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In non-Hermitian randommatrix theory there are three universality classes for local spectral correlations:
the Ginibre class and the nonstandard classes AI† and AII†. We show that the continuum Dirac operator in
two-color QCD coupled to a chiral U(1) gauge field or an imaginary chiral chemical potential falls
in class AI† (AII†) for fermions in pseudoreal (real) representations of SU(2). We introduce the
corresponding chiral random matrix theories and verify our predictions in lattice simulations with
staggered fermions, for which the correspondence between representation and universality class is
reversed. Specifically, we compute the complex eigenvalue spacing ratios introduced recently. We also
derive novel spectral sum rules.
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I. INTRODUCTION

The profound relationship between random matrix
theory (RMT) and natural sciences has been the subject
of research over decades [1,2]. The energy-level statistics of
quantum systems obeying RMT are considered to be a
signature of quantum chaos [3], and the three universality
classes of RMT (GOE/GUE/GSE) [4], called the Wigner-
Dyson (WD) classes, provide an exhaustive description of
energy-level repulsion in nonintegrable quantum sys-
tems [5].1

In the classification of Hermitian RMT [9,10] there are
seven non-WD symmetry classes. The three of them that
preserve chiral symmetry exactly describe the distribution
of near-zero eigenvalues of the Euclidean Dirac operator in
gauge theories with spontaneous chiral symmetry breaking
[11–14]. The characteristics of the seven non-WD classes
are manifest only in the vicinity of the spectral origin. In the
bulk of the spectrum, i.e., far away from both the origin and
the spectral edge, their level statistics reduce to those of the
WD classes since the chiral symmetry and the particle-hole
symmetry that ensure the global pairing λ ↔ −λ of the

spectrum have no effect on local correlations in the bulk.
Indeed, lattice simulations of QED and QCD have revealed
agreement between nonchiral RMT and the spectral sta-
tistics of the Dirac operator in the bulk [15,16]. It is
therefore necessary to distinguish “symmetry classes” from
“universality classes”2—the correct statement is that for
Hermitian RMT there are ten symmetry classes and three
universality classes in total.
Recent years have witnessed a surge of interest in non-

Hermitian quantum systems [21–23]. The symmetry clas-
sification of non-Hermitian RMT has been completed
[24,25]. There are 38 distinct symmetry classes.3 Out of
the 38 classes, 22 possess chiral symmetry, and three of
those describe the spectral statistics of the Dirac operator
with baryon chemical potential, as reviewed in [28–30].
They are summarized below.

Class Matrix form Matrix elements

Chiral real Ginibre � 0

B
A
0

� Real
Chiral complex Ginibre Complex
Chiral symplectic Ginibre Quaternion real

Despite the diversity of non-Hermitian RMT, only one
universality class has been known until recently: the
Ginibre universality class [31]. For real, complex and
quaternion Ginibre ensembles, the short-range eigenvalue
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1RMT ensembles that interpolate between WD classes have
also been discussed [6–8]. It turns out that a constant nonzero
breaking of antiunitary symmetries of GOE and GSE always
leads to GUE statistics in the large matrix-size limit [6]. 2In mathematics, the universality of RMT refers to the

invariance of the spectral statistics for general matrix potentials
[17–20].

3Earlier classifications [26,27] contained 43 classes. The arXiv
version of [26] has been replaced with a corrected version that
contains 38 classes. Hence there is no contradiction between [24]
and [26].
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correlations are always determined by the Vandermonde
determinant jΔðfzkgÞj2 ¼

Q
i<j jzi − zjj2 (see [32] for a

summary of results). In [33,34], agreement was found
between the bulk spectral statistics of the Dirac operator
with baryon chemical potential and the Ginibre ensemble.
It has recently been pointed out [35,36] that there are in

fact three universality classes for local level statistics of
non-Hermitian RMT:

Class Matrix

Ginibre X
AI† XT ¼ X
AII† XT ¼ σ2Xσ2

Here, the naming scheme of [36] was adopted, T denotes
transposition, and σ2 is the second Pauli matrix. These three
ensembles exhibit distinct nearest-neighbor eigenvalue
spacing distributions [35,36]. Complex symmetric random
matrices have received little attention from physicists for a
long time, with the exception of [37].
In view of the aforementioned developments it is natural

to ask the following questions. First, is there any applica-
tion of the 19 nonstandard non-Hermitian chiral RMT
classes to high-energy physics? Second, can the non-
Ginibre universal statistics be observed in the Dirac
spectrum? We answer both questions in the affirmative.
Our contributions in this paper are as follows. (1) We show
that Dirac operators in two-color QCD and adjoint QCD
coupled to a chiral U(1) gauge field (including an imagi-
nary chiral chemical potential as a special case) have
special transposition symmetries. (2) We introduce two
novel chiral RMTs that share the above symmetries.
(3) Through extensive lattice simulations with staggered
fermions and using the complex spacing ratio analysis
introduced in [38] we find strong numerical evidence that
spectral correlations of complex Dirac eigenvalues in these
theories match those of the non-Ginibre universality classes
of non-Hermitian RMT. (4) We highlight the physical
importance of the Dirac operator coupled to a constant
chiral gauge field.
Our findings are in stark contrast to the Dirac spectrum at

finite baryon chemical potential, which exhibits correla-
tions in the Ginibre class. This work provides a new point
of view on quantum chaos in gauge theories.
This paper is organized as follows. In Sec. II we derive

transposition properties of the continuum Dirac operator
with fermions in real and pseudoreal representations of
SU(2) in the presence of a chiral U(1) gauge field. In
Sec. III we present the non-Hermitian random matrix
ensembles corresponding to these symmetries and derive
an integral representation for the fermionic partition func-
tion. In Sec. IV we define the staggered lattice Dirac
operators to be used in the numerical simulations and derive
their transposition symmetries. We also derive novel
spectral sum rules for these operators. In Sec. V we present

our numerical results, which verify the correspondence
between university classes and fermion representations in
SU(2). We conclude in Sec. VI. Three Appendices are
provided for a discussion of constant chiral gauge fields
and for technical details.

II. PROPERTIES OF THE DIRAC OPERATOR IN
THE CONTINUUM

In the following, the Euclidean Dirac matrices are
denoted by γν (ν ¼ 1;…; 4), and we have γ5 ¼ γ1γ2γ3γ4.
The Dirac operator is denoted by D. The continuum Dirac
operator in the massless limit satisfies fD; γ5g ¼ 0, which
is known as chiral symmetry.
Let us first consider quarks in the fundamental repre-

sentation of the gauge group SU(2). The Euclidean Dirac
operator coupled to a chiral U(1) gauge field is given by

D ¼ γνð∂ν − iAa
ντa − iγ5BνÞ; ð1Þ

where Aa
ν and Bν are the SU(2) and U(1) gauge fields,

respectively, and the τa are the generators of SU(2), i.e., the
Pauli matrices acting in color space. The U(1) charge
assignment should be such that gauge anomalies are absent.
As is well known, in the absence of Bν, D possesses the
antiunitary symmetry [39]

½iD; Cτ2K� ¼ 0; ð2Þ

where C ¼ iγ4γ2 is the charge conjugation matrix and K is
the complex conjugation operator. The coupling to Bν

breaks this symmetry, but D retains the transposition
symmetry,

DT ¼ Cτ2DCτ2: ð3Þ

As Cτ2 is a symmetric unitary matrix, Theorem 3 in [40]
can be applied, and it follows that D ¼ DT in a suitable
basis. It is straightforward to verify that the argument so far
holds for an arbitrary pseudoreal representation of the
gauge group.
Next, we turn to quarks in a real (e.g., adjoint) repre-

sentation of a non-Abelian compact gauge group. In the
absence of Bν, D has the antiunitary symmetry [39]

½iD; CK� ¼ 0: ð4Þ

With the coupling to Bν, the antiunitary symmetry is
broken, but D fulfills the transposition symmetry

DT ¼ CDC: ð5Þ

[In a real representation, the generators can always be
chosen to be antisymmetric, see, e.g., Eq. (5) of [41].]
Hua’s decomposition (Theorem 7 of [42]) implies that one
can find a unitary matrix U such that C ¼ UΣ2UT with
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Σ2 ¼ σ2 ⊕ σ2; ð6Þ

where σ2 acts on the Dirac indices. Performing a similarity
transformationD → U�DUT and using C ¼ −C� it follows
thatD can be cast into a complex quaternion form satisfying
DT ¼ Σ2DΣ2. The following table gives a summary.

Representation Symmetry of D

Pseudoreal fD; γ5g ¼ 0 and DT ¼ D

Real fD; γ5g ¼ 0 and DT ¼ Σ2DΣ2

ð7Þ

Note that, if there is nonzero baryon chemical potential,
the Dirac operator DðμÞ≡D − μγ4 no longer satisfies (3)
sinceDðμÞT ¼ Cτ2Dð−μÞCτ2. In contrast, in the case of an
isospin chemical potential, DIðμÞ≡D − μγ4t3 satisfies
DIðμÞT ¼ Cτ2t2DIðμÞCτ2t2, where the ta are the generators
of SU(2) flavor. Thus, by a rerun of the argument above,
DIðμÞT ¼ Σ2DIðμÞΣ2 in a suitable basis.
If we drop the spatial components of Bν and make the

temporal component constant, the latter represents an
imaginary chiral chemical potential,

D ¼ γνð∂ν − iAa
ντaÞ þ μ5γ5γ4; μ5 ∈ iR: ð8Þ

We comment on the physical implication of this term in
Appendix A. Recently [43] has investigated the effect of a
term analogous to (8) in the Nambu–Jona-Lasinio model to
formulate PT -symmetric chiral symmetry breaking. We
note in passing that a real chiral chemical potential has
been extensively used in lattice simulations to create
chirality imbalance [44–46], see [47] for a review.

III. NONSTANDARD CHIRAL
RANDOM MATRIX THEORY

A. Definition of ensembles

On the basis of the transposition symmetries (7) we
propose that the spectral properties of these Dirac operators
are described by the following non-Hermitian random
matrices:

Representation Matrix form Matrix elements

Pseudoreal
�

0

VT

V
0

�
Complex

Real
�

0

σ2VTσ2

V
0

�
Complex quaternion

The matrix elements of V obey independent Gaussian
distributions with the same variance and mean zero. The
ensemble in the first row corresponds to class AI† with
sublattice symmetry Sþ (equivalent to class D with sub-
lattice symmetry Sþ), and the ensemble in the second row to
class AII† with sublattice symmetry Sþ (equivalent to class
C with sublattice symmetry Sþ), respectively (Tables VII,

XII and XIII of [24]). Note that if V is real or quaternion real,
these ensembles reduce to chiral GOE and chiral GSE,
respectively. Every eigenvalue of the ensemble in the second
row is doubly degenerate due to the non-Hermitian gener-
alization of Kramers’ theorem [24].
In Sec. V we perform extensive numerical analyses to

verify our proposal. In this paper, we focus on bulk
properties of the spectrum and leave the analysis of spectral
statistics near the origin to future work.

B. Fermionic partition function

The fermionic partition function, i.e., the average of the
product of characteristic polynomials, is of special interest
in RMT. The arguments for pseudoreal and real quarks can
be run in parallel, so we shall concentrate on pseudoreal
quarks in the following. At first sight it may seem natural to
consider the partition function

Z ¼
Z
CN×N

dVe−NTrVV†
detNf

�
m V

VT m

�
; ð9Þ

whereNf is the number of quark flavors of massm, but this
Z is pathological as it vanishes in the chiral limit m → 0.
Instead we must consider K pairs of conjugate quarks [48],

ZK ¼
Z
CN×N

dVe−NTrVV†
YK
f¼1

���� det
� zf V

VT wf

�����
2

; ð10Þ

where wf and zf are masses. We consider even N. The
determinants may be expressed as a Grassmann integral,

ZK ∝
Z
CN×N

dVe−NTrVV†
Z

dðu; ū; d; d̄Þ

× exp

��
ūLf
ūRf

�T� zf V

VT wf

��
uRf
uLf

�

þ
�
d̄Lf

d̄Rf

�T� z�f V�

V† w�
f

��
dRf
dLf

��
: ð11Þ

After integrating out V we introduce auxiliary bosonic
fields

CL ∼ ūLd̄L; CR ∼ ūRd̄R;

DL ∼ d̄RuL; DR ∼ d̄LuR ð12Þ

to perform a Hubbard-Stratonovich transformation. The
Grassmann variables can then be integrated out trivially to
yield
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ZK ∝
Z
C2K×2K

dΩe−NTrΩΩ†
detN=2

� Ω w

w� ΩT

�

× detN=2

�Ω� z

z� Ω†

�
; ð13Þ

where

Ω≡
�
CL −D�

L

DR C�
R

�
; w≡

�
0 −iw
iw 0

�
;

z≡
�

0 −iz
iz 0

�
ð14Þ

with z ¼ diagðzfÞ and w ¼ diagðwfÞ. In the microscopic
large-N limit with w ∼ z ∼ 1=

ffiffiffiffi
N

p
, the integrand of (13) is

½e−TrΩΩ†
detðΩΩ†Þ�N . After a singular-value decomposition

the saddle point is given by Ω ¼ 12K. This implies
spontaneous symmetry breaking Uð2KÞ × Uð2KÞ →
Uð2KÞdiag [11]. The soft mode around the saddle point
may be parametrized as Ω ¼ U ∈ Uð2KÞ. Then

ZK ∝
Z
Uð2KÞ

dUdetN=2

��
U w

w� UT

��
U† z�

z U�

��

∝
Z
Uð2KÞ

dU exp

�
N
2
TrðUz�UTzþ wU�w�U†Þ

�
: ð15Þ

This is the most generic result in the large-N micro-
scopic limit.
Let us consider the special case ∀wf ¼ ∀ zf ¼ λ=

ffiffiffiffi
N

p
.

With the skew-symmetric matrix I ≡ ð 0
−1K

1K
0
Þ we have

ZK ∝
Z
Uð2KÞ

dU exp½jλj2ReTrðUIUTIÞ�: ð16Þ

This integral has been evaluated analytically in [49], which
enables us to obtain

ZK ∝ Pf
1≤i;j≤2K

½ðj − iÞIiþj−2K−1ð2jλj2Þ�; ð17Þ

where Pf denotes the Pfaffian and I is the modified Bessel
function of the first kind.

IV. LATTICE DIRAC OPERATORS

In this section we define the lattice Dirac operators that
will be used in the numerical simulations. To keep the
notation simple we will use the same symbol D as for the
continuum Dirac operator since confusion is unlikely to
arise. We work in four dimensions. All dimensionful
quantities are given in lattice units, i.e., we set the lattice
spacing a to 1.

A. Staggered Dirac operator with chiral U(1) field

The massless staggered Dirac operator coupled
to a lattice gauge field UμðxÞ is given by its matrix
elements

Dxy ¼
1

2

X4
μ¼1

ημðxÞ½UμðxÞδxþμ;y −UμðyÞ†δx;yþμ�; ð18Þ

where μ is a unit vector in one of the four dimensions and
the ημðxÞ are the usual staggered phases. We consider
SU(2) gauge fields but do not specify the representation for
the time being.
The continuum chiral symmetry is replaced by the

remnant chiral symmetry fD; εg ¼ 0, where the operator
ε is given by its matrix elements εxy ¼ εðxÞδxy with

εðxÞ ¼ ð−1Þx1þx2þx3þx4 : ð19Þ

Since D is anti-Hermitian its eigenvalues are purely
imaginary. It is straightforward to show that due to
fD; εg ¼ 0 the eigenvalues of D come in pairs �λ with
eigenvectors ψ and εψ .
We now introduce a chiral U(1) gauge field

θμðxÞ ¼ expðiεðxÞφμðxÞÞ; ð20Þ

where φμðxÞ is a smooth real gauge field. The staggered
Dirac operator coupled to θμðxÞ reads

DðθÞxy ¼
1

2

X4
μ¼1

ημðxÞ½UμðxÞθμðxÞδxþμ;y

−UμðyÞ†θμðyÞδx;yþμ�: ð21Þ

The U(1) gauge transformations of the fermions and the
gauge field are given by

χðxÞ → eiεðxÞαðxÞχðxÞ; ð22aÞ

χ̄ðxÞ → χ̄ðxÞeiεðxÞαðxÞ; ð22bÞ

φμðxÞ → φμðxÞ − αðxÞ þ αðxþ μÞ; ð22cÞ

where αðxÞ is an arbitrary gauge potential.
For θμðxÞ ≠ 1, DðθÞ is no longer anti-Hermitian so

that its eigenvalues move from the imaginary axis into
the complex plane. The remnant chiral symmetry
fDðθÞ; εg ¼ 0 still holds, and therefore the complex
eigenvalues still come in pairs �λ with eigenvectors ψ
and εψ .
We now consider the SU(2) gauge field in the funda-

mental and adjoint representation, denoted by UF and UA,
respectively. The latter is obtained from the former by
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UA
μ ðxÞab ¼

1

2
TrðτaUF

μðxÞτbUF
μðxÞ†Þ: ð23Þ

It is straightforward to check that UA is real.
All statements made in this section so far hold for

both representations. The difference between the represen-
tations lies in the transposition symmetries. Using
the pseudoreality ðUFÞ� ¼ τ2UFτ2 it is straightforward to
show that

DFðθÞT ¼ −τ2DFðθÞτ2: ð24Þ

As a consequence, the eigenvalues of DFðθÞ are twofold
degenerate. We show this in Appendix B. Similarly,
for the adjoint representation we use ðUAÞ� ¼ UA to show
that

DAðθÞT ¼ −DAðθÞ: ð25Þ

We therefore expect DðθÞ in the fundamental or
adjoint representation of SU(2) to be in universality
class AII† or AI†, respectively.4 This expectation
will be confirmed numerically in Sec. V. We note
that the universality classes of the fundamental and
adjoint representation are interchanged for staggered
fermions compared to the continuum. This is a generic
phenomenon [50–52].
The eigenvalues of DðθÞ satisfy a sum rule that is very

useful as a check of the eigenvalues obtained numerically.
We show in Appendix C that

TrDðθÞ2 ¼
X
n

λ2n ¼ −2NrepVhθ2μðxÞixμ; ð26Þ

where the average is over all links of the lattice, V is the
lattice volume and Nrep is the dimension of the representa-
tion, i.e., for gauge group SU(2) we have Nrep ¼ 2

(Nrep ¼ 3) in the fundamental (adjoint) representation,
respectively.

B. Staggered Dirac operator with
chiral chemical potential

To introduce the chiral potential μ5 we follow Braguta
et al. [45] but slightly change their notation to conform with
our conventions. We write the staggered Dirac operator in
the presence of μ5 in the form

Dðμ5Þ ¼ Dþ 1

2
μ5D5; ð27Þ

whereD is the operator in (18) andD5 is given by its matrix
elements

ðD5Þxy ¼ sðxÞ½ŪδðxÞδxþδ;y þ Ū†
δðyÞδx;yþδ� ð28Þ

with sðxÞ ¼ ð−1Þx2 , δ ¼ ð1; 1; 1; 0Þ and

ŪδðxÞ ¼
1

6

X
i;j;k¼permð1;2;3Þ

UiðxÞUjðxþ îÞUkðxþ îþ ĵÞ:

ð29Þ

In the continuum limit, the second term in (27) reduces to
the μ5 term in (8) [45]. It is straightforward to show thatD5

is anti-Hermitian and anticommutes with ε. Thus, for μ5 ∈
R the eigenvalues of Dðμ5Þ are purely imaginary, while for
μ5 ∉ R they are generically complex. Furthermore, we still
have fDðμ5Þ; εg ¼ 0, and thus the eigenvalues of Dðμ5Þ
again come in pairs �λ with eigenvectors ψ and εψ .
Equations (24) and (25) also hold with DðθÞ replaced by
Dðμ5Þ, and hence we expect the same correspondence
between representation and universality class. For SU(2)
fundamental every eigenvalue of Dðμ5Þ is again twofold
degenerate, see Appendix B.
The eigenvalues of Dðμ5Þ also satisfy a useful sum rule.

We show in Appendix C that

TrDðμ5Þ2 ¼ −V
�
2Nrep þ

1

2
μ25hTrŪδðxÞŪ†

δðxÞix
�
; ð30Þ

where the average is over all sites of the lattice.

V. NUMERICAL RESULTS

The aim of this section is to test our proposal by
numerical simulations of the corresponding lattice quantum
field theories. As mentioned above, we use staggered
fermions. We work in the quenched approximation since
it is numerically cheap and sufficient for the point we are
making. The inclusion of dynamical fermions does not
change the universality class and therefore makes no
difference for the quantities we compute.

A. Overview of the simulations

Our simulations were done in the GPT framework [53],
which provides a convenient Python interface to the Grid
library [54]. We used the simple (unimproved) Wilson
plaquette action for the gauge fields. The SU(2) gauge field
in the fundamental representation was generated using the
Creutz-Kennedy-Pendleton heatbath algorithm [55,56].
The adjoint SU(2) field was obtained from the fundamental
field via (23). For the generation of the compact U(1)
field expðiφμðxÞÞ we used the Hattori-Nakajima heatbath
algorithm [57]. The coupling constants were chosen as

4The minus signs in (24) and (25) compared to (7) correspond
to an additional factor of −1 in one of the off-diagonal blocks in
the table of Sec. III A. This leads to a relative factor of i in the
eigenvalues, which has no effect on the bulk spectral correlations.
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βSUð2Þ ¼ 4=g2 ¼ 2.0 and βUð1Þ ¼ 1=e2 ¼ 0.9, which in
both cases corresponds to the confined phase.
Numerically, the most expensive operation is the calcu-

lation of all eigenvalues of the Dirac operator, which scales
like OðV3Þ. Fortunately, for the comparison of lattice data
and RMT predictions, a relatively small volume is suffi-
cient since the local spectral correlations have very small
finite-volume effects. We found that a lattice size of 83 × 16
already shows nearly perfect agreement with RMT and
therefore restrict ourselves to this lattice size. In this case
the eigenvalue calculation can be done on a single CPU in a
very short time, i.e., we do not need to employ high-
performance computing (HPC) resources. The number of
configurations for each case is given in Table I.
Scatter plots of the Dirac eigenvalues for a single

configuration are shown in Fig. 1 for the cases we
considered. The spectral correlations on the scale of the
mean level spacing are insensitive to the global features of
the spectrum. The main purpose of Fig. 1 is to demonstrate
that the distribution of the eigenvalues is smooth, i.e., there
are no clustering effects. Note that for a fixed lattice volume
the number of independent eigenvalues for the adjoint
representation is larger by a factor of 3 compared to the
fundamental representation since (i) the dimension of
the representation is larger by a factor of 3=2 and (ii) the
eigenvalues in the fundamental representation are twofold
degenerate.
Once the eigenvalues λk have been obtained, we follow

[38] and compute the complex spacing ratios,

zk ¼
λNNk − λk
λNNNk − λk

; ð31Þ

where λNNk and λNNNk are the nearest and next-to-
nearest neighbor of λk in the complex plane. We used a
k-d tree algorithm to perform the nearest-neighbor
search. We included all eigenvalues in the computation of
the zk. This causes some boundary effects, see the discussion
in [38], but these effects are suppressed in large volumes.
Writing z ¼ reiθ we have r ≤ 1 by construction.5 We

computed the distributions PðzÞ, PðrÞ and PðθÞ as well as

moments of these distributions from the lattice data and
compared them with the corresponding RMT predictions.
To the best of our knowledge, analytical RMT results
for these quantities are not available yet. We therefore
generated the RMT predictions numerically by diagonal-
izing 300 random matrices of dimension 4000 for every
ensemble.

B. Results for SU(2) fundamental

Our numerical results for gauge group SU(2) and
fermions in the fundamental representation are summarized
in Figs. 2–5. Most of the details are given in the figure
captions, and therefore we only summarize our observa-
tions here. From the heatmap plots in Fig. 2 we cannot draw
unambiguous conclusions, but we already see that the
lattice data for PðzÞ look roughly equal for all three cases
and agree with the AII† class, while the AI† and Ginibre
classes look different. From Figs. 3 and 4 it becomes quite

TABLE I. Number of configurations for the cases simulated.
U(1) refers to the operator in (21), while the last two columns give
the value of μ5 in (27).

U(1) μ5 ¼ i μ5 ¼ 2i

SU(2) fundamental 271 415 415
SU(2) adjoint 267 267 266

FIG. 1. Scatter plots of the staggered Dirac eigenvalues for a
single configuration in SU(2) lattice gauge theory on an 83 × 16
lattice. Left: fermions in the fundamental representation of SU(2).
Right: fermions in the adjoint representation. In the top row, a
chiral U(1) field is included. In the other two rows, an imaginary
chiral potential μ5 is included.

5We use the same symbol θ for the phase angle of r as for the
chiral U(1) field. Since the two quantities never appear in the
same section we hope that no confusion arises.
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clear that the lattice data correspond to class AII†. An
interesting observation in Fig. 3 (and Fig. 7 below) is that
the curves for all three ensembles appear to intersect at the
same points. In the absence of analytical results we do not
know whether this is actually true, but perhaps this can be
shown in future work.
We also computed the Jensen-Shannon distance between

pairs of the two-dimensional distributions shown in Fig. 2,
comparing lattice results to RMT predictions as a function
of the number of bins. The results are displayed in Fig. 5.
The Jensen-Shannon distance is an information-theoretic
measure for how similar two probability distributions are.
The fact that the distance extrapolates to zero for RMT
class AII† strongly supports the agreement of the data with
that universality class.

C. Results for SU(2) adjoint

Our numerical results for gauge group SU(2) and
fermions in the adjoint representation are summarized in

Figs. 6–9. The conclusions are completely analogous to
those in Sec. V B, except that we now observe agreement
with RMT class AI†.

VI. CONCLUSIONS AND OUTLOOK

We have shown that the two nonstandard universality
classes AI† and AII† of non-Hermitian RMT are realized in

FIG. 2. Heatmaps of PðzÞ for staggered SU(2) lattice data in
the fundamental representation with chiral U(1) field or
imaginary chiral chemical potential (left) and for three RMT
ensembles (right).

FIG. 3. Results for PðrÞ (left) and PðθÞ (right) from staggered
lattice data for SU(2) fundamental and from RMT obtained by
integrating the distributions PðzÞ in Fig. 2 over θ and r,
respectively. The histograms have been plotted as lines for better
visibility (horizontal values correspond to bin centers). The four
curves for the AII† ensemble and the lattice data are essentially on
top of one another. In the bottom row we plot the same data as in
the top row, but relative to the Ginibre ensemble for better
visibility.

FIG. 4. Moments of PðzÞ for staggered SU(2) fundamental. The
red data points are lattice data, the blue lines RMT predictions.
Statistical errors are smaller than the symbols or the line thick-
ness. We interpret the small deviations of the data from the AII†

lines to be boundary effects, see the comment after Eq. (31).
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the bulk spectral correlations of the Dirac operator in SU(2)
gauge theory coupled to a chiral U(1) gauge field or an
imaginary chiral chemical potential. In the continuum, we
find class AI† for pseudoreal representations of SU(2) and
class AII† for real representations. We have established the
corresponding chiral RMTs and verified our predictions in

lattice simulations, where the above correspondence
between representation and universality class is reversed
for the staggered Dirac operator. We have also derived
spectral sum rules that are very useful to check the
numerical eigenvalues.

FIG. 5. Jensen-Shannon distance between the distributions
PðzÞ for SU(2) fundamental in Fig. 2, computed in polar
coordinates as a function of the number of bins for r and θ.

FIG. 6. Same as Fig. 2 but for the adjoint representation.

FIG. 7. Same as Fig. 3 but for the adjoint representation.

FIG. 8. Same as Fig. 4 but for the adjoint representation.

FIG. 9. Same as Fig. 5 but for the adjoint representation.
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There are several avenues for future work. Analytically,
it would be interesting to study the integral representation
(15) in the general case of nonequal masses. Also, one
should try to derive the exact RMT result for the spectral
correlations, which we have generated numerically
so far. On the lattice side, one could study the bulk
spectral correlations in the deconfined phase, for
which the same universality classes are expected. One
could also focus on the local spectral correlations of the
near-zero eigenvalues, for which the chiral symmetry is
relevant.
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APPENDIX A: CONSTANT CHIRAL
GAUGE FIELDS

Spatially inhomogeneous bilinear condensates arise in
QCD and QCD-like theories under various conditions [58–
64]. To measure a modulated chiral condensate, one needs
to add a source term to the action,

Oq ≡
Z

dxfcosð2q · xÞhψ̄ψi þ sinð2q · xÞhψ̄iγ5ψig

¼
Z

dxhψ̄e2iγ5q·xψi; ðA1Þ

which is the Fourier component of the chiral condensate
with a wave vector q. Its nonzero value signals spontaneous
breaking of chiral, translational and rotational symmetries.
The chiral limit is assumed here. By performing a space-
dependent chiral rotation ψ → e−iγ5q·xψ the exponential
factor in (A1) may be absorbed, while a new term arises in
the Lagrangian,

ψ̄Dψ → ψ̄ðD − iγ5γkqkÞψ ; ðA2Þ

which has the same form as the chiral vector field Bν in (1).
The accumulation of near-zero eigenvalues of the modified
Dirac operator D − iγ5γkqk is linked to the formation of
modulated condensates.

APPENDIX B: TWOFOLD DEGENERACY

It is well known [65] that the eigenvalues of the
staggered Dirac operator in the fundamental representation
of SU(2) are doubly degenerate since SU(2) is pseudoreal.
We briefly show that this is also true in the presence of the
chiral U(1) field θμðxÞ and the chiral chemical potential
μ5 ∈ C, for which D is no longer anti-Hermitian.
Our arguments for this non-Hermitian Kramers degeneracy
closely parallel those in [24].

For greater generality we formally include both θμðxÞ
and μ5 in the staggered operator. We first consider the
massless case and discuss the mass term at the end of this
section. We split the massless operator in the form

D ¼ 1

2
D1 þ

1

2
μ5D5; ðB1Þ

where D1=2 and D5 are given in Eqs. (21) and (28),
respectively. Both operators satisfy (24), hence so
does D.
Now let jψi be a right eigenvector ofDwith eigenvalue λ

and hφj be the corresponding left eigenvector with the same
eigenvalue, i.e., we have

Djψi ¼ λjψi; hφjD ¼ hφjλ; hφjψi ¼ 1: ðB2Þ

Taking the transpose of the second equation and using (24)
we find Dðτ2jφ�iÞ ¼ −λðτ2jφ�iÞ. Using fD; εg ¼ 0 then
yields

Dðετ2jφ�iÞ ¼ λðετ2jφ�iÞ: ðB3Þ

Hence λ is doubly degenerate with eigenvectors jψi and
ετ2jφ�i, provided that these two vectors are linearly
independent. To show this we use ðετ2ÞT ¼ −ετ2 and
obtain

hφjετ2jφ�i ¼ hφjετ2jφ�iT ¼ −hφjετ2jφ�i; ðB4Þ

i.e., we have hφjετ2jφ�i ¼ 0. Together with the third
equation in (B2) this implies that jψi and ετ2jφ�i are
biorthogonal and hence linearly independent.
Adding a mass term m1 to D simply shifts all

eigenvalues by m, which preserves the twofold
degeneracy.

APPENDIX C: DERIVATION OF SPECTRAL
SUM RULES

In this section we give a brief derivation of the sum rules
for the squared staggered Dirac operator. Again, for greater
generality we include both the chiral U(1) field θμðxÞ and
the chiral chemical potential μ5 and now also a mass term in
the operator. The special cases considered in the main
text, i.e., the massless staggered operator with either a
chiral U(1) field or nonzero μ5, are obtained from the
general sum rule (C6) by setting m ¼ 0 and either μ5 ¼ 0
or θμðxÞ ¼ 1.
We split the massive operator Dm into three parts,

Dm ¼ m1þ 1

2
D1 þ

1

2
μ5D5; ðC1Þ

where the unit matrix has dimension NrepV and the
operators D1=2 and D5 are given in Eqs. (21) and (28).
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We trivially have TrD1 ¼ 0 and TrD5 ¼ 0 because the
diagonal elements of these operators are zero. We also have

TrD1D5 ¼
X
xy

TrðD1ÞxyðD5Þyx

¼
X
xyμ

ημðxÞTr½UμðxÞθμðxÞδxþμ;y

−U†
μðyÞθμðyÞδx;yþμ�

× sðyÞ½ŪδðyÞδyþδ;x þ Ū†
δðxÞδy;xþδ� ¼ 0 ðC2Þ

since after the summation over y we end up with Kronecker
deltas of the form δx�μ;xþδ, which are always zero because
δ ≠ �μ.6 Hence

TrD2
m ¼ m2NrepV þ 1

4
TrD2

1 þ
1

4
μ25TrD

2
5: ðC3Þ

We now derive the last two terms. First,

TrD2
1 ¼

X
xyμν

ημðxÞηνðyÞTr½UμðxÞθμðxÞδxþμ;y −U†
μðyÞθμðyÞδx;yþμ�½UνðyÞθνðyÞδyþν;x −U†

νðxÞθνðxÞδy;xþν�

¼
X
xμ

ημðxÞ½−ημðxþ μÞθ2μðxÞTrUμðxÞU†
μðxÞ − ημðx − μÞθ2μðx − μÞTrU†

μðx − μÞUμðx − μÞ�

¼ −8NrepVhθ2μðxÞixμ; ðC4Þ

where we have used ημðxÞημðx� μÞ ¼ 1 and the fact that U is unitary. In the last line, h� � �ixμ denotes an average over all
links of the lattice. Furthermore,

TrD2
5 ¼

X
xy

sðxÞsðyÞTr½ŪδðxÞδxþδ;y þ Ū†
δðyÞδx;yþδ�½ŪδðyÞδyþδ;x þ Ū†

δðxÞδy;xþδ�

¼
X
x

sðxÞ½sðxþ δÞTrŪδðxÞŪ†
δðxÞ þ sðx − δÞTrŪ†

δðx − δÞŪδðx − δÞ�

¼ −2VhTrŪδðxÞŪ†
δðxÞix; ðC5Þ

where we have used sðxÞsðx� δÞ ¼ −1 and h� � �ix denotes
an average over all sites of the lattice. Note that ŪδðxÞ is not
unitary. From (C3) we obtain

TrD2
m¼

X
n

λ2n

¼V

�
Nrepðm2−2hθ2μðxÞixμÞ−

1

2
μ25hTrŪδðxÞŪ†

δðxÞix
�
:

ðC6Þ

In our numerical simulations μ5 is purely imaginary.
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