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Abstract

We study the anomalous scale symmetry breaking effects on the proton mass in QCD due to quantum 
fluctuations at ultraviolet scales. We confirm that a novel contribution naturally arises as a part of the proton 
mass, which we call the quantum anomalous energy (QAE). We discuss the QAE origins in both lattice 
and dimensional regularizations and demonstrate its role as a scheme-and-scale independent component 
in the mass decomposition. We further argue that QAE role in the proton mass resembles a dynamical 
Higgs mechanism, in which the anomalous scale symmetry breaking field generates mass scales through 
its vacuum condensate, as well as its static and dynamical responses to the valence quarks. We demonstrate 
some of our points in two simpler but closely related quantum field theories, namely the 1+1 dimensional 
non-linear sigma model in which QAE is non-perturbative and scheme-independent, and QED where the 
anomalous energy effect is perturbative calculable.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

In relativistic quantum field theories, a bound state is an irreducible representation of Poincaré 
group characterized by its mass and spin, making it a natural question to ask if and how these 
two quantities can meaningfully be decomposed into different contributions. In non-relativistic 
quantum mechanics the mass is simply the sum of the masses of the individual components minus 
the binding energy which can be unambiguously decomposed into familiar kinematic energy and 
potential energy. Furthermore, in the macroscopic world, the binding energy effects on mass are 
entirely negligible and mass is just the sum of individual parts. In the opposite limit showcased in 
the electroweak theory, the masses of elementary particles arise entirely from their interactions 
with the Higgs potential, which acquires a vacuum condensate after the well-known spontaneous 
gauge symmetry breaking, or the Higgs mechanism [1].

In quantum chromodynamics (QCD), the fundamental theory of strong interactions, the de-
composition of proton mass and spin has been quite interesting for many years. While consensus 
seems finally to be reached with respect to spin, some controversy seems still ongoing for its 
mass. The original work by one of us [2,3] studied the decomposition of proton mass based on 
the QCD energy-momentum tensor (EMT) T μν which was split into trace and traceless parts. 
It was found in Refs. [2,3] that 1 of the proton mass can be attributed to the trace, a statement 
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which reminds of the virial theorem for non-relativistic systems. Moreover, a mass sum rule that 
contains quark and gluon kinematic energy terms, a quark mass term and an anomalous term 
has been proposed. These and related results inspired new variants of the mass sum rule [4–7]
and interesting discussions on the subject in the literature [8–10]. In our view, the controversy 
is not about mathematical consistency of the different suggestions but on their phenomenolog-
ical relevance. The latter debate could be ended if, e.g. the quantum anomalous energy (QAE) 
contribution could be unambiguously extracted from heavy-quarkonium electroproduction off 
a nucleon at threshold as is tried at Jefferson Lab and is on the physics program for the fu-
ture Electron-Ion Collider [11–13]. While these efforts are ongoing an alternative is provided 
by lattice QCD calculations. The masses for nucleon and other hadrons have been numerically 
calculated to such high accuracy [14–17] that the configurations have to contain all major effects 
contributing to it. Because lattice QCD evidence has thus reached comparable reliability as direct 
experiments it also suffices to determine the value for QAE in the nucleon on the lattice, similar 
to what was done in [18–21].

Despite this progress in understanding the mass structure of a proton, open questions re-
mains, in particular concerning the anomalous term, see e.g. Ref. [7]. Let us mention that the 
connection between the trace anomaly and the nucleon mass as well as the related low-energy 
theorems/effective theories have already been studied in the 70’s [22,23] and that this discus-
sion thus approaches its 50th anniversary. The identification of a piece of QCD Hamiltonian as 
anomalous contribution in [2] was based on these pioneering studies. In a recent paper [24], 
the authors have not only investigated the anomaly contribution to the QCD energy and argued 
that the quantum anomalous energy (QAE) is a meaningful part of the proton mass decompo-
sition but it has been suggested that the QAE mechanisms in QCD are very similar to those of 
Spontaneous Symmetry Breaking (SSB). Results for QED (quantum electrodynamics), QCD and 
large-N 1 + 1 non-linear sigma model were presented in support of this analogy. In the current 
paper, we provide a more detailed arguments and derivations of [24].

In section 2, we will first provide a general review to mass generation and dimensional trans-
mutation in QCD-like theories. We emphasize that the bare coupling constant that leads to the 
continuum limit is a function of the ratio between the ultraviolet (UV) cutoff and the physical 
scales. We show how renormalization group equation (RGE) and trace anomaly naturally appear 
as result of dimensional transmutation.

In section 3, based on the principles given in section 2 we derive the mass sum rule by studying 
the corresponding Ward identities in detail, paying special attention to regularization and renor-
malization. We first work in lattice QCD, in which the derivation was first made in Refs. [4,25], 
papers which, unfortunately, seem to have been largely forgotten for many years. We then gen-
eralize the derivation to continuum regularization such as dimensional regularization. We show 
that while the “naive” Hamiltonian 1

2 ( �E2 + �B2) is scheme dependent, the decomposition into 
traceless and trace part is scheme independent. We identity the operators corresponding to the 
traceless and trace parts in different schemes and argue that it is the traceless part that can be nat-
urally interpreted as the quark-gluon kinematic energy. We also comment on the renormalization 
of QCD EMT and compare the results in [6,7] to the more familiar renormalization properties of 
twist-2 quark and gluon operators [1].

In section 4, we explicitly demonstrate the results of the previous section in 1 +1 dimensional 
O(N) non-linear sigma model in the solvable large N limit that exhibits asymptotically freedom, 
dimensional transmutation and dynamical mass generation. We show that the quantum anoma-
lous energy contributes half of the mass of the pion-like bosons in such theories, consistent with 
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the “virial theorem” stated above. We study the mass-sum rule in different schemes and show that 
a proper mass-sum rule does requires a scheme and scale independent anomalous contribution.

In section 5, we study the anomalous energy contribution in QED. We show that although 
there is no dynamical scale generation, there does exists a QAE contribution to the electron pole 
mass, as well as to the binding energy of a hydrogen atom in the presence of a background field. 
In particular, the famous O(α5) Lamb-shift receives a trace anomaly contribution which we will 
calculate.

In section 6, we relate the QAE contribution to the proton mass to a dynamical Higgs effect. 
We compare the more standard Higgs mechanism for the fermion mass generation to the mass 
generation in the 1+1 non-linear sigma model. We show that in both cases, the scalar part of the 
Hamiltonian is proportional to the Higgs field, and that mass generation can be measured either 
through the mass term due to the scalar vacuum condensate or through the response of the Higgs 
field in the presence of other fields. We then generalize to QCD and relate the QAE contribution 
to the Higgs-like coupling of scalar resonances to the proton. In the chiral limit and assuming 
the dominance of the lowest glueball, the glueball-proton coupling is proportional to the proton 
mass, similar to the Higgs coupling which has been tested at the LHC [26–28]. We also discuss 
the pion case. The results are consistent with an effective theory [29] for the lowest glueball and 
its coupling to pions, which is also presented here.

Finally, we draw conclusions and give an outlook. Some technical details are presented in 
Appendices.

2. Review on scale generation, RGE and trace anomaly

In this section we review the mass generation and dimensional transmutation in QCD-like 
theories. We emphasize that in order to take the continuum limit, the coupling constant of a 
cutoff theory must depends on the UV cutoff and the physical mass scales of the theory in con-
tinuum non-trivially. We show how the trace-anomaly naturally arises as a consequence of this 
scale-dependency by providing a path-integral based derivation of the trace anomaly T μ

μ and the 
renormalization group equation (RGE) for two-point functions. The advantage of this derivation 
is that it does not require the Lorentz invariance in prior and can be applied to lattice-like regu-
larization as well. In section 3 the same method will be used to investigate the mass-sum rules 
and to derive the QAE.

2.1. Pure SU(3)

To simplify the discussion let us first consider pure SU(3) Yang-Mills (YM) theory. At classi-
cal level the theory is massless and has conformal symmetry. As such, it has no mass scale. Any 
bound state mass must be either zero or infinity, making this theory not very interesting.

However, the conformal symmetry of SU(3) YM theory is broken at the quantum level, where 
the theory must be defined as limit of a theory with an UV cutoff, such as lattice gauge theory 
in which the cutoff is given by lattice spacing a. In the cutoff theory, the correlation length ζ
(assumed to be finite) for a gauge-invariant correlation function 〈O(x)O(0)〉c = 〈O(x)O(0)〉 −
〈O〉2 ∼ e−x/ζ is a dimensionless function of the bare coupling constant g0, ζ/a = f (g0). The 
operator O can be chosen to be F 2 or some other gauge-invariant operator. One expects ζ to 
be the inverse of the glueball mass M , ζ = 1/M in the continuum limit a → 0. Therefore, one 
has to tune g0 such that f (g0) = 1/Ma goes to infinity as a → 0. This implicitly introduces a 
physical scale M into the problem and fixes g0 = g0(1/Ma) as a function of 1/Ma. This process 
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has been called “dimensional transmutation” [30]. In fact, one expects from perturbation theory 
that as a → 0, g0(1/Ma) approaches 0 logarithmically (asymptotic freedom). The existence of 
a finite correlation length at small g0 that approaches ∞ in unit of a as g0 → 0 is a genuinely 
non-perturbative effect and one of the most important properties of the QCD vacuum.

For pure YM theory, since there is only one free dimensional parameter, the mass scale M , 
which can be extracted from any two-point function, actually determines the full theory. All other 
physical scales of the theory are proportional to M . Among them there are not only masses, 
but also the string tension σ = cM2 that characterizes the linear q̄q confinement potential. The 
number c only depends on the SU(3) group. Despite this relation, we should point out that in 
general the confinement and spontaneous mass generation is not necessarily related. The con-
fining phase is characterized by non-vanishing string tension or area law for Wilson-loops. But 
there is also the standard Higgs phase in which color magnetic charges are confined while color 
electric charges only got screened, characterized by area law for ’t Hooft loops [31]. And both of 
the two phases are gapped with finite correlation lengths. Nevertheless, it is widely believed that 
the Higgs and confining phase are smoothly connected [32] and we will explore the similarity 
between dimensional transmutation and Higgs mechanism in Sec 3.1.

2.2. SU(3) plus fermions

When one adds fermions with Nf flavors, which we assume to be massless, the classical 
theory has the UA(1) symmetry that is known to be broken by the famous UA(1) anomaly, as 
well as the SU(Nf )L × SU(Nf )R chiral symmetry for Nf > 1 that gets spontaneously broken 
down to SU(Nf )V by the chiral condensate. In the strictly massless case, the chiral condensate 
is proportional to the cubic power of the scale M ∼ �QCD introduced before. The same mass 
scale M is thus related to three different phenomena: mass scale generation, color-confinement 
and spontaneous chiral symmetry breaking. The contribution from instantons explains the chiral 
symmetry breaking quite well in the instanton-liquid model [33,34], and has been supported by 
lattice results [35]. While instantons might account for a large portion of the hadron mass [10], 
it is known [36] that they can not explain confinement. On the other hand, the confinement 
has been used the main physical mechanism to generate mass for hadrons in the MIT bag 
model [37].

When one includes non-zero fermion masses, say for degenerate u and d quarks, there are two 
parameters of the theory: the bare coupling constant g0 and the bare quark mass m0. One must 
fix them by two physical mass scales, namely M1 and M2 = mπ . One then has the dimensional 
transmutation relations m0 = mπf (M1a, mπa) and g0 = g0(M1a, mπa).

Due to the presence of mass scales, the naive scaling invariance of the classical theory is bro-
ken in the quantum version of the theory. Nevertheless, one still has the extended scale invariance 
under simultaneous rescaling of space-time and physical mass scales. The Ward identity of this 
invariance is the RGE or the trace anomaly, as we will discuss next.

2.3. Trace anomaly from anomalous scale symmetry breaking

After introducing the dimensional transmutation, in this section, using the Euclidean path-
integral formalism, we provide a derivation of the trace anomaly and the RGE for two-point
functions. For simplicity we only consider pure-YM like theories. The methods here will be 
used later to derive QCD Hamiltonian responsible for the mass sum rule and the QAE. Our 
convention for Euclidean coordinates is (x4, �x) where x4 is the imaginary time (also in 2D case 
5



X. Ji, Y. Liu and A. Schäfer Nuclear Physics B 971 (2021) 115537
discussed later). We consider a general interpolating operator O(x4, �x) for a given hadron, which 
for simplicity we assume to be renormalization group (RG) invariant. We study the two-point 
function

G(T , �p) = 〈O(T , �p)O(0,− �p)〉 =
∫

Dφe
− 1

g2
0
S[φ]

O(T , �p)O(0,− �p)∫
Dφe

− 1
g2

0
S[φ] (2.1)

with some given time T . In this expression, φ is a spin zero field and 1
g2

0
S(φ) is the Euclidean 

action. It can be written as

S[φ] =
∫

d4xS(φ(x))|�UV , (2.2)

where we use the symbol |�UV to denote usage of an UV regulator with value �UV. As we have 
emphasized, we have g0 = g0(�UV/M) where M is the physical scale of the theory, which we 
choose to be the mass M of the hadron created by O to guarantee the finiteness of the results as 
we take the limit �UV → ∞. At large T , the two-point function G(T , �p) ∼ e−MT is controlled 
by the mass of the hadron. Thus we can extract the hadron mass using:

M = − lim
T →∞

1

T
lnG(T , �p). (2.3)

In the following we only consider the rest frame, i.e. �p = 0. With these definitions we can derive 
the RGE and trace anomaly. Let us consider the scale transformation x → x′ = λx and φ′(x′) =
λ−dφ(x) where d is the naive mass dimension of the theory. In terms of φ′ and x′ the two point 
function becomes:

G′(T , �0) = 〈O ′(T , �0)O ′(0, �0)〉 = λ−2dO+3G(λ−1T ,0) , (2.4)

where dO is the naive mass dimension of the operator O and +3 comes from the Fourier trans-
formation to momentum space. On the other hand, the action for φ′(x′) becomes

S[φ′] =
∫

d4x′S(φ′(x′))|λ−1�UV
, (2.5)

which leads to the identity

λ−2dO+3G(λ−1T , �0) =
∫

Dφ′e−g−2
0

(
�UV

M

)∫
d4x′S(φ′(x′))|

λ−1�UV O ′(T , �0)O ′(0, �0)∫
Dφ′e−g−2

0

(
�UV

M

)∫
d4x′S(φ′(x′))|

λ−1�UV

. (2.6)

If it were not for the � dependence of the UV regulator, the right hand side would be 
the same as G(T , �0). The presence of �UV results in a λ dependence from the mismatch 
between g0(�UV/M) and λ−1�UV. In fact, in terms of �′

UV = λ−1�UV, one simply has 
g0(�

′
UV/(λ−1M)). Thus, the equation is equivalent to

λ−2dO+3G(λ−1T , �0) =
∫

Dφ′e
−g−2

0

(
�′

UV

λ−1M

)∫
d4x′S(φ′(x′))|�′

UV O ′(T , �0)O ′(0, �0)

∫
Dφ′e

−g−2
0

(
�′

UV

λ−1M

)∫
d4x′S(φ′(x′))|�′

UV

. (2.7)

Now, all λ dependence has been absorbed into g0. By taking one derivative with respect to λ and 
evaluating it at λ = 1, the equation reads
6
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(
−2dO + 3 − T

d

dT

)
G(T , �0) =

〈2β(g0)

g3
0

∫
d4xS(φ(x))O(T , �0)O(0, �0)

〉
c
. (2.8)

Here

β(g0) = �UV
dg0(�UV/M)

d�UV
(2.9)

is the bare beta function and the 〈〉c denotes the connected part. By comparing with the Ward-
identity for scale-transformation (Eq. (42) in Ref. [3])(

−2dO + 3 − T
d

dT

)
G(T , �0) = 〈

∫
d4xT μ

μ (x)O(T , �0)O(0, �0)
〉
c
, (2.10)

one can identify the trace part T μ
μ of the EMT as

T μ
μ (x) = 2β(g0)

g3
0

S(φ(x)) . (2.11)

The derivation here also shows that the operator 2β(g0)

g3
0

S(φ(x)) must be RG invariant and scheme 

independent.
One further notice that at large T � M , Eq. (2.8) is dominated by linear terms in T

MT G(T ,0) = T
〈2β(g0)

g3
0

∫
d3 �xO(T , �0)S(φ(0, �x))O(0, �0)

〉
c
. (2.12)

Thus one obtains the scale-setting relation

M = lim
T →∞

〈 ∫
d3 �xO(T , �0)T

μ
μ (0, �x)O(0, �0)

〉
c

〈O(T , �0)O(0, �0)〉
= 〈 �P = 0| ∫ d3 �xT

μ
μ (�x)| �P = 0〉

〈 �P = 0| �P = 0〉 . (2.13)

Here we use | �P = 0〉 to denote the lightest hadron state created by the interpolating field O .
To summarize, in this section we have provided a review of the far-reaching consequences of 

dimensional transmutation in QCD-like theories. Starting from the path-integral representation 
of the theory with a generic UV cutoff, it has been shown that as a result of the scale-dependency 
of the bare coupling constant, a non-vanishing scalar field naturally emerges in the continuum 
limit and can be identified as the trace of the energy-momentum tensor. We should mention that 
although all the results in this section are well-known, our derivation of the trace-anomaly has 
the advantage that it does not require Lorentz-invariance in prior and can be applied to lattice-
like regularizations as well. In the next section the same method will be adopted to study the 
Hamiltonian-based mass sum rules.

3. Quantum anomalous energy and mass sum rule

To derive a mass sum rule, we need to examine the traditional derivation of the EMT, in par-
ticular, the Hamiltonian density T 00 more carefully in the presence of a regulator. The standard 
way to obtain the EMT is to study the change of the Lagrangian under an infinitely small space-
time transformation xμ → xμ + δxμ(x). In the presence of the cutoff, this shift could potentially 
change the UV cutoff and extra attention must be paid. For example, the scale transformation 
7
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changes a → λa and as we have seen in the previous section, the λ dependence of a can be 
absorbed into g0, resulting in the trace anomaly. In this section we show that individual compo-
nents of T μν such as T 00 in the cutoff scheme can also suffer from such effects, leading to an 
anomalous contrition to the mass sum rule.

As in the previous section, let’s consider the two point function G(T , �0). We would like to 
derive the mass sum rule as a Ward identity for the following transformation:

x′
4 = λx4, (3.1)

φ′(x′
4, �x) = φ(x4, �x) . (3.2)

The two point function in terms of the φ′ field then becomes G(λ−1T , �0). On the other hand, 
the same two point function can be obtained from the functional integral over the action for φ′, 
which can be written in the generic form:

S[φ′] = 1

g2
0

∫
d4x′ (λSτ (φ

′(x′)) + λ−1Ss(φ
′(x′))

)
λ−1�UV,�UV

. (3.3)

Here Sτ (φ
′(x′)), Ss(φ

′(x′)) can be roughly identified with 1
2F 4iF4i = − 1

2E2, 1
4F ijFij = 1

2B2, 
respectively. The symbol λ−1�UV, �UV indicates that the UV cutoff in the x4 direction has 
been modified to λ−1�UV, while in the spatial direction it remained as before. If there were no 
λ dependence of the cutoff, following the same logic as before, evaluating one derivative with 
respect to λ and taking the large T limit, one would end up with the following sum rule:

M =
〈 �P = 0| 1

g2
0

∫
d3 �x

[
Ss(φ(0, �x)) − Sτ (φ(0, �x))

]
| �P = 0〉

〈 �P = 0| �P = 0〉 . (3.4)

This would amount to the “naive” Hamiltonian

Hc = 1

g2
0

∫
d3 �x

[
Ss(φ(0, �x)) − Sτ (φ(0, �x))

]
. (3.5)

However, due to the possible λ dependence of the cutoff, there can be an anomalous contribution 
Ha to H . In the following subsections we investigate this Ha for different regulators.

3.1. Lattice and cutoff regularization

In this subsection we investigate the lattice regularization in more detail. We restrict ourselves 
to the Wilson action for pure YM theory and stay in the infinite volume limit. In terms of the link 
variables Uμ(x), the standard Wilson action reads:

S[U ] = − 1

g2
0

∑
x

∑
μν

TrPμν(U,x) , (3.6)

in which we sum over the trace of the Wilson-loop Pμν(U, x) for the elementary plaquettes in 
the μν plane at position x. Pμν(U, x) is defined as the product of the link variables along the 
boundary of the plaquette. Neglecting the effects of scale transformations, on which we will focus 
in this section, in the limit of an infinitesimal a one gets Uμ(x) = e−iaAμ(x) and Pμν(U, x) =
e−ia2Fμν(x) and thus − 

∫
d4x 1F 2 for the action in the continuum.
4

8
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Given this information, let us construct the rescaled version of the theory, equivalent to

S[φ′] = 1

g2
0

∫
d4x′ (λSτ (φ

′(x′)) + λ−1Ss(φ
′(x′))

)
λ−1�UV,�UV

, (3.7)

where the correlation length in the imaginary time direction is rescaled by a factor λ. To avoid 
taking a derivative with respect to the cutoff, one absorbs the λ dependence into the parameters 
of the action which gives

S[φ′] = 1

g2
0(�UV/M,λ)

∫
d4x′ (λSτ (φ

′(x′)) + λ−1Ss(φ
′(x′))

)
�UV

. (3.8)

This expression is equivalent to expression (3.7). Our task is thus reduced to determining the λ
dependence of g0.

In lattice regulation, the above suggests to investigate the action Sλ

Sλ[U ] = − 1

g2
0

∑
x

(
λPτ (x) + 1

λ
Ps(x)

)
, (3.9)

where Pτ contains the sum over the temporal plaquettes in the (x4, xi) plane and Ps over all 
purely spatial plaquettes. This action has already been investigated in Ref. [38]. Below we pro-
vide a brief introduction to its properties. Naively, expanding to leading order in a, it seems that 
Eq. (3.9) is already sufficient to produce the required rescaling in x4 direction. However, due to 
the presence of a hard cutoff, the loop integral of the λ dependent propagators can not be simply 
rescaled back by x4 → λ−1x4, e.g.,∫

p2≤�2

d4p

(2π)4

1

λp2
4 + λ−1 �p2 + λ−1m2

�=
∫

p2≤�2

d4p

(2π)4

1

p2 + m2 . (3.10)

Therefore, additional λ dependencies get introduced by loop integrals that must be compensated 
by a change in g0.

Non-perturbatively, this point can be argued in the following way. One notices that since all 
the field variables and coupling constants are dimensionless, what really characterizes the theory 
are the correlation lengths ζτ in temporal and ζs in spatial directions, measured in natural lattice 
units. Both of them are functions of g0 and λ. As g0 → 0, one expects that both approaches ∞, 
but that their ratio approaches λ:

ζτ = λf (g0, λ) , (3.11)

ζs = f (g0, λ) . (3.12)

In order for the continuum limit to be just a rescaled version of the original theory, one must 
identify f (g0, λ) = 1

Ma
. As a result, we conclude that g0 in Eq. (3.9) must be λ dependent,

g0 = g0(Ma,λ) , (3.13)

for the continuum limit of the theory defined by Eq. (3.9) to be given simply by rescaling. This is 
equivalent to stating that the physical scale remains the same, whereas the cutoff in x4 direction 
is rescaled, which is the viewpoint of Ref. [38]. It has been furthermore proven in that paper that 
the λ derivative of g0 is 1

4 of the beta function

dg0(aM,λ)

dλ
|λ=1 = −1

4
a
dg0(Ma)

da
= 1

4
β(g0) . (3.14)
9
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We will provide a derivation of Eq. (3.14) in Appendix A. As one can see from the derivation, 
the result relies crucially on the lattice symmetry and that the space-time dimension is 4. In d
dimensions the above relation can be generalized with 1

4 replaced by 1
d

.
With help of Eq. (3.14), by comparing the λ derivatives of two point functions in a way similar 

to Sec. 2.3, the mass-sum rule can be obtained by combining Eq. (A.3) and Eq. (3.14):

M = 〈 �P = 0|Hc + Ha| �P = 0〉
〈 �P = 0| �P = 0〉 , (3.15)

where Hc is given by the lattice QCD version of Eq. (3.5)

Hc = 1

g2
0

∑
�x

(Pτ (0, �x) − Ps(0, �x)) , (3.16)

and the quantum anomalous energy (QAE) contribution reads

Ha = β(g0)

2g3
0

∑
�x

(Pτ (0, �x) + Ps(0, �x)) . (3.17)

Comparing with the tensor decomposition of the Hamiltonian [2,3],

H = HT + HS =
∫

d3 �xT 00
T (�x) + 1

4

∫
d3 �xT μ

μ (�x) , (3.18)

where T μν
T is the traceless (tensor) part of the EMT, one found that in lattice regularization the 

Hc equals to the tensor part HT of the Hamiltonian, while Ha equals to the scalar part HS of the 
Hamiltonian

HT = Hc, HS = Ha . (3.19)

The tensor part of the Hamiltonian HT contributes 3
4 of the hadron mass, while the scalar part 

contributes 1
4 , in consistency with the virial theorem [2]. It is not difficult to see that the derivation 

can be adopted to generic cutoff schemes that preserve the lattice symmetry.
We shall also mention that if one maintain a generic λ in the derivation above, then the Hamil-

tonian has the form

H = 1

g2
0

∑
�x

(−λ2Pτ (0, �x) + Ps(0, �x)) + 2λ

g3
0

dg0

dλ

∑
�x

(
λ2Pτ (0, �x) + Ps(0, �x)

)
. (3.20)

Eq. (3.20) will be used later in Sec. 4.

3.2. Dimensional regularization and renormalization of EMT

In dimensional regularization (DR), the spatial dimension has been changed to D − 1 = 3 −
2ε, while the temporal direction remains one-dimensional. Therefore, the rescaling in temporal 
direction (3.1) will encounter no conflict with the UV-cutoff and we expect that rescaled action 
agrees with the naive one

S = 1

4g2
0(ε, gr (

M
μ

))μ2ε

∫
dx4d3−2ε �x

(
2λF 4iF 4i + λ−1F ijF ij

)
, (3.21)

without any λ dependence in g0. As a result, the naive Hc = 1
2

( �E2 + �B2
)

is the full-Hamiltonian 
and contains both the scalar and tensor parts HT and HS . A general lesson that we will learn from 
10
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the non-linear sigma model in Sec. 4 is that the finner the cutoff in the temporal direction, the 
larger the proportional in the full Hamiltonian carried by the “naive” one.

The classical-looking Hamiltonian mixes the scalar and tensor contributions can also be 
explained by investigating the Lorentz symmetry of the theory. The dimensional-regularized 
theory has a SO(1, 3 − 2ε) symmetry group instead of the SO(1, 3) in the continuum. In 4-

D, 1
2

( �E2 + �B2
)

is the 00 component of a traceless rank two tensor −FμρF ν
ρ + gμν

4 F 2, which 
remains true in d-dimension with a factor of 1/4 in the second term. However, in 4 − 2ε di-
mensions the traceless tensor is −FμρF ν

ρ + gμν

4−2ε
F 2 and differs from the EMT in d-dimension 

by an “evanescent” operator proportional to εF 2 [22,39]. After taking the ε → 0 limit, it is 
−FμρF ν

ρ + gμν

4−2ε
F 2 becomes the tensor part in 4-D, while εF 2 remains finite despite the ε in 

front due to the presence of 1
ε

ultraviolet poles and becomes the trace-anomaly. This is a good 
demonstration of the fact that the difference in SO(1, 3) and SO(1, 3 − 2ε) combined with the 
presence of UV divergence has far reaching consequences for renormalization of tensorial oper-
ators and their traces [39], in particular, the EMT for QCD as we will review now.

Notice that although the discussions up to here are only for pure-YM, one can generalize them 
to the case of full QCD similarly. In the notation of [6,7], the EMT for QCD reads

T μν = O
μν
1 + O

μν
2

4
+ O

μν
3 , (3.22)

with the operators:

O
μν
1 = −FμρF ν

ρ , (3.23)

O
μν
2 = gμνF 2 , (3.24)

O
μν
3 = ψ̄iγ (μDν)ψ , (3.25)

O
μν
4 = gμνmψ̄ψ . (3.26)

Although T μν is UV finite after summing over all the terms, none of the individual operators 
above have simple renormalization property, due to the fact that they contain both scalar and ten-
sor representations of the Lorentz group SO(1, 3 −2ε). To simplify the renormalization property 
and fully utilize the Lorentz structure, a standard way to proceed [1–3] is to decompose them into 
the tracefull and traceless parts according to the Lorentz group SO(1, 3 − 2ε) and renormalize 
separately

T μν = T
μν
S + T

μν
T , (3.27)

where

T
μν
T =

(
O

μν
1 + O

μν
2

4 − 2ε

)
+

(
O

μν
3 − O

μν
4

4 − 2ε

)
, (3.28)

T
μν
S = gμν

4 − 2ε

(
mψ̄ψ − 2ε

4 − 2ε
F 2

)
, (3.29)

are tensor and scalar parts of the EMT in 4 − 2ε dimensions. Under renormalization, operators 
belonging to tensor and scalar representations do not mix with each other and become the tensor 
and scalar operators for the renormalized theory in 4-D after taking ε → 0 in the end. For more 
details regarding the standard way of renormalizing the energy-momentum tensor, see Ref. [3].

Instead of renormalizing the trace and traceless parts of EMT separately, in Ref. [6,7]
the renormalization is performed for the operators O1, O2, O3 by directly subtracting the 1
ε

11
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poles [39] without separating the tensor and scalar contributions. As far as renormalization is 
concerned, this is perfectly fine. However, this renormalization procedure does not respect the 
Lorentz symmetry and the resulting finite operators O1,R , O2,R , O3,R mixes different Lorentz 

representations. In particular, the renormalized operator 1
2

( �E2 + �B2
)

R
in this renormalization 

procedure mixes the tensor and scalar representations of the Lorentz group and is physically 

less useful. In contrary, the notation 1
2

( �E2 + �B2
)

R
has commonly been reserved for the 00-

component of the renormalized traceless tensor [2,40,41] and can be measured directly through 
deep-inelastic scattering as the momentum fraction carried by gluons. More importantly, the 
non-standard renormalization scheme advocated in Refs. [6,7] hides the scheme and scale-
independent QAE contribution in the mass.

To summarize, in the subsection we have shown that the “naive” Hamiltonian in dimensional 
regularization mixes the scalar and tensor contribution from two viewpoints: one is based on 
time-rescaling property and another is based on investigating the Lorentz invariance. In the next 
subsection we will argue that a maximally scheme-independent mass sum rule must preserve the 
Lorentz structure and a clear separation between the tensor and scalar energy contributions.

3.3. Scheme-independent mass decomposition

In the previous two subsections, we argued that the operator form of the mass sum rule is 
sensitive to the regularization scheme. In a cutoff scheme such as the symmetric lattice scheme 

for pure YM, we obtain the classical-looking term Hc = ∫
d3x 1

2g2
0

( �E2 + �B2
)

as well as the 

anomalous term Ha , while in DR we only get the “naive” one. In other regularization schemes 
such as the asymmetric lattice scheme, we get another linear combination.

Thus, the contribution of the “naive” Hamiltonian Hc to the nucleon mass is scheme depen-
dent and has not the clear physical interpretation one would usually expect. However, what we 
are interested is a maximally scheme independent decomposition of the nucleon mass. As was 
already discussed in [2,3], the decomposition of the Hamiltonian into a traceless (scalar) and 
trace (tensor) parts is such, H = HT + HS . A crucial point is that the trace and trace-less parts 
of EMT correspond to two different irreducible representations of the Lorentz group. Therefore, 
this separation is unique and independent of any interpretation issue. In both dimensional and 
lattice regularization, the trace part is

HS = Ha = β(g)

2g3

∫
d3 �xS(0, �x) , (3.30)

while the expressions for the traceless part HT look different in different schemes but give iden-
tical contributions to the hadron mass

HT (lattice) =
∫

d3 �x
2g2

0

( �E2 + �B2) ,

HT (DR) =
∫

d3−2ε �x
g2

0μ2ε

(
2 − 2ε

4 − 2ε
�E2 + 2

4 − 2ε
�B2

)
,

〈M|HT (lattice)|M〉 = 〈M|HT (DR)|M〉 = 3

4
M . (3.31)

It is the traceless part (3.31), but not the naive Hamiltonian that naturally corresponds to the 
gluon kinematic energy. The trace part of the energy momentum tensor corresponds to higher 
12
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twist operators and thus cannot describe the energy contribution of the twist-two gluon parton 
distribution function, i.e. its second Mellin moment 

∫
dxxfg(x) which can be obtained by ex-

trapolating experimental data and direct lattice calculations.
Generalizing to the case of full QCD, one has the following decomposition in DR:

H = HT + HS ≡ (Hg + Hq) + Hm + Ha , (3.32)

HS = Ha + 1

4
Hm , (3.33)

HT = (Hg + Hq) + 3

4
Hm , (3.34)

where

Ha = 1

4

∫
d3 �x

(
β(g)

2g
F 2 + γmmψ̄ψ

)
R

, (3.35)

Hm =
∫

d3 �x(mψ̄ψ)R , (3.36)

Hg + Hq =
∫

d3 �x
(

2 − 2ε

4 − 2ε
�E2 + 2

4 − 2ε
�B2 + ψ̄(−i �α · D)ψ

)
R

, (3.37)

in which the lower-script R denotes renormalized version. Of these Ha , Hg + Hq and Hm are 
separately scale invariant, while Hg and Hq are not. The decomposition preserves the Lorentz 
symmetry and can be obtained by looking at the 00 components of the EMT renormalized using 
the standard methods in Refs. [1–3] as discussed in Sec. 3.2.

Let’s now consider the extraction of all the matrix elements in our decomposition. We first 
denote the nucleon sigma term as

σN = 〈P |mψ̄ψ |P 〉
2MN

. (3.38)

We then notice the relation

〈P |T μν
T |P 〉 = 2

(
P μP μ − gμν

4

)
(xq(μ2) + xg(μ

2)) (3.39)

which relates the matrix element of a twist-2 operator to moments of gluon and quark PDFs. The 
momentum fractions simply satisfy xq(μ2) + xg(μ

2) = 1. Given these, we define quantities Mg , 
Mq , Mm and Ma by

Mg + Mq = 〈Hg + Hq〉 = 3MN

4
(xq(μ2) + xg(μ

2)) − 3σN

4
, (3.40)

Mm = 〈Hm〉 = σN , (3.41)

Ma = 〈Ha〉 = MN − σN

4
, (3.42)

where MN is the nucleon mass. Therefore, the anomalous energy for the nucleon equals 1
4 of the 

nucleon mass minus the nucleon sigma term σN . Essentially, two scale invariant quantities, MN

and σN are required. It is interesting to see that one has Mg + Mq = 3Ma , a result of the virial 
theorem.

To summarize, in this section we have reviewed the mass sum-rule in various regularization 
schemes. We have shown that due to the presence of UV cutoff in the temporal direction, the 
13
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Hamiltonian of QCD-like theories in lattice cutoff requires a term equivalent to the QAE in 
addition to the “classical” one. We have shown that in dimensional regularization, the anomalous 
energy is hidden in the naive classical-looking Hamiltonian and a scheme independent mass 
decomposition must preserve the Lorentz structure and treat the scalar and tensor contributions at 
different footing. We also commented on the renormalization of EMT in QCD. In the next section 
we use the non-linear sigma model in 1 +1 dimension as an example to further demonstrate these 
points.

4. Mass generation and trace-anomaly in the 1 + 1 dimensional non-linear sigma model

As illustration of the results in Sec. 3, we investigate in this section the mass decomposition of 
the 2-dimensional non-linear sigma model in the large N limit in detail [24]. We work exclusively 
in Euclidean formulation of the theory. The model [42,43] consists of an N component scalar 
field π = (π1, ...πN) normalized by 

∑N
a=1 πaπa = 1. The action reads

S = 1

2g2
0

∫
d2x(∂μπa)(∂μπa) . (4.1)

Here, g0 is the dimensionless coupling constant. This model is O(N) rotational invariant πa →
Oabπb . A perturbative analysis of the model can be performed by using the parametrization 

π =
(

g0π
1, ...g0π

N−1,

√
1 − g2

0

∑N−1
i=1 π2

i

)
near the north pole which is identified with the 

perturbative vacuum. In this parametrization, the action for π1, ..πN−1 reads:

S =
∫

d2x
1

2

N−1∑
a=1

(∂μπa)(∂μπa) + g2
0

∑N−1
a=1,b=1(π

a∂μπa)(πb∂μπb)

2
√

1 − g2
0

∑N−1
i=1 π2

i

. (4.2)

The O(N) symmetry is broken to O(N −1) in the perturbative vacuum and the remaining N −1
πas are massless Goldstone bosons. One then expands the square root and treats the resulting 
terms as perturbations. One can show that the resulting theory is renormalizable to all orders in 
g0, and that the theory is asymptotically free [42,43]. However, due to the infrared divergences in 
2d, the perturbative analysis fails to capture the vacuum structure of the theory. Instead of having 
N − 1 massless modes, one expects that the theory is gapped and dimensional transmutation 
occurs in a similar way as for QCD in 4d. The πa fields are all massive and the SO(N) invariance 
should be unbroken. But unlike QCD, there is no color charges in the theory that got confined. 
Here, we should notice that while there is quite convincing theoretical and numerical evidence 
that these statements are true, a formal proof is still missing, as far as we know.

In the large N limit of the theory, defined by taking N → ∞ with λ0 = g2
0N being fixed, 

the theory is exactly savable and one can use it as a tool to investigate the mass structure in 
asymptotically free theory with mass generation. We will first provide a self-contained review 
of the model in large N limit in Sec. 4.1, then investigate the mass structure of the model in 
Sec. 4.2-4.4. From the discussion in Sec. 2, the trace anomaly of the theory is given by

T μ
μ = β(g0)

g0

N∑
a=1

(
∂μπa∂μπa

)
, (4.3)

where the β(g0) is the beta function of the theory to be given later, which implies that the anoma-
lous energy term reads:
14
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Ha = β(g0)

2g0

∫
dx1

N∑
a=1

(
(∂1π

a)2 + (∂4π
a)2

)
. (4.4)

We will show that regardless of the regularization scheme, the operator form of Ha remains the 
same and contributes to half of the πa mass. On the other hand, we will show that the naive 
kinematic plus potential energy contribution T + V or Hc, similar to the 1

2

( �E2 + �B2
)

in gauge 
theory is sensitive to the regularization scheme and mixes the traceless and trace contributions in 
the case of DR. According to the discussions in Sec. 3.1 and 3.2, the explicit operator forms that 
reduce to the Hamiltonian H in the continuum limit is regulator dependent. However, the total 
contribution of H remains the same in all the regularization schemes.

4.1. Review of the large N limit of the model

For the convenience for our discussion here we present here a self-contained introduction to 
the solution in the large N limit defined similar to that of QCD as λ = g2

0N fixed while N → ∞, 
for more details see Ref. [42,43].

One first introduces an auxiliary field σ̂ and rewrites the action as:

S = 1

2g2
0

∫
d2x(∂μπa)(∂μπa) + i

∫
d2x

σ̂

2g2
0

(∑
a

πaπa − 1
)

. (4.5)

(By integrating out σ̂ , one recover the constraint 
∑

a πaπa = 1.) One then integrates out πa

instead and ends up with the following effective action for σ̂

S[σ ] = N

2
Tr ln(−∂2 + iσ̂ ) − i

2g2
0

∫
d2xσ̂

= N

(
1

2
Tr ln(−∂2 + iσ̂ ) − i

2λ0

∫
d2xσ̂

)
. (4.6)

At large N , one expects the action to be dominated by the saddle point at σ̂ = −im2 where m is 
the fundamental mass scale of the model that will become the mass of the πa fields as we will 
see. The saddle point satisfies the gap equation:∫

d2k

(2π)2

1

k2 + m2 = 1

λ0
, (4.7)

which determines the bare λ0 as a function of the mass m and the UV cutoff. To check the 
dominance of the saddle-point, one can expand the effective action around it σ̂ = −im2 +σ . The 
linear term vanishes due to the gap equation, and the quadratic term for σ reads

S2[σ ] = N

4
Tr

(
1

−∂2 + m2 σ
1

−∂2 + m2 σ

)
= N

2

∫
d2p

(2π)2 σ †(p)�−1(p)σ (p) (4.8)

where the Tr denotes the trace in coordinate or momentum space and the inverse propagator is:

�−1(p) =
∫

d2k

2(2π)2

1(
(p − k)2 + m2

) (
k2 + m2

) (4.9)

which is convergent and positive definite. At zero momentum, we have �−1(0) = 1
8πm2 . This 

guarantees the stability of the saddle point. One further notices that all the higher order terms for 
σ are proportional to N , therefore, after rescaling σ → 1√ σ , the action reads:
N
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Fig. 1. The Feynman rules for the sigma model. The solid line and dashed line represents the π and σ propagators, 
respectively.

S = NS0 + 1

4
Tr

(
1

−∂2 + m2 σ
1

−∂2 + m2 σ

)
+

∑
i≥3

1

N
i
2 −1

Si , (4.10)

and we obtain a systematic expansion in 1/
√

N . This shows the dominance of the large N saddle-
point.

Given the large N solution based on the auxiliary field, we move to the original fields πa

in Eq. (4.5). To leading order in N , m2πaπa is the mass term for πa . Therefore, the large N
saddle point indicates that the πa form a massive SO(N) vector multiplet in contrast to the 
SO(N − 1) multiplet obtained in the perturbative approach. All the higher order contributions 
can be generated from the following Feynman rules.

• The massive field πa → g0π
a represented by a solid line has the propagator δab

k2+m2 .
• The σ field represented by a dashed line has the propagator �(p). At zero momentum it 

reads �(0) = 8πm2.
• The interaction between two πa and one σ is represented by the vertex − i√

N
.

• The one-loop self-energy diagram for the σ propagator, as well as the one-loop tadpole 
diagrams for σ have to be discarded.

One can show that the resulting theory is renormalizable to all orders in 1
N

. There are three 
types of divergent diagrams. The two point function for π is quadratically divergent, the tadpole-
diagram for σ is logarithmically divergent and the σ −π vertex is also logarithmically divergent. 
These divergencies can be removed by corresponding charge and field renormalization, and the 
resulting theory is equivalent to the original nonlinear sigma model with a running 1

g2
0

beyond 

the leading order result. The Feynman rules for the theory are shown in Fig. 1.
After introducing the large N solution, we should mention that beyond the large N limit, the 

O(N) non-linear sigma model is widely believed to be integrable and has been investigated in 
Refs. [44,45]. Moreover, in the O(3) case, there are instanton solutions which has been suggested 
to be responsible for the mass generation [46]. It is interesting to combine the various viewpoints 
to produce a deeper understanding of the mass structure for the model. These are left for a future 
work.
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Fig. 2. The tree level diagram for the Hc and Ha operator insertions. The crossed circle represents a generic π -bilinear 
operator.

Fig. 3. The one-loop tadpole diagram for the Hc and Ha operator insertions. This diagram is leading in N because the 
two factors 1√

N
from the π -σ coupling cancels the factor N from the loop.

4.2. Mass decomposition in hard cutoff k2 ≤ �2
UV and lattice regularization

In this subsection we study the mass-decomposition in the hard cutoff k2 ≤ �2
UV and lattice 

regularization. We first consider the hard-cutoff. With this cutoff, λ0 = Ng2
0 is fixed by the gap 

equation Eq. (4.7)

1

g2
0N

=
∫

k2≤�2
UV

d2k

(2π)2

1

k2 + m2 = 1

4π
ln

�2
UV

m2 . (4.11)

As a result, the β function reads:

β(g0) = �UV
dg0

d�UV
= −Ng3

0

4π
. (4.12)

Therefore, the anomalous term Ha is:

Ha = −Ng2
0

8π

∫
dx1

N∑
a=1

(
(∂1π

a)2 + (∂4π
a)2

)
. (4.13)

According to the discussion in Sec. 3.1, in the symmetric cutoff the Hamiltonian has the form

H = Hc + Ha , (4.14)

Hc = 1

2

∫
dx1

N∑
a=1

(
(∂1π

a)2 − (∂4π
a)2

)
. (4.15)

We now evaluate the matrix element of Hc and Ha in the massive πa state |πa, �P = 0〉 at rest.
We first study Ha , more precisely, we calculate the forward matrix-element of Ha in the πa

state at rest. In the leading order of N there are two diagrams. The first one, shown in Fig. 2, is 
of tree level and the second one shown in Fig. 3 is of one-loop level. It is leading because the 
factor N from the loop cancels the factor ( 1√

N
)2 from the vertices. The diagram gives (note that 

k2 = (k4)
2 + (k1)

2):
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Ea = 1

2m

(
Ng2

0

4π
m2 + Ng2

0

8π
�(0)

∫
k2≤�2

UV

d2k

(2π)2

k2

(k2 + m2)2

)
. (4.16)

Using �(0) = 8πm2 one obtains

Ea = 〈πa, �P = 0|Ha|πa, �P = 0〉
〈πa, �P = 0|πa, �P = 0〉 = 1

2m

Ng2
0

4π
m2

(
1 − �(0)

2

∫
k2≤�2

UV

d2k

(2π)2

1

(k2 + m2)2

)

+ 1

2m
Ng2

0m2
∫

k2≤�2
UV

d2k

(2π)2

1

(k2 + m2)
. (4.17)

The first line vanishes due to the identity 1
2�(0) 

∫
d2k

(2π)2
1

(k2+m2)2 = 1, even in the presence of the 

regulator, while the second line equals m
2

2m
= m

2 after using the gap equation Eq. (4.7). Therefore, 
we conclude that

Ea = m

2
, (4.18)

in consistency with the virial theorem.
We then study the contribution Ec of Hc in the πa state. At leading order in N there are again 

two contributions given by the tree-level diagram in Fig. 2 and the one-loop diagram in Fig. 3. 
The tree level diagram can be easily calculated and contributes to m

2 , while the tadpole diagram 
contribution reads

Ec|Fig. 3 = 1

2m
N(− i√

N
)2�(0)

1

2

∫
k2≤�2

UV

d2k

(2π)2

(k4)
2 − (k1)

2

(k2 + m2)2 = 0 . (4.19)

Therefore, we conclude that in the cutoff scheme k2 ≤ �2
UV the kinematic energy, i.e. the ex-

pectation value of Hc, contributes half of the mass. Therefore the average of H equals to m, 
consistent with the fact that the πa field has mass m.

Similarly, the lattice cutoff can be treated using the same methods. The only difference is that 
∂2 becomes the lattice version of the Laplacian. The gap equation reads in lattice regularization

1

g2
0N

=
π
a∫

− π
a

dk4dk1

(2π)2

1

m2 + 2
a2 (2 − cosak4 − cosak1)

. (4.20)

With the notation A(k, a) = 2
a2 (2 − cosak4 − cosak1), �(p) is given by:

�−1(p, a) = 1

2

π
a∫

− π
a

dk4dk1

(2π)2

1

m2 + A(p − k, a)

1

m2 + A(k, a)
. (4.21)

It is straightforward to show that �(p, a) → �(p) as a → 0, therefore the propagator for the 
sigma field remains the same in lattice regularization.

These equations allow us to check whether all sum rules for the lattice cutoff are the same 
as for the hard cutoff k2 ≤ �UV in the continuum limit, which is the case. For example, the 
contribution Ha reads:
18
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Ea = 1

2m

Ng2
0

4π
m2

(
1 − �(0)

2

π
a∫

− π
a

d2k

(2π)2

1

(A(k, a) + m2)2

)

+ 1

2m
Ng2

0m2

π
a∫

− π
a

d2k

(2π)2

1

A(k, a) + m2 (4.22)

which is m2 thanks to the gap equation.

4.3. Mass decomposition in hard cutoff |k1| ≤ �UV

We then investigate the scheme in which we only impose a hard cutoff |k1| ≤ �UV in the spa-
tial direction while the k4 is unbounded. This regulator breaks the rotational invariance explicitly. 
Since the k4 integral can be rescaled freely, we expect that in this case the naive Hamiltonian Hc

term generates the complete hadron mass and

H = Hc . (4.23)

Most of above calculations remain valid. The gap equation reads

1

g2
0N

=
∫

|k1|≤�UV

d2k

(2π)2

1

k2 + m2 = 1

2π
ln

�UV

m
+ ln 2

2π
. (4.24)

Also the beta function remains the same. We first study the contribution of Ha. The diagrams for 
Ha are again given by Fig. 2 and Fig. 3. The total result reads

Ea = 1

2m

Ng2
0

4π
m2

(
1 − �(0)

2

∫
|k1|≤�UV

d2k

(2π)2

1

(k2 + m2)2

)

+ 1

2m
Ng2

0m2
∫

|k1|≤�UV

d2k

(2π)2

1

(k2 + m2)
, (4.25)

which can be shown to become m2 in the limit �UV → ∞ by using the gap equation.
We then study the contribution for H = Hc, the tree diagram remains the same and equals m2 , 

while the tadpole diagram becomes

Ec|Fig. 3 = 1

2m
N

(
− i√

N

)2
�(0)

1

2

∫
|k1|≤�UV

d2k

(2π)2

k2
4 − k2

1

(k2 + m2)2 . (4.26)

Unlike in the case of a symmetric cutoff, the integral does not vanish∫
|k1|≤�UV

d2k

(2π)2

k2
4 − k2

1

(k2 + m2)2 = 1

4π
(4.27)

in the �UV → ∞ limit. The fact that a naively vanishing integral is non-vanishing due to the 
presence of cutoff signals the anomalous nature of this one-loop contribution. Using �(0) =
8πm2 we obtain again m

2 . Thus in the |p1| ≤ �UV scheme one found that the average of H
equals to m.
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Again, the contribution of the total Hamiltonian equals to the mass of the πa field. We should 
emphasize that although the contribution of Hc in this cutoff equals to the total mass of πa , 
the one-loop part is in fact of anomalous nature and equals to that of Ha . The part that can be 
identified as “classical” T + V contribution remains to be m2 .

More generally, we can show that in the regularization scheme 
k2

4
λ2 +k2

1 ≤ �2
UV where λ > 0 is 

positive, corresponding to the time-rescaled theory x′
4 = λx4 discussed in Sec. 3.1. In this case, 

the running of g0 is λ dependent:

1

g2
0N

= 1

2π
ln

�UV

m
− 1

2π
ln

(
λ + 1

2λ

)
. (4.28)

From which one has

λ
dg0

dλ
= β(g0)

1 + λ
. (4.29)

At λ = 1, corresponding to the symmetric cutoff case, one has λdg0
dλ

= β(g0)
2 . At generic λ, from 

Eq. (3.20), the total Hamiltonian reads

H = Hc + λ

g0

dg0

dλ

∫
dx1

N∑
a=1

(
(∂1π

a)2 + (∂4π
a)2

)
, (4.30)

where we have used Eq. (4.29) in the last equality. The contribution of Ha , which is contained in 
the one-loop diagram of Hc as well as the last term in Eq. (4.30) can be calculated as

Ea = 1

2m

Ng2
0

4π
m2

(
1 − �(0)

2

∫
k2
4

λ2 +k2
1≤�2

UV

d2k

(2π)2

1

(k2 + m2)2

)

+ 1

2m
Ng2

0m2
∫

k2
4

λ2 +k2
1≤�2

UV

d2k

(2π)2

1

(k2 + m2)
= m

2
, (4.31)

and remains to the m2 , while the average of the Hc part in this case can be calculated as mλ
1+λ

, thus 
using Eq. (4.30) one has

〈πa, �P = 0|H |πa, �P = 0〉
〈πa, �P = 0|πa, �P = 0〉 = mλ

1 + λ
+ m

1 + λ
= m , (4.32)

which equals to the mass of the πa .

4.4. Mass decomposition in dimensional regularization

Finally, we study DR. For DR with space-time dimension d = 2 − 2ε one should change 
g2

0 → g2
0μ2ε . The gap equation reads:

1

g2
0N

= μ2ε

∫
d2−2εk

(2π)2−2ε

1

k2 + m2 =
( μ

m

)2ε �(ε)

(4π)1−ε

= 1

4πε
+ 2 ln(

μ
m

) − γE + ln(4π)

4π
. (4.33)
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The beta function is again given by − g3
0

4π
. In DR, the total Hamiltonian reads

H = Hc , (4.34)

similar to the |k1| ≤ �UV case. Let’s first study the contribution of Ha . The diagrams are again 
given in Fig. 2 and Fig. 3. The result reads

Ea = 1

2m

Ng2
0

4π
m2

(
1 − 1

2
�(0)μ2ε

∫
d2−2εk

(2π)2−2ε

1

(k2 + m2)2

)

+ 1

2m
Ng2

0μ2εm2
∫

d2−2εk

(2π)2−2ε

1

(k2 + m2)
, (4.35)

which again equals m2 as ε → 0 thanks to the gap equation.
We then discuss the Hc. The tree level diagram remains the same as before and equals m2 . The 

tadpole diagram now reads:

Ec|Fig. 3 = 1

2m
N

(
− i√

N

)2
�(0)

1

2
μ2ε

∫
dk4d

1−2εk1

(2π)2−2ε

k2
4 − k2

1

(k2 + m2)2 . (4.36)

Since we have split the space-time of dimension 2 − 2ε into a 1-dimensional time and a 1 − 2ε

dimensional space, the integral reads:∫
dk4d

1−2εk1

(2π)2−2ε

k2
4 − k2

1

(k2 + m2)2 = ε

1 − ε

∫
d2−2εk

(2π)2−2ε

k2

(k2 + m2)2 → 1

4π
, (4.37)

where the factor ε
1−ε

comes from 1
2−2ε

− 1−2ε
(2−2ε)

. As ε → 0, there is a 1
4πε

pole from the integral 
which cancels the ε in front, leading to a finite result. This is identical to the mechanism of 
trace-anomaly in DR and we again see that the non-vanishing one-loop diagram for Hc is of 
anomalous nature. By using �(0) = 8πm2 one obtains m

2 . Thus we found that the contribution 
of H again equals to the mass of the πa field.

In dimensional regularization, one can check that the traceless part of the EMT produces 
indeed m2 . HT in 2 − 2ε dimensions reads:

HT = 1

μ2ε

∫
d1−2εx

∑
a

(
−1 − 2ε

2 − 2ε
(∂4π

a)2 + 1

2 − 2ε
(∂1π

a)2
)

(4.38)

with which the Hamiltonian can be equivalently written as

H = HT + Ha . (4.39)

We now verify that the contribution of HT is indeed m
2 . The tree level diagram remains m

2 . The 
tadpole diagram is now proportional to

ET |Fig. 3 =
∫

dk4d
1−2εk1

(2π)2−2ε

1

(k2 + m2)2

(
−1 − 2ε

2 − 2ε
k2

4 + 1

2 − 2ε
k2

1

)
, (4.40)

which in turn is proportional to(
− 1 − 2ε

2 − 2ε

1

2 − 2ε
+ 1

2 − 2ε

1 − 2ε

2 − 2ε

)
≡ 0 . (4.41)

The vanishing of the one-loop contribution for HT is identical to that of Hc case in symmetric 
cutoff. Again, only the tree-level contribution to Hc can be identified as the “classical” T + V

contribution.
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Table 1
Mass decomposition in various schemes: While the 
naive Hamiltonian Hc gives scheme-dependent re-
sults, the anomaly contribution is always present 
and scheme-independent. The total mass is of course 
fixed.

Scheme Hc Ha ≡ HS H

k2 ≤ �2
UV

m
2

m
2 m

lattice m
2

m
2 m

|k1| ≤ �UV m m
2 m

DR m m
2 m

k2
4

λ2 + k2
1 ≤ �2

UV
λm
1+λ

m
2 m

To summarize, in this section we have investigated the mass structure of 1 + 1 non-linear 
sigma model in detail. In all the schemes, the anomalous term Ha has the same operator form 
and contributes half of the πa mass. The total Hamiltonian, although differs in operator forms 
in different regularization schemes, contribute to the total πa mass. On the other hand, although 
the naive Hamiltonian Hc has the same form as the classical one, the contribution is actually 
regulator dependent and has no universal physical meaning. In regularization schemes that treat 
both directions equally, Hc can be identified as HT while in schemes in which the k4 integral can 
be re-scaled back and forth, such as the |k1| ≤ �UV scheme and the dimensional regularization 
scheme, Hc can be identified as the full Hamiltonian. However, even in regulators where Hc

equals to H formally, we still found that the one-loop contribution of Hc is of anomalous nature 
and can be identified as Ha . We summarize the various contributions in Table 1. The example 
of the 1+1 dimensional sigma model thus illustrates that the QAE is part of the total mass of πa

regardless regularization schemes. This suggests that its contribution to the total mass might be 
related to some very general property of the theory under study.

5. Virial theorem and perturbative anomalous energy contribution in QED

In the previous sections, it has been shown that due to the cutoff dependency of the coupling 
constants, a trace anomaly is generated and contributes to the energy. In this section we study 
the case of QED. In QED, although there is no dynamical scale generation, there are still UV 
divergences that lead to the beta function β(e) = e3

12π2 and mass anomalous dimension γm = 3e2

8π2 . 
As a consequence, there is an anomalous contribution to the energy

Ha = 1

4

∫
d3 �x

(
β(e)

2e
F 2 + γmmψ̄ψ

)
, (5.1)

in addition to the mass term

Hm =
∫

d3 �xmψ̄ψ , (5.2)

where Fμν is the electromagnetic field strength and ψ is the electron field. In this section we 
study Ha for free electrons and for bond-states in a background field.
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5.1. Virial theorem and non-relativistic reduction

Before coming to the QAE, let’s consider the virial theorem for QED in the non-relativistic 
limit and show that it reduces to the corresponding virial theorem in quantum mechanics. One 
first notices that the scalar part of the Hamiltonian reads

HS = 1

4
Hm + Ha , (5.3)

where Ha and Hm are given in Eqs. (5.1), (5.2). In the mean time, the full Hamiltonian reads in 
symmetric regularization scheme:

H =
∫

d3 �x
(

1

2
( �E2 + �B2) + ψ†(−i �α · �D)ψ

)
+ Hm + Ha . (5.4)

Therefore, the virial theorem, ES = E/4, indicates that

〈 �P = 0

∣∣∣∣
∫

d3 �x
(

1

2
( �E2 + �B2) + ψ†(−i �α · �D)ψ

)∣∣∣∣ �P = 0
〉
= 3〈 �P = 0|Ha| �P = 0〉 , (5.5)

where | �P = 0〉 is a state in the rest frame. One then notices that in the non-relativistic limit, the 
anomalous contributions are unimportant. Neglecting Ha in Eq. (5.5), one obtains the relation:

〈 �P = 0|( �E2 + �B2)/2 + (−i �α · �D)| �P = 0〉 = 0 . (5.6)

We now show that Eq. (5.6) reduces to the virial theorem for the hydrogen-like systems in non-
relativistic quantum mechanics.

We chose the Coulomb gauge ∇ · �A = 0 where �A contains only transverse part �A = �AT . The 
quantization of QED in this gauge is explained in many textbooks [47]. The temporal component 
A0 decouples from the transverse part of the gauge field and is expressed as,

A0 = − e

∇2 ψ̄γ 0ψ . (5.7)

By using �E = −∂t
�AT − ∇A0 and the explicit solution of A0 in Eq. (5.7), the transverse and 

longitudinal parts of the electric field decouple from each other and one has the relation

∫
d3 �x 1

2

( �E2 + �B2
)

=
∫

d3 �x 1

2

( �E2
T + �B2

T

)
+ e2

2

∫
d3 �xd3 �y ψ†ψ(�x)ψ†ψ(�y)

4π |�x − �y| , (5.8)

where �ET = −∂t
�AT and �BT = ∇ × �AT are the radiative part of the photon field. For a positro-

nium state, to leading order in a non-relativistic expansion the contribution of the transverse 
radiation fields �AT is negligible, thus the virial theorem Eq. (5.6) reduces to

〈 �P = 0|ψ†(−i �α · �∇)ψ | �P = 0〉 +
〈 �P = 0

∣∣∣∣e2

2

∫
d3 �xd3 �y ψ†ψ(�x)ψ†ψ(�y)

4π |�x − �y|
∣∣∣∣ �P = 0

〉
= 0 ,

(5.9)

by using Eq. (5.8).
We now investigate the consequence of Eq. (5.9) on the leading component of the positronium 

state
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| �P = 0〉 =
∫

d3�k
2(2π)3Ek

ψss′(�k)a†
s (

�k)b
†
s′(−�k)|0〉 (5.10)

where the creation and annihilation operators are normalized as [as(�k), a†
s′(�k′)]+ = (2π)3 ×

2Ekδs,s′δ3(�k − �k′), and similarly for b and b†. The non-relativistic wave function is normalized 
as ∫

d3�k
(2π)3 ψ

†
ss′(�k)ψss′(�k) = 1 . (5.11)

Using the free field

ψ(x) =
∫

d3�k
(2π)32Ek

∑
s

(
as(�k)us(k)e−ik·x + b†

s (
�k)vs(k)eik·x

)
, (5.12)

in the non-relativistic limit the matrix elements can be calculated as

〈 �P = 0|ψ†(−i �α · �∇)ψ | �P = 0〉 = 2
∫

d3�k
(2π)3 ψ

†
ss′(�k)ψss′(�k)

k2

m
, (5.13)

and 〈
�P = 0

∣∣∣∣e2

2

∫
d3 �xd3 �y ψ†ψ(�x)ψ†ψ(�y)

4π |�x − �y|
∣∣∣∣ �P = 0

〉
= −e2

∫
d3�kd3 �q
(2π)3

ψ
†
ss′(�k)ψss′(�q)

|�k − �q|2 .

(5.14)

Therefore, the relation Eq. (5.9) simply reduces to the non-relativistic virial theorem

〈V 〉 = −2〈T 〉 , (5.15)

where

〈V 〉 = −e2
∫

d3�kd3 �q
(2π)3

ψ
†
ss′(�k)ψss′(�q)

|�k − �q|2 , (5.16)

〈T 〉 =
∫

d3�k
(2π)3 ψ

†
ss′(�k)ψss′(�k)

k2

m
, (5.17)

are the kinematic and Coulomb energy. In conclusion, for non-relativistic hydrogen-like systems 
the virial theorem simply reduces to the classical relation 〈V 〉 = −2〈T 〉.

5.2. The anomalous contribution to the electron pole mass

After discussing the virial theorem, we now return to the perturbative QAE in QED. The 
simplest quantity is the electron pole mass me, defined as the pole of the inverse electron prop-
agator [48]. Here we show that although small, the perturbative QAE does contributes to the 
electron pole mass.

We first consider the MS scheme at renormalization scale μ, where the minimally renormal-
ized electron mass m = m(μ) that appears in the Lagrangian is not the electron pole mass me, 
instead, at one-loop order one has the relation [49]

me = m(μ)

(
1 + α(μ)

π

)
. (5.18)
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The one-loop beta function reads β(e) = e3

12π2 and γm = 3e2

8π2 . At one-loop order, the F 2 term 
does not contribute and only the γmmψ̄ψ term contributes to the anomalous energy Ha

Ea = 3α

8π
m(μ) . (5.19)

On the other hand, one can show that at one loop order the mass term contributes as

Em = 〈 �P = 0|Hm| �P = 0〉
〈 �P = 0| �P = 0〉 =

(
1 − α

2π

)
m(μ) , (5.20)

which gives the correct result Ea + 1
4Em = me

4 .
We then consider the on-shell renormalization scheme [1,47], where the mass parameter of 

the renormalized Lagrangian equals to the pole mass. At one-loop order the mass anomalous 
dimension equals to γm = 3e2

8π2 which is the same as in MS. Therefore the contribution of the 
QAE is

Ea = 3α

8π
me . (5.21)

On the other hand, the contribution of the mass terms now reads

Em =
(

1 − 3α

2π

)
me , (5.22)

which is again consistent with the relation Ea + 1
4Em = me

4 .

5.3. The anomalous contribution in a background field (Lamb shift)

In this subsection we investigate the contribution of the anomalous term to the QED radiative 
correction of hydrogen atom binding energies. The naive Lagrangian density of the system with 
a background Coulomb field reads:

L = ψ̄(iγ · ∂ − m)ψ − eψ̄γ μψ(Aμ +Aμ) − 1

4
FμνFμν , (5.23)

where Aμ = Ze
4π |�x|δ

μ
0 is the Coulomb field of the heavy nucleus and Aμ is the QED photon 

field. We first study the trace anomaly of such a system, which is related to its renormalization 
properties. It is easy to see that all the UV divergences of the system can be taken care of using 
the standard wave function renormalization Z1 − 1 = Z2 − 1 for electron and Z3 − 1 for photon, 
as well as the mass counter-term mδm order by order in perturbation theory. The counter-terms 
in terms of the renormalized fields AR, ψ̄R are

δL =(Z1 − 1)ψ̄R(iγ · ∂ − m)ψR − e(Z1 − 1)ψ̄Rγ μψ(Aμ,R +Aμ)

−δmmZ1ψ̄RψR − Z3 − 1

4
F

μν
R Fμν,R − Z3 − 1

2
F

μν
R Fμν , (5.24)

where the last term is needed to cancel the UV divergence of vacuum polarization diagrams with 
one Aμ and one Aμ insertion. Again, Z2 − 1 = Z1 − 1 follows from the Ward identity and the 

bare charge is related to the renormalized charge by eRAR = e0A0. Thus e0 = Z
− 1

2
3 eR and the 

beta function is purely determined by Z3. By re-scaling with e0A0 → A0 and eA →A, in terms 
of the bare fields the Lagrangian reads:
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Fig. 4. The Feynman diagram for the one-loop electron self energy. The double lines are dressed electron propagators 
and the crosses are counter terms. They contribute to the energy shift δEN . Notice that the fourth diagram corresponds 
to the counter term Z3−1

2 FμνFμν that couples the background and radiative photon fields.

L = ψ0iγ · (∂ + A0 +A)ψ0 − Z3

4e2 F 2
0 − Z3 − 1

2e2 F
μν
0 Fμν − (1 + δm)mψ̄0ψ0 , (5.25)

where all the cutoff dependencies are absorbed into the renormalization constants Z3 and δm, 
which are precisely those which determine the QED beta function and the electron mass anoma-
lous dimension. From now on until the end of this section, without mention all the field operators 
are renormalized and we will omit the lower-script R for all the renormalized quantities. Thus, 
one has for the trace anomaly in the background field:

T μ
μ = β(e)

2e
FμνFμν + β(e)

e
FμνFμν + m(1 + γm)ψ̄ψ , (5.26)

which implies that

Ha = 1

4

∫
d3 �x

(
β(e)

2e
FμνFμν + β(e)

e
FμνFμν + mγmψ̄ψ

)
. (5.27)

Let’s investigate the contribution of Ha , 〈N |Ha |N〉 to the energy shift for a given bound state 
|N〉 in the background field A when radiative corrections are included.

We first review the field theoretical calculation of the energy-shift in the presence of a back-
ground, following the notation and approach in Weinberg’s book [47]. One first quantize the 
theory in the background field A without QED corrections. The energy levels are labeled as |N〉, 
while the positive and negative energy solutions to the Dirac equation are denoted by uN(�x) and 
vN(�x). This theory is regarded as the “free” theory. We then add QED interactions and treat them 
as perturbations. The resulting perturbation theory in background field differs from the standard 
QED by that all the electron propagators are “dressed” [47] in the external field, but otherwise 
remains very similar. One can show [47] that the one-loop correction δEN to the energy level N
can be calculated efficiently using covariant perturbation theory as

δEN =
∫

d3 �pd3 �p ′

(2π)6
ūN ( �p ′)�(EN, �p ′;EN, �p )uN( �p ) , (5.28)

where �(EN, �p ′; EN, �p ) is the one-loop electron self energy diagram with dressed propagator 
in the background field. See Fig. 4 for the one-loop self energy diagrams that contributes to δEN .

Similarly, when interactions are added, the state |N〉 in the background field will also receive 
radiative corrections. We need to calculate the QAE contribution

δEa
N = 〈N |

∫
d3 �x

(
β(e)

8e
FμνFμν + β(e)

4e
FμνFμν + 1

4
mγmψ̄ψ

)
|N〉 , (5.29)
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in the perturbed wave function |N〉. It can be calculated in covariant perturbation theory using 
standard Feynman rules for operator insertions, paying attention to insertion of quark-bilinear 
operators at external legs. More conveniently, using the fact that the trace anomaly can be ob-
tained as mass-derivatives of counter-terms in the Hamiltonian as explained in Appendix B, δEa

N

can also be obtained from the Feynman diagrams for δEN by taking mass derivatives in the 
counter-terms (Z3 − 1) and δm. To lowest order in radiative correction, the β(e)

8e
FμνFμν term in 

Eq. (5.29) does not contribute, therefore one only needs to consider the β(e)
4e

FμνFμν and γmψ̄ψ

terms.
We first calculate 〈N | ∫ d3 �x β(e)

4e
FμνFμν |N〉. To lowest order in radiative corrections, the 

Feynman diagram is identical to the last diagram in Fig. 4 with (Z3 − 1) replaced by the mass 
derivative or the beta function

β(e)

2e
= m

4

d

dm
(Z3 − 1) = α

6π
, (5.30)

and can be directly calculated as

〈N |
∫

d3 �x β(e)

4e
FμνFμν |N〉

= α

6π
ie

∫
d3 �p d3 �p′

(2π)6
ūN ( �p ′)�μ(EN, �p ′;EN, �p )uN( �p )Aμ( �p ′ − �p ) , (5.31)

where

�μ(p′,p) = i

(p′ − p)2 + i0

(
− (p − p′)2gμν + (p − p′)μ(p − p′)ν

)
γν . (5.32)

For Aμ that only has temporal component, the last term is proportional to EN −EN and vanishes. 
Therefore, one can simplify the result to

〈N |
∫

d3 �x β(e)

4e
FμνFμν |N〉 = α2

6π

∫
d3 �x u

†
N(�x)uN(�x)

|�x| , (5.33)

which is of order mα3. Our results Eq. (5.33) for the photonic contribution to QAE differs has an 
additional −2 factor compared with Eq. (7) in Ref. [50]. However, the total results in Ref. [50]
for the energy shift is still correct possibly due to another discrepancy when evaluating the con-
tribution of mψ̄ψ .

We then calculate the mass anomalous dimension term. The contribution is identical to the 
second diagram in Fig. 4 with δm replaced by mγm. It can be evaluated simply as

〈N |
∫

d3 �x 1

4
mγmψ̄ψ |N〉 = 1

4
γmm

∫
d3 �xūN(�x)uN(�x) = 1

4
γmEN . (5.34)

Therefore, by summing the above contributions one gets for the total anomalous part:

δEa
n,j = α2

6π

∫
d3 �x u

†
n,j (�x)un,j (�x)

|�x| + 3α

8π
En,j , (5.35)

for the energy level N ≡ n, j , where n is the radial quantum number and j is the total spin. 
The first term is the photonic contribution while the second term is the fermionic contribution. 
Here un,j (�x) is the quantum-mechanical wave function that solves the Dirac equation in a static 
Coulumb field, and En,j is the bound state energy. In the non-relativistic limit, Eq. (5.35) can 
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be further expanded in α and contains contributions at O(α), O(α3) and O(α5). The O(α) and 
O(α3) contributions will be canceled by other terms, while the contribution at O(α5) reads

δE
a,(5)
n,j = −7meα

5

24πn4

(
3

8
− 1

2j + 1

)
. (5.36)

This contributes to the famous Lamb shift at O(α5).
We shall also mention that the electron mass Hm gives a non-trivial contribution to the bound-

state energy as well. In appendix B, we show that after adding the electron mass contribution, the 
total scalar energy contribution is 1

4 of the bond-state energy, consistent with the virial theorem.

6. Anomalous energy contribution as Higgs mechanism

In both QCD and the non-linear sigma-model, the QAE generates a non-perturbative contri-
bution characterized by a new mass scale (dimensional transmutation [30]). It is then natural to 
consider the QAE itself responsible for the scale generation. In this section we take this view seri-
ously and show that the anomalous scalar field can be considered as a dynamical Higgs field [24], 
and the QAE contribution to the mass comes from its dynamical response to the matter, in anal-
ogy to the Higgs mechanism [1] for the fermion masses in the standard model.

To see this analogy, let’s first review the Higgs mechanism for fermion mass generation in a 
simplified context without gauge symmetry. Introduce a complex scalar φ = 1√

2
(σ + iπ) with 

action

L = φ†(−∂μ∂μ + μ2)φ − λ

4! (φ
†φ)2 , (6.1)

where μ2 > 0. The saddle point of the potential V (φ) = −μ2|φ|2 + λ
4! |φ|4 satisfies

2μ2|φc| = λ

3! |φc|3 . (6.2)

Let’s expand the field around the saddle point φ = (|φc| + 1√
2
h + i 1√

2
π). To leading order, the 

field h is massive with M2
h = 2μ2, while π is massless. In the classical theory, the canonical 

EMT reads:

T μν = 2φ†∂μ∂νφ − gμνL . (6.3)

In quantum theory, Collins and others have shown that one needs to add the term − 1
6(∂μ∂ν −

gμν∂2)φ2 to make all the matrix elements finite. To our desired order in λ, up to total derivative 
terms, the trace of the EMT reads

T μ
μ = −2μ2|φ2| , (6.4)

which can be easily derived using the equation of motion. Therefore, the scalar part of the Hamil-
tonian reads:

HS = −
∫

d3 �x
(

1

2
|φc|h + 1

4
h2

)
. (6.5)

In the presence of the massless fermion � with Yukawa type coupling

Lint = −�̄�g
φ + φ†

√
2

, (6.6)
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Fig. 5. Dynamical response of the scalar Hamiltonian HS in the presence of the fermion �, generating a contribution 
to the fermion mass The dotted line represents the dynamical Higgs particles h and the crossed circle denotes the scalar 
Hamiltonian linear in h. The coupling g between the Higgs field and the fermion is proportional to fermion mass.

which generated a fermion mass term with m� = √
2gφc . The above also yield a dynamical 

coupling between the fermion and the Higgs particle, (−g)h�̄�, which is proportional to the 
fermion mass m�. This dynamical coupling generates a response of the Higgs field in the pres-
ence of the fermion, which contributes to the fermion mass,

〈�|HS |�〉 = (−g)fs

m2
h

= 1

4
gφc = 1

4
m� , (6.7)

where fs = − 1
2μ2φc is a scalar decay constant. The 1

m2
h

is due to the zero-momentum propagator 

of the Higgs field. Therefore, the scalar part of the Hamiltonian contributes 1/4 of the fermion 
mass through the dynamical Higgs. See Fig. 5 for a depiction of the mechanism. This simple 
example demonstrates that the mass of the fermions can also be measured by the response of the 
fluctuating part of the scalar field in the presence of the matter [24].

Similarly, for the non-linear sigma model, the QAE contribution to the meson mass can be 
explained in term of a dynamical Higgs mechanism as follows. One first notices that using the 
equation of motion, the anomalous Hamiltonian can also be re-written in terms of the auxiliary 
scalar

Ha = − iNm2

8π

∫
dx1σ , (6.8)

where the dimensionless scalar σ = (� −〈�〉)/m2 contains the quantum fluctuation part. This is 
similar to the Higgs example above, in that the scalar part of the Hamiltonian is linear in the sigma 
field. Its contribution to the pion mass is determined by 〈πi|σ |πi〉. By using the ππσ vertices 
in Eq. (4.5), and the dominance of the zero-momentum σ propagator 〈σ(0)σ (0)〉 = 8π/(Nm2)

in the intermediate state, the response of the scalar σ to πi state exactly makes Ha contributing 
1
2 of the πi mass. We shall mention that the propagator of σ [43] contains only a cut starting at 
the two-π threshold p2 = 4m2 but no poles, unlike the Higgs field h in the previous example. 
Nevertheless, the zero-momentum propagator of σ contributes to the average of the anomalous 
Hamiltonian exactly the same way as the zero-momentum propagator of the Higgs field h.

6.1. Dynamical scalar and QAE contribution to the nucleon mass and pressure

The idea that the mass is generated from the response of the scalar field in the presence of 
the external source can be generalized to QCD. For simplicity, we consider the limiting case 
of massless up and down quarks. The anomalous Hamiltonian comes entirely from the gluon 
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composite scalar, Ha = ∫
d3 �x�(x), where �(x) = β(g)/(8g)FμνFμν(x). As in the non-linear 

sigma model, its contribution to the nucleon mass can be seen as a form of dynamical Higgs-
mechanism, which is consistent with that the Higgs and confining phases of matter-coupled 
gauge theory are smoothly connected [32,51].

It is interesting to recall that for the infinite-heavy Q̄Q state separated by r in pure gauge 
theory, it has been shown [4,25] that the non-perturbative contribution of Ha to the static poten-
tial is 1

4 (V (r) + rV ′(r)). At large r where the confinement potential dominate V (r) ∼ σr , the 
anomalous contribution is exactly one half of the confinement potential.

The scalar field �(x) has a vacuum condensate �0 = 〈0|�|0〉 [52,53]. However, in the pres-
ence of the nucleon, the quantum response is measured by

φ(x) = �(x) − �0 , (6.9)

which is a dynamical version of the MIT bag-model constant B [37]. Its contribution to the 
nucleon mass can be seen as the response of the scalar field to the nucleon source,

Ea = 〈φ〉N = 〈N |φ(x)|N〉 , (6.10)

where the nucleon state is normalized as 〈N |N〉 = (2π)3δ3(0). If φ(x) is a static constant B
inside the nucleon, Ea will be of order BV , where V is the effective volume in which the valence 
quarks are present. In the MIT bag model, the nucleon mass is entirely determined by the bag 
constant, in line with the view that the QAE determines the mass scale.

We should point out that it has been proposed that static response of the composite gluon 
scalar φ in the nucleon state can be measured in the electro-production of heavy quarkonium on 
the proton [11,41,54–58] or leptoproduction of heavy quarkonium at large photon virtuality [59]. 
The color dipole from the quarkonium will be an effective probe of the F 2. This also provides a 
direct determination of the QAE contribution to the mass. Nevertheless, it has also been found 
recently that the near threshold production of heavy meson is dominated by the twist-two ten-
sor contribution instead of the 0++ scalar contribution based on holographic QCD [60,61] or 
perturbative analysis [62,63]. To further clarify the role of trace anomaly in the heavy-meson 
production requires more elaborate QCD analysis and is left for future work.

Similar to fermion masses in elementary particle physics, we can also consider a dynamical 
response of the φ in the presence of the nucleon through a tower of scalar 0++ spectral states, as 
in the Higgs model. Assume an effective coupling between the nucleon and scalar gNNφN̄Nφ, 
the QAE contribution to the mass can be related to the scalar field response function,

〈N |φ|N〉 = igNNφ〈φ(0)φ(0)〉 (6.11)

where 〈φ(0)φ(0)〉 is the zero-momentum propagator of the scalar field φ. If the propagator is 

dominated by a series of scalar resonances, or 〈φ(0)φ(0)〉 = ∑
s

if 2
s

−m2
s
, one has [24]

〈N |φ|N〉 =
∑

s

gNNsfs

m2
s

. (6.12)

Here ms is the mass of the scalar resonances, fs = 〈s|φ|0〉 is the decay constant and gNNs ≡
gNNφfs is the coupling of the nucleon to the scalars. See Fig. 6 for a depiction.

One might assume the dominance of the lowest mass scalar glueball-like state, generically 
called σ , for the above equation. If the coupling constant gNNs can be extracted through ex-
periment, one can perform a consistency check on the σ dominance picture by combining the 
glueball masses and the decay constants extracted from lattice QCD calculations [64,65]. In fact, 
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Fig. 6. Quantum anomalous energy contribution to the nucleon mass seen as a dynamical response of the anomalous 
scalar field in the presence of the nucleon. The dotted line represents the intermediate scalar particles with couplings 
gNNs proportional to the nucleon mass, which is dominated by a single Higgs particle in the Higgs mechanism.

for the lowest glueball state σ , one can say more. In [29], an effective action for σ that is con-
sistent at tree level with the Ward-identity for T μ

μ has been constructed. Introduce a dimension-1 
scalar field �, which replaces the scalar field � through the relation

� ≡ − m4
σ

64|�0|�
4 , (6.13)

where mσ is a mass parameter the meaning of which will be explained later. The effective action 
for � is

L = 1

2
∂μ�∂μ� − V (�) , (6.14)

where the effective potential V (�) is

V (�) = m4
σ

256|�0|�
4 ln

�

C
. (6.15)

The potential has a minimum at � = σ0 constrained by the relation 4 ln σ0
C

= −1. In terms of σ0
and mσ , the vacuum condensate can be expressed as

|�0|2 = m4
σ

256
σ 4

0 , (6.16)

which determines C as a function of mσ and |�0|, the two independent parameters of the theory. 
The dilatation symmetry that was broken at quantum level in the original theory is broken in 
the effective theory at classical level by the dynamically generated potential V (�). This can be 
viewed as the realization of dimensional transmutation in an effective Higgs phase.

By expanding � = σ0 + σ , one can show that the σ is a massive scalar with mass equals to 
mσ . Furthermore, one expand � to leading order in σ

φ = � − �0 = m4
σ σ 3

0

64|�0|σ +O(σ 2) , (6.17)

from which the decay constant fσ can be extracted as [29]

fσ = mσ

√|�0| . (6.18)

Assume that the coupling between the nucleon N and the scalar � is given by the Yukawa 
coupling
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LYukawa = −gNNσ N̄N� . (6.19)

The nucleon mass can be measured exactly through two ways. One way is through the mass term 
generated by the vacuum expectation value σ0 or mN = gNNσ σ0, from which one can extract [24]

gNNσ = mNmσ

4
√|�0| (6.20)

in the chiral limit.
The second way is through the response of � in the presence of the nucleon. By assuming the 

σ dominance in the intermediate state, one has

〈N |φ|N〉 = fσ gNNσ

m2
σ

= mN

4
, (6.21)

which we have used Eq. (6.20) and the formula for fσ in Eq. (6.18). Thus we confirm that the 
scalar response is proportional to the nucleon mass, exactly as 1/4 predicted by virial theorem. 
This also exactly corresponds to the Higgs model mentioned earlier.

Of course, the above simple picture is modified strongly by the presence of light quarks. We 
also comment that beside the chiral effective theory, the interaction between the scalar glueballs 
and the nucleons can also be investigated in the framework of holographic QCD [60]. The scalar 
spectrum in QCD is more complicated, and is in between the simple Higgs and the 1+1 sigma 
models. However, the coupling between the nucleon (or any other hadrons) and with the scalars 
must be proportional to its mass, same as in the Higgs case which has been tested recently at 
LHC [26–28].

6.2. Anomalous energy contribution to pion mass

Finally, we show that the anomalous contribution also plays an important role to the pion 
mass. For simplicity we only consider the two-flavor case with equal quark masses m for up and 
down quarks u and d . The theory has two mass scales, the quark mass m and �QCD . The scalar 
part of the Hamiltonian reads

HS =
∫

d3 �x 1

4
m(ūu + d̄d) + Ha , (6.22)

where Ha is the anomalous part of the Hamiltonian. In the m � �QCD limit, it is well known [1]
that the mass Mπ for the Golstone boson or the pion relates to the quark mass and the chiral-
condensate through the Gell-Mann-Oakes-Renner (GMOR) [66] relation:

M2
π = − 1

f 2
π

〈0|m(ūu + d̄d)|0〉 . (6.23)

Therefore, the contribution of the mass-term to the pion mass can be calculated as

〈π |
∫

d3 �x 1

4
m(ūu + d̄d)|π〉 = 1

4
m

∂Mπ

∂m
= 1

8
Mπ , (6.24)

where the pion state is normalized as 〈π |π〉 = (2π)3δ3(0) and we have applied the Feynman-
Hellman theorem [67] in the first equality and Eq. (6.23) in the last equality. One can also derive 
this relation by inserting pion intermediate state in the correlation function 〈0|∂μjμ5(x)m(ūu +
d̄d)(y)∂νj

ν5(z)|0〉 and using the Ward-identity for the axial current. This results, in the context 
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of QCD mass decomposition, is noticed originally in Ref. [3]. Since the scalar part of the Hamil-
tonian contributes to 1

4 of the pion mass in total due to the virial-theorem, we found that the 
anomalous contribution to the pion mass equals to

〈π |Ha |π〉 = 1

8
Mπ . (6.25)

Although the pion being the lowest-energy state, the anomalous part contributes to a significant 
amount of its mass, equally to the quark mass term. The quark mass term fails to dominate in 
the scalar part. This is however understandable since even in the chiral limit the theory still has 
dimensional transmutation which gives rise to the �QCD. The pion mass in Eq. (6.23) involves 
a mixing between the quark mass m and the chiral-condensate measured by �QCD. Therefore, it 
is natural that both the quark mass term and the anomalous term contributes equally to the pion 
mass.

Assuming the sigma dominance, an effective action for the coupling between the pion and the 
lightest glueball field has been constructed in Ref. [68] and reads

L = f 2
π

4

(
�

σ0

)2

Tr∂μU†∂μU −
(

�

σ0

)3

m〈0|ūu|0〉Tr(U† + U) − 1

3
m〈0|ūu|0〉

(
�

σ0

)4

,

(6.26)

where U = exp
(

i
fπ

∑3
a=1 πaτa

)
is the standard SU(2) matrix for the pion and �, σ0 are given 

in previous subsection. The last term is required to maintain σ0 as the minimal of the potential for 
�. By expanding the Lagrangian above, the coupling between the pion and the σ is proportional 
to the mass square M2

π of the pion.
More specifically, the ππσ coupling term Lππσ reads

Lππσ = ∂μπa∂μπa σ

σ0
− 3

2
M2

ππaπa σ

σ0
= −1

2
M2

ππaπa σ

σ0
, (6.27)

where we have used the equation of motion in the first term. Therefore, in the massive pion state 
the expectation value of φ can be calculated as

〈π |φ|π〉 = 1

2Mπ

× M2
π

σ0

fσ

m2
σ

= Mπ

8
, (6.28)

where we have used the relation fσ

m2
σ σ0

= 1
4 which follows from Eq. (6.16) and Eq. (6.18). The 

factor 1
2Mπ

is due to overall normalization of the state. This is consistent with Eq. (6.25) that the 

anomalous contribution is responsible for 1
8 of the pion mass. Furthermore, it indicates that the 

scalar field response inside the pion vanishes in the chiral limit, consistent with the expectation 
that the Goldstone boson arises from the chiral rotation of the QCD vacua.

7. Conclusion

In this paper we expand our previous study on the implications of anomalous scale symmetry 
breaking effect on the nucleon mass structure in QCD and other relativistic quantum field theo-
ries [24]. The scale symmetry breaking generates a non-perturbative anomalous contribution to 
the QCD energy called QAE and therefore to all hadron masses. The QAE also sets the scale for 
the contributions of more familiar quark and gluon kinetic energies.
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We start by explaining the role of UV divergences in generating the mass scale of QCD 
through the so-called dimensional transmutation. We demonstrate through a path integral for-
mulation of a two-point function that the trace anomaly naturally arises as consequences of the 
UV cut-off dependence in QCD-like theories. Furthermore, the QAE contribution to the hadron 
mass can be derived as resulting from UV cut-off dependence of couplings and quark masses by 
investigating the time-rescaling property of the theory. Contrary to some mis-understandings in 
the literature, the naive expression for the Hamiltonian is scheme dependent, but the QAE con-
trition is scheme independent and is a key physical part of the nucleon mass. We emphasize the 
importance of Lorentz invariance when renormalizing tensor operators in DR and show that the 
maximally-scheme-independent decomposition of the hadron mass is facilitated by separating 
the trace and traceless contributions.

We then study the scale symmetry breaking effect and the mass structure in the large N non-
linear sigma model in 1+1 dimensions. We demonstrate explicitly in different UV regularization 
schemes that the QAE is indeed scheme independent and is a crucial part of the mass of the 
πa particles. On the other hand, the naive Hamiltonian is regulator sensitive and lacks universal 
physical meaning. Furthermore, the fundamental mass scale in the model is generated through a 
scalar field that develops a non-vanishing vacuum condensate, resembling the Higgs mechanism 
of generating quark and electron masses. We also show that in QED, although there is no scale 
generation, the effect of QAE is perturbative and non-zero, and contributes to the electron pole 
mass and the famous Lamb-shift.

Finally, inspired by the non-linear sigma model, we explore the similarity between the QAE 
contribution to proton mass generation and the Higgs effect. Similar to the sigma model and 
standard Higgs mechanism, the nucleon mass can be measured through either static or dynamical 
response of the Higgs field in the presence of the nucleon. By interpreting the Higgs particles as 
scalar glueballs, one can determine that the nucleon-glueballs coupling is proportional to nucleon 
mass, similar to the case of standard Higgs mechanism. We show how these ideas work in an 
effective theory in which the dimensional transmutation is realized in an effective Higgs phase 
and the anomalous scalar field acquires a dynamical generated potential. In the chiral limit the 
QAE contributes to 1

8 of the pion mass and the pion-glueball coupling is proportional to pion 
mass square.

However, the connection between the anomalous scalar field F 2 and the laws of fundamental 
QCD is not clear to us at present time. In particular, F 2 may play crucial role in color confinement 
as well as spontaneous chiral symmetry breaking. In the MIT bag model, the response of the F 2

is related to the bag constant B which plays a role of negative pressure to confine quarks. A more 
microscopic model for the F 2-assisted confinement is provided by ’t Hooft [69] in which the 
Lagrangian of F 2 is modified by scalar coupling and generates the flux tubes between colored 
sources. In the instanton liquid model [10], the F 2 contribution is related to the average density 
of instantons that sets up the fundamental mass scale of the theory. However, a full picture for 
the role of F 2 in the mass generation of the proton and confinement awaits further studies and 
understanding of lattice QCD simulations [70].
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Appendix A. Derivation of Eq. (3.14)

In this appendix we provide a derivation of Eq. (3.14). The general idea, similar to that in 
Ref. [38], is to explore the lattice symmetry. Let’s consider two two-point functions in the en-
semble given by the action Sλ in Eq. (3.9). One of them extends in temporal direction as before, 
while the other extends in the spacial direction ei where i = 1, 2, 3

Gτ(T ,0) =
∫

DUO(T e4, �p = 0)O(0, �p = 0)e
− 1

g2
0 (λ)

Sλ[U ]

∫
DUe

− 1
g2

0 (λ)
Sλ[U ] , (A.1)

Gi(T ,0) =
∫

DUO(T ei, �p = 0)O(0, �p = 0)e
− 1

g2
0 (λ)

Sλ[U ]

∫
DUe

− 1
g2

0 (λ)
Sλ[U ] . (A.2)

Here, e4 and ei are unit vectors along the (imaginary) time and the i-th spacial directions. The 
scalar operator O is assumed to be local and scale invariant. The notation (T ei, �x) is meant to 
indicate that the i-th coordinate is T , and the remaining three directions are labeled by �x with 
Fourier conjugating variable �p.

One notice that, in the continuum limit, Gτ(T , 0) becomes the time rescaled version of the 
two-point function and behaves as e−MT/λ at large T , while Gi(T , 0) is not rescaled and behaves 
as e−MT . By comparing the λ derivatives as before, one obtains the relations:

−λ2
〈 1

g2
0

∑
�x

Pτ (�x)
〉
τ
+ λ

〈 1

g2
0

∑
�x

Ps(�x)
〉
τ
+ 2λ2

g3
0

dg0

dλ

〈∑
�x
S(�x)

〉
τ

= M , (A.3)

−λ2
〈 1

g2
0

∑
�x

Pτ (�x)
〉
i
+ λ

〈 1

g2
0

∑
�x

Ps(�x)
〉
i
+ 2λ2

g3
0

dg0

dλ

〈∑
�x
S(�x)

〉
i
= 0 . (A.4)

Here the averages 〈〉i and 〈〉τ are defined as

〈A(�x)〉i = lim
T →∞

〈O(T ei, �p = 0)A(04, �x)O(0, �p = 0)〉c
〈O(T ei, �p = 0)O(0, �p = 0)〉 , (A.5)

〈A(�x)〉τ = lim
〈O(T e4, �p = 0)A(0i , �x)O(0, �p = 0)〉c

4 , (A.6)

T →∞ 〈O(T e , �p = 0)O(0, �p = 0)〉
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where 0i ≡ 0ei and 04 ≡ 0e4. At λ = 1 the symmetry of the hypercubic lattice implies the fol-
lowing relations between the averages〈∑

�x
P4i (�x)

〉
τ

=
〈∑

�x
Pkj (�x)

〉
k
|k �=j , (A.7)

〈∑
�x

Pij (�x)
〉
τ

=
〈∑

�x
Plm(�x)

〉
k
|k �=l,m , (A.8)

〈∑
�x
S(�x)〉τ = 〈

∑
�x
S(�x)

〉
i
, (A.9)

where P4i and Pij denotes plaquettes in 4i and ij planes. One now adds Eq. (A.3) to the sum of 
Eqs. (A.4) over i = 1, 2, 3 and take λ = 1. All the averages over Ps and Pτ in the first two terms 
of Eq. (A.3) and Eq. (A.4) cancel out thanks to Eqs. (A.7) and (A.8), left only with

M = 4 × 2

g3
0

dg0

dλ

∣∣∣∣∣
λ=1

〈 ∫
d3 �xS(0, �x)

〉
τ

. (A.10)

Comparing with equation Eq. (2.13) one finds

dg0

dλ

∣∣∣∣
λ=1

= β(g0)

4
, (A.11)

which finishes the derivation of Eq. (3.14).

Appendix B. QAE from mass derivative of Hamiltonian

In this appendix we show that the trace anomaly in QED can be obtained from mass derivative 
of the Hamiltonian in on-shell renormalization scheme where UV cut-off can be traded with 
the electron mass as the infrared cut-off. This idea can be generalized to other renormalization 
scheme which we will not consider here.

More specifically, the mass-derivative of the QED Hamiltonian gives the trace anomaly

m
∂H

∂m
=

∫
d3 �xT μ

μ (�x) ≡ 4HS , (B.1)

where m is on-shell electron mass. In terms of bare fields and the conjugate momenta, the Hamil-
tonian in Coulomb gauge reads

H =
∫

d3 �x
(

e2
0

2
( ��)2 + 1

2e2
0

�B2

)
+

∫
d3 �xψ̄(−i �γ · �D + mZm)ψ

+ e2
0

∫
d3 �xd3 �y ψ†ψ(�x)ψ†ψ(�y)

4π |�x − �y| , (B.2)

where �A and �� are gauge vector potential and the conjugating fields, satisfying the transverse 
commutation relation [�i(�k), Aj (�x)] = −i(δij − kiki

k2 )e−i�k·�x . Notice that the non-standard ap-
pearances of e0 after re-scaling the gauge potential by this factor. The electron pole mass m
relates to the bare mass through m0 = mZm. Treating e0 and Zm as dimensionless parameters, 
the naive mass derivative of the Hamiltonian looks like 

∫
d3 �xmZmψ̄ψ . However, to make the 

theory UV finite, the bare coupling constants e0 and the mass renormalization constant Zm must 
be function of the m and the UV cutoff �:
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Fig. 7. The mψ̄ψ insertion at internal line of the first diagram in Fig. 4. It corresponds to the mass derivative of the 
internal electron propagator. Notice that all the electron lines are dressed.

Fig. 8. The mψ̄ψ insertion at external line of the first diagram in Fig. 4. It corresponds to the mass derivative of the 
external Dirac wave function. For simplicity we only draw the case in which the internal electron is forward moving and 
the derivative is taken at the out-going wave function. The other cases are similar. The first diagram corresponds to the 
first term at right hand side of equality in Eq. (B.6), while the other two diagrams with back-moving lines combine to 
produce the second term in Eq. (B.6).

e2
0 = e2(1 + e2

12π2 ln
�2

m2 + ..) , (B.3)

Zm = 1 − 3e2

16π2 ln
�2

m2 + .. . (B.4)

Therefore, the mass derivative of the Hamiltonian also depends on the beta function β(e0) =
−m

∂e0
∂m

and the mass anomalous dimension γm = m∂ lnZm

∂m
. Using the relation F 2 = 2( �B2 − �E2)

and �E = g2
0
��, one has the mass derivative of the Hamiltonian

m
∂H

∂m
=

∫
d3 �x

(
mZm(1 + γm)ψ̄ψ + β(e0)

2e3
0

F 2
)

, (B.5)

where we have combined the �E2 from the radiation field and the Coulomb field into the total F 2, 
which is just Eq. (B.1).

Beside the operator proof, here we also provide a diagrammatic argument of the above deriva-
tion, using the QED in background field in Sec. 5 as an example. We show that: taking mass 
derivatives in one-loop Feynman diagrams Fig. 4 for δEN will exactly produce the one-loop 
Feynman diagrams for insertion of 4HS . The mass derivative has four origins: the explicit mass 
dependency of the electron propagator, the implicit mass dependency in the energy level EN , the 
mass dependencies in renormalization constants δm and Z3 − 1, and the implicit mass depen-
dency in the wave function uN .

The mass derivative of the fermion propagator 1
iγ ·D−m

simply reduces to mψ̄ψ operator in-
sertion in the internal electron line as shown in Fig. 7. The mass dependency in EN will lead to
the wave function renormalization in external legs. The mass dependencies in renormalization 
constants δm and Z3 −1 will exactly lead to the anomalous energy contribution. Finally, the mass 
derivative of the external wave function uN is more complicated, which is shown the remaining 
diagrams where the mψ̄ψ are inserted at external legs. One can see this by using the relation

m
∂

∂m
uN(�x) =

∑
N ′ �=N

uN ′(�x)
∫

d3 �ymūN ′(�y)uN(�y)

EN − E′
N

+
∑

N ′ �=N

vN ′(�x)
∫

d3 �ymv̄N ′(�y)uN(�y)

EN + E′
N

.

(B.6)
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Let’s apply this results to one of the two time-ordered self-energy diagrams, for example the 
forward moving diagram. Then the first term will directly be identified as a forward moving 
diagram for external mψ̄ψ insertion, while the second term corresponds to the combination of 
two backward moving diagrams using the relation in energy denominators(

1

EN − EN ′
+ 1

EN − (2EN + EN ′′)

)
1

EN ′ + EN ′′
= 1

EN − EN ′
1

EN + EN ′′
. (B.7)

They are exactly the diagrams where the mψ̄ψ are inserted in the external legs. See Fig. 8 for a 
depiction of the mass derivatives for the first diagram in Fig. 4. For other diagrams the analysis 
are similar.
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