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Representational similarity analysis (RSA) is a popular multivariate analysis technique in

cognitive neuroscience that uses functional neuroimaging to investigate the informational

content encoded in brain activity. As RSA is increasingly being used to investigate

more clinically-geared questions, the focus of such translational studies turns toward

the importance of individual differences and their optimization within the experimental

design. In this perspective, we focus on two design aspects: applying individual vs.

averaged behavioral dissimilarity matrices to multiple participants’ neuroimaging data

and ensuring the congruency between tasks when measuring behavioral and neural

representational spaces. Incorporating these methods permits the detection of individual

differences in representational spaces and yields a better-defined transfer of information

from representational spaces onto multivoxel patterns. Such design adaptations are

prerequisites for optimal translation of RSA to the field of precision psychiatry.

Keywords: fMRI, individual differences, multivariate pattern analysis, precision psychiatry, representational

similarity analysis, task-based imaging

INTRODUCTION

Over the past decade, the multivariate method of Representational Similarity Analysis (RSA)
(1) has become a popular means of investigating the informational content represented within
patterns of activity in the brain. This technique allows researchers to test hypotheses regarding
the relative high-dimensional structure of information, represented by multivariate activity
patterns, in different regions of the brain. Since its development, RSA has been used with
functional neuroimaging to explore topics such as object categorization (2), semantics (3), object
recognition (4), affect (5), action observation (6), and fear-conditioning (7). Studies employing
such multivariate analyses have provided the field with an improved understanding of how
information is encoded in local activity patterns and how such high-dimensional information
can be altered through processes such as attention (8) or aversive-learning (9–11). Recently,
researchers have begun translating these methods to psychiatry in an attempt to explore differences
in representational spaces between individuals with and without disorders (12–16).

While the discipline of cognitive neuroscience has tended to use functional magnetic
resonance imaging (fMRI) to explore group-level effects in mapping functions to brain
structures, there has been a recent push to investigate individual differences using fMRI
(17–19) and to incorporate advanced analysis methods into precision psychiatry (20, 21).
As such, individualizing neuroimaging analyses is a critical step for studying individual
differences in human behavior, which can be facilitated by (a) preserving a given individual’s
behavioral data prior to carrying out RSA and (b) increasing the congruency between
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the conditions under which the behavioral and neuroimaging
data are acquired. Below we provide a brief overview of
RSA, describe these two strategies in further detail, and
discuss aspects of the experimental design that researchers and
clinicians can implement in (translational) work that focuses on
individual differences.

REPRESENTATIONAL SIMILARITY
ANALYSIS: AN OVERVIEW

Representational similarity analysis falls within the framework
of multivariate pattern analysis (22–24), which investigates
the activity from many distributed neurons as a function of
mental representations. Rather than using the average activity
of such neurons (i.e., the classic univariate approach) as the
proxy for mental representations, multivariate analyses take
advantage of the pattern of activity across voxels, thereby
providing a more informative approach to exploring and making
inferences about representational spaces [i.e., abstract spaces of
mental representations within the cognitive architecture whose
structures are defined by some feature(s)]. Extending this logic,
RSA specifically operationalizes dissimilarities in representational
spaces as the dissimilarities between evoked multi-voxel patterns
and then compares this dissimilarity structure (i.e., the set of
neural dissimilarities in question) to a behavioral or theoretical
dissimilarity structure. As this approach depends on relative
differences between voxels (rather than differences within
voxels), RSA provides researchers with a richer means of
uncovering higher-dimensional information within the structure
of mental representations.

To carry out RSA with fMRI, researchers design a task-based
study, in which stimuli are usually presented to participants
in a trial-by-trial manner. During data analysis, one generally
performs the classic mass-univariate analysis of fitting stimulus-
specific models of the hemodynamic response to time course
data evoked by those stimuli using the general linear model,
and the resulting beta-weights (or t-scores) serve as the input
for the multivariate analysis. One of the most common uses of
RSA involves employing models that describe the relationship
between stimuli, according to some organizing principle, and
observing the extent to which a given model explains differences
between the observed stimulus-evoked multivariate patterns in
the brain.

For example, if presenting participants with 10 pictures (five
pleasant pictures and five unpleasant pictures), a researcher
could develop a model of emotional valence in which the
five pleasant pictures are considered similar to each other,
the five unpleasant pictures are considered similar to each
other, and the pleasant and unpleasant pictures are considered
dissimilar to one other. This hypothesis can be visualized
as a representational dissimilarity matrix (RDM), which is
the relative dissimilarity structure reflecting the relationship
between all pairs of stimuli under investigation (Figure 1A). An
alternate model using the same images could see the stimuli
organized according to their animacy. If some of the pleasant
and unpleasant pictures contain people in them, these stimuli

could be considered similar, and perhaps the remaining stimuli
contain only inanimate objects, which could also be considered
similar. The animate and inanimate stimuli would then be
considered dissimilar to one another (Figure 1B). Pitting these
two model RDMs against each other allows a researcher to
determine whether the activity patterns in some brain region
are better explained by the “valence” model and whether the
activity patterns in some other brain region are better explained
by the “animacy” model. The pairwise relationships between
stimuli at the neural level are generally operationalized by
considering their evoked multivoxel patterns (e.g., within a
local neighborhood, a given brain region, or a set of brain
regions) and computing a distance measure, such as Euclidean
or correlation distance (25), between them. It is this neural
RDM that the model RDMs seek to explain. Comparing
the explanatory power of each model (or a combination
thereof) with that of the other models allows researchers
to determine which of the tested models best explains the
representational space underlying the activity patterns and,
consequently, interpret information processing at some level of
the cognitive architecture.

Recently, RDMs have been generated through behavioral
experiments, for example, by combining the multi-arrangement
method (26) with inverse multidimensional scaling (27), rather
than directly hypothesized by the researcher. During the multi-
arrangement method, participants drag-and-drop stimuli into
a 2D arena on a computer screen, in which the distances
between stimuli reflect the participants’ dissimilarity judgments
of the stimuli, according to some organizing principle. Inverse-
multidimensional scaling then estimates the RDM from the
2D inter-stimulus distances (Figures 1C,D). For additional
details, see (27). These methods provide the benefit of
yielding high-dimensional representational spaces that contain
nuanced, idiosyncratic, and continuous information and have
been used to generate behavioral RDMs in combination
with RSA to investigate domains such as similarity of body
parts (28), emotions (29), tool-related features (30), action
observation (31), and face perception (32). A variety of
tutorials, reviews, and methodological guides on RSA have
been compiled over the past years for researchers seeking more
extensive explanations of these concepts and current practices
(25, 33–38).

Among these various domains, one of the manners
in which RSA has proven to be particularly powerful is
that it can yield comparable RDMs across participants,
even when the evoked patterns themselves are not
comparable [i.e., a second-order isomorphism (38)], thereby
revealing a similar underlying representational structure
across different individuals. On the other hand, also the
differences between individuals’ RDMs may be indicative
of meaningful individual differences when interpretable
through an additional variable (e.g., personality traits).
As such, similar brain regions among participants can
be investigated in terms of the individual differences
in their underlying representational spaces. In the next
sections we expand further on these points with respect to
methodological strategies.
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FIGURE 1 | Representational dissimilarity matrices. (A) A theoretical RDM depicting the binary relationship between pairs of images classified as pleasant-animate

(PA), pleasant-inanimate (PI), unpleasant-animate (UA), and unpleasant-inanimate (UI) according to their valence. (B) A theoretical RDM depicting the binary

relationship between these same images according to their animacy. These two models are effectively uncorrelated (r = −0.08) and can be used to explore the

hypotheses of whether a particular brain region encodes valence information or animacy information. Cool colors depict decreasing dissimilarity, and warm colors

depict increasing dissimilarity. (C,D) The same conventions as the upper row but depicted here are two RDMs that might result from a participant having carried out

the multi-arrangement method, yielding a similar information structure as the theoretical RDMs but additionally containing graded, individualized information.
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AVERAGING VS. PRESERVING INDIVIDUAL
RDMs

One approach to RSA involves researchers averaging behavioral
RDMs frommany participants and then comparing this averaged
behavioral RDM to distinct individuals’ neural RDMs. This
approach yields one behavioral RDM per condition for all
participants in the study, which fits the central paradigm of
general psychology to test for commonalities among samples: i.e.,
that the average representation of one sample is equivalent to the
average representation of another sample, as long as both samples
originate from the same population. As such, researchers have
often used one sample to generate the behavioral RDMs and a
different sample to obtain the neuroimaging data. As generally
valid (and in some cases necessary) as this method is, such an
approach is not sensitive to individual-level information, the
importance of which has been frequently addressed (17, 39–42),
especially with respect to translational neuroscience (21, 43, 44).

On the other hand, recent studies have demonstrated that
individualized RDMs can reveal meaningful individual-level
information in cortical activity patterns (29, 45–47). Levine et al.
explicitly compared the results between individualized emotion
RDMs and a sample-averaged emotion RDM (29). This analysis
yielded an interaction: effects based on the individualized RDMs
were present in the insula but not in ventral temporal cortex,
while the effects based on the averaged RDM were present in
ventral temporal cortex but not in the insula. Such results suggest
that the insula may be a common location for individuals’ distinct
emotion information: a finding that one cannot reveal when
using a single RDM based on averaged behavioral data. This
approach provides researchers the ability to interpret between-
subject differences of neural RDMs [i.e., in the absence of second-
order isomorphisms (38)] as meaningful individual differences in
the underlying mental representations, which nevertheless share
a common neural substrate (in this case, the insula).

Moreover, recent studies have shown that individuals’
behavioral representational spaces correlate with other
individualized factors [e.g., facial categorization with
distractibility (46), semantics with fluid and crystallized
intelligence (48), and affect with personality factors (49)].
Given these findings, it is likely that critical information
is removed when averaging individuals’ RDMs. Instead, by
retaining such individualized information, these methods will
benefit translational neuroscientists and clinicians in developing
imaging-based biomarkers that address the cognitive level of
mental disorders.

TASK-CONGRUENCY WHEN ACQUIRING
BEHAVIORAL AND NEURAL DATA

Behavioral similarity of concepts is task dependent. Recent
work has seen participants perform the multi-arrangement
task following different organizing principles; consequently, the
underlying representational spaces differed as a function of the
organizing principle that participants followed (29, 31, 50, 51).
Such findings are in line with prior neuroimaging studies that

have shown prominent changes in the neural representational
space when participants engaged differently with the stimuli.
For example, compared to a distractor task, a color-naming task
increased the categorical nature of the representational space of
colors underlying visual areas (52). Relatedly, having participants
attend to either the behavior or the taxonomy of animals depicted
in video clips shifted the representational space to emphasize the
attended feature (8). Given these findings, having participants
not attend to the features-of-interest (with which the behavioral
RDMs were generated), for example via passive-viewing or
distractor tasks, likely results in decreased sensitivity, as the
neural RDMs contain a different underlying structure from the
behavioral RDMs. Thus, such approaches uncover some form
of automatic processing of the stimuli that is the least common
denominator between the neural data and the behavioral data.

Additionally, one recent and intriguing finding came to
light when different groups of participants were tasked with
arranging a set of images according to their background, color,
function, or shape (51), while a fifth group was instructed to
freely arrange the images on the computer screen. The resulting
averaged behavioral RDM from the “free-arrangement” sample
resembled the behavioral RDM from the sample that arranged the
images according to the similarity of their functions. This finding
raises the question of what “default” information underlies
representations in the absence of specific task demands, and how
not controlling for this default processing may lead to neural
representations that contain (possibly fluctuating) subjective
biases toward the stimuli (53), thereby reducing the statistical
power of the RSA. This issue is especially pronounced given
that individuals have different attentional biases (54–58) and
fluctuate between different mental states in an individualized
manner (59–62). As such, during passive-viewing or unrelated
tasks, the computational goal of the neural transfer function may
not be sufficiently specified, resulting in the underlying structure
of information present in the behavioral representational spaces
differing from that in the neural representational spaces.

This approach still yields interesting group-level information
regarding automatic processing or common attentional
biases (and maintains a level of methodological simplicity by
only needing to carry out one MR scan to which multiple
distinct behavioral RDMs can be applied). However, since
the nature of these automatic processes is undetermined,
future studies that seek to investigate differential aspects
of cognitive processes should consider controlling for
mental operations during the scanning session. Addressing
this issue will be especially pertinent to researchers and
clinicians interested in applying such methods to patient
populations, given the attentional and state-dependent biases of
psychopathology (63–68).

POSSIBLE ADAPTATIONS

Consider Multiple Sessions per Participant
One of the most straightforward ways to avoid needing
to use averaged behavioral RDMs involves planning
an experiment that includes RSA and the multi-
arrangement method to consist of (at least) two sessions
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(i.e., one behavioral and one neuroimaging) per subject
(29, 45). This way, every subject would produce at
least one individualized behavioral RDM, allowing for
an individuals’ own behavioral data to be applied to
their own neural data, thereby taking advantage of the
individual-level information.

An additional consideration is that it is certainly possible
that some representational spaces are more homogeneous
across participants than others (e.g., perceived shape of
a stimulus vs. emotion evoked by a stimulus). Relatedly,
Hebart et al. recently revealed that similarity judgments
between objects can be described by 49 dimensions (69).
As such, depending on the dimension under investigation,
using individualized RDMs may provide only minor benefits,
possibly rendering the increased complexity of the experimental
design unwarranted. Nevertheless, even slight differences
in seemingly homogeneous representational spaces may be
meaningful in particular research domains (e.g., color perception
in synesthesia).

Engage Participants With a
Feature-Related Task
For the purposes of individual differences, addressing task-
incongruency can involve having participants performing
a task in the scanner that relates to the stimulus feature
that also drove the organization of the stimuli during the
behavioral session (or the theoretically motivated RDM).
A step in this direction is seen in two recent studies that
combined behavioral RDMs from the multi-arrangement
method with fMRI: Bracci et al. asked participants to
indicate whether a stimulus looked like (i.e., appearance
condition) or depicted (i.e., animacy condition) an animal
(70), and Tucciarelli et al. asked participants to indicate
when they observed the same action on two consecutive
trials (31).

Along these lines, the goal is to at least turn the participants’
attention toward the features that underlie their related
behavioral representational spaces. For example, if during the
behavioral task participants organized pictures based on how
the images made them feel, a simple task in the scanner
could involve having participants press a button with their
index finger if they like the picture presented to them and
press a button with their middle finger if they dislike it (of
course counterbalancing the stimulus-response mapping across
experimental runs). A color-based task could ask participants
to indicate if the colors in the stimulus tend to be brighter
or darker; likewise a function-based task could ask participants
to indicate if they use the object depicted in the stimulus on
a regular basis. Although these tasks yield a binary outcome
(while the behavioral data are continuous), participants are
nevertheless turning their attention toward the same aspects
of the stimuli as during the behavioral task, thereby ensuring
an increased similarity between the computational goal of
the neural transfer function of different participants, such
that observed differences between participants’ neural and
behavioral RDMs should reflect related differences between their
mental representations.

The downside to this approach is that scanning sessions would
necessarily require more time, as one would need multiple in-
scanner tasks to account for each behavioral model generated by
the participants. However, this drawback may be warranted, if it
results in higher sensitivity and accuracy of the analysis, which
could improve the detection of individual-level information or
permit subtyping of participants.

CONCLUDING REMARKS

As representational similarity analysis is increasingly being used
to investigate questions in cognitive and clinical neuroscience,
it is necessary to address a few ways in which this method
can be optimized for investigating both individual differences
and commonalities in the context of individual differences.
While the current approaches have revealed many interesting
findings from a general or group-level perspective, we hold
that taking advantage of individualized behavioral RDMs and
controlling for task-related idiosyncrasies will ultimately allow
for more informative neuroimaging investigations of differences
between individuals’ mental representations. These two methods
work together toward this goal in that individualized behavioral
RDMs permit the discovery of between-subject differences
in mental representations, while task-congruency ensures that
said differences can be interpreted within the context of the
computational goal of individuals’ neural transfer functions.
Such an approach will allow researchers to test a variety
of hypotheses that pertain to mental health disorders. For
example, one could investigate whether individuals with emotion
dysregulation have altered emotion spaces that are specific to
particular brain regions, and, moreover, whether idiosyncrasies
in these neural emotion spaces can assist in differential diagnosis
of psychopathology, especially given the transdiagnostic nature
of emotion dysregulation (71). Additionally, one could examine
whether individual differences in behavioral and neural similarity
of trigger stimuli are prognostic of treatment success in patients
with anxiety disorders. As such, we find these methodological
changes to be essential for optimal translation of task-based
functional neuroimaging into fields where individual-level
information is crucial, such as precision psychiatry.
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