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Seed persistence in the soil is crucial for population dynamics. Interspecific differences
in soil seed mortality could be a mechanism that may stimulate species coexistence
in herbaceous plant communities. Therefore, understanding the levels and causes of
seed persistence is vital for understanding community composition and population
dynamics. In this study, we evaluated the burial depth as a significant predictor of
the temporal dynamics of soil seed persistence. We suppose that species differ in this
temporal dynamics of soil seed persistence according to burial depth. Furthermore, we
expected that burial depth would affect soil seed persistence differently concerning the
species-specific type of dormancy, light, and fluctuating temperature requirements for
germination. Seeds of 28 herbaceous species of calcareous grasslands were buried
in the field into depths of 1, 5, and 10 cm under the soil surface. Seed viability was
tested by germination and tetrazolium tests several times for three years. Species-
specific seed traits—a type of dormancy, light requirements and alternating temperature
requirements for germination, and longevity index—were used for disentangling the
links behind species-specific differences in soil seed persistence. Our study showed
differences in soil seed persistence according to the burial depth at the interspecific
level. Generally, the deeper the buried seeds, the longer they stayed viable, but huge
differences were found between individual species. Species-specific seed traits seem to
be an essential determinant of seed persistence in the soil. Seeds of dormant species
survived less and only dormant seeds stayed viable in the soil. Similarly, seeds of species
without light or alternating temperature requirements for germination generally remained
viable in the soil in smaller numbers. Moreover, seeds of species that require light for
germination stayed viable longer in the deeper soil layers. Our results help understand
the ecosystem dynamics caused by seed reproduction and highlight the importance
of a detailed long-term investigation of soil seed persistence. That is essential for
understanding the fundamental ecological processes and could help restore valuable
calcareous grassland habitats.

Keywords: calcareous grasslands, dormancy, longevity index, soil seed bank, light requirements for germination,
alternating temperature requirements for germination, burial depth
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INTRODUCTION

Soil seed bank formation is one of the bed-hedging mechanisms
for many species because more or less part of their seeds
stay ungerminated in the soil for the future years (Venable
and Brown, 1988), especially in ecosystems where opportunities
for seedling establishment are unpredictable (Wijayratne and
Pyke, 2012; Bhatt et al., 2019). At the same time, species-
specific differences in the soil seed persistence are known to
promote species diversity and co-existence in herbaceous plant
communities, as referred to in the storage effect concept (Chesson
and Warner, 1981; Warner and Chesson, 1985; Facelli et al.,
2005). Understanding the soil seed bank persistence is crucial for
understanding the community dynamics in both short- and long-
term perspectives (Basto et al., 2018), can improve predictions
of species distribution under a changing environment (Ooi,
2012), and has direct implications for successful management and
restoration of endangered ecosystems (Richter and Stromberg,
2005; Tatár, 2010; Chapman et al., 2019; Funk, 2021).

One widely used method to study soil seed persistence is
determining the depth distribution of germinable seeds in the
soil. The depth distribution of seeds is considered indirect
evidence of seed longevity (Thompson, 1993; Thompson et al.,
1997). Based on these measurements, Thompson et al. (1998)
classified soil seed persistence as “transient” or “persistent” and
calculated the longevity index to summarize seed-soil persistence
data from different studies. On the other hand, direct evidence
of seed longevity (i.e., the time elapsed since a species was the
last present on the locality or long-term field burial experiments)
is rarely used (but see Schwienbacher et al., 2010; Moravcová
et al., 2018), although it is known that site-specific conditions
can affect both the soil seed persistence (Schafer and Kotanen,
2003; Long et al., 2015) and burial depth (Benvenuti, 2007; Egawa
and Tsuyuzaki, 2013). Furthermore, results may be confounded
by seed size—seed number trade-off. Smaller seeds enter easier
deeper soil layers (Benvenuti, 2007) and are often overrated
according to their persistence than larger seeds during indirect
longevity estimation (Saatkamp et al., 2009).

TABLE 1 | List of species used in the burial experiment.

Species Grassland
name

Date of
burial

Excavation dates Type of
dormancy

Light requirements
for germination

Alternating temperature
requirements

Longevity
index

Antennaria dioica Eichhalde 1993 O 93–A 94– A 95–A 96 PD NO NO 0

Anthericum ramosum Teck 1992 O 91–A 92–O 92 PY NO YES 0

Aster amellus Surrlesrain 1993 A 94–O 94 ND NO NO 0

Brachypodium pinnatum Teck 1991 O 91–A 92–O 92 ND NO NO 0.07

Bromus erectus Teck 1991 O 91–A 92–A 92 ND NO NO 0.29

Bupleurum falcatum Surrlesrain 1993 A 94–O 94 MD YES NO 0

Carex flacca Teck 1991 O 91–A 92–O 92 PD YES YES 0.58

Carlina acaulis Teck 1991 A 92 ND NO NO 0

Carlina vulgaris Teck 1991 A 92–O 92 ND NO NO 0.13

Cirsium acaule Teck 1991 O 91–A 92–O 92 ND YES NO 0

Daucus carota Teck 1991 O 91–A 92–O 92 PD YES NO 0.73

Dianthus cartusianorum Surrlesrain 1993 A 94–O 94 ND NO NO 0

Festuca ovina Teck 1991 O 91–A 92–O 92 ND NO NO 0.19

Gentianella germanica Eichhalde 1992 A 93–O 93–A 94 MPD YES NO 0.17

Globularia elongata Eichhalde 1993 O 93–A 94–A 95–A 96 PD YES YES 0

Hippocrepis comosa Teck 1991 O 91–A 92–O 92 PY NO NO 0.22

Hypericum perforatum Eselsrain 1992 O 92–A 93–O 94 ND YES NO 0.84

Lactuca serriola Eselsrain 1992 O 92–A 93–A 94 ND YES NO 0.88

Leontodon hispidus Teck 1991
(1993)

O 91–A 92–O 92 (A 94–O 94) ND YES NO 0.36

Linum catharticum Teck 1991 O 91–A 92–O 92 PD YES NO 0.77

Lotus corniculatus Teck 1991 O 91–A 92–O 92 PY NO NO 0.4

Ononis spinosa Teck 1991 O 91–A 92–O 92 PY NO NO 0

Origanum vulgare Eselsrain 1992 O 92–A 93–A 94 ND YES NO 0.81

Pimpinella saxifraga Teck 1991 O 91–A 92–O 92 MPD NO NO 0.05

Pulsatilla vulgaris Eselsrain 1994 O 94 ND NO NO 0.33

Rhinanthus alectorolophus Surrlesrain 1993 A 94–O 94 PD NO NO 0.67

Sanguisorba minor Teck 1991 O 91–A 92–O 92 ND NO NO 0.42

Sedum reflexum Surrlesrain 1993 A 94–O 94 PD YES NO 0

Grassland name = locality of burial; Date of burial indicates the year of seed collection and their immediate burial; Excavation dates indicate time sequence of excavation
(A = April in the given year, O = October in the given year); Type of dormancy: MD, morphological dormancy; MPD, morphophysiological dormancy; ND, no dormancy;
PD, physiological dormancy; PY, physical dormancy.
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Moreover, the deeper the seeds are buried, the lower the
chance of seedling reaching the surface (Pearson et al., 2002;
Grundy et al., 2003). Different mechanisms which allow seeds to
stay ungerminated in the deeper soil layers were evolved (Milberg
et al., 2000; El-Keblawy et al., 2018). Three main aspects of
germination traits are considered the most important for soil seed
persistence, germination timing, and hitting the gap of favorable
conditions after disturbances or during the season (Grubb, 1977;
Fenner and Thompson, 2005; Saatkamp et al., 2011b). First,
delayed germination via dormancy mechanisms (Baskin and
Baskin, 2014). Second, light requirements for germination, since
light can penetrate only an upper layer of soil (Kasperbauer and
Hunt, 1988; Mandoli et al., 1990), so seeds can persist deeper
until disturbances occur (Baskin and Baskin, 2014; Milberg
et al., 2000). Third, alternating temperature requirements for
germination may also serve as detection of burial depth and for a
gap detection (Thompson and Grime, 1983).

It is unclear whether and how burial depth affects soil seed
persistence during a time, and comparison among a higher
number of species is almost missing (but see Rivera et al., 2012).
Therefore, we investigated the soil seed persistence concerning
the burial depth. We address these hypotheses: (i) the deeper the
seeds are buried, the longer they will remain viable, (ii) seeds
of non-dormant species will survive shorter in the soil without
respect to the burial depth, and (iii) seeds of species with light
and/or alternating temperature requirements for germination
will survive in higher proportions in deeper layers where light is
not available and temperature conditions are more constant.

MATERIALS AND METHODS

Study Site and Species Selection
The experiment was located in Baden-Wuerttemberg, Germany.
We chose four localities of calcareous grassland—Teck (48.59N,
9.47E), Eichhalde (48.58N, 9.49E), Eselsrain (48.51N, 9.06E), and
Surrlesrain (48.84N, 9.05E). All localities are situated on White
Jurassic rubble with rendzina soil type. Mild and dry climate
and species-rich vegetation are typical. We selected 28 species
concerning germinability (Beier, 1991) and aspects of seed-
soil bank dynamics (Poschlod and Jackel, 1993). We collected
seeds and performed burial experiments between June 1991 and
October 1996 (see Table 1 for details about species, localities, and
experiment timing).

Burial Experiment
For the burial experiment, the homogeneous site at each of
the localities was selected. We collected diaspores at the same
locality where the burial experiment was performed. Harvest was
timed to the moment of full maturity, i.e., it was possible to
separate seeds from the mother plant with a light touch (except
for Carlina sp., whose entire inflorescences were collected in mid-
October before the achenes were blown off). Random selection
of harvested seeds and inflorescences was made to obtain the
broadest possible natural spectrum of diaspores (Maas, 1989);
maternal effects on the dominant structure of diaspores were
not taken into account (Gutterman, 1992). Immediately after

harvest, we placed 50 seeds into nylon bags (4 cm × 4 cm,
mesh size 300 µm). We made a borehole 10 cm deep and
put three nylon bags with seeds of the same species inside
the soil core in the depth of 1, 5, and 10 cm. We placed the
soil core into a nylon bag (mesh size 2 mm) and inserted it
back to the soil. We made five replicates for each species for
each excavation time (except for Festuca ovina, Cirsium acaule,
and Anthericum ramosum with two, two, and four replicates,
respectively because there were not enough seeds available
for these species). The position of replicates was randomized
inside the site.

We performed several excavations of seeds during the next
few years. The first excavation took place at the end of October
in the same year as seeds were buried (except for late species
whose seeds ripen during September or later). The subsequent
excavation was performed during April following the burial (after
winter freezing), then during October (after one whole season).
The remaining replicates were excavated during April in the
following years (see Table 1 for details).

We took all seeds which were not germinated or molded in
the soil, treated them by 2% solution of sodium hypochlorite for
2 min, placed them in the Petri dish with filter paper and sufficient
moisture, and kept them in the growing chamber (22◦C/14◦C at
14 h/10 h light/dark) for 6 weeks. We counted as viable those in
which the radicle emerged through the seed testa. We stratified
ungerminated seeds in dark conditions at a temperature of 3◦C
for 6 weeks and then put them again in the growing chamber with
the same settings for the next 6 weeks. We tested the viability
of remaining ungerminated seeds using the tetrazolium test to
distinguish between viable (but dormant) and death seeds.

Seed Traits
We used the longevity index from the LEDA database (Kleyer
et al., 2008; Poschlod et al., 2020; unpublished data) and

TABLE 2 | Results of set of mixed-effect linear models with the proportion of
viable seeds and proportion of dormant seeds as the dependent variable.

Factor The proportion of
viable seeds

The proportion of
dormant seeds

Estimate R2 Estimate R2

Time −0.28 0.08*** −0.06 0.002*

Depth 0.05 0.04*** −0.003 –

Time:depth 0.001 – 0.004 –

Longevity index 1.21 0.11*** −0.51 –

Dormancy −0.34 0.11*** 0.86 0.19*

Light requirements 0.82 0.21*** 0.1 0.003*

Alternating temperature 0.79 0.13*** 0.22 –

Longevity index:time −0.29 0.16*** 0.018 –

Longevity index:depth 0.1 0.03*** 0.003 –

Dormancy:time 0.18 0.06*** 0.02 –

Dormancy:depth −0.04 0.04*** −0.002 –

Light requirements:time 0.02 0.05*** −0.03 0.003**

Light requirements:depth 0.0 0.05*** 0.002 –

Alternating temperature:time −0.19 0.06*** −0.02 0.001*

Alternating temperature:depth 0.05 0.04*** 0.007 –

Explanatory variables were standardized and log-transformed. Species
identity and plant family were included as random effects—indicates
non-significant relationships. * indicates significant relationships.
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FIGURE 1 | Proportion of viable seeds in different burial depth and their changes according to time (A) and longevity index (B). Time steps indicate: 1—October in
the same year as seeds were buried; 2—April of the year following the burial; 3—October of the year following the burial; 4—April of the second year following the
burial; and 5—April of the third year following the burial. Darkness of boxes indicates burial depth (light gray = 1 cm, middle gray = 5 cm, and dark gray = 10 cm).

information about the type of dormancy, light requirements
for germination, and alternating temperature requirements from
literature (Kawatani et al., 1976; Grime et al., 1981; Thompson
and Grime, 1983; Jones and Turkington, 1986; Pegtel, 1988;
Maas, 1989; Beier, 1991; Milberg, 1994; Poschlod et al., 2003;
McDavid, 2012; ten Brink et al., 2013; Baskin and Baskin,
2014; Lang et al., 2014; Tudela-Isanta et al., 2018; Leipold
et al., 2019; Lopez del Egido et al., 2019; Rosbakh et al., 2020;
Holländer and Jäger, n.d.) and online databases ENSCOBASE,1

Seed Information Database2 (see Table 1 for details).

Data Analysis
We used a set of mixed-effect linear models with the proportion
of viable seeds (all viable seeds regardless of dormancy) and
the proportion of dormant seeds (seeds viable according to
the tetrazolium test) as the dependent variable. We used
species and plant families as random effects. To avoid the

1http://enscobase.maich.gr/
2http://data.kew.org/sid

model overfitting, we performed individual analysis for each
seed trait and used time, burial depth, one of the seed traits
(longevity index, dormancy, light requirements, and alternating
temperature requirements), and interaction of respective seed
trait with time and burial depth as fixed effects. Furthermore, we
performed a model with time, burial depth, and its interaction
as fixed effects for investigation of the time × depth interaction.
Explanatory variables were standardized and log-transformed
to meet the assumptions of normality and homogeneity of
variance and take into account the right-skewed distribution of
these variables. We classified species with the morphological,
morphophysiological, physiological, and physical types of
dormancy together as dormant species. Mixed-effect models
were performed using the lmer function in R package lme4
(Bates et al., 2015). We tested the random effects using the
ranova function from the lmerTest package. We calculated
R2 using Nakagawa and Schielzeth’s R2

GLMM (Johnson, 2014)
as implemented in the r.squaredGLMM function from the R
package MuMIn. For better understanding the behavior of
individual species and at the same time for not to overparametrize
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FIGURE 2 | Differences in the proportion of viable seeds (A–C) and the proportion of dormant seeds (D–F) concerning the dormancy (A,D), light requirements for
germination (B,E), and alternating temperature requirements (C,F). *Indicates significant relationship.

the model, we preferred to redo the analysis for each species
individually. We fitted linear models for individual species for
burial depth, time, and interaction and performed a multiway
ANOVA. We used R software (R Core Team, 2021) for
performing all analyses.

RESULTS

Time and Burial Depth
The mixed-effect model indicated no very strong main effect
of burial depth or time on the proportion of viable seeds.
Unsurprisingly, the proportion of viable seeds decreased during
the time and increased with burial depth. No significant
interaction between time and burial depth was detected (Table 2
and Figure 1A).

We found only a very low negative effect of time on
the proportion of dormant seeds; all other investigated
factors—burial depth and interaction between time and burial
depth—did not affect the proportion of dormant seeds (Table 2).

For random effects, we found a strong significant effect of
species on the proportion of viable seeds (p < 0.001), indicating
that the interspecific differences are the most important for the

soil seed persistence. We found no effect of a family (p = 0.14) on
the proportion of viable seeds. On the other hand, both random
effects—species and family—affected the proportion of dormant
seeds (p < 0.001, p = 0.026, respectively).

Seed Traits
The proportion of viable seeds was significantly related to
all investigated seed traits—longevity index, dormancy, light
requirements for germination, and alternating temperature
requirements for germination and interacted with both time
and burial depth (Table 2 and Figures 1B, 2 for details).
The proportion of dormant seeds was significantly related to
the dormancy but time and burial depth did not modify it.
Furthermore, we found a significant interaction between time
and light requirement for germination and time and alternating
temperature requirement for germination in the case of the
proportion of dormant seeds. Namely, species with some type of
dormancy showed a lower proportion of viable seeds than species
without dormancy. We determined the opposite pattern in the
case of the proportion of dormant seeds (Figure 3A).

Surprisingly, a significant negative relationship between the
proportion of viable seeds and interaction between longevity
index and time was detected. The relationship of the proportion
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FIGURE 3 | Changes in the proportion of viable seeds over time (A–C) and over burial depth (D,E) concerning the species-specific type of dormancy (A),
species-specific germination requirements to light (B,D), and species-specific germination requirements to alternating temperature (C,E). Time steps indicate:
1—October in the same year as seeds were buried; 2—April of the year following the burial; 3—October of the year following the burial; 4—April of the second year
following the burial; 5—April of the third year following the burial. No LR—species without light requirements for germination, LR—species with requirements for
germination, No AT—species without alternating temperature requirements for germination, and AT—species with alternating requirements for germination.

of viable seeds with the interaction between longevity index and
burial depth was significantly positive.

The species without the requirements to both—light and
alternating temperature for germination—had a generally
lower proportion of viable seeds (Figures 3B–E). Significant
interactions between light requirements for germination with
both time and burial depth, on the proportion of viable seeds,
showed that seeds of species that require light for germination
stayed viable longer in the deeper layer of soil (Figures 3B,D).
We also found a significant interaction between alternating
temperature requirements and time and burial depth on the
proportion of viable seeds. The proportion of viable seeds
increased with the burial depth for species with the requirements
of alternating temperature and decreased over time for this
species (Figure 3E).

Species-Specific Behavior
For most species (21 from 28), the proportion of viable seeds
significantly decreased during the time (e.g., Brachypodium

pinnatum). We also found the relationship between the
proportion of viable seeds and the burial depth—the proportion
of viable seeds decreased with the burial depth for four
species (e.g., Origanum vulgare) and increased for 14 species
(e.g., Gentianella germanica). There was a significant positive
interaction between burial depth and time for three species
(Daucus carota, Hypericum perforatum, and O. vulgare) and
a significant negative interaction for one species (Bupleurum
falcatum). See Table 3 and Supplementary Figure 1 for species-
specific details.

Only for A. ramosum (the only non-legume species with
physical dormancy in our dataset), we found a significant
relationship between the proportion of dormant seeds and
the burial depth and its significant interaction with time—
the proportion of dormant seeds declined during the time in
the upper layer but increased in the deeper layer. For three
species (Pimpinella saxifraga, G. germanica, and Sedum reflecum),
the proportion of dormant seeds significantly decreased during
the time (e.g., G. germanica) and for Linum catharcticum
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TABLE 3 | Results of linear models for individual species between the proportion
of viable seeds and proportion of dormant seeds and burial depth, time, and its
interaction, performed as a multiway ANOVA.

Species Proportion of viable
seeds

Proportion of
dormant seeds

depth time depth:time depth time depth:time

Antennaria dioica 0.03 −0.06

Anthericum ramosum 0.01 −0.38 −0.06 0.05

Aster amellus 0.03 −0.10

Brachypodium pinnatum −0.23

Bromus erectus

Bupleurum falcatum 0.05 −0.03 −0.01

Carex flacca −0.10

Carlina acaulis

Carlina vulgaris 0.16

Cirsium acaule

Daucus carota −0.02 −0.28 0.02

Dianthus cartusianorum 0.10 −0.06

Festuca ovina 0.02 −0.03

Gentianella germanica 0.05 −0.45

Globularia elongata −0.05

Hippocrepis comosa −0.26

Hypericum perforatum −0.01 −0.12 0.01

Lactuca serriola 0.05

Leontodon hispidus 0.04 −0.19

Linum catharticum 0.07 −0.10 0.09

Lotus corniculatus 0.02 −0.04

Ononis spinosa 0.05 −0.05

Origanum vulgare −0.01 −0.15 0.02

Pimpinella saxifraga −0.38 −0.01

Pulsatilla vulgaris 0.01

Rhinanthus alectorolophus

Sanguisorba minor −0.01 −0.26

Sedum reflexum 0.01 −0.11 −0.39

Numbers indicate an estimate of a given relationship; only significant
relationships are shown.

significantly increased during the time. All these four species have
the physiological or morphophysiological types of dormancy—
however, another five species with the physiological type
of dormancy did not show this pattern. See Table 3 and
Supplementary Figure 2 for species-specific details.

DISCUSSION

Our burial experiment with seeds of 28 species from calcareous
grassland habitat demonstrates the complexity of the soil seed
bank and clearly shows that results of indirect investigation of
seed longevity have to be interpreted carefully. Although we
found significantly better seed persistence in deeper soil layers
for species with a higher longevity index, this correlation was
not strong. Our findings confirm the previous investigation of
Saatkamp et al. (2009) which found no relationship between
soil seed persistence in the burial experiment and seed
bank persistence and therefore recommended different use of
soil seed abundance and experimental soil seed persistence.
Moreover, site-specific conditions, such as rainfall or soil

texture, affected both natural seed vertical movement (Benvenuti,
2007; Egawa and Tsuyuzaki, 2013) and soil seed persistence
(Schafer and Kotanen, 2003; Long et al., 2015). Therefore,
long-term direct investigation under the given environmental
conditions is necessary for a precise understanding of the
community dynamics.

We found substantial species-specific differences in the
pattern of soil seed persistence both over time and depending on
the burial depth. These differences were explained mainly on the
species level for the proportion of viable seeds and the family level
for the proportion of dormant seeds, which is in agreement with
our knowledge of seed dormancy as the earliest trait in plant life
history (Carta et al., 2016; Liu et al., 2017). Previous investigation
in calcareous grassland communities showed essentially similar
patterns in species-specific differences for constant burial depth
(Pons, 1991). On the other hand, our results emphasized the
importance of burial depth for particular species.

In our experiment, we cannot separate if seeds detected as
non-viable after the given time of burial germinated in the
soil before excavation or were destroyed due to pathogens
attack. Mortality via fungi attack is both site-specific (Schafer
and Kotanen, 2003) and species-specific (Gardarin et al., 2010).
Nevertheless, the reason why seeds did not stay viable in the
soil has not high importance for answering our questions about
soil seed persistence. In both cases, such seeds do not play a
role as seed supply in the soil and do not affect the long-term
community dynamics.

As we expected, seeds of species with light requirements for
germination stay viable longer in the deeper layer. Although light
can penetrate only a tiny upper layer of soil (Kasperbauer and
Hunt, 1988; Mandoli et al., 1990), seedlings, especially of large-
seeded species, can emerge successfully from much greater depth
(Bond et al., 1999). Generally, germination in light conditions
is one of the mechanisms to detect the burial depth. It was
shown before that light requirement is essential to keep seeds
ungerminated just after entering the soil (Saatkamp et al., 2011b).
Our findings of the longer persistence of seeds in deeper soil
layers for species with light requirements for germination support
this idea. Huge differences between individual species were
found, and we can agree with Saatkamp et al. (2011a) that burial
depth detection is a highly species-specific mechanism. Different
species with light requirements for germination showed different
patterns in soil seed persistence. For example, seeds of B. falcatum
and Linum catharticum did not stay viable in the upper soil layer,
which suggests that they germinate immediately after burial in
light conditions. Seeds of these species stay viable during one
season in deeper soil layers, and after this time, the number
of viable seeds decreased to the same number as in the upper
soil layer. Conditions in deeper soil layers postponed the decline
of a count of viable seeds, but they did not guarantee their
long-term survival.

Furthermore, we found the group of species with light
requirements for germination, namely, C. acaule, D. carota, H.
perforatum, O. vulgare, and Leontodon hispidus, which showed
another pattern in soil seed persistence. Seeds of these species
survived in a similar amount after the first winter in all burial
depths. Later, the number of viable seeds decreased substantially
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in the upper soil layer. In contrast, at deeper burial depth,
their number remained constant throughout the experiment. On
the other hand, high seed persistence in the deeper soil layer
throughout the experiment and at the same time, constantly low
number of viable seeds in the upper soil layer was found for
species G. germanica and Lactuca serriola. That indicates that
detecting the burial depth is crucial for these species immediately
after burial; they are not able to germinate from deeper soil
layers. They can stay viable in the soil seed bank for a long
time, although both are often classified as transient soil seed
banks (i.e., their seeds should persist in the soil less than one
year) in the literature (Pons, 1991; Kleyer et al., 2008). We
found around 50% of seeds viable after two winters in the deep
soil layer and around 20% of seeds viable in the upper soil
layer for G. germanica. This inconsistency between classification
as transient soil seed bank from literature and our finding of
viable seeds after two years of burial could result from the long
dormancy, so classical germination experiments cannot detect it,
as reported by Fischer and Matthies (1998).

Our results of differences between species with and without
alternating temperature requirements for germination match
our expectations. The proportion of viable seeds changes with
the burial depth and during the time for species with such
requirements. This relationship was weak, and we see the
main reason for the unbalanced design of our dataset. We
have only three species out of 28 with alternating temperature
requirements for germination, which differ in other seed traits,
so it is challenging to generalize them. Alternating temperature
requirements are known as the mechanism which can serve for
detection of burial depth but simultaneously also for detection
of disturbances (Thompson and Grime, 1983; Saatkamp et al.,
2011a). Nevertheless, its role in soil seed persistence in some
environments seems to be negligible (Rivera et al., 2012).
Therefore, further investigation with the precise selection of
species according to this seed trait and careful setup of the
experiment is needed to disentangle the role of alternating
temperature for soil seed persistence.

Our work showed a broad range of soil seed persistence
strategies under the different burial depths. This diversity can
potentially promote species coexistence by the storage effect
(Chesson, 1994; Facelli et al., 2005) and thereby maintaining a
species-rich community that can withstand temporal fluctuations
in environmental conditions. On the other hand, it is known

that current climatic changes, such as changing temperature
and rainfall regimes, can accelerate the decline of seed viability
(Chen et al., 2021), compromising the persistence of plant
populations dependent on long-lived seed banks (Ooi, 2012) or
dry habitats (Basto et al., 2018). Our results from the long-term
burial experiment also proved that seeds of some species could
survive in the soil much longer than expected from the indirect
measurement of seed longevity by the seedling establishment
from soil samples. It points out the importance of further direct
long-term investigation.
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