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We analyze the lattice spacing dependence for the pion unpolarized matrix element of a quark bilinear
operator with a Wilson link (parton quasidistribution functions operator, quasi-PDFs) in the rest frame,
using 13 lattice spacings ranging from 0.032 to 0.121 fm. We compare results for three different fermion
actions with or without good chiral symmetry on dynamical gauge ensembles from three collaborations.
This investigation is motivated by the fact that the gauge link generates a 1=a divergence, the cancellation
of which in many ratios can be numerically tricky. Indeed, our results show that this cancellation
deteriorates with decreasing lattice spacing, and that the RI/MOM method leaves a linearly divergent
residue for quasi-PDFs. We also show that in the Landau gauge the interaction between the Wilson link and
the external state results in a linear divergence which depends on the discretized fermion action.
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I. INTRODUCTION

Parton distribution functions (PDFs) play a key role for
most processes in high energy and hadron physics, ranging,
e.g., from the search for new physics to the detailed
analysis of nucleon properties. Therefore, it is one of the
most important tasks of lattice QCD to determine PDFs by
first principle theory calculations. While the calculation of
PDF Mellin moments, which can be expressed as matrix
elements of local operators, has a long, high-profile history,
the calculation of their full x-dependence, which requires
the evaluation of nonlocal correlators became only feasible
in recent years. Among the different suggested approaches,
the quasi-PDF method based on large momentum effective

theory (LaMET) [1] has been widely used, because it is
relatively direct and has no model dependence and proved
to be quite successful. For example, isovector unpolarized
PDFs have been calculated using different types of gauge
and fermion actions down to the physical pion mass [2–4].
A crucial topic which was not yet studied in great detail is
the continuum extrapolation of quasi-PDFs. Controlling the
continuum limit is already usually the main challenge for
practical lattice calculations of Mellin moments of PDFs.
Because quasi-PDFs are far more delicate objects, one has
to expect that for them this task will be even more
demanding, especially in combination with RI/MOM
renormalization. At the same time, taking the continuum
limit is indispensable for obtaining physical results, and
therefore, intensifying such studies is the next logical step
in the further development of the LaMET approach.
LaMET starts from the quasi-PDF operator OΓðzÞ ¼

ψ̄ð0ÞΓUð0; zÞψðzÞ with spatial gauge link Uð0; zÞ ¼
expð−ig R z

0 dz
0Azðz0ÞÞ, and connects its renormalized

nucleon matrix element to PDFs through factorization
theorems [1,5–8]. However, the bare OΓðzÞ in lattice
regularizations contains a 1=a term,
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OΓðzÞ¼Γ
�
1þg2

�
γ logðp2a2Þ−m−1

z
a

�
þ����� �

�
; ð1Þ

at the 1-loop level [9] with lattice spacing a, and them−1 is
the linear coefficient which is sensitive to the discretized
gauge action [10]. OΓðzÞ can deviate from its tree level
value exponentially at either large z or small a when
higher order effects are summed over. Thus, nonpertur-
bative renormalization with accurate cancellation on the
linear divergence is essential for the quasi-PDF to ensure
the existence of a finite continuum limit.
Studies in the continuum [11–14] suggest that the quasi-

PDF operator is multiplicatively renormalizable and that
the linear divergence just comes from theWilson link and is
independent of the external quark or hadron state.
Therefore, RI/MOM renormalization [15] is believed to
be a good candidate to remove the linear divergence
[9,10,14,16–19]. However, an accurate nonperturbative
examination of this cancellation in lattice regularization
is still missing.
To close this gap, we study the RI/MOM renormalized

pion quasi-PDF matrix element in the rest frame, for 13
lattice spacings ranging from 0.032 to 0.121 fm using
different quark and gluon actions. Our results show that the
cancellation deteriorates with decreasing lattice spacing
and that the RI/MOM method leaves a linearly divergent
residue for quasi-PDFs. We also show that in the Landau
gauge the interaction between the Wilson link and the
external state results in a linear divergence which depends
on the discretized fermion action.

II. NUMERICAL SETUP

When we consider the quasi-PDF nucleon matrix
element in the moving frame, the gap δm between the
ground and first excited state decreases with increasing
momentum, requiring a large source/sink separation tsep to
eliminate excited state contaminations. At the same time,
the signal to noise ratio also decreases exponentially with
tsep, reducing our ability to identify the lattice spacing
dependence from data.
Using the pion rest frame can, therefore, be the better

choice as it avoids this problem. We choose tsep to be half of
the temporal lattice length T (T is mostly larger than 6 fm
for the ensembles we use) to eliminate the effect of excited
states and obtain the ground state matrix element hπ ¼
hπjOγtðzÞjπi with high accuracy,

RπðT=2; t; z; aÞ

≡ hOπðT=2Þ
P

x⃗ðOΓðz; ðx⃗; tÞÞ þOΓðz; ðx⃗; T − tÞÞÞO†
πð0Þi

hOπðT=2ÞO†
πð0Þi

;

¼ hπ;ΓðzÞ þOðe−δmtÞ þOðe−δmðT=2−tÞÞ þOðe−δmT=2Þ;
ð2Þ

where Oπ is the pion interpolating field. Note that the
denominator includes both forward and backward two
point functions. These are needed because of the possibility
to loop around the lattice in the temporal direction for
periodic boundary conditions. But as for the open boundary
condition case, for example, some CLS ensembles, these
choices are not proper considering the artifacts near the
boundary. In that case, we put the source at T=2 and sink at
T=4 and 3T=4 to avoid the unphysical effect from the open
boundary condition.
In RI/MOM renormalization, we define the renormali-

zation constant as [20]

Zγtðz; μÞ ¼
ZqðμÞ

Tr½γthqðpÞjOγtðzÞjqðpÞi�p2¼−μ2;pz¼pt¼0

; ð3Þ

where jqðpÞi is the off-shell quark state with external
momentum p, and Zq is defined from the pion matrix
element of a local vector current,

ZqðμÞ¼
Tr½γthqðpÞjOγtð0ÞjqðpÞi�p2¼−μ2;pz¼pt¼0

hπ;γtð0Þ
: ð4Þ

When the Landau gauge fixed volume (V) source [16] is
used in the calculation, the statistical uncertainty is sup-
pressed by a factor 1=

ffiffiffiffi
V

p
compared to the point source

case. Note that the Zq definition used here is exactly the
same as Z̃q ≡ Tr½=pS−1�=p2 from the quark propagator in
dimensional regularization [21], but the discretization error
is much smaller than for Z̃q in lattice regularization as
shown in Ref. [22].
We can apply Zγt to the bare pion matrix element hπ;γtðzÞ

to obtain the nonperturbatively renormalized and normal-
ized matrix element at a given RI/MOM scale μ,

hrπ;γtðz; μÞ ¼ Zγtðz; μÞhπ;γtðzÞ: ð5Þ

In order to check if the linear divergence is related to the
fermion action, we compare results for two kinds of
fermion actions in this work: the clover (CL) and overlap
(OV) actions. The clover action is computationally rela-
tively cheap and widely used in quasi-PDF calculations,
while the overlap action is much more expensive but
conserves chiral symmetry.
The clover fermion action is

Swq ¼
X
x;y

ψ̄ðxÞDwðmw
q ; x; yÞψðyÞ;

Dwðmw
q ; x; yÞ ¼

1 − γμ
2a

Uðx; xþ n̂μÞδxþn̂μ;y

þ 1þ γμ
2a

Uðx; x − n̂μÞδx−n̂μ;y

−
�
4

a
þmw

q

�
δx;y; ð6Þ
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with an additional “clover” term,

Sclq ¼ Swq þ acsw
X
x

ψ̄ðxÞσμνFμνðxÞδx;yψðyÞ; ð7Þ

where n̂μ is the unit vector along the μ direction, and
mw

q −mcri is the multiplicatively renormalizable bare
quark mass. Also, mcri is the value of the bare quark
mass for which the pion mass vanishes, and mcri is Oðαsa Þ
at the leading order for the Wilson action and always

negative. It can be reduced to Oðα2sa Þ (but usually still
negative) with a clover coefficient csw ¼ 1þOðαsÞ.
It can be further suppressed by applying gauge link
smearing and/or fine-tuning of csw.
To eliminate mcri exactly, one can use chiral fermions

which satisfies the Ginsburg-Wilson relation Dovγ5 þ
γ5Dov ¼ a

ρDovγ5Dov [23]. For example, Refs. [24–27]
define overlap fermion by

Sovq ¼
X
x;y

ψ̄ðxÞDovðx; yÞψðyÞ;

Dov ¼ ρ

0
@1þ Dwð−ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D†
wð−ρÞDwð−ρÞ

q
1
A; ð8Þ

where −ρ should be smaller than mcri to make Dov be the
same as the standard Dirac operator in the continuum limit.
The chiral fermion propagator is defined by Dov,

1

Dc þmov
q

¼ 1
Dov

1− 1
2ρDov

þmov
q

¼
1 − 1

2ρDov

Dov þmov
q ð1 − 1

2ρDovÞ
; ð9Þ

where Dc satisfies the relation Dcγ5 þ γ5Dc ¼ 0. Then,
mov

q → 0 makes the pion mass vanish without any fine-
tuning.

III. RESULTS

We use three sets of ensembles:
(i) Nf ¼ 2þ 1þ 1 highly improved staggered fer-

mions (HISQ) and one-loop Symanzik improved
gauge fields from the MILC Collaboration [28] at
five lattice spacings (MILC12–MILC03).

(ii) Nf ¼ 2þ 1 domain wall fermions (DWF) and
Iwasaki gauge fields from the RBC/UKQCD
Collaboration [29] at three lattice spacings
(RBC11–RBC06).

(iii) Nf ¼ 2þ 1 clover fermions and Luescher-Weisz
(equivalent to Symanzik) gauge fields from the
CLS Collaboration [30] at five lattice spacings
(CLS10–CLS04).

The details of the ensembles we used in this work are
collected in Table I. For the MILC/RBC gauge configu-
rations, we apply 1-step hypercubic (HYP) smearing [31].
For the overlap fermions, we use ρ ¼ 1.5=a, and we use
two clover coefficients: one is the tadpole improved tree
level coefficient csw which is very close to one after the
configuration is HYP smeared (CL), and the other is
c0sw ∼ 1.3 which gives a critical quark mass mcri

q around
zero (tuned-CL). If we require the pion mass to be
around 310 MeV, the bare overlap quark mass mov

q should
be similar among different lattice spacings up to the
multiplicative quark mass renormalization constant and
discretization error; but mw

q is always negative with csw ∼ 1

unless we enlarge csw to ∼1.3. For the CLS configuration,
we simply use the unitary setup (without any smearing of
the action) in the clover fermion calculations. Since most
of the CLS ensembles use the open boundary condition
except CLS10, we just use 1=3 of the time slices in the
middle of the lattice to avoid lattice artifacts for the
volume source used for the RI/MOM renormalization
constants.
We start with the pion matrix element and the MILC

ensemble using the overlap action to demonstrate the

TABLE I. Setup of the ensembles, including the bare coupling constant g, lattice size L3 × T, and lattice spacing a.mw
q andmw0

q are the
bare quark masses using the clover fermion action with the two clover coefficient csw and c0sw, respectively, and mov

q is the bare quark
mass of the overlap fermion. The pion masses in all cases are in the range of 310–360 MeV.

Tag 6=g2 L T a (fm) csw mw
q a c0sw mw0

q a mov
q a Tag 6=g2 L T a (fm) mov

q a

MILC12 3.60 24 64 0.1213(9) 1.0509 −0.0695 1.31 0.010 0.015 RBC11 2.13 24 64 0.1105(3) 0.015
MILC09 3.78 32 96 0.0882(7) 1.0424 −0.0514 N/A N/A 0.011 RBC08 2.25 32 64 0.0828(3) 0.011
MILC06 4.03 48 144 0.0574(5) 1.0349 −0.0398 1.25 0.0014 0.008 RBC06 2.37 48 96 0.0627(3) 0.008
MILC04 4.20 64 192 0.0425(4) 1.0314 −0.0365 N/A N/A 0.005
MILC03 4.37 96 288 0.0318(3) 1.0287 −0.0333 1.26 0.0030 0.0035

Tag 6=g2 L T a (fm) csw mw
q a Tag 6=g2 L T a (fm) csw mw

q a

CLS10 3.34 24 48 0.0980(12) 2.06686 −0.3437 CLS08 3.40 32 96 0.0854(10) 1.98625 −0.3468
CLS06 3.55 48 128 0.0644(08) 1.82487 −0.3525 CLS05 3.70 48 128 0.0500(07) 1.70477 −0.3521
CLS04 3.85 64 192 0.0390(06) 1.61281 −0.3478
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elimination of excited state contaminations. As shown in
Fig. 1, the bare ratio RπðT=2; t; z ≃ 0.36=0.72=1.08 fm; aÞ
defined in Eq. (2) is independent of t in the region
t − T=4 ∈ ½−1; 1� fm. Thus, we average RπðT=2; t; z; aÞ
in the region t ∈ ½T=8; 3T=8� to get a precise estimate of the
ground state matrix elements. We can also see that the ratio
becomes much smaller at smaller lattice spacings.
Nonperturbative renormalization is essential to recover a
reasonable continuum limit. A similar figure for the clover
case can be found in our related work [32] which uses the
same data sets. It is worth emphasizing that if we take the

ratio between the pion matrix elements hπ;γtðzÞ obtained
using the clover fermion and overlap fermion, then the ratio
is consistent with 1 within 2σ, or in other words with at
most 3% difference for all z < 1.0 fm as shown in Fig. 2.
This agrees with the previous impression that the linear
divergence is independent of the discretized fermion action.
Based on a symmetry analysis and 1-loop calculation, we

can decompose the amputated Green’s function Λγtðz; pÞ≡hqðpÞjOγtðzÞjqðpÞi into the following Lorentz structures:

Λγtðz; pÞ ¼ F̃tðz; pÞγt þ F̃zðz; pÞfγzzgpt

þ F̃pðz; pÞ
pt=p
p2

: ð10Þ

This is equivalent to what was proposed in Ref. [20] but the
form Eq. (10) is more natural to avoid pz to appear in a
denominator. When z ¼ 0, the F̃z term vanishes, and
Eq. (10) becomes a matrix element of the local operator
q̄γμq. Both the F̃z and F̃p terms vanish when pt ¼ 0.
At the same time, setting pz ¼ 0 leads to a vanishing

imaginary part of Ft, as shown in the 1-loop calculations
[10,20]. Since hπ;γtðzÞ is real in the rest frame, using the RI/
MOMmomentumwithpz ¼ pt ¼ 0 is the optimal choice to
avoid complications from a complex renormalization con-
stant as well as operator mixings. Based on the numerical
calculation, weverified that the renormalization constantZγt
is real, and the mixing between OγtðzÞ and OΓ≠γtðzÞ is
consistentwith zerowithinvery small uncertainties. Figure 3
shows the real part of the operator mixing coefficients using
clover fermions on the HISQ sea ensemble with
a ¼ 0.121 fm. They are consistent with zero within 0.1%
relative statistical uncertainties in all cases.
It is also popular to require all momentum components

to be nonzero to suppress discretization errors and use the
p-slash projection as proposed in Ref. [17] when operator
mixing is unavoidable. Since the conclusion is still
unchanged with the p-slash projection, we place the

FIG. 2. The ratios between the pion matrix element hπ;γtðzÞ
using clover (CL) fermions and overlap (OV) fermions, on the
HISQ sea ensembles at different lattice spacings. The ratios are
consistent with 1 within 2σ at all lattice spacings.

FIG. 1. The bare ratios RπðT=2; t; z; aÞ defined in Eq. (2)
for the pion using overlap (OV) fermions on HISQ sea
ensembles at different lattice spacings, for the cases at
z ≃ 0.36, 0.72, and 1.08 fm. There are clear plateaus in the
region t − T=4 ∈ ½−1; 1� fm.
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related discussion in the Appendix for the interested
readers.
As for the RI/MOM renormalization constant in this

work, we use the momentum p ¼ 2πð5; 5; 0; 0Þ=L on the
HISQ sea ensembles and tune px;y on the DWF sea

ensembles to make μ ¼
ffiffiffiffiffi
p2

p
be the same on all ensembles

within 6%. As shown in the upper panel of Fig. 4 for the
ratio of the renormalization constants,

RRI=MOMðz; μ; μ0Þ ¼ Zγtðz; μÞ=Zγtðz; μ0Þ; ð11Þ

with μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðp0Þ2

p
¼ 1.8 GeV [p0 ¼ 2πð3; 3; 0; 0Þ=L] on

the HISQ sea ensembles using different valence fermion
actions and lattice spacings, the ratio just changes by about
2% at z ¼ 1 fm regardless of the actions and lattice
spacings used. Since the 6% fluctuation of μ on different
ensembles is much smaller than the difference between μ0
and μ, the systematic uncertainty due to this fluctuation will

be much smaller than 2% at z ¼ 1 fm and thus negligible.
At the same time, Fig. 4 also shows that RRI=MOM converges
at small lattice spacing and is independent of the discretized
fermion actions (clover or overlap).
However, the residual z dependence indicates that the μ

and z dependencies of Zðz; μÞ are not independent. Thus, it
is natural to be curious about its behavior when μ decreases
towards the on-shell limit. Thus, we also consider the ratio
with μ00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðp00Þ2

p
¼ 0 GeV using the clover valence

fermion action on MILC ensembles. Note that the real scale
here will be OðΛQCDÞ instead of μ00 due to the non-
perturbative effects. In the lower panel of Fig. 4, the z
dependence is 10 times stronger than for μ0 ≃ 1.8 GeV, but
the ratios at different lattice spacings are still consistent
with each other. We conclude from the results in the two
panels of Fig. 4 that the UV divergence of the RI/MOM
renormalization constant is independent of the external off-
shell momenta.
Another thing we need to mention here are the normali-

zation conditions Eqs. (3) and (4) of the vector current.
Based on the definition of the RI/MOM scheme, the quark

FIG. 4. The z-dependent ratio RRI=MOMðz; μ; μ0Þ defined in
Eq. (11) with μ ≃ 3 GeV and μ0 ≃ 1.8 GeV (upper panel) and
also RRI=MOMðz; μ; μ00Þ with μ00 ¼ 0 GeV (lower panel) using the
given valence action and lattice spacing on the HISQ sea
ensembles. The results with clover (CL) and overlap (OV)
actions converge to the same continuum limit.

FIG. 3. The real part of the relative mixing between OγtðzÞ and
OΓ≠γtðzÞ, using clover fermions on the HISQ sea ensemble with
a ¼ 0.121 fm. The upper panel shows the Oγt matrix element
with a Γ ≠ γt projector, and the lower panel shows the OΓ≠γt
matrix element with a γt projector. In all cases, the results are
consistent with zero within less than 0.1% statistical uncertainty.
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self energy is defined from the charge conservation con-
dition which requires the renormalized local vector charge
to be unity, hrπ;γt ¼ 1. In Fig. 5, we show the normalization
factors Zγtð0; μÞ we obtained with overlap fermions on
HISQ sea ensembles (red boxes) and DWF sea ensembles
(blue dots) and also for clover fermions on HISQ sea
ensembles (purple boxes). After performing simple fits for
the αs and a2 corrections [33], we can also show the lattice
spacing dependence of the normalization factor with the
Oða2Þ correction subtracted, using the red line for the
overlap case and purple line for the clover case. It is clear
that the normalization we used with the αs correction
approaches 1 smoothly and does not introduce any addi-
tional linear divergence.

A. RI/MOM renormalized pion matrix element with
the overlap action

We start from the overlap fermion case which is free of
a possible linear divergence due to a possible mistuning of
mcri in the valence quark section. Figure 6 compares the

RI/MOM renormalized pion matrix elements with the
vector current hrπ;γtðz; aÞ, using an overlap fermion on
the domain wall sea with and without HYP smearing of
the Wilson link. The smearing of the Wilson link can
suppress the linear divergence, such that the exponential
decay with z becomes weaker which eventually improves
the signal to noise ratio of the data. The results for lattice
spacings a ∈ ½0.11; 0.06� fm differ from each other by less
than 1%, while the cases without HYP smearing have
larger statistical uncertainties. Such a difference can come
from systematic uncertainties caused by a mismatch of the
pion mass, mixed action effects, and/or a residual linear
divergence which is too small to be visible in the above
lattice spacing range.
Thus, we switch to the other class of ensembles using

the HISQ sea, which covers lattice spacings from
0.032 to 0.121 fm, see Fig. 7. The results for lattice
spacings a > 0.05 fm are consistent with each other,
while a deviation becomes more and more obvious
when the lattice spacing is reduced. The lattice spacings

 0.8

0.85

 0.9

0.95

 1

1.05

 0  0.2  0.4  0.6  0.8  1  1.2

z (fm)

HYP0, 0.111 fm
HYP0, 0.083 fm
HYP0, 0.063 fm
HYP1, 0.111 fm
HYP1, 0.083 fm
HYP1, 0.063 fm

FIG. 6. The RI/MOM renormalized pion matrix element of the
vector current, using overlap (OV) fermions on DWF sea
ensembles. The data points correspond to the cases with 1-step
of HYP smearing, and the bands are the results without HYP
smearing of the Wilson link.

FIG. 7. The RI/MOM renormalized pion matrix element of the
vector current, using overlap (OV) fermions on HISQ sea
ensembles and using a Wilson link without HYP smearing
(upper panel) and with 1-step of HYP smearing (lower panel).
The residual linear divergences in both cases are pronounced and
similar.

0.95

 1

1.05

 1.1

1.15

 1.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

a (fm)

ZV(a)

OV/HISQ
OV/DWF
CL/HISQ

OV/HISQ, 1+O(αs)
CL/HISQ, 1+O(αs)

FIG. 5. The normalization factor Zγtð0; μÞ, which contains both
αs and also a2 corrections as shown in Ref. [33]. The lines
correspond to the renormalization factors with the Oða2Þ cor-
rection subtracted.

ZHANG, LI, HUO, SCHÄFER, SUN, and YANG PHYS. REV. D 104, 074501 (2021)

074501-6



ða0; a1; a2Þ ¼ ð0.0318ð3Þ; 0.0425ð4Þ; 0.576ð5ÞÞ fm form a
geometrical series satisfying a0=a1 ¼ a1=a2 within
uncertainties. The ratio hrπ;γtðz; a0Þ=hrπ;γtðz; a1Þ is obvi-
ously larger than hrπ;γtðz; a1Þ=hrπ;γtðz; a2Þ. At the same
time, both of them deviate from 1 exponentially with
increasing length of the Wilson link z. Thus, the residual
lattice spacing dependence in hrπ;γtðz; aÞ is likely to be
caused by a linearly divergent term proportional to 1=a,
not a logarithmic logðaÞ one.

B. RI/MOM renormalized pion matrix element with the
clover action

In the clover fermion case, the RI/MOM renormalized
hrπ;γtðz; aÞ can have a very strong lattice spacing depend-
ence. Since the lattice spacing dependence becomes
systematically stronger for smaller lattice spacings and
increases exponentially with z, it is probably also due to a
residual linear divergence term. We also modified the

clover coefficient by ∼20% to reduce the critical quark
mass to jmcrij ≤ 0.02. However, the lattice spacing
dependence is not affected by this tuning (see the colored
bands in Fig. 8). We also repeated the calculation
with twisted-mass fermions on MILC ensembles at
a ¼ 0.057 fm. The result agrees with that for clover
fermions and obviously differs from that for overlap ones.
Since mcri

q is very sensitive to whether the gauge
configuration used in the clover fermion action is HYP
smeared, and the clover on the HISQ setup can suffer
from OðaÞ mixed action effects, we also studied the
unitary clover fermion case using CLS ensembles. In the
upper panel of Fig. 9, we show the results without any
HYP smearing for either the fermion action or Wilson
link. The situation improved somewhat at a larger lattice
spacing, but the results at given z still increase with 1=a
except for the largest lattice spacing where discretization
errors are probably large. We also repeated the calculation
with HYP smeared Wilson links and found the residual
linear divergence to be much more obvious because the
signal has smaller error bars.

FIG. 8. The same RI/MOM renormalized pion matrix element
as in Fig. 7 but using clover (CL) fermions on HISQ sea
ensembles. The residual linear divergences are much more
obvious than for the overlap case. The colored bands show the
results when the clover coefficient are tuned such that the critical
quark mass jmcrij ≤ 0.02. The residual linear divergences are still
roughly the same.

FIG. 9. The same RI/MOM renormalized pion matrix element
as in Fig. 8 but using clover (CL) fermions on CL sea ensembles.
The residual linear divergence is still there.
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It is natural to guess that the residual linear divergence is
stronger in the clover fermion case than in the overlap case
because of chiral symmetry breaking effects. However,
there can be contributions from various operators, e.g.,
ψ̄γtD2ψ , such that clarifying the precise origin and com-
position of the observed residual linear divergence will
require substantial future work beyond the scope of the
present paper.

IV. POSSIBLE ORIGIN OF THE RESIDUAL
LINEAR DIVERGENCE

In Ref. [32], the Lattice Parton Collaboration parame-
trized the linear divergence as

lnMðz; aÞ ¼ kz
a ln½aΛQCD�

þ � � � ; ð12Þ

where M can be either the RI/MOM renormalization
constant Z or the pion matrix element h and used our
data to extract the linear divergence coefficients k in
different cases. As in Tables IV and V of Ref. [32] for
the HYP smeared Wilson link, the k is in the range k ∈
½0.49; 0.52� for the bare pion matrix elements with different
valence and sea actions using ΛQCD ¼ 0.39 GeV, but the k
in Z is 0.55 for overlap fermions and ∼0.63 for clover
fermions on HISQ sea ensembles. The value of k in the RI/
MOM renormalized pion matrix element is ∼0.05 and 0.13
for the overlap and clover fermion cases, respectively, and
much smaller than that in the bare pion matrix elements.
According to the lattice perturbative theory calculation

[10], the linear divergence just comes from the Wilson link
and is independent of the external quark state at the 1-loop
level. This suggests that if there is any external state (like a
quark state using different actions or the pion state)
dependence in the quasi-PDF matrix element, it can only
come from 2-loop or even higher level contributions, which
is consistent with our observation as the residual linear
divergence left after the cancellation is only at the
20% level.
We guess that the Landau gauge fixing we used for the

quark matrix element introduces an additional linear
divergence. As the Wilson link can have a gauge-dependent
logarithmic divergence at the 1-loop level [10], we would
expect it to introduce subleading linear divergences at
higher loop levels. Thus, we considered the ratio between
the Wilson link in Coulomb and Landau gauges and show
the results in Fig. 10. The curves seem to converge at small
lattice spacings, which suggests that the linear divergence
of the Wilson link itself is unlikely to be gauge dependent,
at least for Coulomb and Landau gauge fixings.
We also checked the correlation between the Wilson line

and external states by considering the following correlation:

CUSðzÞ¼
1

12
TrððhUðz;0Þi−1hUðz;0ÞSðpÞihSðpÞi−1Þ; ð13Þ

where SðpÞ ¼ P
x Sð0; xÞeipx is the momentum projected

quark propagator. In the practical calculation, we averaged
over the reference points of all three expectation values in the
right-hand side of Eq. (13) independently to improve
statistics. If the linear divergence only comes from the
Wilson link and is independent of the external state, then
CUSðzÞ has to be free of any linear divergence, as confirmed
by the 1-loop lattice perturbative theory calculation [10].
However, as shown in Fig. 11 for the clover (upper panel) and
overlap fermion (lower panel) on HISQ sea ensembles with
the 1-step of HYP smearing of the link, we find the linear
divergences to exist in both the clover and overlap cases. It is,
however, much smaller in the latter. This is similar to what we
saw for the RI/MOM renormalized pion quasi-PDF matrix
element. However, since a similar test cannot be done for the
Coulomb gauge due to the residual gauge degree of freedom
along the temporal direction, we cannot yet verify whether
the residual linear divergences we saw in hrπ;γtðzÞ and CUSðzÞ
are gauge dependent or not.
Eventually, we consider the ratio

hr;Uπ;γtðzÞ ¼
hπ;γtðzÞ
1
3
TrhUi ; ð14Þ

with the Wilson link in the Coulomb gauge to test
whether the linear divergence for the hadron matrix
element is exactly the same as that for the Wilson link.
As seen in Fig. 12, hr;Uπ;γtðzÞ also has a similar lattice
spacing and z-dependence pattern as we observed for
hrπ;γtðzÞ and CUSðzÞ. This suggests that the linear diver-
gence for the pion quasi-PDF matrix element is also not
exactly the same as that of the Wilson line itself. Since we
have shown that the linear divergence in the pion matrix
element is independent of the fermion action (Fig. 2) and

FIG. 10. The ratio of gauge links in Coulomb gauge and
Landau gauge on MILC ensembles with 1-step of HYP smearing.
These curves seem to converge at small lattice spacings, which
indicates that the linear divergence of the Wilson link is
independent from the gauge fixing condition, at least for the
Landau or Coulomb ones.
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that in the Wilson line it is insensitive to whether one
chooses Landau or Coulomb gauge fixings (Fig. 10), we
skip the discussion on the other combinations.

V. SUMMARY

In this paper, we study systematically the continuum limit
for quasi-PDFs with RI/MOM renormalization in the LaMET
approach. We compare results for a variety of valence and sea
quark fermion actions and lattice setups. We find that the
traditional RI/MOM method cannot eliminate the character-
istic linear divergences of quasi-PDFs completely and that the
remnants of this linear divergence blow up with decreasing
lattice spacing. Obviously this greatly complicates control of
the continuum limit.
We make a number of observations which can prove

useful to clarify the origin of these remnants and develop
strategies to cope with them.
The RI/MOM renormalized pion matrix elements in the

rest frame include residual linear divergences from certain
higher loop effects, so higher loop calculations in lattice
perturbation theory are needed.
Simulations with chiral fermions (overlap or domain wall)

are much less affected than those with clover fermions, so
chiral symmetry seems to play an important role.
Since the renormalization of operators should be frame

independent, we believe that this conclusion should also
apply to all quasi-PDF calculations in a moving frame. For a
quasi-PDF calculation using an ensemble with a ¼ 0.09 fm
and clover fermions, we estimate the systematic bias to be
∼5% based on the correction at z ∼ 1.0 fm which is smaller
than other kinds of the systematic uncertainties in the
practical quasi-PDF calculation, but it should increase to
more than 50% at a ¼ 0.03 fm. Thus, removal of the
residual linear divergence is crucial to obtain a meaningful
continuum limit. For overlap fermions, the corresponding
bias could be 10% at 0.03 fm which might still be acceptable
compared to other sources of uncertainty, but the funda-
mental problem is the same.
We believe that similar checks should be done for all

LaMET calculations using bilinear operators with Wilson
link, e.g., quasi-PDFs, quasi-DAs, quasi-TMDs, and so
on. Comparison to calculations with large momentum for
the nucleon suggests that the proposed check just requires
the calculation of Oð200Þ propagators on each ensemble,
while providing essential information to avoid possible
misinterpretations of the results obtained, which is obviously
a very well justified investment. For the pseudo-PDFs for
which a ratio of hadron matrix elements is used for
renormalization, it is also essential to verify that the linear
divergence is indeed completely canceled, independent of all
details of the specific simulation, e.g., of the momenta used.
The outcome of many such tests should allow one to

better understand the origin of these residues and should
provide clues for how to remove them systematically [32].
Let us stress that these residues become only sizable at
small lattice spacings and that it is highly probable that the
results obtained for not so fine lattices extrapolate smoothly
to the continuum. So, existing results stay valid. However,

FIG. 12. The pion quasi-PDF matrix element renormalized by
the Coulomb gauge fixed Wilson line, using the overlap fermion
on HISQ ensembles.

FIG. 11. The value of CUSðzÞ defined in Eq. (13) for the
subtracted correlation between the 1-step HYP smeared Wilson
link and the clover fermion (upper panel) and overlap fermion
(lower panel) external states on MILC ensembles in Landau
gauge. The linear divergence is obvious for both fermion actions,
while that in the overlap fermion case is much smaller.
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the ultimate goal must be full control of the continuum
limit, and therefore, this problem has to get solved.
The perturbative and nonperturbative study in lattice

regularization beyond the 1-loop level is also essential, as a
residual linear divergence is forbidden at the 1-loop level.
We also confirmed the following expectations:
(1) The linear divergences in the pion quasi-PDF matrix

element with different fermion actions (overlap and
clover) are the same. Combining with the consis-
tency of the pion and nucleon matrix element shown
in Ref. [32], we conclude that the linear divergences
in different hadrons are the same, regardless of the
fermions we use.

(2) The linear divergence in the Wilson link is indeed
gauge independent up to certain lattice artifacts, based
on our calculation in the Coulomb and Landau gauges.

(3) There is a residual linear divergence due to the gluon
exchange between the external state and the Wilson
line, which is absent at the 1-loop level. Such a linear
divergence is action dependent for a quark state in
the Landau gauge, while it is action independent in
the hadron state.
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APPENDIX: OPERATOR MIXING AND
PROJECTION SCHEME IN THE RI/MOM

RENORMALIZATION

The expression for the amputated Green’s function reads

Λγtðz; pÞ ¼ F̃tðz; pÞγt þ F̃zðz; pÞfγzzgpt

þ F̃pðz; pÞ
pt=p
p2

: ðA1Þ

The renormalization constant we use for the main dis-
cussion, with the projector γt (the minimum projection
defined in [20]), just includes the F̃t term. However, for the
p-slash projector =p=pt, we have

Z=p ¼ ZqðμÞ
ðF̃tðz; pÞ þ F̃zðz; pÞzpz þ F̃pðz; pÞÞp2¼−μ2

; ðA2Þ

which includes the contributions from not only the F̃t term
but also the F̃z=p terms. If the linear divergences in all three
terms are exactly the same and independent of pz, then the
choice of the projector is irrelevant for the linear divergence
cancellation. However, as shown in this paper, the numerical
verification is still valuable. With the momentum
2πð5; 5; 0; 0Þ=L using the operator OγtðzÞ, the contributions
from both F̃z=p and the pz dependence are absent since
pz ¼ pt ¼ 0, but thanks to the rotational symmetry of the
Euclidean 4-D lattice, we can consider operators likeOγtðxÞ,
OγxðyÞ, and OγxðzÞ to obtain the necessary information to
extract F̃z=p. With fixed z and p2, we can extract F̃t=z=p as a
function of pz ¼ k from the following conditions:

Tr½γtΛγt �jp¼ðk;k;0;0Þ ¼ F̃tð0Þ;

Tr½γxΛγt �jp¼ðk;0;0;kÞ ¼
1

2
F̃pð0Þ;

Tr½γzΛγt �jp¼ðk;0;0;kÞ ¼ zkF̃zð0Þ;
Tr½γtΛγt �jp¼ðk;0;0;kÞ ¼ F̃tðkÞ;

Tr½γtΛγt �jp¼ð0;0;k;kÞ ¼ F̃tðkÞ þ
1

2
F̃pðkÞ;

Tr½γzΛγt �jp¼ð0;0;k;kÞ ¼ þzkF̃zðkÞ þ
1

2
F̃pðkÞ: ðA3Þ

First of all, Fig. 13 shows the ratio F̃tðk; zÞ=F̃tð0; zÞ
using overlap and clover fermions, respectively. For the
overlap fermion case (left panel), the values at different
lattice spacings are consistent with each other given the
statistical uncertainties. This suggests that the linear diver-
gence here is insensitive to k. However, in the clover case
(right panel), it seems that there is an additional lattice
spacing-dependent phase angle, which makes the imagi-
nary part to be larger at smaller lattice spacings.
Then, we turn to the p-slash term F̃p with pz ¼ 0. In the

upper left panel of Fig. 14, we can see that the real part of
F̃pð0; zÞ=F̃tð0; zÞ for overlap fermions converges at small
lattice spacing when z ≤ 0.4 fm, while discretization errors
lead to deviations at larger lattice spacings. At large z, it
seems that the discretization error becomes much smaller,
and then, the values for different lattice spacings approach
one another, while for the smallest lattice spacing there are
obvious deviations. Since F̃pð0; zÞ is more than an order of
magnitude smaller than F̃tð0; zÞ, it is understandable that
discretization errors can have a larger impact and that its
competition with the linear divergence can generate a
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complicated lattice spacing dependence. Comparing to the
overlap fermion case, the clover fermion case shown in the
upper right panel can be explained similarly: the linear
divergence effect in the clover case is much larger as
suggested by the lattice spacing dependence at large z, and

therefore, the remnant linear divergent pattern is also
visible at small z.
The cases with pz ≠ 0 are much more complicated, for

both overlap and clover fermions as is shown in the lower
two panels of Fig. 14. The same arguments about the

FIG. 13. The F̃tðk; zÞwith nonzero momentum along the Wilson link as function of z and normalized by F̃tð0; zÞ, for overlap or clover
fermions on HISQ sea ensembles. The darker data points show the real part, and the lighter ones show the imaginary part.

FIG. 14. The F̃pð0; zÞwith zero momentum along the Wilson link (upper panels) and that with momentum k ¼ 10π=L (lower panels),
normalized by F̃tð0; zÞ, using the same simulation setup as Fig. 13.
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competition between the linear divergence and discreti-
zation errors also apply here.
The last part is the zptF̃zð0; zÞ term which can be

understood using similar arguments. As shown in the
upper panels of Fig. 15 for the pz ¼ 0 case, the values are
about 30% of Ft. Then, the linear divergence dominates
the lattice spacing dependence, but for pz ≠ 0, shown in
the lower panel, the values are much smaller (∼10% of
Ft). Then, both linear divergence and discretization error
contribute equally to the lattice spacing dependence.
Thus, using the RI/MOM renormalization constant

defined in Eq. (A2) with the p-slash projection will
introduce an additional lattice spacing dependence due
to the linear divergence and discretization errors, which can
result in a complicated continuum extrapolation.
Eventually, in Fig. 16, we show the RI/MOM renor-

malized pion matrix elements hrπ;γtðzÞ with the p-slash

projection and p ¼ 2πð0; 0; 5; 5Þ=L, for both overlap
fermions (upper left panel) or clover fermions
(upper right panel) on HISQ sea ensembles. The cases
with the minimum projection (the γt projector with
pz ¼ pt ¼ 0) are also presented in the two lower panels
for comparison. As in the left two panels, the difference
between hrπ;γtðzÞ at the smallest and largest lattice spac-

ings with the p-slash projection is much larger than that
for the minimum projection and overlap fermions. Thus,
it is not surprising that the clover case can behave even
worse, as is illustrated in the right two panels. While the
real part of hrπ;γtðzÞ using the p-slash projection is some-

how similar for different lattice spacings when
z < 0.8 fm, the imaginary part shows an obvious linear
divergence remnant which cannot be removed by pertur-
bative matching.

FIG. 15. Similar to Fig. 14 but for the F̃pð0; zÞ case.
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