
Computability and ℓ2-Betti Numbers

Masterarbeit
im Studiengang Mathematik

Betreuerin: Prof. Dr. Clara Löh
Fakultät für Mathematik

Universität Regensburg

Abgabedatum: 23.08.2021

Matthias Uschold

Contents

0 Introduction v

1 Introduction to `2-Betti Numbers 1
1.1 Group von Neumann Algebras, Traces and Dimension 1

1.1.1 Why we need the von Neumann Algebra 1
1.1.2 Group von Neumann Algebras 2
1.1.3 Traces and von Neumann Dimensions 5

1.2 `2-Betti Numbers . 8
1.2.1 G-CW Complexes . 8
1.2.2 The `2-Completion of the Cellular Chain Complex 10
1.2.3 `2-Betti Numbers . 10
1.2.4 The Set of `2-Betti Numbers 13
1.2.5 `2-Betti Numbers of Groups 15

1.3 Further Questions about `2-Betti Numbers 18
1.3.1 Atiyah’s Conjecture . 18
1.3.2 Spectral Measures and Lück’s Approximation Theorem . . . 19

2 Introduction to Computability 23
2.1 A Naive Introduction into Computability 23

2.1.1 Algorithms . 23
2.1.2 Computability of Functions 24
2.1.3 Decidability . 25

2.2 Computability Classes of Real Numbers 29
2.3 Right-Computability of some Topological Invariants 34

2.3.1 Stable Commutator Length 34
2.3.2 Simplicial Volume . 36
2.3.3 Comparison with the Case of `2-Betti Numbers 38

3 Computability of `2-Betti numbers 39
3.1 Some Known Results . 39
3.2 The General Case . 43

3.2.1 Right-Computability . 43
3.2.2 Left-Computability . 45
3.2.3 Effective Computability . 48

3.3 Sofic Groups and the Determinant Class Conjecture 49
3.3.1 Sofic groups . 49

iii

Contents

3.3.2 The Spectral Measure near Zero 50
3.3.3 The Determinant Class Conjecture 54

3.4 Residually Finite Groups . 57
3.4.1 Preliminaries: Solvability of the Word Problem 57
3.4.2 A Quantitative Version of Lück’s Approximation Theorem . . 58
3.4.3 Effective Computability . 61

4 Implementation in Lean 65
4.1 What is the Lean Theorem Prover? 65
4.2 Overview of the Implementation . 68

4.2.1 List of files . 68
4.2.2 Some Specific Definitions . 69
4.2.3 Main Theorems . 71

4.3 Case Study: General Right-Computability 80
4.3.1 The Main Theorem . 80
4.3.2 The Lemma seq_is_above . 80
4.3.3 The Lemma tr_seq_converges 82

Bibliography 85

Index 87

Table of Notation 89

iv

0 Introduction

In Algebraic Topology, a central invariant are the Betti numbers which were intro-
duced by Enrico Betti in 1871, considered by many to be the advent of Algebraic
Topology. They are a homotopy invariant that is ‘finer’ than the Euler characteristic
which can be deduced from the Betti numbers via the formula

χ(X) =
∑
n∈N

(−1)n · bn(X)

(where X is a finite CW complex). Moreover, they satisfy the Künneth formula, i.e.
for finite CW complexes X,Y and n ∈ N, we have

bn(X × Y) =
∑

p+q=n

bp(X) · bq(Y).

However, one disadvantage is that there is no ‘nice’ behaviour with respect to finite
coverings. This is in contrast to the Euler characteristic χ: For a d-sheeted covering
Y → X of finite CW-complexes, we have χ(Y) = d · χ(X). The corresponding
property for Betti numbers is not true (see e.g. self-coverings of S1).

We attempt to rectify this shortcoming by introducing a stable version of the Betti
numbers, called the `2-Betti numbers. Let X be a finite, connected CW-complex,
and x0 ∈ X, such that the fundamental group G := π1(X,x0) is residually finite.
The latter means that there exists a residual chain, i.e. a sequence (Gk)k∈N of finite
index, normal subgroups in G, such that Gk ⊃ Gk+1 for all k ∈ N and⋂

k∈N
Gk = {e}.

Note that in many examples, this condition is satisfied. Recall that for all k ∈ N,
we then have a regular covering pk : Xk → X such that for x̃0 ∈ p−1(x0), we have

(pk)∗π1(Xk, x̃0) = Gk.

The number of sheets of pk is then given by the index [G : Gk]. For n ∈ N, we then
define the n-th `2-Betti number of X by

b(2)n (X) := lim
k→∞

bn(Xk)

[G : Gk]
.

We then call the set of all `2-Betti numbers of CW complexes with a given funda-
mental group G the set of `2-Betti numbers arising from G.

v

0 Introduction

Note that this is not the usual way to introduce `2-Betti numbers but by Lück’s
approximation theorem (Theorem 1.3.9), these two definitions coincide for CW com-
plexes with residually finite fundamental groups and the above notion is well-defined
and independent of the chosen residual chain. We will define a more general notion
in Section 1.2.

Originally, the `2-Betti numbers were introduced by Atiyah in 1976 [Ati76] who
was studying elliptic equations on non-compact manifolds. Atiyah gave an analytic
definition involving the heat kernel on the universal covering of a manifold. In
Section 1.2, we will follow yet another approach and use Combinatorial Laplacians of
the CG-chain complex to define `2-Betti numbers. For a more leisurely introduction,
see an article by Kammeyer and Sauer [KS20].

Now, as it turns out, the `2-Betti numbers are again a homotopy invariant, still
satisfy the adapted version of the Künneth formula and we have the Euler-Poincaré
formula, i.e. for every finite, connected CW complex X, we have

χ(X) =
∑
n∈N

(−1)n · b(2)n (X).

Moreover, we have the proportionality principle: Let p : Y → X be a regular, finite
covering with d ∈ N sheets, X and Y be finite, connected CW-complexes. Then, for
all n ∈ N, we have

b(2)n (Y) = d · b(2)n (X).

But, there is a price to pay: The (ordinary) Betti numbers are always natural
numbers. We can no longer expect this. A priori, `2-Betti numbers are non-negative
real numbers. Thus, Atiyah asked the question whether these numbers are always
rational or even integral [Ati76]. This question, known as Atiyah’s question or
Atiyah’s conjecture remained open for more than 30 years until it was solved by
Austin [Aus13], Lehner and Wagner [LW13], Grabowski [Gra14] as well as Pichot,
Schick and Zuk [PSZ15].

Theorem 1.3.3. Every non-negative number is an `2-Betti number of some CW
complex with a group action (in the broad sense of Section 1.2).

This thus gives a negative answer to Atiyah’s question. Note however, that there is
a positive answer for large classes of groups (see for instance Theorem 1.3.7).

We will now make a step back: Are the `2-Betti numbers contained in a certain class
of real numbers, given some additional assumption? In the above setting of finite
CW complexes, this is certainly the case: As CW complexes can be approximated
by finite simplicial complexes [Hat02, Theorem 2C.5], which can be described by
finite combinatorial data, there are only countable many homotopy types of CW
complexes. Hence, also the `2-Betti numbers arising from these CW complexes are
countable.

vi

In order to find a suitable class of real numbers that the `2-Betti numbers are
confined to, we investigate similar results for other ‘stable’ invariants. The stable
commutator length and the simplicial volume were recently proved to be right-
computable under suitable assumptions (see Theorem 2.3.1 and Theorem 2.3.9).
Here, a number x ∈ R is right-computable if there is a Turing machine that produces
a monotonically decreasing sequence of rational numbers converging to x.

The leading question of this thesis will thus be: Do there exist (sensible) hypo-
theses such that the `2-Betti numbers are always right-computable? As it turns
out, in many cases, we can even prove effective computability (which is a stronger
statement).

Organisation of this Thesis

In Chapter 1, we will introduce `2-Betti numbers after covering the preliminaries for
this definition. We will also show an algebraic characterisation of `2-Betti numbers:
For a group G, all `2-Betti numbers arising from G are given as dimRG ker(·A) for
some self-adjoint A ∈ Mn×n(ZG) (see Section 1.2.4). In Section 1.3, we will cover
Atiyah’s conjecture and Lück’s approximation theorem.

Chapter 2 is dedicated to the introduction of computability concepts. After a ‘naive’
introduction into this subject, we will define different computability classes such as
EC (effectively computable), LC (left-computable) and RC (right-computable). We
will then take a look at some results on right-computability of topological invariants
(Section 2.3).

The main part of this thesis is Chapter 3. We will start with a survey on some known
computability results on `2-Betti numbers (Section 3.1). We will then discuss right-,
left- and effective computability of `2-Betti numbers under different assumptions.

Finally, in Chapter 4, we will discuss an implementation of some of the main results
in the Lean Theorem Prover. This formally verifies some of these results. The
.lean files used for this can be found on the DVD that is attached to this thesis, or
alternatively in a git repository online. More information on how to install these
files can be found in Section 4.2.

Main Results

In the main part of this thesis, we prove the following theorems (the formulations
are slightly modified to require less knowledge on the specific notations).

Theorem 3.2.1. Let G be a finitely generated group with solvable word problem.
Then, all `2-Betti numbers arising from G are right-computable.

From Theorem 3.2.9 we then obtain the following corollary.

vii

0 Introduction

Corollary 3.2.11. Let G be a finitely generated group with solvable word problem.
Moreover, let A ∈ Mn×n(ZG) be self-adjoint. Then, the following are equivalent:

1. The number dimRG ker(·A) is left-computable

2. The number dimRG ker(·A) is effectively computable.

3. There exists a computable sequence (εk)k∈N of rational numbers such that
limk→∞ εk = 0 and for all k ∈ N>0, we have

µA

((
0,

1

k

))
≤ εk,

where we denote by µA the spectral measure of A (see Definition 1.3.15).

We prove more concrete instances of this result.

Theorem 3.3.1. Let G be a finitely generated, sofic group (see Definition 3.3.3)
with solvable word problem. Then, all `2-Betti numbers arising from G are effectively
computable.

Theorem 3.3.23. Let G be a finitely generated group with solvable word problem,
and A ∈ Mn×n(ZG) be self-adjoint and of determinant class (see Definition 3.3.20).
Then, dimRG ker(·A) is effectively computable.

Theorem 3.4.11. Let G be a finitely presented, residually finite group (see Defini-
tion 1.3.10). Then, all `2-Betti numbers arising from G are effectively computable.

For the last result, we give a proof that does not rely on Corollary 3.2.11. Instead,
we use a sequence arising from Lück’s approximation theorem (Theorem 1.3.9) to
obtain effective computability.

With the exception of Theorem 3.3.1, there exists a (partial) implementation of
these results in the Lean Theorem Prover (see Chapter 4). This implementation
provides a proof of concept on how proof assistants can be used to verify theorems
even in such ‘complex’ situations where a lot of theoretical background is needed.

Conventions

Convention 0.0.1. The set of natural numbers is denoted by N and contains 0.
We denote by Z, Q, R, and C the sets of integers, and rational, real and complex
numbers, respectively.

Convention 0.0.2. If S is a (finite or infinite) set, we denote by F (S) the free
group generated by S. As a set, this is the set of all finite, reduced words in S and
their inverses.

viii

Convention 0.0.3. If G is a group, we denote the trivial element in G by eG or e.

Convention 0.0.4. Let R be a (unital, not necessarily commutative) ring and
n ∈ N. We denote by Mn×n(R) the ring of n× n-matrices over R.

Acknowledgements First of all, I would like to thank my supervisor Professor
Clara Löh for her guidance and support during this project. She also sparked my
interest in these computability aspects of `2-Betti numbers as well as proof assistants.

Moreover, I am thankful to José Pedro Quintanilha and Lars Munser for organising
a seminary on `2-invariants. This seminary motivated me to search for a master
thesis project in this field.

A special thanks also goes to Professor Kevin Buzzard who helped me resolve some
initial problems with my installation of Lean.

Finally, I want to express my gratitude towards my family and friends for their
emotional support.

ix

1 Introduction to ℓ2-Betti Numbers

1.1 Group von Neumann Algebras, Traces and Dimension

We start with an introduction to von Neumann dimensions. Throughout this section,
let G be a (discrete, countable) group.

1.1.1 Why we need the von Neumann Algebra

The basic idea leading to `2-Betti numbers is passing from a connected CW complex
X to its universal covering X̃ and considering homology of this universal covering.
As in the ordinary case, we want to define the Betti numbers to be the dimensions
of homology. Unfortunately, often Hn(X̃,C) is not a finite-dimensional vector space
over C. However, in reasonable cases, Hn(X̃,C) is finitely generated as a CG-
module, where CG is the group ring (see Definition 1.1.2) of the fundamental group
G := π1(X) which acts on X̃ via Deck transformations. We can thus have the idea
to develop a dimension theory dimCG of finitely generated CG-modules.

The point of this section is to show that this attempt is doomed to fail so that we
need a more advanced idea. We follow the example given by Kammeyer [Kam19,
p. 1].

For a dimension theory, we would expect at least the following three properties:

1. Non-negativity, i.e. dimCGM ≥ 0 for every (suitable) finitely generated CG-
module M .

2. Normality: We have dimCGCG = 1.

3. Additivity: If
0 −→ U −→ V −→ W −→ 0

is a short exact sequence, we have dimCG V = dimCG U + dimCGW .

We show that for G := F2, the free group on two generators, such a dimension theory
does not exist. Note that F2 is the fundamental group of the wedge X := S1∨S1. Its
universal covering is a regular 4-tree (see Figure 1.1), which therefore has a natural
action by F2. Because S1 ∨ S1 has one 0-cell and two 1-cells, we obtain C0(X̃,C) ∼=
C[F2] and C1(X̃,C) ∼= (C[F2])

2. Note that, canonically identified, the two factors of
C1(X̃,C) correspond to the ‘horizontal’ and ‘vertical’ edges, respectively.

1

1 Introduction to `2-Betti Numbers

Figure 1.1: the universal covering of S1 ∨ S1, an infinite 4-regular tree

Now, the differential d1 : C1(X̃,C) → C0(X̃,C) sends any edge to the difference of
its end points. It turns out that this map is injective as for a non-trivial chain, we
can find an ‘extremal’ point. Therefore, we have a short exact sequence

0 −→ (C[F2])
2 −→ C[F2] −→ coker d1 −→ 0

Together with the three conditions on dimCG, this would imply

1 = 2 + dimCG coker d1,

contradicting the non-negativity of the dimension. Thus, such a notion of dimCG
cannot exist.

We can solve this problem by passing to the completion `2G of CG. This approach
will be developed in the following sections.

1.1.2 Group von Neumann Algebras

In this section, we will introduce the group von Neumann algebra. We will mainly
follow Kammeyer’s book [Kam19, Chapter 1.2]. We assume knowledge about basic
facts on Hilbert spaces and operators, as for instance treated in Kammeyer’s book.

Notation 1.1.1 (bounded linear operators). If H is a Hilbert space, we denote by
B(H) the space of bounded linear operators H → H.

Definition 1.1.2 (group ring). Let R be a ring. Then, we define the group ring
RG as the set of families (ag)g∈G in R such that for only finitely many g ∈ G, we

2

1.1 Group von Neumann Algebras, Traces and Dimension

have ag 6= 0. We write the family (ag)g∈G as a formal sum
∑

g∈G ag · g. We define
the addition by (∑

g∈G
ag · g

)
+

(∑
g∈G

bg · g

)
:=
∑
g∈G

(ag + bg) · g

and a product by(∑
g∈G

ag · g

)
·

(∑
g∈G

bg · g

)
:=
∑
g∈G

(∑
h∈G

ah · bh−1·g

)
· g

Remark 1.1.3. The group ring is, with respect to the defined addition and multi-
plication, in fact a ring. The unit element is given by 1 · e, where e ∈ G denotes the
neutral element in G.

Lemma 1.1.4. The complex group ring CG carries an inner product given by〈∑
g∈G

ag · g,
∑
g∈G

bg · g
〉

:=
∑
g∈G

ag · bg ∈ C

where · denotes complex conjugation.

Lemma 1.1.5 (`2G [Kam19, Example 2.22]). The Hilbert space completion of CG
is given by

`2G :=
{
(ag)g∈G | ∀g∈G ag ∈ C,

∑
g∈G

|ag|2 < ∞
}

where the inner product is given by

〈(ag)g∈G, (bg)g∈G〉 :=
∑
g∈G

ag · bg ∈ C

Definition 1.1.6 (left and right regular representations). Note that a group element
h ∈ G acts unitarily on `2G by g 7→ hg and also by g 7→ gh−1. We thus obtain left
and right actions of CG on `2G.

From these actions, we obtain the left regular representation λ : CG ↪→ B(`2G) and
the right regular representation ρ : CG ↪→ B(`2G), turning B(`2G) into a left (resp.
right) CG-module.

Remark 1.1.7 (involution). There is a canonical involution on B(`2G) given by send-
ing an operator to its adjoint. We denote this involution by T 7→ T ∗. This defines
indeed an involution, as for S, T ∈ B(`2G), we have the following identities:

3

1 Introduction to `2-Betti Numbers

1. (ST)∗ = T ∗S∗.

2. (T ∗)∗ = T .

We thus call B(`2G) a ∗-algebra.

In order to define the group von Neumann algebra, we need to introduce the strong
and weak topologies.

Definition 1.1.8 (operator, strong and weak topology). Let H be a Hilbert space.
The (operator) norm topology is the topology on B(H) induced by the operator
norm. We define the strong operator topology as the coarsest topology on B(H)
such that for all x ∈ H, the maps

Ex : B(H) −→ H

T 7−→ Tx

are continuous. Moreover, we define the weak operator topology as the coarsest
topology on B(H) such that for all x, y ∈ H, the maps

Ex,y : B(H) −→ C
T 7−→ 〈x, Ty〉

are continuous.

Definition 1.1.9 (group von Neumann algebra, [Kam19, Definition 2.23]). We
define the group von Neumann algebra RG of G as the weak closure of the unital
∗-subalgebra ρ(CG) in B(`2G).

Remark 1.1.10. Equivalently, we could also define the group von Neumann algebra
to be the strong closure of ρ(CG).

Example 1.1.11 (finite groups). Let G be a finite group of order n ∈ N. Then
`2G = CG. Moreover, we have B(`2G) ∼= Mn×n(C). In addition, the image of ρ
is already closed. Thus, we have RG ∼= CG and in particular for the trivial group
R1 ∼= C.

Example 1.1.12 (the integers). In [Kam19, Example 2.26], it is discussed that
RZ ∼= L∞([−π, π]) ∼= L∞(S1), where the action of C[Z] is given as follows: We
identify C[Z] ∼= C[z, z−1] with the ring of Laurent polynomials. Then, the action of
C[Z] corresponds to the multiplication of functions in L∞([−π, π]) where z = (x 7→
eix).

Recall that L∞([−π, π]) denotes the essentially bounded functions on the interval
[−π, π], i.e. the functions that are bounded up to a null set. We also identify two
functions if they agree on a co-null set.

4

1.1 Group von Neumann Algebras, Traces and Dimension

1.1.3 Traces and von Neumann Dimensions

We are now ready to define traces and dimension.

Definition 1.1.13 (trace). We denote by e ∈ `2G the unit element corresponding
to the trivial element of the group. We define the (von Neumann) trace on RG by

trRG : RG −→ C
T 7−→ 〈e, Te〉

If the group G is clear from the context, we denote this trace simply by tr.

Remark 1.1.14 (elementary properties of the trace). The trace is a C-linear func-
tional. Moreover, is satisfies the trace property: For all S, T ∈ RG, we have
trRG(ST) = trRG(TS).

Remark 1.1.15 (trace of matrices). We also obtain a trace on square matrices over
RG, namely by precomposition with the usual matrix trace Mn×n(RG) → RG, i.e.
by taking the sum of the diagonal elements.

This trace is a linear functional satisfying the trace property and we still denote it
by trRG or tr.

Example 1.1.16 (trace on finite groups). Let G be a finite group. As discussed in
Example 1.1.11, we have RG = CG. Under this identification, the trace is given by

trRG : CG −→ C∑
g∈G

ag · g 7−→ ae

Example 1.1.17 (trace on Z). For G = Z, recall that RG ∼= L∞([−π, π]) from
Example 1.1.12. Under this identification, the trace is given by

trRZ : L∞([−π, π]) −→ C

f 7−→ 1

2π

∫ π

−π
f(x) dx

Now, the idea to define the von Neumann dimension is the following: As in the
classical case (where we consider, say, C-vector spaces), the dimension is the trace
of the identity map. However, this poses a problem whenever the module in question
is not of type (`2G)n for some n ∈ N.

In the case of a Hilbert LG-module, we can still pass to this situation.

5

1 Introduction to `2-Betti Numbers

Definition 1.1.18 (Hilbert LG-module, [Kam19, Definition 2.34]). A Hilbert LG-
module is a Hilbert space H with a linear isometric left G-action such that there
exists a linear isometric G-embedding H ↪→ (`2G)n for some n ∈ N.

We can now define the von Neumann dimension.

Definition 1.1.19 (von Neumann dimension, [Kam19, Definition 2.37]). Let H be
a Hilbert LG-module. Choose a linear isometric G-embedding H ↪→ (`2G)n for some
n ∈ N. We define the von Neumann dimension of H by

dimRGH := trRG(pi(H)) ∈ [0,∞),

where pi(H) : (`
2G)n → (`2G)n is the orthogonal projection onto i(H).

Remark 1.1.20 (independence of i). The above definition of the von Neumann di-
mension is independent of the chosen embedding i. We can thus refer to the von
Neumann dimension without having to specify this embedding i.

Example 1.1.21 (trivial group). For the trivial group 1, we have R1 = C (see Ex-
ample 1.1.11) and Hilbert modules are just finite-dimensional inner product spaces.
In particular, such a space is isomorphic to some Cn with the standard inner product.
Since `21 = C, we can have the identity on Cn as the orthogonal projection for Defin-
ition 1.1.19 and we obtain

dimR1Cn = n = dimCCn.

In particular, this means that the von Neumann dimension extends the classical
notion of dimension of C-vector spaces as the latter is recovered for G = 1.

Example 1.1.22 (finite groups). Let G be a finite group and H be a Hilbert LG-
module. Then, H is of finite dimension as a C-vector space. A calculation comparing
with trR1 [Kam19, Theorem 2.36.iii], where 1 is the trivial subgroup in G, shows
that

dimRGH =
dimCH

|G|

Moreover, for all k ∈ N, the we can turn Ck into a CG-module by the trivial action.
By writing G = g1, . . . , gn, we can embed Ck into (`2G)k by

Ck −→ (`2G)k

ei 7−→
1√
n
· (g1 + · · ·+ gn) · ei

Hence, Ck is a Hilbert LG-module, and we obtain

dimRGCk =
k

n
.

6

1.1 Group von Neumann Algebras, Traces and Dimension

In particular, this shows that von Neumann dimensions do not necessarily have to
be integer-valued.

Example 1.1.23 (the integers). If G = Z, for every measurable subset A ⊂ [−π, π],
the subspace L∞A is closed in L∞[−π, π]. The orthogonal projection onto L∞A is
given by χA, the characteristic function of the set A. Thus, we have

dimRZ L
∞A =

1

2π

∫ π

−π
χA(x) dx =

λ(A)

2π
,

where λ(A) is the Lebesgue measure of A. More generally, we obtain for all k ∈ N
that

dimRZ(L
∞A)k =

k · λ(A)

2π
.

In particular, this proves that the von Neumann dimension can be any nonnegative
real number.

When working with the von Neumann-dimension, the following properties are often
very useful.

Theorem 1.1.24 (Computing von Neumann-dimensions, [Kam19, Theorem 2.44]).
Let H,K and L be Hilbert LG-modules.

1. Normalisation: We have dimRG(`
2G) = 1.

2. Faithfulness: We have dimRG(H) = 0 if and only if H ∼= 0.

3. Additivity: Let 0 −→ H
i−→ K

p−→ L −→ 0 be a weakly exact sequence of
Hilbert LG-modules, i.e. i is injective, ker p = im i and im p ⊂ L is dense.
Then, we have

dimRGK = dimRGH + dimRG L.

4. Restriction: Let G0 ⊂ G be a subgroup of finite index. Then,

dimRG0 resGG0
(H) = [G : G0] · dimRGH.

Here, resGG0
(H) denotes the Hilbert LG-module H with its action restricted

to G0.

7

1 Introduction to `2-Betti Numbers

1.2 ℓ2-Betti Numbers

In this section, we introduce the notion of `2-Betti numbers. Like in the case of
ordinary Betti numbers, these will be the dimensions of the homology groups. In
order to be able to talk about these `2-homology groups, we need to introduce CW-
complexes with a group action.

Let G be a (countable, discrete) group.

1.2.1 G-CW Complexes

Definition 1.2.1 ([Kam19, Definition 3.1]). Let X be a CW-complex. An action
G ↷ X is cellular if for all g ∈ G and open cells E ⊂ X, we have

1. The translate gE is again an open cell of X.

2. If gE ∩ E 6= ∅, then g fixes all elements of E pointwise, i.e. for all x ∈ E, we
have gx = x.

A G-CW complex is a CW complex with a cellular G-action.

The point of these two requirements is to ensure that we can describe a G-CW
complex as a pushout as follows.

Proposition 1.2.2 (description as pushout, [Kam19, Theorem 3.2]). Let X be a
G-CW complex. Then, the skeleta (Xn)n∈N of X are G-invariant subspaces and
there exist pushouts in the category of G-spaces and G-maps

∐
i∈In(G/Hi)× Sn−1 Xn−1

∐
i∈In(G/Hi)×Dn Xn

where (Hi)i∈In is a family of subgroups (we call these subgroups the stabiliser groups),
Dn is the closed disk of dimension n and the vertical maps are given by the canonical
inclusions.

For G-CW complexes, we call cells of the form (G/Hi)×Dn a G-equivariant n-cell.

Definition 1.2.3 (properties of G-CW complexes, [Kam19, Definition 3.3]). A G-
CW complex X is called

• (of) finite type if it has finitely many G-equivariant n-cells for all n ∈ N.

• finite if it has finitely many G-equivariant cells altogether.

8

1.2 `2-Betti Numbers

0 1 2 3 4
+1

Figure 1.2: The real line R as a Z-CW complex

Figure 1.3: The 2-simplex and its barycentric subdivision: On the left, the reflection
drawn in blue does not fix the 2-cell pointwise. On the right hand side,
the 2-cells and their images are disjoint.

• proper if all stabiliser groups are finite.

• free if all stabiliser groups are trivial.

Example 1.2.4 (G-CW complexes).

• The real line R is a Z-CW complex as follows: As 0-cells, we have the subset
Z ⊂ R and for each two adjacent 0-cells, we glue in one 1-cell between them
(see Figure 1.2). The action Z ↷ R given by translation is cellular. Thus, the
real line R is a finite and free Z-CW complex.

• The symmetric group S3 acts on the 2-simplex. This action is not cellular
as the non-trivial group elements fix the 2-cell altogether but not pointwise.
However, if we pass to the barycentric subdivision, this action becomes cellular,
and is finite and proper, but not free. This situation is depicted by Figure 1.3.

• Let X be a finite type, connected CW-complex and p : Y → X be a Galois
covering of X. Let G denote the Deck transformation group of this covering p.
Then, Y is a finite type G-CW complex.

In particular, the universal covering X̃ is a π1(X,x0)-CW complex of finite
type. Moreover, it is free.

9

1 Introduction to `2-Betti Numbers

1.2.2 The ℓ2-Completion of the Cellular Chain Complex

We will now introduce the `2-completion of the cellular chain complex. It is defined
as follows.

Definition 1.2.5 (`2-completion, [Kam19, Definition 3.10]). Let X be a G-CW
complex. The `2-chain complex of X is defined as the `2G-chain complex

C
(2)
∗ (X) := `2G⊗ZG C∗(X),

where C∗(X) is the cellular chain complex of X. The differentials of this chain
complex are given by d

(2)
∗ = idℓ2G ⊗ d∗.

Proposition 1.2.6 (functoriality and a combinatorial description, [Kam19, The-
orem 3.11]). The `2-chain complex defines a functor from the category of proper,
finite type G-CW complexes to the category of chain complexes of Hilbert L(G)-
modules.

Moreover, it has the following explicit description: If X is a proper, finite type
G-CW complex, we choose a pushout as in Proposition 1.2.2. Then, for all n ∈ N,
there is a canonical isomorphism

C(2)
n (X) ∼=

⊕
i∈In

`2(G/Hi).

If, moreover, the chain complex is free, then it is of the form

· · · −→ (`2G)k2 −→ (`2G)k1 −→ (`2G)k0 −→ 0.

In addition, the differentials are given by right multiplication with matrices over ZG.
The matrices of the adjoints are obtained by transposing these matrices and applying
the involution g 7→ g−1 to its elements.

1.2.3 ℓ2-Betti Numbers

Now, we have all the tools at our hand to define `2-homology and `2-Betti numbers.
This works as in the case of the ordinary Betti numbers: Homology measures the
inexactness of a chain complex, and Betti numbers are the dimensions of homology
groups.

Let X be a proper, finite type G-CW complex.

Definition 1.2.7 (`2-homology, [Kam19, Definition 3.12]). Let n ∈ N. The n-th
(reduced) `2-homology of X is the Hilbert LG-module

H(2)
n (G ↷ X) := ker d(2)n /im d

(2)
n+1.

10

1.2 `2-Betti Numbers

Remark 1.2.8. Note that by taking the closure of im d
(2)
n+1, we ensure that the quotient

is again a Hilbert space (for details, see [Kam19, p. 11]).

Definition 1.2.9 (`2-Betti numbers,[Kam19, Definition 3.13]). Let n ∈ N. The n-th
`2-Betti number of X is defined by

b(2)n (G ↷ X) := dimRGH(2)
n (G ↷ X) ∈ [0,∞).

Remark 1.2.10. If the group G and its action on X are clear from the context, we
just write b

(2)
n (X). However, it is important to be aware that this group action

matters: Different group actions lead to different `2-Betti numbers in general.

Note that this number is a priori just a nonnegative real number. Versions of
Atiyah’s conjecture state that these values are always integral or rational (see Ques-
tion 1.3.1 and Conjecture 1.3.5). The question which values can occur – given certain
assumptions on G and X – will pervade this thesis.

Remark 1.2.11. The `2-Betti numbers are an extension of ordinary Betti numbers: If
X is a CW-complex, the trivial action of the trivial group 1 on X is cellular. Using
Example 1.1.21, we see that in this case, b(2)n (1 ↷ X) coincides with the ordinary
Betti number of X (with coefficients in C).

Example 1.2.12. If X is a finite type CW-complex and x0 ∈ X, we obtain an
action of π1(X,x0) on its universal covering X̃. By Example 1.2.4, this action is
cellular. We can therefore consider the `2-Betti numbers

b(2)n (X̃) := b(2)n (π1(X,x0) ↷ X̃).

In the literature (and also in the introduction to this thesis), sometimes, one finds
the notation b

(2)
n (X) . However, this might cause confusion with `2-Betti numbers

of X with respect to a cellular action of a group that is clear from the context. In
this thesis, we will therefore try to avoid this confusion by writing b

(2)
n (X̃).

The following theorem is quite useful for calculating `2-Betti numbers.

Theorem 1.2.13 (Computing `2-Betti numbers, [Kam19, Theorem 3.18]).

1. Homotopy invariance: Let f : X → Y be a G-homotopy equivalence of proper,
finite type G-CW-complexes, i.e. a cellular G-map that is a homotopy equival-
ence and such that all the occurring homotopies are cellular G-maps. Then,
for all n ∈ N, we have b

(2)
n (X) = b

(2)
n (Y).

2. Zeroth `2-Betti number: Let X be a non-empty, finite type, proper, connected
G-CW complex. Then, b

(2)
0 (X) = 1

|G| . For the case that G is infinite, we set
1
∞ := 0.

11

1 Introduction to `2-Betti Numbers

3. Künneth formula: Let X1 be a proper, finite type G1-CW complex and X2 be
a proper, finite type G2-CW complex. Then, X1 ×X2 is a proper, finite type
G1 ×G2-CW complex (w.r.t. the canonical action) and we have for all n ∈ N

b(2)n (G1 ×G2 ↷ X1 ×X2) =
∑

p+q=n

b(2)p (G1 ↷ X1)× b(2)q (G2 ↷ X2).

4. Restriction: Let X be a proper, finite type G-CW complex and let G0 ⊂ G be a
subgroup of finite index. Then, by resGG0

X, we denote the same CW-complex
with the action restricted to G0. Then, resGG0

X is a proper, finite type G0-CW
complex, and for all n ∈ N, we have

b(2)n (resGG0
X) = [G : G0] · b(2)n (G ↷ X).

Example 1.2.14 (finite groups). Let G be a finite group and X be a finite type
G-CW complex. Then, X is proper. Because G has the trivial group as a subgroup
of index G, the above Theorem 1.2.13 yields that

b(2)n (G ↷ X) =
1

|G|
· bn(X).

In particular, this shows that for finite groups, the theory essentially coincides with
the theory of ordinary Betti numbers. Thus, we will focus our attention to `2-Betti
numbers of CW-complexes over infinite groups.

Example 1.2.15 (the real line). We return to our example of the real line R as a
Z-CW complex (see Example 1.2.4). For all n ∈ N, we have

b(2)n (Z ↷ R) = 0.

One can see this either by an explicit computation of the corresponding chain com-
plex (see [Kam19, Example 3.15]) or by the following argument: We consider the
subgroup 2Z ⊂ Z. Note that 2Z ∼= Z and that the action 2Z ↷ R is Z-homotopy
equivalent to the action Z ↷ R. Thus, by the above Theorem 1.2.13, for all n ∈ N,
we have

b(2)n (Z ↷ R) = [Z : 2Z] · b(2)n (2Z ↷ R)

= [Z : 2Z] · b(2)n (Z ↷ R).

From [Z : 2Z] = 2, we thus obtain b
(2)
n (Z ↷ R) = 0.

We finish this section with the following theorem which allows to calculate the Euler
characteristic via `2-Betti numbers.

12

1.2 `2-Betti Numbers

Proposition 1.2.16 (Euler-Poincaré formula, [Kam19, Theorem 3.19]). Let X be
a finite CW-complex and x0 ∈ X. Then,

χ(X) =
∑
n∈N

(−1)n · b(2)n (π1(X,x0) ↷ X̃).

1.2.4 The Set of ℓ2-Betti Numbers

One important question in the theory of `2-Betti numbers is the following: Which
values can occur as `2-Betti numbers?

It turns out that we can view this question from both a topologic and an algebraic
viewpoint. We start with the following definitions.

Definition 1.2.17 (the topological viewpoint). Let G be a finitely generated (dis-
crete) group. We define the set of (topological) `2-Betti numbers arising from G
as

B(2)(G) := {b(2)n (G ↷ X) | n ∈ N, X finite, free, connected G-CW complex}.

and additionally, if G is finitely presented,

B̃(2)(G) := {b(2)n (G ↷ X) | n ∈ N, X finite, free, simply connected G-CW complex}
= {b(2)n (X̃) | n ∈ N, X finite, connected CW-complex with π1(X,x0) ∼= G}.

where the last equality is due to Example 1.2.4. Quantifying over all finitely gener-
ated (resp. finitely presented) groups, we set

B(2) =
⋃

G fin. gen.
B(2)(G) and B̃(2) =

⋃
G fin. pres.

B̃(2)(G).

Moreover, there is the algebraic viewpoint that just talks about matrices over the
group ring.

Definition 1.2.18 (the algebraic viewpoint). Let Z ⊂ R ⊂ C be a ring and G be a
finitely generated (discrete) group. We define the set of algebraic `2-Betti numbers
arising from G (with coefficients in R) as

B
(2)
R (G) := {dimRG ker(·A) | A ∈ Mk×l(RG), k, l ∈ N}.

Remark 1.2.19. In the above definition, we can also assume these matrices A to
be square and self-adjoint: For a general A ∈ Mk×l(RG), we have that AA∗ is
square and self-adjoint. Moreover, ker(·AA∗) = ker(·A) because the following holds:

13

1 Introduction to `2-Betti Numbers

If x ∈ ker(·A), then clearly x ∈ ker(·AA∗). Conversely, if x ∈ ker(·AA∗), then
(·AA∗)x = (·A∗) ◦ (·A)x = 0, hence

〈(·A)x, (·A)x〉 = 〈x, (·A∗) ◦ (·A)x〉
= 0

and hence (by positive definiteness (·A)x = 0, i.e. x ∈ ker(·A).

As it turns out, these sets of `2-Betti numbers actually coincide.

Theorem 1.2.20. Let G be a finitely generated group. Then, we have

B(2)(G) = B
(2)
Z (G).

If moreover, G is finitely presented, we even have

B(2)(G) = B
(2)
Z (G) = B̃(2)(G).

Proof. First, let r ∈ B(2)(G), i.e. there exist n ∈ N and a finite, free, connected
G-CW complex X such that r = b

(2)
n (G ↷ X). Since X is free, its `2-chain complex

around n has the following shape

(`2G)kn+1
d
(2)
n+1−→ (`2G)kn

d
(2)
n−→ (`2G)kn−1 .

By definition,
r = b(2)n (G ↷ X) = dimRG ker dn/im dn+1.

By the `2-Hodge-de-Rham decomposition [Kam19, Proposition 3.23], we have

ker dn/im dn+1
∼= ker∆n,

where ∆n := d
(2)
n

∗
d
(2)
n + d

(2)
n+1d

(2)
n+1

∗
is called the n-th `2-Laplacian. Hence, we have

r = dimRG ker∆n, where ∆n is given by right-multiplication with some nk × nk-
matrix over ZG.

The converse inclusion is given by the following Proposition 1.2.21.

Proposition 1.2.21 (realising matrices, [Kam19, Proposition 3.29]). Let G be a
finitely generated group that is generated by r elements, and A ∈ Mk×l(ZG). Then,
there exists a free G-CW complex X consisting of k equivariant 3-cells, l equivari-
ant 2-cells, r equivariant 1-cells and one equivariant 1-cell such that the third `2-
differential

d
(2)
3 : C

(2)
3 (X) −→ C

(2)
2 (X)

can be identified with the right multiplication operator (`2G)k
·A−→ (`2G)l and hence

b
(2)
3 (G ↷ X) = dimRG ker(·A).

If G is finitely presented, we can additionally obtain such a G-CW complex X that
is simply connected.

14

1.2 `2-Betti Numbers

Remark 1.2.22. This proposition can be proved by an explicit construction. For
details, see [Kam19, Proposition 3.29].

We end this section by stating some basic facts about the structure of the set of
`2-Betti numbers of a group.

Proposition 1.2.23 (basic facts about B(2)(G)). Let G be a finitely generated group.
Then, the following hold:

1. We have N ⊆ B(2)(G).

2. The set B(2)(G) is closed under sums.

3. Monotonicity: If H ⊆ G is a subgroup, then B(2)(H) ⊆ B(2)(G).

4. If G1 and G2 are finitely generated groups, a1 ∈ B(2)(G1) and a2 ∈ B(2)(G2),
we have

a1 + a2 ∈ B(2)(G1 ×G2)

and
a1 · a2 ∈ B(2)(G1 ×G2).

5. If a ∈ B(2)(G) and q ∈ Q≥0, there exists a finitely generated group H such
that q · a ∈ B(2)(H).

Proof. The first statement can be shown using matrices of the appropriate size
filled with zeros. Statement 2 follows by taking block matrices. Statement 3 fol-
lows from the fact that CH ↪→ CG is a trace-preserving ∗-homomorphism (see
[Gra14, Lemma 6.1]). For the fourth part, see [PSZ15, Lemma 11.2] and [PSZ15,
Lemma 11.3]. Finally, for the fifth claim, see [Gra14, Lemma 6.2].

1.2.5 ℓ2-Betti Numbers of Groups

Finally, we will define `2-Betti numbers of groups. These are not to be confused
with the `2-Betti numbers arising from a group, which is generally a much larger
set.

We use a general trick to transfer notions on topological spaces that are homotopy
invariant to groups: We construct the classifying space for a group and then define
the `2-Betti numbers of a group to be the `2-Betti numbers of its classifying space.

Proposition 1.2.24 (classifying space,[Kam19, Theorem 4.2]). Let G be a group.
Then, there exists a free, connected G-CW complex X such that X is weakly con-
tractible, i.e. for all n ≥ 1, we have πn(X) ∼= 1.

Moreover, this G-CW complex X is unique up to G-homotopy equivalence.

15

1 Introduction to `2-Betti Numbers

Definition 1.2.25 (classifying space). In the situation of the proposition above, we
call such G-CW complexes a (model for a) classifying space for G and denote one
choice of such a model by EG.

If n ∈ N, we say that a group G is of type Fn if there exists a classifying space EG
for G with finite n-skeleton.

Example 1.2.26.

• Every group is of type F0.

• A group is of type F1 if and only if it is finitely generated.

• A group is of type F2 if and only if it is finitely presented.

We can now define `2-Betti numbers of groups.

Definition 1.2.27 (`2-Betti numbers of groups). Let n ∈ N and G be a group
of type Fn+1. Denote by EG a model for the classifying space of G with finite
(n+ 1)-skeleton EGn+1. Then, we define the n-th `2-Betti number of G by

b(2)n (G) := b(2)n (G ↷ EGn+1) ∈ [0,∞).

Remark 1.2.28. It is possible to generalise this definition also in the case that EG
is not necessarily of type Fn+1. Using this approach, we would no longer need to
view EGn+1 but could instead take the `2-Betti numbers of EG (which coincide up
to degree n).

However, in this generalisation, also the value +∞ can occur. Since this would need
more theory yet we will not use this notion later on, this generalisation will not be
treated here. Details can be found in the book by Kammeyer [Kam19, Chapters 4.2,
4.3].

In analogy to Theorem 1.2.13, there is also the following theorem to compute `2-Betti
numbers of groups.

Theorem 1.2.29 (Computing `2-Betti numbers of groups, [Kam19, Theorem 4.15]).
Let n ∈ N and G,G1, G2 be groups of finite type Fn+1. Then, the following hold:

• Zeroth `2-Betti number: b
(2)
0 (G) = 1

|G| (where again 1
∞ := 0).

• Künneth formula: We have

b(2)n (G1 ×G2) =
∑

p+q=n

b(2)p (G1) · b(2)q (G2).

16

1.2 `2-Betti Numbers

• For n ≥ 2, we have

b(2)n (G1 ∗G2) = b(2)n (G1) + b(2)n (G2)

b
(2)
1 (G1 ∗G2) = 1 + b

(2)
1 (G1)−

1

|G1|
+ b

(2)
1 (G2)−

1

|G2|
.

• Restriction: If G0 ⊂ G is a subgroup of finite index, then

b(2)n (G0) = [G : G0] · b(2)n (G).

We finish this section by giving a few examples of `2-Betti numbers of groups.
All examples (with calculations) can be found in the book by Kammeyer [Kam19,
Table 4.1].

Example 1.2.30.

• b
(2)
n (Zk) = 0 for all k, n ∈ N.

• Let k ∈ N>0 and Fk denote the free group on k generators. Then, b(2)1 (Fk) =

k − 1 and b
(2)
n (Fk) = 0 for n 6= 1.

• Let G be a finite group. Then, b(2)0 (G) = 1
|G| and b

(2)
n (G) = 0 for n > 0.

17

1 Introduction to `2-Betti Numbers

1.3 Further Questions about ℓ2-Betti Numbers

In this section, we will treat two interesting aspects of `2-Betti numbers, namely
Atiyah’s conjecture and Lück’s Approximation Theorem.

1.3.1 Atiyah’s Conjecture

In the definition of `2-Betti numbers, a priori, the resulting numbers are non-negative
real numbers. However, in many examples, one finds that these numbers are actually
rational. Thus, Atiyah asked the following natural question.

Question 1.3.1 (Atiyah’s question (reformulated), [Ati76, p. 72]). Does B(2), the set
of `2-Betti numbers arising from all finitely generated groups (see Definition 1.2.17),
contain irrational numbers?

This question was finally answered more than 30 years later by Tim Austin.

Theorem 1.3.2 ([Aus13, Theorem 1.1, Corollary 1.2]). The set B(2) is uncountable.
In particular, it contains irrational and even transcendental elements.

The irrationality of some `2-Betti numbers was independently also shown by Lehner
and Wagner [LW13, Theorem 2.3]. Some years later, even the following was shown
independently by Grabowski [Gra14, Theorem 1.3] as well as Pichot, Schick and Zuk
[PSZ15, Theorem 11.1].

Theorem 1.3.3. We have B(2) = R≥0.

In order to prove this theorem, Grabowski and well as Pichot-Schick-Zuk construct
groups that contain the wreath product (Z/2Z) o Z, i.e. the semidirect product⊕

Z
(Z/2Z)⋊ Z

(where 1 ∈ Z acts by shifting) as a subgroup. This group is called the lamplighter
group. It is an open question whether the converse is also true, more precisely:

Question 1.3.4 (Grabowski, [Gra16, Problem 1.3]). Let G be a finitely generated
group such that B(2)(G) contains an irrational number. Does there exist a prime p
such that (Z/pZ) o Z is a subgroup of G?

Moreover, there is another version of the Atiyah conjecture, sometimes called the
strong Atiyah conjecture.

18

1.3 Further Questions about `2-Betti Numbers

Conjecture 1.3.5 ((strong) Atiyah conjecture, [Kam19, Conjecture 3.30]). Let Z ⊂
R ⊂ C be a ring and G be a finitely generated group whose finite subgroups are of
bounded order. Let lcm(G) be the least common multiple of the occurring orders.
Then, B(2)

R (G) ⊂ 1
lcm(G) · N.

The importance of this conjecture is due to its relation to the Kaplansky conjecture.

Theorem 1.3.6 ([Kam19, Theorem 3.32]). Let G be a finitely generated, torsion-free
group that satisfies the strong Atiyah conjecture with coefficients in a ring R ⊂ C.
Then, RG satisfies the Kaplansky conjecture, i.e. RG contains no non-trivial zero-
divisors.

For a large class of groups, the strong Atiyah conjecture was shown by P. Linnel.

Theorem 1.3.7 (Linnel, [Kam19, Theorem 3.33]). Let G be a group belonging to
the class C (see below, Definition 1.3.8). Assume that there is a bound on the orders
of finite subgroups of G. Then, G satisfies the strong Atiyah conjecture with R = C.

The class C is defined as follows.

Definition 1.3.8. We define the class of elementary amenable groups, denoted E ,
to be the smallest class of groups that contains all finite groups, all abelian groups,
and is closed under taking subgroups, quotients, extensions and directed unions.

We then define C to be the smallest class of groups that is closed under directed
unions, contains all free groups and all groups G that occur in an extension of the
form

1 −→ N −→ G −→ A −→ 1

with N ∈ C and A ∈ E .

1.3.2 Spectral Measures and Lück’s Approximation Theorem

Now, we will take a look at Lück’s approximation theorem. It sets into relation
the `2-Betti numbers with the ordinary Betti numbers. It was originally proved by
W. Lück in 1994 [Lüc94, Theorem 0.1].

Theorem 1.3.9 (Lück’s approximation theorem, [Kam19, Theorem 5.2]). Let X
be a free, finite type G-CW complex. Suppose that G is residually finite, and let
(Gi)i∈N be a residual chain of G. Then, for every n ∈ N, we have

b(2)n (G ↷ X) = lim
i→∞

bn(Gi\X)

[G : Gi]
.

Here, bn denotes the (ordinary) n-th Betti number of a CW complex.

19

1 Introduction to `2-Betti Numbers

First recall the definition of a residual chain.

Definition 1.3.10 (residual chain, residual finiteness). Let G be a group. A residual
chain is a sequence (Gi)i∈N of finite index normal subgroups in G that are nested,
i.e.

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

and such that
⋂

i∈NGi = {e}. We call a group residually finite if such a residual
chain exists.

Note that for a countable (discrete) group G, a residual chain exists if and only if
G is residually finite.

We will now sketch the first part of the proof of the Lück approximation theorem.
We will follow the proof in the book of Kammeyer [Kam19, Chapter 5]. The first
observation is the following:

Remark 1.3.11. In the situation of the Lück approximation theorem (Theorem 1.3.9),
for every i ∈ N, we have a canonical action G/Gi ↷ Gi\X. Note that G/Gi is a
finite group of cardinality [G : Gi]. Hence, by Example 1.2.14, we can rewrite the
claim of the Lück approximation theorem in the following form: For all n ∈ N, we
have

b(2)n (G ↷ X) = lim
i→∞

b(2)n (G/Gi ↷ Gi\X).

For the proof of this reformulated version, one uses functional calculus to transform
this claim into a measure-theoretic question. Here, we sketch the most important
results, all details can be found in the book of Kammeyer [Kam19, Chapter 5.2].

Definition 1.3.12 (spectrum). Let T ∈ B(H) be a bounded operator on a separable
Hilbert space H. Then, its spectrum is defined as

σ(T) := {ζ ∈ C | ζ · idH −T is not bijective}

If T is self-adjoint, we have σ(T) ⊂ R. The following theorem says that we can
apply continuous functions to bounded operators.

Theorem 1.3.13 (Continuous functional calculus, [Kam19, Theorem 5.6]). Let T ∈
B(H) be self-adjoint. Then, there is a unique isometric ∗-embedding of C∗-algebras

C(σ(T),C) −→ B(H)

f 7−→ f(T)

such that for all polynomials p ∈ C[x], we have that p(T) is the evaluation of p on T .

We can use this to define the spectral measure.

20

1.3 Further Questions about `2-Betti Numbers

Definition 1.3.14. Let T ∈ B(H) be self-adjoint. Then, the spectral measure of T
associated with x is the unique measure µx,T such that for all f ∈ C(σ(T),C), we
have

〈x, f(T)x〉 =
∫

f dµx,T

The existence and uniqueness of this measure is guaranteed essentially by the Riesz
Representation Theorem.

From this point on, we skip some details and pass directly to the application to our
situation.

Definition 1.3.15 (spectral measure, `2G-version). Let G be a countable, discrete
group. Let n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. Then, the spectral measure
of A is the spectral measure µϵ,·A of ·A : (`2G)n → (`2G)n associated with ε =
(e, . . . , e) ∈ (`2G)n, where e ∈ `2G is the characteristic function of the neutral
element in G. We denote this spectral measure by µA.

We can view the spectral measure as a measure on the interval [0, || ·A||] (with the
Borel σ-algebra). It is characterised by the following property.

Proposition 1.3.16 (characterisation of the spectral measure). Let G be a count-
able, discrete group, n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. Then, the spectral
measure is the unique measure µA on the interval [0, || · A||] such that: For all
polynomials p ∈ R[x], we have

trRG(p(A)) =

∫ ||·A||

0
p(x) dµA(x).

We can also express the dimension of the kernel via the spectral measure.

Proposition 1.3.17 (kernel via spectral measure). Let G be a countable, discrete
group, n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. Then, we have

dimRG ker(·A) = µA({0}).

We can then use these two proposition to rewrite the claim of the Lück approximation
theorem. We also pass to the algebraic viewpoint and obtain the following.

Theorem 1.3.18 (Lück’s approximation theorem, measure theoretic version). Let
X be a free, finite type G-CW complex. Suppose that G is residually finite, and
(Gi)i∈N be a residual chain of G. Let n ∈ N and let ∆n ∈ Mk×k(ZG) denote the
n-th Laplacian matrix of the `2-chain complex of G ↷ X. Moreover, for i ∈ N,
let πi(∆n) ∈ Mk×k(Z(G/Gi)) be the entrywise projection of ∆n to Z(G/Gi). Then,

21

1 Introduction to `2-Betti Numbers

πi(∆n) is the n-th Laplacian of the `2-chain complex of G/Gi ↷ Gi\X. Moreover,
we have

µ∆n({0}) = lim
i→∞

µπi(∆n)({0}).

We will not prove this theorem here. For a proof, see Lück’s original article [Lüc94]
or Kammeyer’s book [Kam19, Chapter 5.3]. Moreover, in this thesis, we will later
prove a version of this statement that quantifies the rate of convergence (see The-
orem 3.4.5).

22

2 Introduction to Computability

2.1 A Naive Introduction into Computability

2.1.1 Algorithms

In this section, we introduce basic notions of algorithms and computability. How-
ever, we will not make precise what we mean by ‘algorithm’. There exist precise
formulations of what an algorithm is, for instance a Turing machine or an unlimited
register machine. An introduction to these and various other approaches, which
by Church’s Thesis are equivalent, can be found in the book by Cutland [Cut80,
Chapters 1 and 3] and Fernández [Fer09]. However, many of these approaches have
the disadvantage that it is rather inconvenient to precisely prove computability of
more complicated functions.

Regarding basic notions of algorithms, we will mainly follow Cormen et. al. [Cor+09,
pp. 5–6].

Remark 2.1.1 (algorithms). We think of an algorithm as a finite, well-defined com-
putational procedure. It takes some (finite set of) values as input, then applies a
sequence of computational steps to this input. This sequence is either finite and
in the last step, the algorithm outputs (a finite set of) values, or this sequence is
infinite. In the former case, we say that the algorithm halts or terminates.

We can specify an algorithm by a clear description in English (or any other language)
of what computational steps to apply. Alternatively (and often less ambiguously),
we can state such a description in pseudocode that should be precise enough for our
needs. We largely follow the conventions by Cormen et. al. [Cor+09, pp. 20–22] for
writing pseudocode, which should be well-understandable by people familiar with
programming languages like C, C++, Python, Java, etc.

Note that we will be rather vague on what level of precision the description of an
algorithm has to satisfy. The only requirement is that an algorithm must give a
relatively precise description of the computational procedure to be followed. If we
formalised algorithms, say, via Turing machines, in theory, we would need to be able
to produce the description of a Turing machine for each algorithm that we state.

We will make this more intuitive by stating some (non-)examples.

Example 2.1.2 (algorithms). We accept the following descriptions as algorithms:

23

2 Introduction to Computability

Input : n ∈ N
1 Return n

Algorithm 1: An easy example

Input : n ∈ N
1 Set m := n+ 1
2 while true do
3 Replace m by m2 +m− n
4 if m ≤ 42 then
5 Return m
6 end
7 end

Algorithm 2: Another example

‘On input n ∈ N, output n’ counts as an algorithm: If we have n as an input, it is
sensible that we can use it as an output. In most formalisations, it is easy to make
this precise. One pseudocode formalisation is given by Algorithm 1.

The pseudocode given by Algorithm 2 defines an algorithm since the instructions
are clear. It is however not obvious whether or not this algorithm terminates on any
input and which function it computes.

Example 2.1.3 (no algorithms). We do not accept the following descriptions as
algorithms:

• ‘On input n ∈ N, output any natural number’ is not an algorithm: It is not
clear how such a natural number should be chosen.

• ‘On input n ∈ N, output the n-th digit of π (in decimal representation)’ is not
precise enough: It is unclear, how one can calculate the n-th digit of π. Such
an algorithm exists, however, but to define it, we need a precise description of
what is to be done.

• ‘On input n ∈ N, output yes if n is prime, otherwise no’ does not count either
as an algorithm in the precise sense. However, it is not hard to write down a
more precise description of how to check for primality.

2.1.2 Computability of Functions

If A is an algorithm and x an input to A, we denote by A(x) the sequence of
computational steps that A performs on input x. If this sequence is finite, then we
denote also by A(x) the output that A gives on input x.

24

2.1 A Naive Introduction into Computability

Definition 2.1.4 (computable function). A partial function f : Nk → Nl is called
computable if there exists an algorithm A such that for all x ∈ Nk:

• If x ∈ dom(f), then A(x) halts and outputs the value f(x).

• If x 6∈ dom(f), then A(x) does not halt.

Remark 2.1.5. More generally, we can call functions f : X → Y computable if for
suitable codings X ∼= Nk, Y ∼= Nl, the composed map Nk → Nl is computable in the
above sense.

One special case of this is the case of rational values: For instance, we can say
that a function f : Nk → Q is computable, if there exist computable functions
g1, g2 : Nk → N such that dom f = dom g1 = dom g2, and for all x ∈ dom f , we have
f(x) = g1(x)

g2(x)
.

Lemma 2.1.6 (inheritance properties). Sums, products, quotients and compositions
of computable functions are again computable.

Proof (Sketch). For all of these operations, we can give algorithms relative to al-
gorithms that compute the summands (resp. factors, etc.).

Example 2.1.7. The following functions are computable:

• Constant functions

• projections to factors and inclusions

• n 7→ p(n), where p ∈ Q[x] is a polynomial with rational coefficients.

• n 7→ n!

• n 7→ n-th prime number (ordered by size)

• n 7→ n-digit in the decimal expansion of π

• (A,B matrices over Z)7→ A ·B (when A ·B is defined).

• n 7→ dlogne and n 7→ blognc. For details on the computation of logarithms,
see an article by Egbert [Egb78].

2.1.3 Decidability

We will now turn to the decidability of problems.

Definition 2.1.8 ((semi-)decidable sets, [Cut80, Definition 7.1.1 and 7.1.2]). A

25

2 Introduction to Computability

subset X ⊂ Nk is called decidable (or computable or recursive) if the function

χX : Nk −→ N

x 7−→

{
1 if x ∈ X

0 if x 6∈ X

is computable. We say that an algorithm which computes χX , decides X.

We call X semi-decidable or recursively enumerable if the function

Nk −→ N

x 7−→

{
1 if x ∈ X

undefined if x 6∈ X

is computable. Here, the above notation denotes the partial function Nk → N, whose
domain is X ⊂ Nk, and on which the function is constant 1.

Remark 2.1.9. For sets that are not a subset of some Nk, we compose with a suitable
coding (as described in Remark 2.1.5) to obtain a notion of decidability.

Example 2.1.10 ((Semi-)decidable sets).

• All finite sets are decidable. (We can write the given finite set into the al-
gorithm, then the algorithm checks if the input is equal to one of those ele-
ments.)

• The subset of N given by the even numbers is decidable.

• The subset of N given by the prime numbers is decidable.

• The set
{(x, y) ∈ N2 | x ≤ y}

is decidable.

• Decidable sets are semi-decidable.

• A subset X ⊂ Nk is decidable if and only if both X and Nk\X are semi-
decidable. [Cut80, Theorem 7.2.6]

• Choose an enumeration of all possible algorithms by N. Then, the set of
algorithms that halt on input 0 is semi-decidable but not decidable [Fer09,
pp. 5–6]. This problem, called the Halting Problem, has proved to be very
influential in the theory of computability.

• The set of algorithms that halt on every given input is not decidable [Fer09,
p. 160]. Moreover, one can show that it is not even semi-decidable.

26

2.1 A Naive Introduction into Computability

Input : x ∈ Nk

Output: 1 if x ∈ X ∩ Y , 0 otherwise
1 if AX(x) = 1 and AY (x) = 1 then
2 Return 1
3 else
4 Return 0
5 end

Algorithm 3: Deciding X ∩ Y

Lemma 2.1.11 (inheritance properties for computable subsets). Let X,Y ⊂ Nk be
decidable. Then, also X ∩ Y , X ∪ Y and Nk\X are decidable.

Proof. We prove the statement for X∩Y . The other statements then follow similarly.
Let AX be an algorithm which decides X and AY be an algorithm deciding Y . Then,
the Algorithm 3 decides X ∩ Y .

Semi-decidable sets can be listed by an algorithm, which also explains the name
recursively enumerable.

Lemma 2.1.12 (semi-decidable vs. recursive enumeration, [Cut80, Theorem 7.2.7]).
A set X ⊂ Nk is semi-decidable if and only if there is an algorithm that enumerates
all elements of X in no particular order, i.e. there is an algorithm that computes a
function f : N → Nk such that

X = {f(x) | x ∈ dom f}.

However, in general, we cannot control the order in which these elements are listed.
On the other hand, decidable sets can be listed in an increasing order.

Lemma 2.1.13 (decidable vs. enumeration). A subset X ⊂ N is decidable if and
only if it can be listed in increasing order, i.e. if there is a (partial) computable
function f : N → N that is (on its domain) monotonically increasing and

X = {f(x) | x ∈ dom f}.

Proof (Sketch). Suppose that X is decidable. We have that X as well as N\X are
semi-decidable [Cut80, Theorem 7.2.6]. Thus, the above Lemma 2.1.12 yields that
for both sets, there are algorithms that list their elements (in an arbitrary order).
From this, we can construct an algorithm listing all elements of X in an increasing
order (by waiting until all smaller numbers have been listed by one of the two
algorithms).

27

2 Introduction to Computability

Conversely, if f is monotonically increasing, and lists X, we can decide X as fol-
lows: Without loss of generality, we assume that dom f is infinite. Otherwise, X is
decidable because it is finite (Example 2.1.10). For n ∈ N, we start computing the
images of f in increasing order. If we obtain n, then, we know that n ∈ X. If we
reach first a number bigger than n, we can conclude that n 6∈ X.

28

2.2 Computability Classes of Real Numbers

2.2 Computability Classes of Real Numbers

In this section, we introduce different notions of computability of real numbers. We
will mainly follow the article of Zheng and Rettinger [ZR04].

Definition 2.2.1 (computable sequences). A computable sequence is a sequence
(qn)n∈N that is computable as a (total) function N → Q.

Definition 2.2.2 (computability classes). Let r ∈ R.

• We say that r is effectively computable (or just computable) if there exists a
computable sequence (qn)n∈N such that for all n ∈ N, we have

|r − qn| ≤ 2−n.

We denote the set of effectively computable numbers by EC.

• We say that r is left (resp. right-)computable (or lower (resp. upper) semi-
computable) if there exists a computable sequence q : N → Q that is monoton-
ically increasing (resp. decreasing) such that

r = lim
n→∞

qn.

We denote the set of left-(resp. right-) computable numbers by LC (resp. RC).

• We set SC := LC ∪ RC the set of semi-computable non-negative numbers.

• We say that r is weakly computable if it is the difference of two left-computable
real numbers. We denote the set of these numbers by WC.

• We say that r is computably approximable (or computably approachable or limit
computable) if there is a computable sequence (qn)n∈N of rational numbers such
that

lim
n→∞

qn = r

and denote the set of computably approximable numbers by CA.

Moreover, we write EC≥0,LC≥0, etc. for the non-negative numbers in these sets.

Remark 2.2.3. The above definition talks about existence of computable sequences.
This does not necessarily mean that in every case, we can point to a specific sequence
that satisfies the desired properties.

Proposition 2.2.4. We have the following relations between these classes:

EC = LC ∩ RC ⊊ LC ∪ RC = SC ⊊ WC ⊊ CA.

Proof. see [AWZ00]

29

2 Introduction to Computability

Many numbers that we encounter are effectively computable.

Example 2.2.5 (effectively computable numbers).

• Every rational number is effectively computable. This follows from the fact
that constant sequences are computable.

• Moreover, even every algebraic number is effectively computable. One can
see this as follows: Let r ∈ R be an algebraic number and let p ∈ Q[x]
be the minimal polynomial of r. Because algebraic extensions over Q are
separable, p has a single root at r, i.e. there exist q ∈ Q and n0 ∈ N, such
that q < r < q + 2−n0 , the polynomial p has no other root in [q, q + 2−n0]
and p(q) and p(q + 2−n0) have different signs. We can then recursively divide
[q, q+2−n0] into two halves. The algorithm then determines the half where we
have the sign change (which can be done by evaluating at both end points).
We iterate and divide this interval again, and we always consider the half
that contains the change of signs. Then, the sequence of the middle points
effectively converges to the root of p in [q, q + 2−n0], hence r.

• Moreover, the transcendental numbers π and e are also effectively computable.

For Euler’s number e, one can see this as follows: We have e =
∑∞

k=0
1
k! . For

the approximating sequence Sn :=
∑n

k=0
1
k! , we have

|e− Sn| ≤
1

n!
.

Then, e ∈ EC follows from Proposition 2.2.7 below.

For π, one can use a similar argument, for instance using the Gregory-Leibniz
series π = 4 ·

∑∞
k=0

(−1)k

2k+1 .

• The set EC is a field (with respect to the usual addition and multiplication
in R) [Ric54, Theorem 4]. The same statement is not true for LC or RC. (See
Proposition 2.2.9 and the fact that complements of semi-decidable sets are not
necessarily semi-decidable (Example 2.1.10))

• Let A ⊂ N be a semi-decidable but not decidable set. For instance, A could
be a set obtained from the Halting Problem (see Example 2.1.10). Then, we
have ∑

n∈A
2−n ∈ LC\EC

by Proposition 2.2.9 and Proposition 2.2.7.

However, even though many examples that we usually come into contact with are
contained in EC, it is a rather small class of real numbers from the viewpoint of
cardinality.

30

2.2 Computability Classes of Real Numbers

Lemma 2.2.6. All the classes of real numbers introduced in the above Defini-
tion 2.2.2 are countably infinite.

Proof. By Proposition 2.2.4, it suffices to show that EC is infinite and that CA is
at most countable.

The set EC is infinite because it contains Q (Example 2.2.5). The fact that CA
is countable can be shown as follows: For every element r ∈ CA there exists a
computable sequence (qn)n∈N that converges to r. This sequence is computed by an
algorithm, which uniquely determines r. Because the set of algorithms is countable,
so is CA.

Effective computability can be characterised as follows:

Proposition 2.2.7 (effective computability). Let r ∈ R. Then, the following are
equivalent:

1. r ∈ EC.

2. There are computable sequence (qn)n∈N and (εn)n∈N of rational numbers such
that limn→∞ εn = 0 and for all n ∈ N, we have

|r − qn| ≤ εn.

3. The Dedekind cut
Lr := {x ∈ Q | x < r}

is a decidable set.

4. There exist k ∈ Z and a decidable subset A ⊂ N>0 such that

r = k +
∑
n∈A

2−n

The equivalence of 1, 3 and 4 is stated in [ZR04, Theorem 1.1]. Nevertheless, we
will give a sketch of a proof.

Proof (sketch). By definition of effective computability, 1 implies 2, using the com-
putable sequence εn := 2−n.

To show that 2 implies 3, suppose that condition 2 holds. Without loss of generality,
we can assume that r 6∈ Q (as rational numbers clearly satisfy 3). Thus, we have
to show that we can algorithmically decide whether any x ∈ Q satisfies x < r or
x > r (the case x = r is not possible because r 6∈ Q by assumption). We can then
simultaneously list all elements of the sequences (qn+εn)n∈N and (qn−εn)n∈N. Note
that the former converges to r from above while the latter converges r from below.

31

2 Introduction to Computability

If we find n ∈ N with qn + εn < x, then, we have r < x, whereas if we find n ∈ N
with qn − εn > x, we have r > x. By the convergence, one of these cases will occur,
hence we can decide whether x < r.

Next, suppose that condition 3 holds. For simplicity, assume r ∈ [0, 1) and set k = 0.
Then, there exists a binary expansion of r, i.e. a set A ⊂ N>0 such that

r =
∑
n∈A

2−n.

We need to show that A is a decidable set. By Lemma 2.1.13, it suffices to show that
we can list A in increasing order. If n ∈ N, and A∩{1, . . . , n} is already determined,
we can check if (∑

k∈A∩{1,...,n}

2−k

)
+ 2−(n+1) ∈ Lr,

If this is the case, then n+ 1 ∈ A, otherwise n+ 1 6∈ A.

Finally, we show that 4 implies 1: If the situation in 4 is satisfied, then

qn := k +
∑

l∈A∩{1,...,n}

2−l

satisfies the claim in 1 and this sequence is computable by the fact that A is decid-
able.

Remark 2.2.8. Note that there is no efficient way to pass between all of these four
different descriptions the crucial point is the passage from 2 to 3 where we there
is a canonical way to construct an algorithm deciding Lr if r 6∈ Q. However, we
cannot determine algorithmically from the situation in 2 whether r ∈ Q. Even if
we know that r ∈ Q, we cannot algorithmically determine q and hence we cannot
algorithmically construct an algorithm deciding Lr.

Similarly, there is the following characterisation for left- and right-computable num-
bers, which can be proved analogously.

Proposition 2.2.9 (left and right computability). Let r ∈ R. Then, the following
are equivalent:

1. r ∈ LC (resp. r ∈ RC)

2. There exists a computable sequence (qn)n∈N of rational numbers such that we
have limn→∞ qn = r and

r = sup
n∈N

qn

(
resp. r = inf

n∈N
qn

)
.

32

2.2 Computability Classes of Real Numbers

3. The Dedekind cut

Lr := {x ∈ Q | x < r}
(

resp. Rr := {x ∈ Q | x > r}
)

is a semi-decidable set.

4. There exist k ∈ Z and a semi-decidable subset A ⊂ N>0 (resp. a subset A ⊂ N>0

such that N>0\A is semi-decidable) such that

r = k +
∑
n∈A

2−n.

33

2 Introduction to Computability

2.3 Right-Computability of some Topological Invariants

In this section, we will take a look at two examples where topological invariants are
right-computable real numbers.

2.3.1 Stable Commutator Length

We will take a closer look at the following result by Nicolas Heuer.

Theorem 2.3.1 (scl is right-computable, [Heu19, Theorem A]). Denote by SCLrp

the set of stable commutator lengths arising from recursively presented groups. We
have

SCLrp = RC≥0.

We recall first the relevant definitions.

Definition 2.3.2 (recursively presented group). A group G is called recursively
presented if it admits a presentation

G ∼= 〈s0, s1, s2, · · · | R〉

where the set of relations R ⊂ F (s0, s1, s2, . . .) is semi-decidable. Here, we denote
by F (s0, s1, s2, . . .) the set of all reduced words in s0, s1, s2,

One import fact here is that the word problem is semi-decidable. More precisely,
the following holds.

Lemma 2.3.3. Let
G = 〈s0, s1, s2, · · · | R〉

be a recursive presentation. The words representing the trivial element in G are
exactly those in the normal closure 〈〈R〉〉. Because R is recursively enumerable, also
its normal closure is recursively enumerable.

In the finitely generated case, Higman’s embedding theorem characterises recursively
presented groups.

Theorem 2.3.4 (Higman’s Embedding Theorem, [Hig61]). A finitely generated
group G is recursively presented if and only if there is a finitely presented group H
such that G ⊂ H is a subgroup.

Moreover, we recall the notion of stable commutator length.

34

2.3 Right-Computability of some Topological Invariants

Definition 2.3.5 (stable commutator length). Let G be a group.

• We define the commutator group of G to be the subgroup [G,G] of G generated
by the commutators, i.e. by the elements

[g, h] := ghg−1h−1

for all g, h ∈ G.

• For an element g ∈ [G,G], we define the commutator length by

clG(g) := min
{
n ∈ N | ∃x1,...,xn,y1,...,yn∈G g = [x1, y1] · · · [xn, yn]

}
• We define the stable commutator length of g ∈ [G,G] by

sclG(g) := lim
n→∞

clG(gn)
n

∈ R≥0.

Remark 2.3.6. Note that in the definition of stable commutator length, the conver-
gence of the sequence

(
clG(gn)

n

)
n∈N

is from above, i.e. the limit is an infimum. This
fact will play an essential role in the proof that the stable commutator length is a
right-computable real number.

For the spirit of this thesis, the following (easier) inclusion of Heuer’s theorem is
most important.

Proposition 2.3.7. Let G be a recursively presented group, g ∈ [G,G]. Then,

sclG(g) ∈ RC≥0.

Proof. By definition, we have sclG(g) ≥ 0. By Proposition 2.2.9, we need to show
that the set

{x ∈ Q | x > sclG(g)}

is semi-decidable. We follow the argument of Heuer [Heu19, Chapter 6].

Fix a word w ∈ F (s0, s1, . . .) that represents g. Let x ∈ Q. Without loss of
generality, we assume x > 0. Because the limit in the definition of scl is an infimum,
we have x > sclG(g) if and only if there is N ∈ N>0 such that

x >
clG(gN)

N
,

or equivalently k := dN · xe − 1 ∈ N satisfies

k ≥ clG(gN).

35

2 Introduction to Computability

But this is the case if and only if there exist x1, . . . , xk, y1, . . . , yk ∈ F (s0, s1, . . .)
and r ∈ 〈〈R〉〉 such that

wn = [x1, y1] · · · [xk, yk] · r

in F (s0, s1, . . .). Since F (s0, s1, . . .) is countable, 〈〈R〉〉 is recursively enumerable
and we have to check this for all N ∈ N>0, we can enumerate all possibilities on the
right-hand side to semi-decide this problem.

Remark 2.3.8 (the other inclusion). The other (more difficult) inclusion, i.e. SCLrp ⊇
RC≥0 is proved by giving an explicit recursive presentation and an element of the
group and then using an argument involving van Kampen diagrams on admissible
surfaces to determine the stable commutator length. For details, see Heuer’s article
[Heu19, Chapter 5].

2.3.2 Simplicial Volume

We will take a look at another topological invariant. Consider the following result.

Theorem 2.3.9 (Right-Computability of Simplicial Volume, [HL20, Theorem E]).
Let M be an oriented, closed, connected manifold. Then, ||M || ∈ RC≥0.

Here, ||M || denotes the simplicial volume. Recall that it is defined as follows.

Definition 2.3.10 (simplicial volume, [Löh11, Definition 1.1]). Let M be an ori-
ented, closed, connected manifold of dimension n ∈ N. Recall that Hn(M,R) ∼= R
has a distinguished generator [M], called the fundamental class, given by the ori-
entation of M . Then, the simplicial volume of M is defined as

||M || := inf{|c|1 | c ∈ Cn(M,R) represents [M]} ∈ R≥0.

Here, |c|1 denotes the `1-norm on Cn(M,R) which is defined as follows: If c =∑k
i=0 ai · σi is in reduced form, we define

|c|1 =
k∑

i=0

|ai| ∈ R≥0.

More generally, for α ∈ Hn(M,R), we define

||α|| := inf{|c|1 | c ∈ Cn(M,R) represents α} ∈ R≥0.

Moreover, we define similar notions with Z-coefficients.

The following two lemmas are key in proving the theorem.

36

2.3 Right-Computability of some Topological Invariants

Lemma 2.3.11 (simplicial volume via simplicial complexes, [HL20, Chapter 4.2]).
Let M be an oriented, closed, connected manifold. Then, M is homotopy equivalent
to a finite simplicial complex T . Moreover, we have

||M || = inf
m∈N>0

||m · [T]Z||Z
m

.

Here, [T]Z denotes a generator of the singular homology Hn(|T |,Z).

Lemma 2.3.12 (simplicial volume via combinatorial singular chains, [HL20, Proof
of Lemma 4.5]). Let T be a finite simplicial complex and α ∈ Hn(|T |,Z). Then,

||α||Z = inf{|c|1 | c ∈ Cn(|T |,Z) represents α and c is
a combinatorial singular chain}.

Here, being a combinatorial singular chain means that c =
∑k

i=0 ai ·σi, where ai ∈ Z,
and, after barycentric subdivisions of ∆n and T , the σi are simplicial maps ∆n → T .

Combining these two lemmas, we obtain the following result.

Lemma 2.3.13. Let M be an oriented, closed, connected manifold. Let T be a
finite, simplicial complex that is homotopy equivalent to M . Let C be the set of all
closed combinatorial singular n-chains of T . Moreover, for c ∈ C, let m(c) ∈ Z be
the unique integer such that [c] = m(c) · [T]Z in Hn(|T |,Z). Then, we have

||M || = inf
c∈C,m(c)>0

|c|1
m(c)

.

We can now prove the theorem, following the ideas of Heuer and Löh [HL20,
Chapter 4.2].

Proof of Theorem 2.3.9. By the above Lemma 2.3.13, we can write ||M || as an in-
fimum of a countable set of rational numbers. By Proposition 2.2.9, in order to show
right-computability, it suffices to show that the set C of all closed, combinatorial
singular n-chains of T is recursively enumerable and that for a given c ∈ C, we can
compute |c|1 as well as m(c).

We can enumerate all closed, combinatorial singular n-chains of T as we can it-
eratively enumerate all subdivisions of ∆n and T . Moreover, we can enumerate
all simplicial maps between two finite, simplicial complexes. Furthermore, we can
algorithmically check whether such a chain is closed.

Given c ∈ C, we can compute |c|1 directly (if we allow for chains occurring in
different forms, we might not even need to pass to the reduced form). Moreover, for
a given m ∈ N>0, we can check whether c represents m · [T]Z by comparison with
the iterated barycentric subdivision in simplicial homology.

Thus, we obtain that ||M || ∈ RC≥0.

37

2 Introduction to Computability

2.3.3 Comparison with the Case of ℓ2-Betti Numbers

In the main part of this thesis (Chapter 3), we will prove that `2-Betti numbers are
(under certain assumptions) (right-)computable.

In the previous two examples, we have seen that it is a good strategy to write the
number in question as an infimum of a computable sequence. For `2-Betti numbers,
the first statement that seems suitable for this is Lück’s approximation theorem
(Theorem 1.3.9). Recall that it states that

b(2)n (G ↷ X) = lim
i→∞

bn(Gi\X)

[G : Gi]

for a free, finite type G-CW complex X and a residual chain (Gi)i∈N of G. However,
this limit is not always the infimum, as the following example shows.

Example 2.3.14. Consider the finite type CW complex

X := RP∞ ∨ (Z/3Z)\S∞

where S∞ = colimn∈N Sn, and RP∞ is the quotient by the antipodal action of Z/2Z
on S∞, and Z/3Z ↷ S∞ is a free, cellular action.

We have π1(X) ∼= Z/2Z ∗ Z/3Z ∼= PSL(2,Z), which is a residually finite group.
Moreover, we have [Kam19, p. 78]

b
(2)
1 (π1(X) ↷ X̃) =

1

6

but for the first element G0 := π1(X) in a residual chain of π1(X), we have

b1(X)

[π1(X) : G0]
=

0

1
= 0 <

1

6
.

In particular, the convergence in Lück’s approximation theorem is not from above.

Hence, in the following chapter, we will need a different sequence that converges from
above to the `2-Betti number. Such a sequence will be exhibited in Chapter 3.2.
On the other hand, we can stick with the sequence from the Lück approximation
theorem: In this case, we need to bound the error between the approximation term
and the `2-Betti number. If this bound is computable and tends to zero, we can add
it to the approximation term on the right hand side of Lück’s approximation theorem
to obtain a sequence that converges from above to the desired `2-Betti number. We
will develop this approach (and even prove effective computability) in Chapter 3.4.

38

3 Computability of ℓ2-Betti numbers

3.1 Some Known Results

In this chapter, we will present some results that are already known in the literature
about computability of `2-Betti numbers.

For instance, Grabowski proved the following theorem.

Theorem 3.1.1 ([Gra14, Theorem 1.4]). Every non-negative, effectively computable
real number occurs as an `2-Betti number of a finitely presented group, i.e. we have
EC≥0 ⊆ B̃(2).

Later, this result was independently proved by Pichot, Schick and Zuk in the fol-
lowing form. It is slightly stronger, which can be seen using Higman’s embedding
theorem (see Theorem 2.3.4).

Theorem 3.1.2 ([PSZ15, Theorem 11.1, Remark 13.3]). Every non-negative, effect-
ively computable real number occurs as an `2-Betti number of a finitely generated,
recursively presented group with solvable word problem.

Remark 3.1.3. The proof given by Pichot, Schick and Zuk is quite explicit, i.e. given
a decidable set I ⊂ N, there is an explicit construction of a group GI and an element
A ∈ ZGI such that

dimRGI
ker(·A) =

∑
n∈I

2−n.

Remark 3.1.4. The key idea of the work by Pichot, Schick and Zuk was to construct
an operator that ‘accepts’ local patterns in the Cayley graph of Γ, where Γ is either
the free group of rank two or Γ = Z o Z. In the present case, so called ‘hooks’ were
considered. This allows to decompose the operator in question nicely, so that it is
possible to calculate the dimension of an eigenspace explicitly.

Moreover, if we drop the condition on the solvability of the word problem, we obtain
the following result:

Theorem 3.1.5. Every non-negative, weakly computable real number occurs as an
`2-Betti number of a finitely presented group, i.e. WC≥0 ⊆ B̃(2).

39

3 Computability of `2-Betti numbers

Proof. It suffices to show the claim for finitely generated, recursively generated
groups since by Higman’s embedding theorem (Theorem 2.3.4), every such group
embeds into a finitely presented group and moreover, `2-Betti numbers are monotone
under inclusions (Proposition 1.2.23).

Since sums of `2-Betti numbers are `2-Betti numbers (Proposition 1.2.23) and pro-
ducts of two finitely generated, recursively presented groups have again these prop-
erties, it suffices to show that all right-computable and all left-computable non-
negative numbers occur. For right-computable numbers, this is stated in [PSZ15,
Remark 13.5]. For left-computable numbers, there are β′′

1 , β
′′
2 ∈ Q, d ∈ N such that

for every recursively enumerable set I ⊂ N, we have that

β′′
1 − β′′

2 ·
∑
k∈I

2−dk

is an `2-Betti number of a finitely generated, recursively presented group [PSZ15,
Remark 13.6]. Then, by the fact that we can take sums and scale by rational
numbers (Proposition 1.2.23), we obtain all nonnegative left-computable numbers
from this.

Conversely, there are also results on computability restrictions of `2-Betti num-
bers, for instance the following one that was first proved in the Bachelor’s thesis of
T. Groth [Gro12, Theorem 6.12].

Theorem 3.3.23. Let b be an `2-Betti numbers arising from a finitely presented
group with solvable word problem that satisfies the determinant class conjecture
(Conjecture 3.3.21). Then, b is effectively computable.

We will give a proof of this statement in Chapter 3.3. Note that the determinant
class conjecture is satisfied for a large class of groups, for instance by sofic groups
(see Definition 3.3.3), hence in particular by amenable or residually finite groups.
This theorem, together with the Theorem 3.1.1 at the beginning of this chapter,
imply the following corollary.

Corollary 3.1.6. The `2-Betti numbers arising from all groups with solvable word
problem that satisfy the determinant conjecture are exactly the effectively computable,
non-negative real numbers.

In addition, Pichot, Schick and Zuk mention the following result by Groth:

Theorem 3.1.7 ([Gro12, Chapter 6.4] as cited in [PSZ15, Remark 13.4]). Let r ∈
B̃(2). Then, there exists a computable sequence (qn)n∈N such that

r = lim sup
n→∞

qn.

40

3.1 Some Known Results

Together with Theorem 3.1.5, we know that the set of `2-Betti numbers arising from
finitely presented groups contains WC≥0 and is contained in the set of real numbers
occurring as the limit superior of computable sequences. It is thus natural to ask
the following open question.

Question 3.1.8. What does the set B̃(2) of `2-Betti numbers arising from finitely
presented groups exactly look like?

Note that this set is countable, because there exist only countable many isomorphism
types of finitely presented groups and these groups contain at most countably many
elements.

We will finish this chapter by presenting a surprising result about the undecidability
of trivial kernels.

Theorem 3.1.9 ([Gra15b, Corollary 6.2]). Consider the group

G := 〈a, t, s | a2 = 1, [t, s] = 1, [t−1at, a] = 1, s−1as = at−1at〉.

This group has a decidable word problem. Moreover, the problem Zero-divisors-in-ZG
is undecidable, i.e. the following problem is undecidable:

• Input: An element T ∈ ZG

• Output: ‘Yes’ if kerT 6= 0, ‘No’ otherwise.

Remark 3.1.10. It suffices to prove the undecidability of the zero divisors problem
for (Z/2Z) o Z instead, since this group is a subgroup of the group G. The key idea
of Grabowski was to embed Turing machines into the group ring. That way, one
can reduce the problem whether for a given Turing machine there exists an input
which is accepted (which is known to be undecidable) to the zero divisors problem,
thus proving that also this problem is undecidable.

Remark 3.1.11 (a contradiction to effective computability?!). At first glance, the
above Theorem 3.1.9 seems to contradict Corollary 3.3.13. Since the group G in
the above Theorem 3.1.9 is finitely presented, sofic and has solvable word problem,
there is an algorithm that, for every A ∈ ZG, (effectively) computes dimRG ker(·A).
By faithfulness, ker(·A) = 0 if and only if its dimension is zero.

Now, the naive approach to solving the zero-divisor problem in ZG would be the
following: Given A ∈ ZG, (effectively) compute dimRG ker(·A). If it is zero, output
‘no’, otherwise ‘yes’.

If this worked, it would then contradict Theorem 3.1.9. However, there is an error
in the argument: This is due to the fact that effective computability does not mean
that we ‘know’ the precise value but rather that we make the deviation arbitrarily
small. This confusion arises especially if the notion of effective computability is

41

3 Computability of `2-Betti numbers

instead just called ‘computability’. This is also one reason why in this thesis, we use
the term ‘effective computability’.

Remark 3.1.12 (decidable zero-divisors problem). In the presence of additional as-
sumptions that guarantee the existence of an ε > 0 such that dimRG ker(·A) cannot
take values in (0, ε), the zero-divisor-in-ZG problem is decidable.

For instance, such assumptions are satisfied by finitely generated sofic groups that
have a uniform bound on the order of finite subgroups (so-called BFS groups), and
that satisfy the Atiyah conjecture [Gra15b, Proposition 3.1].

42

3.2 The General Case

3.2 The General Case

In this section, we establish computability results for `2-Betti numbers of finitely
generated groups with solvable word problem.

3.2.1 Right-Computability

We start with a result on right-computability.

Theorem 3.2.1 (Right-computability). Let G be a finitely generated group with
solvable word problem. Moreover, let A ∈ Mn×n(ZG) be self-adjoint. Then,

dimRG ker(·A) ∈ RC≥0.

For completeness, we recall the solvability of the word problem.

Definition 3.2.2 (solvable word problem). Let G be a finitely generated group with
finite generating set S ⊂ G. We say that G has a solvable word problem if the set

{w ∈ F (S) | w = e in G}

is decidable, i.e. if there exists an algorithm that, given a word w ∈ F (S), decides
whether w represents the trivial element in G.

Remark 3.2.3. The solvability of the word problem is independent of the fixed gen-
erating set, i.e. if it is solvable with respect to one finite generating set, it is so with
respect to any finite generating set.

In order to prove the theorem above, we fix the following setup:

Setup 3.2.4. Let G be a finitely generated group with solvable word problem.
Moreover, let A ∈ Mn×n(ZG) be self-adjoint. We denote by µA the spectral measure
of A (see Definition 1.3.15). We view this measure supported on an interval [0, d]
with d := || ·A|| ≥ 0. We assume without loss of generality that d ≥ 1 (since we can
always make d bigger).

Remark 3.2.5. Note that µA

(
[0, d]

)
= trRG(A

0) = trRG(idn) = n by Proposi-
tion 1.3.16.

Lemma 3.2.6. In the situation of Setup 3.2.4, we have for all k ∈ N that

dimRG ker(·A) ≤ trRG

((
1− 1

d
·A
)k)

.

43

3 Computability of `2-Betti numbers

Proof. We have

dimRG ker(·A) = µA({0}) (Proposition 1.3.17)

≤
∫ d

0

(
1− 1

d
· x
)k

dµA (monotonicity of measures)

= trRG

((
1− 1

d
·A
)k)

(Proposition 1.3.16),

as desired.

Moreover, we have the following lemma about convergence.

Lemma 3.2.7. In the situation of Setup 3.2.4, we have

dimRG ker(·A) = lim
k→∞

trRG

((
1− 1

d
·A
)k)

.

Proof. We have

lim
k→∞

trRG

((
1− 1

d
·A
)k)

= lim
k→∞

∫ d

0

(
1− 1

d
· x
)k

dµA (Proposition 1.3.16)

=

∫ d

0
lim
k→∞

(
1− 1

d
· x
)k

dµA (dominated convergence)

=

∫ d

0
χ{0} dµA

= µA({0})
= dimRG ker(·A) (Proposition 1.3.17),

where we used the theorem of dominated convergence. In order to apply this the-
orem, note that for all k ∈ N and x ∈ [0, d], we have∣∣∣(1− 1

d
· x
)k∣∣∣ ≤ χ[0,d](x),

hence, the integrable function χ[0,d] dominates the sequence of functions.

We can now prove the theorem at the beginning of this section.

Proof of Theorem 3.2.1. We assume the situation of Setup 3.2.4. From Lemma 3.2.6
and Lemma 3.2.7, we obtain that the sequence(

trRG

((
1− 1

d
·A
)k))

k∈N

of rational numbers converges from above to dimRG ker(·A). Moreover, this sequence
is computable because for all k ∈ N,

44

3.2 The General Case

• We can calculate the matrix
(
1− 1

d ·A
)k.

• We can then calculate the trace of this matrix. (This requires solving the word
problem in G.)

Hence, we have dimRG ker(·A) ∈ RC≥0.

Remark 3.2.8. The obvious question to ask about Theorem 3.2.1 is what happens
if we drop the assumption on solvability of the word problem. Theorem 1.3.3 an-
swers this question: Without this assumption, all nonnegative real numbers occur.
Moreover, even if we restrict our attention to finitely presented groups that do not
necessarily have a solvable word problem, we cannot generalise Theorem 3.2.1 since
then, all nonnegative weakly computable numbers occur as `2-Betti numbers (The-
orem 3.1.5) and we have RC≥0 ⊊ WC≥0 (Proposition 2.2.4).

3.2.2 Left-Computability

In this section, we apply the same techniques to obtain left-computability. However,
in this case, we need an additional assumption. We will see in Section 3.3 that for
a large class of groups, this assumption is satisfied.

Theorem 3.2.9 (left-computability). Let G be a finitely generated group with solv-
able word problem. Moreover, let A ∈ Mn×n(ZG) be self-adjoint. The following are
equivalent:

1. We have dimRG ker(·A) ∈ LC≥0.

2. There exists a computable sequence (εk)k∈N of rational numbers such that
limk→∞ εk = 0 and for all k ∈ N>0, we have

∀k∈N µA

((
0,

1

k

))
≤ εk.

For the proof, we need the following lemma.

Lemma 3.2.10. Assume the situation of Setup 3.2.4 and let (εk)k∈N be a sequence
of rational numbers such that

∀k∈N µA

((
0,

1

k

))
≤ εk.

Then, for all k ∈ N, we have

dimRG ker(·A) ≥ trRG

((
1− 1

d
·A
)k2)

− εk − n ·
(
1− 1

k · d

)k2
.

45

3 Computability of `2-Betti numbers

Proof. Let k ∈ N. Then, we have

trRG

((
1− 1

d
·A
)k2)

=

∫ d

0

(
1− x

d

)k2
dµA (Proposition 1.3.16)

≤ µA({0}) + µA

(
(0, 1/k)

)
+

∫ d

1/k

(
1− x

d

)k2
dµA

≤ µA({0}) + µA

(
(0, 1/k)

)
+ µA

(
[1/k, d]

)
·
(
1− 1/k

d

)k2
(monotonicity)

≤ µA({0}) + εk + µA

(
[0, d]

)
·
(
1− 1

kd

)k2
(assumption on εk)

= dimRG ker(·A) + εk + µA

(
[0, d]

)
·
(
1− 1

kd

)k2
(Proposition 1.3.17)

= dimRG ker(·A) + εk + n ·
(
1− 1

kd

)k2
(Remark 3.2.5)

where we used that the function x 7→
(
1− x

d

)k2 is bounded by 1 and monotonically
decreasing on [0, d]. From this inequality, we obtain the claim of the lemma.

We can now prove the characterisation of left-computability.

Proof of Theorem 3.2.9. Assume first that there is a computable sequence (εk)k∈N
as in 2. We denote

ak := trRG

((
1− 1

d
·A
)k2)

− εk − n ·
(
1− 1

k · d

)k2
the right hand side in the claim of Lemma 3.2.10. Note that limk→∞ εk = 0 by
assumption and

lim
k→∞

(
1− 1

k · d

)k2
= 0

by elementary calculus. By Lemma 3.2.7 and the fact that taking subsequences
preserves the limit, we obtain that

lim
k→∞

trRG

((
1− 1

d
·A
)k2)

= dimRG ker(·A),

Hence, we obtain that
lim
k→∞

ak = dimRG ker(·A).

This convergence is from below by Lemma 3.2.10. Moreover, the sequence (ak)k∈N
is computable: For this, it suffices to check that all three summands of this sequence
are computable (Lemma 2.1.6):

46

3.2 The General Case

• For trRG

((
1 − 1

d · A
)k2)

, this follows as in the proof of right-computability
(Theorem 3.2.1).

• The sequence (εk)k∈N is computable by assumption.

• The third summand is computable by basic results about computable se-
quences (Lemma 2.1.6).

Hence, we obtain that dimRG ker(·A) ∈ LC≥0.

Conversely, assume that dimRG ker(·A) ∈ LC≥0, i.e. there exists a computable,
monotonically increasing sequence (ak)k∈N such that limk→∞ ak = dimRG ker(·A).
We construct a sequence (εk)k∈N as follows: For k ∈ N>0, we set

m(k) := max
{
m ∈ N |

(
1− 1

kd

)m
≥ 1

2

}
.

and
εk := 2 ·

(
trRG

((
1− A

d

)m(k))
− ak

)
Then, the sequence (εk)k∈N is computable, because

• The sequence
(
m(k)

)
k∈N is computable because for a given k ∈ N>0, the

sequence
((
1 − 1

kd

)m)
m∈N is monotonically decreasing and converges to zero

for m → ∞. Hence, we can compute m(k) by successively computing all((
1 − 1

kd

)m)
m∈N until we find one element in this sequence that is smaller

than 1
2 .

• The trace of matrices in ZG is computable because G has a solvable word
problem.

• The sequence (ak)k∈N is computable by assumption.

Moreover, the sequence (εk)k∈N tends to zero for k → ∞. This is because for the
sequence (m(k))k∈N, we have limk→∞m(k) = ∞ and thus (see Lemma 3.2.7)

lim
k→∞

trRG

(
1− A

d

)m(k)
= dimRG ker(·A) = lim

k→∞
ak.

Finally, we have to show that for all k ∈ N that µA((0, 1/k)) ≤ εk. This follows from
the following computation:

trRG

(
1− A

d

)m(k)
=

∫ d

0

(
1− x

d

)m(k)
dµA(x) (Proposition 1.3.16)

≥
∫
{0}

(
1− x

d

)m(k)
dµA(x)

+

∫
(0,1/k)

(
1− x

d

)m(k)
dµA(x)

≥ µA({0}) +
1

2
· µA((0, 1/k)) (choice of m(k))

47

3 Computability of `2-Betti numbers

= dimRG ker(·A) + 1

2
· µA((0, 1/k)) (Proposition 1.3.17)

≥ ak +
1

2
· µA((0, 1/k)) (ak approx. from below)

Hence, condition 2 is satisfied.

3.2.3 Effective Computability

Finally, by combining the theorems about right and left computability, we obtain
the following corollary.

Corollary 3.2.11 (effective computability). Let G be a finitely generated group
with solvable word problem. Moreover, let A ∈ Mn×n(ZG) be self-adjoint. Then, the
following are equivalent:

1. We have dimRG ker(·A) ∈ LC≥0.

2. We have dimRG ker(·A) ∈ EC≥0.

3. There exists a computable sequence (εk)k∈N of rational numbers such that
limk→∞ εk = 0 and for all k ∈ N>0, we have

µA

((
0,

1

k

))
≤ εk,

where we denote by µA the spectral measure of A (see Definition 1.3.15).

Proof. This follows by combining Theorem 3.2.9 with Theorem 3.2.1 using the fact
that EC≥0 = RC≥0 ∩ LC≥0 (Proposition 2.2.4).

Remark 3.2.12. The proof of Theorem 3.2.9 shows that in condition 2, it is equival-
ently possible to demand that the inequality holds for all k ≥ N0 for some N0 ∈ N.

48

3.3 Sofic Groups and the Determinant Class Conjecture

3.3 Sofic Groups and the Determinant Class Conjecture

In this chapter, we will deal with `2-Betti numbers of sofic groups and of groups
satisfying the determinant class conjecture.

3.3.1 Sofic groups

The goal of the section is to prove the following theorem.

Theorem 3.3.1. Let G be a finitely generated, sofic group with solvable word prob-
lem, n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. Then,

dimRG ker(·A) ∈ EC≥0.

Remark 3.3.2. This theorem even holds without the assumption on finite generation,
as there is a finitely generated subgroup H ⊆ G such that A ∈ ZH (for instance, we
can take the subgroup generated by all group elements with non-trivial coefficients
in A) and `2-Betti numbers behave well under inclusions (Proposition 1.2.23).

We will combine the approach of Section 3.2 with the results of Elek and Szabó
[ES05]. We then use an argument similar to one given by Grabowski [Gra15b,
Claims A2, A3] to conclude.

Proof of Theorem 3.3.1. We will use the characterisation by Corollary 3.2.11. We
will see below (Lemma 3.3.12) that the statement 2 of Corollary 3.2.11 is satisfied
in this case, yielding that dimRG ker(·A) is effectively computable.

Before jumping into the details, we review the definition of soficity.

Definition 3.3.3 (sofic group, [ES05]). Let G be a finitely generated group, and
S ⊆ G be a finite symmetric generating set of G. The group G is sofic if there
exists a sequence (Vn, En)n∈N of finite directed graphs that are edge-labelled by S
and subsets V 0

n ⊆ Vn such that the following holds:

For all δ > 0 and r ∈ N, there is nr,δ ∈ N such that for all m ≥ nr,δ, we have

• For each v ∈ V 0
m, there is a map

ϕv : B(G,S)(r) −→ B(Vm,Em)(v, r)

that is an isomorphism of edge-labelled graphs. Here, B(G,S)(r) denotes the
r-ball around e ∈ Γ in the Cayley graph of G with respect to the generating
set S, labelled by S. Moreover, B(Vm,Em)(v, r) denotes the r-ball in (Vm, Em)
around v.

49

3 Computability of `2-Betti numbers

• We have |V 0
m| ≥ (1− δ) · |Vm|

Remark 3.3.4. The property of being sofic is independent of the chosen finite, sym-
metric generating set [ES04, Proposition 4.4].

Example 3.3.5 ([ES06, Theorem 2]). The class of sofic groups is very large. All
residually amenable groups fall into this class, hence in particular amenable groups
and residually finite groups are sofic.

It is an open question whether there exist non-sofic groups.

3.3.2 The Spectral Measure near Zero

In this section, we will prove the missing step in the proof of Theorem 3.3.1. More
precisely, will will show that there exists a computable bound on µA((0, 1/k)), where
µA is the spectral measure of A.

We thus fix the following setup, following the approach of Elek and Szabó [ES05].

Setup 3.3.6. Let G be a finitely generated, sofic group. Let S ⊂ G be a finite
symmetric generating set of G. Fix n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. We
fix a sequence (Vn, En, V

0
n)n∈N as in Definition 3.3.3.

We define the operator kernel as the unique function KA : G×G → Mn×n(Z) such
that for all f ∈ (`2G)n and x ∈ G, we have

Af(x) =
∑
y∈G

KA(x, y) · f(y).

More explicitly, for all x, y ∈ G, KA(x, y) is the n×n-matrix over Z of all coefficients
in A belonging to the group element xy−1.

Let wA be the width of A, i.e. the maximum length of words in S occurring in A.
For m > wA construct the approximation kernel Km

A : Vm × Vm → Mn×n(Z) by

Km
A (x, y) := KA(γ, eG)

if y ∈ V 0
m and x = ϕy(γ) and Km

A (x, y) = 0 otherwise. Moreover, denote by Am the
bounded linear operator on [`2(Vm)]n defined by the kernel function Km

A .

As usual, denote by µA the spectral measure of A (Definition 1.3.15). By (µm)m∈N
denote the spectral measures of Am, scaled by the factor 1

|Vm| .

Remark 3.3.7. We view µA and all (µm)m∈N as measures on an interval [0, d] for
some d ≥ 1. This is possible because there exists a common bound on the operator
norms of A and all (Am)m∈N [ES05, Lemma 6.2].

50

3.3 Sofic Groups and the Determinant Class Conjecture

Moreover, all these measures have the same total mass: This follows from the fact
that for all m ∈ N, we have

µA([0, d]) = trRG(In) (Proposition 1.3.16)
= n

=
n · |Vm|
|Vm|

=
tr(In·|Vm|)

|Vm|
= µm([0, d]).

Elek and Szabó state an approximation theorem [ES05, Proposition 6.1(a)], for
which the key lemma is the following:

Lemma 3.3.8 ([ES05, Lemma 6.3]). Assume the situation of Setup 3.3.6. Then,
for every polynomial p ∈ R[x], we have∫ d

0
p(x) dµA(x) = trRG(p(A)) = lim

m→∞

tr(p(Am))

|Vm|
= lim

m→∞

∫ d

0
p(x) dµm.

This implies the following:

Lemma 3.3.9. The measures (µm)m∈N converge weakly to µA.

Proof. We have to show that for every continuous function f : [0, d] → R,∫ d

0
f dµA = lim

m→∞

∫ d

0
f dµm.

If f is a polynomial function, this is done in Lemma 3.3.8. For general continuous
functions, this can be obtained by uniform approximation with Stone-Weierstraß
polynomials.

Moreover, there is a bound for the measures µm.

Lemma 3.3.10 (logarithmic bound for µm). For all m ∈ N and λ ∈ (0, 1), we have

µm((0, λ)) ≤ n · log d
| logλ| .

Proof. This follows in the same way as in the proof of Lück’s approximation theorem
[Kam19, Proposition 5.18]. A similar argument to prove exactly this argument is
also given by Grabowski [Gra15b, Claim A2].

51

3 Computability of `2-Betti numbers

This bound then carries over to the spectral measure µA.

Lemma 3.3.11 (logarithmic bound for µA). For all λ ∈ (0, 1), we have

µA((0, λ)) ≤
n · log d
| logλ| .

Proof. This can be deduced from the Portmanteau theorem [Els09, Theorem 4.10]
as follows: As the subset (0, λ) is open, and the measures (µm)m∈N converge weakly
to µA, we have

µA((0, λ)) = lim inf
m→∞

µm((0, λ)) (Portmanteau Theorem)

≤ lim inf
m→∞

n · log d
| logλ| (Lemma 3.3.10)

=
n · log d
| logλ|

We can now prove the goal of this section.

Lemma 3.3.12 (spectral measure near zero). Let G be a finitely generated, sofic
group, n ∈ N and A ∈ Mn×n(ZG) be self-adjoint. Let µA be the spectral measure of
A. For all k ∈ N>2, we define

εk :=
n · dlog de
blog kc ∈ Q≥0.

Then, the sequence (εk)k∈N is computable and tends to zero. Moreover, we have for
all k ∈ N>2 that

µA((0, 1/k)) ≤ εk.

Proof. The computability of the sequence follows by basic facts about the com-
putability of sequences (see Lemma 2.1.6 and Example 2.1.7). Moreover, we have
limk→∞ εk = 0 and for all k ∈ N>2, we have by Lemma 3.3.11 that

µA((0, 1/k)) ≤
n · log d

| log(1/k)|

≤ n · dlog de
blog kc

= εk,

as desired.

52

3.3 Sofic Groups and the Determinant Class Conjecture

This finishes the proof of Theorem 3.3.1. Note that even the following, slightly
stronger statement holds.

Corollary 3.3.13 (the function is computable). There exists a universal algorithm
that effectively computes the `2-Betti numbers of any sofic group and any matrix
over its group ring. More precisely: There exists an algorithm that requires as input

1. a finite generating set S of a group G,

2. an algorithm solving the word problem in G with respect to S, and

3. a matrix A ∈ Mn×n(ZG) that is self-adjoint.

that, assuming that the group G is sofic, outputs a sequence (qk)k∈N of rational
numbers such that for all k ∈ N, we have

|dimRG ker(·A)− qk| ≤ 2−k.

Remark 3.3.14. This is essentially due to the fact that in Lemma 3.3.12, we can
bound the constant || · A|| from above by the `1-norm of A, i.e. the sum of all
absolute values of coefficients occurring in A, which we can easily calculate from A.

We end this section by some remarks about ‘improving’ the bounds in question.

Remark 3.3.15. The sequence
(
n · log d/ log k

)
k∈N converges rather ‘slowly’ to zero.

Thus, it is a natural question if we can ‘improve’ this bound. This is for instance
what the Lott-Lück conjecture asks for.

Conjecture 3.3.16 (Lott-Lück, [LL95, Conjecture 7.1]). Let G be a group and A ∈ ZG
be self-adjoint. Then, there are C, η > 0 such that for ε > 0 small enough, we have

µA

(
(0, ε)

)
≤ C · εη,

hence, in particular, we have for k ∈ N large enough

µA

(
(0, 1/k)

)
≤ C

kη
.

However, this conjecture turned out to be false in general: Grabowski found the
following counterexamples.

Theorem 3.3.17 ([Gra15a, Theorem 1.2]). For every δ > 0, there is a group Gδ and
a self-adjoint Sδ ∈ ZGδ and a sequence (εi)i∈N of positive real numbers tending to
zero such that for all i ∈ N, we have

µSδ

(
(0, εi)

)
>

C

| log εi|1+δ
.

Grabowski thus conjectures that we cannot ‘improve’ the bound given in Lem-
ma 3.3.12.

53

3 Computability of `2-Betti numbers

3.3.3 The Determinant Class Conjecture

In this section, we will generalise Theorem 3.3.1 to groups that satisfy the determ-
inant class conjecture. We will first recall the definition of the Fuglede-Kadison
determinant and the determinant class conjecture.

Definition 3.3.18 (Fuglede-Kadison determinant [Sch01, Definition 1.3]). Let G
be a group, A ∈ Mn×n(ZG) be self-adjoint and µA be the spectral measure of A.
Then, we define the Fuglede-Kadison determinant of A by

ln det(A) :=

{∫∞
0+ log(x) dµA(x) if this integral converges
−∞ otherwise

where
∫∞
0+ denotes integration on the set (0,∞).

Remark 3.3.19. Note that there is only a convergence problem near 0 and no problem
for “x → ∞”, as µA is supported on [0, || ·A||].

Definition 3.3.20 (determinant class [Sch01, Definition 1.4]). Let G be a group
and A ∈ Mn×n(ZG) be self-adjoint. We say that A is of determinant class if

ln detA > −∞.

Conjecture 3.3.21 (determinant class conjecture). We say that G satisfies the
determinant class conjecture if every self-adjoint element in Mn×n(ZG) is of de-
terminant class.

Example 3.3.22. Sofic groups satisfy the determinant class conjecture. This was
proved by Elek and Szabó [ES05, Theorem 5]. For a sofic group G, and A ∈
Mn×n(ZG) self-adjoint, we even have ln detA ≥ 0.

From the property of being of determinant class, we can deduce effective comput-
ability.

Theorem 3.3.23 ([Gro12, Theorem 6.12]). Let G be a finitely generated group with
solvable word problem, and A ∈ Mn×n(ZG) be self-adjoint and of determinant class.
Then,

dimRG ker(·A) ∈ EC≥0.

Proof. We transform the proof originally given by Groth to fit the context of Sec-
tion 3.2.

54

3.3 Sofic Groups and the Determinant Class Conjecture

By Corollary 3.2.11, it suffices to find a computable sequence (εk)k∈N of rational
numbers such that limk→∞ εk = 0 and for all k ∈ N>2, we have

µA

((
0,

1

k

))
≤ εk.

Because A is of determinant class, we have in particular that∫ 1

0+
log(x) dµA(x) > −∞

Let q ∈ Q≥0 such that ∫ 1

0+
log(x) dµA(x) ≥ −q

Then, we have for all k ∈ N>0:

−q ≤
∫ 1

0+
log(x) dµA(x)

≤
∫ (1/k)−

0+
log(x) dµA(x) (log is negative)

≤ log(1/k) · µA((0, 1/k)) (monotonicity of log)

and hence µA((0, 1/k)) ≤ q
log k . Hence, such a computable sequence is given by(

εk :=
q

blog kc

)
k∈N

,

finishing the proof that dimRG ker(·A) ∈ EC≥0.

Remark 3.3.24. One disadvantage of this proof is that unlike in the sofic case, we
cannot (at least a priori) calculate effective bounds (εk)k∈N from G and A.

However, if we even have ln detA ≥ 0, we can achieve the following inequality
[Gro12, p. 27].

q ≤ −
∫ 1

0+
log(x) dµA(x) + 1 (suitable choice of q)

≤
∫ d

1+
log(x) dµA(x) + 1 (ln det(A) ≥ 0)

≤
∫ d

1+
x dµA(x) + 1 (logx ≤ x)

≤
∫ d

0
x dµA(x) + 1

= trRG(A) + 1 (Proposition 1.3.16)

55

3 Computability of `2-Betti numbers

Since we can compute trRG(A) + 1 from A and an algorithm that solves the word
problem in G, the same statement as in Corollary 3.3.13 also holds in case that
ln detA ≥ 0.

Remark 3.3.25. In the case that one deduces the case for sofic groups from the above
above Theorem 3.3.23 (as done by Groth [Gro12]), one essentially makes a detour
through the argument given in Chapter 3.3 as the proof by Elek and Szabó [ES05]
that sofic groups satisfy the determinant class conjecture, uses similar arguments to
the ones presented in that chapter.

We finish this chapter by pointing out two special cases of Theorem 3.3.23.

Corollary 3.3.26. Let n ∈ N and let X be a CW-complex with finite (n + 1)-
skeleton. Let x0 ∈ X and π1(X,x0) be finitely generated and satisfy the determinant
class conjecture. Let X̃ be the universal covering of X. Then, we have

b(2)n (π1(X,x0) ↷ X̃) ∈ EC≥0.

Proof. By the equivalence discussed in Theorem 1.2.20, we have

b(2)n (π1(X,x0) ↷ X̃) = dimRG ker(·A)

for some matrix A ∈ Mn×n(ZG), thus Theorem 3.3.23 yields the claim.

Corollary 3.3.27. Let n ∈ N and let G satisfy the determinant class conjecture and
be of finite type Fn+1. Then, we have

b(2)n (G) ∈ EC≥0.

Proof. The group G is finitely generated (Example 1.2.26). Recall from Defini-
tion 1.2.27 that

b(2)n (G) = b(2)n (G ↷ EGn+1),

thus, Theorem 1.2.20 and Theorem 3.3.23 yield the claim.

56

3.4 Residually Finite Groups

3.4 Residually Finite Groups

In this chapter, we will focus on finitely presented, residually finite groups (see
Definition 1.3.10). We will prove that in this case, all `2-Betti numbers are effectively
computable. Actually, this follows already from Theorem 3.3.1, as residually finite
groups are sofic (Example 3.3.5) and finitely presented, residually finite groups have
a solvable word problem (see Proposition 3.4.1 below).

However, in this chapter we explore a different proof and use sequences as in Lück’s
approximation theorem (Theorem 1.3.9) to approximate the `2-Betti numbers.

3.4.1 Preliminaries: Solvability of the Word Problem

We first prove the statement about the solvability of the word problem.

Proposition 3.4.1. Let G be a finitely presented, residually finite group. Then, the
word problem in G is solvable.

Proof. Suppose that G = 〈s1, . . . , sj | r1, . . . , rl〉, where r1, . . . , rl are words in
s1, . . . , sj and their inverses. We need to show that the set

R := {w ∈ F (S) | w = e in G}

as well as its complement are semi-decidable.

The set R is semi-decidable: Note that R is the normal subgroup in F (S) generated
by r1, . . . , rl. It is thus equal to the subset of F (S) that arises in finitely many steps
from

• the empty word,

• one of the words r1, . . . , rl,

• taking inverses and products (of two such words)

• conjugating with some si or s−1
i (for some i ∈ {1, . . . , j}).

Thus, we can enumerate all these words.

The complement of R is semi-decided by Algorithm 4. The first two loops enumerate
all group homomorphisms f : F (S) → Sp, given by the images of the generators
s1, . . . , sj , for all p ∈ N, where Sp is the symmetric group on p elements. Note
that in Sp, we can compute all products and inverses explicitly, thus the word
problem is solvable. The first if-Statement (Line 4) checks whether f induces a group
homomorphism G → Sp. If then, f(w) 6= e in Sp, the algorithm accepts. Otherwise,
the algorithm continues to enumerate group homomorphisms F (S) → Sp.

57

3 Computability of `2-Betti numbers

Input : finite presentation G = 〈s1, ..., sj | r1, ..., rl〉,
w ∈ F (S)

Output: Accept if w 6= e in G, do not halt otherwise
1 for p = 1, 2, . . . do
2 foreach σ1, . . . , σj ∈ Sp do
3 Set f := (s1 7→ σ1, . . . , sj 7→ σj)
4 if f(ri) = e in Sp for all i ∈ {1, . . . , l} then
5 if f(w) 6= e in Sp then
6 Return ‘Yes’
7 end
8 end
9 end

10 end
Algorithm 4: Semi-deciding F (S)\R

The algorithm is indeed correct: If w = e in G, then every group homomorphism
f : G → Sp will satisfy f(w) = e, thus the algorithm never halts. If, however,
w 6= e in G, because G is residually finite, there exists a p ∈ N and a group homo-
morphism f : G → Sp such that f(w) 6= e. Because the algorithm enumerates all
group homomorphisms, eventually this specific one will be found, and the algorithm
accepts.

Remark 3.4.2. This algorithm can be modified to obtain an algorithm of the following
type: On input G = 〈s1, ..., sj | r1, ..., rl〉 and words w1, . . . , wm ∈ F (S) that do not
represent the trivial word in G, the output is p ∈ N and a group homomorphism
f : G → Sp such that f(wi) 6= e for all i ∈ {1, . . . ,m}.

3.4.2 A Quantitative Version of Lück’s Approximation Theorem

We now want to quantify the rate of convergence in Lück’s approximation theorem.
Recall that its measure-theoretic version can be formulated as follows.

Theorem 1.3.18. Let X be a free, finite type G-CW complex. Suppose that G
is residually finite, and (Gi)i∈N be a residual chain of G. Let n ∈ N and let
∆n ∈ Mk×k(ZG) denote the n-th Laplacian matrix of the `2-chain complex of G ↷ X.
Moreover, for i ∈ N, let πi(∆n) ∈ Mk×k(Z(G/Gi)) be the entrywise projection of
∆n to Z(G/Gi). Then, πi(∆n) is the n-th Laplacian of the `2-chain complex of
G/Gi ↷ Gi\X. Moreover, we have

µ∆n({0}) = lim
i→∞

µπi(∆n)({0}).

58

3.4 Residually Finite Groups

In the following, we will work with the algebraic version of `2-Betti numbers to
quantify this convergence. We first define the following notion of trivial intersection.

Definition 3.4.3 (intersects trivially). Let G be a group, n ∈ N, let A ∈ Mn×n(ZG).
Let H ⊂ G be a subgroup of G. We say that A intersects trivially with H if every
element on the diagonal of A is of the form

ae · e+
∑

g∈G\H

ag · g,

where ag ∈ Z for all g ∈ G\H ∪ {e}.

Lemma 3.4.4. Linear combinations of matrices that intersect trivially with H ⊂ G,
intersect trivially with H.

The main input of this section is the following quantitative version of Lück’s ap-
proximation theorem.

Theorem 3.4.5 (Lück’s approximation theorem, quantitative version). Let G be a
finitely presented, residually finite group, n ∈ N and A ∈ Mn×n(ZG) be self-adjoint.
Let d ≥ 1 such that the spectral measure µA is supported on [0, d]. Then, the following
holds:

Let k ∈ N≥2 and Gk ⊂ G be a normal subgroup of finite index such that A,A2, ..., Ak2

intersect trivially with Gk. Then,

|dimRG ker(·A)− dimR(G/Gk) ker(·Ak)| ≤ n ·
(
1− 1

kd

)k2
+

n · log d
log k

where we denote by Ak the image of A under the entrywise projection ZG →
Z(G/Gk).

Proof. We follow the idea and notation used in the proof of Lück’s approximation
theorem given by Kammeyer [Kam19, Chapter 5.3]. We denote the spectral meas-
ure of A by µA (see Definition 1.3.15) and view it as a measure on interval [0, d].
Similarly, we denote by µk the spectral measure of Ak, which we can view on the
same interval [0, d]. Recall that by Proposition 1.3.17, we have

µA({0}) = dimRG ker(·A),

µk({0}) = dimR(G/Gk) ker(·Ak).

This is where we alter the path of Kammeyer’s proof. His next step would have been
that the measures µk converge weakly to the measure µA. This is not good enough
for our case. Still, in proving so, we obtain actually the following lemma:

59

3 Computability of `2-Betti numbers

Lemma 3.4.6 ([Kam19, proof of Proposition 5.16]). Let p ∈ R[T] be a polynomial
such that p(A) intersects trivially with Gk. Then, we have∫ d

0
p(x) dµA(x) = trRG(p(A)) = trR(G/Gk)(p(Ak)) =

∫ d

0
p(x) dµk(x).

Proof. The leftmost and the rightmost equality follow from Proposition 1.3.16. The
central equality follows from the fact that the trace is the sum of the coefficients
belonging to the trivial element e ∈ G. Since p(A) intersects trivially with Gk, these
coefficients are not changed by the projection G → G/Gk. ■

Note that this holds in particular for the constant polynomial 1, yielding that
µA([0, d]) = n = µk([0, d]). The idea is now to exploit this property by approx-
imating the function χ{0} with the polynomial

pk :=
(
1− x

d

)k2
.

For the first calculation, we need the following lemma

Lemma 3.4.7 (logarithmic bound, [Kam19, Proposition 5.18]). For all λ ∈ (0, 1),
we have

µk((0, λ)) ≤
n · log d
| logλ| .

Now, we can calculate the following (plus and minus-signs in the bounds of an
integral suggest that we integrate over (half-)open intervals):

dimR(G/Gk) ker(·Ak)

= µk({0}) (Proposition 1.3.17)

=

∫ d

0
pk(x) dµk −

∫ d

0+
pk(x) dµk

=

∫ d

0
pk(x) dµA −

∫ d

0+
pk(x) dµk (Lemma 3.4.6)

=

∫ d

0
pk(x) dµA −

∫ 1/k−

0+
pk(x) dµk −

∫ d

1/k
pk(x) dµk

≥
∫ d

0
pk(x) dµA − µk((0, 1/k))−

∫ d

1/k
pk(x) dµk (pk(x) ≤ 1)

≥
∫ d

0
pk(x) dµA − n · log d

k
−
∫ d

1/k
pk(x) dµk (log bound, λ = 1/k)

≥
∫ d

0
pk(x) dµA − n · log d

k
−
∫ d

1/k
pk(1/k) dµk (pk(x) is mon. decreasing)

60

3.4 Residually Finite Groups

≥
∫ d

0
pk(x) dµA − n · log d

k
− µk([1/k, d]) · pk(1/k)

≥
∫ d

0
pk(x) dµA − n · log d

k
− µk([0, d]) · pk(1/k) (monotonicity of µk)

=

∫ d

0
pk(x) dµA − n · log d

k
− n ·

(
1− 1

kd

)k2
(Lemma 3.4.6)

≥ µA({0})−
n · log d

k
− n ·

(
1− 1

kd

)k2
(monotonicity, pk(0) = 1)

= dimRG ker(·A)− n · log d
k

− n ·
(
1− 1

kd

)k2
(Proposition 1.3.17)

yielding that

dimRG ker(·A)− dimR(G/Gk) ker(·Ak) ≤ n ·
(
1− 1

kd

)k2
+

n · log d
log k

On the other hand, we also have a logarithmic bound for µA, i.e.

Lemma 3.4.8 (logarithmic bound, [Lüc94, Theorem 2.3(3)]). For all λ ∈ (0, 1), we
have

µA((0, λ)) ≤
n · log d
| logλ| .

Proof. The proof works using the Portmanteau Theorem as in Lemma 3.3.11. ■

Hence, we can perform the same calculation as above, interchanging µA and µk and
obtain

dimR(G/Gk) ker(·Ak)− dimRG ker(·A) ≤ n ·
(
1− 1

kd

)k2
+

n · log d
log k

thus, finishing the proof of Theorem 3.4.5.

Remark 3.4.9. Note that we can calculate a bound for d from G and A by setting d
to be the `1-norm of A.

3.4.3 Effective Computability

We now want to exploit this quantitative approximation result to obtain that the l2-
Betti numbers in the case of finitely presented, residually finite groups are effectively
computable. The idea is to use the characterisation 2 of Proposition 2.2.7. Therefore,
we need the following lemma.

61

3 Computability of `2-Betti numbers

Input : finite presentation 〈s1, ..., sj | r1, ..., rl〉,
n ∈ N,
A ∈ Mn×n(ZG),
k ∈ N

Output: dimR(G/Gk) ker(·Ak)

1 calculate A,A2, . . . Ak2

/* collect non-trivial elements */
2 initialise empty list nontriv_elts
3 foreach group element g in the diagonals of A,A2, . . . Ak2 do
4 Run W on g
5 if g 6= e in G then
6 Add g to nontriv_elts
7 end
8 end
/* find suitable subgroup */

9 Set f := T (nontriv_elts)
/* Now, have found Gk := ker f */

10 Enumerate elements of subgroup H, generated by f(s1), . . . , f(sj)
11 Enumerate composition table of H
12 Define Ak := f(A) ∈ Mn×n(ZH)
13 Rewrite Ak as matrix in Mn|H|×n|H|(Q)

14 Calculate dimQ kerAk (using the Gauß algorithm)
15 Return (dimQ kerAk)/|H|

Algorithm 5: Computing dimR(G/Gk) ker(·Ak)

Lemma 3.4.10. Let G be a finitely presented, residually finite group, given by a
finite presentation 〈s1, ..., sj | r1, ..., rl〉. Let n ∈ N and A ∈ Mn×n(ZG), where each
entry is given by a linear combination of words in s1, ..., sj and its inverses.

Then, there is an algorithm that, on input k ∈ N, determines a normal subgroup
Gk ⊂ G of finite index such that A,A2, . . . Ak2 intersect trivially with Gk and has as
output

dimR(G/Gk) ker(·Ak).

Proof. Let W be an algorithm that solves the word problem in G (see Propos-
ition 3.4.1). Let T be an algorithm, as in Remark 3.4.2, i.e. that given a list
w1, . . . , wm ∈ F (S) of words not representing the trivial element, outputs a group
homomorphism f : G → Sp such that f(wi) 6= e for all i ∈ {1, . . . ,m}. The desired
solution is then given by Algorithm 5.

To conclude, we need to prove the following for this algorithm:

1. For Gk := ker f , we have that Gk is a finite index, normal subgroup and

62

3.4 Residually Finite Groups

A,A2, . . . , Ak2 intersect trivially with Gk.

2. The algorithm indeed returns dimR(G/Gk) ker(·Ak).

Ad 1) The subgroup Gk := ker f is the kernel of a group homomorphism to a finite
group, hence Gk is normal and of finite index. The matrices A,A2, . . . , Ak2

intersect trivially with Gk by construction of the algorithm, since the non-
trivial elements are given as input to the algorithm T .

Ad 2) We have G/Gk
∼= im f =: H. Because H is a finite group, its von Neumann

algebra is isomorphic to C[H] (Example 1.1.11) and we have

dimR(G/Gk) kerAk = dimRH kerAk

=
dimC kerAk

|H|

=
dimQ kerAk

|H|

which is exactly the output of the algorithm.

Finally, we can prove the following theorem.

Theorem 3.4.11 (effective computability). Let G be a finitely presented, residually
finite group, n ∈ N and A ∈ Mn×n(ZG). Then, we have

dimRG ker(·A) ∈ EC≥0.

Proof. By Lemma 3.4.10, there is a sequence (Gk)k∈N of normal subgroups of finite
index such that for all k ∈ N, the matrices A,A2, . . . , Ak2 intersect trivially with Gk

and such that (
dimR(G/Gk) ker(·Ak)

)
k∈N

is a computable sequence (where again Ak ∈ Z(G/Gk) is the canonical projection
of A to Z(G/Gk)). Moreover, by the quantitative version of Lück’s approximation
theorem (Theorem 3.4.5), we have for all k ∈ N>2,

|dimRG ker(·A)− dimR(G/Gk) ker(·Ak)| ≤ n ·
(
1− 1

kd

)k2
+

n · log d
log k

≤ n ·
(
1− 1

kd

)k2
+

n · dlog de
blog kc

By basic facts about the computability of sequences (see Lemma 2.1.6 and Ex-
ample 2.1.7), the sequence on the right hand side is computable. By elementary
calculus, this sequence converges to zero for k → ∞. Hence, Proposition 2.2.7
implies that dimRG ker(·A) is effectively computable.

63

3 Computability of `2-Betti numbers

Remark 3.4.12. All the steps used in these proofs are constructive, i.e. in theory, we
could give an explicit algorithm that, given a presentation for G, n ∈ N and A ∈
Mn×n(ZG), outputs such a sequence

(
dimR(G/Gk) ker(·Ak)

)
k∈N and the sequence on

the right-hand side of the inequality.

Remark 3.4.13. Given a computational model of a finite CW-complex X whose
fundamental group is finitely presented, we can algorithmically determine the com-
binatorial Laplacians of the π1(X,x0)-CW complex X̃ (where x0 ∈ X is a point
of the 0-skeleton). Thus, also in this ‘topological’ setting, the obtain the slightly
stronger statement that the `2-Betti numbers are effectively computed by a universal
algorithm.

64

4 Implementation in Lean

4.1 What is the Lean Theorem Prover?

The Lean Theorem Prover is used to formally verify mathematical theorems. Formal
verification describes the process of establishing claims about precise statements
using computational methods. We distinguish between two main types:

1. Automated Theorem Proving describes methods where a proof is found (at least
to a certain extent) automatically by a computer. This can for instance be
done for formulas in propositional logic (where enumerating all possibilities in a
truth table suffices to prove a claim). Moreover, Computer Algebra Systems fall
into this category. These are systems that focus on explicit computations and
by finding these provide some kind of proof for the result (at least, assuming
that these systems work precisely enough).

2. On the other hand, Interactive Theorem Proving (sometimes also called Proof
assistants) focusses on verifying proofs, i.e. the user has to input a statement
and a proof in a formal language and the program then checks the proof and
outputs whether it is valid or not. Note that this requires a high level of
precision: Because all theorems are to be deduced from a small set of axioms,
every statement in the proof has to be justified using the implemented axioms
and the claims proven before. This implies that proofs tend to be much longer
and far more detailed than their counterparts in ‘natural’ language.

The Lean Theorem Prover aims to “bridge this gap” between automated and inter-
active theorem proving [AMK21, Chapter 1.1]. However, from a beginner’s point of
view, it should be noted that the ‘automated’ part (at least in the current version)
has restricted capabilities: Some types of statements can be proved automatically
and this often helps to speed up and simplify proofs. One should however not ex-
pect Lean to be able to prove more complex theorems entirely without user input.
In general, one has to write a proof where one can use some tricks to simplify this
process.

A critical reader might now ask: Why should we use such a program if, nonetheless,
we have to write the proof? The most obvious reason is that the computer program
assures us of the correctness of the proof. After all, humans are quite prone to error
and sometimes, even published proofs turn out to be wrong because a tiny detail
was overlooked. A theorem prover forces the user to make these details explicit and

65

4 Implementation in Lean

checks them. This might give the user a better understanding of the details and new
insights about the proof. Finally, if afterwards, we come up with a generalisation or
similar statement that uses the ‘same’ proof, a theorem prover can point exactly to
the steps where the proof fails and where we thus have to modify the argument.

In this thesis, we will focus on Lean 3. The Lean Theorem Prover uses dependent
type theory as the language for its foundations. In contrast to set theory, type theory
is often better suited for computational systems. In short, the name stems from the
fact that every expression has an associated type. For instance, 2 + 1 may have the
type N, whereas f may denote a function of type N → N. In particular, type theory
is better suited than set theory to help us keep track of the types of objects that we
are working with.

One good reason for choosing Lean 3 is the mathlib, a formal library that establishes
many facts from undergraduate mathematics. It is built as a basis for research level
mathematics. For more details on the mathlib, see an article by the mathlib com-
munity [Com20]. For an introduction into theorem proving in Lean, see [AMK21].

In the following sections, we will discuss a Lean project written by the author of this
thesis (see Section 4.2 on how to obtain the source files). To aid beginners in Lean,
we end this section with a few practical remarks that will help get an overview on
the project.

The general structure of a theorem is the following:

theorem name (h : hypothesis1) : claim
:= begin
.... ,
.... ,
end

A theorem starts with the word theorem (alternatively, we can also use lemma),
followed by the name of the theorem. Then, the hypotheses of this statement are
listed, each in parentheses. On the left of the colon, we have the name of the
hypothesis (which can be used to reference this hypothesis in the proof), on the right,
we find the statement of the hypothesis. There can also be multiple hypotheses, or
even none. Then, there is a colon, after which we find the claim of the theorem.
Finally, the proof of the theorem is enclosed by begin and end. There are also
different ways to give a proof in Lean without using a begin-end block but for our
purposes, entering this tactic mode will often be convenient. Note that every line in
such a block ends with a comma.

Consider the following easy example.

theorem and_comm’ {p q: Prop} (h : p ∧ q) : q ∧ p
:= begin
cases h with hp hq,

66

4.1 What is the Lean Theorem Prover?

exact and.intro hq hp,
end

The theorem and_comm’ states that for propositions p and q that satisfy p ∧ q, we
have q ∧ p. In the proof, the first line splits the assumption h into the assumptions
(hp: p) and (hq: q). The goal is then solved by the lemma and.intro provided with
these two facts.

If you are using vscode, you can inspect the current state of the proof by placing
your cursor inside the proof. In the standard view, the current goals are then shown
on the right hand side of the window. In the above example, we find the following
goal after the begin command

p q: Prop
h: p ∧ q
⊢ q ∧ p

where the symbol ⊢ separates the hypotheses from the claim. As we move down-
wards, the goal(s) change to

p q: Prop
hp: p
hq: q
⊢ q ∧ p

and one line below, we reach the message goals accomplished, indicating that the
proof is finished.

Outside of theorems, we can use the #check command to check the type of a theorem.
For instance, we can use

#check and_comm’

to check the theorem that we have just proved or

#check and.intro

to check the lemma that the theorem references. For the latter, in vscode, we can
also hover the expression and.intro in the proof to get this information.

67

4 Implementation in Lean

4.2 Overview of the Implementation

In this section, we give an overview of the Lean project of this master’s thesis. The
files can be found on the attached DVD. Alternatively, you can find them in the git
repository at https://git.uni-regensburg.de/usm34387/lean-master-thesis-release.
git. To access, type into a terminal

git clone https://git.uni-regensburg.de/usm34387/lean-master-thesis-release.
git

and then follow the instructions provided in installation-guidelines.txt.

4.2.1 List of files

The project consists of the following files (in alphabetic order) that are contained in
the src/ folder. The dependencies between the files are visualised in Figure 4.1.

computable_sequences.lean provides an inductive definition of computability of se-
quences. It also contains the definition of the computability classes EC,LC
and RC (Definition 2.2.2) as well as some basic properties thereof, especially
the equality EC = LC ∩ RC (Proposition 2.2.4).

determinant_class_EC.lean: The main goal is to prove that `2-Betti numbers arising
from groups with solvable word problem that satisfy the determinant class
conjecture are effectively computable (Theorem 3.3.23). The file mimics the
proof of Theorem 3.3.23, using the results from general_bound_LC.lean.

general_bound_LC.lean formalises the implication that 1 implies 2 in Theorem 3.2.9,
i.e. if a group has a solvable word problem and admits a computable bound on
its spectral measure near zero, then its `2-Betti numbers are left-computable.
As a consequence from general_RC.lean, they are also right-computable, thus
effectively computable.

general_lemmas.lean provides technical lemmas needed for the files general_bound_
LC.lean and general_RC.lean.

general_RC.lean formalises the result that the solvability of the word problem im-
plies right-computability of the `2-Betti numbers (Theorem 3.2.1).

limit_lemmas.lean provides some basic statements about the convergence of real
sequences that are usually treated in introductory courses on calculus.

Lueck_approx_EC.lean formalises Theorem 3.4.11 that deduces effective computab-
ility of the `2-Betti numbers from the quantitative version of Lück’s approx-
imation theorem (Theorem 3.4.5).

quantitative_Lueck_lemmas.lean provides lemmas for quantitative_Lueck.lean.

68

https://git.uni-regensburg.de/usm34387/lean-master-thesis-release.git
https://git.uni-regensburg.de/usm34387/lean-master-thesis-release.git

4.2 Overview of the Implementation

quantitative_Lueck.lean formalises the quantitative version of Lück’s approxima-
tion theorem (Theorem 3.4.5).

spectral_measure.lean defines the notions of a traced algebra (i.e. an algebra with
a map to its base ring) and spectral measures (Definition 1.3.15).

4.2.2 Some Specific Definitions

In the implementation, some definitions do not match the notions defined in the
theoretical part of this thesis. As a general rule of thumb, it is often faster to
use some characteristic property or defining equality that is ‘close’ to the necessary
property of this object in the implementation. Compared to the usual definitions,
this spares us the implementation of large parts of basic statements of the theory.
Often, these basics would take up a large part of the implementation yet not being
directly related to the main results. That is why we take the faster approach.

In the following, we will explain some of the definitions and how these variants are
related to the situations in this thesis.

• The notion of a traced_algebra (over a ring R) is defined as an R-algebra A
together with a map tr : A → R. At first glance, this seems insufficient, as
we would expect tr to satisfy some properties, e.g. R-linearity or the trace
property. But for our needs, the mere existence of the trace map is enough,
and thus we do not make this definition more complicated than absolutely
necessary.

23 class traced_algebra (R: Type*) (A: Type*)
24 [comm_semiring R] [semiring A] extends algebra R A:=
25 (tr: A → R)
26 end traced_algebra

Code 4.1: spectral_measure.lean

• We then define is_spectral_measure as in Code 4.2. This definition uses the
characterisation of Proposition 1.3.16, i.e. µ is the spectral measure of a if for
all polynomials p ∈ R[X], we have∫ d

0
p(x) dµ(x) = tr(p(a)).

Note that in the data of the definition, we include the constant d.

• computable_seq is defined using an inductive definition (see Code 4.3), i.e. we
obtain the ‘smallest’ such notion satisfying all of these properties. This is
supposed to mean that a sequence is computable (Definition 2.2.1). Note that
the notion of computable_seq might be ‘narrower’ than the definition given in

69

4 Implementation in Lean

spectral_measure.lean

quantitative_Lueck_lemmas.lean

general_lemmas.lean

general_RC.lean

general_bound_LC.lean

determinant_class_EC.lean

limit_lemmas.lean

quantitative_Lueck.lean

computable_sequences.lean

Lueck_approx_EC.lean

Figure 4.1: dependencies between the files in the Lean project

70

4.2 Overview of the Implementation

31 universe u
32 variables (A: Type u)
33 [ring A] [algebra real A] [traced_algebra real A]
34

35 def is_spectral_measure (a : A)
36 (μ : measure ℝ) (d : ℝ)
37 :Prop
38 := ∀(p : polynomial ℝ),
39 ∫(x : ℝ) in Icc 0 d,
40 (λ (x : ℝ), polynomial.eval x p) x ∂μ
41 = traced_algebra.tr
42 (polynomial.eval2 algebra.to_ring_hom a p)
43 -- integral of p(x) from 0 to d = tr (p(a))

Code 4.2: spectral_measure.lean

Definition 2.2.1. Some of the claimed properties are shown in Lemma 2.1.6
and Example 2.1.7.

• The definition of EC,LC, and RC are given in Code 4.4. These notions are
formulated as in characterisations of theses computability classes (Proposi-
tion 2.2.7 and Proposition 2.2.9). In Lean, we write EC x for some x ∈ R to
denote that x is effectively computable.

• Finally, one should keep in mind that limits of sequences are defined using
filters in Lean.

18 def seq_limit (a: ℕ → ℝ) (l: ℝ)
19 := filter.tendsto a filter.at_top (nhds l)

Code 4.5: limit_lemmas.lean

However, we will often use a lemma stating that this is equivalent to the
‘classical’ definition.

93 lemma seq_limit_classical {a: ℕ → ℝ} {l: ℝ} :
94 seq_limit a l ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, |a n - l| < ε

Code 4.6: limit_lemmas.lean

4.2.3 Main Theorems

We will explain the four main theorems of the project and their hypotheses.

71

4 Implementation in Lean

23 inductive computable_seq : (ℕ → ℝ) → Prop
24 | inclusion_computable: computable_seq (λ n, (n: ℝ))
25 | constant_computable: ∀q: ℚ, computable_seq (λ n, q)
26 | sum_computable: ∀{a b: ℕ → ℝ}, computable_seq a →
27 computable_seq b → computable_seq (a+b)
28 | product_computable: ∀{a b: ℕ → ℝ}, computable_seq a →
29 computable_seq b → computable_seq (λ n, (a n)*(b n))
30 | div_computable: ∀{a b: ℕ → ℝ}, computable_seq a →
31 computable_seq b → computable_seq (λ n, (a n)/(b n))
32 | pow_computable: ∀{a b: ℕ → ℝ}, computable_seq a →
33 computable_seq b → computable_seq (λ n, (a n)^(b n))
34 | floor_computable : ∀{a: ℕ → ℝ}, computable_seq a →
35 computable_seq (λ n, floor(a n))
36 | log_computable : computable_seq (λ n, log n)
37 | case_distinction_computable: ∀{a b: ℕ → ℝ} (N: ℕ), computable_seq a →
38 computable_seq b →
39 computable_seq (λ n, ite (n ≤ N) (a n) (b n))
40 | max_computable : ∀{a b: ℕ → ℝ} (N: ℕ), computable_seq a →
41 computable_seq b →
42 computable_seq (λ n, max (a n) (b n))
43 | composition_computable : ∀ {a b: ℕ → ℝ}, computable_seq a →
44 computable_seq b →
45 computable_seq (λ n, a ((floor (b n)).to_nat))

Code 4.3: computable_sequences.lean

72

4.2 Overview of the Implementation

111 -- effective computability: we can estimate the error
112 def EC (x: ℝ) : Prop
113 := ∃ (q ε : ℕ → ℝ), computable_seq q ∧ computable_seq ε
114 ∧ seq_limit ε 0
115 ∧ (∀ n, |x - (q n)| ≤ ε n)
116

117 --left computability: there is a computable sequence
118 -- converging from below
119 def LC (x: ℝ) : Prop
120 := ∃ (q : ℕ → ℝ), computable_seq q
121 ∧ seq_limit q x
122 ∧ (∀ n, q n ≤ x)
123

124 -- and analogously: right computability with a sequence from above
125 def RC (x: ℝ) : Prop
126 := ∃ (q : ℕ → ℝ), computable_seq q
127 ∧ seq_limit q x
128 ∧ (∀ n, q n ≥ x)

Code 4.4: computable_sequences.lean

General Right Computability We first discuss the following implementation of
Theorem 3.2.1.

190 theorem general_RC : RC (μ {0}).to_real

Code 4.7: general_RC.lean

The theorem is named general_RC and states that µ {0} is right-computable. But,
because for general measures, µ {0} can take values in R≥0 ∪ {+∞}, in Lean, µ {0}
is of type ennreal. In order to cast this number to a real number, we thus have to
write .to_real.

Obviously, we need some hypotheses for this theorem that we will explain in the
following. The following lines state that RG is a traced algebra over R. In the
situation of Theorem 3.2.1, this corresponds to the R-algebra Mn×n(RG) (we already
use the group ring over R to avoid casting later) together with its trace to R.

12 universe u
13 variables
14 {RG: Type u} [ringRG: ring RG]
15 [algebra ℝ RG]
16 [tr_alg: traced_algebra ℝ RG] --RG is an algebra with trace over R

Code 4.8: general_RC.lean

73

4 Implementation in Lean

Moreover, we need an element of the algebra RG. Because Lean uses type theory
(instead of set theory) as a foundation of mathematics, we have to write

17 (A: RG) -- A is an element of RG

Code 4.9: general_RC.lean

Next, we know that A has a spectral measure. In the implementation, we assume
the we have a finite measure µ that, on [0, d] is a spectral measure of A.

20 {d: ℚ} (d_ge1: (d: ℝ)≥ 1)
21 (μ: measure ℝ) [finite_measure μ]
22 (μ_spec_meas: is_spectral_measure RG A μ d)

Code 4.10: general_RC.lean

We denote for all k by pk k the polynomial(
1− 1

d
·X
)k

∈ R[X].

25 local notation ‘pk‘ k := (polynomial.C 1- polynomial.C(1/(d: ℝ)) *
polynomial.X)^k

Code 4.11: general_RC.lean

Moreover, we assume that the sequence

k 7→ tr
(
(pk k)(A)

)
is computable. Compared to Theorem 3.2.1, this is justified because we assume the
solvability of the word problem, hence, we can produce an algorithm computing this
sequence.

28 variables
29 (traces_computable: computable_seq
30 (λ k, traced_algebra.tr
31 (polynomial.eval2 algebra.to_ring_hom A (pk k))))

Code 4.12: general_RC.lean

General Left Computability Next, we will discuss an implementation of The-
orem 3.2.9, stating that µ {0} (after casting to R) is left-computable.

152 theorem bound_implies_LC : LC μ({0}).to_real

Code 4.13: general_bound_LC.lean

74

4.2 Overview of the Implementation

In addition to the hypotheses discussed above for general_RC.lean, we need the
following assumptions.

We have a rational number t ∈ Q such that µ((0, d]) ≤ t. This is justified by the
fact that the measure is finite. We would also obtain µ(>) < ∞ from this finiteness
condition, where µ(>) denotes the total measure of µ. However, in the end, this
additional assumption makes the proof a bit shorter.

30 variables {t: ℚ}
31 (μ_tot: ennreal.to_real(μ (Ioc 0 d)) ≤ t)

Code 4.14: general_bound_LC.lean

In the file general_bound_LC.lean, we define the polynomials slightly differently than
in general_RC.lean and we assume again that a sequence of traces is a computable
sequence. Again, this stems from the fact that the word problem is solvable.

37 local notation ‘pkk‘ k := (polynomial.C 1- polynomial.C(1/(d: ℝ)) *
polynomial.X)^(k*k)

38

39 /-the sequence tr (pkk (A)) is computable-/
40 variables
41 (traces_computable: computable_seq
42 (λ k, traced_algebra.tr
43 (polynomial.eval2 algebra.to_ring_hom A (pkk k))))

Code 4.15: general_bound_LC.lean

Finally, we have a sequence, called bound, that is computable, tends to zero and
satisfies for all n ∈ N>0 that µ((0, 1/n)) ≤ bound(n), hence it plays the role of the
sequence (εn)n∈N in Theorem 3.2.9.

Note that we can also demand extend the condition to all n ∈ N, because in Lean,
we have 0−1 = 0.

46 {bound: ℕ → ℝ}
47 (bound_computable: computable_seq bound)
48 (bound_to_zero: seq_limit bound (0: ℝ))
49 (bound_bound: ∀(n: ℕ), (μ (Ioc 0 (n: ℝ)⁻¹)).to_real
50 ≤ bound n)

Code 4.16: general_bound_LC.lean

Finally, the file general_bound_LC.lean contains the obvious corollary stating effect-
ive computability.

177 theorem bound_implies_EC : EC (μ {0}).to_real

Code 4.17: general_bound_LC.lean

75

4 Implementation in Lean

This theorem follows from general_RC and bound_implies_LC using the following
lemma.

385 lemma EC_iff_LC_RC {x: ℝ} : EC x ↔ LC x ∧ RC x

Code 4.18: computable_sequences.lean

Effective Computability from the determinant class conjecture The third main
theorem implements Theorem 3.3.23.

211 theorem det_class_implies_EC : EC (μ {0}).to_real

Code 4.19: determinant_class_EC.lean

Also in this case, we have some hypotheses that have been discussed before.

19 universe u
20 variables
21 {RG: Type u} [ringRG: ring RG]
22 [algebra ℝ RG]
23 [tr_alg: traced_algebra ℝ RG] --RG is an algebra with trace over R
24 (A: RG) -- A is an element of RG
25 -- actually of ZG, but we cannot model this here (this will, however

be
26 -- reflected in the logarithmic bound)
27 {d: ℚ} (d_ge1: (d: ℝ)≥ 1)
28 (μ: measure ℝ) [finite_measure μ]
29 (μ_spec_meas: is_spectral_measure RG A μ d)
30 --μ has a total measure
31 {t: ℚ} (t_pos: t ≥ 0)
32 (μ_tot: ennreal.to_real(μ (Ioc 0 d)) ≤ t)

Code 4.20: determinant_class_EC.lean

We define two sequences of polynomials whose traces are computable. Again, these
facts resemble the assumption that the word problem is solvable. Note that actually,
we could deduce the first variable from the second (as this is the sequence with k2

inserted instead of k) but for convenience, we state the two assumptions.

38 local notation ‘pkk‘ k := (polynomial.C 1- polynomial.C(1/(d: ℝ)) *
polynomial.X)^(k*k)

39 local notation ‘pk‘ k := (polynomial.C 1- polynomial.C(1/(d: ℝ)) *
polynomial.X)^k

40

41 /-the sequences tr (pk (A)) and tr (pkk (A)) are computable-/
42 variables

76

4.2 Overview of the Implementation

43 (traces_computable: computable_seq
44 (λ k, traced_algebra.tr
45 (polynomial.eval2 algebra.to_ring_hom A (pkk k))))
46 (traces_computable2: computable_seq
47 (λ k, traced_algebra.tr
48 (polynomial.eval2 algebra.to_ring_hom A (pk k))))

Code 4.21: determinant_class_EC.lean

Finally, we have the assumption on the determinant class conjecture. In the imple-
mentation, this just takes the form that the log function is integrable with respect
to the measure µ.

50 variable (determinant_class : integrable log μ)

Code 4.22: determinant_class_EC.lean

Effective Computability from Lück’s approximation theorem Finally, there is an
implementation of Theorem 3.4.11

152 theorem EC_of_Lueck : EC (μ {0}).to_real

Code 4.23: Lueck_approx_EC.lean

with the following hypotheses: The first few lines have already been discussed above
22 universe u
23 variables
24 {RG: Type u} [ringRG: ring RG]
25 [tr_alg: traced_algebra ℝ RG] --RG is an algebra with trace over R
26 (A: RG) -- A is an element of RG
27 -- actually of ZG, but we cannot model this here (this will, however

be
28 -- reflected in the logarithmic bound)
29 {d: ℚ} (d_ge1: (d: ℝ) ≥ 1)
30 (μ: measure ℝ) [finite_measure μ]
31 (μ_spec_meas: is_spectral_measure RG A μ d)

Code 4.24: Lueck_approx_EC.lean

Next, we assume that a logarithmic bound for µ exists (Lemma 3.4.8). Note that
here, it is formulated for the half-open interval (0, 1/k] instead of (0, 1/k), but this
does not make a qualitative difference.

33 {c: ℚ}
34 (μ_log_bound: ∀(k: ℕ), k ≥ 2 → ennreal.to_real (μ (Ioc 0 (k: ℝ)⁻¹)) ≤ (c /

(log k)))

77

4 Implementation in Lean

Code 4.25: Lueck_approx_EC.lean

Again, we have a bound on the value µ((0, d]).

36 {t: ℚ}
37 (μ_tot: ennreal.to_real(μ (Ioc 0 d)) ≤ t)

Code 4.26: Lueck_approx_EC.lean

We have a family of the quotient rings (R(G/Gk))k∈N and measures (µk)k∈N (with
the notation in Theorem 3.4.11).

40 (RGquot: ℕ → Type u) [quot_ring: Π n, ring (RGquot n)]
41 [tr_alg_quot : Π n, traced_algebra ℝ (RGquot n)]
42 (μquot: ℕ → measure ℝ) [∀ n, finite_measure μ(quot n)]
43 --μquot n also has a total measure
44 (μquot_tot: ∀ n, ennreal.to_real((μquot n) (Ioc 0 d)) ≤ t)

Code 4.27: Lueck_approx_EC.lean

We then have the projections RG → R(G/Gk) and denote Aquot k the image of A
under this projection.

47 (proj: Π n: ℕ , RG → RGquot n)
48

49 -- we can define Aquot, which is the projection of A into the quotient
50 local notation ‘Aquot‘ n := (proj n) A

Code 4.28: Lueck_approx_EC.lean

Moreover, these ‘quotient’ measures are also spectral measures and satisfy a logar-
ithmic bound with the same constant c (Lemma 3.4.7).

52 variables
53 -- now, μquot are spectral measures for Aquot
54 (μquot_spec_meas: ∀n, is_spectral_measure (RGquot n) (Aquot n) (μquot n) d

)
55 -- also this measure has a logarithmic bound
56 (μquot_log_bound: ∀(n: ℕ) (k: ℕ), k ≥ 2 → ennreal.to_real ((μquot n) (Ioc

0 (k: ℝ)⁻¹)) ≤ (c / (log k)))

Code 4.29: Lueck_approx_EC.lean

We have that tr(p(A)) = tr(p(Ak)) (where Ak is the projection of A) if p is a
polynomial with deg p ≤ k2 (see Lemma 3.4.6).

78

4.2 Overview of the Implementation

59 (tr_coincide: ∀ (n: ℕ) (p: polynomial ℝ) , polynomial.nat_degree p ≤ n*n →
60 traced_algebra.tr (polynomial.eval2 algebra.to_ring_hom A p)
61 = @traced_algebra.tr ℝ (RGquot n) _ _ (tr_alg_quot n)
62 (polynomial.eval2 algebra.to_ring_hom (Aquot n) p))

Code 4.30: Lueck_approx_EC.lean

Finally, the sequence (µn {0})n∈N is computable (Lemma 3.4.10).

73 variable
74 (kernels_computable: computable_seq (λ n, ((μquot n) {0}).to_real))

Code 4.31: Lueck_approx_EC.lean

79

4 Implementation in Lean

190 theorem general_RC : RC (μ {0}).to_real
191 := begin
192 unfold RC,
193 let q: ℕ → ℝ := (λ k, @traced_algebra.tr ℝ RG _ _ tr_alg
194 (polynomial.eval2 algebra.to_ring_hom A (pk k))),
195 use q,
196 split,
197 exact traces_computable,
198 split,
199 exact tr_seq_converges A μ_spec_meas d_ge1,
200 exact seq_is_above A μ μ_spec_meas d_ge1,
201 end

Code 4.32: general_RC.lean

4.3 Case Study: General Right-Computability

In this section, we take a closer look at the theorem general_RC in the file general_
RC.lean and discuss some of the aspects of its proof.

4.3.1 The Main Theorem

The theorem general_RC (without hypotheses) and its proof are given in Code 4.32.

In the first line, we find the statement of the theorem. Between begin and end, the
proof of this theorem is enclosed. We begin by unfolding the definition of RC, and
obtain the goal

∃(q : ℕ → ℝ),
computable_seq q ∧ seq_limit q (⇑μ {0}).to_real ∧ ∀ (n : ℕ), q n ≥ (⇑μ

{0}).to_real

In the proof, we then define q to be the sequence
(
tr((pk k)(A))

)
k∈N and by use q,

we ask Lean to use this sequence for the existential proof. We use split to split
the resulting conjunction into its parts. The first one is exactly the assumption
traces_computable whereas the other two conjuncts are treated by the lemmas
tr_seq_converges and seq_is_above, respectively.

4.3.2 The Lemma seq_is_above

Let us take a closer look on the lemma seq_is_above (Code 4.33).

The proof starts with intro k, which fixes k ∈ N, thus eliminating the all quantifier

80

4.3 Case Study: General Right-Computability

39 lemma seq_is_above (μ_spec_meas: is_spectral_measure RG A μ d)
40 (dge1: (d: ℝ)≥ 1)
41 : ∀ (k: ℕ), @traced_algebra.tr ℝ RG _ _ tr_alg
42 (polynomial.eval2 algebra.to_ring_hom A (pk k))
43 ≥ (μ {0}).to_real
44 := begin
45 intro k,
46 rw ← μ_spec_meas (pk k),
47 simp,
48 have dnonneg : (d: ℝ) ≥ 0 := d_nonneg dge1,
49 rw int_Icc_vs_Ioc dnonneg μ (pkk_function_is_integrable_Icc μ k (d: ℝ)),
50 simp,
51 exact interval_integral.integral_nonneg dnonneg
52 (pkk_nonneg k dge1),
53 end

Code 4.33: general_RC.lean

in the goal. We then use the rw (rewrite) command to rewrite the claim using
µ_spec_meas, i.e. the fact that µ is a spectral measure of A. We simplify using simp
and obtain the following claim.

⇑μ({0}).to_real
≤ ∫ (x : ℝ) in Icc 0 ↑d, (1 - ↑(d)⁻¹ * x) ^ k ∂μ

At this point, we rewrite using the lemma int_Icc_vs_Ioc (from quantitative_Lueck_
lemmas.lean) which states the following: For a measure µ, an integrable function f
on [a, b] with a ≤ b, we have that∫

[a,b]
f dµ = f(a) · µ({a}) +

∫ b

a+
f dµ,

where
∫ b
a+ denotes integration over the interval (a, b].

19 lemma int_Icc_vs_Ioc {a b: ℝ} (hab: a ≤ b)
20 (μ: measure ℝ) [locally_finite_measure μ]
21 {f: ℝ → ℝ}
22 (fint: measure_theory.integrable_on f (Icc a b) μ):
23 ∫(x: ℝ) in Icc a b, f x ∂μ = (f a)* μ({a}).to_real + ∫ x in a..b, f x ∂μ

Code 4.34: quantitative_Lueck_lemmas.lean

Back in the proof of seq_is_above, we simplify again to obtain the following claim,

0 ≤ ∫ (x : ℝ) in ↑0..d, (1 - ↑(d)⁻¹ * x) ^ k ∂μ

81

4 Implementation in Lean

which is then solved by the theorem interval_integral.integral_nonneg (stating
that integrals of nonnegative functions are nonnegative) from the mathlib in con-
junction with lemma pkk_nonneg (from general_lemmas.lean).

theorem interval_integral.integral_nonneg : ∀ { μ : measure ℝ} {f : ℝ → ℝ}
{a b : ℝ},
a ≤ b → (∀ (u : ℝ), u ∈ interval a b → 0 ≤ f u)
→ 0 ≤ ∫ (u : ℝ) in a..b, f u ∂μ

Code 4.35: from the mathlib

33 lemma pkk_nonneg (k: ℕ) {d: ℝ} (dge1: d ≥ 1):
34 ∀ (x : ℝ), x ∈ set.interval 0 d → 0 ≤ (1 - d ⁻¹ * x) ^ k

Code 4.36: general_lemmas.lean

4.3.3 The Lemma tr_seq_converges

Finally, consider the lemma tr_seq_converges.

57 lemma tr_seq_converges
58 { μ :measure ℝ}
59 (μ_spec_meas: is_spectral_measure RG A μ d)
60 [finite_measure μ]
61 (dge1: (d: ℝ) ≥ (1: ℝ))
62 : seq_limit (λ k, @traced_algebra.tr ℝ RG _ _ tr_alg
63 (polynomial.eval2 algebra.to_ring_hom A (pk k)))
64 (μ {0}).to_real

Code 4.37: general_RC.lean

Its proof is quite long and often technical. We will thus only point out the main
steps. After rewriting using µspec_meas and simplifying, we obtain the goal

seq_limit (λ (k : ℕ), ∫ (x : ℝ) in Icc 0 ↑d, (1 - ↑(d)⁻¹ * x) ^ k ∂μ)
(⇑μ {0}).to_real

This claim can then be solved by the dominated convergence theorem. We thus
define the following.

82 let F : ℕ → ℝ → ℝ
83 := (λ k, λ x, polynomial.eval x (pk k)),
84 let f : ℝ → ℝ
85 := (λ x, ite ((x: ℝ)=0) 1 0),
86 let bound : ℝ → ℝ
87 := (λ x, 1),

82

4.3 Case Study: General Right-Computability

88 let μ’:= μ.restrict (Icc 0 (d: ℝ)),

Code 4.38: general_RC.lean

The proof then establishes (Fn)n∈N and f are (everywhere, thus almost everywhere)
measurable functions, and that bound is integrable. Moreover, bound is an upper
bound of the sequence (Fn)n∈N and this sequence converges (everywhere, thus almost
everywhere) point-wise to f . Thus, the hypotheses of the bounded convergence
theorem are satisfied and we can conclude.

157 have convergence :
158 filter.tendsto (λ (n : ℕ), ∫ (a : ℝ), (λ (n : ℕ), F n) n a ∂μ’) filter

.at_top (nhds (∫ (a : ℝ), f a ∂μ’))
159 := measure_theory.tendsto_integral_of_dominated_convergence
160 bound F_ae_measurable f_ae_measurable bound_integrable
161 h_bound h_lim,

Code 4.39: general_RC.lean

Note that the last three lines are the proof of the statement convergence, indicating
that this follows from measure_theory.tendsto_integral_of_dominated_convergence
using the facts established before.

The claim of the theorem then follows from the statement convergence by rewriting
the integral of Fn and calculating the integral of f .

83

Bibliography

[AWZ00] Klaus Ambos-Spies, Klaus Weihrauch and Xizhong Zheng. ‘Weakly com-
putable real numbers’. In: J. Complexity 16.4 (2000), pp. 676–690.

[Ati76] Michael F. Atiyah. ‘Elliptic operators, discrete groups and von Neumann
algebras’. In: Colloque “Analyse et Topologie” en l’honneur de Henri
Cartan. Paris: Société Mathématique de France (SMF), 1976, pp. 43–72.

[Aus13] Tim Austin. ‘Rational group ring elements with kernels having irrational
dimension.’ In: Proc. Lond. Math. Soc. (3) 107.6 (2013), pp. 1424–1448.

[AMK21] Jeremy Avigad, Leonardo de Moura and Soonho Kong. Theorem Proving
in Lean. Release 3.23.0. 2021. url: https://leanprover.github.io/
theorem_proving_in_lean/theorem_proving_in_lean.pdf.

[Com20] The mathlib Community. ‘The Lean Mathematical Library’. In: Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’2) (2020). doi: https://doi.org/10.1145/
3372885.3373824.

[Cor+09] Thomas H. Cormen et al. Introduction to algorithms. Cambridge, MA:
MIT Press, 2009.

[Cut80] Nigel Cutland. Computability. An introduction to recursive function the-
ory. Cambridge University Press, 1980.

[Egb78] William E. Egbert. ‘Personal Calculator Algorithms IV: Logarithmic
Functions’. In: Hewlett-Packard Journal (Apr. 1978), pp. 29–32. url:
https://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1978-04.pdf.

[ES04] Gábor Elek and Endre Szabó. ‘Sofic groups and direct finiteness.’ In: J.
Algebra 280.2 (2004), pp. 426–434.

[ES05] Gábor Elek and Endre Szabó. ‘Hyperlinearity, essentially free actions and
L2-invariants. The sofic property’. In: Math. Ann. 332.2 (2005), pp. 421–
441.

[ES06] Gábor Elek and Endre Szabó. ‘On sofic groups.’ In: J. Group Theory 9.2
(2006), pp. 161–171.

[Els09] Jürgen Elstrodt. Maß- und Integrationstheorie. Berlin: Springer, 2009.
[Fer09] Maribel Fernández. Models of computation. An introduction to comput-

ability theory. London: Springer, 2009.

85

https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://doi.org/https://doi.org/10.1145/3372885.3373824
https://doi.org/https://doi.org/10.1145/3372885.3373824
https://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1978-04.pdf

Bibliography

[Gra14] Łukasz Grabowski. ‘On Turing dynamical systems and the Atiyah prob-
lem’. In: Invent. Math. 198.1 (2014), pp. 27–69.

[Gra15a] Łukasz Grabowski. ‘Group ring elements with large spectral density’. In:
Math. Ann. 363.1-2 (2015), pp. 637–656.

[Gra15b] Łukasz Grabowski. ‘Vanishing of l2-cohomology as a computational prob-
lem’. In: Bull. Lond. Math. Soc. 47.2 (2015), pp. 233–247.

[Gra16] Łukasz Grabowski. ‘Irrational l2 invariants arising from the lamplighter
group’. In: Groups Geom. Dyn. 10.2 (2016), pp. 795–817.

[Gro12] Thorsten Groth. ‘l2-Bettizahlen endlich präsentierter Gruppen’. Unpub-
lished Bachelor’s Thesis. Universität Göttingen, 2012.

[Hat02] Allen Hatcher. Algebraic topology. Cambridge: Cambridge University
Press, 2002.

[Heu19] Nicolaus Heuer. The full spectrum of scl on recursively presented groups.
2019. arXiv: 1909.01309 [math.GR].

[HL20] Nicolaus Heuer and Clara Löh. Transcendental simplicial volumes. 2020.
arXiv: 1911.06386 [math.GT].

[Hig61] Graham Higman. ‘Subgroups of finitely presented groups’. In: Proc. R.
Soc. Lond., Ser. A 262 (1961), pp. 455–475.

[Kam19] Holger Kammeyer. Introduction to `2-invariants. Cham: Springer, 2019.
[KS20] Holger Kammeyer and Roman Sauer. ‘From Betti numbers to `2-Betti

numbers’. In: Snapshots of modern mathematics from Oberwolfach 1
(2020).

[LW13] Franz Lehner and Stephan Wagner. ‘Free lamplighter groups and a ques-
tion of Atiyah’. In: Am. J. Math. 135.3 (2013), pp. 835–849.

[Löh11] Clara Löh. ‘Simplicial Volume’. In: Bulletin of the Manifold Atlas (2011).
url: http://www.boma.mpim-bonn.mpg.de/data/29print.pdf.

[LL95] John Lott and Wolfgang Lück. ‘L2-topological invariants of 3-manifolds’.
In: Invent. Math. 120.1 (1995), pp. 15–60.

[Lüc94] Wolfgang Lück. ‘Approximating L2-invariants by their finite-dimensional
analogues’. In: Geom. Funct. Anal. 4.4 (1994), pp. 455–481.

[PSZ15] Mikaël Pichot, Thomas Schick and Andrzej Zuk. ‘Closed manifolds with
transcendental L2-Betti numbers.’ In: J. Lond. Math. Soc., II. Ser. 92.2
(2015), pp. 371–392.

[Ric54] Henry G. Rice. ‘Recursive real numbers’. In: Proc. Am. Math. Soc. 5
(1954), pp. 784–791.

[Sch01] Thomas Schick. ‘L2-determinant class and approximation of L2-Betti
numbers’. In: Trans. Am. Math. Soc. 353.8 (2001), pp. 3247–3265.

[ZR04] Xizhong Zheng and Robert Rettinger. ‘Weak computability and repres-
entation of reals’. In: Math. Log. Q. 50.4-5 (2004), pp. 431–442.

86

https://arxiv.org/abs/1909.01309
https://arxiv.org/abs/1911.06386
http://www.boma.mpim-bonn.mpg.de/data/29print.pdf

Index

A
algorithm, 23
approximation theorem, see Lück’s

approximation theorem
Atiyah’s Conjecture, see Conjecture,

Atiyah

C
cellular action, 8
classifying space, 15
completion

Hilbert space, 3
computable

computably approximable, 29
effectively computable, 29, 31,

39, 40, 48, 49, 54, 63
function, 24
left-computable, 29, 32, 45
right-computable, 29, 32, 43
semi-computable, 29
sequence, 29
weakly computable, 29, 39

Conjecture
Atiyah, 18

strong, 19
determinant class, 40, 54
Grabowski, 18
Lott-Lück, 53

Conventions, viii
covering

universal, 9, 11

D
decidability, 25
determinant

Fuglede-Kadison, see
Fuglede-Kadison determinant

determinant class conjecture, see
Conjecture, determinant
class

dimension
dimension theory, 1
von Neumann, see von Neumann

dimension

E
effectively computable, see

computable, effectively
computable

enumeration, 27
recursive, 27

Euler-Poincaré formula, vi, 13

F
Fuglede-Kadison determinant, 54

G
G-CW complex, 8
group ring, 2
group von Neumann algebra, 4

H
Higman’s Embedding Theorem, 34
Hilbert LG-module, 5

I
Installation, see Lean, installation of

the files
intersection

trivial, 59
involution, 3

87

INDEX

K
Künneth formula, vi, 12

L
`2-Betti numbers, 11, 16

algebraic, 13
topological, 13

`2-chain complex, 10
`2-homology, 10
`2-Laplacian, 14
lamplighter group, 18
Lean, 65

files, 68
installation of the files, 68
mathlib, 66

left-computable, see computable,
left-computable

logarithmic bound, 51, 52, 60, 61
Lück’s approximation theorem, 19,

21, 59

M
mathlib, see Lean, mathlib

P
proportionality principle, vi

R
recursive enumeration, see

enumeration, recursive
recursively presented, 34
residual chain, 20

residual finiteness, 20
restriction, 12
right-computable, see computable,

right-computable

S
semi-decidability, 25
simplicial volume, 36
sofic, 49
spectral measure, 20, 21
spectrum, 20
stable commutator length, 34, 35

T
Theorem Prover

Automated, 65
Interactive, 65

topology
operator, 4
strong, 4
weak, 4

trace, 5

V
von Neumann algebra, see group von

Neumann algebra
von Neumann dimension, 6, 7

W
weakly exact sequence, 7
word problem, 43, 57

88

Table of Notation

||α||Z, 37
||M ||, simplicial volume, 36
[M], fundamental class, 36
·∗, involution, 3
·, complex conjugation, 3
1, trivial group, 4

B
B(H), bounded linear operators, 2
B(2)(G), set of `2-Betti numbers, 13
B̃(2)(G), 13
bn, (ordinary) Betti numbers, 19
b
(2)
n , `2-Betti numbers, 11
b
(2)
n (G), `2-Betti number of a group,

16
B

(2)
R (G), set of algebraic `2-Betti

numbers, 13

C
C, complex numbers, viii
C

(2)
∗ , `2-chain complex, 10

CA, computably approximable
numbers, 29

CG, group ring, 2
clG, commutator length, 35

D
d
(2)
∗ , `2-differential, 10

∆n, `2-Laplacian, 14
dimRG, von Neumann dimension, 6, 7

E
EC, effectively computable numbers,

29
EG, classifying space, 15
eG, neutral element, ix

F
Fn, 16
F (S), free group generated by S, viii

H
Hn(·, R), (ordinary) homology with

R-coefficients, 1
H

(2)
n , `2-homology, 10

K
KA, operator kernel, 50
Km

A , operator kernel, 50

L
`2G, 3
λ, left regular representation, 3
LC, left-computable numbers, 29
LG, 5
ln det, Fuglede-Kadison determinant,

54

M
Mn×n(R), matrix ring, ix
µA, spectral measure, 21

N
N, natural numbers (including 0), viii

Q
Q, rational numbers, viii

R
R, real numbers, viii
RC, right-computable numbers, 29
resGG0

, restriction, 12
RG, group von Neumann algebra, 4
ρ, right regular representation, 3

89

TABLE OF NOTATION

S
SC, semi-computable numbers, 29
sclG, stable commutator length, 35
SCLrp, stable commutator length, 34
σ(T), spectrum of T , 20

T
trRG, trace, 5

W
wA, width, 50
WC, weakly computable numbers, 29

X
χX , characteristic function, 25

Z
Z, integers, viii
ZG, group ring, 2

90

Selbständigkeitserklärung

Ich habe die Arbeit selbständig verfasst, keine anderen als die angegebenen Quel-
len und Hilfsmittel benutzt und bisher keiner anderen Prüfungsbehörde vorgelegt.
Außerdem bestätige ich hiermit, dass die vorgelegten Druckexemplare und die vor-
gelegte elektronische Version der Arbeit identisch sind und dass ich von den in § 26
Abs. 6 vorgesehenen Rechtsfolgen Kenntnis habe.

Regensburg, 05.08.2021
Ort, Datum (Matthias Uschold)

	Introduction
	Introduction to L2-Betti Numbers
	Group von Neumann Algebras, Traces and Dimension
	Why we need the von Neumann Algebra
	Group von Neumann Algebras
	Traces and von Neumann Dimensions

	L2-Betti Numbers
	G-CW Complexes
	The L2-Completion of the Cellular Chain Complex
	L2-Betti Numbers
	The Set of L2-Betti Numbers
	L2-Betti Numbers of Groups

	Further Questions about L2-Betti Numbers
	Atiyah's Conjecture
	Spectral Measures and Lück's Approximation Theorem

	Introduction to Computability
	A Naive Introduction into Computability
	Algorithms
	Computability of Functions
	Decidability

	Computability Classes of Real Numbers
	Right-Computability of some Topological Invariants
	Stable Commutator Length
	Simplicial Volume
	Comparison with the Case of L2-Betti Numbers

	Computability of L2-Betti numbers
	Some Known Results
	The General Case
	Right-Computability
	Left-Computability
	Effective Computability

	Sofic Groups and the Determinant Class Conjecture
	Sofic groups
	The Spectral Measure near Zero
	The Determinant Class Conjecture

	Residually Finite Groups
	Preliminaries: Solvability of the Word Problem
	A Quantitative Version of Lück's Approximation Theorem
	Effective Computability

	Implementation in Lean
	What is the Lean Theorem Prover?
	Overview of the Implementation
	List of files
	Some Specific Definitions
	Main Theorems

	Case Study: General Right-Computability
	The Main Theorem
	The Lemma seq_is_above
	The Lemma tr_seq_converges

	Bibliography
	Index
	Table of Notation

