all previous chapters. The anomaly detection al-
gorithms introduced in the last Chapter 4 will be applied on the data of bottle
transport error cases, which were motivated in Chapter 2. The physical under-
standing of the system of Chapter 3 will assist for choosing a selection of feature
extraction methods and anomaly algorithms.

The approach of anomaly detection in the field of special mechanical engineer-
ing is very promising, as no data of error cases is required, and it allows easy
transfer between similar machines that differ in details. Although anomaly de-
tection is already established in a lot of fields, there is a special challenge in this
case. The goal is to find an algorithm, which detects anomalies in patterns reli-
ably with using as little resources as possible. The training data is restricted to
one healthy pattern as manual labeling of longer times for every new machine is
not feasible. This leads to the new concept of one-shot semi-supervised anomaly
detection. Additionally, resources for scoring new incoming patterns are strongly
restricted as well. The calculation has to be performed on an edge device without
interfering with other services running on the device. This excludes approaches
like multi-model solutions with majority vote.

In this study, a variation of different algorithmic setups will be challenged. The
winning algorithm will be compared to a score based on the physical properties
discovered in Chapter 3, and the concept of Transfer Learning will be tested. Ad-
ditionally, the functionality of the iNAB score, introduced in Section 4.6.2, will be
examined on real data.

5.1 Structure Study

The study is structured in the CRISP-DM cycle as introduced in Section 4.2. For
better orientation, Figure 5.1 visualizes the main steps with including a small
image of each step.
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• Prepare labels for 
„Improved NAB Score“

• Determine model with 
most stable score 

• Definition of 
“healthy”

• Calculate results 
for a selection of 
semi-supervised 
anomaly 
algorithms

• Determine 
electric current 
pattern over 
angle

• Bottle transport 
error cases in 
Glass Fillers 

• Physical 
interpretation of 
measured values 

Figure 5.1: Schematic structure of the study based on the CRISP-DM cycle (modified from
[58]). This chapter will concentrate on the fields of modeling and evaluation.
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The first three steps of the cycle - Business Understanding, Data Understanding
and Data Preparation - were already discussed in Chapter 2 and 3. The most
important insights can be summarized in the following way:

Business Understanding Bottle transport errors in Filler stars were recognized
as one of the main causes of loss of production time.

Data Understanding Considering the physical behavior of the machine, built-in
sensors in motors, which drive the transport stars, seem rather sensitive to
error cases. Taking the implementation of the control into account, the elec-
trical current is the most suitable candidate as it responds rapidly to changes
in load (in comparison to, for example, temperatures), and the recorded val-
ues are raw values, which are not yet processed or averaged in the control.

Data Preparation As the sampling rate of the recorded data is too low for de-
tailed analysis, a trick was developed within this thesis. Additionally to the
current, an angle position of the star is logged. Taking the two measures
into relation, an average current per angle interval is calculated, and a high-
resolution pattern can be extracted. This routine is performed every hour on
all production data.

The two following steps, Modeling and Evaluation, build up on those findings. In
the Modeling Section 5.3, a collection of semi-supervised anomaly detection algo-
rithms will be selected in order to find anomalies in the data. In the Section 5.4,
the stability of the newly developed iNAB score is tested. In the Evaluation Sec-
tion 5.5, the different algorithms are finally compared to each other with different
stability criteria based on the iNAB Score.

As already mentioned in the introduction, the main challenge will be the sta-
bility of the algorithm despite strongly restricted resources:

Restricted training data The training data is very limited. The expert marks just
one sample as healthy.

Restricted scoring resources Running the calculation on an edge device, the com-
putational power is limited. It is not possible to calculate several resource-
intense algorithms and perform a majority vote.

Stability of result The result has to be very stable and should not depend inten-
sively on the training data as there are variations of the healthy state which
should be all classified as healthy. This generalization is one of the main
challenges in one-shot learning.
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5.2 Details about Data and Labels

The study is performed on data, which was acquired by a filler in a beer brewery.
The machine is running with a production rhythm of always two production days
and one maintenance day. Data was recorded over the course of five months from
April 2018 to September 2018 with a resolution of 100 ms. During that time, 15
transport errors were documented by the machine operators. All of them affected
the infeed starwheel. Thus, the focus will be on this particular transport star. It
has to be noted that just errors that lead to a loss of production time of at least 10
minutes were noted, and that there is no documentation available about repairs
in maintenance windows. The error cases are documented on a daily granularity
without any information about the exact timing of the event.

5.3 Modeling: One-shot Semi-supervised Anomaly
Detection

As introduced in Section 4.1, semi-supervised anomaly detection always consists
of two steps. First, some data is labeled as a healthy reference. This data should
not contain any error cases. Here, due to the one-shot setup, just one healthy
state is defined. Second, all further unlabeled data is compared to the reference
in order to find anomalies. The characteristics of the data are often extracted via
feature extraction, which precedes the calculation of the anomaly measures.

5.3.1 Label Healthy States

The first very essential step is labeling a healthy state. For this study, the healthy
state is defined by a Krones machine expert. He chooses a time window in which
no error case is documented, and then checks the angle-current curve by eye. With
experience and knowledge about the machine setup, he assesses the curve.

As the final goal of this study is to transfer the results to further motors and
bottling plants in a larger scale in future, some practical aspects are highlighted.
When choosing the healthy state, the expert usually cannot access months of data,
but just one to two weeks. This implies that the data is limited, and for practical
reasons just one healthy state is defined. Additionally, depending on the timing,
the defined healthy state may vary, as the machine is naturally subject to small
fluctuations. For the anomaly detection, it is very important that the result is not
strongly influenced by those variations. In order to test this stability, the Krones
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Figure 5.2: Those ten curves were classified as healthy states by an expert. Each of them
will be separately used as reference curve.

expert chooses for this study in total 10 healthy curves, spread over almost five
months.

Comparing the chosen healthy curves in Figure 5.2, they show in general a
similar behavior with variations in amplitude. This is encouraging as it seems that
the fluctuations over time are small and the machine returns to a similar healthy
state after error cases.

5.3.2 Feature Selection

Section 4.3 introduced a variety of feature selection methods that proved success-
ful in detecting machine failures. In this comparative study, most of them will be
used in order to analyze their behavior. In the following, the specific settings are
defined.

Frequency based Features

Both, the physical examination of the system, and the strongly oscillatory behavior
of the reference curves, suggests the usage of frequency based features. The Fast
Fourier Transform (FFT) and the Empirical Mode Decomposition (EMD) will be
used in the following.

The FFT is used as a data transformation in the frequency space, and the result-
ing frequency-amplitude information is used as a long feature vector. Additionally,
taking the knowledge of the physics chapter into account, once the amplitude
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of the handover frequency, and once the sum of the handover frequency and its
multiples, are taken as separate features.

For the EMD, the ensemble variant EEMD is used with averaging over 100
settings. To ensure comparability, the mapping algorithm proposed in Section
4.6.1 is used. As reference IMFs, the IMFs of the above defined reference curves
are taken. The mapping is performed for every reference curve separately, thus
in total 10 times. In terms of features, the following eight are chosen (definitions
can be found in Section 4.3.1):

Energy content: Total energy of all IMFs Etot, Energy vector of all IMFs ~E =

[E−n+1, .., En] with n being the number of IMFs for the reference

Local amplitude: Vector with the average of the local amplitude per IMF, Vector
with the variance of the local amplitude per IMF

Local frequency: Vector with the average of the local frequency per IMF, Vector
with the variance of the local frequency per IMF

Teager-Kaiser Energy-tracking Operator (TKEO): TKEO vector of all IMFs, TKEO
vector of IMF -3 to 3 (similar to [107])

For calculating the EEMD, the package PyEMD of Laszuk [69] is used.

NMF

As introduced in Section 4.3.2 the Non-Negative Matrix Factorization (NMF) sep-
arates patterns from different origins in different components. Having a lot of
different moving parts in the machine that are driven by the same motor, the NMF
is expected to separate those different origins efficiently.

For the training of the NMF, several curves are needed. As the labeling only
provides one healthy curve, twenty neighbor curves are taken for the training.
This adds some randomness to the extracted modes, depending on whether the
healthy curve is embedded in healthy curves or faulty curves. This should not
compromise the anomaly analysis, as the weighting factors are always compared
to the healthy curve.

Additionally, the parameter “number components” has to be set, which spec-
ifies the number of influences. As the number of influencing components is not
known, the NMF is calculated for a set of two, three, five and ten components.

The NMF implementation of scikit-learn [91] is used in the following.
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Global Features

Three sets of global features will be used for the study.
The first set is the collection of standard statistical features: mean, standard

deviation, minimum, 25% percentile , median, 75% percentile and maximum.
As second set, the large number of features defined in the package ’tsfresh’ [21]

are used. This package was introduced in Section 4.3.3. Without having error
data, the dimensional reduction offered by the package is not possible. Ignoring
features that are mainly zero, reduces the number of features from 670 to 514.

In contrast to this extensive feature set, the third set is the reduced set of in
total 22 features of the package ’catch22’ [79].

It will be interesting how those three contrary approaches will perform in com-
parison to each other.

Noise Reduction (Optional)

Every described method can be combined with an optional process of noise re-
duction ahead of the feature extraction. Reducing the noise has the potential to
enhance the significance of the extracted features, assuming the noise does not
contain any significant information.

The EEMD, as introduced in Section 4.3.1, is used as noise reduction algorithm
[69]. By removing the first IMF from the signal, the high-frequency information is
eliminated.

5.3.3 One-shot Semi-supervised Anomaly Measure

In Section 4.4, a variety of anomaly measures was introduced. Taking the one-
shot setup with only one single “healthy” reference into account, just a small set
of algorithms is feasible for this use case. In the following, the five most promising
anomaly measures of different categories are chosen.

Statistical Measures: This set of measures are based on the assumption that the
distribution of healthy data can be described with a statistical model. With
just one sample, it is not possible to estimate a distribution. As a trial, nev-
ertheless, the Mahalanobis distance will be evaluated. Similar to the NMF, in
order to estimate the covariance matrix, in total 20 curves before and after
the reference curve are taken into account. This adds an uncontrollable fac-
tor to the evaluation, as the labels of the other 19 curves are unknown. It is
assumed that a time point declared as healthy is embedded in a healthy time
window, and the effect should be small. Nevertheless, variations between
the 10 chosen reference samples are expected. The Mahalanobis distance
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will be used for global feature sets, in which the different components are
not comparable and need scaling.

Classification Measures: Most classification measures, which are suitable for semi-
supervised anomaly detection, for instance OC-SVM, depend strongly on a
sufficiently big labeled data set, and tend to act rather sensitive to incorrect
labels. Thus, an approach of choosing further random curves similar to the
Mahalanobis distance is not suitable here.

Clustering Measures: Clustering algorithms rely on large amount of data. This
stands in contrast to the prerequisite that the anomaly detection should start
working after just 1-2 weeks of data. Additionally, the algorithms usually
require a large history of data for the evaluation, which conflicts with the
limited scoring resources.

Nearest Neighbor Measures: Equivalently to the clustering measures, nearest
neighbor distance can be usually only calculated with large amount of data.

Spectral Measures: Those measures show their true potential for high dimen-
sional spaces. This criterion is fulfilled here, with for example taking every
angle window as its own dimension. Nevertheless, those methods also rely
on a large number of healthy samples in order to find a suitable represen-
tation. This is not fulfilled, and thus no spectral measure is taken for this
study.

Information theoretic Measures: In contrast to the measures ahead, the Spear-
man rank-order correlation coefficient and the Jensen-Shannon (JS) divergence
work with one sufficiently long healthy sample. Both compare the distribu-
tion or monotony of two samples without needing any further information.
Those seem pretty well suitable for comparing the pure curve and the FFT
curve as both of them are sufficiently long (>100 samples). The number
of bins for the JS divergence is set to 50. The result seems to be rather
independent of the number of bins.

Collective Measures: Point-to-point comparable patterns with fixed lengths are
perfectly suitable for collective measures. Two measures are chosen: First,
the rather simple point-to-point euclidean distance, and second, the Pearson
correlation coefficient. Both measures depend on the fact that all dimensions
have the same unit, and that changes in any dimension are weighted the
same. Nevertheless, the euclidean distance is used on all possible features in
order to provide an alternative to the Mahalanobis distance, though knowing
that features in the global features will be weighted differently depending on
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their size. The correlation coefficient needs a long enough sample for stable
result, and is therefore used for the pure curve and the FFT.

All measures are transformed into an anomaly probability or distance: The
higher the value, the more likely an anomaly is present. Consequently, for the
scores of Pearson correlation and the Spearman rank-order correlation, high cor-
relations are assigned to small anomaly probabilities, no correlation and anti-
correlations are assigned to high anomaly scores.

All 44 combinations of feature extractions and anomaly measures can be found
in Table 5.1. For each of them, an anomaly probability or distance is calculated. In
case the calculation of one sample fails for some reason, it is assigned to normal
(probability equals to 0).

5.4 Evaluation iNAB

In this section, the error cases are prepared once according to the NAB, and once
according to the iNAB procedure. In both cases, the procedure is slightly adapted
to the use case. The results are compared to ensure the reliability of the improved
iNAB score.

5.4.1 Error case preparation NAB

As mentioned in Section 5.2, 15 transport errors on a daily granularity are docu-
mented. In the following, those are transformed into anomaly windows, and the
weighting factors are defined.

Definition of Anomaly Windows

For the NAB score, anomaly windows are defined around every error case in order
to reward early detection. In comparison to Lavin [70], the window size is not
calculated by a rather arbitrary estimation, but is set to two days, in accordance to
the maintenance intervals of the production line. This ensures that detected error
cases can be always scheduled for the next non-productive time for examination.

As the machines are not running every day (for instance due to maintenance in-
tervals), defining a fixed two-day-window leads to an inconsistency of the anomaly
windows: During non-production, no score can be calculated, and thus, no anoma-
lies can be detected. This inconsistency was also mentioned in Singh [102]. Here,
this can be fixed easily by expanding the anomaly windows always to the last
production day. Thus, the anomaly windows can span more than two days.
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Figure 5.3: The anomaly windows expand all documented error days to the previous
production day. Overlapping anomaly windows are summarized to one anomaly window.

As last step, overlapping anomaly windows are summarized to one anomaly
window to avoid double-counting of the same error case. Successive error cases
are not combined under the assumption that detected anomalies are immediately
repaired, and thus disappear on the day of detection. In this way, anomalies which
appear one or two days later are considered independent of the previous.

This procedure leads to 14 anomaly windows with lengths between two and
four days (Figure 5.3).

Definition Weighting Factor

The definition of the weighting factors for True-Positive ATP , False-Positive AFP
and False-Negative AFN , is performed as proposed by Lavin: “The standard profile
assigns TPs, FPs, and FNs with relative weights [..] such that random detection
made 10% of the time would get a zero final score on average.” [70] As 10 % marks
in the paper the total length of all anomaly windows, this number is adjusted to
the corresponding 15 % in this study. The standard profile is chosen to ATP = 1.0,
AFP = 0.064 and AFN = −0.064, which fulfills the condition described in the
paper.
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Figure 5.4: The documented error days are marked in gray. Data driven error days are
added, if one quarter of the algorithms is to at least 90 % sure about the anomaly. Those
days are marked in orange.

5.4.2 Error case preparation iNAB

The error case preparation of the iNAB score works equivalently to the NAB score
preparation, with the additional step of adding data driven error cases.

Data Driven Error Cases

As described in Section 4.6.2, error case documentation is often not as reliable as
hoped. As false positives over longer time periods are strongly punished by the
NAB score, the iNAB score adds data driven error cases. In this study, anomalies
are added, if at least one in four algorithms is at least 90% certain about the
anomaly. In order to make all 440 calculated scores comparable (44 algorithms
with each 10 reference curves), each of them is normalized by its 98%-quantile. As
shown in Figure 5.4, 14 days fulfill the condition, of which two are already in the
documented list, and four are ahead of documented error days. In combination
with the documented error cases, the iNAB score is based on 27 error days.

Definition of Anomaly Windows

The procedure of defining the anomaly windows is performed completely equiva-
lently to the NAB score. Though doubling the number of error days, the number
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Figure 5.5: The anomaly windows expand all documented and data-driven error days
to the previous production day. Overlapping anomaly windows are summarized to one
anomaly window.

of anomaly windows is just increased by one to 15. As illustrated in Figure 5.5,
the windows span between two and seven days.

Definition Weighting Factor

The weighting factor is also determined equivalently to the NAB score. By adding
the data driven error cases, the total length of anomaly windows increases to
about 25 %. This leads to slight adjustment of the weighting factors to ATP = 1.0,
AFP = 0.053 and AFN = −0.053.

5.4.3 Comparison NAB and iNAB

To ensure the functionality of the iNAB score, the three proposed improvements
and their interplay are checked in the following based on the data of this study.

For each algorithm, the anomaly probabilities of the ten reference states are
combined to a group, normalized, and the NAB and iNAB scores are calculated for
each anomaly probability with the above determined parameters for a variety of
thresholds. The introduced parameter N for the iNAB score (length of subsequent
anomalies needed for a true-positive) is set to N = 1, 2, 4. For each threshold, the
minimum NAB/iNAB score per group is taken, in order to receive the score for the
worst performing reference. In this way, if the algorithm fails for one reference,
the whole algorithm is scored worse. The maximum score per group is taken. In
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order to reduce complexity in the evaluation, all scores with active noise reduction
are ignored for the comparison. Evaluations in the next section will show that the
influence of denoising is negligible in this study.

As proposed in Section 4.6.2, three random generators - drawn from a normal,
a gaussian, and an exponential distribution - are added as artificial references.
For each distribution, ten samples are drawn and processed accordingly to the
data-driven algorithms.

All results can be found in Table 5.6. The two additional improvements are
analyzed step-by-step in the following.

Performance of original NAB score (NAB, N=1)

The original NAB score can be found in the first column in Table 5.6. Two obvious
observations can be made:

1. All data-driven scores achieve NAB scores around zero. This implies that
those algorithms perform in average as well as a random generator, which
places 15 % anomalies at random positions. Thus, it seems, none of the
algorithms is performing well.

2. The only score, which achieves a NAB score significantly above five, is the
gaussian random generator. This destroys the meaningfulness of the score,
as all data driven algorithms are outperformed by a random generator.

Consequently, the NAB score does not provide a useful score for comparing differ-
ent algorithms.

Improvement 1: Add data-driven error cases (iNAB, N=1)

As first improvement, the documented error cases are expanded by the data-driven
error cases. It is clearly visible that most data-driven scores improve their perfor-
mance significantly to a score above 20. Additionally, larger differences between
algorithms appear. For instance, the euclidean distance of the Fourier transform
performs well with a score of 26.9, whereas the Mahalanobis distance of the
tsfresh-package fails with a score of 0.

Nevertheless, the gaussian random generator still performs best with a score
of 39.3. As well, the exponential random generator is in the upper half with a
score of 25.1. Thus, different data-driven algorithms can be compared with this
improvement. However, random generators still manage to perform similarly well.
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Figure 5.6: Comparison of the NAB score with the iNAB scores with N = 1, 2, 4. Three
random generators (printed in red) are added to a set of data-driven algorithms (details
see in Table 5.1). The original NAB evaluation (column 1) results in scores around zero,
which implies a similar performance as an average random generator. By adding data-
driven error cases (column 2), the result of all algorithms improve significantly to up to
26.8. Increasing N to N = 2 (column 3), the artificially added random generators can be
clearly separated from the other scores. The impact of increasing to N = 4 (column 4) is
limited.
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Improvement 2: Increase N (iNAB, N=2; iNAB, N= 4)

As second improvement, detected anomalies are only considered as true-positives
if N anomalies are detected in a row. The parameter N is set to N = 2 and N = 4

in the following.
The increase of N has a large impact on the random generators, as all three

scores are decreased to values around zero. Additionally, other data-driven scores
are also substantially reduced, for example the average of the instantaneous fre-
quency of the EEMD from 23.8 to 3.0. Thus, it seems, more algorithms acting
like random generators, can be identified. All other scores seem to be rather un-
changed with the increase of N .

A further increase from N = 2 to N = 4, decreases most of the scores slightly,
as it favors stable anomalies. This leads to slight changes in the order of the high-
score, but with few exceptions the central interpretation stays the same.

Summary

Summarized, the combination of adding data-driven error cases and increasing N
leads to a significant increase of meaningfulness of the scores. Random generators
can be detected reliably, and data-driven scores show significant differences in
performance. A further increase from N = 2 to N = 4 has only a limited impact.

5.5 Evaluation Anomaly Algorithms

In this section, the 44 different combinations of features and anomaly algorithms
are evaluated. For that, a set of evaluation scores is defined, which focus on the
stability and usability of the methods. The evaluation is performed in several
rounds, only the best performing algorithms continue into the next round. The
winning algorithms will be investigated in further detail and compared to a phys-
ical based score.

5.5.1 Evaluation Scores

In the original paper of the NAB score [70], the maximum NAB score is taken
as the final measure for comparing different anomaly algorithms with each other.
This is an accepted academical way to show that a new algorithm is performing
better than already existing ones. In order to be able to use the score in the one-
shot real-life applications, other considerations are at least equally important in
order to receive a reliable result:
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1. Insensitivity to small variations of the healthy state
As already mentioned above, over time, slightly different states can be marked
as healthy states. The anomaly measure should perform insensitive on those
variations of the reference state and generalize successfully.

2. Broad boundary between normal and abnormal
All scores return a continuous probability or distance measure as result,
which first needs to be transformed into a binary normal-abnormal signal.
This transformation is tricky as it has to be fixed at the beginning, when the
shape and intensity of error cases is not yet known. Thus, it is essential that
the chosen anomaly method gives a similar result for a wide range of trans-
formations. The easiest transformation is by setting a threshold. Anomaly
methods, which reach a high iNAB score for just a very specific threshold,
cannot be transferred to a different star with achieving a reliable result.

3. Limited Resources
The computational power is limited, as the calculation runs on an very re-
source limited edge device. Other jobs on the edge device are not allowed to
be disturbed.

In order to fulfill all three aspects, the iNAB scores are preprocessed in a particular
way, and different characteristics of it are extracted.

The first criterion is already handled by the preprocessing procedure. For each
of the 44 algorithms, the anomaly probabilities for the 10 different reference states
are combined to a group, and normalized to its 99.5 percentile, taking all time
points into account. This enables comparability of the different groups without
overestimating peaks, in which the algorithms are overly confident (see Figure
5.7 top). For each of the algorithms, the iNAB score with N = 2 is calculated
in dependence of the binary normal-abnormal threshold. This results in 10 iNAB
score curves per group. As the focus lies on the insensitivity to small variations
of the reference, each group is characterized by its minimum curve. This implies,
for every threshold, the smallest iNAB score is taken in order to receive a base-
line accuracy. This minimum curve serves as the basis for further scores, and is
visualized in Figure 5.7 bottom (dark blue).

Resource Usage The first criterion is the resource usage. A full comprehensive
test on an edge device is difficult to perform, as the load and the settings of
the edge device differ over time and line setup. In order to achieve a rough
estimation, the evaluation time is measured on a laptop (details see Section
2.6) and averaged over at least 30 samples. As all calculations are performed
on the same laptop, a comparability between the algorithms is ensured. A

87



CHAPTER 5. ONE-SHOT SEMI-SUPERVISED ANOMALY DETECTION - STUDY

Figure 5.7: Visualization of the evaluation scores on an exemplary anomaly algorithm
applied on three different reference states.
Top: For each reference state, the anomaly probability over time is calculated, and the
group of the three anomaly probabilities is normalized by its 99.5 percentile. Comparing
the probabilities with the documented anomaly windows, the algorithm performs decent
with being trained on reference 1 (blue) and 3 (green), but fails with reference 2 (orange).
Bottom: For each threshold (separating anomaly from normal, see example top) and ref-
erence, the iNAB score is calculated. The minimum iNAB score (dark blue) is determined
and serves as base-line accuracy for all further scores. In this example, reference 1 and 3
achieve iNAB scores above 20 for a wide range of thresholds. Nevertheless, due to refer-
ence 2, the minimum iNAB score does not perform very well with a 75% quantile of zero
(equals random generator) and a streak above five with the length of about 0.1.
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Figure 5.8: Visualization of Skewness [51]

calculation time below 10 seconds is acceptable, below one second would be
favored.

Longest streak of iNAB score above five The second criterion is the longest streak
with iNAB score above five. This provides a base-line criterion for the broad
boundary between normal and abnormal. The number five is chosen to be
slightly above zero, in order to allow distinction from random generators.

75% Quantile of iNAB score The third criterion is the 75% quantile. This mea-
sure provides a similar information as the maximum, with the difference
that the broad boundary between normal and abnormal is also taken into
account.

Skewness of iNAB score As last criterion, the statistical measures skewness is
used in order to classify the shape of the iNAB score. The skewness is defined
as the third standardized moment:

s =
E
[
(X − µ)3

]
σ3

(5.1)

with µ being the mean, σ the standard deviation and E the expectation oper-
ator. The measure is particularly suitable here as it quantifies the asymmetry
of a distribution (as shown in Figure 5.8). The goal is to find an algorithm,
whose iNAB score consists mainly of high scores and has thus a strongly neg-
ative skew. For the calculation, just iNAB values above five are considered,
in order to ignore the tail for large thresholds.

In the following, the four measures are evaluated one after the other. After
each evaluation, just the best algorithms are allowed to proceed.
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Figure 5.9: Calculation time for all different setups ordered by size (Round 1). All setups
stay underneath a calculation time of 10 seconds.

5.5.2 Evaluation

Round 1: Resource Usage

The scoring time is averaged over at least 30 samples in order to receive a reli-
able result. As visualized in Table 5.9, all scores range from 3.0 · 10−5 sec to about
6.0 sec. Thereby, all calculations based on the EEMD (including all denoised mea-
sures) or the tsfresh-package take significantly longer than the other algorithms.
As all algorithms manage to finish their calculation within 10 sec, none of the algo-
rithms is already excluded in this round. Nevertheless, in case algorithms perform
similarly well in future rounds, the algorithms with shorter calculation time will
be favored.

Round 2: Longest streak of iNAB score above five

The longest streak of the iNAB score above five provides several sets of informa-
tion. First, a length equal to zero implies that the maximum iNAB score is below
five. Thus, those algorithms can be discarded as they behave similarly to random
generators. Secondly, very short streaks lead to the conclusion, that a result better
than five can just be achieved for very specific thresholds. Even if the maximum
was incredibly high, those algorithms are not interesting, as hitting this small win-
dow without any error data is rather impossible when training a new machine.
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Figure 5.10: Result of the longest iNAB streak above five for all algorithms (Round 2).
The three artificially added random generators are marked in red for reference. Most
algorithms perform very well with streak lengths above 0.4. All scores marked with green
proceed into the next round.

Thirdly, it is possible to achieve streaks even longer than one. As the groups are
normalized to its 99.5 percentile, anomaly probabilities above one can appear.
Here, the threshold is swept between 0 to 1.2, resulting in a maximum possible
streak of 1.2. Algorithms close to the maximum streak length are extremely sure
about few specific anomalies. This can be a good sign, but does not allow any
conclusion for the overall performance.

The results of this round can be found in Figure 5.10. Most of the algorithms
perform very well with streaks above 0.4. Examining the low-performing algo-
rithms, specific patterns can be detected. All algorithms with the Mahalanobis dis-
tance (shortened in the Figure to “mah”) as anomaly algorithm fail independently
of the preprocessing. To get a better understanding of this phenomenon, scores
of the statistical features evaluated with the Mahalanobis distance are depicted in
Figure 5.11 for different reference states. One can clearly see that the three scores
perform very differently. Whereas reference 4 (orange) is performing very well,
reference 2 (blue) fails. Thus, the Mahalanobis distance reacts too sensitive on the
reference state or its surrounding, which are needed for the covariance matrix.

Evaluating the results of the EEMD, most scores perform very well with the
exception of the frequency evaluation (eemd freq std, eemd freq avg). This could
have been expected, as the goal of the IMF matching algorithm (Section 4.6.1) is
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Figure 5.11: Exemplary iNAB curves of the Mahalanobis distance applied on the statistical
features for three different reference curves. The different references lead to completely
different results, resulting in a low minimum iNAB scores for the algorithm. Thus, the
Mahalanobis distance can achieve very good results, but it is strongly influenced by the
chosen reference.

to match similar frequencies into the same IMF. Thus, it is a sign that the proposed
algorithm is performing as expected.

Finally, the Spearman rank-order correlation of the Fourier transform performs
badly. Considering that the Fourier transform is mainly around zero for most
frequencies with just a few specific peaks, it is not surprising that a rank-order
score has trouble handling this kind of distribution.

At the end of Round 2, nine algorithms are excluded, with leaving 35 algo-
rithms for Round 3.

Round 3: 75% Quantile of iNAB score

In Round 3, the 75% quantile of the iNAB score is examined. It provides informa-
tion about the performance of the algorithms for the TOP 25% iNAB scores, which
corresponds with a threshold range of 0.3 (as the maximum threshold is set to
1.2).

The results in Figure 5.12 show that a lot of algorithms perform similarly well,
with one clear winner (Pearson correlation of the Fourier transform) and one clear
looser (euclidean distance of tsfresh features). Denoising the data has a negligible
influence on the result. As consequence of Round 1, all setups with noise reduction
are ignored in the following, in order to keep the calculation time low.
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Figure 5.12: Result of the 75% quantile for all algorithms in Round 3. The TOP 10
algorithms without noise reduction (marked in green) will continue into Round 4.

In terms of global features, the tsfresh package performs worst with 5.68,
catch22 reaches the center field and the statistical measures reaches the TOP10.
Here, a final conclusion about the packages must be taken with caution. As all
of them are evaluated with the euclidean norm, some features may be over- or
underrepresented.

In the next round, the TOP 10 algorithms (ignoring the ones with noise re-
duction) will continue (marked in green). Surprisingly, those consist of a broad
mixture of different algorithms. Frequency based algorithms are as prominent as
algorithms based on the unprocessed curve, or algorithms based on the statistical
features. Thus, it seems like the error patterns show very distinct characteristics
in a variety of extracted features. The only algorithm that drops out collectively is
the NMF. Though being in the TOP 5 algorithms of maximum iNAB scores (see Ta-
ble 5.7 column 3), all setups based on the NMF can be found in the lower half for
the 75% quantile, independent of the chosen number of components. Thus, the
NMF detects anomalies successfully, but performs worse in separating the normal
from the abnormal state.

Round 4: Skewness of iNAB score

The last round is based on the skewness, which measures the asymmetry of the
iNAB scores. The lower the skewness, the more values can be found in the range
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Figure 5.13: Result of the skewness for all algorithms in Round 4. All algorithm yield a
negative result with the Pearson correlation of the Fourier transform as the winner.

of high iNAB scores. It is evaluated for the iNAB scores above five, in order to
ignore the low-iNAB score tails for large thresholds.

Figure 5.13 shows the results of the TOP10 algorithms of Round 4. All of them
yield negative values, leading to the wanted behavior. The winning algorithm is
the same as in Round 3: the Pearson correlation of the Fourier transform. In order
to gain a better understanding and validate the result, the TOP 3 iNAB scores are
plotted in dependence to the threshold (see Figure 5.14). One can clearly see that
the Pearson correlation of the Fourier transform (blue) reaches the highest iNAB
score, and keeps it for a large range of thresholds. In contrast, the Jensen-Shannon
divergence (green dash-dotted) just peaks shortly to a high iNAB score, though
keeps the slightly lower score for a broader range of thresholds. Consequently,
the winning method does not win every round of this study, but finds a balances
between the different requirements.

Conclusion

In this study, a large variety of algorithms were compared to each other by differ-
ent stability measures. Surprisingly, with a maximum iNAB score of 26.8, none of
the algorithms could detect all or even most of the documented error cases reli-
ably (which would yield to a iNAB score of 100). It seems like some error cases
are not represented in the data, either they were detected and fixed right after
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Figure 5.14: iNAB score in dependence of the threshold for the 3 winning algorithms of
Round 4.

emerging, or they had an origin that does not lead to any characteristics in the
data. The study yields a clear winner with the Pearson correlation of the Fourier
transform. Interestingly, the physically motivated score with taking the station fre-
quency in the Fourier spectrum as anomaly measure manages a good spot in the
TOP4 algorithms.

In the next section, the winning score and the physically motivated score will
be investigated in further detail. Afterwards, the winning score is applied to data
of different bottlers in order to evaluate the idea of transfer learning.

5.6 Compare Winning Method with Physical
Method

The physical score and the winning score of the study are based on very similar
features, both relying on the frequency spectrum, with the physical score only
examining the station frequency, and the Pearson correlation taking the whole
spectrum into account. Due to the good performance of the physical score, it seems
that most error cases can be detected by just considering the station frequency.
Nevertheless, the Pearson correlation manages to extract additional information
resulting in a better score.

In order to investigate the two scores, the anomaly probabilities over time aver-
aged over all reference states are depicted in Figure 5.15. Comparing the anomaly
probabilities with the documented and data driven anomaly windows, the win-
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Figure 5.15: Comparison of the winner algorithm (Pearson correlation of Fourier trans-
form) with a physical motivated algorithm (Station frequency of Fourier transform). The
two scores behave in a similar manner with exceptions on June 4th and July 19th.

ning algorithm detects six of the 15 error cases reliably (probability above 0.5),
one with a probability of 0.4, and one with about 0.2, leading to a detection rate
of 46.7%. Thereby, the algorithm detects four error cases significantly before spot-
ted by the operator, some even several days ahead. Even if not all error cases are
detected, it is a good sign that error cases can be detected ahead of the on-site
people, and thus the approach provides useful information in the field of “Predic-
tive Maintenance”. The physical algorithm detects most error case at exactly the
same times with slightly different probabilities: It recognizes four error cases reli-
ably, one with 0.2, and one with 0.1. Major differences between the scores can be
found on June 4th and July 19th. Those error cases are detected by the Pearson
correlation with a very high anomaly probability, but are missed completely by the
physical approach.

For examining this observation, in Figure 5.16, one anomalous angle pattern
is chosen that was detected by both algorithms (April 17th, 07:00), and one that
was just detected by the Pearson correlation (June 4th, 18:00). The pattern, which
was detected by both algorithms (top left), shows the characteristics of a synchro-
nization error, with a strongly enhanced amplitude of the station frequency in the
frequency spectrum (top right). The frequency here is measured in the unconven-
tional unit “peaks per round” as it allows an easy translation to the mechanical
properties of the machine. 26 peaks/round matches with number of stations and
the theory of Chapter 3. The second error case on June 4th shows a completely
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Figure 5.16: Two error cases detected by the algorithms, each as angle pattern (left)
and Fourier spectrum (right). Top: Characteristic synchronization error with strongly
enhanced station frequency. Bottom: Error pattern with saw-tooth shape, changing the
frequency pattern with leaving the station frequency almost unchanged.

different pattern (bottom left). The pattern has a saw-tooth shape with a by fac-
tor five smaller amplitude in comparison to the first error case. In the Fourier
spectrum (bottom right) a broad band of frequencies are slightly enhanced, with
keeping the station frequency roughly the same. Thus, the winning method out-
performs the physical measure for this error case, as it detects changes in the
pattern in a sensitive way, which are not represented in the physical model.

As a consequence, the physical model based on insights of Chapter 3 performs
very well for synchronization errors, but fails for error cases, which produce a
different shape. In contrast, the winning algorithm of this study is much more
sensitive to other shapes and generalizes very effectively. Thus, both approaches,
the physical simulation and the generalized anomaly approach, show their advan-
tages. The physical score provides a reliable result for the simulated error case,
and allows an instantaneous specification of the error case, but fails to detect any
other anomalies. The generalized anomaly approach detects all different kinds of
anomalies, but doesn’t allow any interpretation. Consequently, the combination
of anomaly detection with specialized models enables the detection of all kinds of
anomalies with providing additional information to some of them.
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5.7 Transfer Learning to other Bottlers

As final step of this study, the generalization of the winning algorithm to further
stars and bottlers is checked. It is very essential that the one-shot semi-supervised
anomaly detection approach can be easily transferred to a new star, with just one
healthy sample in the training phase, and no available error cases of that new
star. Thereby, the challenge of the transfer consists of two parts: First, does the
algorithm in general detect anomalies reliably, and second, how to set the limit to
differentiate normal from abnormal.

Here, the first part can be only evaluated in a sample-based qualitative way.
Though having data of other stars and production sites available for several months,
no or not sufficient error documentation for the time windows exist. Thus, a ran-
dom set of detected anomalies can be examined by an expert, but the number of
missed error cases cannot be quantified as the ground truth is missing.

For the second part, the Pearson correlation coefficient has the advantage that
it already scales the result between -1 and 1, and thus limits of the study could
be transferred directly to different stars. Analyzing the comparative study, normal
and abnormal can be easily separated: Correlation coefficients above 0.98 yield
the classification “normal”, coefficients below 0.965 “anomaly”. In the group of
anomalies, most anomalies can be found between 0.90 and 0.965, with three ex-
ceptional anomalies with correlation values between 0.73 and 0.85. These limits
serve as orientation for the transfer to further stars.

Three stars of two additional breweries B and C are used for the transfer learn-
ing test. Different locations in the machine are chosen in order to generalize the
test in a further dimension. Star 1 of bottler B is an infeed wheel (equivalently to
the star in the study), star 2 of bottler B is positioned after the filling carousel, and
star 3 of bottler C after the crowner. For each star, a reference curve is chosen by
an expert. As depicted in Figure 5.17, these reference states differ from each other
by frequency, amplitude, mean and general pattern, as various machine settings
influence the reference curve. This reinforces the concept of transfer learning, as
a reference state of one star cannot be used for a different star. For testing the
behavior, the correlation coefficient of the Fourier transform is calculated for each
star for an interval of more than 7 months of data. In order to investigate the
behavior of the stars, for each star three samples are drawn randomly, one in each
of the above correlation windows. Additional - if existent - an additional curve
with a correlation coefficient below 0.73 is chosen.

In Figure 5.18, every column compares the chosen anomaly curves with its
reference. In the first row, curves with correlation coefficients above 0.98 are
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Figure 5.17: Reference states for three stars of two breweries B and C.

Figure 5.18: Four exemplary curves for each star with different correlation coefficients,
compared to the reference state (green).
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depicted. According to the comparative study all of those curves should qualify
as ’normal’. Looking into detail, each of the curves deviates very slightly from its
reference state. Discussion with an expert, those small deviations are normal and
should not be detected as anomaly. Thus, the first check is successful for all three
stars.

In the second row, the curves with a correlation coefficient between 0.90 and
0.97 should represent anomalous curves. Analyzing the first column, the classifi-
cation as anomaly is justified, as the amplitude is strongly increased. In the second
column, the amplitude is also increased, but not as strong as in the first column
(in comparison to the reference). In the third column, the curve just shows small
deviations, which are - according to the expert - not necessarily strong enough for
the anomaly classification. Though, further knowledge about the machine would
be needed for a clear assessment, it seems that the limit is set too sensitive for this
star.

The third and forth row show patterns with correlation coefficients below 0.81.
All of those patterns can be clearly classified as anomaly by eye. In each case,
the pattern deviates strongly from the reference. Interestingly, for all three stars,
curves with correlation coefficients far below 0.73 exist.

Summarized, the qualitative test for transfer learning was successful. The de-
tected anomalies of the winning algorithm could be confirmed as anomalies by
eye and expert. However, the limit between normal and abnormal can vary from
star to star, as the anomaly limit of 0.965 seems to be too strong for star 3. In
addition, for all three stars, curves with correlation coefficients far below 0.73
were found. Thus, at this stage, a star-based fine adjustment of the limits seem
inevitable. In order to improve the limit setting, the comparative study would
need to be extended to further fillers in other production lines. At the moment,
the proposed limits of the comparative study provide a good starting point with
already high accuracy for most stars. Depending on the feedback of the people
on-site, adjustments of the limits may be necessary.

5.8 Discussion and Outlook

In this chapter, a large comparative anomaly study was performed on the data
of angle-current curves. Each anomaly setup consisted of a feature extraction
method and an anomaly algorithm. The number of possible setups was strongly
reduced by the restriction of just one healthy sample in the training data. Most
anomaly algorithms need a larger number of healthy samples. Here, algorithms
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for the minimalistic one-shot semi-supervised anomaly detection approach were
searched.

In order to compare the result of the different setups, the iNAB score (devel-
oped in the previous chapter) was used. Before using it as score, its function-
ality was tested and compared to the NAB score. The suggested improvements
increased the robustness and reliability of the score significantly.

Based on the iNAB score, different empirical scores were developed, which al-
lowed a multilayered evaluation of the algorithms. Due to the one-shot approach,
characteristics like stability over different reference states, or large separation be-
tween normal and abnormal states were considered, and rated. The 44 different
anomaly setups yielded a clear winner: the Pearson correlation of the Fourier
transform. In the frequency space, the anomalies were separated best from the
normal state, and a broad spectrum of different anomalous patterns could be de-
tected. Seven of the 15 documented error cases could be detected ahead of the
people on-site, some of them even days ahead. Interestingly, a physical score based
on Chapter 3 also managed to be one of the four best performing algorithms. The
main disadvantage of the physical score was the specialization on one specific er-
ror case, and thus, missing two error cases with different characteristics. Hence,
the physical model has the strong disadvantage that all possible error cases have
to be modeled, whereas an anomaly algorithm is able to detect a large variety of
(even unknown) error cases. Nevertheless, the anomaly detection algorithm and
the physical model can complement each other well. Whereas the anomaly detec-
tion algorithm is able to detect different kinds of anomalies, the physical model
can classify some of the anomalies and provide a specific error description.

As a last step, the concept of transfer learning was tested on the winning algo-
rithm by applying it to three other stars of other breweries. Due to missing labels,
it was performed on a sample-based way. The algorithm was proven successful
in detecting a variety of different anomalies, which could be confirmed by an ex-
pert. In setting the limits between normal and anomaly, the different stars yielded
slightly different results. Thus, a fine adjustment routine is needed following the
training phase.

As a next step, it would be worth considering multi-algorithm approaches, in
which several algorithm “vote” for anomalies. This approach could lead to a so-
lution with no need of star-specific fine adjustments. This approach was so far
not considered in order to keep the scoring time low. With using a variety of algo-
rithms with very short scoring times or similar preprocessing, this approach should
be still doable.

Additionally, using further information could improve the detection rate of
47%. As some error cases originate in electrical or network faults, information
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of error messages or response times could be taken into account. This could lead
to the detection of anomalies with a larger variety of origins.

This study also yields a research topic in a completely different field of science:
the human-machine (or here human-algorithm) interaction in Predictive Mainte-
nance use cases. Though not explicitly described in this study, several limitations
appeared in the communication with the machine operators. The fine adjust-
ment and further improvement of the algorithms is only possible in an automated
communication process, in which the operator provides the necessary, and even
more important, correct information to the algorithm. Thereby, the main chal-
lenge poses that anomalies appear on an irregular basis (sometimes once every
couple months) with no explicit instruction as the origin is unknown. Additionally,
they appear at times at which the machine is still able to produce at high-speed,
even if the production at those times reduce the lifetime strongly, and a sudden
break-down is very likely. An intuitive self-explaining feedback-loop completely
integrated in the daily schedule of the operator would be a research topic on its
own.
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6 | Physics- and Expert-Driven
Error Sketch Recognition

One of the main reasons for the lack of almost any machine learning approaches
in the bottling industry is the missing labels of error cases. Even if an error case
happened, it is usually not documented in a standardized way and the knowledge
about the event often gets lost on the way to the Data Scientist. Additionally, in
case error cases are documented, the same error cases happen rather rarely, and in
order to develop a generalized model, error data from several production lines are
needed. This drastically limits the possibilities for supervised machine learning in
this industry.

In order to tackle the challenge of missing labels and error data, several ap-
proaches have been tried. Next to anomaly detection, a common approach is to
simulate the behavior of the machine. The simulation, e.g. finite element based,
models the machine and different error cases, with taking all available physical
knowledge into account. This approach seems promising in some cases, but also
comes with some drawbacks. First, the simulations are often complex, and thus
need a lot of programming and calculation time. Second, in order to gain reli-
able error patterns, simulations must to be tuned on the explicit machine data and
also error data. This implies that every model has to be adapted to the specifics
of that machines and need to be rerun. Thus, simulation approaches can give a
jump start, but the portability from one bottler to the next comes with high cost of
resources.

In this chapter, we aim to establish a completely new approach, called Physics-
and Expert-driven Error Sketch Recognition (PEESR):

1. We use the knowledge of experts in order to create error data. Not with time-
intensive simulations, but by sketching their gut feeling and pre-knowledge
on what error cases usually look like.
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Figure 6.1: High-level principle of physics- and expert-driven error sketch recognition.

2. These sketches are combined with simplified physical models (like from
Chapter 3) and transferred into computational curves.

3. The sketches are the basis for detecting and recognizing the error cases in
real data.

This approach allows to detect and classify error cases, even if no error data is
available. Additionally, sketches support transfer learning naturally. Different sizes
of the machine or different positions of handovers can be adjusted easily by ad-
justing the sketch. As sketches simplify reality, they cannot be overfitted to one
machine, but have the potential to generalize over different production lines and
sites naturally. However, it is important to note that the success of this approach
strongly depends on the quality of the sketches. It cannot be ruled out that error
cases show different behavior than expected, potentially leading to a misinterpre-
tation. Thus, the feedback of the machine operator is very essential in order to
improve the sketches. This also has the special effect that the experts can learn
more about their machines.

In the following chapter, we will test this new approach on the detected anoma-
lies of Chapter 5 while taking the physical knowledge of Chapter 3 into account.

6.1 Literature Research

The following chapter provides a brief overview of PEESR in literature. First,
research fields with similar challenges are identified and introduced. Second, dif-
ferent algorithmic strategies for solving such a challenge are presented. Third, a
promising algorithm is introduced, which has proven successful in similar chal-
lenges.
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Tree

Butterfly

Chair

Figure 6.2: Three people were asked to sketch the same three word. One can clearly see
the huge variation in between the freehand sketches.

6.1.1 Assigning to Research Field

The approach of recognizing error cases by physics and expert based sketches can-
not be assigned to one specific field of research, but rather to the combination of
several. It shares some specifics with the hot research topics of one-shot learning,
sketch recognition and physics-guided machine learning. All of those topics are
still extensively growing research fields.

• Sketch or pattern recognition:
Computerized sketch recognition is widely spread in daily life with ever
increasing importance. Freehand letters and symbols drawn on computer
screens are directly transformed into text, geometric patterns or even circuit
diagrams [131, 129, 52]. Cameras recognize hand gestures [20] and sus-
pects can be identified from forensic facial sketches [89].
All these topics can handle simplifications of reality or huge variations in the
patterns, as depicted in Figure 6.2. In order to meet those requirements,
most models are trained on extensive data sets of either the patterns which
should be recognized (e.g. MNIST data set [71]), or on directly comparable
data which allows easy transfer (e.g. for facial recognition).

• One- or Few-Shot-Learning:
The Field of One- or Few-Shot-Learning tries to bridge the gap between Arti-
ficial Intelligence and human learning. Similar to human learning, the image
or object should be recognized after very few samples. This research field is
especially active in topics like image classification or object tracking. There
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are also applications in other fields, like e.g. gene research in biology [61].
In terms of solving this challenging task, there is a variety of elegant ap-
proaches, as elaborated by Wang [119], some of which overlap with sketch
and pattern recognition. The very basic principle is that all available knowl-
edge should be used. The next section will introduce three basic principles,
how knowledge can be integrated into a model.

• Physics-guided machine learning:
Physics-guided machine learning combines the field of machine learning
with physical models, experience and experimental data.
One way to achieve this is by incorporating physically meaningful features
to improve feature extraction. Besides the improved features, the big advan-
tage of this approach is an explainable model which can be understood and
interpreted by experts [11]. Another approach uses physical models to jump-
start machine learning models. Effects not considered in the physical model
can be learned by the machine learning model and, for example, forecasts of
physical properties can be improved [11] and better physical understanding
of the system can be developed.

This approach for combining the three fields has already successfully practiced
in several fields outside of physics. For financial time series, several approaches
[117, 113] are based on the 53 chart patterns of Bulkowski [13], in which the
unique characteristics and relationships of price movement are examined in detail.
In the field of sketch based query system on time series, the expert can sketch
simple patterns, which are then recognized within time series data [25, 82]. In the
field of network attacks, there are approaches for detecting DDoS attacks [118] or
attacks on software switches [77] more efficiently with a combination of anomaly
detection and sketches.

In the field of predictive maintenance and machine failures, to our knowledge,
this idea is as yet barely touched, and no comparable literature could be found.

6.1.2 Algorithmic Taxonomies

In this section, we introduce different strategies, which allow One- or Few-Shot-
Learning approaches to generalize the very limited amount of available informa-
tion. This knowledge will be very valuable for choosing suitable approaches in the
next section.

The following structure and syntax is taken from the recent survey by Wang
[119]. All ideas are visualized in Figure 6.3. We start by introducing the syntax:
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• hI ∈ H represents the function of the empirical risk. It describes the loss over
the training set I, withH being the hypothesis space of all possible solutions.

• h∗ ∈ H represents the function of the expected risk. It describes the loss over
the testing set with the estimation error εest.

• ĥ represents the function of the expected risk in the scoring process with the
approximation error εapp.

In machine learning cases with sufficient training data, a lot of information can
be extracted by the training data. Thus, hI and h∗ are very close in H and εest is
accordingly very small (see Figure 6.3 top left). In the setup of Few-Shot-Learning
(top right), the information in the training set is very limited, and generalizations
have to be learned, which strongly increases εest. Wang [119] describes three
different strategies how to tackle this challenge:

Data Prior knowledge is used to augment the training data I, and to generate
extensively increased training data Ĩ. In this way, the Few-Shot-Learning
challenge is transformed into a “normal” machine learning challenge and
standard algorithms can be used.
Data Augmentation includes methods like translation, flipping or rotation of
a picture. It can also make use of similar or unlabeled data sets.

Model Prior knowledge is used to constrain the complexity of H, which results in
a much smaller hypothesis space H̃. Within this smaller hypothesis space, a
stable solution can be achieved with the existing training data more easily.
Simultaneous multitask learning of similar challenges and embedding the
samples into a lower-dimensional space make use of this concept.

Algorithm Prior knowledge is used to optimize the search strategy by providing
a good initialization or by guiding the search steps.
For example, knowledge of similar challenges can be used in order to pre-
train most of the models parameters, or a suitable simplified model can be
chosen.

In most cases, a combination of the three methods is used in order to find a suitable
solution.

6.1.3 Algorithm: Dynamic Time Warping

In the following, we want to focus on one specific algorithm: the Dynamic Time
Warping (DTW). It has proven successful in a broad variety of fields and sketch-
based applications [46, 64, 82, 87, 88]. Rakthanmanon even states that “after an
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Figure 6.3: Concepts for the solution of Few-Shot-Learning challenges. Top left: Normal
machine learning with a lot of data. Top right: Few training samples which lead to sub-
stantially increased estimation error εest.
Bottom: Illustration of three different concepts to decrease εest by using prior knowledge.
Left: Increase of the training data I to Ĩ by data augmentation. Middle: Constraining the
hypothesis space of all possible solutions H to a smaller subset H̃ by the choice of model
and model parameters . Right: Optimized search strategy by providing good initialization
or by guiding the search steps. [119]
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Figure 6.4: Visualization of DTW matching of two time series. [40]

exhaustive literature search of more than 800 papers, we are not aware of any
distance measure that has been shown to outperform DTW by a statistically signif-
icant amount on reproducible experiments” [95]. In the following, we introduce
the basic principle of the algorithm, and an extension for higher dimensions.

Basic Algorithm

Dynamic Time Warping (DTW) determines the similarity of two temporal se-
quences, which may be distorted in time. For example, it can be applied to rec-
ognize people via speech or walking patterns, despite variations in speaking and
walking pace.

Mathematically, the DTW tries to minimize the distance between two time se-
ries X and Y , by stretching or compressing them locally [40]. Thereby, the test
time seriesX = ((t1, x1), ..., (tN , xN)) can have a different length than the reference
time series Y = ((τ1, y1), ..., (τ2, yM)), with the time indices ti and τj, and values xi
and yj respectively. A pairwise distance measure d(xi, yj) ≥ 0 acts as a similarity
measure of the two time series. The warping curve φ(k) =

(
φx(k), φy(k)

)
=
(
ti, τj

)
maps the time indices of the two time series onto each other. DTW optimized
this mapping in order to minimize the accumulated distance measure. Figure 6.4
shows such a mapping, all minima and maxima of the two curves are mapped onto
each other in order to minimize the distance.

The definition of the distance measure is not fixed and can be chosen in respect
to the nature of the data. Hence, DTW can act on any kind of data as long as a
well-defined distance can be calculated. In most cases, the Euclidean distance is
used:
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dφ(X, Y ) =

√√√√ K∑
k=1

(
X(φx(k))− Y (φy(k))

)2
(6.1)

For the warping curve, every test time index ti, i ∈ {1..N}, has to be matched
with a reference time index τj, j ∈ {1..M}, and vice versa. The start point (t1, τ1)

and the end point (tN , τM) are normally mapped to each other. In order to impose
time ordering and to avoid unnecessary loops, the mapping must be monotonic in
both the time indices ti and τj.

Depending on the application, further local and global restrictions may be in-
troduced. Locally, so-called “step patterns” can ban specific mappings or introduce
weightings. For example, they can restrict the consecutive number of elements
ti..ti+n, which can be mapped on the same τj (and vice versa). Globally, a-priori
knowledge about maximum time distortion can be used. For example, the popular
Sakoe-Chiba band [98] imposes a maximum time deviation T0 between the two
matched indices:

∀φk = (ti, τj) : |ti − τj| ≤ T0 (6.2)

Interestingly, the DTW distance measure does not classify as a metric, as the
triangle inequality is not ensured in all cases.

In terms of time complexity, the DTW computes in the order ofO(N ·M). Lower
orders could be only achieved for special cases [41].

Multidimensional DTW

The DTW method can be easily extended to K-dimensional time series with a
suitable choice of the distance measure. Two popular implementations are used
in literature (although it is often not specified which one is used [87]). Here,
the test time series ~X = ((t1, ~x1), ..., (tN , ~xN)) and the reference time series ~Y =

((τ1, ~y1), ..., (τM , ~yM)) consist of k-dimensional vectors ~xn = [xn1, ..., xnK ] and ~ym =

[ym1, ..., ymK ] for each time point ti and τj.

1. DTW with independent warping (DTWi)
The DTW measure is calculated separately for each dimension k and the
results are added.

DTWi =
K∑
k=0

DTW(Xk, Yk) (6.3)
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2. DTW with dependent warping (DTWd)
The n features are taken as n-dimensional vector and a single DTW measure
is calculated with the n-dimensional definition of the Euclidean distance.

DTWd = DTW( ~X, ~Y ) , with d(~xi, ~yj) =

√√√√ K∑
k=0

(xik − yjk)2 (6.4)

The most essential difference between DTWi and DTWd lies in the warping curve.
For DTWd, all features share the same warping curve, whereas in the case of DTWi,
every feature has its own warping curve, allowing different features to have differ-
ent matching curves. Depending on the use case, one or the other definition may
be more suitable.

6.2 Sketch Preparation

After having a brief look into literature and a possible algorithm, this section will
focus on the first part of PEESR: The “physics- and expert driven sketches”. As
a first step, different error cases will be discussed with experts, and first expert-
driven sketches will be created. In a second step, those sketches will be enriched
by the physical findings of Chapter 3.

6.2.1 Sketching Error Cases

The first goal is to obtain sketches of error cases for the field of small transfer stars
(see Figure 6.5). Thereby, two questions are asked: Which error cases can appear
during operation of a transfer star? And which behavior in the current is expected
for each error case, especially in the angle-based or high-resolution curves? If
possible, sketch a characteristic pattern?

In order to collect different points of view and knowledge, two discussion
rounds are happening, once an one day workshop with Krones mechanical en-
gineers, and once a two hour call with an experienced maintenance manager of a
brewery.

The answers of the two workshops are summarized in the following. In brack-
ets is the short work name, which will be used in the following. Some exemplary
sketches can be found in Figure 6.6.

Synchronization Error (Sync)

As already described in Section 2.2, the synchronization error is one of the most
frequent error cases in production. It describes the state in which the two stars
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Figure 6.5: Example of two transfer stars (white) transporting the bottle to and away
from the big filler carousel in the middle.[67]

don’t line up during an handover - which results into small crashes at every han-
dover. As already discussed, according to Claim 1 this error should not happen, as
the initial fixation is permanent. Nevertheless, the forces of a crash can shift the
fixation. Additionally, the fixation has to be corrected with every product change,
as parts of the stars are swapped, to take the new bottle shape into account. An
imprecise fixation at that point leads to a constant misalignment for the next hours
of production.

As already discussed in Section 3.4, a small crash during an handover leads to
a slowing down and then speeding up behavior of the machine. This results in a
variation of the current. For the synchronization error, every handover leads to
this variation of the current. Thus, the sketch looks similar to a sinus wave.

Error cases concerning One Station (One station)

The next sketch summarizes all error cases concerning one station. A frequent
error case is that one (or more) crown caps are lying in the carousel. This happens
especially at the neighbor stars of the crowner. The cap decreases the space in the
station for the bottle which can influence the handovers. Another error case is a
mechanical defect of one station like a broken corner.

Those error cases influence the handovers of one station, leaving all other han-
dovers unchanged. For these error cases, we expect to differentiate two cases. For
star having two handovers to other stars, there should be two handovers which
show crash-like behavior. If a star transports the bottle from a star to a conveyor
belt (or vice versa), just the star handover should lead to that faulty behavior. The
handover to the conveyor belt comes with a higher degree of freedom and thus
should not lead to an increase in current.
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sync

one station

imbalance

assembly

control

Figure 6.6: Hand-drawn sketches, created in workshops with experts.

Transfer Plate Error

For the error case called transfer plate error, the transport height of the bottle
bottoms does not fit. Normally, the bottles are always pushed slightly downhill
from one star to the next. If the previous star is slightly lower than the next, the
bottles have to be pushed slightly uphill with every handover. This causes a small
crash similar to the synchronization error, just concerning with a different part of
the bottle and carousel.

As this error case influences all handovers, we end up with the same sketch
as the synchronization error. On the sketch-level, we don’t expect that the two
error cases can be differentiated. On an occurrence-level, we expect this error
case mainly after an overhaul.

Carousel Imbalance (Imbalance)

Imbalance has a very similar origin like the transfer plate error. The carousel is not
built up completely parallel to the floor, but is slightly tilted, leading to different
heights at different angle. For some bottles, the handover is normal, but for some
others the bottle has to be pushed slightly uphill.
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Sketching this error case would result into an oscillation in current, some han-
dovers go easy, others have a faulty characteristics.

Incorrect Assembly (Assembly)

The product specific part of the star consists of two parts in order to enable an
easier product change. If those two parts are not assembled correctly, each half
experiences the same behavior as the transfer plate error. For some bottles in each
half, the handovers are okay, others experience some resistance.

It is difficult to predict, how the incorrect assembly exactly influences the cur-
rent, except that it should repeat once per half. Due to the similarity to the carousel
imbalance, we sketch an oscillation with twice the frequency.

Friction at Railing

During the transport in the star, the railing keeps the bottles in place. In case
the railing is positioned too close to the star, the bottles experience higher friction
with the railing. This should result in an average higher current with keeping the
patterns of handovers unchanged.

This leads to the conclusion, that this error does not change the pattern of the
current and thus it is not possible to sketch a characteristic pattern.

Motor and Gear Failures

Independent of the direct bottle transfer, different defects in the motor or gears
can be imagined. For example, wear increases the play of the gear, or bearings in
the motor break.

As the gear and the motor rotate in a higher frequency than the star, those error
cases will not appear as characteristic patterns in the current averaged over the
carousel angle. In a high resolution signal of the current, those frequency could
be detected. As this kind of data is not available for this study, this class of error
cases will not be considered further.

Bearing Failures

The carousel is balanced on bearings which enable movement with little friction.
Bearings failures are known to show very characteristic fault frequencies [43].
Some of them are multiples of the rotational frequency and thus should show up
in the current pattern. Those formulas are based on specifics of the bearings, like
number of balls or ball diameter.
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After some research and contacting the producer of the bearings, it was sur-
prisingly not possible to acquire those parameters for the stars, which will be
considered in the following. The bearings are part of the motor-gear-block and
the specifics are handled as valuable knowledge of the producers. This limits the
sketch to an unspecific high-frequency pattern. As the rough order of frequency is
unknown, this error case will not be considered for the moment.

Control Error (Control)

The last group of error cases are caused by the control. Depending on the control
parameter, the reaction parameter can be set too tight or too loose, resulting in an
overreaction or a delayed reaction. As already discussed in Section 3.4.4, the field
of control errors is very complicated, especially as different kind of controls are in
use.

This part of the machine is so far ignored in the physical model and predictions
require a more detailed knowledge of the used control. Nevertheless, we want to
add one sketch of a control error, which was reported by the maintenance man-
ager. In a typical overreaction of the control, the current is building up over the
course of half a round in an exponential manner and then break down, just to start
over again.

6.2.2 Physical Improvement of Sketches

The discussion with the experts resulted into five error cases which could be de-
tected in the current with in total seven sketches. In a next step, we combine
those sketches with the gained knowledge of the Physics-Chapter 3 and transfer
the hand-drawn sketches to computer-based sketches.

In Chapter 3, we created a simplified physical model of a faulty handover and
compared it to an anomalous handover. As the two curves showed big similari-
ties, we use the data of the anomalous handover as basis for the computer-based
sketches. The physics shows a direct relationship between level of misalignment
and amplitude of the current. With this knowledge, we take the anomalous han-
dover and just modify it in terms of amplitude for simulating healthy and non-
healthy handover.

For the computer-based sketches, two main parameters were identified which
can vary from star to star: The number of stations ns, and the number of the
stations between the handover from one star to the next ndelta. The two parameters
are implemented as input for the computer-based sketches. This allows a fast
adaptation of the sketches for different machines and stars.

The final sketches are depicted in Figure 6.8.
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Figure 6.7: Example of a star with 16 stations (ns = 16) and 11 stations between the two
handover to the neighbor stars (ndelta = 11).
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Figure 6.8: Sketches of different error cases for ns = 26 and ndelta = 13.
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6.3 Study Setup

6.3.1 Scoring Data

The study is performed on data of two different bottlers, with each three different
stars. The two bottler - in the following called bottler B and bottler C - are the
same as used for the qualitative Transfer Learning test in Section 5.7. Applying
the algorithm to in total six different stars allows testing the portability of the
algorithms and sketches in the study. Both bottlers are breweries, one situated in
Germany, the other in Poland.

For bottler B, there are 7 months of data available, for bottler C 8 months, both
of the year 2020. The same preprocessing as in Section 2.4 is performed. As an
additional step, a slight Gaussian smoothing is used to reduce noise. As a last step,
all curves are z-normalized to ensure comparability.

Summed over the three stars, the preprocessing results in 4.063 curves for
bottler B and 6.529 curves for bottler C. The difference in number results from
more production days for bottler C in the available time period.

In order to receive labeled error cases, three steps are performed on the curves:

1. Anomaly Detection
For each star, a reference curve is chosen and the most promising anomaly
detection method from Chapter 5 is performed on the data. The anomaly
criterion is chosen weaker than in the previous study in order to not miss
any interesting patterns. In total 2.606 anomalous patterns are detected.

2. Remove Duplicates
As a next step, some patterns reoccur over a longer period of time and are
thus over-represented in the study. All curves, which correlate to at least
97 % to an earlier curve of that star, are ignored. This results in 305 distinctly
different curves with which we will continue working in the following.

3. Manual Labeling
The last step is a manual classification of the curves. The classification per-
son is provided with the sketches and asked to classify the data into those
categories as shown in Figure 6.9. As a lot of curves don’t represent one
error case very clearly, maximum two categories can be chosen. Addition-
ally, there is a category for new distinct patterns - which are missing in the
sketches - and one for unclear error cases, mainly for overreactions of the
anomaly detection due to the weaker criterion. Examples of the labeled data
can be found in Figure 6.10.
Being able to choose up to two error cases also has a physical background.
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Figure 6.9: Screenshot of tool for manual labeling. The graph shows the curve to be
classified (blue) in comparison to the reference curve (green). In this case the user has
chosen the error case “sync”. Up to two patterns are allowed to be marked. With the
button next, the next pattern is shown and all buttons are reset.

Most of the error cases can happen independently from each other (e.g. as-
sembly and control), or one error case can enhance the other error case (e.g.
assembly and sync).
In 148 curves one or two of the sketched patterns can be clearly identified.
For the other curves, the classification person gives a guess to which category
it could belong (when possible). Interestingly, three new shapes are also dis-
covered in the data set, which were not predicted by the sketches. We will
use this knowledge in order to test the algorithm, if they can be found.

6.3.2 Algorithmic Setup

As algorithm, we will use the widely suggested Dynamic Time Warping (DTW), as
described in Section 6.1.3. In the following, we define different data augmentation
and DTW setups, which will be tested, and a classification method.

Data Augmentation and DTW settings

Inspired by the introduced algorithmic taxonomies of one-shot-learning in Section
6.1.2, we want to implement some of the ideas and evaluate their effect. Thereby,
we choose in total four techniques, each two from the classes “data” and “model”.
The techniques are depicted in Figure 6.11.

1. Data Augmentation 1: Mirroring & Translation (mandatory)
We increase the amount of our training data set by horizontally mirroring,
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Figure 6.10: Examples of labeled “real-life”-patterns: Synchronization Error (top left),
One Station Error (top right), Assembly error (bottom left) and Control Error (bottom
right).
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and by vertically translating each pattern. Both augmentation methods have
a physical background: The error can occur at any position of the star, and a
low-mass star can be pushed or pulled by the high-mass star, resulting into
a positive or negative current. All setups will use this enriched data set as a
basis to enhance the probability to recognize the patterns.

2. Data Augmentation 2: Randomizing
So far the sketches resemble the perfect situation that all handover show
the same exact behavior. In reality, there is always a variation between han-
dovers. We will use that prior knowledge and create for every sketch 10
additional sketches, for which the heights of the different handovers ran-
domly vary of ±10%. We will evaluate the effect of this data augmentation
method (in the evaluation: random = “yes” / “no”).

3. Model simplification 1: Restrict maximum distortion in DTW
In terms of reducing the complexity of the DTW model, we restrict the hy-
pothesis space of all possible solutions by using the Sakoe-Chiba band in
DTW. The Sakoe-Chiba band [98] limits time distortion by restricting a max-
imum time deviation between the two matched indices of testing and refer-
ence data. In our case, time / angle distortions should not exceed more than
two handovers as otherwise some sketches are not distinguishable anymore.
We will set the maximum distortion to a variety of values: 0, 0.25, 0.5, 1
and 2 handover. The option “0 handover” of DTW represent the normal
euclidean distance.

4. Model simplification 2: Feature selection
In order to reduce the complexity in the data, a manual feature selection is
performed. Examining the sketches, the information of each handover can
be summarized by calculating the amplitude, minimum or maximum value.
We will use two different setups, once just with amplitude, and once with
all three features. In this way, the curve of 400 points is transformed into a
one- (1d) or three-dimensional (3d) feature space with a length of 26 points.
This reduces the complexity by 94% or 80%, respective.

The data augmentation 1 is always performed, for the other enrichment methods
all different combinations are considered. In terms of translation step size (Data
Augmentation 1), a step size equal to five is used for the normal 400-dim pattern,
and equal to one for all feature-engineered data. As DTW can handle slight shifts,
the step size of five is used in order to reduce computational time.
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Figure 6.11: Exemplary visualization of different data augmentation and model simplifi-
cation methods.
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Classification Process

The DTW is performed for every sketch, and the winning sketch is chosen by the
smallest DTW measure. A second winner is added if its DTW measure differs by
less than a percentage δmax from the first winner. This allows illustrating uncer-
tainties of the algorithm, similar to the uncertainties of the classification person.
In this study, δmax is set once to δmax = 5% and once to δmax = 10%.

6.3.3 Measures

The different setups will be compared by the following three measures:

1. Accuracy:
The accuracy determines how well the predicted labels fit together with the
manual labels. We will use two different definitions:

(a) Weak Accuracy: As soon as one of the (maximum two) classifications of
the algorithm fit together with at least one of the (maximum two) man-
ual classifications, it will enter the score as “correctly classified”. The
number of “correctly classified” samples divided by the total number of
samples give the accuracy. The accuracy depends on the chosen δmax,
which was introduced above.

(b) Strong Accuracy: In comparison to the Weak Accuracy, the Strong Accu-
racy just scores complete hits as “correctly classified”. The classification
of the algorithm with one or two classes has to fit exactly the one or two
manual classifications. Any deviation is classified as negative. Equiva-
lent to the Weak Accuracy, the Strong Accuracy depends on the choice
of δmax.

2. Resource Usage:
As already pointed out in Chapter 5, the code has to run on very resource-
limited edge device. For that reason, we introduce the following two mea-
sures:

(a) Scoring Time: The Scoring Time is the calculation time per sample on
a standard laptop (see details 2.6) averaged over at least 10 samples.
It will differ from computer to computer but will give an order of mag-
nitude which is expected on the edge device. Additionally, it allows to
compare the computational complexity of the different setups as all cal-
culations were performed on the same computer under the same con-
ditions.
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Setups which need more than one minute to score one sample will be
stopped immediately, calculations longer than 30 sec will be also dis-
carded except they show extraordinary accuracy.

(b) Model Size: Memory space is limited on the edge device, thus the mea-
sure model size will specify the size of the model which is needed for
the scoring process. Setups with model sizes larger than 20 MB will be
excluded from the evaluation.

3. Possibility to express uncertainty and detect new patterns:
Sketch-detection in real data always comes with some uncertainty. The ap-
proach should offer the possibility to measure this uncertainty. In this way,
wrong classifications can be reduced and new patterns which are not repre-
sented by the sketches can be detected.

6.4 Results

In the evaluation of the different setups, the difficulty for the algorithm will be
incrementally increased. We start with the scoring of curves, which are uniquely
assigned to one training class. In the next step, we also consider the curves which
resemble a combination of two classes. In the last step, all curves are taken into
account, also the ones with could not be assigned to any pattern. In each step, the
best setups continue in the competition.

The comparison measures will stay the same over the course of the chapter and
are based on the Section 6.3.3.

As implementation of the DTW, the Python dtaidistance package [85] is used.

6.4.1 Step 1: Curves with similar patterns to sketches

The first test contains all curves, which can be unambiguously mapped to one of
the sketches. According to the manual classification process, 70 patterns fulfill that
criterion. They distribute on the four sketch groups: Sync (42), One Station (3),
Assembly (9) and Control (16). The sketch group Imbalance is not represented.

The scoring process was performed on all setups described in Section 6.3.2.
The results are summarized in Table 6.1. The evaluation concentrates on setups,
which perform worse than the others. They are marked yellow or red.

We start with examining the resource usage. All setups easily pass the limit
for the model size of 20 MB. The biggest model barely exceeds 0.5 MB. In terms
of scoring time, there is huge variation between the setups. Some of the setups
without feature extraction exceed the limit of 60 sec and are thus aborted during
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(b) Point-to-point matching for calculating the
DTW measure with a maximum distortion of
0.25 handovers.

Eucl. Distance DTW measure
Max. Dist: 0.25 handover

Assembly 12.02 9.09
Imbalance 12.02 9.15

Sync 12.06 8.07
One Station 16.62 12.70

Control 17.70 14.80

(c) Distances for one scoring sample for Euclidean Distance and DTW
measure.

Figure 6.12: Comparison of Euclidean Distance to DTW measure.

the calculation. In general, there is the clear correlation between the calculation
time and the number of dimensions, amount of training data (e.g. via randomiza-
tion) and maximum distortion. The only irregularity happens between row one
(no feature extraction, eucl.) and row 2 (no feature extraction, max dist 0.25),
as the translation step size is decreased from five to one (as mentioned in Section
6.3.2).

As next step, we evaluate the accuracies. The weak accuracy lies for all setups
between 87.1% and 98.6%, the strong accuracy between 77.1% and 97.1%. This
is a rather encouraging result as all setups perform in an acceptable range, some in
an extraordinary range. Looking into details, the setups without feature extraction
show slightly better and more stable results than the ones with feature selection,
and that even for the small maximum distortion of 0.25 handovers.
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In general, most setups with euclidean norm are outperformed by a neighbor
DTW setup. The only exception is row one, the euclidean distance without any
feature extraction. This setup achieves the best result in the weak accuracy of
all, but doesn’t perform that excellent in the strong accuracy. We want to have a
closer look on that phenomenon in Figure 6.12. The top shows the point-to-point
matching for a real-life example for the euclidean norm (a) and DTW (b). One
can clearly see, how DTW manages to compensate variations in the curve. The
bottom table shows the minimum distance for one sample for each sketch. One
notices, that the euclidean distance finds the TOP 3 sketches, but has difficulties
to determine a winner. This behavior leads to a high weak accuracy, but a low
strong accuracy. DTW detects the same TOP 3, but is able to differentiate them
and declare Sync as clear winner. This gives the DTW the crucial advantage.

For the step 2, we will reduce the number of setups by excluding all which
exceed a calculation time of 30 sec, or show an accuracy lower than 80% (marked
in red in Table 6.1). This leaves us with in total 18 setups.

6.4.2 Step 2: Curves with mixtures of up to two sketches

In the second step, the data set is extended by patterns, which were manually
classified as one or a combination of two of the defined sketches, leading to a
total of 148 curves. This also includes patterns for which the classification person
was unsure, but guessed one sketch. They group into Sync (103), One Station
(3), Assembly (9), Control (28), and the combination of Sync and Assembly (5).
As the resource usage per scoring event is unchanged from Step 1, it will not be
discussed again. The results are shown in Table 6.2.

With the exception of the setups based on the euclidean norm, all setups ex-
ceed a Weak Accuracy of 88.5% and a Strong Accuracy of 77.0%, some of them
even reaching accuracies of 98.0 %. This result is again extremely promising, espe-
cially taking into account that in about half of the cases the classification person
was not 100 % sure. The only significantly worse performing setup is the setup,
which does not make use of any enrichment methods of Section 6.3.2 (row 1).
Otherwise, interestingly, there are differences between the different setups, but
no strict trends can be detected. In most cases, the DTW-setting with a maximum
distortion of one handover seems to overrule the other settings.

This broad successful behavior is very encouraging as it is a sign for the stability
of the algorithmic choices.

In order to develop a better feeling for the different setups, we compare two
confusion matrices of similarly well-performing setups. The two chosen setups are
marked with green in Table 6.2. The left confusion matrix of Figure 6.13, orig-
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Feature Random Max Weak Strong Weak Strong
Selection Distortion Acc. Acc. Acc. Acc.

[handover] δ = 5% δ = 5% δ = 10% δ = 10%

none no eucl. 90.5% 69.6% 93.2% 65.5%
0.25 95.9% 88.5% 98.0% 82.4%
0.5 93.9% 83.8% 94.6% 79.1%

amplitude no eucl. 90.5% 80.4% 93.2% 79.1%
(1d) 1.0 93.2% 81.8% 95.3% 79.1%

2.0 89.2% 83.1% 91.2% 77.0%
yes eucl. 90.5% 82.4% 93.9% 78.4%

1.0 91.9% 84.5% 94.6% 81.1%
2.0 91.2% 80.4% 93.2% 79.1%

amplitude, no 1.0 91.2% 83.8% 95.3% 81.1%
min, max (3d) 2.0 90.5% 81.8% 93.9% 78.4%
dep. yes 1.0 91.9% 86.5% 95.3% 83.1%
warping 2.0 93.9% 81.8% 95.3% 79.1%

amplitude, no eucl. 88.5% 79.7% 91.9% 77.7%
min, max 1.0 91.2% 83.8% 93.9% 79.1%
(3d) 2.0 91.2% 81.8% 95.3% 79.1%
indep. yes 1.0 92.6% 85.8% 92.6% 81.8%
warping 2.0 93.2% 82.4% 93.9% 79.1%

Table 6.2: In the second step, 148 curves (which are classified as a mixture of up to two
sketches) are scored in different setups and evaluated in terms of two accuracy measures.
δmax was here shortened to δ for space reasons.
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Figure 6.13: Two similarly well performing confusion matrix normalized by the classi-
fication of expert. Left: Confusion matrix of the original curve without randomization,
maximum distortion of 0.25 handovers and δmax = 5% . Right: Confusion matrix of the
3-dimensional feature extraction with dependent warping including randomization, max-
imum distortion of 1 handovers and δmax = 5% . The two confusion matrices are very
similar with the left one being slightly stronger in recognizing the “Assembly” error cases.

inates from the original curve without randomization, a maximum distortion of
0.25 handovers and a δmax = 5% . The right one is the confusion matrix of the
3-dimensional feature extraction with dependent warping including randomiza-
tion, a maximum distortion of 1 handover and also δmax = 5% . Both matrices
are normalized by the manual classification (rows). Interestingly, the two ma-
trices show high similarities. The left side shows slightly stronger recognition of
“Assembly” error cases. Both setups perform very reliable for the error cases of
“Synchronization” and “One Station”. This implies that the models learn very sim-
ilar characteristics of the curves.

As the different setups show very similar results, almost all setups would qual-
ify for further consideration. With the knowledge that they show similar confusion
matrices, we can reduce nevertheless the number of setups without loosing infor-
mation. We continue with the five setups, which have a Weak Accuracy above
90 % and a Strong Accuracy above 80 %. All accuracies failing these two criteria
are marked in orange in the Table 6.2.

6.4.3 Step 3: Realistic scenario

The preceding two steps showed that the algorithm DTW is capable in recognizing
patterns reliably. The third step is the final stress test: All available anomaly curves
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are added to the scoring data set, though they are not represented in the sketches.
Additionally, the usability for the machine personnel will be evaluated.

Specifics of Test Data

In the manual classification process, in total 157 patterns could not be assigned
to any sketch. In 47 occurrences a distinctly different pattern was found, the
other 110 patterns were assigned to the category “unclear”. We try to reduce this
number in two steps:

1. In order to receive all patterns and stress the algorithm, the anomaly de-
tection in Section 6.3.1 was chosen rather generously. Thus, some of those
patterns are simply an overreaction of the Anomaly Algorithm. Choosing the
criterion slightly stronger to a more realistic level, 20 curves of the category
“unclear” can be ignored for the following.

2. Additionally, the remaining patterns were reevaluated if they can be matched
to any of the existing sketches. Those patterns were marked with the combi-
nation of the sketch name and “unclear”. In total, 19 curves were assigned
to Synchronization, six to Control and three to Imbalance Error.

Summarized, 106 curves are not represented in the sketches, and 28 curves can
be mapped with some uncertainty. This is a special stress test for the algorithm, as
almost 50 % of the 285 curves are not represented in the sketches.

Evaluation Perspective

For this evaluation, we change the perspective from the algorithmic side to the
machine personnel side. For the machine personnel, it is most important that he
can trust the error description proposed by the algorithm. He prefers to not re-
ceive any detailed error description than a false one. This has a big influence on
how we set up the classification and the evaluation. We propose following proce-
dure: For ∆ % of the curves, the machine personnel will receive a detailed error
description. The rest (1 − ∆) % of the curves are being marked as “unclear” by
the algorithm, and the machine personnel will just receive the message “anomaly”
without any error description. As the machine personnel is interested in the cor-
rectness of the received error descriptions, the accuracy measure will just take
these classifications into account.

This view leads to two interesting questions. The first concerns the definition
due to which patterns are classified as “anomaly” or not. For that, we propose to
take the value of the DTW measure into account. The smaller the distance to the
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most similar sketch, the more likely the pattern does resemble that sketch. Thus,
classifications with small DTW measures should receive an error description, ones
with big should be classified as “anomaly”. The ∆ %- quantile can be directly taken
as the ∆-threshold.

The second question deals with the explicit value of the threshold ∆. We con-
sider a two step approach. In the first step, the correctness of the given error
descriptions should exceed a specific value. In the following, we set the preferred
Weak Accuracy to roughly 90 %. In the second step, after fixing a value of ∆,
the number of unclear patterns which receive an error description is analyzed,
and checked if it can be minimized with a small loss in accuracy. In the best
case scenario, all unclear patterns trigger the message “anomaly”, and all error
descriptions are correct.

Results

In the evaluation, we use the five winner setups of Step 2 of this study. In order
to determine ∆, we plot the Weak Accuracy of all five setups in dependence of
the chosen threshold ∆, as shown in Figure 6.14 a. Surprisingly the accuracy of
most setups shows an almost linear dependency to the threshold. Evaluating the
preferred Weak Accuracy of about 90 %, the clear winner is DTW without feature
extraction and a maximum distortion of 0.25 handovers. The preferred Weak
Accuracy of about 90 % can be reached in this setup by thresholds up to about
∆ = 42 %. Marking this threshold in an plot of sorted DTW measures (Figure
6.14 b), one can clearly see that just very few unclear or new patterns (marked in
orange and gray) lie underneath the chosen threshold. In more detail, just 11 of
the unclear patterns receive mistakenly an error description.

Achieving an accuracy of 89.38 % with ∆ = 42 % is a pretty extraordinary re-
sult, considering that almost 50 % of the patterns were categorized as “unclear”.
Thus, the algorithm reproduces the manual classification almost perfectly. It is
also noteworthy, that the Strong Accuracy with 86.4 % is almost as high as the
Weak Accuracy. The ∆-threshold has the additional effect, the cases in which the
algorithm could not decide between two error cases are filtered out now.

In order to get more into detail, we want to emphasize different aspects of the
confusion matrix (Figure 6.14 c). It is normalized to the predictions (columns),
in order to represent the view of the machine personnel. The category “unclear”
summarizes all patterns, which are not represented in the sketches. One can see
at first glance that all predictions about the error cases “One Station” and “Assem-
bly & Sync” were correct and can be trusted fully. In the error case “Control” and
“Sync” even the patterns, which were added with the reevaluation (e.g. control
& unclear) are categorized correctly. The 11 unclear patterns, which landed un-
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Figure 6.14: Classification results for the realistic setup with about 50 % patterns, which
could not be matched to any sketch.
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derneath the ∆-limit, are split up over the three classes of “Control”, “Assembly”
and “Sync”. Thus, all three classes show some unreliability of the prediction. For
“Control” and “Sync” this unreliability is in the order of 10 %. In the class of “As-
sembly”, the order is quite a bit higher with 40 %, the machine personnel cannot
trust this classification fully. Additional to the unclear patterns, there is just one
misclassification between the sketches: One “Assembly” error case was classified
as “Sync”.

Summarizing, the stress test reached an extraordinary accuracy of 89.38 % for
a threshold of ∆ = 42 %. Considering the high ratio of unclear data, and the train-
ing data being sketches instead of error data, the DTW setup lead to surprisingly
satisfying results.

6.5 Feedback and Retraining

The special charm of the Expert- and Physics driven error sketch recognition is the
fast feedback loop to the experts, and the fast retraining and improvement of the
model. In the following Section, the newly found patterns will undergo this cycle.

6.5.1 Discussing new patterns with experts

As already briefly noted in the last Section, the classification person already de-
tected new patterns in the data. Further analysis of those and the unclear patterns
reveal six new patterns. Examples are shown in Figure 6.15. We give them rather
descriptive names (from top right to bottom left): “Two Station”, “Three Station”,
“Once Linear”, “Twice Linear”, “Linear & Belly” and “High Frequency”.

Discussing the physical origin of those six patterns with the experts reveal very
interesting findings:

1. The patterns “Twice linear”, “Linear & Belly” and “One Linear” show a very
clear split into two halves. This is an indication that they are caused by the
two halves of the star. Thus, these patterns are simply other appearances
of the assembly error, and can be all combined to the error case “Assembly
error”.

2. The “High Frequency” pattern allows a match to several of the possible er-
ror cases discussed in Section 6.2.1. Motor-, Gear- or Bearing-Failures are
expected to show a high frequency patterns in the current. Without a de-
tailed analysis, the specific origin cannot be determined. The fact that high
frequency patterns appear is very promising as it could allow to detect those
error cases in advance.
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Figure 6.15: Examples of the newly detected patterns (from top left, to bottom right):
“Two Station”, “Three Station”, “Once Linear”, “Twice Linear”, “Linear & Belly” and “High
Frequency”.
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3. The discussion about the patterns “Two Station” and “Three Station” was
most intense, as no physical origin of those patterns could be identified. The
origin has to be connected with handovers at specific stations as the distance
between the groups of peaks is the distance between the two handover (in
& out). But this particular behavior of the machine is not expected by the
known physics of the machine. The origin of the patterns will be examined
further together with a bottler.

In summary, the feedback-loop to the experts is very fruitful as further error pat-
terns for existing error cases were identified. Additionally, the deployment of the
algorithm in a production line allows the experts to learn more about further error
cases.

6.5.2 Transform patterns into new sketches

The first sketches in Section 6.2.1 were created by using the freehand sketches
of the experts, in combination with the physical knowledge. This time, real error
patterns are available. These new patterns can be added in two different ways:

1. The error patterns are added directly to the collection of the patterns. This
allows a completely automated self-learning process without any manual
interaction.

2. The characteristics of the error patterns are extracted, and are joined with
the physical knowledge in order to receive a computer-generated sketch. The
manual effort has several advantages. At first, simplified patterns are more
likely to generalize over several bottlers. Secondly, different variations of the
patterns (e.g. randomized) can be created, which allows a faster learning
curve. Thirdly, a script allows an easy transfer of the gained knowledge to
different star sizes and setups.

Here, we will choose the Option 2, as the generalization of the model to dif-
ferent production lines is most important. The pattern “High Freq” will not be
considered, as it is difficult to create an expressive sketch for a high frequency
pattern with randomized amplitudes. Figure 6.16 show examples of the created
sketches for the five patterns. All created patterns go through the data augmenta-
tion procedure described in Section 6.3.2.

Additionally, analyzing the real error patterns for “Control” allows to add an-
other sketch in order to represent different variations of this error case. The addi-
tional sketch is also depicted in Figure 6.16.
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Figure 6.16: Examples of sketches for the new error patterns.

6.5.3 Study Setup

For this study, all available sketches are used. In total 33 sketches are included
as representation of 10 error patterns for 7 error descriptions. As the previous
manual labeling process just considered 5 error sketches, the labeling process
is repeated. The anomaly detection is slightly modified in order to avoid non-
anomalous curves in the data, following the leanings of Section 6.4.3. As further
data was acquired in the mean time, in total 377 distinctly different anomalous
curves are detected.

Equivalent to the first part, the classification person can choose up to two error
descriptions in case the pattern is not clearly assignable to one pattern. Both
classifications are treated equally. The amount of chosen combinations are shown
in Figure 6.17. The number of unclear patterns is reduced substantially to 31 - in
comparison to 106 in the last section. Nevertheless, in 51 cases the classification
person was unsure if the pattern resembles one of the sketches or not. Summing
up, even after adding further error sketches, about one in five patterns cannot be
assigned clearly to one sketch. In general, the error cases “Synchronization Error”
and “Assembly Error” are happening by far more often than the other error cases.
This should be taken into consideration when evaluating the accuracy.
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Figure 6.17: Number of patterns, which are classified into the eight error descriptions
and the combinations of them. On the diagonal are the number patterns that have been
assigned to only one error. On the off-diagonal are the number of pattern, which have
been assigned to two patterns.

As algorithmic setup, the DTW with maximum distortion of 0.25 handovers
and δmax = 5% is used, which was the winning algorithm of the first part.

6.5.4 Results

The evaluation in this part is happening completely equivalent to the evaluation of
the five sketches in Section 6.4.3, which was centered around the machine person-
nel. Equivalent to above, only ∆ % of the curves will receive an error description.

In order to determine the threshold ∆, we evaluate the accuracies in depen-
dence of ∆ (Figure 6.18 a). The goal of 90 % Weak Accuracy can be achieved for
thresholds below ∆ ≤ 55 %. Just one curve with the classification “unclear” can be
found underneath that threshold (Figure 6.18 b), thus the threshold can be fixed
at ∆ = 55 %. This implies that the machine personnel receives about 30 % more
error descriptions than before the retraining process with keeping the accuracy
constant.

Going into detail in the confusion matrix (Figure 6.18 c), four of the seven
classes reach an accuracy of 100 %, namely “Control”, “One Station”, “Two Sta-
tion” and “Three Station”. The class “Imbalance” was never detected by the algo-
rithm. The Weak Accuracy of 94 % has improved in comparison to the last Section.
The only class which causes big problems is the class “Assembly” - about one in
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(c) Confusion matrix for ∆ = 55 % normalized by the predicted values. With the excep-
tion of “Assembly”, all classes reach an accuracy above 94 %.

Figure 6.18: Classification results for the retrained setup. About 20 % of the patterns
could not be matched to any sketch.
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four classifications is completely incorrect. Considering the sketches, this class
is the trickiest one, as there are a lot of variations which do not show such an
unambiguous pattern like for instance “One station”.

Summing up, with seven error classes an accuracy above 90 % could be easily
achieved with choosing ∆ = 55 %. Except for the class “Assembly”, all classes
result in extraordinary accuracies. With ignoring this class, ∆ could be easily set
to a higher value. Regarding 20 % of the patterns being assigned to “unclear”,
∆ = 55 %, is a pretty good result.

In terms of calculation time, adding the additional sketches increases the cal-
culation time significantly to about 27.1 sec. This is in an acceptable range in
regard to the fixed limit of 60 sec, nevertheless a shorter calculation time would
be preferred.

6.6 Optimize Scoring Time

In a final step, we evaluate if the scoring time of the algorithm (in the last run
about 27.1 sec) can be optimized with keeping the accuracy roughly constant. As
the calculation is happening as one of many on a resource-limited edge device,
any reduction in calculation time is preferred in order to guarantee the overall
stability of the edge device.

We propose three different kinds of optimizations. The summary of all ap-
proaches can be found in Table 6.3.

6.6.1 DTW with ψ-Relaxation

A huge increase in calculation time originates in the high number of translations
of each sketch. In this study, every sketch is being translated 80 times. An opti-
mization could be achieved, if the DTW does not need to match every pattern to
all translations, but to just one sketch, which contains all translations. This long
sketch can be easily achieved by repeating the sketch twice behind each other, as
depicted in Figure 6.19.

This approach cannot be handled by the standard DTW algorithm, as that one
has the restriction that start and end points have to be matched together. A mod-
ification called ψ-relaxation weakens this constraint [101]. Up to ψ start and end
points of a sequence can be ignored if this leads to a lower measure. In this case,
we set ψ to the original length of the sketch.

As shown in Table 6.3, the DTW with ψ-Relaxation lead to a slight decrease in
both Weak Accuracy and Strong Accuracy. More important, the calculation time
with 35.6 sec, though, does not show any improvement to the previous approach.
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Figure 6.19: Example of a long sketch, which repeats the sketch twice. By doing this, all
possible translations are contained in the sketch.

Due to scaling of the order O(n2) the increased length destroys the advantage of
reducing the number of translations.

6.6.2 Pre-Selection via Euclidean distance

The second approach tries to reduce the calculation time by introducing a two-step
system. In a first step, a resource-efficient measure presorts the sketches and trans-
lations, and selects the most promising ones. In a second step, the more resource-
intense DTW measure is performing a fine-tuning of the preselected sketches and
chooses the final winner(s).

As already seen in Figure 6.12 in Section 6.4.1, the resource-efficient Euclidean
distance is able to detect basic similarities but fails in considering the details.
Therefore, it meets all necessary requirements for the first step. The Euclidean
measure evaluates all 2.640 sketches (33 sketches with each 80 translations) and
marks the TOP n sketches. Those are reconsidered by the DTW algorithm.

The results in Table 6.3 look very promising. Taking the TOP 200 (= removing
92.4 % of sketches in the first step), the calculation time reduces substantially by
63.5 % with just a small loss of Weak Accuracy of 1.4 %. Interestingly, the Strong
Accuracy even improves by 1.4 %. With n = 50 and n = 100, the calculation time
can be reduced further by additional 5.5 % with a marginal loss in accuracy of
about 1.0 %.

6.6.3 Remove Duplicates in Sketches

The third approach removes duplicates, which are caused by the translation of the
sketches. In sketches like “Control” or “Twice Linear” a pattern is repeated twice.
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Setting TOP n Weak Acc Strong Acc Calc Time
δmax = 5% δmax = 5% [sec]

normal - 90.3% 68.6% 27.1 sec

ψ-Relaxation - 86.0% 65.2% 35.6 sec

Pre-Selection: Eucl. 50 87.9% 69.1% 8.4 sec
100 88.4% 69.1% 9.1 sec
200 88.9% 70.0% 9.9 sec

Pre-Selection: Eucl & 50 87.9% 69.1% 7.4 sec
Remove Duplicates 100 88.4% 69.1% 8.1 sec

200 88.9% 69.6% 9.0 sec

Table 6.3: Results for optimizing the scoring time. The combination of preselecting via
euclidean distance and removing duplicate sketches, reduces the time by 66.8 % with keep-
ing the accuracy constant. The maximum distortion is kept constant at 0.25 handovers.

For those sketches just half of the translations are needed to represent all possible
translations.

We remove all translations, which correlate at least to 98.5 % to another trans-
lation. The number of sketches decreases by 15.2 % to a total of 2.240 sketches.
Combining this improvement with the previous optimization leaves the accuracy
roughly unchanged, but decreases the calculation time by about 10− 12 %. Thus,
in the end, we are able to reduce the calculation time by a very substantial percent-
age of 66.8 % with keeping the accuracies in average constant. Three calculations
can be now performed in the time of previously one.

6.7 Discussion and Outlook

Summarizing, the premiere of sketch-based error recognition in Predictive Main-
tenance was overly successful. For the first time, expert error sketches enriched
by physical knowledge were used as training data in this field. The full concept
including feedback-loop was performed for the field of error cases in small stars in
the bottling industry.

Giving an overview, the experts were capable to identify five different sources
of errors, and sketch them in an accurate way. The physics knowledge helped to
transform them into more realistic sketches. The DTW algorithm proved itself as a
very reliable method, which can recognize known sketches, and identify unknown
patterns. As the percentage of unknown patterns (at the beginning ∼ 50 %, after
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retraining ∼ 20 %) was especially high, the algorithm had to perform a real stress
test. Classifying the TOP 42 % and 55 % (before and after retraining), the algorithm
achieved extraordinary accuracies of about 90 %. Performing some optimizations
the scoring time could be reduced to less than 9.0 seconds, which is substantially
lower than the goal of 30.0 seconds. Thus, it fulfills the basic requirement to be
run on a resource-limited edge device.

The study confirms the premise that sketches support transfer learning natu-
rally as the study was performed with in total six different stars from two brew-
eries. Additionally, the study showed very illustrative that this approach also en-
ables the experts to learn more about their machines, as for two error cases no
mechanical explanation could be found yet.

As next steps, the algorithms and the feedback-loop needs testing in the real-
time environment. Especially interesting will be the feedback of the machine per-
sonnel to the error cases “Two station” and “Three station”. A continuous learning
process will be possible with the feedback of the breweries.

For a final proof of effective transfer learning, the algorithm should be also
tested on non-beer producing bottlers.

Considering other use cases, DTW could come to its limits. In literature, the
first pre-trained deep convolutional neuronal networks are used for time series
classification, e.g. in [62]. This approach could lead to a more generalized so-
lution, which is transferable over several use cases. The big question, if that ap-
proach can also handle sketches, opens a completely new exiting research topic.

141



CHAPTER 6. PHYSICS- AND EXPERT-DRIVEN ERROR SKETCH RECOGNITION

142



7 | Conclusion and Outlook

This thesis proposes a new path for detecting and classifying machine errors with
only a very small training data set. The approach was tested and developed on
the field of transport error cases in filling machines, which are one of the most
common error cases in bottling lines. For monitoring the machines, the electrical
current of the driving motors was used. Due to the low temporal resolution of the
signal, it was combined with angular information of the transport star, in order to
obtain statistical high-resolution patterns for star rotations. Those patterns were
used throughout the studies.

The main challenge is posed by the very small training data set. Here, “very
small” is understood in the smallest way possible: The training data consists of
just one healthy rotation pattern. All additional information about error cases is
introduced by simplified physical models and expert knowledge. The approach
consists of three steps:

1. Physical understanding:
A basic physical understanding of the machine and its error cases is needed.
An analytical physical model (as in Chapter 3) can help with that.

2. One-shot semi-supervised anomaly detection:
Error cases in the data are detected by anomaly detection. Due to the min-
imal training set, semi-supervised methods are chosen, which can learn in
a one-shot manner (see Chapter 5). Due to the large number of possible
preprocessing steps and algorithms (as introduced in Chapter 4), physical
intuition helps to narrow down suitable algorithms.

3. Physics- and expert-driven error sketch recognition:
For classifying the detected error cases, domain experts are asked to sketch
characteristics of different error cases. Those are enriched with physical
knowledge in order to enhance the similarity with real-world error cases.
Comparing a detected anomaly with those sketches allows a direct interpre-
tation of the anomaly (see Chapter 6).
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This novel approach was performed on the transport error cases in beer fillers
with great success. For the anomaly detection and sketch recognition, different
algorithmic setups were compared. Thereby, the following overly advantageous
characteristics could be shown:

Successful Transfer Learning Anomaly detection and sketch recognition support
transfer learning to new stars and machines naturally. Only one healthy
pattern is needed for the retraining. Additionally, overfitting is not a concern
for this approach.

Uncertainty of algorithm The anomaly detection and the sketch recognition were
both implemented in a manner allowing them to express a degree of cer-
tainty, which is essential for the overall approach.

Detection of new error cases Due to the combination of machine learning with
physical and expert knowledge, it is possible to detect new error cases and
integrate them smoothly into the algorithmic pipeline. This is not possible
with neither purely physical simulations, nor supervised machine learning
algorithms, as both are restricted to already known error cases. This enables
a new manner for the machine designers and the machine operators to learn
more about their machines.

This study paves the way for further studies and use cases, which otherwise suffer
from very little training data. In terms of bottling lines, the procedure could be
applied to further types of fillers or other machines and processes. But it is not
restricted to the bottling industry, as other fields involving custom machine con-
struction suffer the same effects, e.g. constructors of vacuum furnaces or paper
production machines.

To take the topic a step further, automated selection of algorithms would be
preferable. In this study, different algorithms were tested on manually-labeled
data sets in order to show their functionality. For semi-supervised anomaly detec-
tion, extensive literature research could suggest suitable algorithms based on the
training data and physical properties of the machine. A similar approach was al-
ready performed by Fulcher [37] for the case of labeled time series data sets. For
sketch recognition, it is conceivable that smart evaluation of the sketches could
already restrict the algorithmic setups. For instance, algorithms should be able to
distinguish sketches reliably, including after adding noise to the sketches.

Concluding, combining physics with machine learning can unlock the challeng-
ing field of very small data sets, and shows a way towards Predictive Maintenance
in the field of special machinery.
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Appendix

Solve Lagrange formalism - Part 2

As addition to Section 3.4.3, we solve the Lagrangian for the second time window

t ∈ [
ε1 + β

v
+ ∆tdelay,

ε1 + ε2
v

], which represents the angle area of α ∈ [β, ε2]. For a

better overview, we rewrite at first the two constraints g2 and g4 from Eq. 3.8 and
Eq. 3.10:

g2(α, t) =(α− ε2) · δ(t−
ε2 + ε1
v

) (7.1)

g4(α, t) =(α− β) · δ(t− ε1 + β

v
−∆tdelay). (7.2)

Setting up the Lagrangian formalism with those two constraints leads to

mα̈ = λ2 δ(t−
ε2 + ε1
v

) + λ4 δ(t−
ε1 + β

v
−∆tdelay). (7.3)

The equation of motion is gained by integrating twice over time:

α̇(t) =λ2 θ(t−
ε2 + ε1
v

) + λ4 θ(t−
ε1 + β

v
−∆tdelay) + b1 (7.4)

α(t) =λ2 (t− ε2 + ε1
v

) θ(t− ε2 + ε1
v

)

+ λ4 (t− ε1 + β

v
−∆tdelay) θ(t−

ε1 + β

v
−∆tdelay) (7.5)

+ b1t+ b2

with θ being the Heaviside step function and using
∫
dt δ(t − a) = θ(t − a) and∫

dt θ(t− a) = (t− a) θ(t− a).
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The equation of motion can be solved by inserting the Eq. 7.5 into the con-
straint 4: (

λ2 (t− ε2 + ε1
v

) θ(t− ε2 + ε1
v

)

+λ4 (t− ε1 + β

v
−∆tdelay) θ(t−

ε1 + β

v
−∆tdelay) (7.6)

+b1t+ b2 − β
)
· δ(t− ε1 + β

v
−∆tdelay) = 0.

This equation is fulfilled for all t 6= ε1 + β

v
+∆tdelay and leads for t =

ε1 + β

v
+∆tdelay

to:

b1(
ε1 + β

v
+ ∆tdelay) + b2 − β = 0

⇒b2 = β − b1 (
ε1 + β

v
+ ∆tdelay). (7.7)

Inserting the equation of motion into constraint 2 yields to(
λ2 (t− ε2 + ε1

v
) θ(t− ε2 + ε1

v
)

+λ4 (t− ε1 + β

v
−∆tdelay) θ(t−

ε1 + β

v
−∆tdelay) (7.8)

+b1t+ b2 − ε2
)
· δ(t− ε2 + ε1

v
) = 0.

This is again fulfilled for all t 6= ε2 + ε1
v

. For t =
ε2 + ε1
v

and Eq. 7.7 we receive a

definition for λ4:

λ4 (
ε2 + ε1
v

− ε1 + β

v
−∆tdelay) + b1

ε2 + ε1
v

+ β − b1 (
ε1 + β

v
+ ∆tdelay)− ε2 = 0

⇒ λ4 =
ε2 − β

ε2−β
v
−∆tdelay

− b1.

(7.9)

Replacing λ4 and b2 according to Eq. 7.9 and Eq. 7.7 into 7.5, leads with a few
simplifying steps directly to the final equation of motions for the time frame of

t ∈ [
ε1 + β

v
+ ∆tdelay,

ε1 + ε2
v

]:

α(t) =
ε2 − β

ε2−β
v
−∆tdelay

(t− ε1 + β

v
−∆tdelay) + β (7.10)

α̇(t) =
ε2 − β

ε2−β
v
−∆tdelay

. (7.11)
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Glossar

bottling line: Production line with a number of different machines in order to
produce filled and labeled bottles on a pallet. For instance, this can include
machines for cleaning, filling, labeling, packing and palletizing of bottles.
The line setup depends a lot on the filled product.

carousel: Machine part, which rotates around its axis, and thereby transports
bottles.

healthy data: Times in which the machine is operating normally without any de-
fects in the machine.

error data: Times in which the machine is operating with a defect in the machine.

failure data: see error data

filler: Machine, which fills and closes bottles.

reference data: see healthy data

semi-supervised anomaly detection: Anomaly detection, which is based solely
on healthy data.

star: see carousel

station: Part of the carousel, which holds the bottle during the transport process.
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