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Using the approach based on conformal symmetry we calculate the two-loop coefficient function for the
axial-vector contributions to two-photon processes in the MS scheme. This is the last missing element for
the complete next-to-next-to-leading order (NNLO) calculation of the pion transition form factor γ�γ → π
in perturbative QCD. The corresponding high-statistics measurement is planned by the Belle II
collaboration and will allow one to put strong constraints on the pion light-cone distribution amplitude.
The calculated NNLO corrections prove to be rather large and have to be taken into account. The same
coefficient function determines the contribution of the axial-vector generalized parton distributions to
deeply virtual Compton scattering (DVCS) which is investigated at the JLAB 12 GeV accelerator, by
COMPASS at CERN, and in the future will be studied at the Electron Ion Collider EIC.
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Awealth of data on hard exclusive reactions from a new
generation of experimental facilities will become available
in the coming decade. These data are expected to have a
very high precision and to provide a much deeper insight in
the hadron structure as compared to the current knowledge.
A pressing question is, however, whether hard exclusive
hadronic reactions are under sufficient theoretical control to
allow for fully quantitative predictions, which is highly
relevant for all future high-intensity experiments. To give
an example, the γ�γ → π transition form factor is widely
regarded as the “golden mode” that allows one to access
the pion wave function at small transverse separations,
usually referred to as the light-cone distribution amplitude
(LCDA). The measurements of this form factor at spacelike
momentum transfers in the interval 4–40 GeV2 by the
BABAR [1] and Belle [2] collaborations caused much
excitement and a flurry of theoretical activity due to the
unexpected large scaling violation observed by BABAR. At
Belle II [3], the statistical uncertainty is expected to be
reduced by a factor of 8 and the total systematic uncertainty
is estimated to be at least 2 times smaller than that at Belle
due to an improved trigger efficiency. As the result, a factor
3 to 5 times more precise measurements are possible in the
high-Q2 region.

Another example is provided by deeply virtual Compton
scattering (DVCS) which is an important part of the physics
program at the JLAB 12 GeVupgrade [4], is measured also
at CERN by COMPASS [5], and in the future will be
studied at the EIC [6,7]. This reaction is the primary source
of information on the generalized parton distributions
(GPDs) of the nucleon (and, eventually, nuclei) which
describe the correlation between parton’s longitudinal
momentum and its position in the transverse plane. Also
in this case, the accuracy of the arriving and expected data
is much higher as compared to the theoretical predictions
available.
In both cases the theory framework is provided by

collinear factorization and, despite obvious differences,
there are some common elements. In particular the scale
dependence of the LCDAs and GPDs is governed by
similar equations, and the coefficient function (CF) appear-
ing in the factorized expression for the πγ�γ form factor in
terms of the pion LCDA is the same as the CF of the axial
GPD in DVCS. The corresponding calculations have to be
advanced to next-to-next-to-leading order (NNLO) accu-
racy that has become standard in studies of inclusive
processes and, since recently, also in semi-inclusive reac-
tions in the framework of transverse momentum dependent
factorization [8].
The new contribution of this work is a calculation of the

two-loop CF for the flavor-non-singlet axial-vector con-
tributions in processes with one real and one virtual photon.
When combined with the three-loop anomalous dimensions
calculated in [9], this result allows for the complete
NNLO evaluation of the pion transition form factor and
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all flavor-non-singlet contributions to DVCS. In this letter
we concentrate ourselves in the discussion of the numerical
impact of the NNLO correction on πγ�γ, since the DVCS
observables are more complicated and require a dedicated
study.
The pion transition form factor with one real and one

virtual photon, FðQ2Þ≡ Fπγ�γðQ2Þ, can be defined by the
matrix element of the time-ordered product of two electro-
magnetic currents

Z
d4yeiqyhπ0ðpÞjTfjemμ ðyÞjemν ð0Þgj0i

¼ ie2εμναβqαpβFðQ2Þ; ð1Þ

where e is the electric charge, p the pion momentum, and
jemμ ¼ euūγμuþ edd̄γμdþ � � �. We will consider the space-
like form factor, Q2 ¼ −q2 > 0. The leading contribution
Oð1=Q2Þ to this form factor can be written in the factorized
form [10,11]

FðQ2Þ ¼
ffiffiffi
2

p
fπ

6Q2

Z
1

0

dzTðz;Q; μÞϕπðz; μÞ; ð2Þ

where fπ ¼ 131 MeV denotes the pion decay constant, μ
the factorization scale, Tðz;Q; μÞ the CF and ϕπðz; μÞ the
pion LCDA normalized as

R
1
0 dzϕπðz; μÞ ¼ 1.

The same CF enters the axial-vector contributions to the
DVCS amplitude Aμν ¼ g⊥μνV þ ϵ⊥μνA

Aðξ; Q2Þ ¼ 1

2

X
q

e2q

Z
1

−1

dx
ξ
T

�
ξ − x
2ξ

; Q; μ

�
F̃qðx; ξ; t; μÞ;

ð3Þ

where F̃qðx; ξ; t; μÞ is the axial-vector GPD and ξ is the
skewedness parameter; see [12,13] for details. Here it is
assumed that Tðξ−x

2ξ ; Q2; μÞ is continued analytically to the
jx=ξj > 1 region using the ξ → ξ − iϵ prescription.
The CF can be expanded in powers of the strong

coupling, as ¼ αsðμÞ=4π,

T ¼ Tð0Þ þ asTð1Þ þ a2sTð2Þ þ…: ð4Þ

The first two terms in this series are well known [11,14–16]:

Tð0ÞðzÞ ¼ 1=zþ 1=z̄; ð5Þ

Tð1Þðz;Q; μÞ ¼ CF
1

z

�
ln2z −

z ln z
z̄

− 9þ ð3þ 2 ln zÞL
�

þ ðz ↔ z̄Þ; ð6Þ

where z̄ ¼ 1 − z and L ¼ lnðQ2=μ2Þ. The two-loop correc-
tion Tð2Þ is the subject of this work. It can be decomposed in
the contributions of three color structures:

Tð2Þ ¼ C2
FT

ð2Þ
P þ CF

Nc
Tð2Þ
NP þ β0CFT

ð2Þ
β ; ð7Þ

where CF ¼ ðN2
c − 1Þ=2Nc and β0 ¼ 11=3Nc − 2=3nf in a

SUðNcÞ gauge theory. We obtain (for μ ¼ Q)

Tð2Þ
P ¼

�
2

z
ð6H0000 − H1000 − 2H200 − H1100 − H120 − H210 þ H1110Þ þ

2

z̄
H000 −

8

z
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z̄
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4

z
H110

−
�
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3z

�
H00 þ

34

3z
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z
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1
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�
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2

�
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z

�
6ζ2 þ 32ζ3 −

64

9

�
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1

z

�
701
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3
ζ2 þ 43ζ3 þ 3ζ22

��
þ ðz ↔ z̄Þ; ð8Þ
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�
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Tð2Þ
β ¼

�
−
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z
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1
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−
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��
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where Hm⃗ ¼ Hm⃗ðzÞ are harmonic polylogarithms [17].

Our result for Tð2Þ
β is in agreement with Ref. [18]. The

expressions for Tð2Þ
P (planar), Tð2Þ

NP (nonplanar) are new
results. Complete results for Tð2Þðz; μÞ in Mathematica
format are presented in the ancillary file (see supplemental
material [19]).
Our method of calculation is based on using conformal

symmetry of QCD at critical coupling in d ¼ 4 − 2ϵ
dimensions to relate the CF in question to the well-known
two-loop axial-vector CF in deep-inelastic scattering
[20,21]. A similar idea was used before in Ref. [22] where
the NNLO CF was calculated in a special, conformal
renormalization scheme. Our technique is explained in
detail in Ref. [23] where the vector CF was calculated by
the same method. The generalization to axial-vector oper-
ators is considered in Ref. [24]. Thus in what follows we
will only outline the main steps and omit technical details.
The starting point is that QCD at the Wilson-Fischer

critical point at noninteger d ¼ 4 − 2ϵ� space-time dimen-
sions, ϵ� ¼ −β0as − β1a2s þ � � �, is a conformal theory. The
strategy is to calculate the CF in conformal QCD, and go
over to the “physical” limit ϵ → 0 at the very end, by
adding a term ∼ϵ�:

T ¼ T� þ ϵ�ΔT: ð11Þ

The extra term ΔT requires a one-loop calculation and only

affects Tð2Þ
β .

We define axial-vector operators in d ¼ 4 − 2ϵ dimen-
sions using a variant of Larin’s scheme [25] for the γ5
matrix; see ref. [24]. In d ¼ 4 the axial-vector operators in
this scheme can be rotated to the MS scheme which is
defined by the condition that the vector- and axial-vector
flavor-non-singlet operators satisfy the same evolution
equation.
The CF in the MS scheme can be written in the

form [23],

T� ¼ Tð0Þ ⊗ K ⊗ eX ⊗ U−1; ð12Þ

where Tð0Þ is the tree-level CF, eX takes into account the
conformal anomaly [24,26], U is the rotation operator from
Larin’s scheme to the MS scheme [24], and K is a certain
SL(2)-invariant operator (i.e., K commutes with the gen-
erators of conformal transformations). The eigenvalues of
K can be related to the moments of the axial vector CF in

deep-inelastic scattering [20,21] up to some additional
factors, cf. Eq. (3.59) in Ref. [23]. We have calculated
these eigenvalues in terms of harmonic sums using com-
puter algebra packages [27–29]. The result satisfies the
reciprocity relation [30,31]: the asymptotic expansion of
the eigenvalues of K at large spin N is symmetric under the
substitution N → −N − 1. This property provides a non-
trivial test of the calculation.
Any SL(2) invariant operator is uniquely defined by its

spectrum. Thus K can be restored, and it remains to do the
convolutions in Eq. (12) to obtain the final result. A direct
evaluation of the convolution in momentum space at two
loops is very cumbersome, but it can be bypassed, as
explained in Ref. [23], using a position-space representa-
tion at the intermediate step. In this way one ends up with
much simpler integrals that we have calculated with the
help of the HyperInt package [32].
The ratios of the NLO/LO, NNLO/LO and NNLO/NLO

CFs at the scale Q2 ¼ μ2 ¼ 4 GeV2 are plotted in Fig. 1.
One sees that the two-loop Oða2sÞ correction has the same
sign and is roughly factor two smaller as compared to
the one-loop contribution in the bulk of the z region.
The largest contribution to Tð2Þ comes from Tβ except for
the endpoint regions where the leading effect is due to the
Sudakov-like double-logarithmic corrections

Tðz; asÞ ≃
z↦0

1

z

�
1þ CFas ln2 zþ

ðCFasÞ2
2

ln4 zþ…

�
:

FIG. 1. The ratios TNLO=TLO, TNNLO=TLO, and TNNLO=TNLO at
the scale Q2 ¼ μ2 ¼ 4 GeV2. Here TLO ¼ Tð0Þ, TNLO ¼ Tð0Þ þ
asTð1Þ and TNNLO ¼ Tð0Þ þ asTð1Þ þ a2sTð2Þ are the CFs defined
in (4) truncated at the first (tree level), second (one-loop) and
third (two-loop) terms, respectively. For this calculation we used
αsðμ ¼ 2 GeVÞ ¼ 0.3009 and nf ¼ 4.
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The series likely exponentiates resulting in Tðz; asÞ∼
z−1þasCF ln z.
Note that also the sign of the correction changes, so that

the resulting effect on physics observables will depend
strongly on the behavior of the parton distributions at the
endpoints. As an illustration, we show in Fig. 2 the ratios
INLO=ILO and INNLO=ILO for the integral

IðαÞ ¼
Z

1

0

dzzαz̄αTðz;Q2; μ2 ¼ Q2Þ ð13Þ

as a function of α in the interval 0.5 < α < 1.5.
The pion LCDA is usually represented by the expansion

in terms of Gegenbauer polynomials which are eigenfunc-
tions of the one-loop evolution equations

ϕπðz; μÞ ¼ 6zz̄
X

n¼0;2;…

anðμÞC3=2
n ð2z − 1Þ: ð14Þ

Herea0 ¼ 1 is fixed by the normalization condition, anda2 is
known from lattice calculations. We use the latest result [33]

a2ðμ0 ¼ 2 GeVÞ ¼ 0.116þ19
−20 : ð15Þ

For the coefficients an with n > 2 there exist only very weak
constraints. In order to estimate their influence, following
[33], we consider twomodels for the pion LCDA (at the scale
μ0 ¼ 2 GeV):

ϕðIÞ
π ðz; μ0Þ ¼ 6zð1 − zÞ½1þ a2ðμ0ÞC3=2ð2z − 1Þ�;

ϕðIIÞ
π ðz; μ0Þ ¼ Bð1þ α; 1þ αÞzαð1 − zÞα; ð16Þ

where the parameter α in the second model is adjusted to
reproduce the same value of the second Gegenbauer coef-
ficient a2 as in Eq. (15); Bða; bÞ is Euler’s β-function.
Using the expansion in Eq. (14) the πγ�γ form factor to

leading-twist accuracy is given by

Q2FðQ2Þ ¼
ffiffiffi
2

p
fπ

X
n¼0;2;…

anðμÞcnðμ;LÞ; ð17Þ

where the coefficients

cnðμ;LÞ ¼ 1þ asc
ð1Þ
n ðμ;LÞ þ a2sc

ð2Þ
n ðμ;LÞ þ… ð18Þ

are given by the Gegenbauer moments of the CF Tðz;Q; μÞ
in Eq. (4). The one-loop coefficients read

cð1Þn ¼CF

�
4S21ðnþ1Þ−4S1ðnþ1Þ−3

ðnþ1Þðnþ2Þþ
2

ðnþ1Þ2ðnþ2Þ2

−9−2

�
S1ðnþ2ÞþS1ðnÞ−

3

2

�
L

�
; ð19Þ

where S1ðnÞ are the standard harmonic sums, and the first
few two-loop coefficients are given by

cð2Þ0 ¼ −197.40þ 9.66nf þ Lð68.50 − 2.92nfÞ;
cð2Þ2 ¼ 95.97 − 17.44nf þ Lð−178.25þ 10.9nfÞ þ L2ð45.99 − 1.85nfÞ;
cð2Þ4 ¼ 526.97 − 43.81nf þ Lð−417.06þ 20.42nfÞ þ L2ð77.20 − 2.67nfÞ;
cð2Þ6 ¼ 986.91 − 67.14nf þ Lð−663.97þ 27.73nfÞ þ L2ð101.63 − 3.26nfÞ: ð20Þ

In these expressions we included the logarithmic contri-
butions, L ¼ lnQ2=μ2, to allow for the study of the
factorization scale dependence. Note that the radiative
corrections (both one-loop and two-loop) to the leading
contribution n ¼ 0 (asymptotic LCDA) are negative,
whereas the corrections to the contributions of higher
moments are positive and increase with n. Thus the
radiative corrections to the form factor in general amplify

the contributions of higher-order Gegenbauer polynomials
at high photon virtualities.
The results for the NNLO vs NLO calculation of the πγ�γ

form factor for the two models of the pion LCDA in
Eq. (16) are shown in Fig. 3. In this calculation we set
μ ¼ Q and use the evolution equations both at NLO and
NNLO [9], to calculate the pion LCDA (16) at this scale.
It is seen that the model dependence is comparable in size

FIG. 2. The NNLO/LO and NLO/LO ratios for the integral IðαÞ
in Eq. (13) as a function of α.
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with the projected accuracy of the Belle II measurements.
The NNLO correction is about a half of the model differ-
ence and has to be taken into account. We conclude that
the NNLO accuracy is mandatory to constrain the pion
LCDA from the analysis of theory predictions with the
expected data. This, in turn, will have important conse-
quences on the accuracy of QCD predictions in B-decays
and other hard processes with energetic pions in the final
state.
As already mentioned, the same CF enters the NNLO

calculation of the contribution of the axial-vector GPD to
DVCS. The DVCS amplitude (3) is a complex-valued
function. Following [35] we show in Fig. 4 the size of the
NNLO two-loop correction for the absolute value and the
phase difference of the corresponding Compton form factor
at Q2 ¼ μ2 ¼ 4 GeV2,

H̃ðξÞ ¼ RðξÞeiΦðξÞ; ð21Þ

for the simplest ansatz for the GPD H̃, see Eq. (3.330) in
[13], normalized in the forward limit to the polarized quark
density fðβÞ ∼ β1=2ð1 − βÞ4. The results are qualitatively
very similar to the vector amplitude considered in Ref. [23]:
The two-loop correction is large for the absolute value of
the Compton form factor and small for the phase. A more
detailed study including the scale dependence is premature
at this time, as the axial-vector GPD is practically
unknown. This task will become important in the future
to analyze the forthcoming JLAB-12 and, later, EIC data.
In summary, we have used innovative computational

approaches based on conformal symmetry to advance the

theoretical predictions for hard exclusive reactions to
NNLO in QCD, which is the level of accuracy required
by the precision of experimental data. We expect our results
to have a broad range of applications in the analyses of
data from current and future high-intensity, medium energy
experiments.

This study was supported by DFG Research Unit FOR
2926, Grant No. 40824754, DFGGrants No. MO 1801/4-1,
No. KN 365/13-1, and RSF Project No. 19-11-00131. The
authors are grateful to Yao Ji for communication on an
independent calculation of the same CF by another method.
We thank Sadaharu Uehara for providing us with the
estimates for the expected accuracy of the Belle II experi-
ment. Our special thanks are due to A. V. Pimikov for
pointing out a misprint in the ancillary file.

Note Added.—Our result for the CF in Eqs. (8)–(10) agrees
with an independent calculation of the same CF using a
different technique [36], cf. Eqs. (26)–(29). It is easy to
check that the analytic expressions in this work and in [36]
coincide identically.

FIG. 3. The πγ�γ form factor at the NNLO (solid curves) and
NLO (dashed curves) in QCD perturbation theory for the two
models of the pion LCDA in Eq. (16). The experimental data are
from CLEO [34] (green, open triangles), BABAR [1] (light blue,
circles) and Belle [2] (dark blue, squares). In addition, the
expectation for the error bars achievable at Belle II [3] is shown
in red. The central value for the red boxes is arbitrary.

FIG. 4. The axial-vector Compton form factorHðξÞ in Eq. (21),
calculated to NNLO and NLO accuracy. Shown are the ratios for
the absolute values (top panel) and the phase differences (bottom
panel), both with respect to the tree-level.
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