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Abstract: Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for develop-
ing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised
patients such as transplant recipients with more frequent severe courses. Unfortunately, besides
reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is
currently no specific anti-viral treatment to prevent disease progression. So far, research on involved
immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples espe-
cially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain
that the outcome of HEV-infected patients correlates with the strength of the proceeding immune
response. Several lymphoid cells have been identified in contributing either to disease progression or
achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and
CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying
fulminant courses are poorly understood. However, liver biopsies indicate the involvement of
cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid
immune response against HEV and point out questions that remain unanswered regarding this
underestimated global threat.

Keywords: hepatitis E virus; solid organ transplantation; innate lymphoid cells; natural killer cells;
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1. Introduction

Worldwide, an infection with the hepatitis E virus (HEV) is one of the main causes
for an acute hepatitis. While being asymptomatic in most healthy patients, the infection
can lead to severe courses in immunocompromised patients such as solid organ transplant
recipients with a high risk of a chronic infection [1,2]. Furthermore, especially in developing
countries, a high morbidity and mortality is reported for pregnant women mainly in the
third trimester caused by an increased risk for acute liver failure [3].

Historically, HEV was described for the first time in 1983 as a new non-A, non-B
hepatitis virus when it was possible to detect novel virus-like particles in stool samples via
immune electron microscopy [4]. The first well-documented outbreak of HEV occurred
1955 to 1956 in New Delhi, India, due to contaminated drinking water, though it was yet to
be attributed to hepatitis A virus. It took until 1994 to identify HEV as the cause for this
outbreak [5,6].

HEV is a single-stranded RNA virus with a size of 7.2 kb. Its particles show a diameter
of 27–34 nm and the virions are nonenveloped in feces and bile while circulating in blood
in a membrane-associated, quasi-enveloped configuration [7–9]. The genome consists of
three open reading frames (ORF) encased by noncoding regions, a 5′ cap, and a poly-A
tail. ORF1 encodes for a nonstructural polyprotein that is essential for the viral replication,
ORF2 encodes for the viral capsid protein and ORF3 plays a role in the release of infectious
virions from host cells [10,11].
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In this review we aimed to outline relevant aspects regarding the versatile lymphoid
immune response and point out open questions concerning a globally challenging disease.

2. The Global Threat–Epidemiological Aspects of HEV

By causing an estimated number of 20 million infections per year leading to 3.4 million
symptomatic cases and 70,000 deaths plus 3000 stillbirths, HEV is a major burden for
health systems around the world [12]. The human affecting species Orthohepevirus A
in the family of Hepeviridae is divided into 8 different genotypes, in which HEV-5 and
-6 are limited to wild boars and HEV-7 and -8 to dromedary and Bactrian camels. Since
there is a report about a liver transplant recipient, whose consumption of camel meat and
milk led to a chronic infection caused by HEV-7, humans can be infected by HEV-7 in rare
cases [13,14]. Furthermore, recent studies from Hong Kong have shown that patients might
also be infected by Orthohepevirus C genotype 1, an HEV species so far believed to be
limited to rats, leading to hepatic and extrahepatic manifestations in these patients [15].
However, the genotypes primarily affecting humans are HEV-1 to -4 and they differ widely
in geographical distribution, transmission, and disease progression (Figure 1). A recent
study showed evidence that the induction of hepatic transcriptomes significantly deviates
after infection with different HEV genotypes [16].
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Figure 1. Map with the geographical distribution of the four major human pathogen HEV genotypes. Data adapted from 
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HEV-1 and -2 are generally limited to humans and usually transmitted through fecal-
contaminated water, in the majority of cases this is the consequence of susceptible hygiene
standards in combination with incidents affecting the drinking water supply [12,17]. Espe-
cially severe rainfalls and flooding in developing countries can lead to an abrupt increase
in mostly self-limiting acute hepatitis cases but can also be life-threatening for distinct
patient groups like pregnant women. Aside from epidemic cases, HEV infection can also
occur sporadic in endemic regions. HEV-1 appears primarily in Asia, and HEV-2 in Mexico
and Africa [2,3,7,18].
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HEV-3 und -4 infect mammalian species, particularly pigs and wild boars. Humans
play a role as accidental hosts, mainly affected through foodborne zoonotic transmission
following the consumption of undercooked or raw pork and game meat, as well as even
shellfish [19,20]. HEV-3 can be found around the globe, whereas HEV-4 is mostly limited
to Southeast Asia, though it has been isolated from European pigs as well. Thus, HEV-3
and -4 cause sporadic, autochthonous cases of viral hepatitis in developing as well as in
developed countries with a hyperendemic accumulation of HEV-3, such as in Southwest
France [18,21–23]. In total, numbers of HEV cases are increasing; however, Mahrt et al. [24]
and Faber et al. [25] hypothesized that the reason might be the rising awareness with
enhanced and improved testing strategies. A peculiarity of HEV-3 and -4 in contrast
to HEV-1 and -2 is the danger of a chronic infection in organ transplant recipients and
immunocompromised patients in general [26–29]. Besides, HEV-3 shows a high risk of
inducing extrahepatic neurological complications [30–32].

3. Underestimated Paths of HEV Transmission

As mentioned above, the main transmission routes for HEV infection are through
contaminated drinking water for HEV-1 and -2, whereas HEV-3 and -4 are mostly trans-
mitted zoonotically [12,17,19]. Nevertheless, numerous cases are reported that show how
various transmission of HEV can occur. Especially in terms of elevated mortality in preg-
nancies, vertical transmission between mother and child plays an important role [3,33].
Rates of transmission during pregnancy reached 100% in a study from the United Arab
Emirates [34], whereas other authors indicated lower percentages [3]. Bose et al. [35]
demonstrated extrahepatic HEV replication in the human placenta. Furthermore, postpar-
tum transmission from acute infected mothers to their infants commonly occurs, potentially
through breastfeeding, since HEV has been isolated from maternal breast milk [34,36,37].

By all indications, sporadic and epidemic direct person-to-person transmission is also
possible [38,39], however mostly in nosocomial settings [40–43]. Nevertheless, studies on
high-risk groups did not identify evidence for sexual transmission [44,45]. Regarding the
endangerment of immunocompromised patients, a major focus lies on occult transmission,
especially through HEV-contaminated blood products. Transfusion-associated HEV in-
fections in endemic and non-endemic regions have been described extensively, primarily
in Europe [46–48] and Japan [49–51]. The prevalence of HEV in blood donors should not
be underestimated and definitely poses a threat for vulnerable patient groups [52–54].
Schlosser et al. [55] described a case of a liver transplant recipient with an occult HEV
infection that led subsequently to a chronic infection with liver cirrhosis.

4. Clinical Treatment of HEV for High-Risk Patients

With asymptomatic and self-limiting courses in most healthy individuals, HEV is
nevertheless also leading to severe courses in distinct patient groups. In two of three im-
munocompromised solid organ transplant recipients, an acute infection leads to a persisting
chronic infection, and in ten percent of the patients to a subsequent liver cirrhosis [1,56–59].
As shown in Figure 2, the first-line treatment of these patients is a reduction of the immuno-
suppressive medication as much as possible, which already helps to clear HEV in thirty
percent of the patients [1,60,61]. However, the increased protection against infection secon-
darily leads to an elevated risk of organ rejection. In order to maintain the balance between
infection and rejection, Torque teno virus may play an pivotal role, as it is considered an
endogenous marker for monitoring immune functions in SOT patients [62].

In order to treat severe courses in chronic HEV-infected patients, who did not respond
to a decrease in immunosuppression, several therapeutic agents have been tested for their
off-label use against HEV. The current standard of care for patients unable to clear HEV by
themselves is a three-month therapy with ribavirin. It is a nucleoside analogue that has been
used in the treatment of hepatitis C virus infection [57]. Furthermore, it has been shown
that ribavirin is able to decrease viral replication in chronic HEV patients and therefore to
lead to a sustained virologic response in 78% of the patients. This response rate could be
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further increased to 85% if the treatment was continued for up to six months [61,63,64]. The
main severe side effect of ribavirin is a hemolytic anemia, making it necessary to reduce or
discontinue the treatment [65].
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To treat patients with insufficient outcomes, alternative or combination therapies
have been tested, especially drugs used effectively in other viral hepatitis infections, such
as pegylated interferon alfa. It has been shown in chronic HEV-infected liver transplant
recipients that a three-month treatment with pegylated interferon alfa results in HEV clear-
ance; however, by stimulating the immune system, this treatment has severe side effects
and an increased risk for acute rejection [66–70]. Recent attention has been focused on
sofosbuvir which is part of the current first-line therapy for chronic hepatitis C infection.
It has been shown in in vitro experiments that sofosbuvir inhibits HEV replication and
it also had an additive effect in combination with ribavirin [71]. Furthermore, cases of
chronic HEV-infected patients have been described in which adding sofosbuvir to ribavirin
led to a temporary HEV eradication, highlighting sofosbuvir to be a promising agent
for further studies [72–75]. Nevertheless, chronic HEV patients treated with sofosbuvir
monotherapy indeed showed decreased HEV replications but did not achieve viral clear-
ances [76]. Currently, another focus lies on T cell-based immunotherapy [77]. Initially
developed for the therapy of malignant and infectious diseases, it is based on cytotoxic T
cells targeting specific antigens. Soon et al. [78,79] recently identified several HEV-specific
T cell receptors that could play an essential role as potential candidates in the therapy of
chronic HEV infections.

5. Structural Limitations in HEV Research

Due to its ordinarily asymptomatic clinical course, it is largely difficult to recruit broad
patient populations for studies of HEV infections. In a majority of cases, observations
on HEV are based on patients with pre-existing morbidity and severe disease progres-
sions. Thus, generating patient samples in early stages of the disease is rather difficult
to accomplish.

Furthermore, various animal models have been created and effectively used, but at
the moment, the ideal model to comprise all facets during infection, incubation period over
clinical outbreak, eventual chronification until achieving sustained virological response
in humans still needs to be established [80]. Since HEV was identified, various attempts
have been made to generate sufficient cell culture models to simulate HEV infection
in vitro. However, these systems showed numerous limitations concerning aspects such as
reproducibility, maintenance, and sufficient viral replication [81,82]. Further restrictions
apply regarding the comparability of the used cell species with the human in vivo setting,
because most systems are based on cancer-derived liver or lung cell lines [83]. However, it
was possible to improve the used cell culture models and adapted virus isolates [81,82] and
to establish novel systems based on hepatocyte-like cells [81,83]. This allows to approach
the clinical setting as far as possible. Nevertheless, fundamental limitations of cell culture
systems still apply [84].

6. Immune Responses Induced against HEV

In order to understand the context of HEV chronification and immunosuppression, it
is necessary to outline different innate and adaptive humoral or cellular immune responses
triggered by an HEV infection subsequently leading to viral clearance (Figure 3).

6.1. Adaptive Lymphoid Cells
6.1.1. Humoral Response

After proliferation and differentiation from B cells, plasma cells and memory B cells
are capable to produce massive quantities of antibodies. As part of the humoral immune
response, those immunoglobulins are used to identify and neutralize antigens and play an
important role in clearance of viral pathogens. Moreover, antibodies are broadly identified
in viral diagnostics and they provide insights concerning the progression of infection [85].

In acute HEV-infected patients, anti-HEV IgM antibodies reach their peak after 6 weeks
with a delayed increase of long-lasting anti-HEV IgG [2,7]. In reports about protection
against HEV reinfections, animal experiments with primates have shown a correlation
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between persisting high-avid IgG and reduced rates of reinfection [86–88], in some stud-
ies even protective immunity or cross-protection between different HEV strains [89–91].
Furthermore, it has been observed that in particular HEV reinfections led to courses with
shorter viremia, low RNA levels, lacking IgM responses, and no detectable increase of liver
enzymes [88]. A study from East China showed a decrease in the frequency and severity of
HEV reinfections in patients with pre-existing immunity against HEV [92]. It is important
to note that antibodies obtained by infection or vaccination do not provide sterilizing
immunity [70,93]. Thus, infections with subsequent circulating anti-HEV IgG can lead
to attenuated courses, but do not provide life-long protection [94,95]. While anti-HEV
IgM is undetectable after 32 weeks, IgG persists for years and decades, perhaps even a
lifetime. During this time, IgG decreases in a period of 5 years with increasing avidity
percentages. Simultaneously, the rate of patients developing seronegativity is vanishingly
low [2,96,97]. The main target of neutralizing anti-HEV immunoglobulins is the ORF2
segment. However, as a result of its exosomes-associated quasi-enveloped configuration,
HEV is able to prevent recognition by antibodies [98,99].
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6.1.2. TCR α/β T Cell Response

In viral hepatitis, T cells play a decisive role in the development of a chronic infec-
tion over spontaneous clearance. In particular, a multi-functional CD8+ cytotoxic T cell
response supported by CD4+ helper T cells is necessary to achieve a sustained virological
response. Furthermore, the development of memory T cells plays a crucial role in cases of
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reinfection [100,101]. The adaptive T cell response in HEV infection differs widely whether
the patient suffered from an acute and uncomplicated infection, a chronic course with
enduring viral replication or a fulminant progress with impaired liver function and severe
symptoms which can develop from both acute and chronic courses.

An acute HEV infection is associated with elevated T cell frequencies. Studies have
shown that CD4+ [102], as well as CD8+ [103,104], and CD4+CD8+ [104] T cell populations
increase. In this context, they are more activated [103] and produce increased quantities
of IFNγ [102,104–106] as well as IL-10 [106]. Furthermore, Tripathy et al. [107] identified
an elevated frequency and an enhanced IL-10 response of regulatory CD4+FoxP3+ T cells.
Taken together, this suggests a balanced regulation by pro- and anti-inflammatory cytokines
in uncomplicated HEV infection.

In chronically HEV-infected patients, decreased lymphocyte counts [108] and atten-
uated CD4+ and CD8+ T cell responses [109] were observed. However, these changes
normalized after viral clearance [109].

Interestingly, some patients develop fulminant courses. It has been concluded that the
main reason for this are host-specific factors [110]. Wu et al. [106] detected an increased
frequency of CD4+ T cells and increased Th2 cytokines, with a concomitant decrease in
IFNγ production. This was confirmed by Srivastava et al. [111], who observed a decrease
in IFNγ- and TNFα-producing CD4+ T cells. Furthermore, Wu et al. [106] identified a
correlation between outcome and IFNγ production, with no association with viral replica-
tion. It is important to note that studies of peripheral lymphoid cells do not necessarily
reflect the situation ongoing in the infected liver. Unfortunately, biopsies of HEV infected
patients are difficultly to achieve. Nevertheless, few studies examined post-mortem liver
biopsies of patients with liver failure due to HEV infection. Thereby it was remarkable
that the predominant infiltrating population were CD8+ T cells [112,113]. Additionally,
Prabhu et al. [112] underlined the absence of CD4+FoxP3+ regulatory T cells.

6.2. Innate-Like Lymphoid Cells

Innate-like lymphoid cells represent a link between innate and adaptive lymphoid
cells. Innate-like T cells (ILTCs) combine several properties, including the expression of a
functional T cell receptor (TCR) and the surveillance of cell surfaces within tissues. In doing
so, they rapidly register signs of dysregulation [114,115]. In general, their immune response
covers a broad spectrum. It is dependent on various factors such as TCR integration, co-
stimulation, cytokine-driven signaling, and NK cell receptor interaction [115,116]. The
three main groups within ILTCs distinguished are natural killer T (NKT) cells, mucosal
associated invariant T (MAIT) cells, and gamma delta (γδ) T cells. Together, they account
for about 10% of all circulating T cells [116]. The proportions vary greatly depending on
the environment and are particularly elevated among tissue resident T cells. MAIT and
NKT cells are especially abundant in the liver and lung, whereas γδ T cells accumulate
mainly in mucosal tissues [116–118].

NKT cells are a unique innate-like lymphoid cell population sharing both NK cell
and T cell attributes. NKT cells take part in the regulation of liver immunity during
viral hepatitis by direct cytotoxicity and the production of large quantities of cytokines,
including mediators for enhanced neutrophil infiltration [119,120]. In acute HEV infection,
patients show decreased counts of circulating NKT cells, whereas activation is markedly
increased [121].

Accounting for over 45% of all lymphocytes in the liver, CD161high MAIT cells are the
largest subpopulation of unconventional T cells. The TCR of MAIT cells is composed of
invariant TCR α chains and a repertoire of Vβ chains, mostly Vα7.2 and Jα33 combined
with Vβ13.2 and Vβ2. A special aspect of MAIT cells is the recognition of vitamin B
metabolites bound to monomorphic MHC-like molecules (MR1) [116,122–124]. MAIT
cells combine diverse Th1/Th17 functions with direct granzyme- and perforin-driven
cytotoxicity [125,126]. However, studies about the role of MAIT cells in the context of a
HEV infection are still missing.
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Another subpopulation of innate-like lymphoid cells examined in HEV infection are
γδ T cells. In humans, they are functionally classified according to their expression of
γ and δ TCR chains. Most commonly, Vγ9+Vδ2+ T cells are contrasted with Vδ2− γδ T
cells [127,128]. Usually seen as strong immune defense in tumoral and viral disease, γδ T
cells are enriched in liver tissue. They participate in liver protection but also contribute
to lymphocyte-mediated organ damage [129]. Acute HEV-infected solid organ transplant
recipients show an activation and higher frequencies of circulating naive subsets of γδ
T cells [56]. Barragué et al. [130] found a mobilization of (memory) γδ T cells in acute
HEV-infected patients, presumably producing high amounts of IL-10.

6.3. Innate Lymphoid Cell Response

In the 1970s, lymphoid cells with the ability to recognize and eliminate virus-infected
cells without prior stimulation by antigens neither cytokines were described [131,132].
Henceforth, besides those natural killer (NK) cells, several further lymphoid immune cell
populations with rapid cytokine secretion mechanisms upon stimulation were identified.
Following their morphological resemblance, those populations have been assembled as
innate lymphoid cells (ILCs) [133].

In viral hepatitis, NK cells combine antiviral and regulatory functions, and they are
regarded as an important first line of cellular immune response. In general, NK cells are
regulated by the interaction of activating and inhibiting surface receptors. Inhibition is
predominantly driven by the recognition of major histocompatibility complexes class I,
expressed by almost every healthy cell. Upon activation, besides cell-mediated cytotoxicity,
NK cells produce high amounts of IFNγ, a major cytokine in anti-viral response [133,134].

Studies with HEV-infected patients showed a diminished presence of NK cells in
the peripheral blood, whereas activation was strongly increased, indicating a possible
migration to affected hepatic tissue, shown by higher NK cell counts in liver biopsies.
During recovery, changes in cell rates and activation normalized [112,121]. No change in
NK cell mediated cytotoxicity was observed in HEV-infected patients, although the fraction
of CD56low predominant cytotoxic NK cells was diminished towards the accumulation
of CD56high mainly cytokine producing NK cells [121]. Immunohistological comparisons
of severe courses of hepatitis A, B, C, and E showed the highest NK cell counts in liver
biopsies from HEV infected patients [112].

Knowledge on further protagonists in cellular innate immune response to HEV infec-
tion is rare. Studies on HEV-infected Mongolian gerbils showed an enhanced activation of
mast cells, a cell population largely associated with allergic reactions, but also regarded as
a connection between innate and adaptive immune response [135,136]. Besides, histologic
liver analyses of patients with acute HEV infection verified neutrophils as the predominant
population in inflammatory cell infiltrates [137].

7. Clinical Link between Lymphoid Cell Impairment and HEV Outcome

As already mentioned, chronification of HEV infection is mainly seen in immunocom-
promised patients. It is therefore worthwhile to emphasize the reason for and the way in
which these patients are immunosuppressed in order to learn more about the mechanisms
involved. A recent study by Ankcorn et al. [138] investigated patients suffering from
persistent HEV infection over a long period of time for underlying disorders. A history of
SOT was present in approximately 60% of the patients. This was followed by patients with
an underlying malignant hematological disease in 28% [138].

7.1. Patients after Solid Organ Transplantation

Due to a rather strong therapeutical immunosuppression to prevent rejection, SOT
patients can develop several opportunistic infections. A recent meta-analysis [139] found
that HEV prevalence in SOT patients is about 20%. This involved first of all liver transplant
recipients. Kamar et al. [1] investigated which risk factors play a role in the development of
chronic HEV infection in SOT patients. They found that the main independent factors were
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low platelet count and the choice of immunosuppressant. In addition, other risk factors for
an increased HEV seroprevalence in SOT patients include underlying liver cirrhosis and
HIV infection [140].

By Kamar et al. [1], tacrolimus in particular was found to be a risk factor, mainly
because of its higher immunosuppressive effect than ciclosporin A. Both drugs play an
important role since they are highly potent in targeting T cells [1]. Due to the high-affinity
binding of immunophilins, a group of cytosolic protein receptors, the inhibition of the
intrinsic activity of the phosphatase calcineurin is achieved. This prevents activation of the
transcription factor nuclear factor of activated T cells (NFAT). Decreased NFAT activation
then leads to lower IL-2 synthesis, a key cytokine in T cell activation [141,142]. Since the
interplay of different T cell populations is essential for clearance of acute HEV infection,
it is not surprising that over 60% of HEV-infected patients developed chronic courses in
the study by Kamar et al. [1]. Investigations on chronic HEV-infected heart transplant
patients have shown that, when comparing different immunosuppressive therapy regimens,
only mycophenolic acid (MFA) was significantly associated with HEV clearance [143].
This finding is consistent with in vitro experiments that have demonstrated that MFA
directly inhibits HEV replication, whereas calcineurin inhibitors actually increase it [65].
An antiviral effect was already presented by Pan et al. [144] in studies on hepatitis C virus
infection. MFA has been shown to inhibit viral replication in vivo as well as in vitro. The
exact reason for the increased HEV clearance during MFA therapy remains unclear. An
essential mechanism could be the inhibition of inosine monophosphate dehydrogenase
(IMPDH), which is also targeted by ribavirin [65,143,145]. By inhibiting IMPDH, MFA
also effectively suppresses lymphocyte proliferation [146]. In conclusion, mainly due to
the impact of immunosuppressants on T cell activation in patients with SOT, there is a
certain threat for chronic HEV infection. Tacrolimus in particular represents a major risk
factor. MFA, on the other hand, shows direct antiviral effects on HEV replication; thus,
MFA should be considered in HEV-infected SOT patients whenever possible, although the
specific effects require further investigation.

7.2. Patients with Hematological Diseases

Among patients with underlying hematological disease, HEV infection is mainly
associated with non-Hodgkin lymphoma [147,148]. In general, HEV prevalence is higher
in patients with underlying malignant hematological disease than in the general pop-
ulation [148]. In addition, numerous patients have been reported to suffer from se-
vere [149,150] or prolonged [151–154] HEV disease courses. Immune insufficiency due
to underlying disease or chemotherapy has been implicated as a cause, with stem cell
transplantation considered a risk factor as well [147,150,155].

Due to the multitude of hematological diseases and the correspondingly versatile
therapy regimens, it is important to compare which therapeutic approaches support com-
plicated HEV infections in a more frequent pattern. It is striking that in many, sometimes
severe cases, rituximab was used [147,156–163], and it was possible to intercept rising
transaminases and HEV markers by reducing rituximab dosing alone [159].

Rituximab acts as a CD20 antibody and has many effects, some of which are still
unknown. Via the integral membrane protein CD20, it induces apoptosis, complement-
dependent and antibody-dependent cell-mediated cytotoxicity in target cells, among nu-
merous other effects [164,165]. As a consequence, there is a highly effective depletion
of CD20+ adult B cells, which as a main effect no longer differentiate into antibody-
producing plasma cells [166]. Thus, rituximab indirectly affects T cells as well, as there is
a marked reduction of CD4+ T cells [162,167–169] and to a lesser extent CD8+ cells [167].
Through the lack of co-stimulation by B cells, T cells show impaired differentiation [170],
activation [170–172], and cytokine production [173]. In vitro, this effect has been con-
firmed [173]. Moreover, the proportion of regulatory T cells is increased under rituximab
therapy [171,174]. To a small extent, rituximab also directly depletes small populations of
CD20+ T cells and NK cells [171,174].
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Since HEV infection can exacerbate the course of hematologic diseases [147], adequate
therapy is essential. Frequently, infections with the genotype HEV-1 lead to fatal courses,
especially if the patients are of advanced age [175,176]. Reducing immunosuppression in
hematologic patients is often difficult, which is why balanced administration of ribavirin is
also an important pillar in this context [147,151,163]. Von Felden et al. [147] argued that
early ribavirin administration is even preferable, as reduction of immunosuppression was
associated with increased mortality.

7.3. Further Immunocompromised Patient Groups

More than 10% of chronically infected HEV patients suffer from neither SOT nor
underlying hematologic disease [138]. The remaining patients are distributed among a
very heterogeneous collective.

HIV infection is, compared to the general population, disproportionately common in
chronically infected HEV patients [138]. Although there is no clear correlation between HEV
seroprevalence and CD4+ cell count in HIV patients, a CD4+ cell count below 200 cells/mm3

is a major risk factor for the development of chronic HEV courses in HIV patients [177]. It
has been possible to treat acute or chronic infections by therapy with ribavirin [178–180],
pegylated interferon alfa [181], or a combination of both [182] in several cases. Interestingly,
normalization of CD4+ cell count alone did not result in resolution of HEV infection by
itself [178].

Besides HIV-infected patients, autoimmune diseases play an important role [138].
CED patients show an increased HEV prevalence, although these could not be attributed to
any specific immunosuppressive therapy [183]. This contrasts with the field of rheumatic
diseases. There are numerous reports on patients receiving methotrexate-containing ther-
apy, some of whom achieved SVR after reduction of immunosuppression [157,184–186].
Methotrexate has broad and multiple effects on T cells, although the exact mechanisms
are not fully understood. The main modes of action under debate are primarily folate
antagonism, effects on adenosine signaling, and induction of apoptosis through gener-
ating reactive oxygen species [187]. In vitro, a reduction of pro-inflammatory cytokine
production has also been demonstrated [187]. Biologicals are also an important component
of therapy for severe rheumatologic diseases. One frequently used group of substances
are the TNFα inhibitors. Here, there are also numerous reports of complicated courses of
HEV infections, which partially subsided under reduction of therapy [184–186,188]. This is
consistent with the hypothesis that the production of pro-inflammatory cytokines such as
TNFα plays an important role in the control of HEV infections.

7.4. Women Undergoing Alterations during Pregnancy

Pregnant women in developing countries are at increased risk from HEV infections,
as the predominant genotype there, HEV-1, leads to severe courses. Ex vivo studies have
shown that HEV-1 replicates more efficiently at the placenta and causes severe tissue
damage compared to HEV-3 [189].

Especially during the third trimester, cases of fulminant hepatitis are frequently
described, leading to mortality rates of up to 30% [3,190]. As pregnant women undergo a
multifaceted change of the immune system and hormonal status, those alteration may help
understanding the impact of HEV infections.

As pregnancy progresses, the adaptive immune response decreases, and the number
and function of T cells and NK cells steadily decline. This indicates that the immune
response is switching away from the inflammatory Th1 response. In addition, a decrease
in B cells is observed [191]. At the same time, the immune barrier is strengthened, pri-
marily by increased phagocytosis and granulocyte activity [192]. Biopsies in patients with
acute liver failure showed that infiltration of CD8+ T cells is crucially involved in the
pathogenesis [112].

The alterations of hormones also play a dominant role. Up to the third trimester,
both estrogen and progesterone increase. Early in pregnancy, estrogen augments the Th1
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response and thus cell-dependent immunity. Later, with higher estrogen concentrations,
the Th2 response is more likely to be supported along with the humoral response [193].
Simultaneously, high concentrations of progesterone suppress the maternal immune re-
sponse and affect the interaction between Th1 and Th2 cells [193]. Yang et al. [194] have
shown that highly elevated levels of estrogen even promote HEV replication. They also
lead to preterm delivery and fetal mortality in HEV-infected patients due to placental
dysfunction [195].

Currently, the main pillar to prevent severe courses is prevention, since currently no
established therapy regimens are available for pregnant women [196]. Notable drugs in
the therapy of other patient groups, such as ribavirin, unfortunately carry high teratogenic
potential, making them absolutely contraindicated for pregnant women. It is therefore
strongly recommended that women of childbearing age use contraception if taking ribavirin
themselves or having sexual contact with a person under medication [197].

8. Extrahepatic Manifestations Associated with HEV Infections

It is important to note that extrahepatic manifestations occur regularly after HEV
infection. The pathophysiological mechanisms involved are still largely unclear [198].
Several aspects have been discussed. One is the activation of the endogenous immune
defense by the viral infection, which is not limited to the primary localization, and another
is the direct HEV replication in extrahepatic tissues, proven for instance in the placenta [35]
as well as in the cerebrospinal fluid [32,198].

The nervous system is frequently affected. A study by Kamar et al. [32] showed that
the incidence of neurological complications was 5.5%. These are mainly associated with
the HEV-3 genotype [199]. According to a study from China [200], HEV-4 does not appear
to contribute to neurological manifestations. Damage to the peripheral nervous system
is predominant, especially Guillain–Barré syndrome and neuralgic amyotrophy, but also
encephalitis or myelitis [201,202].

Following a study by Kamar et al. [203] in SOT patients, HEV infection resulted
in a significant decrease in eGFR, which was normalized after HEV clearance. Biopsies
showed glomerular injury and, in most cases, evidence of cryoglobulinemia, also turning
negative after HEV clearance [203]. Cryoglobulin-associated glomerulonephritis is most
likely triggered by the exuberant immune response to viral antigens, which has also been
observed upon HBV and HCV infections [204]. Nephrological manifestations of HEV occur
primarily after infection with HEV-1 and HEV-3 [205].

In addition to renal and neurological manifestations, several others have been de-
scribed, primarily from the hematologic spectrum, such as thrombocytopenia and aplastic
anemia [205]. Besides, acute inflammation of the pancreas occurred frequently, mostly due
to infection with HEV-1 [205].

9. Conclusions

HEV is a pathogen leading to a huge amount of acute hepatitis cases globally. Based
on the fast recruitment of innate and innate-like lymphoid cells, it is likely that they
provide a potent first line of defense upon HEV infection. Furthermore, a major role is
played by the adaptive T cell response in order to achieve sufficient viral control, especially
concerning the development of chronic courses (Table 1). After acute infection, HEV is
controlled by the interaction of CD4+ helper and CD8+ cytotoxic T cells. A special role
is attributed to CD4+FoxP3+ regulatory T cells. If this machinery fails, in most cases due
to immunosuppressive medication, a chronic HEV infection is more likely. Interestingly,
Suneetha et al. [109] were able to retrieve the exhausted T cell response by blocking immune
checkpoints such as PD-1 and CTLA-4 in vitro.
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Table 1. Immune response by lymphoid cells due to HEV infection.

Lymphoid Cell
Population Immune Response Acute

HE
Chronic

HE
Fulminant

HE References

Adaptive Lymphoid Cells CD4+ αβ T cells cell count ↑ ↓ ↑ [102,106,109]
cytokine production ↑ ↓ [102,106,109]

Th1 cytokine
production ↑ ↓ [102,106]

Th2 cytokine
production ↑ ↑ [102,106]

CD4+ FoxP3+ Treg cytokine production ↑ [107]
liver infiltration ↓ [112]

CD8+ αβ T cells cell count ↑ ↓ [103–105,109]
cytokine production ↑ ↓ [103–105,109]

liver infiltration ↑ [112,113]
Innate-like Lymphoid Cells NKT cells cell count ↓ [121]

activation ↑ [121]
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It is still uncertain why distinct patient groups tend to develop severe courses with
unfavorable outcomes. It has been implied by in vitro studies that HEV is not cytopathic.
Since CD8+ cytotoxic T cells have been identified as the predominant cell population in
liver biopsies from patients with acute organ failure, it seems likely that they play a serious
role in the pathogenesis of severe liver damage. The absence of regulatory T cells in these
biopsies and their enhanced IL-10 response in acute HEV cases leads to the conclusion that
they also take a central role in regulating the respective immune response. Furthermore,
the increase of Th2-driven IL-4 production and the decrease of Th1 cytokines highlights
the pivotal role of a Th2 bias in fulminant cases [106].

Nevertheless, numerous relevant questions remain unanswered: (i) Which further
cell populations of the innate and innate-like immune response play a significant role?
(ii) What accounts for the fact that in some cases immunocompromised patients develop
severe courses eventually leading to liver failure? (iii) What is the role of cytotoxic T cells
in the development of severe liver injury? Further insights in these fields may help to
improve the search for new therapeutic strategies to achieve better control of complicated
HEV infections in the future.
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