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Quantum gravity effects in effective models of loop quantum gravity, such as loop quantum cosmology, 
are encoded in the choice of so-called polymerisation schemes. Physical viability of the models, such 
as an onset of quantum effects at curvature scales near the Planck curvature, severely restricts the
possible choices. An alternative point of view on the choice of polymerisation scheme is to choose 
adapted variables so that the scheme is the simplest possible one, known as μ0-scheme in loop quantum 
cosmology. There, physically viable models with μ0-scheme polymerise the Hubble rate b that is directly 
related to the Ricci scalar and the matter energy density on-shell. Consequently, the onset of quantum 
effects depends precisely on those parameters. In this letter, we construct similar variables for black to 
white hole transitions modelled using the description of the Schwarzschild interior as a Kantowski-Sachs 
cosmology. The resulting model uses the μ0-scheme and features sensible physics for a broad range 
of initial conditions (= choices of black and white hole masses) and favours symmetric transitions upon 
invoking additional qualitative arguments. The resulting Hamiltonian is very simple and at most quadratic 
in its arguments, allowing for a straightforward quantisation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Loop quantum gravity (LQG) is an approach to quantum grav-
ity that directly quantises classical gravitational theories, such as 
standard general relativity in 3 + 1 dimensions. It exists in Hamil-
tonian form [1,2], as a path integral [3], as well as in the group 
field theory language [4]. Equivalence between the different formu-
lations has not been shown in full generality so far, although much 
progress has been made when considering symmetry reduced sit-
uations such as cosmology, where at least qualitative agreement is 
reached [5–17].

For experimental tests of the theory, understanding symmetry 
reduced sectors is often enough, as the high energy densities nec-
essary to induce strong quantum gravity effects e.g. appear near 
cosmological or black hole singularities. Hence, understanding the 
theory in simplified settings where such singularities still occur 
classically is a well motivated line of study. In the cosmological 
context, this idea has spawned the vast field of loop quantum cos-
mology, see [18–20] for seminal papers and [21,22] for reviews.
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In this letter, we will focus on the simplest possible black 
hole singularities, those of Schwarzschild black holes. Studying 
them with techniques similar to those of loop quantum cosmol-
ogy is possible as the Schwarzschild interior can be rewritten as a 
Kantowski-Sachs cosmological model with the Schwarzschild vari-
able r as a time-like coordinate. This idea was follow up on in 
several papers already, however one often encountered physically 
insensible results [23–29] or had to deviate from the effective 
Hamiltonians typically arising in loop quantum cosmology [30–32]. 
As we will discuss in this letter, these problems can be evaded by 
choosing adapted variables similar to the (b, v)-variables in loop 
quantum cosmology [37] along with the simplest possible poly-
merisation scheme, which additionally allows for a straightforward 
construction of the quantum theory. We will be rather brief with 
technicalities in this letter. Detailed computations will appear in a 
companion paper [38].

This letter is organised as follows:
Section 2 provides some background material on loop quantum 
cosmology and explains why it is physically sensible to use μ0

polymerisation schemes along with b, v variables. Section 3 re-
views the classical description of the Schwarzschild black hole in-
terior as a Kantowski-Sachs cosmological model. Our new variables 
are motivated and chosen in section 4 and the effective Hamilto-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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nian is derived. Physical predictions of the model are summarised 
in section 5. Finally, we conclude in section 6.

2. (b, v)-variables in LQC

Loop quantum cosmology (LQC) has originally been constructed 
as a mini-superspace quantisation of cosmological models, using 
some key concepts from full LQG [18–20]. While heuristic deriva-
tions such as [20] argue that this should be understood as the 
continuum limit of a discretised full quantum gravity theory, it 
turns out that loop quantum cosmology can be best understood 
and exactly derived as a one-vertex (= lattice point) truncation of a 
full discrete quantum gravity theory [13,15]. Taking a continuum 
limit in such a theory then leads to quantitative changes in the 
predictions, but qualitative similarities [39]. Thus, as is often ac-
knowledged for various reasons, LQC-type models should be taken 
with a grain of salt and used only qualitatively unless derived in a 
continuum limit from a full theory.

Having this in mind, it is easy to understand why the early 
LQC models [18,19] gave physically insensible results for the on-
set of quantum effects. As one uses only a single lattice point, 
holonomies of the Ashtekar-Barbero connection A are evaluated 
along straight lines γ , parametrised by the variable c as [19]

hγ (A) = P exp

⎛
⎝∫

γ

A

⎞
⎠ = cos

(μc

2

)
+ 2 sin

(μc

2

)
(γ̇ a 0ωi

a)τ
i,

(2.1)

that run through all of the universe, see [13] for a detailed con-
struction. Here, by “all of the universe”, we mean either a closed 
loop in a spatially compact universe such as a three-torus, or from 
boundary to boundary of a fiducial cell in the non-compact case. 
We denote by 0ωi

a the fiducial co-triad, γ̇ a the (constant) tan-
gent to γ , and μ := 2μ0 a free parameter that is fixed once and 
for all in the derivation. As a consequence of approximating field 
strengths via holonomies of closed loops, one finds that the gravi-
tational part of the Hamiltonian constraint is modified as

c �→ sin(μ0c)/μ0 (2.2)

While [19,20] offered a detailed derivation of this procedure from 
full LQG arguments using (2.1), the substitution (2.2) has usually 
been adopted as a direct “effective” mean to access the quantum 
theory.

Irrespective of how one arrives at (2.2), it is immediately clear 
that corrections to classical general relativity are suppressed only 
as long as μ0c � 1. In the homogeneous, isotropic, and spatially 
flat context, we have c ∝ a · b, where a is the scale factor describ-
ing the physical spatial extent of the universe, and b ∝ ȧ/a is the 
Hubble rate. Furthermore, the Ricci scalar is simply given by R ∝ b2

and the matter energy density also satisfies ρm ∝ b2. It follows that 
by taking a large enough, we can encounter corrections to classical 
general relativity at arbitrarily low curvatures and matter energy 
densities and thus arrive at insensible physics.

Using a more elaborate argument based on the area gap of full 
LQG, it was proposed in [20] that instead of fixing μ = const. once 
and for all, one should rather introduce a dynamical quantity μ̄ ∝
1/a. As a consequence, quantum effects are suppressed as long as 
b � 1, which is sensible as quantum effects now become dominant 
at the Planck curvature or Planck energy density. The argument 
of [20] can be understood to lead to this result as follows: one 
demands that the integrated curvature evaluated via a closed loop 
holonomy around a plaquette of area 1 in Planck units is cut off 
at value 1 in Planck units. The Planck unit curvature cutoff follows 
heuristically.
2

For constant μ, a quantum theory can be constructed using the 
square integrable functions on U(1). Taking μ̄ to be a dynamical 
quantity poses several technical challenges for implementing it in 
a quantum theory, i.e. beyond the classical “effective” theory ob-
tained via (2.2). In the context of loop quantum cosmology, this 
problem could be solved by substituting U(1) with the Bohr com-
pactification of the real line, see the discussion in [19]. However, 
no analogue of the Bohr compactification is known for non-Abelian 
groups such as SU(2), which calls this procedure into question as 
a means to obtain sensible physics from full LQG.

It was noted in [37] that it may be a better idea to instead con-
sider b = μ̄c/μ0 as a fundamental variable and build the quantisa-
tion on the canonical pair {b, v} ∝ 1, where v = a3 is the physical 
volume. In fact, the μ̄-scheme follows from substituting

b �→ sin(μ0b)/μ0, (2.3)

which avoids the technical problems of using non-constant μ in 
the quantum theory. This idea can also be incorporated in the full 
theory by parametrising the full phase space of general relativity 
by similar variables [15].

This observation motivates the main goal of this paper, which 
is to find similar variables to describe physically sensible black to 
white hole transitions in LQG using a μ0 scheme.

3. Classical setup

As the material covered in this section is already known, we 
will be rather brief and refer to our companion paper [38] for de-
tails. The most general ansatz for a static spherically symmetric 
metric is given by [40,41]

ds2 = −ā(r)dt2 + N(r)dr2 + 2B̄(r)drdt + b(r)2d�2
2 , (3.1)

where d�2 denotes the metric on the r, t = const. round 2-sphere. 
In the Schwarzschild interior, ā(r), N(r) < 0, and the t-direction is 
consequently non-compact and spacelike. Hence, it is convenient 
to define the integrated quantities

√
a =

Lo∫
0

√
ā dt = Lo

√
ā, B =

Lo∫
0

B̄ dt = Lo B̄, n = Na + B2 ,

where Lo is the coordinate size of a fiducial cell and we further 
define Lo = ∫ Lo

0 dt
√

ā
∣∣∣
r=rref

.

In terms of spherically symmetric connection variables with the 
gauge choice B = 0, the metric reads (see e.g. [23])

ds2 = −N2
T (T )dT 2 + p2

b(T )

L2
o |pc(T )| dx2 + |pc(T )|d�2

2, (3.2)

where we identified

T = r, x = t, |pc| = b2, p2
b = −ab2, N = −N2

T . (3.3)

Under a scaling Lo �→ αLo of the fiducial cell, the variables trans-
form as

b �−→ b, c �−→ αc, pb �−→ αpb, pc �−→ pc . (3.4)

The Hamiltonian constraint of this system reads

H = NTH,

H = − b

2Gγ 2sign(pc)
√|pc|

(
2cpc +

(
b + γ 2

b

)
pb

)
≈ 0 , (3.5)

where γ ∈R\{0} is the Barbero-Immirzi parameter and the equa-
tions of motions can be obtained using the Poisson brackets
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{b, pb} = Gγ , {c, pc} = 2Gγ . (3.6)

The equation of motion can be solved as

b(T ) = ±γ
√

Ae−T − 1, c(T ) = coe−2T

(3.7)

pb(T ) = − 2cpc

b + γ 2

b

= ∓2co po
c

γ

√
eT

A

(
1 − eT

A

)
, pc(T ) = po

c e2T ,

(3.8)

where one integration constant was eliminated using the Hamilto-
nian constraint. Using the identification A = e−T0 , we can further-
more set A to one by shifting the T -coordinate.

Using the gauge choice and two variable redefinitions

NT = γ sign(pc)
√|pc|

b
, τ =

√
|po

c |eT , y = 2co

√|po
c |

γ
x ,

(3.9)

we arrive at

ds2 = − 1√|po
c |

τ − 1
dτ 2 +

(√|po
c |

τ
− 1

)
dy2 + τ 2d�2

2 (3.10)

and can identify 
√|po

c | = 2M = Rhor , where M is the black hole 
mass and Rhor the horizon radius.

The system can also be described using the two Dirac observ-
ables

Rhor = √|pc|
(

b2

γ 2
+ 1

)
on-shell= Rhor, D = cpc . (3.11)

Due to the scaling properties Rhor �−→ Rhor, D �−→ αD under a 
change of fiducial cell, only Rhor is physical. This last observation 
turns out to change in the quantum theory, where an additional 
fiducial cell independent Dirac observable that corresponds to the 
white hole mass can be constructed using polymerisation parame-
ters that also scale under a fiducial cell change.

4. New variables

To compare and contrast with a recent work by the authors 
[42], we introduce the canonical pairs (v1, P1), (v2, P2) as

(pb)
2 = −8v2, |pc| = (24v1)

2
3 , (4.1)

b = sign(pb)
γ

4

√−8v2 P2, c = −sign(pc)
γ

8
(24v1)

1
3 P1 ,

(4.2)

so that 
{

vi, v j
} = 0,

{
Pi, P j

} = 0,
{

vi, P j
} = δi j , where we set 

G = 1 from now on. It follows that

Hcl = √
nHcl, Hcl = 3v1 P1 P2 + v2 P 2

2 − 2 ≈ 0 , (4.3)

where n = Na is a Lagrange multiplier. The metric components can 
be reconstructed as

a = v2

2

(
2

3v1

) 2
3

, b =
(

3v1

2

) 1
3

. (4.4)

It was observed in [42] that a μ0-scheme polymerisation of 
these variables leads to a maximal value of the Kretschmann scalar 
depending on the chosen initial conditions, which is physically un-
desirable. This can be remedied as follows.

In the variables (v1, P1, v2, P2), the on-shell expression for the 
Kretschmann scalar reads
3

K(v1, P1, v2, P2) = 12

(
3

2
v1

) 2
3

P 2
1 P 2

2 . (4.5)

This suggests to use a power of K(v1, P1, v2, P2) as a canonical 
variable, similar to the Ricci scalar R ∝ b2 in LQC. To this end, we 
introduce the new canonical variables

vk =
(

3

2
v1

) 2
3 1

P2
, v j = v2 − 3v1 P1

2P2
,

k =
(

3

2
v1

) 1
3

P1 P2, j = P2 , (4.6)

with non-vanishing Poisson brackets

{vk,k} = 1, {v j, j} = 1. (4.7)

The main reason for this variable choice is the observation that 
K ∝ k2, i.e. μ0 scheme polymerisations of k are expected to lead to 
an upper bound for K determined by the choice of μ0. In Planck 
units, the natural choice μ0 ≈ 1 would lead to an upper bound 
given by the Planck curvature.

Following standard procedures, we derive an effective quantum 
theory via substituting1

k �−→ sin(λk k)

λk
, j �−→ sin(λ j j)

λ j
, (4.8)

where we keep λ j and λk constant (corresponding to two inde-
pendent choices for μ0 in the two variable sectors). Since the 
arguments of the sin functions should not scale under fiducial cell 
rescalings, we need to impose

λk �−→ λk, λ j �−→ α λ j (4.9)

under fiducial cell rescalings. Consequently, λ j can enter physical 
results only in ratios with other similarly scaling quantities.

From the purely classical model, the on-shell expression for k
and j reads

k(b) =
(

D

Lo

) 3
2 C

b3
= 2MB H

b3
, Lo j(b) =

(
D

Lo

) 1
2 1

b
, (4.10)

where L0 = √
n = const has been adopted and C , D are the two 

integration constants (see [38] for details). It follows that, up to 
the D-dependence discussed later, the scale λ j controls quantum 
corrections for small radii of the two-spheres.

The polymerised effective Hamiltonian then reads

Heff = √
nHeff,

Heff = 3vk
sin(λk k)

λk

sin(λ j j)

λ j
+ v j

sin2(λ j j)

λ2
j

− 2 ≈ 0 , (4.11)

1 Let us remark that many alternative proposals of polymerisation have been con-
sidered in the literature. These include choosing different functions or polymerising 
only parts of the phase space or different choices for the polymerisation scales (see 
e.g. [24,43–46] and references therein). Such different models can be motivated by 
physical inputs or full theory based results and arguments like general covariance 
and anomaly-free realisations of the constraint algebra. In particular, the analysis of 
the issue of gauge anomalies in the spherically symmetric setting as well as its im-
plication in a static framework has led to new models of LQG black hole [44,45]. 
Here, for simplicity, we do not consider such alternative choices and rather focus 
on the simplest choice of sin-polymerisation which, for the variables introduced 
in the present model, results into a physically reasonable effective Schwarzschild 
spacetime discussed in the next section. We will briefly comment on the extension 
to generic t- and r-dependent spherical symmetry in the conclusion section, while 
leaving its deserved in depth study and the analysis of the resulting constraint al-
gebra for future work.
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and the corresponding equations of motion are given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v ′
k = 3

√
n vk cos(λkk)

sin(λ j j)
λ j

v ′
j = 3

√
n vk

sin(λkk)
λk

cos(λ j j) + 2v j
√

n
sin(λ j j)

λ j
cos(λ j j)

k′ = −3
√

n sin(λkk)
λk

sin(λ j j)
λ j

j′ = −√
n

sin2(λ j j)

λ2
j

.

(4.12)

As discussed in section 2, choices of variables before polymeri-
sation can be translated in the choice of a μ̄-scheme. In case of 
the variables advocated in this section, the corresponding scheme 
turns out to be rather complicated as μ̄ would depend on both 
connection and triad variables [38].

5. Physical predictions

5.1. Spacetime

The equations of motion (4.12) can be solved as

vk(r) = 2DC2λ2
k

√
n

3

λ3
j

λ6
j

16C2λ2
k n3

(√
n r

λ j
+

√
1 + nr2

λ2
j

)6

+ 1

(√
n r

λ j
+

√
1 + nr2

λ2
j

)3
, (5.1)

v j(r) = 2n

(
λ j√

n

)2
(

1 + nr2

λ2
j

)⎛
⎜⎜⎝1 − 3C D

2λ j

1√
1 + nr2

λ2
j

⎞
⎟⎟⎠ , (5.2)

k(r) = 2

λk
cot−1

⎛
⎝ λ3

j

4Cλk
√

n
3

(√
n r

λ j
+

√
1 + nr2

λ2
j

)3
⎞
⎠ , (5.3)

j(r) = 1

λ j
cot−1

(√
nr

λ j

)
+ π

λ j
θ

(
−

√
nr

λ j

)
, (5.4)

as rewritten in terms of a and b as function of x := Lor/λ j as

b2(x) = 1

2

(
λk

MB H MW H

) 2
3 1√

1 + x2

×
M2

B H

(
x + √

1 + x2
)6 + M2

W H(
x + √

1 + x2
)3

, (5.5)

a(x)

λ2
j

= 2

(
MB H MW H

λk

) 2
3
(

1 −
(

MB H MW H

λk

) 1
3 1√

1 + x2

)

×
(
1 + x2

) 3
2
(

x + √
1 + x2

)3

M2
B H

(
x + √

1 + x2
)6 + M2

W H

. (5.6)

Again, we obtain two integration constants C and D . They are re-
flected in the values of the two fiducial cell independent Dirac 
observables

2MB H = sin(λkk)

λk
cos

(
λkk

2

)⎛
⎝ 2vk

λ j cot
(

λ j j
2

)
⎞
⎠

3
2

, (5.7)

2MW H = sin(λkk)

λk
sin

(
λkk

2

)(
2vk

λ j
cot

(
λ j j

2

)) 3
2

, (5.8)
4

Fig. 1. Penrose diagram for the Kruskal extension of the full quantum corrected 
polymer Schwarzschild spacetime.

as

C = λ3
j

4λk
√

n
3

MW H

MB H
, D = √

n

(
8λk

√
n

3

λ3
j

M2
B H

MW H

) 2
3

. (5.9)

A detailed construction of the metric in the far future and far 
past after the black to white hole transition leads to the Penrose 
diagram in Fig. 1. The key observations entering its construction 
are as follows (see [38] for details). a) Both in the asymptotic fu-
ture and past, the spacetime is asymptotically flat. b) Far away 
from the transition surface connecting the black and while hole 
regions, the metric is approximately classical and corresponds to 
Schwarzschild spacetimes with masses MB H and MW H , which can 
be chosen arbitrarily as initial conditions. c) Following the space-
time evolution from the black hole classical regime to the white 
hole classical regime up to the same value of b leads to

v j �→ v j , vk �→ vk , k �→ π

λk
− k , j �→ π

λ j
− j . (5.10)

The Dirac observables transform under this process as

MB H �−→ MW H , MW H �−→ MB H , (5.11)

leading to an infinite oscillation between Schwarzschild spacetimes 
with masses MB H and MW H .

5.2. Onset of quantum effects

As expected, we observed numerically that for a very broad 
range of MB H and MW H (with numerically stable results for 
MB H , MW H < 1020), the maximum value of the Kretschmann 
scalar is bounded by approximately the Planck curvature for 
λk ≈ 1, see [38] for details.

As for the onset of quantum effects, it is clear from the poly-
merisation (4.8) that the spacetime is approximately classical as 
long as

Lo r

λ j
� 1,

2r3

Cλk
� 1. (5.12)

The second condition can be rewritten as

KB H
cl = 48M2

B H

b6
� 48

λ2
, (5.13)
+ k
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where b+ = b(r → +∞) is the value of b in the black hole region, 
but far away from the transition surface, and corresponds to an 
onset of quantum effects when the Kretschmann scalar becomes 
close to the scale 1/λ2

k . On the white hole side, this equation be-
comes

KW H
cl = 48M2

W H

b6−
� 48

λ2
k

, (5.14)

with b− = b(r → −∞) denoting the corresponding value in the 
white hole region.

For the first condition in (5.12) corresponding to small radius 
corrections, it can be shown that their onset is always after large 
curvature effects originating from the second condition for the 
range

1

8
<

MW H

MB H
< 8 (5.15)

of initial conditions. Outside of this range, one encounters an onset 
of quantum effects at curvatures much lower than the Planck cur-
vature. This can be understood from rewriting the first condition 
of (5.12) as (and equivalent on the white hole side)

2MB H

b3+
� 1

4λk

MW H

MB H
,

2MW H

b3−
� 1

4λk

MB H

MW H
, (5.16)

which is a curvature scale depending on the mass ratio MW H/ MB H .
Although the upper curvature bound is fine for all mass ratios, 

the natural conclusion of the above observation about the onset of 
quantum effects is that physically reasonable black to white hole 
transitions preferred by the model are those where the masses 
do not change significantly. Rather, choosing MW H = MB H per-
fectly aligns both types of corrections, making them both appear 
at high curvatures. From a physical point of view, one may expect 
that no mass is gained or lost in a black to white hole transi-
tion, showing that such a restriction of the initial conditions may 
be sensible. Since the quantum theory corresponding to the ex-
ceptionally simple Hamiltonian (4.11) can be explicitly constructed 
using standard LQC methods (see e.g. [42]), one may also address 
this question using wave packets. Due to MW H and MB H not 
Poisson-commuting, one can not to specify both of them simulta-
neously with arbitrary precision, which may affect the discussion.

We have not been able to avoid the D-dependence in (5.16) by 
another choice of variables while keeping (5.13) and (5.14) as is. 
Making λ j D-dependent as a choice of polymerisation scheme, fol-
lowing the ideas of [30,31], is problematic for various reasons, and 
changes the equations of motion [32], so that no immediate con-
clusions can be drawn.2 It is however possible to obtain sensible 
small 2-sphere radius corrections by restricting the initial condi-
tions to D ≈ 1, which leads to MWH ∝ M2

BH [38]. Nevertheless, the 
symmetric bounce above, where the two types of corrections re-
duce to large curvature corrections, seems more natural to us.

6. Conclusion

We have presented a new model for black to white hole transi-
tions inspired by LQG. The physical idea entering our model is to 
construct sensible quantum corrections appearing once the space-
time curvature becomes close to the Planck curvature by poly-
merising adapted variables. Our model satisfies all criteria of phys-
ical viability (sensible onset of quantum effects, Planckian upper 

2 Further drawbacks originating from the polymerisation strategy adopted in 
[30,31] have been pointed out in the literature. These concern issues with general 
covariance [33] or departures from the expected asymptotic Minkowski structure 
[34,35] (on the latter point see also [36] for completeness).
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bounds on curvature scalars, possibility of symmetric bounce), as 
e.g. spelled out in [30]. It does so by using a simple μ0-scheme, i.e. 
constant polymerisation scales that can be immediately transferred 
to a quantum theory. To the best of our knowledge, the presented 
model is currently the only one in the literature satisfying all of 
the above.

For future work, it would be interesting to study the quantum 
theory obtained from (4.11) and embed it into full quantum gravity 
via the methods of [13,15]. Once this is done, it is possible to study 
coarse graining following [47,39], which may affect some of the 
physical predictions. After all, the model discussed here is expected 
(by analogy with [13,15]) to correspond to a one-vertex truncation 
of a full quantum gravity theory, thus neglecting possible effects of 
the continuum limit as illustrated in [39].

Moreover, as already mentioned in Sec. 4, it would be inter-
esting to extend the variables presented here beyond the static 
Schwarzschild case by considering a generic spherically symmet-
ric t- and r-dependent line element as starting point. Due to 
their geometric interpretation as being respectively related to the 
Kretschmann scalar and the angular components of the extrinsic 
curvature, the momenta k and j can in principle be straightfor-
wardly computed also in the generic spherically symmetric case. 
Less straightforward would be the construction of the correspond-
ing conjugate variables but, modulo computational difficulties, still 
possible for instance via generating function methods. A successful 
construction would not only be a necessary step towards more re-
alistic models of quantum corrected black holes but would allow 
us to study also key questions about the now non-trivial algebra 
of constraints and general covariance along the lines of [44,45]. 
In this respect, let us mention that the considerations in [44,45]
are based on connection variables and mainly limited to their μo-
scheme (see however [48] for a proposal of μ̄-scheme in polymer 
black holes using self-dual variables). A better understanding of 
the relation of our new variables, eventually extended to the t-
and r-dependent case, with connection variable-based polymerisa-
tion schemes might be therefore desirable for comparison. The fact 
that the polymerisation strategy in [44,45] also turns out to fo-
cus on the angular component of the extrinsic curvature together 
with the interpretation of our k momentum in terms of spacetime 
scalars is in a sense encouraging. A detailed study of the class of 
polymerisation functions (not necessarily of the sin form) compat-
ible with anomaly-free considerations in our framework as well as 
their consequences for the effective spacetime structure are left for 
future investigations.
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