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1  |  INTRODUC TION

Leveraging image data for ecological and evolutionary/systematic 
research typically requires substantial effort for data collection 
and preparation. The ability to automate time- consuming steps 
of this process, possibly along with further downstream analyses, 

for example, using programming languages like Python or R, can 
not only increase productivity, but also allow otherwise infeasible 
large- scale analyses. Recent advances in machine learning (ML), both 
on the soft-  and hardware side, make it even possible to automate 
tasks that are difficult to solve by means of classically designed algo-
rithms. Computer vision, in particular, has largely profited from deep 
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Abstract
1. Collection and preparation of empirical data still represent one of the most im-

portant, but also expensive steps in ecological and evolutionary/systematic re-
search. Modern machine learning approaches, however, have the potential to 
automate a variety of tasks, which until recently could only be performed manu-
ally. Unfortunately, the application of such methods by researchers outside the 
field is hampered by technical difficulties.

2. Here, we present GinJinn2, a user- friendly toolbox for deep learning- based ob-
ject detection and instance segmentation on image data. Besides providing a 
convenient command- line interface to existing software libraries, it comprises 
several additional tools for data handling, pre-  and postprocessing, and building 
advanced analysis pipelines.

3. We demonstrate the application of GinJinn2 for biological purposes using four 
exemplary analyses, namely the evaluation of seed mixtures, detection of in-
sects on glue traps, segmentation of stomata and extraction of leaf silhouettes 
from herbarium specimens.

4. GinJinn2, by providing a coding- free environment, will enable users with a pri-
mary background in biology to apply deep learning- based methods for object 
detection and segmentation in order to automate feature extraction from image 
data.

K E Y W O R D S
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learning, which increasingly influences even the more traditional 
branches of organismic biology. Species identification tools running 
on smartphone devices (for an overview, see Jones, 2020; Wäldchen 
& Mäder, 2018) are prominent examples for this trend. Beyond pure 
classification tasks, a technically even more challenging problem 
consists in localizing objects like cells, organs or individuals on im-
ages. Specialized tools address this problem for various areas of ap-
plication, such as crop or weed detection (e.g. Afonso et al., 2020; 
Buddha et al., 2019), detection of leaves and other plant organs on 
herbarium specimens (e.g. Ott et al., 2020; Weaver et al., 2020; 
Younis et al., 2020), stomata counting using microscopic leaf im-
ages (e.g. Fetter et al., 2019), animal counting using camera traps 
(Norouzzadeh et al., 2021) and many more. Moreover, DeepImageJ 
(Gómez- de- Mariscal et al., 2021), an optional plugin for the popular 
ImageJ program (Schneider et al., 2012; Schroeder et al., 2020), pro-
vides easy access to a number of trained deep learning models for 
pre- defined tasks via a graphical user interface.

Despite the availability of increasingly convenient frameworks, 
adapting well- established ML methods to new areas of applica-
tion typically requires an amount of technical knowledge that may 
discourage potential users. GinJinn2, whose core functionality is 
based on Detectron2 (Wu et al., 2019), aims at lowering this hur-
dle by providing an easy- to- use command- line interface to the lat-
ter, augmented by a number of utility functions, designed to help 
the user with building custom analysis pipelines. While GinJinn (Ott 
et al., 2020) focused on extracting leaves from digitized herbarium 
specimens, GinJinn2 aims at a wider scope of application. Unlike the 
former, which was based on the Tensorflow object detection API, it 
is not restricted to bounding- box object detection, but also incorpo-
rates functionality for instance segmentation, that is, pixel- precise 
detection and classification of individual objects.

In the present contribution, a number of example analyses 
demonstrate how ecological, agricultural or evolutionary/systematic 
studies may benefit from GinJinn2. Those include pest monitoring 
using yellow glue traps, leaf shape extraction from herbarium spec-
imens, stomata segmentation and the evaluation of seed mixtures. 
We hope to encourage interested researchers to consider deep 
learning- based object detection or segmentation when faced with 
similar tasks. Using GinJinn2 together with pretrained models from 
Detectron2's model zoo, new applications can be explored with a 
minimum of invested time and effort, which makes it a potentially 
useful tool for both beginners and advanced users.

2  |  SOF T WARE

2.1  |  Overview

GinJinn2 is a toolbox for deep learning- based bounding- box ob-
ject detection and instance segmentation. As such, it provides 
functionality for model training, evaluation and application 
based on the Detectron2 framework, segmentation refinement 
based on CascadePSP (Cheng et al., 2020), a set of data pre-  and 

postprocessing tools for handling annotated image datasets, and ca-
pabilities for data insight and visualization. GinJinn2 is not meant 
to be a replacement for existing frameworks like Detectron2 or the 
Tensorflow Object Detection API (Huang et al., 2017), but rather a 
toolkit enabling code- free access to deep learning- based object de-
tection technologies. All of GinJinn2's functionality is accessible via 
an easy- to- use command- line interface (CLI).

2.2  |  Dataset splitting

Besides the data used to train the model, it is generally advisable to 
use a so- called validation dataset in order to detect overfitting and 
to optimize model choice and training parameters. Using a separate 
dataset for those purposes is necessary because the model's fit to 
the training data does not provide information about its generaliza-
tion capability. In other words, a trained model may accurately re-
produce the training data, but perform poorly on images that have 
not been presented to it before. However, as soon as any optimizing 
decision has been made based on the validation data (e.g. when to 
stop the training process), the model may again show overly opti-
mistic performance for this particular dataset. To obtain an unbiased 
evaluation of the final model, it is therefore necessary to provide 
an additional test dataset, which should not have been used for any 
other task beforehand. The ginjinn split command partitions an input 
dataset in such a way that each image along with its annotated ob-
jects is assigned to one of the resulting subsets. To be representative 
for the original dataset, each of the latter should comprise similar 
proportions of objects from each category. Aiming at a high level of 
homogeneity, the proposed splits are generated by a greedy optimi-
zation algorithm (see Appendix S1). Despite being a relatively rough 
heuristic, this approach is often sufficient to create acceptable splits 
and can even be applied to large datasets.

2.3  |  Object detection and instance segmentation

GinJinn2, by leveraging Detectron2's model zoo, offers several 
Faster R- CNN (Ren et al., 2015) and Mask R- CNN (He et al., 2017) 
models for bounding- box detection and instance segmentation re-
spectively. These are used in a supervised manner, that is, before 
being able to predict objects on new images in a meaningful way, 
their parameters (‘weights’) have to be fitted to images with known 
object occurrences (‘training’). While training such models de novo 
can be highly GPU intensive, this process can be considerably abbre-
viated by starting from pretrained rather than randomly initialized 
weights (‘transfer learning’). Accordingly, all available Detectron2 
models have already been trained on a large image dataset. Using 
those pretrained networks reduces the training time for new, cus-
tom datasets as well.

Once the user has prepared datasets for training, and, option-
ally, validation and test (see Dataset splitting), a GinJinn2 project 
can be initialized using ginjinn new. Training models using ginjinn train 
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constitutes the computationally most demanding part of a typical 
GinJinn2 pipeline. This process consists of a prespecified number of 
iterations, at each of which one or multiple images from the training 
dataset are presented to the model. The objects predicted by the 
latter are then compared to the known annotations and the model 
weights are adjusted to reduce deviations (‘loss’) from the desired 
output. While minimizing the loss with respect to the training data-
set, at some point, the model's generalization capability may begin 
to degrade. This so- called overfitting can be recognized by an in-
creasing loss for the validation dataset. The latter is therefore eval-
uated at predefined intervals. To enable a better assessment of the 
learning progress, COCO (Lin et al., 2014) evaluation metrics (AP, 
AP50, AP75, APs, APm and APl; for details see https://cocod ataset.
org) for the validation dataset are calculated as well. Since the model 
weights are stored periodically, in case of overfitting, the user can go 
back to an earlier checkpoint without having to discard the complete 
training. Since GinJinn2 is using Detectron2 as modelling backend, 
all models that are trained in the context of a GinJinn2 project can 
be used with Detectron2's Python interface without modification.

The quality of the final, trained model is best assessed based on 
a hitherto unused dataset with known object occurrences. This can 
be done using ginjinn evaluate, which calculates COCO evaluation 
metrics for the specified test dataset.

The ginjinn predict command allows applying a trained model 
to predict object occurrences for arbitrary images. Instance seg-
mentations can optionally be refined using CascadePSP (Cheng 
et al., 2020); while slowing down the predictions, this may consid-
erably improve the quality of the object outlines, especially in case 
of clear object boundaries. To facilitate the further use of the pre-
dictions, GinJinn2 provides various output options: (a) visualization 
of the predictions on the original images, (b) writing a new COCO 
annotation file and (c) saving a cropped image and, if applicable, seg-
mentation mask for each predicted object.

2.4  |  Further functionality

GinJinn2 offers several utilities for data pre-  and 
postprocessing

As a counterpart to the already described splitting command (ginjinn 
split), datasets can also be merged (ginjinn utils merge), which is par-
ticularly useful when using COCO's annotation format. In doing so, 
the input datasets are also checked for duplicated images.

Object annotations can be filtered by either category or size 
using ginjinn utils filter_cat or ginjinn utils filter_size respectively. The 
latter command is also capable of removing only small disjunct frag-
ments from existing objects.

To simplify existing data, nested image directories can be sum-
marized, making them compatible with GinJinn2 and other tools. gin-
jinn utils flatten recursively collects all images from a given directory 
and its sub- directories, renames and copies them into a single direc-
tory, and modifies associated annotations accordingly.

Due to the limited spatial resolution of common object detection 
models, detecting or segmenting objects that are small in relation 
to the image size can be difficult. To mitigate this problem, a slid-
ing window approach can be used to split the original images into 
smaller sub- images (ginjinn utils sw_split), preserving annotated ob-
jects, if available. Conversely, predictions based on such fragmented 
images can be merged again (ginjinn utils sw_merge) in order to gen-
erate an annotation of the original image.

The ginjinn utils crop command creates an annotated sub- image 
for each annotated object from a given dataset. Similar to the sliding 
window approach, this can be utilized to increase objects sizes rel-
ative to the images. Specifically, performing instance segmentation 
based on previously cropped bounding boxes may lead to improved 
results.

Besides the aforementioned data processing 
features, the following commands aim to provide 
additional convenience

The contents of a dataset can be briefly summarized using ginjinn 
info. More detailed information is provided by ginjinn utils count, 
which lists object occurrences individually for each image in a 
given dataset. Object annotations can be visualized with ginjinn 
visualize, which produces images overlaid by bounding boxes 
and, if available, segmentation polygons. Moreover, Ginjinn2 al-
lows to generate artificial datasets for testing purposes (ginjinn 
simulate).

2.5  |  Installation and usage

GinJinn2 is implemented in Python3 and can be installed using the 
Conda package manager, which also takes care of most of its de-
pendencies. ginjinn and all its subcommands provide a help option 
to list available parameters along with a short description. Further 
guidelines regarding installation and usage, along with an introduc-
tory tutorial and exemplary applications, are provided at https://ginji 
nn2.readt hedocs.io.

3  |  E X AMPLE ANALYSES

3.1  |  Seed counting

In this section, we demonstrate how GinJinn2 can be applied for 
seed mixture analysis, an illustrative use case for bounding- box 
detection with subsequent counting. This approach could, for in-
stance, be used to examine commercial seed mixtures or be applied 
to ecological samples (e.g. from seed traps). The presented analysis 
is based on a dataset consisting of 284 microscopic images of sand- 
contaminated seed mixtures of the two plant genera Sedum L. and 
Arabidopsis (DC.) Heynh.

https://cocodataset.org
https://cocodataset.org
https://ginjinn2.readthedocs.io
https://ginjinn2.readthedocs.io
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For all images, intact seeds were annotated with bounding 
boxes using the Computer Vision Annotation Tool (CVAT, https://
github.com/openv inoto olkit/ cvat), resulting in 6,732 and 1,964 
annotated seeds for Arabidopsis and Sedum respectively. The an-
notated images were exported as COCO dataset, which was then 

flattened (ginjinn utils flatten), and split into sub- datasets for train-
ing, validation and testing. A Faster R- CNN model was simultane-
ously trained and validated (Figure 1a). The quality of the fit model 
was assessed using COCO evaluation metrics for bounding- box de-
tection. In addition, instances predicted for the test dataset were 

F I G U R E  1  Seeds (a) and Leucanthemum (b) analysis workflows. The seeds dataset is split into training, validation and test datasets, which 
are used to train and evaluate a bounding- box model (a, Training). The trained model is applied to new data for seed counting (a, Prediction). 
The Leucanthemum dataset is also split into training, validation and test datasets, but the workflow comprises training and evaluation of two 
separate models (b, Training). The blue branch refers to a bounding- box model for the detection of leaves on sliding window crops of the 
split dataset. The orange branch depicts the training and evaluation of an instance segmentation model on padded bounding boxes cropped 
from the split datasets. Leaf segmentations for new data are predicted by combining both models (b, Prediction)

https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat


    |  5Methods in Ecology and EvoluonOTT and LaUTEnSCHLaGER

counted (ginjinn utils count) and compared with the manually ob-
tained counts.

After training, the AP50 was 98.6 and 98.9 for the validation 
and test dataset, respectively, which indicates that no overfitting 
occurred. The mean absolute error (MAE) of the class counts for the 
training dataset was 0.77 for Arabidopsis and 0.58 for Sedum, mean-
ing that on average, less than a single object per image was misclas-
sified, missed or falsely detected. The MAE of the seed proportions 
was 0.01, that is, only 1% deviation from the true seed proportions. 
Exemplary predictions are shown in Figure S1a (Appendix S2).

3.2  |  Yellow- sticky- traps insect 
detection and counting

As an example project for counting small, low- contrast objects on large 
images, the yellow- sticky- traps dataset (Nieuwenhuizen et al., 2018) 
was analysed. This dataset consists of images of yellow glue traps that 
were placed in greenhouses to monitor insect abundance. Three cat-
egories of insects (true bugs) were annotated with bounding boxes: 
Whitefly (WF), Macrolophus (MR) and Nesidiocoris (NC).

After removing redundant images and correcting erroneous or 
missing annotations using CVAT, a cleaned sub- dataset comprising 
120 images along with 4,913 bounding- box annotations (WF: 3,660, 
MR: 1,069, NC: 184) was exported in COCO format. In contrast to 
the seeds dataset, these bounding- box annotations are of consider-
ably lower quality, often enclosing the insects only loosely.

The cleaned dataset was split into training, validation and test 
datasets using ginjinn split. Since the insects are relatively small com-
pared to the total image size, a sliding window approach was applied 
(ginjinn utils sw_split) to crop sub- images along with corresponding 
object (sub- )annotations. The cropped datasets were used to train 
and evaluate a Faster R- CNN model for bounding- box detection. 
Finally, object instances predicted for the test dataset were counted 
(ginjinn untils count) and compared with true object counts.

The trained model achieved a validation and test AP50 of 90.12 
and 92.4 respectively. The mean absolute error (MAE) of the in-
stance counts was 1.67 for WF, 0.21 for NC and 0.79 for MR at an 
average of 27.1, 1.67 and 7.41 annotated instances per image for 
the respective object categories. The former amounts to a rela-
tive counting error of 6% for WF, 12.5% for NC and 10.6% for MR 
(weighted average: 7.24%). Exemplary predictions are illustrated in 
Figure S1b (Appendix S2).

3.3  |  Stomata segmentation

To demonstrate basic instance segmentation with the aim of de-
tecting stomata, we applied GinJinn2 to microscopic images of epi-
dermal plant material, retrieved from the Cuticle Database Project 
(Barclay et al., 2012). Results of such a segmentation can be used in 
downstream analyses for counting, measuring density or examining 
size and shape of the stomata.

Using CVAT, 147 images were annotated with 2,314 polygons, 
each enclosing the guard cells of a stoma. The annotated images 
were exported as COCO dataset and split into training, validation 
and test datasets used to train and evaluate a Mask R- CNN model.

The trained model achieved an AP of 49.46 and 51.32 for the 
validation and test dataset respectively. The mean absolute counting 
error amounts to 2.34 at an average of 14.69 stomata per image. An 
exemplary prediction is shown in Figure 2a.

3.4  |  Leucanthemum leaf segmentation

Morphometric studies often rely on outline data of specific animal 
or plant organs like, for example, leaves in the latter organism group. 
A common workflow to generate such data is to manually remove 
leaves from a living or herborized plant, fixate them on a contrast-
ing surface, capture digital images and finally apply semi- automatic 
thresholding methods (e.g. OTSU- thresholding) to construct binary 
segmentation masks. In this exemplary application of GinJinn2, we 
show an alternative way to segment individual leaves from digitized 
herbarium specimens based on a two- step approach involving sepa-
rate models for bounding- box detection and segmentation.

For this purpose, the Botanic Garden and Botanical Museum 
Berlin provided us with 303 digitized herbarium specimens from 12 
different Leucanthemum Mill. (ox- eye daisy) species. Using CVAT, the 
specimen images were annotated with polygons of the single object 
category ‘leaf’. This category represents largely intact leaves, which 
are a prerequisite for reliable morphometric analyses. The annotated 
images, comprising 950 ‘leaf’ instances, were exported from CVAT 
as COCO dataset, flattened (ginjinn utils flatten) and split into train-
ing, validation and test datasets.

A two- step pipeline (Figure 1b) was applied, consisting of (a) a 
Faster R- CNN bounding- box detection model that allows to extract 
individual leaves, and (b) a Mask R- CNN model to segment the leaves 
on those image parts. The Faster R- CNN was trained and evaluated 
on sliding window crops (ginjinn utils sw_split) of the three datasets. 
For the Mask R- CNN, sub- images (ginjinn utils crop) were cropped 
from the original annotated images, each containing a single anno-
tated leaf. Based on those cropped datasets, the Mask R- CNN was 
trained and evaluated. In addition, segmentation refinement was ap-
plied to the predictions for the test dataset.

After training, the Faster R- CNN achieved an AP of 30.57 and 
25.85 for the validation and test dataset respectively. The Mask 
R- CNN's AP scores were 76.44 and 74.54. Figure 2b illustrates an 
exemplary prediction. For new image data, the complete predic-
tion process also involves sliding window merging as illustrated in 
Figure 1b in order to remove duplicated objects.

4  |  DISCUSSION

The GinJinn2 toolkit advances the original GinJinn by reimplement-
ing its ideas on the basis of Detectron2, while also introducing new 
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features like segmentation models including mask refinement, as 
well as several data pre-  and postprocessing capabilities.

Based on four exemplary datasets we have shown applications of 
varying complexity. The seeds and yellow- sticky- traps analyses ad-
dress multi- category object counting problems using bounding- box 
detection. We were able to predict the seed ratios with an absolute 
error of only 1%, proving the potential of our software for the automa-
tion of such counting tasks. Considering the similar problem of count-
ing insects on yellow glue traps, with an error of 7.2%, the accuracy 
of the trained model may appear less convincing. There are two likely 
causes for this difference in accuracy: (a) low contrast between objects 
(insects) and background (glue trap) and (b) low quality of annotations. 
The latter could easily be solved by a more careful annotation scheme. 
Nevertheless, the achieved accuracy might be sufficient for practical 
applications, for example, to measure the response to insecticide treat-
ments or released beneficials in greenhouses.

The stomata analysis serves as a basic example of instance 
segmentation. Despite several previous works on the automated 
examination of stomata (Carrasco et al., 2020; Casado- García 
et al., 2020; Fetter et al., 2019; Li et al., 2019; Meeus et al., 2020; 

Song et al., 2020; Toda et al., 2018), this contribution, to our knowl-
edge, is the first trying to automatically segment whole stomata 
(represented by their guard cells) using deep learning. With only 88 
highly variable training images, our model achieved an AP of 51.32. 
Depending on the intended downstream analyses, this precision 
may already be acceptable if, for instance, only few high- quality ob-
ject instances are required. Undoubtedly, a model trained on a larger 
dataset will achieve substantially higher predictive power.

Finally, the Leucanthemum analysis illustrates how to construct 
a pipeline consisting of sliding window- based bounding- box de-
tection and subsequent segmentation for the extraction of high- 
quality leaf silhouettes from herbarium specimens. Here, the 
Faster R- CNN achieved an AP of 25.85. For potential morphomet-
ric analyses, we are not interested in extracting all leaves, but only 
largely intact ones, even at the cost of discarding viable instances. 
Therefore, the relatively low AP is sufficient. The Mask R- CNN, 
with an AP of 74.54 before refinement, was very successful at 
segmenting the leaves inside the bounding boxes. This pipeline 
already allows to generate leaf outlines for downstream analyses 
like Elliptic Fourier Analysis or Leaf Dissection Index calculation 

F I G U R E  2  Exemplary outputs from 
the Stomata (a) and Leucanthemum (b) 
analyses. (a) depicts a single input image 
along with corresponding predictions by 
the stomata model, showing different 
output formats. Similarly, (b) shows 
an input image and corresponding 
predictions for the Leucanthemum 
pipeline, before and after segmentation 
refinement
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(for an overview of such methods, see McLellan & Endler, 1998) 
with little manual effort.

With the presented exemplary analyses, we hope to provide 
guidance for the application of GinJinn2 for automatic data collec-
tion and feature extraction. Despite GinJinn2's progress compared to 
its predecessor, there is still room for further improvements. At the 
moment, GinJinn2 is only available for Unix- like operating systems 
with access to an NVidia GPU while Windows support may become 
available with forthcoming updates to the Windows Subsystem for 
Linux (WSL). Moreover, there is only one meta- architecture for each 
of the two detection tasks available, namely Faster R- CNN and Mask 
R- CNN. These, however, are among the most successful architectures 
for general- purpose object detection and segmentation. The integra-
tion of additional model architectures may be part of future versions.

We are confident that GinJinn2 will enable users, even those 
without programming experience, to apply deep learning- based 
methods for object detection and segmentation as part of their anal-
ysis pipelines. Advanced users may utilize GinJinn2 as a tool for rapid 
prototyping.
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