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Abstract: Strain-induced on-surface transformations provide an appealing route to steer the selectivity
towards desired products. Here, we demonstrate the selective on-surface synthesis of extended
all-trans poly(2,6-pyridine) chains on Au(111). By combining high-resolution scanning tunneling
and atomic force microscopy, we revealed the detailed chemical structure of the reaction products.
Density functional theory calculations indicate that the synthesis of extended covalent structures is
energetically favored over the formation of macrocycles, due to the minimization of internal strain.
Our results consolidate the exploitation of internal strain relief as a driving force to promote selective
on-surface reactions.
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1. Introduction

On-surface synthesis of carbon-based nanostructures has rapidly emerged as a fasci-
nating method for the synthesis of nanomaterials, with structures and functionalities not
achievable by wet chemistry [1–4]. One of the most used reaction schemes is based on the
Ullmann coupling, where the dehalogenation of suitable precursors allows creating reactive
sites within the molecules, which initiate the polymerization reaction [5]. Control over the
side reactions can be further achieved through molecule–substrate interactions [6–10]. For
instance, substrate symmetry has been exploited to tune the major reaction pathway for
4,4′′-dibromo-meta-terphenyl precursors. The close-packed Cu(111) surface was observed
to steer the formation of covalent macrocycles, while Cu(110) favors the growth of extended
structures [11,12]. Substrate-induced internal strain can drive the skeletal rearrangement of
an extended 1D metal–organic chain, enabling the formation of an energetically favorable
registry with the Cu(111) substrate [13]. Intramolecular strain relief represents another ap-
pealing approach to promote the formation of desired molecular products as the on-surface
planarization of distorted polycyclic aromatic hydrocarbons [14] and the synthesis of
nanographene [15,16]. Aiming at achieving extended nanostructures, intermolecular steric
effects have been shown to play a crucial role in driving the sequential cyclohydrogenation
reaction of polyantracene oligomers for the synthesis of graphene nanoribbons [17]. Here,
we demonstrate the selective synthesis of poly(2,6-pyridine) structures on the Au(111)
surface by using 6,6′′-dibromo-2,2′:6′,2′′-terpyridine (DBTP) molecules as precursors. By
combining high-resolution scanning tunneling and atomic force microscopy (STM/AFM)
with density functional theory (DFT) calculations, we show that internal strain relief favors
the formation of extended covalent chains composed of all-trans pyridines, while all-cis
pyridine macrocycles represent only a minority of the surface products.
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2. Materials and Methods

Experiments were carried out with a low-temperature scanning tunneling and atomic
force microscope (CreaTec Fischer & Co. GmbH, Berlin, Germany) equipped with a qPlus
tuning fork [18] (quality factor Q ≈ 5 × 104, stiffness k ≈ 1.8 kN/m, resonance frequency
f res ≈ 29 kHz) operating in the frequency modulation mode at a base temperature of 9.1 K
under ultrahigh vacuum conditions (p ≈ 2 × 10−10 mbar). Bias voltages (V) refer to the
sample with respect to the tip. The Au(111) surface was prepared by sputtering (Ne+, 1 keV)
and annealing cycles (770 K). DBTP molecules were sublimed onto the Au(111) sample
surface kept at 300 K, followed by annealing to 470 K to initiate polymerization. Finally,
the sample was transferred to the microscope and cooled down to 9.1 K for experiments.
AFM images were recorded in constant-height mode, where positive z-offset (∆z) values
indicate a retraction of the tip after opening the feedback loop with respect to the STM
setpoint above the clean Au(111) surface. The oscillation amplitude A was kept constant at
A = 0.5 Å. CO molecules were dosed on the cold sample inside the microscope (T < 12 K)
and used for tip functionalization [19].

Calculations were performed using the ORCA (4.0.1) program package (Max-Planck-
Institut für Kohlenforschung, Mülheim an der Ruhr, Germany) to optimize geometries [20].
The PBE0 density functional, in combination with the correlation-consistent double-zeta
(cc-pVDZ) basis set, was used. To speed up calculations, the RIJCOSX approximation [21]
(in combination with the def2/J auxiliary basis set) was used. To quantitatively compare
the energetics of the all-trans and all-cis configurations, for the latter, an H2 molecule has
been added to the computation.

3. Results and Discussion

Given the structure of the DBTP precursors, possible products of the Ullmann coupling
are extended covalent chains and covalent macrocycles (Scheme 1). Linear chains are
achieved through all-trans orientation of adjacent pyridine groups, while macrocycles can
be obtained by the all-cis conformation.
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Surface annealing to 470 K induces the full debromination of the DBTP precursors,
initiating the Ullmann coupling. Figure 1 shows typical STM images acquired after anneal-
ing a submonolayer (Figure 1a,b) and a multilayer (Figure 1c) of DBTP. In both cases, the
main reaction products consist of extended polymeric chains (up to 100 nm long). Upon
polymerization of a submonolayer of DBTP precursors, kink sites were observed (Figure 1a),
resulting in chain bending by 60 and 120◦. Such sites originate from the presence of cis
pyridine units within all-trans polymeric chains.

Chemistry 2021, 3, FOR PEER REVIEW 3 
 

 

Upon polymerization of a submonolayer of DBTP precursors, kink sites were observed 

(Figure 1a), resulting in chain bending by 60 and 120°. Such sites originate from the pres-

ence of cis pyridine units within all-trans polymeric chains. 

 

Figure 1. Constant-current STM images after annealing to 470 K of a Au(111) surface covered by a 

submonolayer (a,b) and multilayer (c) of DBTP. (b) Arrows highlight macrocycles. Measurement 

parameters: (a) tunneling current I = 1.9 pA, sample bias voltage V = 1.0 V; (b) I = 5 pA, V =1.0 V; (c) 

I = 2.6 pA, V = 1.0 V. 

Remarkably, despite polymers composed of a random mixture of trans and cis con-

formations being expected from geometrical considerations, the large majority of reaction 

products consists of all-trans structures. Furthermore, the density of kink sites is even 

more suppressed at larger polymer coverages (Figure 1c), pointing out also the role of 

interchain steric effects in guiding the growth of aligned polymers [22]. While most of the 

reaction products consist of extended chains upon annealing to 450–500 K, cyclic struc-

tures are also found on the surface (Figure 1b). The lateral size of about 13 Å matches the 

size of the macrocycles composed of six all-cis pyridine units, indicated in Scheme 1.  

Figure 2a shows a submolecularly resolved STM image of the extended products. 

The zig-zag appearance of the linear segments suggests the formation of regular polypyr-

idine chains (Scheme 1). Detailed insight into the chemical structure is provided by AFM 

imaging with CO-functionalized tips [19]. The contrast in the AFM frequency shift (Δf) 

image (Figure 2b) clarifies the presence of covalent bonds between DBTP molecules, re-

sulting in the formation of extended all-trans poly(2,6-pyridine) structures. While poly-

phenylene chains typically exhibit a large torsional angle between adjacent monomer 

units, due to steric repulsion between the H atoms [23,24], H bonding favors a structural 

planarization for all-trans poly(2,6-pyridine), as indicated by the rather uniform Δf con-

trast along the pyridine units. Coupling between individual chains is suggested to be me-

diated by Br adatoms [25,26], which favor either local in-phase or anti-phase alignments 

(Figure 2a). AFM imaging of a kink site (Figure 2c) reveals that the presence of two adja-

cent pyridine groups in cis conformation gives rise to a 60° change in the chain orientation. 

Notably, pyridines at the kink site exhibit a different Δf contrast, indicating an out-of-

plane tilt [24,27–31], with N atoms lying closer to the substrate. The origin of this structural 

distortion can be attributed to steric hindrance between pairs of adjacent pyridinic N at-

oms, pairs of H atoms facing each other from adjacent pyridine rings, and the lack of sta-

bilizing C-H-N′ interactions [32–34]. This observation indicates that the presence of pyri-

dine groups in cis conformation within the polymer induces substantial internal strain. 
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submonolayer (a,b) and multilayer (c) of DBTP. (b) Arrows highlight macrocycles. Measurement
parameters: (a) tunneling current I = 1.9 pA, sample bias voltage V = 1.0 V; (b) I = 5 pA, V = 1.0 V;
(c) I = 2.6 pA, V = 1.0 V.

Remarkably, despite polymers composed of a random mixture of trans and cis con-
formations being expected from geometrical considerations, the large majority of reaction
products consists of all-trans structures. Furthermore, the density of kink sites is even more
suppressed at larger polymer coverages (Figure 1c), pointing out also the role of interchain
steric effects in guiding the growth of aligned polymers [22]. While most of the reaction
products consist of extended chains upon annealing to 450–500 K, cyclic structures are also
found on the surface (Figure 1b). The lateral size of about 13 Å matches the size of the
macrocycles composed of six all-cis pyridine units, indicated in Scheme 1.

Figure 2a shows a submolecularly resolved STM image of the extended products. The
zig-zag appearance of the linear segments suggests the formation of regular polypyridine
chains (Scheme 1). Detailed insight into the chemical structure is provided by AFM imag-
ing with CO-functionalized tips [19]. The contrast in the AFM frequency shift (∆f ) image
(Figure 2b) clarifies the presence of covalent bonds between DBTP molecules, resulting in
the formation of extended all-trans poly(2,6-pyridine) structures. While poly-phenylene
chains typically exhibit a large torsional angle between adjacent monomer units, due to
steric repulsion between the H atoms [23,24], H bonding favors a structural planarization
for all-trans poly(2,6-pyridine), as indicated by the rather uniform ∆f contrast along the
pyridine units. Coupling between individual chains is suggested to be mediated by Br
adatoms [25,26], which favor either local in-phase or anti-phase alignments (Figure 2a).
AFM imaging of a kink site (Figure 2c) reveals that the presence of two adjacent pyri-
dine groups in cis conformation gives rise to a 60◦ change in the chain orientation. No-
tably, pyridines at the kink site exhibit a different ∆f contrast, indicating an out-of-plane
tilt [24,27–31], with N atoms lying closer to the substrate. The origin of this structural
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distortion can be attributed to steric hindrance between pairs of adjacent pyridinic N atoms,
pairs of H atoms facing each other from adjacent pyridine rings, and the lack of stabilizing
C-H-N′ interactions [32–34]. This observation indicates that the presence of pyridine groups
in cis conformation within the polymer induces substantial internal strain.
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site. Black lines highlight the local in-phase and anti-phase chain alignment (I = 2.1 pA, V = 1.0 V).
(b,c) Constant-height ∆f AFM images acquired with a CO-functionalized tip at ∆z = −1.5 Å, given
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Furthermore, due to the low energy barrier for pyridine rotation around the C-C
bond in the gas phase, three isomers are expected to be adsorbed on the Au(111) surface.
Nevertheless, the experimental observation of all-trans chains indicates that the barrier for
pyridine rotation can be easily overcome also on the Au(111) surface (especially during
the annealing step to 450–500 K), resulting in the transformation of most of the precursor
molecules into the all-trans configuration.

In order to further support this hypothesis, we performed density functional theory
(DFT) calculations for oligomers composed of six pyridine groups in all-trans (Figure 3a,b)
and all-cis (Figure 3c,d) conformations. Gas-phase calculations were employed to elucidate
the role of internal strain in guiding the formation of all-trans polymers. The all-trans
configuration exhibits a rather planar geometry, while all-cis is characterized by a strong
structural distortion, lying ≈ 2.2 eV higher in energy with respect to the all-trans oligomer.
Furthermore, we performed calculations for an oligomer having two cis pyridine groups in
the middle (Figure 3e,f). Such relaxed structure is energetically less favorable (≈0.25 eV)
than the all-trans configuration. While the adsorption on the gold surface is expected
to mitigate such distortion [24], the calculations indicate how the trans configuration is
energetically favored, representing the main driving force behind the selective on-surface
formation of extended polypyridine chains.
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4. Conclusions

We reported the synthesis of extended polypyridine chains on Au(111) through Ull-
mann coupling. By combining high-resolution STM and AFM, we revealed the chemical
structure of the products. While both extended all-trans polypyridine chains and macrocy-
cles are observed, the latter represent only a minority of the products. This observation is
rationalized by the structural distortion induced by the presence of cis pyridines within co-
valent structures. Our results demonstrate how internal strain can be successfully exploited
to steer the selectivity in an on-surface reaction, consolidating the use of strain-driven
reactions to promote the formation of desired molecular products.
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