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Abstract In the high energy limit of hadron collisions, the
evolution of the gluon density in the longitudinal momentum
fraction can be deduced from the Balitsky hierarchy of equa-
tions or, equivalently, from the nonlinear Jalilian–Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK)
equation. The solutions of the latter can be studied numeri-
cally by using its reformulation in terms of a Langevin equa-
tion. In this paper, we present a comprehensive study of sys-
tematic effects associated with the numerical framework, in
particular the ones related to the inclusion of the running cou-
pling. We consider three proposed ways in which the running
of the coupling constant can be included: “square root” and
“noise” prescriptions and the recent proposal by Hatta and
Iancu. We implement them both in position and momentum
spaces and we investigate and quantify the differences in
the resulting evolved gluon distributions. We find that the
systematic differences associated with the implementation
technicalities can be of a similar magnitude as differences
in running coupling prescriptions in some cases, or much
smaller in other cases.

1 Introduction

One of the well known predictions of perturbative Quantum
Chromodynamics (QCD) is a rapid growth of gluon distribu-
tion functions at a fixed resolution scale μ with decreasing
values of hadron longitudinal momentum fraction x . For suf-
ficiently small x , the growth is expected to be tamed, because
otherwise the unitarity bound would be violated. This phe-
nomenon – the so-called gluon saturation – is one of the most
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interesting and still not fully resolved aspects of QCD at high
energies. For a comprehensive and pedagogical review of
these subjects, see, for instance, Ref. [1].

Pictorially, in the saturation domain, the occupation num-
ber of gluons inside a hadron is so large that they start
to overlap. Consequently, a new perturbative mechanism
is possible, the gluon recombination, which competes with
the gluon splitting giving the aforementioned growth of the
distribution. At a fixed resolution scale μ, the growth due
to the gluon splitting with decreasing x is described by
the linear Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolu-
tion equation [2–6], while the inclusion of the recombination
effects leads to non-linear equations, the simplest example
being the Balitsky–Kovchegov (BK) equation [7,8].

The BK equation is the mean field approximation to an
infinite tower of entangled equations, describing the evo-
lution in x of correlators of Wilson line operators U (xT ),
stretching on the light-cone from minus to plus infinity, but
positioned at a fixed transverse point xT (with respect to the
light-cone directions). Such Wilson line operators appear nat-
urally at high energies in the so-called eikonal approxima-
tion, as phases picked up by energetic colored parton fields
traveling through the color field of the target hadron. The
simplest two-point correlator of Wilson lines, the dipole,
i.e.

〈U (xT )U† (yT )
〉
, is directly related to the gluon dis-

tribution function unintegrated over the transverse momen-
tum, often called unintegrated dipole gluon density or trans-
verse momentum dependent (TMD) gluon density1 probed
in inclusive processes such as deep inelastic scattering.

1 Here, we will use the latter term, which should, however, not be con-
fused with the TMD in the context of Collins-Soper-Sterman formalism
[9,10].
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In general, TMD gluon distributions turn out to be non-
universal; various processes enforce a different gauge link
structure required to maintain the gauge invariance of the
operator defining the TMD distribution [11]. However, a
TMD distribution for an arbitrary multiparticle process can
be constructed from a restricted set of basis operators [12].
Correlators of four and more Wilson lines can be related to
these non-universal TMD gluon distributions – the relation
has been first shown at leading power [13–15] and recently
beyond leading twist [16–18].

A systematic approach to the evolution in energy (or
x) of the correlators of Wilson lines is provided by the
Color Glass Condensate (CGC) theory (see e.g. [19]). In
the CGC, the Wilson lines are treated as functionals of the
target (typically nucleus) random gauge field. The averag-
ing of the Wilson line operators is defined by means of the
functional weight, which is typically taken to be the Gaus-
sian functional at some initial scale x0, according to the
McLerran–Venugopalan (MV) model [20,21]. The decrease
of the scale modifies the weight functional according
to the Balitsky–Jalilian–Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (B–JIMWLK) equations [7,22–29], avail-
able now also at NLL accuracy [30–32]. Since the evolution
Hamiltonian involves the Wilson lines themselves, the set of
equations for correlators is not closed, i.e. each step in the
evolution will generate more and more complicated correla-
tors. Due to this last fact, the aforementioned BK equation
is phenomenologically very important, because in the mean
field approximation it allows to approximate any correlator
by dipoles. However, the precise description of less inclusive
processes, where the non-universality of TMD gluon distri-
butions is strong, requires full solutions of the B–JIMWLK
equations.

In particular, recent phenomenology studies of forward
jet production processes [33–37] within a framework that
directly uses various TMD gluon distributions in the small-x
limit – the so-called small-x improved TMD factorization
(ITMD) [16,38] – utilizes the Gaussian approximation and
large-Nc approximation to calculate the TMD distributions.
As shown in [15,39], they can also be calculated from the full
B-JIMWLK equation, without approximations, although at
a fixed coupling constant.

It is possible to study the solutions of the JIMWLK equa-
tion numerically by rewriting it in terms of a more practical
Langevin equation [40]. The first application of such numer-
ical solutions to phenomenology was described in [41] and
used the so-called “square root” prescription for the inclusion
of effects of the running of the strong coupling constant. We
devote this work to investigate the impact of the various sys-
tematic effects inherent to the numerical framework, such
as the differences which arise from performing particular
steps of the calculation in position or momentum space. The
Langevin equation itself is defined only in position space.

However, intermediate or additional steps, such as the com-
putation of correlation function of Wilson lines, can be imple-
mented both in position and momentum spaces. There are
two reasons why the Fourier transform introduces unwanted
systematic effects. On the one hand, the Fourier transforms
mix short-distance discretization effects with large-distance
finite volume effects. It is difficult to disentangle them and
one needs to perform both the continuum and the infinite vol-
ume extrapolations to remove them. On the other hand, the
Fourier transforms are in many cases performed in the color
group instead of in the corresponding algebra and therefore
many of the theorems known in Fourier analysis do not hold.
We show numerically that under some circumstances the two
ways of estimation, through position or momentum space,
are not equivalent and we quantify these effects. In particu-
lar, we pay special attention to the various prescriptions for
the running coupling constant effects and we try to quantify
the associated differences.

Our results can be used as guidelines to estimate system-
atic uncertainties on the phenomenological parameters of the
initial condition in the MV model. The recent phenomeno-
logical fit to the F2 HERA data provided first estimates of
these parameters. They are, however, dependent on different
implementation choices of the numerical framework used to
solve the JIMWLK evolution equation. We argue that some
care needs to be taken when these parameters are compared
with experimental determinations.

The paper is composed as follows. We start in Sect. 2
with a brief summary of the main features of the numerical
framework. In Sect. 3, we describe in more detail existing
implementations of the running coupling in the JIMWLK
equation. In subsequent sections, we discuss the systemat-
ics associated to different stages of the computation. Some
subtleties even at the stage of computing the correlation func-
tions are mentioned in Sect. 2.2. In Sect. 5.1, we summarize
the dependence of the initial gluon distribution on the algo-
rithmic parameters, rederiving some of the results of [15,40]
for completeness. Further, in Sect. 5.2, we describe the sys-
tematics involved in the implementation of the evolution
in rapidity. Finally, in Sect. 5.3, we discuss the differences
induced by different implementations of the running cou-
pling in the JIMWLK equation. We present our conclusions
in Sect. 6.

Throughout this paper, we try to keep an explicit notation
of all expressions. We find that in the literature many details
of the implementation are implicitly assumed, but never pre-
cisely stated. Although some of our expressions seem to
be trivial, their aim is to provide the Reader with expres-
sions that correspond exactly to what was implemented in
the computer code used to perform the computations. The
open-source code is available as a git repository under

https://bitbucket.org/piotrekkorcyl/jimwlk
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together with the documentation. The code is fully par-
allelized and multi-threaded and can be run on multicore
CPU-based clusters. General information about the code can
be found in Ref. [42].

2 Description of the numerical framework

In this section, we describe in detail the basic steps of the
calculation. We describe the implementation of the MV
model for the initial condition and present the computation
of the dipole correlation function. Then, we proceed with
the description of the evolution equation, providing details
of the implementation entirely in position space or using the
JIMWLK kernel in momentum space. The inclusion of the
running coupling effects is described in the next section.

2.1 Initial condition and construction of Wilson lines

The basic object in our calculation is the straight infinite
Wilson line along the light cone with fixed transverse position
x. In the discretized setting, it is constructed as the product
of Ny elementary Wilson links,

Uab(x) =
Ny∏

k=1

Uab
k (x) , (1)

where a, b denote matrix elements and are in the fundamental
representation. The infinitesimal Wilson link variables can be
obtained from the gauge potentials Aab

k

Uab
k (x) = exp

(
−igAab

k (x)
)

= exp

(

−i
gρab

k (x)

∇2 + m2

)

, (2)

which are expressed in terms of color source fields ρab
k and

imposed to be the solutions of appropriate classical Yang–
Mills equations, in accordance with the MV model. In the
approximation of stationary, classical fields, these equations
reduce to a single Poisson equation,

(∇2 + m2)Aab
k (x) = ρab

k (x) , (3)

where the artificial mass m regulates a possible zero eigen-
value of the Laplace operator. We solve Eq. (3) on the square
lattice with periodic boundary conditions. The Laplace oper-
ator is diagonal in momentum space, so the simplest way
of obtaining the solution is to perform the Fourier transform
element-wise on the ρ matrix, solve the corresponding alge-
braic equation in momentum space and return to position
space,

ρab
k (x)

∇2 + m2

= a2

L2

∑

z∈Λ̃

∑

k∈Λ

eik(x−z)ρab
k (z)

− 4
a2

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
+ m2

,

(4)

where the two sums correspond to the two Fourier transforms
and Λ (Λ̃) denote the sets of all discrete lattice momenta
(positions), see Appendix for details. The lattice has size
Lx × Ly and we take Lx = Ly ≡ L . a is the dimensionful
lattice spacing. The dimensionless lattice momentum

k̂x,y = 2

a
sin

(
kx,ya

2

)
, (5)

and its square

k̂2 = 4

a2

{
sin2

(
kxa

2

)
+ sin2

(
kya

2

)}
(6)

arise in Eq. (3) as a direct consequence of using a sym-
metrized finite difference instead of the continuum deri-
vative.

For the remaining problem of generating initial color
sources ρ, we follow the MV model with a discretized trans-
verse x−y plane. For a given x = (x, y) on the transverse
plane, Ny color matrices in the rapidity direction represent
successive, random gluon radiation. Such implementation
follows the procedure described in Ref. [43]. Alternative
implementations were discussed in Ref. [40].

Technically, on each site x of each plane k, k = 1, . . . , Ny ,
we construct a random matrix from the SU(3) algebra by

gρ(x)k = gρ(x)Ak λA , (7)

where the color sources ρ(x)Ak are normally distributed and
generated by the Box-Muller method. Above, A is an adjoint
color index. For their standard deviation, we have

〈gρ(x)Ak gρ(y)Bl 〉 = δABδklδ(x − y)
g4μ2

Ny
. (8)

Above, g, Ny and μ are input parameters of the MV model.
As can be seen from the above expression, the relevant com-
bination of MV parameters is g2μ. It is therefore sufficient
to set g = 1 and vary μ. Summarizing, the Wilson line is
given by

Uab(x) =
Ny∏

k=1

exp

(

−i
ρab
k (x)

∇2 + m2

)

. (9)

On the lattice, the dimensionless (input) scale parameter is
aμ and hence, a fixed physical setting is obtained when mul-
tiplying it with the lattice size L/a. Thus, in our numerical
study, we take a constant value of g2μL = 30.72, as used in
Refs. [15,44].
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2.2 Two-point correlation function

Once we have constructed all Wilson lines, we can evaluate
their correlation functions. At first sight, this seems to be a
trivial task. However, depending on how the estimation of the
correlation function is implemented, i.e. whether one stays
entirely in position space or one uses Fourier acceleration
and performs parts of the calculation in momentum space,
the results differ significantly on a single realization of the
initial condition. This is due to the ambiguity of the Fourier
transform on the group manifold. The discrepancy disap-
pears when a sufficiently large statistical sample is used for
the evaluation. Below, we summarize both approaches and
the numerical results are shown in Fig. 1. We stay in the
fundamental representation and define C(x) following Ref.
[43],

C(x − y) = 〈trU †(x)U (y)〉, (10)

where the average 〈·〉 is taken over different statistical real-
izations of Wilson lines. We enforce that C(δ) is an even
function of δ = x − y,

C(δx , δy) = C(|δx |, |δy |) . (11)

We average over symmetric distances

C(δx , δy) = 1

2

{
C(δx , δy) + C(δy, δx )

}
(12)

and

C(δx , δy) = 1

4

{
C(δx , δy) + C(L − δx , δy)

+C(δx , L − δy) + C(L − δx , L − δy)
}
, (13)

where δx ≥ 0 and δy ≥ 0. Finally, we use the Fourier trans-
form of complex-valued function C with periodic boundary
conditions to obtain

C̃(k) = a

L

∑

x−y∈Λ̃

eik(x−y)C(x − y), (14)

which, due to the applied symmetrization, yields a strictly
real function C̃(k).

A much faster implementation uses Wilson lines in
momentum space. The starting point is the Fourier transform
of Wilson lines,

Ũ ab(k) = a

L

∑

x∈Λ̃

eikxUab(x) . (15)

This Fourier transform is understood in terms of matrix ele-
ments of the matrices U , i.e. the above equation involves
9 independent complex number Fourier transforms. Obvi-
ously, in general, Ũ (k) does not belong to the SU(3) group

Fig. 1 Top: comparison of the correlation function estimated for a
single realization of the initial condition. Bottom: comparison of the
correlation functions estimated in momentum and position spaces for a
statistics of 100 initial condition realizations.

anymore,

Ũ †(k)Ũ (k) = a2

L2

∑

x,y∈Λ̃

eik(x−y)U †(x)U (y) �= 1 . (16)

The advantage is that using Ũ (k) we can recover the corre-
lation function of Eq. (14) by only local multiplications,

C̃(k) = 〈tr Ũ †(k)Ũ (k)〉
= a2

L2

∑

x,y∈Λ̃

eik(x−y)〈trU †(x)U (y)〉 , (17)

where we have used the fact that 〈trU †(x)U (y)〉 depends
only on the distance x − y = δ. Numerical results for both
implementations are shown in Fig. 1. In the top panel, we
present the results for both approaches for a single configu-
ration of Wilson lines. Clearly, the results differ significantly,
especially for small values of the transverse momentum vec-
tor. On the contrary, after averaging over 100 realizations of
the color charges, both methods give compatible results (bot-
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tom panel), the momentum space approach being statistically
more precise. In the following, we use the momentum space
approach to evaluate all correlation functions.

Below, we present results for the rescaled dimensionless
gluon distribution, (L/a)2 k̂2 C̃(LkT ), where kT is the norm
of the two-dimensional vector k and where we use the lattice
momentum, Eq. (6), for k̂2, as previously suggested in the lit-
erature. For clarity of our message, we do not consider in this
work other correlation functions, in particular those contain-
ing derivatives of Wilson lines, such as the ones presented in
Ref. [15]. They share all the systematic uncertainties with the
basic gluon distribution analyzed below, their additional sys-
tematic uncertainties being solely related to the discretization
effects of the derivative.

2.3 Evolution in rapidity

In this section, we describe the details of the implementa-
tion of the JIMWLK equation reformulated as a Langevin
equation [40]. We use a numerically more economical for-
mulation, where the Wilson line is multiplied by evolution
kernels from the left and right side [44]. The evolution equa-
tion in rapidity s with a step of size δs reads

U (x, s + δs)

= exp

⎛

⎝−√
δs

∑

y

U (y, s) (K(x − y) · ξ(y))

U †(y, s)
)
U (x, s) exp

⎛

⎝
√

δs
∑

y

K(x − y) · ξ(y)

⎞

⎠ , (18)

whereK(x) is a kernel function and ξ(x) are random vectors,
both to be discussed below. To simplify the notation, we
denote the arguments of the right and left exponentials by A
and B,

Aab =
∑

y

K(x − y) · ξab(y) (19)

and

Bab =
∑

y

Uac(y, s)
(
K(x − y) · ξ cd(y)

)
U †,db(y, s), (20)

so that the Langevin equation becomes

U (x, s + δs) = exp(−√
δsB)U (x, s) exp(

√
δs A) . (21)

Again, the construction of A and B can be performed in
position or momentum spaces. Below, we describe both
approaches and the corresponding numerical results are dis-
cussed in Sect. 5.2.

2.3.1 Construction of A and B

In order to use Fourier acceleration, we need several quanti-
ties in momentum space. We define

K̃(k) = a

L

∑

x∈Λ̃

eikxK(x), (22)

ξ̃(k) = a

L

∑

x∈Λ̃

eikxξ(x). (23)

Then,

A(x) = a

L

∑

k∈Λ

e−ikxK̃(k)ξ̃(k) . (24)

In order to repeat a similar construction for the B matrix, we
start by defining a matrix U
U(y) = U (y)ξ(y)U †(y) , (25)

which we subsequently transform to momentum space

Ũ(k) = a

L

∑

x∈Λ̃

eikxU(x) . (26)

Then, we have

B(x) = a

L

∑

k∈Λ

e−ikxŨ(k)K̃(k) . (27)

All Fourier transforms above are understood element-
wise. Because of that and because of the different discretiza-
tion errors in the JIMWLK kernel, both approaches, in posi-
tion and in momentum space, are not equivalent. The evolu-
tion equation in momentum space reads

U (x, s + δs)

= exp

(

−√
δs

a

L

∑

k∈Λ

e−ikxŨ(k)K̃(k)

)

U (x, s) exp

(√
δs

a

L

∑

k

e−ikxK̃(k) ˜ξ(k)

)

, (28)

Further numerical results are discussed in Sect. 5.

2.3.2 Random vectors

In both approaches, we start by generating random vectors ξ

valued in the Lie algebra (with generators λA) on each site
of the lattice,

ξ(x) = (ξx (x), ξy(x)) = (ξ A
x (x)λA, ξ B

y (x)λB) , (29)

from a normal distribution with unit width. The vectors ξ(x)
are uncorrelated in x, therefore

〈ξ A
i (x) ξ B

j (y)〉 = δABδi j δ(x − y) . (30)
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For the momentum space formulation, we also need the
Fourier-transformed random vectors ξ(p), which satisfy the
analogous constraint

〈ξ A
i (p) ξ B

j (q)〉 = δABδi j δ(p − q) , (31)

which states that the noise vectors are also uncorrelated in
momentum space.

2.3.3 Kernel function

We now turn to the kernel function that enters the rapidity
evolution equation and discuss the possible discretizations
thereof in position space and in momentum space. The orig-
inal JIMWLK kernel is defined in continuum position space
as

K(x) = x
x2 . (32)

When implemented on a lattice, several symmetries of this
kernel are broken and hence, various discretizations are pos-
sible and lead to different systematic effects. In particular, due
to the slow, power-law decay of the kernel at large distances,
finite volume effects must be carefully studied. We start our
discussion with the position space kernel and we show how
to construct the A and B matrices. Then, we present an anal-
ogous presentation for the momentum space kernel.

2.3.3.1 Position space kernel On a discrete lattice, the kernel
in Eq. (32) assumes the following form,

K(n) = Nn
n̄2 , (33)

where n = (nx , ny) is a vector of integers, i.e. ni ∈
(−L/a, L/a), and the numbers n̄i (n̄2) are in the chosen
discretizations:

– naive with a discontinuity:

n̄i =

⎧
⎪⎨

⎪⎩

ni − L/a if ni ≥ L/2a,

ni if − L/2a ≤ ni < L/2a,

ni + L/a if ni < −L/2a,

(34)

n̄2 = n̄2
x + n̄2

y (35)

– regularized with the sine function:

n̄i = L

2πa
sin

(
2πani

L

)
, (36)

n̄2 =
(

L

πa

)2 [
sin2

(πanx
L

)
+ sin2

(πany
L

) ]
. (37)

The numerator/denominator of the discrete kernel are plotted
in the top/bottom panel of Fig. 2 for both discretizations. By
construction, they agree for small separations n, whereas the

Fig. 2 Top panel: periodic x-component of the distance vector x (left
vertical axis) and the momentum vectork (right vertical axis), as appears
in the numerator of the JIMWLK kernel. The naive/sine discretization
is shown in red/green. Bottom panel: analogously for the squares of the
distance and momentum vectors, corresponding to the denominator of
the JIMWLK kernel. The lattice size is L/a = 32

largest discrepancy appears for separations close to the half
of the lattice extent, which for the demonstrated situation
happens at |x/a| = 16.

2.3.3.2 Momentum space kernel In order to be able to com-
pare position and momentum space results, we need to make
sure that the relation between the JIMWLK kernel in posi-
tion and momentum space is well established. As both sides
of the equation have the same dimensions, we can write it in
terms of dimensionless, still continuous, variables,
∫

d2n
2π

e−ikn ni
n2 = −2π i

ki
k2 . (38)

We have discussed possible discretizations of the integrand
for the position space kernel. Mimicking the continuum rela-
tion, discrete Fourier transform should produce the equiva-
lent JIMWLK kernel in momentum space. Anticipating the
result, we can discretize the right hand side of the continuum
relation, Eq. (38), following one of the two ways,
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– keeping the naive lattice momenta,

k̄i = 2π
ani
L

. (39)

– or, alternatively, as is commonly done using the lattice
momenta k̂ and k̄,

k̄i = sin

(
2πani

L

)
, (40)

k̄2 = 4
[

sin2
(πanx

L

)
+ sin2

(πany
L

) ]
. (41)

The comparison of both definitions in momentum space
is shown again in Fig. 2. Obviously, both discretizations lead
to the same behavior as in position space, up to a rescaling
of the vertical axis.

We can now test the discretized versions of Eq. (38). Note
that we should not a priori expect that this equation holds in
the discrete version. This is due to the fact that the Fourier
transform propagates discretization effects and finite volume
effects of the position space kernel to all values of the momen-
tum k and vice versa. To simplify the picture, we look at a
single component of the kernel, i.e. the x-component,
∫

dnxdny
2π

e−i(kx nx+kyny)Dpos(nx )

Dpos(n2)
≈ −2π i

Dmom(kx )

Dmom(k2)
,

(42)

where Dpos and Dmom denote one of the possible discretiza-
tions of the quantity in brackets, i.e. either the position or
the momentum vector. In principle, there may not be a single
region where Eq. (42) holds with a reasonable degree of accu-
racy. As a test (shown in Fig. 3), we plug both definitions of
the kernel in position space, perform the discretized Fourier
transform numerically and compare the result with the two
possible variants of the momentum space kernel. Note that
we keep the usual dimensionless positions and momenta in
the Fourier phase, and stick to the continuum notation in this
sketchy equation. The result shown in Fig. 3 was obtained
for a lattice of size 16 × 16. The horizontal axis shows x ,
whereas different values of y are shown with different sym-
bols and are shifted vertically by two units. First, start with
the left hand side of Eq. (42), i.e. the Fourier transform of the
position space kernel. This is shown by the blue and black
data points; the blue correspond to the naive discretization
of the position space kernel, whereas the black to the sin-
regularized kernel. Surprisingly, both data sets agree quite
well for nearly all values of x and also y. The red data points
show the momentum kernel with the usual k̄/k̂2 definition,
whereas the green data points are calculated using the sim-
ple lattice momenta. If Eq. (42) held, the blue and black data
points should lie on top of the green and red. The discrep-
ancy signals that the linear momentum discretization fails to
reproduce the discretized JIMWLK kernel in the bulk of the

lattice: green data is significantly above all others. On the
contrary, notice that the Fourier transforms of both position
space kernels (blue and black data) agree reasonably well
with the momentum kernel defined using trigonometric reg-
ularization. The momentum kernel defined through lattice
momenta provides good agreement only for small momenta.
This is reasonable, as the numerator of the kernel is linear in
the lattice momentum, hence as seen in Fig. 2, the naive and
trigonometric momenta agree up to ≈ 6, then the boundary
effects introduce large deviations.

We conclude that both forms of the position space
JIMWLK kernel and the trigonometric momentum kernel
provide a consistent picture. This conclusion will be further
enhanced when we discuss the gluon distribution after evolu-
tion in rapidity: the momentum linear kernel introduces large
finite size effects and distorts the shape of the final distribu-
tion.

3 Running coupling

3.1 “Square root” prescription

This prescription was proposed in Refs. [45,46] and dis-
cussed by Rummukainen and Weigert in Ref. [40], where
they introduced the running coupling in the Langevin for-
mulation of the JIMWLK equation following [47,48]. The
running coupling effects are accounted for with the coupling
at the scale given by the size of the parent dipole (x − y)2,
i.e. we introduce a one-loop running

αs → αs(1/(x − y)2) = 4π

β0 ln 1
(x−y)2Λ2

QCD

, (43)

with β0 = (11Nc−2N f )/3 for Nc colors and N f flavors and
ΛQCD being the QCD scale parameter. The running coupling
in the Langevin equation (28) is hidden in the rapidity factor

s = αs

π2 y, y = ln
x0

x2
, (44)

with x0 (x2) the initial (final) Bjorken-x of the evolution. In
the “square root” prescription, Eq. (28) becomes

U (x, s + δs) = exp
[

−
√

δy

π

∑

y

U (y, s)

(√
αs(|x − y|)K(x − y)ξ(y)

)
U †(y, s)

]
×

×U (x, s) exp
[√

δy

π

∑

y

√
αs(|x − y|)K(x − y)ξ(y)

]
,

(45)

where we have separated
√

αsδy

π
→

√
δy

π

√
αs(|x − y|) . (46)
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Fig. 3 Comparison of Fourier transformed position space discretized
JIMWLK kernels with their momentum definitions as in Eq. (42) on
a 16 × 16 lattice. The size of the lattice is chosen such that it allows
to show on a single plot all the values of the two kernels and identify
the regions where the differences are largest/smallest. Quantitative esti-
mation of their impact is presented in subsequent figures using lattices
with phenomenologically relevant sizes. The horizontal axis shows nx ,
whereas different values of ny are shown with different symbols and

are shifted vertically by two units. The blue and black data points show
the Fourier transform; the blue correspond to the naive discretization
of the position space kernel, whereas the black to the sin regularized
kernel. Surprisingly, both data sets agree quite well. The red data points
show the corresponding momentum kernel with the usual k̄/k̂2 defi-
nition, whereas the green data points are calculated using the simple
lattice momenta.

Depending on the way in which we have implemented the
JIMWLK kernel, either in position or in momentum space,
the running coupling has to be included accordingly. This
question was addressed in Ref. [44], where the momentum
prescription was provided. We therefore make use of the fol-
lowing definitions,

αs(k) = 4π

β0 ln
{[( μ2

0
Λ2

QCD

) 1
c + ( k2

Λ2
QCD

) 1
c
]c}

(47)

or

αs(r) = 4π

β0 ln
{[( μ2

0
Λ2

QCD

) 1
c + ( 4e−2γE

r2Λ2
QCD

) 1
c
]c}

, (48)

where the parameter c is used to freeze the running for small
momenta and large distances. As in Ref. [44] we take the
numerical values of Lμ0 = 15 and LΛQCD = 6. These
parameters are part of the model and so their precise values
should be fixed by comparison with experimental data, e.g.
through a fit to the DIS data.

3.2 “Noise” prescription

An alternative definition of the running coupling was pro-
posed by Lappi and Mäntysaari [44,49]. The running cou-
pling can be implemented as a modification of the properties
of the noise vectors in the Langevin equation. This has a dif-
ferent physical motivation, as the scale of the running cou-
pling is in this case provided by the momentum of the emitted
gluon. This scale is then argued in Refs. [44,49] to correspond
to the smallest of the three relevant dipole sizes (the “parent”
and two “daughter” dipoles) [44]. Hence, instead of Eq. (28)
we use

U (x, s + δs) = exp
[

− √
δs

∑

y

U (y, s)
(
K(x − y)η(y)

)

U †(y, s)
]
U (x, s) exp

[√
δs

∑

y

K(x − y)η(y)
]
, (49)

where now

〈ηA,i (x)ηB, j (y)〉 = δABδi j
∫

d2k
(2π)2 e

ik(x−y)αs(k) =
= δABδi j α̂x−y (50)
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instead of the uncorrelated, Gaussian random variables in
position space ξ A,i (x). The noise η(x) becomes correlated
in both momentum and position spaces.

3.2.1 Momentum space

The implementation in momentum space is straightforward.
The correlation is diagonal and thus, for each p one generates
uncorrelated Gaussian variable with variance σ = √

αs(p),

〈ηA,i (p)ηB, j (q)〉 = δABδi jδ(q − p)αs(p) . (51)

3.2.2 Position space

In position space, we need to construct a nontrivial correla-
tion between any two lattice sites,

〈ηA,i (x)ηB, j (y)〉 = δABδi j α̂x−y . (52)

As noted in Ref. [44], the coupling constant α̃x−y cannot be
interpreted as being evaluated at the scale x− y, but rather it
is the Fourier transform of the coupling constant in momen-
tum space, as in Eq. (50). Hence, we construct the desired
correlation matrix in position space,

Σ(n,m) = α̂s(n − m) ≡
∫

d2k
(2π)2 e

ik(x−y)αs(k) . (53)

Σ is by construction symmetric and positive-definite. Thus,
in the next step, we find the Cholesky decomposition of Σ ,
i.e. a matrix L such that

LLT = Σ . (54)

Eventually, we generate a Gaussian vector of uncorrelated
random variables, ξ , which we afterwards transform accord-
ing to

η(n) =
∑

m

L(n,m)ξ(m) . (55)

η(n) has the desired correlation,

〈η(n)η(m)〉 = α̂n−m . (56)

The correlation matrix Σ is color and spin blind, so that we
can use it for all color and spin components

〈ηA,i (n)ηB, j (m)〉 = δi jδAB α̂n−m , (57)

as postulated by Lappi and Mäntysaari. A robust comparison
of different implementations is shown in Fig. 4. We note that
for both running coupling prescriptions the position space
and the momentum space evolutions lead to consistent results
within our statistical uncertainties at the level of saturation
scale (maximum of the distribution). However, one notices
some differences in the shape of the distributions. As far as
this robust test at a small rapidity allows to say, no significant

Fig. 4 Rescaled dimensiolness gluon distributions at rapidity s = 0.05
on a L/a = 64 lattice. We compare ’square root’ and noise prescrip-
tions for the running coupling, both for position-space evolution and
momentum-space evolution. All cases are evolved from the same initial
condition

deviation between the “square root” and “noise” prescrip-
tion can be seen, for large rapidities these two prescriptions
give significantly different saturation scales, as we will show
below.

3.3 Hatta–Iancu prescription

In Ref. [50], the Authors provide a formulation of the
JIMWLK equation with collinear resummation, which
accounts for DGLAP kind of logarithms suppressing anti-
collinear pole of the kernel. In particular, they re-investiga-
te the relation of momentum space expression for the run-
ning of αs to small dipole prescription discussed in [44,49].
According to Hatta and Iancu, the smallest dipole prescrip-
tion corresponds to the dependence of αs on virtuality and not
the transverse momentum. We proceed with implementation
directly in coordinate space,

αs = αs(min{|x − y|, r}) , (58)

where r is the size of the projectile. We implement this pre-
scription with the position space evolution only, by fixing the
distance r at which the Wilson line correlator is evaluated and
performing the entire evolution for that given distance. This
adds an additional L factor to the scaling of computations,
but in this way we avoid using Fourier transforms, as it is not
clear how the Fourier transform would mix the contributions
from distances different than r where the coupling constant
would be evaluated at a wrong scale.

On a purely numerical level, we note that this prescrip-
tion coincides with the “square root” prescription for large
distances r . In the latter situation, most of the contributing
distances |x − y| are smaller than r , hence reproducing the
“square root” definition. On the contrary, for small separa-
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tions r in the correlation function, the scale of αs will be set
by that distance, thus modifying the final correlation func-
tion with respect to the “square root” prescription. Numerical
confirmation of this expectation will be discussed in Sect. 6.

4 Statistical analysis

The final results, i.e. the two-point correlation functions of
two Wilson lines, are evaluated using 100 random realiza-
tions of the color charge distributions. Standard statistical
analysis provides standard deviations for the resulting data
points.

For the definition of the saturation scale Qs , we follow
Ref. [40] and define it as the transverse momentum for
which the rescaled gluon distribution reaches a maximum.
The results are quoted in terms of the dimensionless quan-
tity LQs . When plotted on a logarithmic scale, the gluon
distribution near the maximum resembles a quadratic or a
Gaussian function. Therefore, we use two fitting ansatzes in
order to estimate the maximum:

fquadratic(x) = a + b
{

log(LkT ) − d
}2

, (59)

fgaussian(x) = a + b exp
{ − c

(
log(LkT ) − d

)2}
, (60)

with a, b, c and d being fit parameters. We associate the satu-
ration scale with the parameter d. An example fit is shown in
the uppermost panel of Fig. 5. The fitting range was chosen as
LkT ∈ [33, 245] and is shown in the figure as they gray band.
In order to disentangle the discretization effects from the con-
tinuum dependence on log(LkT ), we increase the statistical
uncertainties by a factor 3 in such a way that the data points
form a continuous curve within their new uncertainties. In
the example shown, both fitting functions describe the data
well in the full range. The quality of the fits can be estimated
by the value of χ2/dof. In order to estimate the systematics
of the fitting procedure, we vary the fitting range by shifting
the left and right borders of the fitting interval and keeping
the interval symmetric around the approximate maximum at
Lkmax

T ≈ 90. The minimal range is [55, 148] and the max-
imal is [12, 665] and they contain respectively 50 and 250
data points. The middle panel of Fig. 5 shows the dependence
of the χ2/dof on the fitting range for both fitting ansatzes.
Starting at Lkinitial

T ≈ 20, the χ2/dof’s of both kinds of fits are
below 1 and approximately equal. The statistical uncertainty
of the fitting parameters estimated using jackknife resam-
pling from 100 fits is at a level of 1 ‰ and completely negli-
gible compared to the systematic effects associated with the
choice of the fitting range.

The final values of the saturation scale are shown in the
bottom panel of Fig. 5. We exclude results for Lkinitial

T < 20
as the fitting ansatzes do not correctly describe the tails of the
correlator. We also exclude results for Lkinitial

T > 50, as the

Fig. 5 Example of extracting the saturation scale Qs by fitting the
maximum of the gluon distribution on a 512 × 512 lattice, at rapidity
s = 0.04, evolved in position space. The statistical errors were increased
by a factor 3 in order to account for the discretization effects. The upper
panel shows the comparison of the quadratic and Gaussian fits with the
green band being the 1-σ uncertainty of the saturation scale and the
gray band showing the fitting range. The middle panel shows the value
of χ2/dof as a function of the fitting range. The bottom panel shows
the dependence of the extracted maximum on the fitting range for both
employed fitting ansatzes
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fitting range contains too few data points to correctly resolve
the maximum. For the remaining range of fitting intervals,
we estimate the mean saturation scale obtained using the
Gaussian ansatz as the final result, since the Gaussian curve
describes the data for a wider range of LkT and we associate
with it a systematic uncertainty equal to the spread of the
remaining fit results coming from both ansatze. Hence, in
the example shown, the final saturation scale reads LQs =
88.5 ± 2.0. This corresponds to the green band in the top
panel of Fig. 5.

5 Systematics

This is the main section of our work, where we quantify
and discuss the different systematic effects induced by the
implementations outlined above. We start in Sect. 5.1 with
the discussion of the gluon distributions resulting from the
initial condition (i.e. at zero rapidity) and their dependence
on parameters such as volume, Ny or the mass regulator in
the Poisson equation. Next, in Sect. 5.2, we focus on the
different ways the evolution in rapidity can be implemented.
Eventually, in Sect. 5.3, we discuss the systematic effects
involved in the implementation of the running coupling.

5.1 Initial condition

In this section, we discuss the dependence of the two-point
correlation function on the parameters of the numerical setup.
The parameters of the MV model have to be scaled appro-
priately when the lattice size is varied. We keep the dimen-
sionless combination g2μL constant as we scan the different
lattice extents from L/a = 12 up to L/a = 128. We use
the value g2μL = 30.72 from Refs. [15,44]. As far as the
lattice volume is concerned, we do not see any statistically
significant deviations down to lattice sizes of L/a = 12, see
Fig. 6. The dependence on the mass regulator in the Poisson
equation, Eq. (3), is shown in Fig. 7 together with the depen-
dence of the resulting saturation scale. We notice that within
the systematic and statistical errors, all setups provide con-
sistent saturation scales, except the single case of the largest
mass regulator, am = 0.1. Finally, the dependence on Ny is
shown in Fig. 8. We check that when a statistical ensemble of
256 realisations is used, all values of Ny saturate the product
in Eq. (1). Since the generation of the initial distribution is a
negligible cost of the computation compared to the evolution
in rapidity, we conservatively use the value of Ny = 50 for
all subsequent calculations.

5.2 Evolution at fixed coupling

In this section, we study systematic effects which arise from
the different implementations of the Langevin equation. As

Fig. 6 Top: volume dependence of the momentum-space correlator
from the initial condition. Bottom: dependence of the saturation scale
on the lattice extent. Black line is the attempted infinite volume extrap-
olation with f (1/L) = a+b/L . Clearly all the volumes are compatible
with the extrapolated value, hence no finite volume effects are associ-
ated with the initial condition at these values of the MV model

we will see, the situation at fixed coupling constant is not sat-
isfactory, as the continuum limit is not well-defined. There-
fore, we do not present here all the possible implementation
combinations and only concentrate on some representative
features of the fixed-coupling setup. The phenomenologi-
cally relevant situation with the running coupling constant is
discussed in the next section.

We study the dependence of the gluon distributions on
various parameters, in particular the size of the time step
and the lattice extent and the different discretizations of the
JIMWLK kernel. In the top panel of Fig. 9, we show the
dependence of the distributions on the size δs of the Langevin
step in the evolution equation. We show data for rapidity
s = 0.04 together with the initial condition to set the scale.
In the fixed coupling scenario, we remind that one can relate
s to the rapidity y by [15]

s = αs

π2 y. (61)
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Fig. 7 Top: dependence of the s = 0 momentum-space correlator on
the m regulator in Eq. (3). Bottom: dependence of the saturation scale
on the mass regulator. A vanishing mass extrapolation is attempted with
the constant fit ansatz f (am) = b, where b is a fit parameter. Data points
with am ∼ 0.03 are still compatible with the extrapolated value

Therefore, taking e.g. αs = 0.16, s = 0.04 corresponds to
y ≈ 2.5. For each value of the time step, we estimate the sat-
uration scale and its systematic and statistical error and plot
it as a function of the time step in the bottom panel of Fig. 9.
Two extrapolations to the vanishing value of the Langevin
time step are shown in the figure: i) a constant one, fitted to
the last three data points, which are compatible within their
systematic uncertainties, ii) a linear one in the time step, fitted
up to δs = 0.0008. Both extrapolations yield values which
are compatible within their uncertainties. Hence, we notice
convergence. For time steps smaller than δs = 0.0001, there
is no systematic difference in the saturation scale and the
results at non-zero step size are compatible within uncertain-
ties with the extrapolated results.

Another important parameter is the lattice extent L/a. Its
impact on the evolution is shown in Fig. 10. We present
data for different volumes for the evolution with time step
of δs = 0.0001 and for final rapidity of s = 0.04. We see
that the results significantly depend on the lattice volume for

Fig. 8 Top: dependence of the s = 0 momentum-space correlator on
the Ny parameter. Bottom: dependence of the saturation scale on Ny .
An infinite Ny extrapolation is attempted with the constant fit ansatz
f (1/Ny) = b, where b is a fit parameter. Even the data point Ny = 1
is compatible with the extrapolated value

volumes in the range from L/a = 128 up to L/a = 1024.
When analyzing the resulting saturation scales, a systematic
trend is clearly visible with the saturation scale diverging as
the infinite volume limit is taken. We find the same behaviour
in both position and momentum space formulations, where,
for the latter, we were able to reach volumes as large as
L/a = 16384. This observation is also irrespective of the
fact whether the ’linear’ or ’sin’ kernel is used. This result
is in agreement with the previous findings discussed in Ref.
[40]. The difficulty in taking the continuum limit makes the
evolution at fixed coupling not a viable numerical approach,
hence we do not discuss it further here and we turn our atten-
tion to the case of evolution with running coupling.

Before doing so, we provide a consistency check of the
implementations of the coupling, shown in Fig. 11. Namely,
we compare evolved gluon distributions with a fixed coupling
and with a running coupling, having switched off the running.
Appropriate rescaling of noise vectors guarantees that the
evolved distributions agree.
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Fig. 9 Top: Dependence of the evolved two-point correlation function
at s = 0.04 on the Langevin step δs for the L/a = 128 lattice, using the
momentum space implementation of the evolution equation. Bottom:
Dependence of the saturation scale determined from the data sets show
in the top panel on the Langevin time step δs. Constant and linear
extrapolations to the vanishing step size are shown (note the logarithmic
scale on the x-axis). For step sizes smaller than δs = 0.0001, data at
finite values of the time step are compatible with the extrapolated values

5.3 Evolution at running coupling

Now, we turn on the effects arising from the running of the
coupling. As discussed in Sect. 3, there are several possi-
ble ways to implement the latter and here, we compare the
systematics arising in the “square root” and “noise” prescrip-
tions.

Let us start by noticing that in the setup where the run-
ning coupling constant is included, the numerical evolution
proceeds much slower. This results from the fact that now,
the Langevin step contains a scale-dependent αs factor. For
example, the value of s = 0.04 that we used to illustrate the
systematics of the fixed-coupling setting, corresponds in the
case of a running coupling to y ≈ 0.4 (taking αs evaluated
at the saturation scale) instead of y ≈ 2.5. Thus, in order
to reach the same physical rapidity, the simulations with a
running coupling must be considerably longer. To be more

Fig. 10 Comparison of the evolved two-point correlation function as
a function of the volume. Evolution to s = 0.04 with time step δs =
0.0001. Infinite volume extrapolation is attempted demonstrating the
saturation scale divergence in the volume parameter. The fit ansatz is
f (a/L) = b + c L

a with b and c fit parameters. Similar behaviour was
found for the sine kernel

Fig. 11 Consistency check of the implementation of coupling prescrip-
tions: the fixed coupling constant evolution at rapidity s = 0.08 is com-
pared with the results obtained with running coupling constant with the
running switched off. Agreement of the curves shows that although dif-
ferent implementations are used, all normalization factors are correctly
taken into account.
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precise, we can write the explicit relation between s and y
including the 1-loop running of αs ,

y = π2s

αs(Qs)
≈ 2π2sβ0 ln

(
Qs/ΛQCD

)

4π

= 1

2
πsβ ln

(
Qs/ΛQCD

)
, (62)

where we employed the definition (47) of αs(k). Obviously,
depending on the speed of evolution of Qs(y) with the rapid-
ity, which may be different for different running coupling pre-
scriptions, the relation between s and y may differ. Hence, the
numerical evolution of the distribution to a given value of s
using different prescriptions may correspond to distributions
at different physical rapidities. Such effect was already dis-
cussed in Ref. [44] (see Fig. 7 of that reference, for instance).
We will comment more on the speed of the evolution with
different prescriptions for αs in the next section.

We start with the discussion of the dependence on the
size of the Langevin step in the numerical integration of the
Langevin equation. We note that there is a significant dif-
ference between the two running coupling prescriptions, see
Fig. 12. The Langevin step dependence of the “square root”
prescription is similar to the one in the fixed coupling setting
(cf. Fig. 9), with a similar slope, e.g. the result at δs = 0.0004
is around 10–15% above the linearly extrapolated one and
one needs to go to δs ≤ 0.0001 to ensure agreement with the
latter. In turn, the “noise” prescription allows for a step size
at least one order of magnitude larger than the “square root”
prescription and even the result at our largest employed step
size is consistent with the extrapolated value. The origin of
this effect was not identified, as both implementations use the
same Wilson line update algorithm, and will be investigated
in the future. However, the practical conclusion is that much
larger rapidities can be attained with the same computational
cost with the “noise” prescription.

As a second systematic effect, we consider the volume
dependence of the gluon densities obtained with different αs

prescriptions at a fixed rapidity of s = 0.16. The results are
shown in Fig. 13. The upper two panels show the comparison
of distribution shapes for both the “square root” and “noise”
prescriptions. We note that, contrary to the fixed coupling
setting (see Fig. 10), the peak of the distributions, i.e. the
saturation scale, does not depend on the volume, provided
the latter is large enough. Differences between the shown
volumes are visible only in the tails of the distributions and
can be attributed to discretization effects – in a fixed physical
volume, smaller lattice volumes correspond to larger lattice
spacings. Even though saturation scales implied for the cho-
sen parameter values are different for the two prescriptions,
the systematics of the volume is the same, i.e. L/a ≥ 256
ensures that the saturation scale becomes independent of L/a
within uncertainties. This is illustrated in the bottom panel
of Fig. 13, where we show the volume dependence of the

Fig. 12 Comparison of gluon densities obtained with the “noise” (top)
and “square root” (middle) prescriptions for αs as a function of the
Langevin step size at rapidity s = 0.16. Bottom: vanishing step size
extrapolation of the saturation scale Qs determined from the max-
ima of the distributions. We used a simple fit ansatz of the form
LQs(δs) = b + cδs, with b and c being fit parameters. One sees a
dramatic difference in the convergence rate: the “noise” prescription is
roughly insensitive to the step size in the investigated range, whereas
the “square root” prescription exhibits a linear slope similar to the one
found in the fixed coupling setting. A constant fit to the two finest step
sizes (δs ≤ 0.0001) for the “square root” data was also performed,
showing that the continuum limit has been attained. The data set cor-
responding to the finest step size, δs = 0.00005 is not shown on the
middle panel, as it overlaps almost ideally with δs = 0.0001
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saturation scale Qs determined from the maxima of the dis-
tributions. In order to contain both sets of data on the same
extrapolation plot, the “square root” data used for the extrap-
olation are taken at a twice smaller rapidity, s = 0.08. The
data can be extrapolated to the infinite volume limit using a
constant fitting ansatz when the smallest two volumes used,
namely L/a = 64 and L/a = 128 are removed from the fit.
At this value of rapidity, they are affected by finite volume
effects and hence are not reliable.

As a next step, Fig. 14 shows the comparison of gluon
distributions obtained using different JIMWLK kernel dis-
cretizations. As discussed above, we proposed to discretize
the kernel in two ways, both in position space and in momen-
tum space. The figure only shows results obtained in momen-
tum space. The outcomes in position space follow a similar
pattern. Comparing the gluon distributions obtained with the
kernel using the sine function (“sin kernel”) and the naive
discretization (“linear kernel”), we see that the latter induces
large distortions for momenta LkT near the maximal value.
In the case of the “noise” prescription, these distortions are
limited to large LkT values, as opposed to the “square root”
prescription, where the modifications also affect the position
of the maximum of the gluon distribution and hence the sat-
uration scale itself. As the results obtained with the linear
kernel exhibit an unphysical growth of the gluon distribution
for the maximal momenta, we believe this implementation
choice is inferior to the discretization involving the sine func-
tion.

Finally, we can compare the results obtained under evolu-
tion implemented in position and momentum spaces. Note, as
already signaled in the introduction, that the Langevin equa-
tion is written only in position space. The Fourier accelera-
tion used to perform some of the computations in momentum
space may introduce uncontrolled discretization/finite vol-
ume effects. In Fig. 15, we show the comparison of evolved
gluon distributions performed in both spaces at different val-
ues of the rapidity s. Although, as suspected, some differ-
ences can be seen in the shape of the gluon distributions, their
size is negligible on the scale of the effect of the evolution
itself. The discrepancies appear for the maximal transverse
momenta LkT where the boundary conditions and finite vol-
ume effects are maximal. The above observation remains true
for both running coupling prescriptions. Since the evolution
in position space is computationally much more demand-
ing, we can therefore conclude that from a practical perspec-
tive the solutions obtained in momentum space are reliable
and can be used in subsequent phenomenological studies.
However, for observables sensitive to the large kT tail, some
care must be taken. As expected, some differences can be
seen in the shape of the gluon distributions. They have dif-
ferent size depending on the implementation of the running
coupling constant. In the upper panel of Fig. 15, the results
using the “square root” prescription are shown. In the entire

Fig. 13 Comparison of gluon densities obtained with the “noise” (top)
and “square root” (middle) prescriptions for αs as a function of the
volume at rapidity s = 0.16. Bottom: infinite volume extrapolation of
the saturation scale Qs determined from the maxima of the distributions.
We use a constant fit ansatz of the form LQs(a/L) = b with b being fit
parameters, where the fitted data include the 4 largest volumes. In order
to contain both sets of data on the same plot, the “square root” data are
shown for a twice smaller rapidity, s = 0.08. For volumes L/a ≥ 256,
a constant extrapolation to the infinite volume limit describes the data
well

investigated range of s, the position and momentum distri-
butions agree within their statistical uncertainties, except for
the very tail of the distribution, where the implementation in
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Fig. 14 Comparison of gluon densities obtained with different αS
prescriptions and different kernel discretizations at s = 0.16 and
L/a = 1024. The linear kernel shows worse behavior close to the
boundary as the distribution rises for large kT . In the case of the “square
root” prescription, the distortions of the linear kernel also propagate to
small kT . We conclude that the linear kernel should not be used in
subsequent calculations

momentum space yields larger values. However, this differ-
ence does not exceed two standard deviations. As far as the
“noise” prescription is concerned, the differences increase
with increasing value of s. At small rapidities, up to s ∼ 0.1,
both implementations are compatible in the entire range of
LkT . However, at larger evolution times, systematic differ-
ences bigger than two standard deviations can be seen in the
shape of the distributions already at LkT ∼ 2Qs . Hence, we
conclude that some care must be taken when the combination
of “noise” prescription is used together with the implemen-
tation in momentum space and large evolution times.

6 Discussion

Finally, we are in position to discuss physical implications of
the different implementation choices. As our first observable,
we study the evolution speed, i.e. the rapidity dependence of
the derivative of the saturation scale. In Fig. 16, we plot the
quantity

λ = d ln Q2
s L

2

dy
, (63)

where the relation between y and s was explained in Eq. (62).
In the previous section, we have demonstrated that our results
are robust against systematic uncertainties, i.e. increasing the
volume or changing the evolution between the momentum
space and position space implementations provides results
compatible within their uncertainties. We demonstrate this
once again for the observable λ in the top panel of Fig. 16
where the dependence on the lattice extent is plotted. Clear
agreement of all data sets corroborates again the control

Fig. 15 Comparison of gluon densities obtained with evolution imple-
mented in position and momentum spaces using the “square root” (top)
and noise (bottom) αs prescriptions on a lattice with extent L/a = 64.

of systematic effects. Conversely, the bottom panel demon-
strates that changing the running coupling prescription has a
genuine physical effect, as the rate of change of the saturation
scale is different between the “square root” and “noise” pre-
scriptions for small saturation scales, up to around 10ΛQCD.
This is even true with our rather conservative estimates of
the systematic uncertainty in the extraction of Qs . Figure 16
also contains another set of data points. As a consistency
check, we have determined the evolution of the saturation
scale with rapidity using an alternative definition of the sat-
uration scale. We follow Ref. [44] where Qs was fixed from
the gluon correlation function in position space,

C

(
Rs

L
=

√
2

QsL

)

= e− 1
2 . (64)

Although this is only a change in the definition, it has a sig-
nificant effect on the evolution speed λ, as can be inferred
from Fig. 16. At small saturation scales, i.e. Qs smaller than
10 − 15ΛQCD, for both running coupling prescriptions the
value of λ defined from Eq. (64) is larger than Qs obtained
from the maximum of the correlation function in momentum
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Fig. 16 Derivative of the saturation scale with respect to the rapidity y
for different definitions of Qs and running coupling prescriptions. Top:
volume dependence for the “square root” prescription. We check the
reliability of the results by comparing λ for increasing lattice extents.
No significant deviations are seen in the range of Qs accessible on each
lattice volume. Bottom: all data were simulated on a lattice with extent
L/a = 1024, except for the “square root” prescription and position
space definition of saturation scale where a lattice of extent L/a = 2048
was used. Also, two different definitions of the saturation scale are
employed, involving gluon distributions in either momentum space or
position space

space. At large saturation scales, all prescriptions and defini-
tions seem to converge to a single value of around λ ∼ 0.2.
At the technical level, the definition (64) suffers from large
discretization effects for large saturation scales, which is vis-
ible as a scatter of data. This is because the exponential decay
of the correlation function is loo large to precisely estimate

the intercept with the e− 1
2 line. This effect should decrease

when the lattice size is increased. Conversely, the definition
in momentum space described in Sect. 5 is more reliable in
this region, giving smaller statistical and systematic uncer-
tainties. Again, both definitions and implementations yield
quantitatively similar values for the evolution speed at large
saturation scales.

Secondly, we present for the first time the results obtained
using the Hatta–Iancu running coupling prescription, see

Fig. 17 Comparison of correlation functions at s = 0.05 in position
space calculated using the “square root” and Hatta–Iancu prescriptions.
Statistically significant deviations can be observed for small separa-
tions. Results for two volumes, L/a = 48 and L/a = 64 are shown,
pointing to the conclusion that the differences cannot be attributed to
finite volume effects but to the intrinsically different physical effect of
the running coupling constant

Fig. 17. Since the definition of the latter is provided in posi-
tion space as a function of the separation in the final cor-
relation function, we keep all the calculations in position
space, avoiding Fourier transforms. In order to show the
physical effect of the Hatta–Iancu prescription, we contrast
the position-space correlation function obtained using this
prescription with the one from the “square root” coupling.
We observe statistically significant differences at small sep-
arations. We plot results for two volumes, L/a = 48 and
L/a = 64, which enable us to draw the conclusion that the
differences cannot be attributed to finite volume effects, but
to the intrinsically different physical effect of the running
coupling constant. We note that the slower decay of the corre-
lator in the Hatta–Iancu case implies, according to Eq. ((64)),
smaller values of the saturation scale.

Finally, we discuss the large-kT asymptotics, for which
analytic arguments exist in the large rapidity limit. The cor-
relator at large rapidity is a difficult observable, as it requires
large lattice extents and one has to make sure that the appro-
priate scaling regime is reached. It is expected that the 1/k2

T
behaviour [1], present in the distribution corresponding to
the initial condition, will be modified by the evolution to a
less steep dependence. In Fig. 18, we demonstrate the situ-
ation when the effects of the running coupling constant are
included for two large lattices. Two regimes can be identi-
fied: the first one for moderate values of kT L , where both
volumes give comparable results, and the second for large
kT L , where finite volume effects distort the tail of the distri-
butions. Although the volume independence of the data in the
first region may indicate that the scaling regime is reached,
the resulting power law dependence strongly depends on
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Fig. 18 Large kT L dependence of the evolved gluon distribution for
different implementations and running coupling prescriptions at s =
0.16. A power law, (L/a)2k2

T C̃(LkT ) = a(LkT )b, is fitted to the data
on the left of the vertical black line, with a and b being fit parameters.
The fitted exponent b is around −0.5 (−1) in the case of the “noise”
(“square root”) prescription. In order to increase the figure readability,
the “square root” data were divided by a factor 100.

the details of the implementation and of the running cou-
pling constant prescription. The separation between the two
regions is marked roughly by the black vertical line in the fig-
ure. Therefore, this suggests that the proposed prescriptions,
not only yield values for the saturation scale which differ
by a rough factor of 2, but they also differ significantly in
the regime of large transverse momenta. For the data shown,
the fitted power law (L/a)2k2

T C̃(LkT ) = a(LkT )b yields
b ≈ −0.5 for the “noise” prescription and b ≈ −1 for the
“square root” prescription. It is a question for further stud-
ies how the exponent in the power law depends on rapidity.
As shown in Fig. 17, the Hatta–Iancu prescription is equiva-
lent to the “square root” definition at large distances, hence
the differences we observe at small distances should trans-
late to differences in the scaling for large kT . The Fourier
transform, needed to go from position to momentum space,
requires the knowledge of the correlation function at all posi-
tions on the lattice, which is prohibitively expensive for the
current numerical setup. Therefore, we do not have reliable
data from large enough lattice sizes to include the large kT
asymptotics with the Hatta–Iancu prescription.

To summarize, we have presented a systematic compar-
ison of solutions of the JIMWLK equation using numeri-
cal, lattice-related techniques. On the technical side, among
the main systematic effects that we investigated are momen-
tum/position space implementation of the evolution, depen-
dence on the volume, Langevin step size and kernel dis-
cretizations. On the phenomenological side, we discussed
the inclusion of the effects of the running of the strong cou-
pling constant following three prescriptions proposed in the
literature. All these results are fundamental for a reliable
program of relating the numerical solution of the JIMWLK

equation to experimental data (such as the F2 structure func-
tion), since they give constraints on the parameters of the
numerical setup such that the different systematic uncertain-
ties are under control. Thus, they allow one to optimize the
numerical setup and ensure efficient and robust fitting with
quantified errors.
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Appendix: Random vectors in position and momentum
spaces

We demonstrate in a discretized setup the fact that uncorre-
lated random vectors in position space are also uncorrelated
in momentum space. We adopt the following conventions,
(with V = (L/a)2 )

f (k) = 1√
V

∑

n

f (x)e−ikn (A.1)

f (n) = 1√
V

∑

k

f (k)eikn (A.2)
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and

δ(k − p) = 1

V

∑

n

ei(k−p)n (A.3)

δ(n − m) = 1

V

∑

k

eik(n−m), (A.4)

and simplify the indices leaving only space/momentum
dependence. We have as a starting point

〈ξxξy〉 = δ(x − y) = 1

V

∑

k

eik(n−m) (A.5)

For the fields themselves we have

ξn = 1√
V

∑

k

eiknξk (A.6)

and

ξk = 1√
V

∑

n

e−iknξn (A.7)

Then we have

〈ξpξ†
q 〉 = 1√

V

∑

n

e−ipn 1√
V

∑

m

eiqm〈ξnξ†
m〉 (A.8)

= 1

V

∑

n

e−ipn
∑

m

eiqmδ(n − m) (A.9)

= 1

V

∑

n

e−i(p−q)n (A.10)

= δ(p − q) (A.11)

This hints to the following equivalence:

– ξp generated in momentum space: i.e. at each lattice site
we generate uncorrelated random numbers with a unit
standard deviation

– ξx generated in position space: i.e. at each lattice site we
generate uncorrelated random numbers with a unit stan-
dard deviation by taking the forward Fourier transform
to obtain ξ ′

p, it will be indistinguishable from the ξp.

We checked numerically that the above is indeed true. The
practical choice to make is either to:

– generate the random vectors in one space and Fourier-
transform them to the other one, or

– generate separate random vectors in both spaces.

Obviously, both choices are equivalent in the limit of an infi-
nite number of stochastic realizations.
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