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1 Introduction

In view of future collider experiments, in which hadronic matter will be probed at un-
precedented kinematic regimes, there has been, in recent years, an ever growth of interest
in understanding the fundamental properties of hadrons, spin and mass, from their con-
stituents, quarks, and gluons [1-6, 9-13].

At high energy (Regge limit) scattering amplitudes are dominated by gluon dynamics,
in particular, the cross section of Deep Inelastic Scattering (DIS) processes, is dominated,
in the unpolarized case, by the gluon structure function. Within the Leading Log Ap-
proximation (LLA), the resummation of log of energy through BFKL [14, 15] formalism
predicts a steep rise of the DIS cross-section that has been observed experimentally at
HERA experiments [16, 17].

In perturbative quantum chromodynamics (pQCD) a standard technique to study
the asymptotic behavior of cross-sections is the operator product expansions (OPE). In
deep inelastic scattering (DIS), in the Bjorken limit, the T-product of two electromagnetic
currents is expanded in terms of coefficient functions, perturbatively calculable, and matrix
elements of non-local operators that encode the non perturbative information of the process.
Evolution equations of the non-local matrix elements with respect to the factorization scale
ps provide information on the scaling behavior of the parton distributions [18].



About twenty-five years ago, the high-energy Operator Product Expansion was in-
troduced for the first time as a method to study the asymptotic behavior of high-energy
structure functions from a gauge-invariant formalism [19]. Since then, the high-energy
OPE proved to be a successful method to systematically study high-energy scattering am-
plitudes [20-23]. Within the high-energy OPE the scattering amplitude is factorized in
rapidity space in coefficient functions (also called impact factors) and matrix elements of
Wilson lines. The evolution equation of Wilson lines with respect to the rapidity parameter
provides the energy dependence of the amplitude: each step in rapidity generates a new
Wilson line at a different point in impact parameter space thus obtaining the non-linear
Balitsky-JIMWLK evolution equation [19, 24-26] which in the dipole approximation takes
the form of the Balitsky-Kovchegov equation [27, 28] (see refs. [29, 30] for a review).

Contrary to the OPE in the Bjorken limit, in the high-energy OPE the coefficient
functions and the matrix elements both receive perturbative and non-perturbative contri-
butions. The latter, however, are screened by the saturation scale, which being much larger
than the scale of the confinement region, justifies the applicability of perturbative methods.

The unpolarized DIS structure functions at small-x are known at next-to-leading order
(NLO) [22, 23] (see also [32]) in a,; and at next-leading-logarithmic accuracy [20, 31]. The
NLO pomeron intercept, through which the log of energy are resummed at next-to-leading
log approximation (NLL), has been calculated long ago [31] and later confirmed through the
linearizion of the NLO Balitsky-Kovchegov equation [20]. Moreover, the pomeron residue,
which is related to the impact factor is now available in an analytic form in coordinate
and momentum space at NLO [22, 23]. These two ingredients, the NLO pomeron intercept
and the NLO pomeron residue allow one to study the behavior of the small-x structure
function at NLO accuracy in as and at NLL approximation. A first fit of the dipole model
to HERA data using the full NLO impact factor and Balitsky-Kovchegov evolution has
been performed in ref. [33].

Unlike the unpolarized one, the behavior of the polarized DIS structure functions at
small-x is not yet well understood. In the polarized case, the pomeron intercept receives
an extra complication due to the presence of double logarithm of energy ayIn? a:]_31 (36,
37]. Such double logarithms of energy are also present in the unpolarized quark structure
function [34, 35], although they are suppressed by one power of energy with respect to the
gluon one. In the polarized case, instead, quark structure functions are not suppressed
thus their behavior at small-xp is as relevant as the gluon structure functions.

What makes the study of polarized structure functions even more challenging is the fact
that, the double logarithm of energy, a In? mgl, cannot be reached from the LO anomalous
dimension of twist two operators. Indeed, if on one side, the relation at the non-physical
point n =1 (n being the moment index), between the BFKL and DGLAP was established
through the anomalous dimension of twist two operators [38, 39], on the other, such relation
cannot be easily obtained in the polarized case due to the presence of double log of energy
contributions which are absent in the LO [40] and NLO polarized splitting functions [41].
However, the double log of energy contribution, a In? xgl, appears at there-loop polarized
splitting function [42-45] and the result is in agreement with the one originally found in
refs. [36, 37].



The plan is to bring the knowledge of the unpolarized and polarized small-x structure
function at the same level. To this end, first we need to extend the high-energy OPE of the
T-product of two-electromagnetic currents to include terms that are not symmetric in the
exchange of the two Lorentz indexes of the DIS hadronic tensor. Indeed, in the polarized
DIS both the leptonic tensor and the hadronic one have to be antisymmetric. To obtain
antisymmetric contributions in the high-energy OPE, it is necessary to relax the eikonal ap-
proximation and allow sub-eikonal terms to enter into the game. As we will show in the sub-
sequent sections, the OPE with sub-eikonal contributions will be given in terms of new op-
erators and the task will be to calculate their evolution equations. An important ingredient
to perform the high-energy OPE with sub-eikonal corrections is the quark and gluon propa-
gators with sub-eikonal corrections. In ref. [46] such corrections have been all calculated as
deviation from the shock-wave approximation: the corrections are suppressed by the large
Lorentz boost parameter. Corrections to the eikonal approximation can be also included
by assuming that the fields of the background shock-wave do not have the same transverse
momenta, rather they are ordered. In this case the sub-eikonal corrections are included as
light-cone expansion of the background shock-wave [47, 48]. However, these corrections will
be irrelevant for our analysis since here we are interested in small-x dynamics rather than
studying the overlapping kinematic regime where these corrections will play a central role.

In section 2 we will review the main idea behind the high-energy OPE in the un-
polarized case. We will derive the leading order (LO) impact factor and the associated
Wilson-line operators together with their evolution equations. This will serve as a smooth
transition to the OPE at sub-eikonal level in section 3 where we will give a new expression
(equivalent to the one obtained before in ref. [46]) of the quark propagator with sub-eikonal
corrections in the background of gluon fields, and will identify the relevant sub-eikonal cor-
rections which will be used, in section 4, to calculate the impact factors for polarized
and unpolarized structure functions. In section 5 we summarize the parametrization of
the matrix elements of operators found through the OPE, and identify 10 new distribution
functions. In section 6 we will derive the evolution equations for the operators associated to
the sub-eikonal impact factors using the propagators calculated in previous work, ref. [46].
In the same section we will calculate, for the first time, the quark-to-gluon propagator and
use it to calculate diagrams that have not been calculated before in the contest of spin at
small-x. Summary of the evolution equations for singlet and non-singlet case will be pre-
sented in section 7. In the last section we will summarize our findings and compare them
with other results that have been obtained in the same direction. We will argue that the
result we obtained although agree in some limiting case, they actually differ from the ones
calculated in refs. [5, 7, 8] because of the way the quark and gluon operators are treated
under one loop evolution.

2 Operator Product Expansion at high-energy

Before calculating the sub-eikonal corrections to the high-energy OPE for DIS, let us first
briefly review the high-energy OPE in the eikonal approximation.



The inclusive differential DIS cross-section in the laboratory frame for detecting the
final lepton in the solid angle df) with final energy within [E’, B’ + dE'] is
d’o o E

= —— — LW, 2.1
dQdE'  M¢* E W (2.1)

Here the hadronic target of mass M has momentum P* = ph + M72p’f , and the virtual
photon has momentum ¢* = p}' — xpph with p’, ph light-cone vectors such that p{'py, = 5
and xp = _qu < 1. The leptonic tensor is denoted by L*” and the hadronic one by WH".

In strong and electromagnetic interactions parity is conserved, thus the hadronic tensor
can be expanded in terms of the unpolarized structure functions F; and F5 and the polarized

structure functions ¢g; and g

Quv 9 q-P q-P> Fy(z,Q%)
W v — —Yuv —— | I 7Q P, - 5 Py_ v
g (g“+ q2> (= H(“ . q2>< L P-q

+i €pvro qAS"PMq 91(z,Q%) + i’ (S" - P"Z:}i) ff\?q 92(z, Q%) (2.2)
where S* is the spin of the target that satisfies S> = —1 and S-P = 0.

To extract the polarized structure functions g; and go, we need the antisymmetric part
of the leptonic tensor. This means that both the incoming lepton and the hadronic target
have to be polarized.

With the help of the optical theorem, the hadronic tensor is related to the imaginary
part of the Fourier transform of the T-product of two electromagnetic currents

1
Wy = %ImTW . (2.3)
where
T =i [ @ et (P SIT(ju (), 0)} 7. ) (2.4)

To study the polarized structure functions g; and go at high-energy we need to extract the
antisymmetric part of the 7}, tensor. This is what we will do in the next section.

The T-product of two electromagnetic currents is considered in the background of
gluon field. As we will see later, in order to calculate sub-eikonal corrections it will be
necessary to consider the OPE in the background of gluons and quarks as well. However
for the moment we consider a background made only of gluons.

In the spectator frame the background field reduces to a shock wave (see appendix A
and [29] for review), and the virtual photon, which mediates the interactions between the
lepton and the nucleon (or nucleus) in DIS processes, splits into a quark anti-quark pair long
before the interaction with the target. In the eikonal approximation the propagation of the
quark anti-quark pair in the shock wave background, reduces to two infinite Wilson lines.
Although with less probability, the virtual photon may fluctuate in a quark, an anti-quark
and a gluon before interacting with the target. In this case, the number of Wilson lines
increases. Consequently, at high energy, the T-product of two electromagnetic currents is



expanded in terms of infinite Wilson lines as

T{(@)y ()b (y)r b (y)}
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where with the symbol " over the fields we indicate operators, U, = Pexp{ig [ dzT A~ (x*+
x)} is the Wilson line and A~ is the background gluon field. The first term of expan-
sion (2.5), which is proportional to the LO impact factor I1,o, corresponds to the probability
for the virtual photon, to split in a quark-anti-quark pair. The second term, proportional
to the NLO impact factor In10, and which has been calculated in refs. [22, 23], corresponds
to the probability that the virtual photon has to split in a quark-anti-quark and a gluon
before scattering with the target. Here we use the light-cone variables z* = % I
appendix A we provide further details on the notation used throughout this paper.

Let us see how to get expansion (2.5) in a bit more detail. We know that to get the
DIS cross-section we need to evaluate the T-product of two electromagnetic currents in the

nucleus or nucleon target state |P,S)
(P, S|T{p(x)y"¢(x)¢(y)7" ¢ (y) } P, S) (2.6)
Since we do not know exactly the proton or nucleus state in terms of quarks and gluons,
we are forced to make approximations which are suitable for the kinematic regime under
consideration. As anticipated before, at high-energy (Regge limit), the target state, made
by quarks and gluons, represents the background field which, in the conveniently chosen
spectator frame, shrinks into a shock wave. In first (eikonal) approximation the shock-wave
is made only by gluon field. In light of these considerations we have

(P, SIT{D (@ b (2)d () WP, S) — (T{d@ " v(@) bV b  (2.7)
where the subscript A indicates that the matrix element is evaluated in the background of
gluon field generated by the target. The transition from the Lh.s. to the r.h.s. of eq. (2.7)
is similar to the analysis that one performs in the usual local OPE in which one considers
the target in terms of its partonic content, quarks or gluons. In ref. [18] it was shown that
the local OPE can be reformulated in terms of non-local operators using the background
field method. It turns out that also at high-energy (Regge) limit it is more convenient
to perform the OPE analysis using the background field method [19]. Once the relevant
operators are obtained, and we will see they are infinite Wilson lines, they will be evaluated
in the target state again. We now perform functional integration over the spinor fields.
Considering only the fully connected diagrams, we have (see figure 1)

(TG H@F @ 6@ = o] el Wl o] (29

where P* = p* 4+ gA* and A" is the background gluon field. In eq. (2.8) we have used the
Schwinger notation for the quark propagator which in the eikonal approximation is

(To@i) T EY [ dt) Wf{f bl %Z’Ey ! oE

(2.9)



Figure 1. Diagram for the LO impact factor in the eikonal approximation. As usual, we will
indicate in blue the quantum field and in red the classical background ones.

with z#~, = #. In figure 1 the blue lines represent the quark and anti-quark fields, while
the red band represents the background shock-wave field.
Using propagator (2.9) in eq. (2.8) arrive at

(T{o (@) (2)d(y )7%( )})a

zT>0
2ot m /d221d222<Tr{U(zu)UT(zu)}>A
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where the ... stand for higher order corrections in «s or sub-eikonal corrections. In
eq. (2.10) we defined
2 2
— % — % 4
g=@zal W=z 4 (2.11)
T Y S

where we use the short-hand notation (see appendix A for further details on the notations
used through out the paper)

s S
pﬁtxu = Te¢ — \/;ZC = \/;.%'+7 (212)

pha, = x*—\/§$+—\/§x_. (2.13)
Using the identity

tr{(f — 2P, (4 —#.0" (¥ - ¢2)p2(¢ — #7"}

82
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*Yx

we define the LO impact factor as

1 (Zi4i0) " &? 22
T : = 212y — A2 (g — 2) 2.15
Lo(2’1¢722L,9€7y) 7T6($*y*)2 (Zg n ie)g (‘)x,ﬁyy( 122 Tl (r —y) ( )
and the high-energy OPE takes the form
T{ ()" () (y)7" P (y) /dzldzszo(Zu,Zu,x Y)Tr{U (21) U (221)} +... (2.16)



c) d)

Figure 2. Sample of diagrams (real ones) for the LO BK equation.

Eq. (2.16) tell us that in the high-energy limit the operators standing to the left of the
equation are approximated by the ones standing to the right.
The LO impact factor enjoys two nice properties: electromagnetic gauge invariance

0

dak

and Mobius SL(2, C') conformal invariance

IZE(ZIL)ZQL;J"’Z/) =0 (217)

/d221d222 Vo (2L, 20052, y) = /d221d222 Tio(z11, 2005, y) (2.18)

where the symbol MV means that we perform the inversion transformation g—g to all coor-
dinates.

If we try to calculate one loop correction either to the coefficient function (the impact
factor) or to the matrix element of the Wilson-line operators, we will find divergences which
are identified by rapidity divergences as a remnant of the fact that the parameter we use to
discriminate between background (or classical) field from the quantum field is indeed the ra-
pidity. As explained in the Introduction, at high-energy fields are ordered in their rapidity.

The rapidity divergences we just mentioned represent the log of energy which are
usually resummed through an evolution equation. The easiest way to identify such log of
energy is to consider one loop correction to the matrix element of Wilson lines, rather then
to the coefficient function. In refs. [22, 23] a one loop correction to the coefficient function
(NLO impact factor) was calculated, and it was shown that the BK evolution equation can
also be obtained from the one loop correction to the coefficient function (impact factor).
One may observe the similarity with the non-local OPE where DGLAP evolution kernel
can be obtained either from the one loop evolution of the non-local operator or from the
NLO coefficient function [18].

The evolution of the Tr{U(z,)UT(2)} with respect to rapidity is the BK equation.
The diagrams (except the virtual ones) contributing to the kernel of the evolution equation
are given in figure 2. The evolution equation is [19]

ULy = 52 5 [ ( (21— 2)°

21— 2)2%(29 — 2)?

x [Tr{Uzl Ul {UUL Y - N U, UZTQ}} . (2.19)



The evolution equation is obtained in the background fileld method by integrating over

the infinitesimal step in rapidity where 7;721 %‘" — An. Taking derivative with respect to

rapidity we get the evolution equation

d ~ as N, (21 — 22)2 ~ ~ A ~ N
~yn = =87 c 2 n no_yn oy yn . 2.9
dnuz122 T /d z (2’1 _ Z)2(22 _ 2)2 [umz +uzzz uz1z2 uz1zuz22} ( 0)

where we indicate the rapidity dependence of the operators by the subscript n and we
defined the operator

U(as,y1) =1 3 {000 (1)) (2:21)

Equation (2.20) is the Balitsky evolution equation. The operator we started with,
Tr{Uz1 UL}, after one loop evolution became a sum of two operators. One is clearly the
same as the original one (before evolution), the other one, Tr{U,, Ui} Tr{U. UZTQ} is a new op-
erator. To solve the evolution equation one should, in principle, find the evolution equation
of the new operator as well. However, this will actually generate a further new operator.
This process generates a hierarchy of evolution equations known as Balitsky-hierarchy. It
is also known that the Balitsky-hierarchy is equivalent to the JIMWLK formalism [24—26]
and for this reason, in the literature, they are mentioned together as B-JIMWLK equation.

In the large N, approximation, the matrix element of the new operator factorizes into a
product of operators equal to the one we started with, thus breaking the Balitsky-hierarchy
to the non-linear Balitsky-Kovchegov [19, 27, 28] equation

z1%2 229 2129 212 z2z9

d asN, d?z(z1 — 29)?
—Uur ) =—== u? UL — UL ) — U UL (2.22
U = 550 [ TS [ ) — @) — @) (222

If sub-eikonal corrections are included, as we will see, we will obtain new evolution
equations which will generate different type of new operators.

3 Sub-eikonal corrections to the high-energy OPE

Now we are going to include the sub-eikonal corrections to the high-energy OPE. To this end
we need the quark propagator with sub-eikonal corrections which was calculated in ref. [46].

3.1 Quark propagator in the background of gluon

The quark propagator in the background of gluon field with sub-eikonal corrections was
calculated in ref. [46]. In appendix B, we provide a new derivation of the quark propagator
which confirms the one obtained in the previous publication [46]. In the same appendix,
we also put the result in a new form which facilitates the analysis of the matrix elements
with sub-eikonal corrections. The new form of the quark propagator in the background of



gluon fields up to subeikonal terms is

<x|l%+ie
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where operators O, O; and O, are defined in egs. (B.13), (B.15), and (B.17). This is a
new expression (equivalent to the one obtained before in ref. [46]) of the quark propagator
with sub-eikonal corrections in the background of gluon fields.

As it is shown in appendix C, from all the terms present in the quark propagator (3.1),
the only one that contributes to the polarized g; structure function is

(T{(@)0(®)}) .5

Tx >0>y* /+OO da
=
o 4sad

2
e—ia(x.—y.)/d22<wj_‘pe—i%x*’zj_>

oo 2 1 i iy
XZQ/ d— Z* p2 00]9172*] 20' Ej(z*;zi)[z*,—Oopl]z<2i’,¢e s *‘yj_> (32)

where we used o = %(’yi’yj — 4/~%), and the A-inspired notation d"a = gLT)O‘n, and we
defined the gauge link at fixed transverse position z; as
.2 [
Pexp {zgs dzy Ae(z, ZJ_)} = [Tup1 + 21, Yp1 + 21] = [Ts, Uil - (3.3)
Yx
We will work again in coordinate space so, performing the Fourier transform of (3.2),
we have
(Te{e (@) ()} .5 (3.4)
2>0>y. 1 d?z (2 1 5 2
" i | Eea (e X ) e (G )
with ) )
— — 4
==l =21 Z (e — ) (3.5)
T Ys S

and where we have introduced the short-hand notation X4 = (z — z)/| and similarly for
Y!" and defined, for later convenience, the operator

+oo

Flz1) =1 g§ i dz.[0op1, 24) 2 eijFij(z*,zu)[z*,—oopl]z. (3.6)



We use the symbol > to indicate that we are considering only one of the possible terms
that make up the quark propagator. Moreover, the superscript z, > 0 > y, indicates that
we are considering only the contribution in which the quark goes through the shock-wave
from positive values of light-cone coordinate, x, > 0, to negative ones, y, < 0.

0~1,2~3 —

Throughout this paper we use the convention v° = iy0y1~2y 4%6”,/,00 and 123 =

1. The two dimensional antisymmetric tensor is p1,pa, e U= € €7 where, as usual, Latin

indexes take values 1,2 and €2 = —¢?! = 1.

3.2 Quark propagator in the background of quark fields

The quark propagator in the background of quark fields is [46]

- T . +o0
(CE@dW s 5o /0 da / s / PN

L (| i loopr, S () (55 Zf“p&) [, 2L

) (3.7)
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*

Performing the Fourier transform we have
(T{Y(@)Y(H)}) .5 (3-8)
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To highlight the structure of the propagator (3.8), let us define the following operator

Qi (1) (3.9)
= g2 [ e [ s (foopn, 21t () o, A L P —ooil)

1)

where «, and 3 are spinor indexes, and i, j are color indexes in the fundamental represen-
tation. Thus, the quark propagator (3.8) becomes

(T{ (@) W)}y (3.10)
T >0>yx 22
> 167r31332 /(ZC:_ZE) (2 Ty +XJ_>’VJ_Q(ZJ_)"YM (iy*pl +Y’L> .

3.3 Quark propagator relevant for polarized high-energy DIS

The quark propagator we need for polarized DIS at high-energy is the sum of the eikonal
propagator (2.9), the sub-eikonal correction due to the background of gluon field (3.4), and
the sub-eikonal correction due to the background made by quark fields eq. (3.10). Putting

,10,
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Figure 3. Diagram of the LO impact factor with quark-sub-eikonal correction.

all these contributions together we have

(T (@)W 4.5
T >0>1yx 1 d2Z 2
> ~ 2m3a2y2 /(Z + i€)3 (shpl ’ Xl)

Jip U + 3 (Gp e+t ) | G + Y1) G

Propagator (3.11) will be used to calculate the impact factor in figure 3.

4 Operator Product Expansion with sub-eikonal terms

4.1 OPE with quark sub-eikonal terms

Now that we obtained the quark propagator with the necessary sub-eikonal corrections, we
are ready to extend the expansion of the T-product of two electromagnetic currents to the
polarized DIS case.

The diagram we need to calculate are given in figure 3. As before, we make functional
integration over the spinor field

(TG @5 D) a5 = ] @l o Wl ) @)

where for each quark propagator in eq. (4.1) we should use eq. (3.11). We will consider
operators F(zy) and Q(z) separately starting, in this section, with Q(z).

The product of two quark propagators given in eq. (3.11) will result in four terms. The
first term is a product of two eikonal propagators which we considered in section 2. The sec-
ond and the third terms are obtained by the product of one eikonal term and one sub-eikonal
term; we will consider them in this section. The last term is the product of two sub-eikonal
terms, and since it will contribute as a sub-sub-eikonal correction it will be disregarded.

As it is illustrated in figure 3, if we do not want to exceed our precision, we need
a sub-eikonal correction to only one of the two interactions between the quark and the
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shock-wave target while keeping eikonal the other one. Diagram 3 a, is

i >0>Yx 7 / d221d222

o . 9 . . 4.2
(T{3" ()" (¥) })Figure 3a 32m6z4yd) (2 + ie]3[2 + i€)? "2

xlTr ‘clr{'y‘LXg’yiQ(Zu)’VpL Yo' Yy }/’QU; X1}
i p L v T f
—(Trtr{V X Q(z20)v, Yo' Yap, Ul Xl}) ]

where we used again the short-hand notation X! = %x*p’f + X# with X =2 —2I}

and i = 1,2 and similarly for Y;. Moreover, we use tr for trace over spinor indexes while
Tr over color indexes (we refer the reader to appendix D for the details of the derivation
of eq. (4.2)).

Our task is now the evaluation of the double trace
iTrir{y* X27] Q221 )7, Yo" Y1 p,Ul, X1} (4.3)

After some lengthy algebra, and using the rescaling of the spinor field given in eq. (A.3),
one can show that the trace over the spinor indexes can be cast in the following form
ip(2L, 220 )7, Yoy Yip, Xiv" Xon (2, 221)

8 .
= ;l/J(Zi, 291 ) 1P, (2, 221 ) 1T (T, Yo 211, 2210

8 - v _
—gw(zi,Z2¢)’Y5;¢1¢(z*,zu)f§ (Twy Yus 211, 221) + O(A7) (4.4)
where
1 0’ (z —y)*
I{w(xay; 21,22) = 51'393 02,0y, (le2 - Z%QLTZJ* , (4.5)

with Z; defined in eq. (2.11), and
I§¥ (x,y; 21, 22) = (208 — phy) (y«0; — p5) [(VixYa)X1-Xo — (X1 x X2)Y1-Ya],  (4.6)
where we used the notation for vector product in two dimensions
i x =z, . (4.7)

The explicit expressions of I{"” and If” can be found in appendix E.

In result (4.4) we obtained two operators with definite parity. The symmetric tensor
I is proportional to the parity even operator 1 (2., 221 )P, ¥(2x, 221), while the operator
proportional to the antisymmetric tensor I£” is proportional to the parity odd operator

¢(Z/*7 Z2J_)75p1w(z*7 Z?J_)'
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Using result (4.4) in the eq. (4.2), we arrive at

s >0>x 1 d221d222
T{5* i - / 4.8
< {.7 (:E)] (y)}>A,1/),1/) 2 47763:E§yf [Zl + i€]3[22 + Z-E]Q ( )
Xl(Tr{Q122 Uil} + Tr{ Q-il—zQ UZI })[{LV(:L,7 y7 217 22)
- (Tr{Q522 Ul +1e{ol, Uzl}>]gv(x, y; 21, 22)]
where we defined the operators Q. and Qs as
2 oo = / .
Qi(z1) =g / dz*/ dz*[oopl,z*]ztatr{zplw(z*,zg_)
X[z, 2120 (2L, 210}V, —oopi] (4.9)
9 +o0 Zx , 5
Qs5(z1) =g / dz*/ dz, [oop1, ze] st T {7’ p (24, 21 )
X[z, 222, 21 )}, —oopi ] - (4.10)

To put result (4.8) in the same form as eq. (2.16), we define the quark-sub-eikonal
impact factors as

I’uV(IE i 21 22) _ 1 Ify($7y;21722) (4 11)
LA AmSadyd [Z1 + i€]3[ 25 + ie]? '
1 IMV .
I8 (w, ys 21, 22) = s (@0i71,72) (4.12)

AnSzliyd [Z) + i€]3[ 2o + ie]?
thus the high-energy OPE with quark sub-eikonal contributions is
T{a ()" () ()7 (y)}

.>0>y. 1 Ao~ At v
) g/d221d222 (Tr{QuQUZTl}—i—Tr{QLQUzl})If (x,y; 21, 22)

+ (Tr{Q5z2 UJI} + Tr{QET-)Z2 Uzl})Ig”(aﬁ, Y 21, zg)] (4.13)

We notice that the sub-eikonal quark contribution to the quark propagator, eq. (3.9), gave
rise to two different impact factors and to two different operators. The impact factor
(coefficient function) Z; which is associated to the operator Tr{Q1.,Ul } + Tr{QL2 U..}
is a sub-eikonal correction to eikonal unpolarized case eq. (2.16) because it is symmetric
under the exchange p <+ v, x <+ y. Moreover, we notice that there is a relation between
the LO impact factor Z}'/, and the impact factor Z}". Indeed, using definitions (2.15)

and (4.11) we can write

v ZQ 174
Y = 2T (4.14)

The impact factor Zs and its associated operator Tr{Qs., ﬁ;fl} + Tr{ng2 U.,}.
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Like the LO impact factor, one can check that the coefficients Z}", and Z£" in eqs. (4.11)
and (4.12) satisfy the electromagnetic gauge invariance

1 1
€ ny T TRV TRV
U Ty P e A G
+32. 2200 21 + 20,2105 25 ) | = 0 (4.15)
and
oL LI = ! (221 2200 18 — I8 (4212
w2223yl 5 = PSyiZ3 20 Lx 2122015 5 12202,

432 200 2 + 20,2105 2) | =0, (4.16)

One may also easily check that impact factors (4.11) and (4.12) are Mébius SL(2, C) in-
variant.

Before proceeding with the calculation of the evolution equations, we observe that,
working out the color algebra we can rewrite operator Q 5 defined in (3.9) as

+00 Zx 1 R
Q%ﬁ(xj_) = —92/ dz*/ dz!, [2 UY %2, 1) 2L, 2)a?0P (24, 1) (4.17)

([Oopla Z*]xTZJﬂ(Z*, mL)QZ)a(Z{H $L) [wa *OO])

2N, ij
From (4.17), we see that in the large N, limit, the Q%ﬁ operator reduces to the product
of an infinite Wilson line times the usual light-cone quark operator when multiplied by
P = \/gmr (recall that v4 = v~ is what is call the good component) or to the parity odd
quark operator when multiplied by 75],7)1.

We define the light-ray quark operators as

Qip = —gQ/Jroodz* j* dz, (2, 21) i P, [2h, 2t (20, 1) (4.18)
Q= [t [ a0 )i () (4.19)
Qs = —gz/joodz* _Z* dz;&(zi,:u)75p1[zi,z*]x¢(z*,$¢), (4.20)
QL= ¢ [ a2 B ) P e AL ), (421)

and

Grijlw1) = / dz*/ dzL ([oopy, zJatr{ (e, L )2 w1 ) i Y2k —ooprl),,, (4.22)
Quj(?ﬂ

—g/ dz*/ dz., ([—oop1, 2.]» tr{w(z*,xj_)w(z*,a:l)zpl}[z*,oopl]) , (4.23)
QBz](mJ_)

/ dz*/ ([OOplaZ*]xtr{¢(2*a$L)¢(z*a$L)’7 ]1)1}[ OOpﬂ) (4.24)

Qo) = [ e [ a (oo, late 0 Lm0 )2 Hen ool (425)
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X1 X1

> sq poeesees Pececcccs
Z; { ..... eqooons }Z*,XJ_ Z*+ +Z*

oy -
- -

Yo yi
a) b)

Figure 4. Figure a) represents the operators Tr{UmUJ}le and ’H{UwUJ}QM, while figure b)
represents operators TT{QMUJ}, and Tr{@smUJ}.

where ¢,j are color indexes in the fundamental representation. So, we can rewrite the
operator Tr{leUJ}, and Tr{Qg,IUJ}, and their adjoint conjugated as

Tr{Qy, 011} = %Tr{UJUx}le - lechr{U;félx} (4.26)
{QL.0,) = 30,00 - 53 T(0,40) (.27
105,00} = 3To{0J0) Qs — 37 Tr{0]0s0} (4.28)
{0 0,) = 5 THO,01GL, - 53 (0,05) (4.29)

Operators (4.26)—(4.29) are the new operators of which we will calculate the evolution
equations and in provide the parametrization through new distribution functions. They
are represented in figure 4.

The OPE (4.13) in terms of operators (4.26)—(4.29) is
T{(a)y (@) (y)r" D (y)}
. >0>y. 1 » At A N PN o
) % /d221d222 [I{‘ (x,y; 21, 22) (TI“{UZTIU@}QL22 + Tr{UleJQ}QIZ2
1 A 2 1 N ;\,T
_FCTr{Ulelzz} - E’I‘Y{Uzl Q1z2}

T s 21,20) (TH{OL 02} Qs + Te{ 04 UL, )G,

1

Ay 2 1 A~ 2
N THOL G5} = {0400} )| (430

4.2 OPE with gluon sub-eikonal terms

The contribution to the high-energy OPE of the T-product of two electromagnetic currents
due to sub-eikonal terms in the background of gluon fields, given in eq. (3.4), is obtained
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again by performing the spinor contractions (see figure 3b)

(W (@)7 () (Y)y" Y (y)) a

1 1

— ¢ R I 7 z

(el i Wl o

>0>y. g o o [Z2+ iE]_2 v o
> 6476 /d 21d” 29 mtf{XuﬁQYﬂ YQ;}Z’zUi X"}
+oo
X [ dw*Tr{[oopl,w*]meLa[w*, —oopl]ZQU;rl}
+00
— dw, Tr{U, [—oopl,w*]nF/i;[w*,oopl]zg}l . (4.31)

After a lengthy algebra, the calculation of the gamma matrices in (4.31) gives

tr{Xl%Yl’Y”YMQUiﬁXﬂ“}
= 8i6a6 (.%'*85 — pg) (y*6y” — pg) [()?1 X XQ)YI . Y2 — (}71 X ?2)X1 . XQ]

=8ie* I, (4.32)
So, it turns out that [ jé” = —I£". This should not be surprising because the two operators,

95, and F, are both parity odd.
Using the operator F, defined in eq. (3.6), eq. (4.31) becomes

(@) (@)U ()7 ¥ (y)) a (4.33)
= tlf{@:l P Jlr e |y>v”<y\},}rielw>v“}

T2 >0>y. 1 o o [Zo+i€ 2
> i /d ads 2 S I (o i) (T {Uf, P} + T {U, ALY

and using the definition of Zt", (4.33) can be written as

~

T{ ()70 (2) ()7 D(y)} (4.34)
x*>g>y* i/d221d222 Iéw(zu_a 221;7,Y) [Tr{ﬁ;ﬁw} + ’I‘r{[]’m]i";g }}

therefore, the coefficient ZE” is also the impact-factor associated to the operator
Te{UI F(zo1)} + Te{U., F'(221)}.

4.3 OPE with sub-eikonal corrections: flavor singlet

We can now add together the contributions of the quark, eq. (4.13), and gluon, eq. (4.34),
sub-eikonal corrections. We have

T{b(x) 1) ()b (y)y" P (y) }
v PR Z At A AoA
= /dz1d22 IP6(z11, 2005, y) {Tr{UZ1 UZTQ} + 8—2 (Tr{UZT1 Q12 + Tr{U., Q‘;ZQ})}
1 ) . o . o
+g /d221d222 Ig (ZlJ_a 22157, y) |:T1"{(Q522 + J:Zz)Ule} + Tr{(QJEr)zz + sz)Uzl }:|

+0(as) + O(X72) (4.35)
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The same expansion can be written in terms of the operators Qq(z 1) and Qs(z,), Q1 (x 1)

and C§5(m 1) and their adjoint conjugated as

T (@) ()b ()7 D)}
— [dedea (1 i) 1601, 0L}

ZQ Y s A ~ A A 1 N = 1 A 2
+@ (TI"{U; Uzz}lez + Tr{Uzl UJQ}QJ{ZQ - ETI'{U;QLZZ} - ZVCTI'{UZIQJ{ZQ}>:|

1 At A oA A Ao
b [Padan T G i) [ T4 0.) Qra + Te{04,0L)L,,

1 ~ 2 ~ 1 ~ 2 ~
_ETY{U; (Q522 - 2Nc-7:Z2)} - ETr{UZl (ngz - 2Nc]'j2)}
+0(as) + O(A7?) (4.36)

Equations (4.36) and (4.35) are equivalent, and are the high-energy OPE with the sub-
eikonal corrections that come in with a % factor. In principle, if we consider the full
quark propagator in the background of gluon field, (3.1), there might be other sub-eikonal
contributions to the unpolarized and polarized high-energy OPE (see appendix C for more
details). In other words, if we use the full quark propagator (3.1), from diagram in figure 3b
we will get other terms besides the one we obtained using only the term proportional to
€ F;;. However the new terms will not contribute to g1 structure function.

Considering that both Os, and F, are parity odd operators and that their impact
factors results, which came from two independent and different calculations, are equal, we
may consider this as an indirect proof of the validity of the entire result.

At small-x, the unpolarized quark structure function is known to be energy suppressed
with respect to the gluon structure function. Indeed, this can be observed from our OPE
result (4.36), where the sub-eikonal impact factors Z}" and ZL” are proportional to .

In the large N, approximation we have

T () () () D ()}
_ / dzleQ{I‘L‘é(Zu, 2152, y)Te{U,, U1}
+2*131{W(Zu7 22157,Y) (TT{U; U.,}Q12, + Tr{U, Uiz}QIzQ)
o T8 G 2015 ,0) (THOL 0} Qe + IO, DL 0L,
LOTH{UL Fu) 4 2Tr{UZ1sz2}>} +O(as) + OA2) + O(1/N,),  (4.37)

(recall that /" = 2211%).

4.4 OPE with sub-eikonal contributions: flavor non-singlet

In the flavor non-singlet case, the high-energy OPE will be the same as in (4.36) with the
exception that the operator F (x1) will be absent because it does not allow exchange of
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flavor with the target. So we have
T{(2)7" ()P (y)y" d(y)}
. AoA Z
= /d2’1d2’2 Iro(z11, 2005, y) [Tr{Um UZTQ} + 872 (Tr{ L Q1z,} + Tr{U, Qm}ﬂ
1 , .
+§ /d221d2z2 I8 (211, 22152, y) {TI{QE)ZQ NS Tr{QSZQUZI}}

+0(as) + O(X7?) (4.38)

As for the singlet case, the same expansion can be written in terms of the operators Ql (x1)

and Qs(x 1), Q1(z1) and Qs(x ) and their adjoint conjugated as

T{d (@) () (y)7" b (y)}
/dzldzz{ (211, 22052,y) + %I}%(zu, 221;7,Y) (TF{UL U.,}Q1z,

A 1
IO, 0100, - 3 Tr{0L, Q) - 3 B0, )
1, s T
+;Ig (ZlJ_a 2215, ?J) (TT{U;rl UZQ}Q5ZQ + TI'{UZI UJQ}Q;,ZQ

O Qo = (000, ) + O + O D)} (439

In the large N, approximation we can simplify to
T{d (@) " (2)d(y)r P (y)}

= /dZIdZQ{IZE(ZlJ_a 2215, y)
Z R )
+16 T (a1s, 2052, y) ({0, 02,3 Quy + T {02, 01,3Q1., )
+EI§L (210, 20152, 9) ({0, 02} Qs + T {02, U1, }QL.)

+O(s) + O(A2) + (’)(l/Nc)} (4.40)

We will find the evolution of these operators in the next sections.

5 Parametrization of the forward matrix elements

In this section we give an account of the operators that we have found and provide their
parametrization through new distribution functions (all of dimensions [M ~2]).

We denote by S7 the longitudinal spin of the hadronic target. In the DIS kinematics
we have M ST ~ AP* so, we may write SH ~ %P“ + S with helicity .

To consider forward matrix elements, we need to define the reduced matrix elements.
Consider an operator O(a: 1,Y1), function of two transverse distances, which can be one of
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the dipole type of operators we are going to consider in this section. Then, we define the

reduced matrix elements as

(P, S]O(/ﬂ)]P’, S) = 27r§5((P’ — P)-p1){(P, S|OA(I<:L)|P, S)) (5.1)
with P = P# 4+ Bph and

[ A B (P S0 Y|P S) = (P.SO(kL)|P,S) (5.2)

where we defined A/ = (z —y)/|. The delta function §((P'— P)-p1) takes into account that
forward matrix elements of dipole type operators contain unrestricted integration along p;.

Let us start considering the relevant matrix elements. Consider matrix element with
operator Q1 (z,)

/ PAEPP,S|[Qi (2 ) THULUS) +a.c] |P.S)

. +oo Zx
= —ng/dQA e (Ak) / dz.| dz,
(P, S|[d(eLy 1), [, 2]t (2, 21 ) TH{ULUS} + 2] | P, S))
5 Sxk
= 2<q1(kﬁ,x)+ i qlT(ki,x)). (5.3)

with €% Sikj = Sx k. (recall z,, 2!, are dimensionless) and a.c stands for adjoint conjugated.

Matrix element with operator él(m 1)
/ AR (P, S|[Te{Qu(a L )UJ) +a.c]|P.S))

. 400 Zx
= ng/d2A e (BF) / dz, dz,

X (P, S| [ Tr{[oopr, zJotr{v(z, w1 )b (2, 2.0 )p, ek, —oopilUJ} +acc. || P, S))

Sxk
= 2(@1(7%,90) T leT(kﬁ_;x)) : (5.4)

Matrix element with operator Qs (z, )

/d2A AR (P 5| {QE,(QCL)Tr{UmUJ} + a.c} P, S))

. +o0o Zx
= —g2/d2A el(A’k)/ dz*/ dz,

X (P S| [d(zh )77, [, 2lat (2, 2 )T {(ULUS) + 2] | P, S))

(a0 ) ~ 2200712, 0)) (5.5)

IS

,19,



Matrix element with operator Qs(z )

/ A AR (P, S| [T {Qs(w 1 )US} +a.c| P, S))
= ¢ / d*A AP / e, / ",
X (P, 81| Tr{[oop, zeJatr {8 (2, 2.1 )0, 207, e —oomlUf} + anc] [P, 5))

= 2 (0.0 - B a002.0)). (5:6)

We can also parametrize the matrix elements with the operators 91, and Qs, as

/ A AR (P, S|[Tr{Q1 (w1 )US} +a.c| [P, S))
Sxk
M

- ;(Ql(kﬁ,m) + QIT(ki,x)) : (5.7)

and

/ A AP (P, S| Te{ Qs (2.1)US} + acc|P, S))

(57 k)J_

= ;()\QsL(ki,l‘) + MQIT(kivx)) : (5.8)

Using eqgs. (4.26)—(4.29) we can find the following relations

2Q1(.2) = (k) — @k 0), (5.9)
2Qur(k%,2) = qir(k1, @) — ]\176q~1T(k'2L>$)7 (5.10)
2Qu1 (K 12) = as1 (K 10) — - G512 2). (5.11)
2Qsr (K w) = asr (2, 2) — 1-Gor (K. ). (512

[

The matrix element with the € Fj;(x,, z, ) term is

. +o00
/ P AR / dz (P, 9]

.S s
Tr{[cop1, 2]z zgiejFij(z*,xJ_)[z*,—oopl]xUJ} +a.c||P,S))

2
s, ki

2 (Svk)J_
= 2|:AWGL(]€JJ:L‘) +

with helicity A = +1. In (5.13), G1(k?,2) and Gp(k?,z) are the polarized longitudinal
and transverse gluon distributions of dimension [M ~2] (see appendix C for details). Note
that the parameterizations (5.3)—(5.13) are similar to the standard parameterizations for
TMD [51-53].

— 20 —



a) b)

Figure 5. Diagrams with le and Qg,x quantum.

6 Evolution equation of sub-eikonal corrections

In the eikonal approximation, which was presented in section 2, we first derived the LO
impact factor and its associated dipole operator Tr{U(x, )UT(y.)}, eq. (2.16), and then we
proceeded with the calculation of the evolution of the dipole operator thus obtaining the
BK equation. The plan is to repeat the same steps at sub-eikonal level. In the previous
sections we derived the sub-eikonal impact factors and their associated operators. Our task
is now the calculation of the evolution equations of these operators.

We use again the background field method. We have to separate fields in quantum
and classical and perform the functional integration over the quantum fields leaving un-
touched the classical one. As a result of this procedure we will obtain a relation between
the operator at the starting renormalization point 1; and the new operators at the end
renormalization point 7y convoluted with a coefficient, the evolution kernel, which is the re-
sult of the functional integration over the quantum fields living in the infinitesimal rapidity
interval 171 —ne = An. This is nothing but the application of the Wilsonian renormalization
group. Here the evolution parameter 7 is the rapidity of the fields which we use to dis-
criminate between classical and quantum fields. Indeed, at high energies, fields are ordered
in rapidity space therefore it is natural to use it as the evolution parameter and as factor-
ization parameter for scattering amplitudes. This logic is equal to the one adopted in the
Bjorken limit, where the fields are ordered according to their transverse momentum and the
factorization parameter j; discriminates between classical and quantum fields according
to their transverse momenta.

A feature of the BK equation (and of BFKL equation) is that it is free of ultra violet
(UV) and infra red (IR) divergences. Moreover, in the limit of vanishing dipole size unitarity
is restored. What we will observe in the evolution equations of sub-eikonal operators, is the
absence of this property which can be translated into a double log of energy contribution
of the type o In? g—; where a1 and ag are the longitudinal momenta of the fields within
the infinitesimal step in rapidity where the quantum fields live.

To find evolution equation, the first step is to separate the gluon and the quark files
in quantum and classical: A, — Aff + Af, and ¢ — P + % With this separation,
the operator, for example, Tr{ lez U;fl} will generate several terms which will turn into
Feynman diagrams through functional integration over the quantum fields. If the fields
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of the sub-eikonal corrections are classical, they will be in the shock-wave and we have
to use the eikonal quark and gluon propagators. If, instead, the fields of the sub-eikonal
operators are quantum, then they will be outside the shock-wave and will be functionally
integrated. In this case, the sub-eikonal correction will be provided by the quark and gluon
propagators with sub-eikonal corrections.

The relation we are looking for is of the type

Tr{ 01, U }" = AnK @ O™ (6.1)

where O™ is the, in principle yet unknown, operator which we will obtain after one loop
evolution. The new operator is convoluted with the kernel K which is the result of func-
tional integration. If one is able to solve the evolution equation, then we can convolute the
solution with the impact factor with suitable initial conditions. This procedure gives the
DIS structure functions and their behavior at high energy.

One of the operators we need to consider is

~ A 1 A ~ A~ 1 A
Tr{Q1,Uj} = inxTr{UmUJ} - WTr{QIUg} (6.2)

We will calculate the evolution of the L.h.s. in the appendix, while in the next section we will
consider separately the evolution of the two terms in the r.h.s. Similarly will be done for
the operator with Qs (z1). The reason we calculate the evolution equation of the r.h.s. for
the two terms will be clear when we consider diagrams with F (z1) quantum (see figures 9

and 10).
6.1 Diagrams with le and Qsm quantum

As we explained in the previous section, we have to split all field in quantum and classical.
Here we consider the case in which the operators @1, and @5, are quantum. The diagrams
are give in figure 5. Let us consider operator Tr{UyTUx}QM and diagram ba where there
are quark fields in the background. First notice that

<Tr{UJUx}Q1x>Figure 5 = Tr{UJUx}<Q1x>Figure 5 (63)

So for the moment we will consider only Q1.
As usual we indicate the quantum fields with the superscript ¢q. We have

—+o0 Zx _
<Q1m>Figure 5a — 92/ dz*/ dz:k <tr{i?1¢q(2’*, xJ_) [Z*, Zi]qu('ziv xl)}> (64)
— 0o —00
We need the quark propagator in the background of quark filed given in eq. (3.8) and get

as “+oo da o 9 “+oo Z1%
Q12)Figure 50 = 7/ f/d 2z / dzl*/ dzo
< 1‘) igure 5a ) 0 o g e .

1 ) _ 19 _ M _
<[ywiv i, CE s L) R

_ 2]1\76 Tr{UIT[oopl,zl*]ztr{ipl W@b(zl*,@_ﬁ/—}(@*,zﬁ
Ky _
x%}[zg*,—oopg]z}]. (6.5)
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Now, use

tr{py ( — A1 (1)¥ (2207 (7 — #) 1} = 2(x — 2) L tr{p, ¥ (21)P(224)} (6.6)

and arrive at
as [T®da d?z g [TO° Z1x
z/)Figure 5a — 5 _o - 5 d * d *
(Q1z)Figure 5 47r2/0 - /($_Z)2Lg/_oo 2ef dz
| TeUIU e 0 e, 21 ore 220 e 20)

_NL’I‘I«{U; [OOpl, Zl*]ztr{ipl w(zu, ZJ_)QE(ZQ*a ZJ_)}[ZQ*; _oop2]z}:| (67)

Using the definition of operators Q1 and Q1, we obtain

as  [Toda d*z
<Q1x>Figure 5a — EA Q/M

The same diagram calculated for the polarized quark operator Qs is

TH{UIU.} Qu- ;Tr{U;;@lz}} (6.8)

+o0 _
<Q51>Figure S5a = 92/ dZ* dz <tr{'7 ]l’l (Z*,:EJ_)[Z*,Zi]};@b(Z;,l‘L)D

o as /+°° da / d?z
C4n? o a ) (z—-2)%
where this time we used

tr{7°p, (¢ = 1Y) (2) 7 (F = )1} = 2(2 — 2) 10 {7°p 9 (210 (22)} - (6.10)

Now we consider diagram 5b and start again with Q1,. We have

Te{UIU.} Qs; — ;Tr{U;Q&}} (6.9)

+oo _
<Q1x>Figure 56 — 92[ dzy dz <t1“{2¢1 (2*,xL)[z*,z;]Lw(z;,xL)}) (6'11)
g da
=52 / /d22’ Tr{UT]: }tr{ ip, E¢ %?2 PyY Ej_i%%} =0

where we used tr{p, (# — ;f)J_pQW‘E’(;é —£)1L} = (v — z)itr{plpﬂ‘r’} = 0. So, we see that
operators of different parity do not mix under evolution. For operator Q5x we have, instead

+oo _
@sadrigne s = 8* [ den [ d{tr(37p, 0 e, o, 2000 L 2))
oas +°°doz d?z t
o2 /0 E/ (x—2)% iU 72} (6.12)

So, for diagrams in figure 5 we have

+od Tr{U,jUs
<T1"{UTU }Q1x>Flgure5 471'2_/ a/ I.:E{—Z)ZL}
X [Tr{U;UZ} Q1. — ﬁTr{U;Qu} (6.13)
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Figure 6. Diagrams with Q1, and Qs, quantum.

and
as  [T®da Te{U}U. }
TUTU:E xz /Figure :75/ 7/d27y
< I‘{ y }Q5 >Fg 5 472 Jo o ? (x_z)i

« [Tr{U;Uz} Qss — NiTr{U;(Q5Z N E)Y (6.14)

6.2 Diagrams with Q1, and Qs5,; quantum

The diagrams with operators Q1. and Qs, are shown in figure 6. Let us start with diagram
with quark in the background. The calculation is similar to the diagrams in the previous
section. We have

(Tr{U;rélx})Figure 6a = 92/_+Oodz*‘/_z* dsz
X(Tr{Ufloopy, 2aJatr{i py o (ze w1 )0(2L w0} ~procla))
“+o0o Zx -
= 92[ dz*[ dz, Tr{UZTtr{z'p1<¢q(z*,;UJ_)Wz(zi’xl»}} (6.15)

Now, using quark propagator in the background eq. (3.10) and performing Dirac algebra
we get

~ s [Tod d? 1 -
(Tr{U} Q12 })Figure Gazf? /0 f / @_z)i[Tr{U;Uz}leMTr{UJQu}] (6.16)

We se that after one loop we get mixing of operators Q1, and Q1.
For operator Qs, we get the same result

~ s [Tood d? 1 -
<TI"{UJQ5x}>Figure 6a — 40(?/0 ;Oé/ (HJ—Z)i [TT{UJUz}QE)Z - ]VCTI“{UJQE)Z}] (6-17)
Next diagram is 6b. Starting with Q1, we have
<Tr{U;Q~lm}>Figure 6b
+o00 Zx —
g2 [ deu| el (Te(Uloopr, 2dute (i (e 2 )0 (L 2 D)L ~procl))
“+o0 Zx _
_ g [ d. [ Az, Te{UTte (i p, (2, 200 (2 1))}
s [T0d d*z 2 ,
=l o) o MR G- A - =0 (638)

S

— 24 —



Figure 7. Diagrams with sub-eikonal operator in the shock-wave. The gray circle with a cross on
it represents the operator being treated as classical thus is situated in the red-band shock-wave.

As before, we get again no mixing between operators of different parity.
For operator Qs, we have

(Tr{U} Q52 } ) rigure 66 = 92/+oodz*/z* d2, Te{UJtr{"p (" (2, 21 ) (2L, 1)) }}
= 87T2/+ da/ Mgt {7 p1(¢ ?)Lpﬂ (# ¢) }

+o0 doy d?z
— Y =) _= T
- /O . / oo THULE) (6.19)

We get, after one loop evolution, mixing between operator Qs, and Fy.

So, we conclude that

+o0 g
<Tr{U Q10 }) Pigure 6 = 4712/ a/

Tr{UTU 1@ — Tr{UTle}} (6.20)
and
I'r 9 s [T°d &2
({0 Qaellsime s = 572/0 Ea/ (x_zz)i

X [TI‘{UJUz}QE)z — NiTr{UJ (Qs- — 2Nc]-'z)}] (6.21)

6.3 BK-type diagrams

The diagrams in figure 7 and 8 are similar to the BK diagrams in figure 2 with the only
exception that in the shock-wave there is located a sub-eikonal correction that can be
either Q1, Q1, @5, Q5 (and their adjoint conjugated) or ¢ Fj; (and in the appendix we will
consider also Q1, or Q).

As we will shortly see, the diagrams with Q1,, Q1. (and their adjoint conjugated) and
Fz, are actually different then those with @Q1,, and @5, (and their adjoint conjugated). So,
we will calculate them separately.
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6.3.1 BK-type diagrams for @1, and Qs;
The BK-type of diagram for evolution for Tr{UU,}Q1, (or Tr{UU,}Qs,) is

<Q1$Tr{UIUJ}>Figures T+ 8 = Q1m<Tr{U UT})Figures 7+ 8
—y)3

B /+ da/
_27'('2 (z—2)3(y—2)3%

x [ TH{U U TH{U.U]} — N {U,U]}] Que - (6.22)

We get the same result if we replace QQ1, with QJ5,. In the liner regime, evolution equa-
tion (6.22) gives the resummation in the LLA for the light-cone quark operator. However,
in the double log of energy approximation, where aIn?(1/zg) ~ 1 and a,In(1/xp) < 1,
contribution to the evolution equation 1, and Q5. coming from (6.22) can be neglected.

6.3.2 BK-type diagrams with Q1,, Qsz, Fu

Let us start with the real diagrams in figure 7 in which the quantum gluon (in blue) goes
through the shock-wave. The calculation is the same as the diagram for BK equation.
Considering, for example, operator Q1,, we have

+00
<Tr{QlacU })Flgure Ta — %/0 Cij/dzz UgaTr{letaUth} (;y Z) 2(:2 :)EJ)_ (6'23)
In eq. (6.23) we notice the divergence in the longitudinal momentum component é Sim-
ilarly to what we did for the evolution of the trace of two Wilson lines, we will regulate
this divergence with a rigid cut-off and performing the derivative with respect this rapidity
parameter we will obtain the evolution equation. The calculation of diagram in figure 7 is
performed by first splitting all the fields of the Lh.s. of eq. (6.23) in classical and quantum,
then considering only the terms in which operator Q%ﬁ is left classical, and contracting the
gluon quantum fields using the propagator in the background of a shock-wave given in eq.
The virtual diagram is given in figure (7b). Following similar procedure as for the real
ones we obtain

9 S > d a a
<Tr{Q1$UJ}>Figure b — _:2/ “ /d2z Ub Tr{Ql:vt UTtb} (( Z;ﬁ_z(y _x)zii (6.24)

Using the symmetry which relates the diagrams in figure 7 we can also obtain the result of

the last two i.e. diagrams in figure 7a and b. Summing all them up and working out the
color factor we have

<Tr{Q1:BU;}>Figure 7= 2<T‘r{Q1xUJ}>Figure Ta+b (625)

o +°°d04/ 9 b b ~ by 2(y—z,z2—x))
= — [ d*z 20U — 20 ) Tr{Q 1, t°U}t
=N K IO o e

s tood et el ) )
“aa ) Zf‘? Tl DL Te{Qu Uy THU.U} - N/Te QU

z—x)]

Let us consider self energy diagrams in ﬁgure 8. The result is

Tooda ~
<Tr{Qlac U }>F1gure 8a+b+c — o7 5.9 / / {L‘ — Z [ Uab U;b]Tr{tanxthJ} (626)
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Figure 8. Self-energy diagrams with sub-eikonal correction inside and outside shock-wave.

and

Qg

<Tr{Ql:c UJ}>Figure 8d+e+f — 27‘1’2

/ da /d2 20U — 2U“b]Tr{t“Q1xthT}W
(6.27)

Adding up the results for diagrams in figure 7 and 8 we have

2
~ t ' _ Qg /-‘roo da/ 9 (SU y) ab ab o byt
<TI‘{Q1;U Uy})Flgure 7+ 8 7271_2 0 704 d°z ) (y Z) [2U 2U ]Tr{t let U, }

_ o /+°°da [z Y1
212 Jo « (m—z)i(y—z)i

x [Tr{UJQM}Tr{U; U.)}— NcTr{UJQM}} (6.28)

Replacing operator le with O, é5x, and F, in eq. (6.28), we get the respective results
for diagrams in figure 7 and 8.

What should be noted in eq. (6.28) is that the unitarity property for vanishing dipole
size is absent because in this limit the term Tr{U] Tle}Tr{U 'U.} does not reduce to
N.Tr{U) 'Q1.} when z — x. This will be source of o In? 25 contributions [5].

6.4 Evolution equation with €% F;; quantum

In this section we consider the case in which the gluon operator F is quantum and, for this
reason, it will be integrated out via functional integration. The diagrams for this case are
shown in figure 9 and in figure 10.

In the Diagrams in figure 9 we take the gluon propagator with sub-eikonal correction
due to gluon field. Let us start with diagram in figure 9a. We have

Tl'{g/ dl’* OOpl,«T*]azﬁ Fz][x*y Oopl] U }>F1gure 9a

— —ig / da, / 42y (Ut U N Ao, y1) 9 F (1)) (6.29)

From (6.29), we clearly see that Fj; is now quantum and it will be integrated out. We will
perform the calculation in the axial gauge and will use the gluon propagator (B.19). For
the diagram under consideration the only terms that will survive the contraction of the
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Figure 9. Diagrams with F;; outside shock-wave. Here the gluon propagator, which represent the
quantum loop, has gluon sub-eikonal corrections. The gray circle with an x on it symbolizes the
F}; operator: it is quantum when it is on the Wilson-line and it is functionally integrated to create
the gluon propagator; it is classical when it is in the shock-wave red band.

Lorentz indexes are the ones given in &3, eq. (B.23), thus we have

+oo -
(Tr{yg dﬂﬁ* [00p1, e €7 Fij[a, —0op1]a U} Figure 9

2 a 1) a
:—zg/ da:*/ dgy*Tr{Uxt UM AL (g, y1 ) €7 F (s, 1))
A2

+00 A
= %Tr{Uxt“Uth}/ / d:z:*/ dy, €9 (0% g —9jg Yyyle~ sy
S 0

oo 3 ba
xg/ dz, [([oopl,z*]zD F|zx, —oop1])
A2

+0o 2 ’ , i ’ ba p
—2g d;z*([oopl,z*]F.[z*,z*]Ej[z*,—oopl]) e'as Tz )

2 4o Z(th z) Z(Q2,Z )
g arrtsb / da/ 2. ij / 2 /
— 7 (U, = :
o {U"U "} " d°ze (8Z A2 ——s— [ Frp—u—
+oo .k ba
Xg/ dzs [([0017172*]le Fkl[z*, _oopl]z)

too 2 / / it ba
—2g d;z*([oopl, Z*]ZF .[Z*, Z*]ZFij [Z*, —OOpl]Z) (630)

Zx

Now we consider diagram 9b. This time we need the sub-eikonal correction &4, eq. (B.24)
and obtain

Tl'{g/ dLZZ* Ooplyx*]ace Fzy[$*7 OOpl] U }>F1gure 9b
= —ig? [, [ U G ) AL e 1) )

2 da Z(lew z) i(q2,2—y)
_ Zg a brrt / / 2, ijrar 1 / 2 /
A o O Al - Tabt
{t 2t y} 0 d“ze (82 9;j diqgq——— d’ QQ 2

oo .k ab
xg dzy ([OOPLZ*]MD Fkl[z*y_oopl]z)
—00

+oo 2 / / / i ab
- 29 d;’z*([oopla Z*]ZFij [Z*, Z*]ZF 0[2*’ —OOpl]z) (631)

Zx
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In summing diagrams 9a and 9b, we observe that the term with D*Fj,; doubles and
we may use the identity

29/+Oodz* [ , ([oop1, z4) = a2, _Oopl]z)ba}

oo ba
=2g dz*ZCD ([oop1, 242 Fra[2e, —00p1]2)

—00

oo .~k ba
- 29/ dzs |:([Oop17z*]zZD Fkl[Z*,—OOpl]z)
+oo 2 i ba
—g [ e (opr, 1P [ 2 Pyl —oom])
too 2 / / i ba
—g d 2 ([oopr, 24)  Fij 2y 24) 2 F g |26, —00D1] ) (6.32)

where in the first step we substituted the covariant derivative acting on gauge links and
which is defined in egs. (A.7) and (A.11). Furthermore, we observe that the operator
P = p' + gA? can be traded with p’ because, as usual in these cases, the transverse gauge
field is zero at the points outside the shock-wave.

So, using (6.32), the sum of diagrams 9a and 9b is

Tl'{g/ d.’L'* Ooplvx*]xe Ej[w*a_oopl] U }>F1gure 9a+b
+o0 P3
= %Tr{Uxt“Uth}/ / dx*/ du, € —Jjg Wzyle™ s us
XQQ/ dz.[P*, ([cop1, 2] Fkl[z*,—oopﬂ) ]6 as T |w )
b ][ l . l
——ﬂTr{th“UJt }/0 Z/dQZEJ(Zqugj — 925 9;)

ei(qlvy_z) ei(q27z_$)
X/dquqz/dqq?z(qlf —qb)

1L a5

b
XQQ/ dZ* Oopla Z*]z Fi [Z*; _Oopl]z) ‘. (633)

Performing the Fourier transform we arrive at
Tr{g/ dx, | OOplax*]xE EJ(«T*7$L)[«T*7 oop1)a U }>F1gure 9a+b

+00 (] +oo .. o
= ——Tr{thaUTtb}/ —a/dQZ 2g/ dz ([oop1, z4]» €7 Fij| 2, —oopl]z)b

iy —2) i(z—x) eilar,y—2)
. [27r(y —2)22m(z—a)2 /dﬂ‘hi 0% (2 — ) (6.34)

a7,

where we used € (i go; Fij — i qoj Fri) (¢F — ¢§) = —i €9 Fjj(qa, q1 — q2) 1

At this point it should be clear why we performed all this massaging: the sum of
diagrams 9a and 9b gave back the same operator we started with, namely F(z,) but in
the adjoint representation.
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Let us consider the self energy diagrams in figure 9c and 9d. Integrating over the
quantum field we have

Tl“{g/ dl‘* OOpl, x*]x 6 Fz] [.%'*, Oopl]x UZT}>Figure 9c+d (635)

9 +oo -~
= ngE[ Ty /0 dx, Tr{taUIth;r} e?(0ig] — 9597 ) (A(L, z)AY (zy,21))

Repeating similar steps done for the real ones we arrive at

Tr{g/ d[B* OOpl,.%'*]z€ Fz][-%'*, Oopl]a: U2}>Figure 9ctd

i +oda .o _ etlar,z—z) eilaz,2—)
= i Tr{taUxthJ}/ — € (iqai g7 — iqa; gf)/sz /dqlﬁ /d’quf
27 0o« i 9L

ng/ dZ* [ P, Z*]ZZD’LE] [2*7 _Oopl]z)ab

2

+o0
—g;/ A2, ([oopt, 2L). F'y[2L, 2] 2 Fin |24, —00p1]2)"
Zx

b

—gg JrOoalz ([oop1, 2] Fim2L, 24 2 Fl,[z*,—oopl]z)ab} (6.36)

Zx

and using again the identity (6.32) we obtain
Tr{g/ d.l‘* OOpla $*]x 5 Fz] [x*a _Oopl] UJ}>Figure 9c+d
+00 +o0
= ——Tr{Uxt“UTtb}/ aa /d2Z 29/ dzy ([00p1, 24] 2 Fral 2+, —oopl]z)ba
—o0

a1,2=2) lazz=z) L Nk K
x / / 42y €7 (iga g} — iga; 1) (b — ). (6.37)

We can now perform the Fourier transform and add to it the result of the real diagrams
and arrive at

<Tr{fx UJ})Figure 9 (638)
as [Tda [ o arrisby ba
=2/ E/d 2 Te{U,t Ut} P

™

_ _ 1 i(q1,y—2) _ gilq1,2—2)
X( (z »22‘72 y)2 " S +4772/a‘2q1€ _ € 53 (z — 2)
(y—2)i(z—2)] (z—2)] 4L

where we defined the adjoint representation operator

ab

F(x,) =ig= / dzi ([0op1, 24)x €9 Fyj (24, 21 ) [24, —00p1]2) (6.39)

Taking into consideration also quarks in the external field we get diagrams represented
in figure 10. The gluon propagator with quarks in the external field given in eq. (B.25) has
been calculated in ref. [46].
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Figure 10. Diagrams with Fj; outside shock-wave. Here the gluon propagator, which represent
the quantum loop, has quark sub-eikonal corrections.

We start with diagram in figure 10a and 10b

+oo
<TI'{g d$* [Oopla x*]w 6 FZ] [.%'*, _Oopl] U }>F1gure 10a+b
—00

p 0 +oo fb +o0 0 9 b
= —ig {/ dx ; d y* Tr{U, taU t }—l—/o dl'*/ dgy* Tr{t*U,t UJ}

X (A (Ynry1) e”ﬂjm:*, z1)) (6.40)

Using propagator (B.25) and performing simple spinor algebra we get the result for dia-
grams 10a and 10b

+o0 .
<TI‘{g dl'* [Oopla x*]x EZ]F"L']' (l'*, fL'J_)[SL'*, _oopl]w UJ})Figure 10 a+b

—00

b Z1%
_4—Tr{U t“UTt }/ — dzl*/ dZQ*/d2Z

d2q,d? A _
X g [/M 2(6114/—»'%)-H(qz,z—fc)w(zl*7ZL)(@X@1 —|—i(q1,qQ)75)p1
a7 145,

X [214, 00p1 ]2 U, t* [—oop1, 224)» ¥ (224, 21 ) + cC.C. (6.41)
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Notice that we used the propagator (B.25) in the limit of #* — 400 and y™ — —o0 so
that the gauge link gets [z, y 7], — U(z1). After Fourier transform we have

<TI‘{]: UT}>Figure 10a+b

:_—T{Ut“UTtb}/ do‘/cﬁ/ dzl*/ dza,

o[ 7 F-Hx(EZ-9) . (z—z2-97"\.
X g [1/1(21*,,21_)(@_2)%_@_2)3_ +Z(l‘—z)3_(y—z)i) ip,

X [21*, Oopl]z thz ¢ [—OOPL 22*],2 w(ZQ*, ZJ_)

; F-x(Z-9) . (z—zz2-y\.
+?/J(z2*,zL)(($ w22 +z($ e -y 2)2¢> ip,

X [Z2*7 _Oopl]z taU;L tb [OOpla zl*]z ¢(21*7 ZJ_) (642)

where we used again the two dimensional vector product as & x ¢ = € z;y;.

Let us consider self energy diagrams in figure 10c and 10d. Proceeding in a similar
way we obtain

Tr{g/ da, [oopy, 4], €7 Fz](a:*,wl)[x*,—oopﬂ Ul o }) Figure 10 e+d
:———T{U taUTtb}/ da/ / dzl*/ dzos
xg° {%Z)(Zl*, 21)i°p, (214, 00p1 ] U % [—00p1, 204] (224, 21 )
(20, 72) 9%, Laes —oomi ) UL oopr, s ¥ 20| (649

Let us define the following quark parity odd operators

Q8(z1) (6.44)
—g/ le*/ 20214, 21) VP, [210, 00p1] t*U 1 [—00py, 224]2 (225, 21) |
Q¥ (z) (6.45)

—g/ dm/ dz2.p (220, 217 P, [220, —00p1 ]2 PUT 1 [oopy, 214] 2 (210, 21)
and parity even operators

Qf’(z1) (6.46)
+oo Z1x% _
= 92/ dzl*/ d22*¢(z1*, ZJ_) Zpl [21*7 Oopl]z taUz tb [_Oopla ZZ*]z ¢(22*, ZJ_) s
Q™ (21) (6.47)

+o0 21x _
= —92/ le*/ 221 (220, 21) i P[220, —00p1]= UL % [00p1, 214)2 (214, 21) -
—00 —o0
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As usual, we will use the short-hand notation Qi, = Qi(z,). Summing diagrams of
figure 10 and using definitions (6.44)—(6.47) we have

(F—2)x (77
r—2)7(y—2)

_((x(x—z,z—y)Q +( 12) ><Qg§+gggT)1 (648)

—2)i(y—2)1

Qs a T do
<Tr{"r:(: UJ}>Figure 10 = _ﬁ Tl"{Uxt U?:,rtb} A E/dQZ [(

The interesting thing to notice in result (6.48) is the appearance of operator Q‘fg which
although the operator itself is parity even it is multiplied by the (Z — 2) x (2 — ¥) so parity
is preserved.

We can now sum up diagrams in figure 9 and 10 and obtain

<Tr{’/—..$ UJ}>Figures 9+ 10 (649)
_ Qs arrtpy [T%da [ o | (@=2)X(Z—Y) (b pat
= 2 TI‘{Uxt Uyt } /0 o /d Z{ (.CC — Z)i(y — Z)i (le le )
_< (l’ — 22— y)

(

T — z)i(y — 2)2L

1 a aof a
+ (x_z)i>(Q§Z+ Qha' 4 i)
ei(ql,y—z) o ei(ql,:c—z)

—4772/d2q1 7 53 (z — :c)]:ga} .
11

The first thing to notice in eq. (6.49) is that diagrams 9 and 10 have generated, after
one loop evolution, operators Q% (x ), Q% (x ), and F(x ) which are not present in the
OPE (4.36). This means that, either we have to find the evolution of this new operators
or try to reduce them to the operators we started with i.e F(z), Q1(x,) and Qs(z,).
Performing some color algebra we can reduce the r.h.s. of eq. (6.49) in the fundamental
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T

Figure 11. Diagrams for quark-to-gluon propagator.

representation

<Tr{f1‘ UT}>Figures 9+ 10

toda { 7 —Z)x(Z—7)
—2)1(y—2)1

+E (Tr{UnyTleUZT} + T {Uf U, U Qra} = Te{U,USU.Q1L} - o {Uf U, Q1. U.} )

17 (z—2,2-y) 1
2 [(w—z)i(y—z)i RS

X [Tr{UJ (@s:—2F.) Y Te{UI UL} + Te{U, (QL, —2F) y T (U] U}

T {Uf Q1. Y e {UIU,} - To{U, Q) e {US U..}

27r2

o THOTRH (@l - Q)| -

1 - ~ _ -
_E(Tr{UxUJUngZ}+Tr{UJ,UngZUZ} + T {U, U] Q5:U1} + Te{US U UT Q5. })

+%Tr{U;Ux} (QE)Z + ng)]

i(q1,y—2z) _ pi(q1,x—2)
+4W2/d2q1 c 5 c 6 (z—x)
iy
x [Tr{UxUZT}Tr{UJ}"Z VT {UIUN T U, F }] } (6.50)

So, writing the evolution equation for Tr{F, UJ} in the fundamental representation, we
eliminated the operators F “b, le, Qgg and their adjoint conjugated, in favor of operators
Foy, Oz, Qsa, éu, (525w and their adjoint conjugated, defined in eqs. (4.18)—(4.25), that
are present in the OPE (4.36) and (4.39).

From eq. (6.50) it should be clear why we decided to calculate the diagrams using

operators lea Q5x7 le, Q5Ia instead of le and Q5m-

6.5 Diagrams with quark-to-gluon propagator

The diagrams we have calculated until now were obtained using the quark and gluon
propagators originally calculated in reference [46] and summarized in appendix B.

In this section we are going to calculate the one-loop correction to the quark operators
le, Q5x, le, and Q5w defined in egs. (4.18)-4.25 using the quark-to-gluon propagator
shown in figure 11.

6.5.1 Quark-to-gluon propagator

First, let us calculate the quark-to-gluon propagator. We have two contributions rep-
resented in diagrams in figure 11. As usual, the quantum fields are indicated with the
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superscript (or subscript) ¢ while the classical ones are indicated with the superscript (or
subscript) ¢l although the superscript (or subscript) ¢l will be eventually dropped.

We need the following quark propagators in the eikonal approximation

(¥(x)v(y))
+oog 0 , 1
= /0 2—20(% - y*) - _OoTse(y* - LU*):| efza(x.fy.)£

2 2

—ifly w2 i 2Ly
X (L |e " as *([w*,y*]p%p—g d;w*[:v*,w*]Fi.[w*,y*h PQZI’)E as 7
Y

yu) (6.51)

and
(W(2)9(y))
_ tod o 0 da —i(Te—Ye) 1
= /0 %Q(x* — Ys) — 70050(?;* — x*)}e y —

52
P
—L

Ly, (A T2 ii
X <I'J_’e o (prW[x*, y*] - g/ dgw*??z’Y [x*a w*]Fi.[w*, y*])e as Y ‘yl_> . (652)
Y

Notice that we are not using the usual eikonal quark propagator in the shock-wave which has
structure free propagator-shock-wave-free propagator as given in the eikonal term of quark
propagator in eq. (B.12). The transition from the eikonal propagators (6.51) and (6.52)
to the eikonal part of the quark propagator (B.12) is explained ino ref. [46]. Here we just
mention that with the help of egs. (A.6), (A.7), and (A.11), we can show that the work
propagators (6.52), and (6.51) can easily be put in the usual form

i _ 1 +oo@ . — _ 0 da o e~ io(Te—ye)
(@l ol = [/0 0o — )~ | 5500 *>]

S 202 o202
) 52
—ip—J-x* ipii-y*
x(z e w T Pz )pUs(2rlpe eV yL) . (6.53)

However, as we will soon see, to calculate diagrams in figure 11 we will need the form of
the quark propagator given in (6.52), and (6.51).

We also need the eikonal gluon propagator in the axial gauge

+od o 0 da ,
Al Ab _ _/ o . — s / o . — T, —i(Te—Ye) 54
(AL (@) AL () A l A AC DRl v Ut )1 e (6.54)
—iix 2P 2 P2v iﬁ a
X<xl_’e O‘LS ’ (55 - g ;Mp§> [x*,y*] (gﬁu - gpi ; )e Déy*|yl_> b
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Using quark propagator (6.52) and gluon propagator (6.54), we can calculate the first
diagram for the quark-to-gluon propagator

(AL (@)e(y)) = (AR (2)0(y)ig / d* 29 (2) A (2)99(2))

ciofa [ [ i

~2
.p v P ab T
x(x le™" a5 T <5§p2“p§> [x*,z*]<g@ p§—2 >e as # |z ) b l(z)tb
tod o 0 da , 1
- _ —io(ze—Ye)
. /0 2a Oz =y) - o0 20 20 0 )}e as

2

—izkz "2 i li
x{esle *(Wz?[z*,y*]—g [ Bl ) 5 )
Yx

= ig . dsz*[—/o W@(l‘*—y*)+/_w4a29(y*—x*)}e (ze—y )/d z

—iix* 1 2])1%])2;; ab,7.cl b v
et w e (g 2B |2 Yoy 200 (21 )0 [

2

x(z1](ap, +p, e eV [y ) +O(A2) (6.55)

where we used p,¢ = 1;% =O0(A?) and

(5;: - pz;;f”) (20, 2027 = (giu - “’;f}”) [0, 2J%0(z)77 + O (6.56)

and

p2up Pav \ ~
<5Z - V)[I*,Z*]“b (gau —pgy>¢(2*)7”
DPx D«

= (g~ A Y o 55 a0 + OO (6.57)

We remind the reader that the parameter A is the large boost-parameter which discrim-
inates between the components of the fields (see appendix A for details and ref. [46]).
Similarly, we have

(W(y)Au(@)) = (W(y) AL (x) ig / d'z () AT (2)9 ! (2))

. Y= 2 +Ood—04 0 d—a —ia(ye—

*
2

2 —z‘p—ly* vyb,cl ba
X [ d°z{y,|e "as (ap1+pL)|zL>[y*,z*]zfy ) (24, 21 ) 24, T4

2
el (o 2P o) O (6:58)

S o
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6.5.2 Operators definition

Before we start the calculation of the diagrams we defined operators that will be useful for
the subsequent results. So, we define

+oo _
Xl(l'LvyL) = _92/ dz*dw*w(z*,yL)[z*, _Oopl]yipl [Ooplaw*]xi/)(w*,ll) 5 (659)
+0c0 _
XlT(-/EJ_:yJ_) = 92 dzydws w(w*aeTJ_)[w*,OOPI]xipl [—Ooplaz*]yl/}(z*,yﬂ ) (660)

—0o0

+oo _
Xs(xy,yL) = _92/ Az dw (24, Y1) 25 —OOpl]y ’75}% [oopt, W]z (ws, z1),  (6.61)

+oo _
Xg(l‘b yJ_) = _92 dz*dw*w(w*, xj_)[w*a Oopl}x ’YSpl [_Ooph Z*]y"l/J(Z*, yJ_) . (662)

— 00

Operators (6.59)—(6.62) are not related, to the author’s knowledge to any known Transverse
Momentum Distributions (TMD).
We also define

+oo

/HT('TLvyL) = _92/ Az dw ¢(w*ayL)[W*7OOP1]y ipl [Ooplvz*]xqp(z*axi)’ (663)
400 _

H;(ﬂﬂ_,yj_) = _92/ dz*dw* w(w*vyJ_)[WmOOpl]y'YsZﬁl [OOpl,Z*]x'lb(Z*,xJ_), (664)
+oo _

Hi(r1,y1) = —92[ dzxdw, th(we, y1 ) [ws, —oopily i [—oop1, zulath (2, w1),  (6.65)

+00 _
Hg(xl_7yl_) = _92/ dZ*dw* TZJ(W*vyJ_)[W*,_OOpl]y ’75p1 [_oop17z*]xw(z*uxJ_)7 (666)

where the superscripts + and — remind that the semi-infinite Wilson lines point to +ocop;
and —oop; respectively. We will write subsequent results in terms of the above defined

operators.

6.5.3 Quark-to-gluon diagrams for Q1, and Qs

Let us start with the calculation for operators le and Q5I. Diagram 12a is
<Tr{UJle}>Figure 12a

— 92/+Oodz /Z* dz, Tr{U}
* * y
[T 2 c - ,
X9 d;x* A(Z(.T*, {EJ_)[OOpl, Z*]xtr{¢ l(z*a UUJ_)?bq(Zi, .%'J_)ZZZjl}[Z;, —oop1]z}

Zx
+o0 Zx +oo T +oo Fo
- —94/ dz*/ dzi/ dx*/ dw*/ 53
—00 —00 Zx 2} 0 S“Q

xTr{UJt“ [oop1, 24]a tr{wd(z*, x1)

—iiz ab, 7c v iiz’ .
(@1 | s py [, wa] PP (wa) VY [we, 2] (op, + )€ as *|~’UL>Z}7’1}} (6.67)

where we used propagator (6.55) and used the fact that the classical shock-wave field has
line support only within the interval [—e,,€,] (with e, > 0), and that, we are working in
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Figure 12. Quark-to-gluon diagrams for él(au_) and és (z1) operators.

a gauge in which the gauge link made of pure gauge can be set to 1. So, in the limit of
ex — 0, the line support of the quantum fields, z, and 2, (with the condition that z, > 27)
extend up to 0, and, on the other hand, the line support of the classical field can be extend
to infinity, i.e. we extend the limit of integration of w™ to ] — oo, 00[ and the gauge link

becomes semi-infinite Wilson lines. Thus,

B +o0 0 +o0 +oo do
4 2
<TI'{UJQ1:E}>Figure 12a = —9 /—oo dz*dw*/_oodzi/o dx*/g s2aB /d :

X Tr{UJt“ [0op1, Z4]w tr{ (2, 21 )

52
P "
x(zLle™"as ™ py |21 ) [oopr, wil S0 (wi, 20 )]

X, —oopr (el (apy +p e e L) ip )} (6.68)

Next, we perform the integration over the light-cone coordinates z'* and z™, and the

Fourier transform

“+o00o +ood—
dz*dw*/ Fa/dQZ Tr{UJt“[oopl,z*}x (6.69)
0

(DL B )

e e, ) ooy w20 o, 21, —oam]- f—E E P

4
~ g
<TT{UJQ1:E}>Figure 12a = 4771_2/

—0o0

After color and Dirac algebra we arrive at

1
FCTr{UJle} — Te{U.UJ YHT,.

~ as [T®da d?z
T UT T igure 12a — S/ /
(Tr{U}) Q12 } ) Figure 12 w2k ol wo22
(6.70)
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From eq. (6.69), substituting ip, with 75]/'51 we get

Tr{UTX5m} Tr{U, UT}”HSW
(6.71)

Let us turn to diagram in figure 12b and perform similar steps as the ones we performed
for 12a

~ +o0 dov d?z
T UT x igure 12a — as/ /
(Tr{U}) Qs } ) Figure 12 w2 o) @

<Tr{UTQ11}>Figure 12b (6.72)

——zg/ / dz, Tr{UT

+oo _
<2 [ e Aoy oom, sl {ip (e 2B 1) Hel ool )

_g/ / dz/ / / e Tr{UJta[oopl,z*]x

A2
p - iDL
xtr{zpl (za, ) {yL|e " as T py, [oopl,w*]“bzp(w*)tbfyi[w*,—oopﬂpLelaszﬂxJ_)}}

Now we perform the integration over the light-cone variable z'* and z* (taking into con-
sideration the observations done for diagram 12a) and get

~ +oodo [T 5 y Z)z Z) g Y
(Tr{U} Q12 })Figure 126 = ~5.2 / / dz*dw*/d G )J g*Tr{U}t
x[oop1, Zulatr{y' Vi P, (24, 1 )9 (W*»Zl)}[w*,oopl J:4"U-}(6.73)

Performing color and Dirac algebra we obtain

~ Tood o
f . — s 2
<Tr{UyQ1:v}>F1gure 126 — ) /0 o d°z (674)

(r—2,2—1y) 1
x{ CETLICEDT (Tr{U UiyHT,, — NCTr{UyTle}>

2
1
CE-Dx T (g ot Ll
e (e - ) )

From (6.73), substituting ip, with 75;51 we have

~ as [T®da 9
<Tr{UJQ5x}>Figure 126 = _47T2 /0 F/d z (6.75)

(x—z,2—y) 1

= (Tr{U Ui, T (U]} ) } |
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The calculation for diagrams 12c and 12d is the same as the previous two ones, so we may
write

(Tr{U} Q12 })Figure 120 = igg/%odz*/z* dzi/zg dgx*Tr{UJ [0op1, 2]z
X tr {4 (2, L )P (2h w1 )i, 2k, —00pi]uAe (s, 1) }
_ /+Oodz /+OO e i x*/z*d w*/mﬁ;/dzz
xmmtr{%we 5 (o ) i 1 0 o

X (=L pe s L (2, a1) Y 2L —oopi]t?)

o /+°°da/ d?z
dArt)y o) (3—-2)%

1
Tr{UyTUZ}%m—MTr{UyTXm}] (6.76)
For Qg)x we have

~ +oo doy
<Tr{UJQ5x}>Figure 12¢ — 471'2 / / [TI‘{U U }Hf)zx Tr{UJXS,zx}] .
(6.77)
Finally, diagram 12d is

~ as [T®da
<Tr{UJQ1x}>Figure 12d — _7/ - d22 (678)

(x—z,2—1y) . 1
x{ e ; (Tr{UZUJ}Hlm — NCTr{UJXlzw}>

G -)
8‘: j)){zz(y* x)ij (Tr{U USYH;,, — ]\1]CTr{UJX5zx}>} .
For @5, we have
(Tr{UJ Q5o }pigure 124 = — 5 / Tda / (6.79)

{ TEEArEr A G AUCH)
(F-9x
9

(y—2)
(- -

(z x)i

1
(Tr{UZU;}H;m - NTr{U;xm})} .
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We now may sum up diagrams in figure 12. Starting with Qp,, we sum
egs. (6.70), (6.74), (6.76), and (6.78) we have

<Tr{UTQ1z}>Figure 12

_ as/+ da/dQ{

(r—2,2—1y)

NCEDHCED

(f ) X (3/ ) 1

1
Tr{U Ul (Hm + Hl‘m) - FTY{UJ (X1zz + Xm)}}

1
TI‘{U U }(Hlxz + Hl_z:r) - ﬁTr{UJ(Xlxz + Xlza})}]

The sum of diagrams in figure 12 with Qs, is obtained summing
egs. (6.71), (6.75), (6.77), and (6.79). So, we have

<Tr{UJQ5z}>Figure 12
as  [T®da [ , 1
-, T/ Z{@_z)

4 (z—22-y) [TI"{U UT}(H5mz +H5—zz) B ]\lchr{UJ (szz * XSZI)}H

1
TI‘{U UT} (HSxZ + ,ngz) - FCTI‘{UJ (X5$Z + X5Z$)}:|

(y—2)3(z—2)
(F-2) x (F-2) ; N
e @l[T{U U (M. - %1zx)+NCT{Uy(%m lez)}”. (6.81)

6.5.4 Quark-to-gluon diagrams for le and st

Now we turn our attention to the diagrams with the quark-to-gluon propagator for opera-
tors T‘r{UxUJ}QM and Tr{f]zf];f}QM given in figure 13. Note that, these type of diagrams
will, after one loop, make the dipole operator Tr{UIUJ} talk with operator Q1 (or Q5z)

Let us start with the calculation of the first diagram, 13a. The procedure is similar to
the one adopted in the previous section

92 [t Zx o0
(Tr{UU}} Q1) Figure 130 = ig3g / dz, / dz! / da, Te{t"U, U} } (6.82)
—00 —0o0 0
xTr{ [z, z*]xtr{iplz/)d(z*, 2 (AL (2, 2 )P (2L, 21 )} )

Using propagator (6.55) we have

(Tr{UUf} Q1) Figure 130 = —9 /+<><> / dZ/ / dw*/+oo 5 Tr{t"U. LUS

N
/dzzTr{ —o0p1, Zalztr{ip, (2w ) (@ e ws s pl| 2, (6.83)

~2
_ Pl
x [0op1, wa] 229 (wa, 21 )P [wa, —00p1] (2L [P €7 a5 [z 1)}} .
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Figure 13. Quark-to-gluon diagrams for Ql(zl) and Qs (z1) operators.

Next step is again to recognize the range of the quantum and classical fields as we did for
diagram in figure 12. So, we have

<Tr{U£t UJ}le>Figure 13a

+o00 +o00 2
— _ﬁ/ dong/ dz*dw*/dzz
272 Jo a S (x—2)]

xTr{t“UxUJ}Tr{ [—oop1, zilatr{ip (2, 71 ) (we, 21 ) }Hws, cop1]°U, }

+00 g +o0 d?
- _ﬂ/ a2 dz*dw*/izz
22 )y o’ Jox (x—2)]

X ETr{UIUJUZ[—oopl, z*]xtr{iplw(z*, z 1 )p(wy, 21 ) Hws, 0op1] }

zjlchr{UnyT}Tr{[—oopl, Zlatr{ip ¢ (2e, 1 ) (W, 21 ) Hews, —oopl]z}} . (6.84)

Using definition of operators (6.59)—(6.62) and (6.63)—(6.66) we arrive at

« +0 doy d?z
T [’-’IULT Q x/Figur a : / / —
(Tr{UaUy }Cra) wigure 13 4o o) (z—2)3

1 _
X {Tr{UmUyTUzszx} + FCTr{UmUyT}HW . (6.85)
Substituting ip, with 'y5p1 we get

as [T®da d?z
T T I x)Figure 13a — _78/ 7-/ o N9
(Te{UzUy } Qs )Figure 13 = ol G

1
x{Tr{UxUJUZXQZI}—NTr{UxUJ}’HMZ . (6.86)
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Similarly, for diagram 13b we have

(Tr{U, UT}le)Figure 13b

o [ i [

xTr{UmUJta}Tr{ 2, 24] tr{zplzbd(z*, I'J_)<Aq’a($*7 y )l (zh,x 1))}
+o0 Zx +o00 +o00
:g4/ dz*/ dz;/ / dw*/ Tr{U UW}/CF
—00 —00 0

CTe{[2], 2t (59 e 2 ) e 21 s 0] 1)

2,
X0y [wn, 2] (2L |p €' |z 1)} ) - (6.87)

After Fourier transform and integration over the light-cone coordinates we have

s +oo oo
(Tr{U, U} Q1) Figure 136 = — a g2/ dz*dw*/ @ — Tr{U, UTt“ /d2
Y 22 —00 0

xTr{ [—oop1, z*]xtr{iplz/)(z*, :EL)H[oopl, Wi (wy, 21 )

}_

T )
o on, —sopils I —Ey hh sy

z—2)]

Performing color and Dirac algebra we obtain

<’I‘I‘{UxUJ}Q1x>Figure 136 — 40’;( \/+ d; dQZ (689)
+§f— ; - ny ))(T (VUV} — B0 }HW)}-

For Q5(z, ) we have
<TI'{U$UJ}Q5:B>Figure 136 — /Jr dj /d2 (690)
Ef j) (Jf(y ) ) (TI“{U UTU 129&} + 7TT{U U }Hlxz>} :
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Diagram in figure 13c is

<T1"{U U }le Figure 13¢ (6.91)
0 oo d—a aprt
——g/ dzdw*/ d*/dw*/ Tr{UtU}
Wi 0
2 . _iiz v b ba
X/d zTr tr{zpl(xﬂe asZp 21 ) [oopr, Wil AT Y (Way 21) (Wi Tal

2
x<zup1eﬂm |xL><zMxL>v;¢mpﬂx}}

a5 [Teda d*z tr7

xTr{t“ —oopl,w*} tr{zpl (w*,ZJ_)QZ(Zi,xJ_)}[Z;,OOpl 12U}

/+Oo do /
47r

For operator Q)s, we have

Tr{U Uju ) + —Tr{UTU YH-

a T2 day d?z
T T f x/Figure 13¢ — _78/ 7\/7
< I‘{U Uz}Q5 >Fg 13 472 .%' — i

{Tr{U UU.XL, ) — —Tr{UTU }’H5Z4 . (6.92)

Last diagram of this set of diagrams is 13c. The steps we have to perform to calculate
this diagram are again the same as the ones performed above. We have

<TI‘{U U }le Figure 13d
+oo —+00
—g/ dz/ dw*/ / dm/

/d2ZTI‘{ (2L, 24] tr{zpl@ﬂe as p |20 ) [2s Wl Y 8000 (Wi 21 ) [, )22

Tr{U U}

Yib(2h,z1)}} (6.93)
Fourier transform and integration over the longitudinal coordinates give

<Tr{U$UJ}Q1x>Figure 13d
+00 (] +o0

— o | S e dw*/dz (= 2)ilz =9 gy 7177, 0y
0 —

272 « (z—2)3(z—y)?
X Te{t*[—oopr, wiltr{ip V7  P(ws, 21 )P(2L, w1 et copilaUs ). (6.94)

Color and Dirac algebra give

<Tr{Ua:UT}Q1m>Figure 13d
_ s [Toda (x—22-y)1
_47f2/ /dg{x—z) 2(z-y)?
E-Ax(F-)

(z—2)3(z —y)1

2
><(Z¢|pz%6iaz*

1
T{U.UJUXL,.} — NCT&"{UJU;E}H;ZI] } . (6.95)
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With @5, we have

<TI‘{ Uz UT }Q5z>Figure 13d

B 47'['2 /+ da/ { $_Z ?Z y?)/J)_2 o {U U U 5IZ} B 7TI‘{U U }HE)zx
+Eaz ;X(Z( y) Tr{U.UjUs X 1xz}+—Tr{UTU VM, } (6.96)

Let us sum up diagrams in figure 13. Summing (6.85), (6.89), (6.91), and (6.95) we
have

<Tr{Ua:UyT}Qla:>Figure 13
s [Td 1
= %/ 704/ d?z 5
472 Jy « (x —2)1

+FTH{ULUS U} + —Tr{U U (i + M) | +

T {U,UjU. X, }

(x—z,2—y)L
(y— )(w 2)7

{Tr{U Ulv.xl, ) + T {UUf UL+ —Tr{U U (Mo +His)

(T —2) x (§ - %)

e T{U,UU. XL, } — To{U.Uj U XL, }

_NiTr{UIUJ} (Moo — Hir)

} . (6.97)

Summing, instead, (6.86), (6.90), (6.92), and (6.96) we have

<Tr{UmUJ}Q5x>Figure 13
g [T da/ 9 1
=—— — [ dz2{ ———
471'2/() a - (z—2)%

—|—TI‘{U UTU 5xz} - 7TY{UTU }(HE):J:Z + H5Z$)

T{U,UU. XL, )}

(x—2z,2—y)L
(y—2)i(z—2)7

|:TI‘{U UTU SZ:E + TI‘{U UTU ngz} - 7TI‘{U UT}(HE)xz + Hf)zz)
(@—2) x (F-2) trr oyt trr pt
T{U.UUX],.} - T{U U U X,
(y _ Z)i(ﬂ? - Z)J_ { 1 } { 1 }
o Tr{U U (M, — le)] } . (6.98)

7 Summary of evolution equations

In this section we summarize the evolution equations we have calculated. As already
discussed in the previous sections, the operators of which we want to find the evolution
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equations are the ones proportional to the impact factors. The operator proportional to
the impact factor Z}" is

~ ~ 1 TN N 1 N
Tr{01.U}} = iTY{UJUx}le — WT}C{UJQM} (7.1)
(&
The operator proportional to the impact factor ZE” is, for flavor singlet,

Tr{(Q522 + ﬁZQ)UL} + Tr{(Q5Z2 + ]};LQ)UA}
= Tr{Ule Uz, } Qs + Tr{U, Uz2}Q;zz

1 ~ 2 N 1 ~ 2 ~
_FTY{UL (Q5z2 - 2Nc-7:z2)} - FTI"{UQ (ngQ - 2Nc]'jz)} (7.2)

and for flavor non-singlet case
TI‘{ Q5Z2 U; } + Tl”{ Q5Z2 ﬁzl }
PPN A Ao A 1
= Tr{U,; Uzz}Q522 + Tr{UZl UZQ}Q;I)ZQ - FTIH{ Q522} 7T1"{UZ1 Q522} (7'3)

The evolution equations that we are going to collect in this sections are not strictly

speaking evolution equations of the type %O = K ® O like the BK equation (2.20). The
d2

=

for the double log contributions peculiar of the polarized structure functions at small-xp

reason lies in the fact that there are divergences of the type

which are responsible

and of the unpolarized quark structure functions as well. In this work we limit ourself to
calculate all the diagrams at one loop level, and properly analyze the double log of energy
contributions in a separate publication. Actually, in appendix F , eq. (F.13), we obtain the
double log of energy evolution equation which agree with the one calculated in refs. [5, 7, §],
but as we will argue in the conclusions, the evolution equations will differ when written in
terms of the operators 05, and Q5x.

7.1 Qi and Q1 operators

Here we collect the evolution equations for Q15 and Q1.
Summing (6.13), (6.22), and (6.97) we have

(Tr{U} U, }Q12)

L

(x—2)3(y— Z)i

Te{UIU.} Q. — TY{UTQLZ}}

_l’_

Tr{U, U} T {U.Uf} = NTe{U, U} }]

1
N T {UUU. X} + Te{U U U XY + —Tr{U U (Mi. + M)
xr —Zz
(“ e UL + UL
y— A

GRS Ut
(y—2)1i-271

1 _
~Te{U.UJU XL, } — FT&"{UwUJ}(HW - H5zx)
C

TI“{U UTU 5zx}

2 (7.0

v Tr{U U (i, + i) | +

— 46 —



Summing egs. (6.20), (6.28), (6.80)

(Tr{U}Q1z})

« 0 doy 1
_ 8 = | g2 -
4772/0 a/ Z{(az—z)2l

TI'{UZUJ}(QM - 1ajz le:{:)

1 ~
—|—ETI'{UJ (Xlxz + Xlza} - le)}:|

(x—2z,2—1y)

1
TI‘{U UT}(HL?:Z + Hl_zx) - FTY{UJ (XLTZ + X12$)}:|

_ 1
Tr{UZUJ}(HSZ:E 7‘[512) + FTY{UJ <X5.1,’Z - X5z$)}:|

oy y)_J_ (Tr{UZUJ}Tr{Ulél :Jc} - NCTT{UJQI :v}) } . (75)

For operator Qi(x,), instead, we have to sum (6.28) (with Q(x,) replaced by
Q1(z1)), (F.8), and (F.22) and get

(Tr{ Q1 UJ}>
_ s [T®da o J1 1 t S i
- [T 2{2 e (Tr{Ulex}Tr{UyUx} NCTr{leUy}>

Te-lw-22

1] (x—2z,2—y 1
- {( : )2 t o Z)i] [Tr{UnyTszfw} + Te{U.Uf U X, }

_ 2
(z -y 2(Tr{UjQM}Tr{U;UZ}—NcTr{U;QM})

dl(x—2)7y—2)71
+]$C (T {Uf U} (M. + Hisy) + TH{US UL (ML, + M)
_iz (Tr{UZUyT UL+ Tr{UxUJUzXLz})]
ig i (y( )) Te{U.UjU XL, } = Te{U,UJU. XL, }
+J\1[C (m YL, — M) + Te{US UL (M5, — ’H?m))
Ni(Tr{U UlU.XLL, )} - T {ULUU. EW})] } (7.6)

7.2 Qsz, Qsz, and F, operators: flavor singlet

Here we collect the evolution equations for operators Qsy, Qse, and F, in the flavor singlet

case.
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Summing (6.14), (6.22) (with @; replaced by @s), and (6.98) we obtain

(HHﬂUAQM>

e THUIU.) Qs — - Te{U} (G: — 2N}

{Tr{UU}

2@ x(x - )
(z —z)i(y i/ ;)i [TT{U:EU!}TY{UZUJ} — NcTr{UzUyT}}

GRS Ctd)
—7TI'{ (HSxZ +H5zx> ( )i(l’y— )i TI'{U U Uz 1xz}
T {Tr{U, U U X + —Tr{U U (M, — Hlmﬂ } . (7.7)

The evolution equation for operator Tl"{UyT C§5z} is obtained summing eqs. (6.28) (with
Q1. replaced by Qs;), (6.21), and (6.81). Thus, we have

(Tr{U] Qs2})
s +00 4 1 -
-l e e e (@ )

1 ~
+7TT{UJ (XEJCEZ + XSzx - Q5Z + NC‘FZ) }]

N
- (y(ar Z);:(zz ?i)) T {U. U} (He + Hie) — ]\lchr{UyT (s + X5ZI)}>}
Ej ZZ)) Z(g m)) Tr{U UT}<H1332 Hl_zx) + ]\1TCTI“{UJ(X1;;$ - Xlxz)}]
+( 2(;; (y)? - (Tr{U UT}Tr{UTst} N TF{UTQ&D})} (7.8)
1
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Evolution equation for operator F(z)) is the sum of egs. (6.28) (with élx replaced by
F,), and (6.50)

(Te{F. U/})

B Too da (Z = 2)x(Z—7)

a 4772 / / { (x—2)2(y—2)%
+Ni (T {U.UfQ1.U1} + T {UfU,UI Q1. } — To{U,USU.QL} — Tr{UfU,Q1.U.})

(.’L’ —Z,Z = y) + 1 )

r—2)ily—2)71 (@-2)71

X [Tr{UyT (2F. — Qs.) Y Tr{UTUL} + Te{U, (2F] — QL) y T {U]U.}

Te{U] Q1 .} Te{UI U, } — To{U, Q] Tx{US U}

DU QL - @u) | + (¢

1 _ _ _ _
+ﬁ (T {U.U§U-QE.} + T {UfU. QLU } + Te{U,Uf Qs-UT} + T {UfU,UI Q5. })

eila,y—2) _ gilq1,2—2)

Tr{U U, }(QSZ + Q! } + 87 / a3q 6 (z —2)

iy
x[ﬁ{UxUj VI {US .} + Te{USU Y Te{U,

T — 2
= i)ié )fy>i (THU-Up UL NCTT{UJE})} (7.9)

Evolution equation (7.9) should clarify why we needed evolution equa-
tions (7.4), (7.5), (7.7), and (7.8).
We can also write done the evolution equation for operator Tr{Q5xUJ} summing

egs. (6.28) (with 5213; replaced by Qs,), (F.6), and (F.30). We have
<TT{Q5IUT}>

:2772/+ da/ {

(m_y)i
(z—2)1 (y—2)1
{ (r—2z,2—y)
(z=2)3(y—2)1 (z—2)%

_i (T‘I'{UTU }(HSIZ +H5zaz) + TI'{UTU }(HSIZ +H5zx))

Tr{U (Qs.+F.) Y Tr{U, U, }——Tr{(Q5z+.7: )US}

Tr{Qs, U] }Tr{UZUyT }— NTe{U} ng}}

5+

[Tr{Ux UU. XL} + T {U.USU, X, )

——(Tr{U UUXL, )} + T {U, U U X5m}]

(F—-2)x (§=7)
(x—2)1(y Z)J_

1 _ _
1

T{U.U U XY, } — Te{U,USU. X, }

1:Ez

T{U.UU X} - Tr{U U U, le})” (7.10)
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In egs. (7.7), (7.8), (7.9), and (7.10) we have again mixing between odd operators
which carry the subscript 5, and even operators with subscript 1.

The evolution equation of operators in the adjoint representation Oy (z1)%, 05 (z1)%,
and F%(z,) can be found in appendix F.3.

7.3  Qsa, Qsz, and F, operators: flavor non-singlet

For flavor non-singlet case we do not have the operator F (z1) because it does not allow
flavor exchange. In this case the evolution equations, using results for the singlet case
(neglecting operator F(x)), are

(Tr{U} Uz} Qs0)

T 4n? /+00da/ {Tr{U =

2Qs5:( ) [
(fE—Z) (y—2)1

TI‘{U UTU X5zac} + TI‘{U UTU X5:ch} - 7TI‘{UTU }(H51’Z + HSzz)

T{UIU.} Q5. — Tr{UTQ5Z}]

N TH{UL U TH{U.Uf} — N (U, U}

+(:L’—Z

)7
(—z2—-y)L
(y—2)3(z—2)7

_NiTr{Uny}(Hgm +HLL )|+

T {U,UJU. XL, + T {U.Uj U, X, )

L E=DxE-2)
(y—2)i-271

~Tr{Te{U,UJU.X 1m}+ Tr{U UT}(HTM fo)]} (7.11)

T{U. U U, A, )

(Tr{U} @5 })
s tood 1 -
- f?/o S/dzz{(z_z)i [TY{UJUz}(Q5z —H,. - 7—[5m)

+— Tr{ (Xg,xz + X5z — Q5Z)}:|

1
TI‘{U UT} (HE):EZ + ,ngz) B FCTI‘{UJ (X5$z + X5Z$)}>:|

)
(T - 2) x (¥ - )

1
Tr {U UT}(Hle Hl_zz) + FTI‘{UJ (Xlza: B Xlxz)}:|

T Z)Ql_(j)_iy)i (ﬁ{UzU; YTe{U! Q50 } — NCT&"{UJQM})} (7.12)

<Tr{Q5$UT}>
1
57

toeda Tr{U} Q5. } Tr{UJU,} — ]\17Tr{Q5zUJ}}
Tr{U! Q5. } Tr{U} U.} — N.Tx{U] Q5z}]

+ (Qy)J_Q

(x_Z)J_(?/—Z)J_
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4 ($—z)i(y—z)i (x—z)i
1 _ _
1(7-2)x (¥ —2)
T{U.USUX, ) + Te{UUSUXT ] +-
(o0 Ve OO 05 | 4 p = on

1 _ _
~TH{UUJUAL, ) — 5 (TH{UJU (A — Hiy) + Tr{UULY (M. — Hi))

To{U, U UL, } + To{U.Uj U, X, )

T{U.USU X, }

o

1
+57 (n{v.Ufv. X} - T {ULU] szfm})] } (7.13)

C

In the flavor non-singlet case, because of the absence of mixing with operator F(x ) the
evolution equation for polarized structure functions is eq. (7.13). This might represent a
great simplification to find its solution.

8 Conclusions

We have extended the high-energy OPE of the T-product of two electromagnetic currents
at sub-eikonal level. The impact factors Z}" and ZL”, given in egs. (4.11), and (4.12)
respectively, are part of the main results of this paper. They satisfy electromagnetic gauge
invariance and conformal SL(2, C') invariance.

We have identified several new distribution functions, summarized in section 5, which
came up from the parametrization of the matrix elements of the operators associated to
the impact factors Il and I£”. In the appendix C we have identified further distribution
functions that, however, will not contribute to g; structure functions.

We found that the polarized and unpolarized quark distribution functions as well as the
polarized gluon distributions are energy suppressed with respect to the unpolarized gluon
ones. Moreover we have observed that the polarized gluon distributions G, and G enter
on the same footing with the polarized distribution functions g5, q¢s7, G5, G517, because
they are associated to the same impact factor If”. We also showed that under one loop
evolution we have mixing also with the operators parametrized by the quark distribution
functions q1, qir, q1, qir-

We have also observed the evolution equations are not in a closed form; after one loop
we have generated new operators ?Elzy, 2?5xy, ?—A[f'xy, ﬁ;xy, 7:[1_“/, 7:[5_@.

In the evolution equations (see section 7), we have found also mixing between operators
of different parity, i.e. operators (:2535, 52590, ﬁx, .)E‘5xy, ’I:tgrxy, and 7:[5_% and operators le,

éu, z?lxy, ﬁfxy, and ﬁfwy. These are all new evolution equations that are presented here
for the first time. As already emphasized before, we are aware that the form of the evolution
equations summarized in section 7 are not written in the usual form d%(?” =K ®QO". The
reason is that in all these equations there are contaminations of infrared divergences which
remind us the double log of energy nature of the small-x resummation of quark polarized
(and unpolarized) structure functions. We plan to disentangle the leading log from the
double log of energy and to put the evolution equations of section 7 in a conventional
form in future work where we will try to reproduce the result obtained in the double log
formalism [36, 37].
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We now compare our results with the ones obtained in recent literature [7, 8, 56-58|.

Let us start with the ones obtained in refs. [7, 8]. In appendix F we have shown that,
in the double logarithm approximation, the evolution equation for the operator Tr{(F, +
Q5$)UJ}, eq. (F.13) (see also eq. (F.45) in the adjoint representation), does agree with the
one derived in refs. [7, 8] provided that we neglect the mixing with operator Q;,. However,
when we consider all diagrams we find some differences.

In refs. [7, 8] the evolution equations for the operators le, Q5m, élm, C§5m were not
calculated. Only operator Qs was considered. With equation (7.9), we have shown that
operator F, does mix with operators le, Qg,x, ém, (52535, thus justifying the calculation
of their evolution equations.

Here, for the first time, we calculated all the diagrams required for the evolution of
the polarized (and unpolarized) structure functions including the quark-to-gluon prop-
agator in the fundamental (see figures 12 and 13) and in the adjoint representation (see
figure 15). The quark-to-gluon propagator diagrams have generated new operators, (6.59)—
(6.66), which will affect the spin dynamics at small-x.

In refs. [7, 8] the matrix element of operator T]r{.?’:"gcﬁyT } was associated only with the
longitudinal helicity distributions. The same conclusion was reached also in ref. [58]. In
section 5 (see also appendix C), however, it was shown that the matrix element of operator
Tr{]:"mff;r} is, in general, parametrized with longitudinal and transverse distributions.

Sub-eikonal corrections in the framework of Color Glass Condensate (CGC) have been
considered also in refs. [56, 57]. At the moment the result in refs. [56, 57] is incomplete
because sub-eikonal corrections due to pure transverse components of the field strength
tensor, like Fj;, have not been included. As we have seen, such corrections turned out to
be very important and central to the study of spin dynamics. Recently, the sub-eikonal
corrections to the quark propagator have been considered in ref. [58]. The authors have
reproduced the terms in operator Oy of eq. (B.13), but their result seem to be missing some
of the terms that are, instead, present in ref. [46] and that we presented here in eq. (3.1).

In ref. [9] the small-x behavior of the orbital angular momentum distributions was
found as a generalization of the double log of energy for g; structure function originally
found in refs. [36, 37]. On the other hand, in ref. [54] the same calculation was carried on
in the frame work of saturation and Color Glass Condensate formalism. To our knowledge,
it is not known whether the two results are consistent. Our work, among other things,
set the foundation of the formalism that eventually will be able to reconcile the Double
Logarithm Asymptotics formalism with the non-linear Wilson-line formalism.

Concluding, we obtained novel evolution equations for polarized structure functions
(and unpolarized quark structure functions). New operators and new distribution functions
have appeared for the first time in small-x physics. First, we have the appearance of the
light-ray operators le and Q5x multiplied by the usual dipole operator Tr{UxUJ}, we have
the operators Tr{éleJ }, and Tl‘{ég,mU;r }; the gluon helicity and transverse distribution
is obtained from Tr{U] F.,} + Tr{U., F1, }; and finally we have also the TMDs operators

N N o A - _
Xlxya XBwy» Hl:cy’ HSI@/? Hlxy’ 7-lfyacy'
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A Notation

The notations used throughout this paper are the same as the ones used in ref. [46].

Given two light-cone vectors p} and ph, with p/'ps, = we can decompose any

S
2
coordinate as 2 = 2z, p' + Zzph + 2! with z, = z,ph = \/§x+, Te = zup| = \/gac* and

+ _ 20428 i : _ 1,2 i
r* = % Our metric is (1, -1, -1, -1,). We use the notation 2/| = (0,2, 2*,0) and z* =

1 _

(z',2?%) such that z'z; = 2/ z y = —2%. So, Latin indexes assume values 1, 2 while Greek

indexes run from 0 to 3. We also use notation for scalar product (z,y) | = z'y' +2%y?. For
a vector in momentum space we have k* = ap!' + ph +p'| with o = \/glﬁ and 0 = \/gk*.
Under a longitudinal boost, the components of the gauge fields gets rescaled by the
large boost parameter A as follows
Ae(TeyTuyx1) — )\A.()\_lx., ATy, X)),
Ai(TayTuyx1) — )\_IA*()\_lx.,)\x*,xL), (A.1)

AJ_(xh L, xj_) — AJ_()\_lxn A Ly mj.) .
while field strength tensor as

1
TayTuy 1) —> ANFje(A " Ze, ATy, ),

Fio( )

( ) = A R (A ae, Az, ),
Foi(Te, s, )

( )

— Foe(\ g, Nz,
Fij(xe,zs,x1) — Ej()\_lx.,Ax*,xJ_). (A.2)

Fiu(xe, Ts, x|

Under the same large longitudinal boost the spinor fields get rescaled as
PP — MNP b, Pty = Py, Py — NP (A.3)

In Schwinger representation, which will be frequently used throughout this paper, the
free scalar propagator can be written as

i pip Y A4
el e = [ S (A4)
with (k|z) = €™®*. In (A.4) we used the h-inspired notation d*k = (%)4 and § (k) =
(27)*6@W (k) so that, [d*kd (k) = 1.
We define the gauge link at fixed transverse position as
[up1,vp1]. = [upr + z1,vp1 + 21| = Pexp{ig dt Ae(tp1 + zL)} . (A.5)
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The derivative of the gauge link with respect to the transverse position is

57 [up1,vp1]. = igAi(up1 + 21 )[up1, vp1]. — iglupr, vp1]; Ai(vpr + 21)

—iQ/ ds [up1, sp1]:Fei(p1s + z1)[p1$, p1v]2, (A.6)

with index i = 1,2. From (A.6) we may formally define the transverse covariant derivative
9, that acts on a non-local operator as

) .0
iD; [upr, vp1), = Z@[Uph op1]: + g[Ai(z1), [up1, vp1):]

= g/ ds [up1, sp1].Fei(p1s + z1)[p1s, p1v]-, (A7)
where we have used the implicit notation [A4;(z1), [up1, vp1]:] = Ai(zL + up1)[upr, vp1]: —

[up1, vp1]: Ai(zL +vp1).
Given a gauge link [z, y.], = [%x*pl +z, %y*pl + 2], in Schwinger notation we have

(@ |ee ydlys) = [ yde 62 (@ —y) - (A.8)

The transverse momentum operator P; = p; + gAi acts on the gauge link as

(o |Piles, yallys) = (2ol (i + As(ea)) o, ydlyL)

= (igm + Aoes) ) @l ylo) (A.9)
(@1 [z, ) Bily 1) = (@[, i) (5 + As(y) |y 1)
— (ol ( - a?, + Ailen)). (A.10)

So, from (A.9), and (A.10), and using (A.7), and (A.8) we finally have

A . 2 [T
(@ L[ [yl lyr) = (@ [iDilz gully ) = (@ lg s | dews [, i Feifwss yllyr) . (A1)
Yx

where we used again the short-hand notation [z.,ws]Fie|ws, Yx] = [T, wi] Fie(ws)[ws, Yul.
From (A.11) we observe that the covariant derivative i®; acts on the gauge link even
though the transverse coordinate has not been specified yet and, as matter of fact, it does
not have to in order to know how it acts on the gauge link. Throughout the paper we
will often use this property of the momentum operator P, and the covariant derivative i®;
without specifying the bra (x| and the ket |y, ).

B Quark and gluon propagators with sub-eikonal corrections

We want to extend the high-energy OPE to include sub-eikonal corrections in order to study
polarized structure function at small-x. The idea is to proceed in a similar way as we did
in the unpolarized case with the exception that now the quark propagator (and the gluon
one) has also sub-eikonal corrections. In reference [46] a complete analysis of the quark
and gluon propagator has been performed. All the sub-eikonal corrections (regardless of
the twist) that scale as % with A a large boost parameter, have been identified.

In what follow we will summarize the all the propagator with sub-eikonal corrections.
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B.1 Quark propagator in the background of gluon fields

In this sub-section we are going to derive the quark propagator in the gluon background
field. Here, however, we will perform a different expansion than the one we performed in
ref. [46], but that was only suggested in the appendix of the same reference.
If we define By = ;%F.*O'*. + %aijF’j, and O = {p/|, Aﬁ} + {%P,, A} — gA?% | then the
quark propagator up to sub-eikonal corrections is
i
P? + SF,, o

= il)(x| i - i ig2F, yp !
P2+ 290Ae + gO P2+ 2gaAe +9gO 7 s " T2p2 £ 2ga A, + gO

1 B n 7 . 2F i 1 B 1
_ g Fiy
p? +2gaA, g=1 p? +2g9aAe P2+ 2gad, gs w7 p2p2 + 2gaA.g 1p2 + 2gaA,

(x| P y)

? 1 2 ) 1
B 9S50 PR S .
+P2+290u4.g 1p2+29aA.ng ¢ 7p2p2+2gaA,]y> (B.1)

Now we need the scalar propagator up to sub-eikonal corrections [46]

(@] gIy) =] ' —[y)
P2+ie p?+2agAe+gO-+ie
toda 0 da -
— - — _ _ _ —Za(:C-—y.)
[/0 5q 0 (= Y) /,002049@* x*)]e

52

xme—i’;tw*{[x*,y*wgf; 2 (1P Al )} g i) Al(2)) ]

e )2 (1P A W) =00 A () + [ i (P o) S Fiio) o)

Yx

T 2 /2 / AR nl’ / iiy
+g d;w*g(w*—w*)[:v*,w*]F,[w*,w*]Fi.[w*,y*] e as 7" yL>' (B-Z)

Wi

Now we observe that
. 2
i | e @) (g [ e a T i) |2 )

, 2 o o
= (z@m + gg%A.(x*,xJ_) + gAL(l'*,l'J_))e a(@e=ye) (1) | e atx*[l'*,y*]’Zl)
= et@emye) (1| e—i%m*

1. . 2
(bt iop,DE

1T

R 2
2 [ p Anen)| + 9AL () lonpillzs) . (B3)
Note that i[p? , gAe(24)] = g{p", Fie(w+)+ DeAi(x+)}. The field strength tensor Fie(z,) = 0
since x, is outside the shock-wave (x, and y, here are always point outside the shock-wave
which will be sent to +00 and —oo respectively). Similarly, we can set all the transverse
fields at the edges of the gauge-link (outside the shock-wave) to zero since they are pure
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gauge. Moreover, we make use of iDe[Zy, Y]z = (107 + gAe(T+)) [T, Ys]z = 0. So, we may
reduce (B.3) to

. AT 2 —1 ( — ) _‘i
(i + 9o, A1) g (nsn) o) | T )

-2

—10(Te—Ye 7ip7lx* 1
I —ppyplaeyillzL). (B.4)

We will also need the following two identities. Given two generic operators A; and Ao, we
have

1 A 1 )
p? + 2ga A, + i€ 1p2+29aA +iey

+°O(fa 0 da (e —
- [_/o 12— v +/ *)]6 (reve)

T 2
i

52
d;21*<xi|€ il [95*721*]141[21*7?;*]6 O‘Sy*’yL> (B5)

(x|

Yx

and

(2] 1 A 1 A 1
x

P2+ 2gaA, +ie P2+ 2gade + ic 2p2 + 2gaAe + i€

[T da (Y da o
= |f/0 @9($* — Yx) — Z/ﬁ@@ﬂ?h - 1’*)] e~ ol@eme) (B.6)
) T _.i ‘i
ngz* d;zu (zole™ as ™ (24, 214] A1[214, 224] A2 224, Yu €' @ ¥ [y 1)

Yx Z2x

y)

To obtain (B.5) and (B.6), one hae to insert a complite set of states between the operators
Aj and Ay and use the eikonal term of the scalar propagator in eq. (B.2). Another identities
that we are going to need is

iZ* 2 ? 7 7 % %
E[pi Fpol + 220t (= (P, AT} + gAA) Eja + Fra 2 ({Py, AT} — A AY)

zz*

—{P"iDiFj.} (B.7)

So, using eq. (B.2), and identities (B.3), (B.4), (B.5), (B.6), and (B.7), the first two terms
of expansion (B.1) become

. 7 7 2
1 T °
i |p2+2gocA.+gO p? +2gaA, —i—gO 17p2p 2 +2gaAe + gO

+ood o 0 da , 1 Gl
o —ia(Te—Ye) 2L o L,
/0 EYACT R /oo2a 0(y- *)] e o Sy A

ly) (B

+;—i/ d= w*pp2< wWe { Pi, [T, ] Fy [0, 9] }

Tx 2 /2 / / 7 / ii
+g dg W, g(w* — wy) [T, Wy Fy [, wi] Fie [w*,y*])p elas |y, )

Wi
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Note that to get eq. (B.8) we have pushed the operator jb all the way to the right so to have
a ,;?ﬁ to the left and another one to the right. This is the structure of the quark propagator in
the background of shock-wave: free propagator until the interaction with the scock-wave,
eikonal plus sub-eikonal interaction with the shock-wave, and again free propagation after
the shock-wave. Note also that, since the operator ﬁ is outside the shock-wave i.e. is at

the point z,, it can be promoted to ]}Ab because the gauge ﬁglds are pure gauge outside the

shock-wave (points . and y.). Then, to push the operator J to the right we repeatedly use
(@ Llppy Plowydlys) = (olpp,(ap, + P o)z vl ly)

= (o lpp, (v iDilwe, gl + o2 v ) (o, + P1) ) lys)  (BY)

and the definition of ®; eq. (A.7). Recall also that a = %p* = 2;. 9 and it commutes

s 0xe’

with all the fields because they do not depend on .. In a very similar way, we have

Dl = g, 5% aga

TR "%wzlgm; s
+p?+2zgaz4; ijFij]H_ngaA Fie ’Y]/jngrggaA}!w

- VO+°°Z§9( [ 22‘9( *)1 eia(z.y-);<xL’ei§z*

2
{20& d Z*pr([x*vz*] FzJU [Z*w*p%-{p x*,z*]sz]'y [Z*vy*]}

) (B.10)

<2
. . p
s, 24| i Fgjy! (ka[z*,y*]) — (z’Dk[:z:*, 2] )iFy;7’ [z*jy*])}e s
and

1 4 1
) — T 5 . a1 F.* *. o A 1
il [ P +2gad, Vs p? + 2ga A,
n 1 2 1 4 45 1
P2+ 2gaA Fuy %p +2gaAe 52 e p? + 2gaA,

4 1 2 1
S NP }u

TP 2g0A, 29aA Far'pa p? + 2gaA,
+o00 0 | ; p

= [/ dag( — Ys) */ d'ag( x*)] e—m(x.—y.)7<xL|e_Z%m*
0

2a 2cy s

[204 d- z*gépz(apl pL)[x*,z*]iiF.*[z*,y*]+2(’;/ dsz*
<P, ((imx*,z*wiF.*[z*,y*] s 2i2 Fur(iD ) ) |5 ) (B1)

Summing the three terms (B.8), (B.10), and (B.11) and symmetrizing the propagator
by adding Lh.s. of eq. (B.1) with 2 to the right, we arrive at the quark propagator with
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sub-eikonal corrections in the background of gluon fields [46]

i +od o 0 do 4 1
= = —O0(xy — yy) — —0(ys — x4 —ia(re—ye) — B.12

)
N
i—Lx, -

x(x |e "as {]Mfz [+, y*]ﬁ+]})p2 @l(pJ_; SU*,y*)]/’

P r 1 . R -
+¢]]ﬁ2 502(1’L;.’L‘*ay*) - 2(92(x*,y*;pL)pr}ez;;y*wL) +0(\ 2).

with
O (24, Y1 pL) (B.13)
; Tx D 1 .. : 2
- 2= [, 0] 50 Pl ] 4 {5 [, 0] 0 () o, )
™2, 2 / AR ]
+g d— Wy g(w* - w*)[x*,w*]F,[w*,w*] FZ' [w*7y*] ’
Wi
and
Oa(pLi @, ys) (B.14)
ig [T 2 . , ; N .2
— %/ d;‘“* [{pk7 [y Wi)i Fijy? [ws, ys] } + (ap, —p ) ws, wil i ;F.* (Wi, Yu]
Yx

Wi

Ti 9 , .
+ [ dow, ([w*, WLgF W wliFigy [, ys] = [, Wl]iFign? [, i gF s, ]
S

2 2
—I—[x*,wi]ng.*[w;,w*]fyngk.[w*,y*] — [x*,w;]yngk,[w;,w*]st.*[w*,y*]ﬂ )

where {p', 24, wi]} = P2, wi] + [T, wi] P

The definition of operator Oy given here differs from the one given in the previous
work, ref. [46], because using the identity {v* i1/} = 27¥¢g¥ the term ﬁ{(z D Fij), 77}
is identically zero.

Now let us define the operator O; as follow

A

Oj(pL; T, Ys) (B.15)

= % / d;w* l{ﬁk7 [+, W*]iij [ws, y*]}
Y
Ts 9
+/ dgwfk ([x*7w>,(<]ng.[w>,k?w*]iFk}j [W*y Z/*] - [x*,wi]iij [CU;, w*]ngo[w*a y*]
Wi

+[:L‘*,w;]i§F.*[wi,w*]gFj.[w*,y*] — [x*,wi]gFj-[wi,w*]izF.*[w*,y*]ﬂ :
and we can write
]}ﬁpzfyj@j - @j'yjpﬂ}) = iaseijy%z-@j — ¥, [ﬁ’, @]] — ieijfy5p2{]§i, @j} (B.16)
(recall pp, = ap,p, +p  p,)-
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Moreover, we may define!

\]

A

O x*)y*

"
[\
gl

/*dfw* Ty Wil F.*[w*,y*] (B.17)
Y

w

SO we may write

331/72(0431’1 ?L) o '*(0‘3”1 pﬁpzp_w‘s'y 7€ {pis Ous} — pz[pl’ o] (B.18)

Using the operators O;(z4,ys) and O (x4, yx) the quark propagator (B.12) becomes
eq. (3.1).
B.2 Gluon propagator in the background of gluon field

The gluon propagator with sub-eikonal corrections in the background of gluon fields is [46]

(A (2) A} (y)) 2

o _ —i0(Te—Ye) —i s T
[ /0 20 2a V(e = u) /,Oo2a 0y :E*)] © (wle

2 poup® 2pepav\ L 4 poupay
¢ 2DP2p” _7£7 "Ly, b 4 pay b
X (% s Oa( @, yx) | gev 5 i Ly lyL)* +2<x\52 o2 y)*

~2
B /-I-OO(;FQ y* + / *)] e—ia(:c.—y.)<xl|€—i%l‘*
0

x [ﬁ?ﬁy(ﬂc*, YsiDL) + O%0, (2,13 p1) + %0 (T4, 141 pL) + B0 (24, y*;m)}

_l’_

2 )
xe @y L)+ O(A ), (B.19)

where we defined

7 T D . 2
Oa(Ts,Ys) = [, yu] + 2£/ d—wy ({p’, (24, wi] = wy Fia(ws) [wi, Y4l } (B.20)
a Jy, S s

w9 2 A
by 2 2 (= )l P 0] B o] )

ws S

!'Note that the term of eq. (B.17), since fields do not depend on ., may be analyzed similarly to the
term {P,, A.} in appendix C of ref. [46]. The result is that it may be reduced to gauge dependent terms
A* [l’ﬂm y*] - [1‘*, y*]A*
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and

gp? DP2v 2 i
O, (r,yipr) = —IE2D2 / 2 W*Pp (s ] By, vl (B.21)
Y
Te 9 2 ) ) ab
+7/g d w 7((*) *W*)[CL'*, ;]ZDzFlo[wfmw*]ZD]E]Q[w*vy*] 9
W, S s
@ _ g ) J 2 ab
8 (T yuipL) = 5 5 dsw*([x*,w*}ﬂj[w*,y*]) , (B.22)
Yx
ab j ] Tx 2 N ab
@3HV($*7y*;pJ—) = ((S Dov + 0 pgu> dgw* ([CL’*,W*]ZD Fw[w*,y*]) ) (B23)
Yx
ab 29 2 j AR R
B (Ta, Ys3 D) = ——5= d w*/ d—w ((5 Do [T, Wi | F o [wy, wi] Fijlws, y«]  (B.24)
a?s Jy, s s

+8)pa e, W] Fylt ] FY o 0.])

B.3 Gluon propagator in the background of quark field

The sub-eikonal corrections to the gluon propagator in the background of quark fields has
been calculated in ref. [46]

<AZ(9«°>A”( )i
_ {_/;Oogs +/ _x*)} o—ial@e—ye)

Ty 9 214 ‘i 9
X g* dgzl* d A2 /d z[xﬂe Yas *( J_u_qupi>’Zl> (214, 21)
Yx

)

2
5P2
X Py [zl*,m*]zw[w*,y*my*?zQ*miwzwﬁm’(90'/ g )

i S$P2
e 5 (g, = 52208 o) P eaes 200 By a0l ), 2107

Xw(zl*an)@ﬂ(giu Poy sz)e sz )| + O (B.25)

72 «

Note that the entire sub-eikonal correction is at the transverse position z ;. Moreover, in
the shock-wave limit we are employing here, we have to send x, — +o0 and y, — —o0. In
this limit the gauge link [z, y.]. becomes the usual infinite Wilson line U(z] ).

C Evaluation of matrix elements

To understand which of the sub-eikonal term in the quark propagator (3.1) will contribute
to the polarized structure functions we have to consider forward matrix elements with the
sub-eikonal operators. In other words, we have to analyze the matrix element that will be
obtained using the quark propagator (3.1) to calculate diagram in figure 3 for the impact
factor.
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The polarization vector is a pseudo-vector which satisfy S#S,, = —1 and S-P = 0. Let
S? be the longitudinal component of the spin vector. In the DIS kinematics we have that
St~ ﬁP“ so, we may write S* ~ %P“ + Sh.

We chose the proton momentum to be mainly in p} direction: P* = pl + MTQp‘f , and
the virtual photon has momentum ¢ = pi' — xpph.

Helicity is defined as h = )\% ~ )\g?’“SM o~ —A% with A\ = :I:%.

The components of the hadronic tensor WH#” | eq. (2.2), which are associated the po-

larized structure functions g; and go, are

Wi, = =g F1 +ie,0 (C.1)
gLW.i = iM.TUB ElJ;V SJ"_gT = —gf,Wi. (02)
g Wi = z’e;SngT = —g' Wi, (C.3)

where gr = g1+¢2 is the transverse polarized structure function. We see that the transverse
hadronic tensor is associated to the g; structure function with longitudinal polarization,
while transverse polarized structure function gr is obviously associated to the transverse
spin S*.

To evaluate the matrix elements we will use spin vector S*, the target momentum P*,
the direction of the Wilson line %p‘f and the transverse momentum ki conjugated to the
size of the dipole A/l = (x — y)/|. Note also that all distribution functions that we are

going to introduce have dimensions [M ~2].

C.1 Matrix element with O, operator

Here we are going to evaluate the matrix element that would be generated using the
operator O; defined in eq. (B.13). All matrix elements will be of dipole type with the
insertion of the sub-eikonal correction (see figure 3).

Let us consider the following matrix elements

. +00 .
/dQAel(A,k)J_ / dz.((P, S| {Tr{[oopl, 20 19FY (24, 71 ) [ 24, —oopl]a;U;/r} + a.c] |P,S))

4 [ EYe) kLk] 4 o*az klk] 4 o*az J_ kj klk]
= a5 (8P = SyP) TR b5 S e S [Pyt Ao
2 L b k‘lk:]
- = 6’%( 5(SiPe = SePki + - Sekic + 17 SkP> +d=rr (C.4)

with a, b, ¢, d dimensionless coefficients. We now use P* ~ (P, 0,0, P3) = é(l, 0,0,—1),
and S-P =0, and
S.Py — SyP. = 2($3P° — 8°p?) = s MEST s AMPE sy (C.5)
T2 2 PO T2 po 27 '

1 S
MAP. = )\m , (C.6)

Se

12
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where we also used MS3 ~ AP3. The matrix element (C.4) becomes

. +00 .
/derz(A,k)L/ dz ((P, S| {Tr{[oopl, 2w 1gF (20, 01 ) [ 24, —oopl]chyT} + a.c.} |P,S))

k:z kj )

- (AGL(k?, @)k + Gr (k2 2) MSy) . (C.7)
where we have introduced the polarized longitudinal (helicity) distribution function
Gr(k%,x), the transverse gluon distribution function G7(k%,z). As usual, Latin indexes
assume values 1,2, while Greek ones run from 0 to 3, (z,y), = z'y' + 2%y

Let us consider the matrix element generated by the term € F;; in operator (B.13)

. +00 .S s
[0 e (P S| [Te{locpr, 2] ig 367 Py ), —oomluUJ} + ac] P, S)
(Sa k)i

ki2
[A LGk, )+ Gr(K, z)

(C.8)

So, the matrix element (C.8) will contribute to longitudinal polarized structure function,
g1, and to the transverse polarized structure function gp.
Consider

. +oo +o0o
/d2Ae’(A’k)L/ dw*/ dw!, (wse — w})

% (P, S|[Tr{[oop1, wJe ', [ .y Fio [0, —00pi]eUf} + a.c] [P, S))

@(k‘i,x) (C.9)

This matrix element will contribute to unpolarized structure function and G (k% ,x) is an
unpolarized gluon distribution function.

Now we consider

. +o0 .
J A0 [ o, kil (P S| [Tr{[oop Py (0,1 ) —oomiluUj }+ac]|P.5))
s §xi
2 M
Also this matrix element will contribute to unpolarized structure function with and
G~ (k% ,z) is an unpolarized gluon distribution function (recall that F'y = \/gF =)

=G (K ,2)+ Gr (k) (C.10)

C.2 Matrix element with @j operator

Here we are going to evaluate the matrix element that would be generated using the
operator O; defined in eq. (B.15).
Let us consider the term %pQ[ﬁj, @]] One of the matrix element that it will generate is

/dQAei(A,k)L/+Oodw* +Oodw;

Wi

Xk ((P, S| [Tr{[oopl, o F* o, *]kaj[w*,—oom]xUJ}+a-c-}|P, S))
= 5@@(1@,@ + 5M(§ x k)Gr(k2, z). (C.11)
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This matrix element will contribute to the unpolarized structure function with gluon
distribution G(k?,z) and to the transverse polarized structure function with transversely
polarized gluon distribution Gr(k?,z).
We also have matrix element
. +o00 +o0
/d2Ael(A’k)l/ dw, dw’,
—0o0

X((P, S| | Tr{[oop1, wi]o Fau [wl, wilo Fjalws, —00p1,Uf} + a.c.|| P, S))
- gkjé(ki,x) + AgeijMSiéL(ki,x) . (C.12)

This matrix element will contribute to unpolarized structure function with gluon distribu-
tion G (k% ,x) and to the transverse polarized structure function with transversely polarized
gluon distribution G (k2 , z).

C.3 Matrix element with (’5.* operator
Let us now consider the forward matrix element obtained with operator @.*

/d2A AR (P S| {Tr{[oopl,w*]mF.*(w*, x 1 )|ws, —oopl]mU;r} + a.c.} |P,S))

— —

sSxk
M

where we recall that Fe, = §F_+ = §F+_. From this matrix element we have extracted an

7G(kla )

GT(k‘L, ) (0.13)

unpolarized gluon distribution G(k2 ,x), and a transversally polarized gluon distribution
function C?T(kf_, x). This matrix element will not contribute to g1, but to gr.

C.4 Quark propagator for g; structure function

From the analysis just performed we may conclude that the gluon field sub-eikonal con-
tribution to the quark propagator that we have to use to calculate the impact factor for
polarized DIS and relevant for g; structure function is

Tood o 0 da PN |
al—l) > | [ Gt =y = [ G200 | el
P +ie 0 20 s

52

.P
></ d2z<:r:J_| e_ZTJ;x*p|ZJ_>

Z ..
{;’i’g [T, Y] 2 g/ A=W [T, Wi ?275€Z]Fij[w*7y*]Z}
52

b
x(zL|p ¢as v ly1) (C.14)

where the symbol 5 in eq. (C.14) means that the terms in the right-hand-side (r.h.s.) are
only part of all the terms of the quark propagators; the terms we have left out will not
contribute to the calculation of the impact factor for polarized g; structure function. It
should be stressed that here we are only concerned with the sub-eikonal correction with
only gluon background field. Propagator (C.14) will be used to calculate the impact factor
diagram in figure 1 b. To calculate the impact factor diagram in figure 1 b we need the
quark propagator with quarks in the background given in eq. (3.7).
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D Derivation of the OPE with quark-sub-eikonal corrections

Here we provide some calculation details of the derivation of the OPE with quark-sub-
eikonal corrections eq. (4.2). Let us consider the T-product of two electromagnetic currents
am perform the functional integration over the spinor fields. As usual, we start with the
case in which ™ > 0 > y™. Since the sub-eikonal correction can be included either in the
quark fermion line or in the anti-quark fermion line, at sub-eikonal level we have, without
exceeding our precision, two terms

zt>0>yt - _

(T{"@)3" DN s = —tr{r" 0@)0)) a5 (C@O@) 44,5} (D.1)

) )

Now we are concerned only with the contribution coming from quarks in the external field,
so using the quark propagator (3.8) we have

(T{7"(2)3" (W)} 400

+>0>yT —
’ > . Trtr{ H 3g / dz*/ dz/d222
167T *y* * Yx

XQ[x*7Z*]22t 7L1/1<Z*722L)[2*,2 ] by (2*722l)7 [kaay*]zg Y?
(22 + ZE)

) *71.* z —1
X7V¥/d2 lyllﬁg[y ] le} —Tm{fwl
2miaty? (21 + ie)® 2m3a2y2
Ly Yx |z 1
x/d2 Xdifz[ y]1Y17,, 3 i / dz/ de | 22y ———
(Zl + ZE) 167w y* (ZQ -+ ZG)

<Y alye, 2]t v (24, 221) 24, 2] 50 (2, 22 )7 [, )z, Xz} (D.2)

X

The two terms in (D.2) represent the sub-eikonal correction for quark and anti-quark
propagator. We can further simplify (D.2) by renaming dummy variables

(T{"(@)7" (W) 4,5

T >0>yt
327’[‘615‘4y/ d222d221 (ZQ + ZG) (Zl + ZC) -3

| [t AT Kl 52 20 )
* Yx

X’}’i_tb[Zi, y*]22 YQ’YV Yl pQ [y*, x*]zl Xl}
Yx Zx —
- / dz*/ dz, Tr tr{'Y'uXIPQ [ Yl oy Y107 Valys 26] 20t v] 00 (20, 220 )80 (24, 220)

X[z, 208070t (2 ] Xg}] (D.3)
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Observing that last line in (D.3) can be written as the adjoint conjugation of the second,
we have

(T{3*(2)7" W)} A
T >0>yt ng

327-(-62711%‘1/ dQWdQZ (ZQ + 7:6)72 (Zl + 7:6)73

T Zx
X [/ dzy dziTr tr{’VMXQ[:U*? Z*]22ta7iw(z*v Z2L)[Z*7 Zi]gs¢(2;a Z2J_)
Yx Y

X’YLJy_tb[Z:w y*]zz YQ’YV Yl p2 [y*a x*]zl Xl}

T x Zx —
([ et Kol st o 220 s 2L 2
* Yx

1
Xr}/o%tb[z:k’y*]ZQ YZ/VV Yl ?2[9*»x*}21 Xl}) ] . (D4)

Now, using definition of operator Q%ﬂ in eq. (3.9) we finally get eq. (4.2)

T2 >0>yx ) / [ d?z1d? 2y (D.5)

Tk () )
(T @) W) a0 32r0xlyl) [Z1 + i€]3[ 22 + i€]?

)

X lTr tr{’y“Xg’}/ﬁQ(Zu)’Y,oL Yo' Vi PQU; X1}

— (Tr tr{’y“XQ’}’ﬁQ(Zu)’Y,oL Yo' Yy %UL X1}>T]

E Coefficients I} and It”
Here we provide explicit expressions for the coefficients I} and If”. We remind that
X! = X! +22,p!" and the same for y with i = 1,2, X}, = (z—21)/ and X}, = (z—2)"]

and similar expression with y.
Coefficient 1" is

1
n =3 [296*11* (Z%ug“” + 219215 — (X1 + Xo)H (Y1 + Yz)")

*QPSPZ((Xl'Yl)(Xz'Yz) = (X1-Y2)(X2- Y1) + (YI‘YQ)(Xl‘X2))

—x*pg( — (Y2 =Yy + 20 (Y + Y —2Y1 - Yo(XY + Xé‘))

—yuply (= (XT = X3)2to1 + 2Dy (XY + X5) — 2X1 - Xa(YY + Yz”))]

2
r—=Y
<Z122 — Z%u(m*y*)> (E.1)

2
*

2
LY

1
T2 0x,0y,
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A

A

Yo Y1
a) b)
Figure 14. Diagrams with quantum quarks. Blue fermion lines are quantum fields, while red

fermion lines are classical fields. The gray circle with a cross on it represents here the € Fj;
classical field.

Coeflicient Ig“’ is

It = [x*y* (Ylelkz - YQjXQk) (giyejk + et gik)
+pgp12'<(Y1,Y2)Xl x Xy — (X1, X2)Y1 x 572)
e (VL Xy = Y3 X0g)elh — (XY Yoy — XE, Yiy)el”)
. p (Y2, 2) (Xu, — Xop)eh + (Vi x Vo) (XY + X4))
4 v (X1, X2) (Yo — Yor) ™ + (X1 x Xo) (07 +Y31))
4 ) . ) 4
+- (w2 Y (KXo — X0 ) e — 2y, (Yo; = Yiy )€
o ¢ o - ot T x|

= ((L'*aé; — pg) (y*ag — pg) [(?1 X ?Q)Xl . X2 — ()?1 X XQ)Yl . YQ] (EQ)

F Evolution equation for operators Q;, and Qs,

F.1 Diagrams with Q7, and 95, quantum

It is convenient to calculate the evolution of the operator Q%ﬁ given in eq. (3.9). Using the
following relations

Qs(z1) = tr{"’p, Qu} (F.1)
Qi(z1) = tr{ip,Qz} (F.2)

we will obtain the evolution equations for TI{QMUJ } and Tlr{Qg,IUyT }. We will use tr for
traces over Dirac matrices, Tr for traces over color matrices in the fundamental represen-
tation, and Tr, for traces in the adjoint representation.

In this section, we will calculate the evolution of the operator Q%ﬂ as defined in
eq. (3.9). Let us start calculating diagram in figure 14a. Performing the contraction
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over the quark field we have

+00
<Tr{Q§aUJ}>Figure 1l4a — 92A ClZ* / dZ* t% Uﬁb thT) <"¢ (Z*, wJ_>wk (Z*7WJ_)> (FS)

To proceed with the calculation for diagram in figure 14a we need the quark propagator
with quark sub-eikonal correction (3.8), and obtain

<Tr{QﬂaUT}>Figure 14a

= —ay /+ - /d2zd'2 Va2 gy eilarr—2)Filazz—w) rrab Lu% Jss
ai,

(’VlgzL)a’a
3

Qs /+ da/d2 U“b ¢ ?f) ]BB’ ﬂ{taQE'a'thg}[Vi(?—¢)L]a/a
(f_Z)L

47r (z — Z)i

400 _ / ’
:&/ daa/dgz (# #)Ng]ﬁﬁ %Tr{UJUI}Tr{UJQE“}
0

472 (x—2)]

< Tr{t"QY U}

1 ey [710 (¢_¢) ]a’a
—Q—NCTr{UJQf } L( (F.4)

1
P

We perform same steps for diagram in figure 14b but this time we need the gluon sub-
eikonal contribution to the quark propagator. Thus, we have

da [ oo [#—#) 17 ss 1

T oyt igure 518’
< r{Q.I Uy}>F gu 146 — (Z o x)i 23 I:pQ’y ]
L - /
xTr{t fzthJ yus 1, (7 9%]“ “ (F.5)
(z—2)]
Contracting eqs. (F.4) and (F.5) with p 7° and summing them up we have
<TI'{Q51. UJ})Figure 14 (FG)

= <Tr{tr{’y5p1Qx} UT}>Figure 14
da
[ e rnl 2

Tr{t® <Qz 55 W71 )thT}w}

as [T®da [ Uab " byt
27T/ /d 72) Tr{t"(Qs. + F2)t'U) }

T 42 /+00da/ Tr{ (Qs. + F)UNNTH{UIU, } — LTT{(Q“ e )UT}}
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While contracting egs. (F.4) and (F.5) with ip, and again summing them up we obtain

<Tr{Q1x UJ}>Figure 14 (F7)
= <Tr{tr{ip1Qx} UT}>Figure 14

47r2/Jr da/d2 t{pl ¢m—%é)z:§7p]

% Ugb Tl“{ta (Qz [p2 ] )thT} [/75()_;7%__2)??L] }

Using tr{(# — ;f)vapoUijWJp_(;f — ¢#)1p,} = 0, we see that the term proportional to F,
cancels, so we do not have mixing of operator of different parity. Thus, we arrive at

<TI'{Q1;,; UJ}>Figure 14
« +oodoy yab
= — [d?z— 5 Te{t"Q1.t°U]
27r2/0 a/ z(x—z)i {0t }
« +oodo 1 1
= — [Pr——— | TH{UI 0V T{UI U} — —Tx {01, U] F.8
e [ ey MUl U - T ()

To arrive at results (F.6) and (F.8) we used identities

p2aij = eijp275 (F.9)

tr{(f — )17 ooV (F = 1) 17°p,} = dse (a =), (F.10)
e {y°p, (# = A 1vy v (= $)1} = 2(a — 2)F e {2 p 09}, (F.11)
tr{p,(F — )1y w0 (F—#)1) = 2@ —2)F r{p v}, (F.12)

The evolution equations (F.6) and (F.8) are not closed evolution equations because
after one loop evolution we have generated new operators. Consequently, to solve them
we should find the evolution equations of the operators generated after one loop, thus gen-
erating a hierarchy of evolution equations similar to the Balitsky-hierarchy equations for
dipoles. Alternatively, one can try to truncate the hierarchy of evolution equations employ-
ing some approximation. For example, it is known that in the large /N, limit the Balitsky-
hierarchy of evolution equations is truncated to the BK equation. In order to perform a sim-
ilar truncation in egs. (F.6) and (F.8) it is probably convenient to work out the color algebra
and reduce all the operators in the fundamental representation, as it is done in eq. (6.50),
and only then one can try to find a way to linearize and solve the evolution equations.

It is interesting to notice that if we consider the evolution equation of the sum of
operator Qg’m, eq. (7.10), of operator Fa, eq. (6.49) and their adjoint conjugated we obtain
and neglecting the quark-to-gluon diagrams and consider only the terms contributing to
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c) d)
Figure 15. One loop correction diagrams to the operator Q?jﬁ defined in eq. (3.9) using the quark-

to-gluon propagator. Single dotted lines are Wilson-line in the fundamental representation, while
double dotted lines are Wilson-line in the adjoint representation.

the double logarithm, we have

<TI“{ (]:33 + Q51)UJ} + Tl“{ (./—'1 + Q‘I’$)Uy}>Figures 9+ 10+ 14

o0
——/ do‘/ T {Tr{U t“UTt”}(Q +Q?,‘;T+J-'§“)
+Te{tU S (0ke + Qe + 7))

1 1
+5 {Tr{(QE)Z + F)UNTH{UIU,} — ETI“{(QE)Z + F.)US}

I (@, + FOUNTHUUL - 3 T{(0h + FDTY } SCE)

So, if we neglect the quark-to-gluon diagrams and the mixing with the operator Q; as
is shown in eq. (6.49), then (F.13) does agree with the evolution equation calculated in
refs. [7, 8].

F.2 Diagrams quark-to-gluon for Q;, and Qs,

We calculate diagrams in figure 15 using again operator Q%ﬂ and then with the help of
relations (F.1) and (F.2), we will obtain the results for operators Qs, and Qj, respectively.
The first diagram we will calculate is in figure 15a

<Tr{QgBUT}>Figure 15a

= <Tr{ 2/+OO / dzl[oop1, 24| ot (24, 1 ) [24, 2 ]abd)ﬁ(z*,mL)tb[ L, —oop1]z UT}>

_g/+°° / dzlig= / d§* Tr oopl,g*] AL, 2 [Ery 2]t VS (20, 1)

X 24y 2 ]abwﬁ(z*,x Vtb[2L, —oop1]e UT}> (F.14)
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To proceed, we should remember that the shock-wave has support only within the infinites-
imal interval [—e,, €,] and that, in a particular gauge, we can set to 1 the gauge links made
of classical field with support outside the interval [—e,, €.]. Moreover, we can change the
extremes of integration of the longitudinal variable {1 from [z, co] to [0, 0o] and those of
2T from [—o0, 27| to [—o00,0] because the support of the quantum field gets up to zero.
Thus, using propagator in eq. (6.55) we have

<TI-{Q04/BU } Figure 15a

+oo +oo
—g/ / dzlig= /

x(Tr{tloopr, £uJat "0 (2. s 28 (AL (60, 2 )0 (2L 2 )] —o0mi US| )
4 0o 00 o)
= —g— ! dz*dw*/ dZ /+ /+ da/dQ LELIG Z‘cxsg*p |ZL>

g2

xTrqt* [OOpla Z*]xt 1/4;1(2*, J?L)[Z*a —oopl];b[oopl, W*]gdi)cl (w*, ZL)td[W*a *Ool)l]ztbbjf
Yy
/85 Z

x(zi ][ (ap, +p )" Peim ) }
4 rtoo +oo +oo .
:_gi dz*dw*/ dZ / / a/d2 .’IIJ_’@ Zaag*p ’ZJ_)

52

xTr{tCUzthJthxtb[—oopl, Z*]chl<2*, wl)wcﬁl (w*7 ZJ_) [W*; Oopl]z

e |74 (ap, +p PP o)) (F.15)

Proceeding in the same way, with the exception that d&,. starts from 0 and not from
Zx, for diagram 15b we have

<T‘I‘{Q35UJ}>Figure 156
+o0 Zx
(Tr{g? / dz, / Az, [oopt, 2]at V(20,0 1) 2, 2570 (2L ) EP[2L, —oopi LU })
+o0 +OO +oo .
_% dz*dw*/ dz, / / O‘/d2 (y.le” uxsé* pllz.)
s
c a cd, 7B’ d brrt
xTr{t [cop1, 24) o t” TZJCZ(Z*,CCL)[Z*,—OOpl]x [oop1, ws ]S4 (wWeey 21 ) [ws, —00Op1] .t Uy

X (e [ (e, +p ) P “loa)}
4 +o00 +OO +oo .
_9 dz*dw*/ dz, / / dLa/d2 (yile” Z“SE* J‘|21>

52

xTr{tCUthUJtCUxtb[—oopl, Z*bﬂ/)cl(z*, :L‘L)@Z)fl (Way 21 ) [, 0OP1]

X (el (ap, +p, )] e o)} (F.16)
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The second self diagram, figure 15c¢ is also calculated in a similar way. We have

<Tr{QaﬁU } Figure 15¢

Tr{ / / dz [oop1, 24| ot Y™ (Z*,J?J_)[Z*,Z;]gblﬁﬁ(Z;,xL)tb[Ziy_Oopl]xUJ}>
:ﬁ{gQ/ / Az, %95 (2e, 1) [24, 2 ]ab¢ (2,21t
<(i0?) [ aet easie ey} (P.17)

Now we use propagator (6.58) and obtain

<Tr{Qaﬂ UT }>Figure 15¢

[ [ [

XT{E (0§ (20, 1) AL (&, 1)) [oopr, 2300 (2L, )2, —oopi]ot°U }

4 pr4oo +oo G
S dz;dw*/ ﬁ/ dz*/ dg*/d%
82 —00 0 Oég 0 —0

.2 ~2
A o’ e
(e w > [(ap, +p V1] 120 (2L by et ay)
X Tr{t*[oop1, we| £ (wy, 21 )[ws, —00p1]©[oopr, 22]200P (2], 21 )t[2,, —cop1]a tCUT}

“+o00 —+00 +o0o 0
- —*-‘i dz ! dw, / da dz, / de, / a2z
0 0 —00

52 s’

2 52
i / o
X () |e” " as # [(apl —{—pL)yﬂaa |ZL)<zl|pler s & |z 1)
xTr{t“UrthJtaUztc[—oopl, Wi (wy, 2 )P (2L, 21 ) [2L, copi]a} - (F.18)

Diagram in figure 15d is similar to 15¢, so we have

<TI-{Q045U } Figure 15d

= ({2 [l [ aloop, 2t ) o 2 L L —oom U )

+oo +o0
_ i _deldw, / (m e / de., / 4%z
0

g2
52

_iﬂz* viaa’ iii- .
x{(z |e”"as = [(ap, +]ﬁ)h] 20) (2L e’ ws S Jy L)
xTr{t“UxtCUJtaUztc[—oopl, Wil 0 (wey 20 )P (2L, 1) [2L, copi1a } - (F.19)

The contribution of diagrams in figure 15 to the evolution of operators Q; and Qs
defined in egs. (4.9) and (4.10) respectively, can be obtained by taking the Dirac trace of
the operator Q B with ip, and y pl
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F.2.1 Quark-to-gluon diagrams for Qq,

Summing eqgs. (F.15) and (F.16) and taking trace with ip, we have

<Tr{Q1;tUT}>Figure 15a+b
<TI" tr{zﬁleU } Figure 15a+b

+oo +oo a
:g—z dz*dw*/ dz / / —? d’z
S (6%

_‘7J. ~ —i—Le A
><(<yi¢e e gz — (oLl e 52

xTr tr{tCUzthJtCUmtb[—oopl, Zelw i, P (24 2% (wy, 21 ) [ws, 00p1]

52
Pl
(21t (ap, +p, e s [a) |

+oo
/ da 2/ dz*dw*/d z
27r

XTr tr{thzthJthxtb[—oopl, Zalo 1P, Y (2, 2 )07 (wy, 21 ) [ws, 0op1]=

(x—2z2-y) 1 s E—E) X ([§- %)
g (e e A i e B

where in the last step we have integrated over the longitudinal variables éTand 2'* and
performed the Fourier transform.

Summing up the next two diagrams, eqgs. (F.18) and (F.19) we have

<Tr{QleJ}>Figure 15¢+d
= <TI‘ tr{iplQ:cUT}>Figure 15¢c+d

+o00 0
g/ dzdw*/ M/ dz*/ df*/dQZ

2 A2
; Pl PL
xtr{(zle” i 2 [(ap, +p V)0 ((2ulprel s fys) — (1 pelas

xTr{taUmthTt“Uztc[—oopl, W] (ws, zl)zl(zi, x1 )2k, oopl]z}}

“+o00
a/ da 2/ dzdw*/dz
o2

[ @mzzy) L EDx-)
t{hx—ai@—zﬁ*wx—@i @2 -2

)

xTr{t“UxtCUJt“UZtC[foopl, W]z 1P, P (ws, 2 ) (2L, x))[2, oopl]z}} . (F.21)
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We use definition of the operators (6.59) and (6.61), and the sum of eq. (F.20)
and (F.21) traced with ip, is

(Tr{Q1.U}})Figure 15 (F.22)

- | el ]

x(Tr{t VAU U2} + T { U Ut U4 X} )

(f_ ( ) a a a a
e (e U ) = TV U X))

The color trace in eq. (F.20) can be simplified. For example, we have
Te{t* UL Ut U X, )

fTr{U Ujv.afL,y - Tr{UTU Yo {U, &)}

T{U.USU X, } - (F.23)

LU} —

4N 4N 2

Note also that the products like XITZIUZ or UIXITM may modify the operator x|

lzx t

Tr{XszxUz} = —g2/+oodz*dw*Tr{[—oop1,z*]ztr{ipl (20, 21 )1h(We, 21 ) s, —00p1]}
- M (1 20) (F.24)

and

+o0 _
Tr{UxXle} = _92/ dZ*dW*TT{[OOpl,Z*]ztr{iﬁl Y (2, 21 )Y (Wi, 21) Hows, 0op1] 2}
= —H{(x1,21) (F.25)
where we used definition of operators (6.65) and (6.63) respectively It is also easy to find
the operators H;;ZZ = —Tr{UlX1..} = —H1,,, and similarly, Hlxz = —H{ . With Xs,.,
instead, we have
+o0 _
Tr{ 5sz b= 92/ dzydw, Tr{[—ocop1, z*]mtr{ilﬁl Y (2s, 1 )1 (ws, 21 ) Hws, —00p1]2 }
—00
= M5 (1, 21) (F.26)

and

UL = 0 deedio T foops, 2 Jatelip, ¥, )9, 21 e 01
= 7-[5 (x1,21) (F.27)

where we used definition of operators (6.66) and (6.64) respectively. We also have H |, =
Tr{Xs.,Ul} = H;,, and similarly we get H;Jz =H,

Evolution of operator Tr{leU }, when diagrams in figure 15 are taken into account,
introduces new operators, Xigy, Xszy, Hiyys Hiyy, ley, H;wy, which have never been

considered before in the study of spin dynamics at small-z.
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F.2.2 Quark-to-gluon diagrams for Qs,
Summing eqs. (F.15) and (F.16) and taking trace with 75p1, we have

<Tr{Q5xUT}>Figure 15a+b
<TI't1“{’)/ ZﬁleU } Figure 15a+b

“+o00 +oo “+oo
= 9—2 dz*dw*/ dz, / / d—(; d’z
s «@

x((yule” ‘asé* Lz) = (wole” 'asé*p,,yzl>)Trtr{taUzth;taUxtb
52
_ v Py
X [—00p1, Zale V7Py Vet (2e, €1 ) et (s, 21 ) [ws, 00p1] (2L [V (0, + P )e"as ™ I:ED}

o0 +o0
- / dzdeo, / 7o / d%2
™ —o0

X Tr tr{taUzth;t“Uxtb[—oopl, eulate (2 21 )Pet(Wnr 21) (s 001

o (e + ) rn AN

r—z)](y—2)1 1 1

Now we sum eqs. (F.18) and (F.19) and trace them with °p, we have

(Tr{Qss UJ }>Figure 15¢+d
= <TI‘ tr{75p1Q:cUT}>Figure 15¢+d

4 r4oo +00 d—
=9 [ dw, / o [0 / de. / &2z
—00 0

82
7iiz 5 v 1 iiﬁ 1 iiﬁ
xtr{(z 1 |e 57, [(ap, +pl>mm>(<mpye wlyr) — (zilpre e |ay))

xTr{t*U, thTtaU tb[—oopl,w*]zp(w*, ZJ_)?Z(Z;, z1 )2, oopl]x}}

+o00 d
27r2 @ 2/ dz dw*/d2

bty o) -

z—2)1(y (x = 2)]

xTr{t“UxthJtaUztb[foopl,w*]w(w*, 21 (2L, 21 )[2h, cop1]e } . (F.29)

We can now sum egs. (F.28) and (F.29) and obtain
<Tr{Q5:cUT}>Figure 15 (F30)

TR L ([ e

x(Tr{taUzth;taUxthm} + Tr{t“UxthJt“Uzthgm})

()()rabT“b LU U g }
( )(_Z)l(T{tUtUtUtXm} T{tUtUtUtle}>

where we used the operators X1, and A5, defined in egs. (6.59) and (6.61) respectively.
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Yo Yo
a) b)

Figure 16. Diagrams for the quark operators in the adjoint representation eqgs. (6.44)—(6.47).
Double dotted lines represent Wilson lines in the adjoint representation.

F.3 Evolution equation with operators in the adjoint representation

Let T be the matrix in the adjoint representation, and Tr, the trace in the adjoint repre-
sentation. From result (6.49) we can easily deduce

<Tra{fl‘ UJ}>Figures 9+ 10
_ %Tra{UzT“UJTb} /+00da/d2z
(= 2)x (7 —9) ba
{ NTEFTERAS e
A - 1 a a a
(e + 2)(Q’;Z+Q§J+fi’)1

—

=2 y—2)7  (@—2)

eilary—2) _ gilqr,m—2)

+4r /d_qu
@,

53 (2 — x)}"g“} (F.31)

Let us consider the evolution of Q%% Ué’a and Q% Ué’a starting with the diagrams with quark
in the background shock-wave given in figure 16a

bt
<Qa xL Flgure 16a

=4[t [z oot 22 e et 1) o o )
g [T° b 5 7
=—g /0 dzl*/ dZQ*(t U;ta)ijtr{”y pl <¢j(zl*,$L)wi(22*,$l)>} (F.32)
Using the quark propagator in the background of quark filed given in eq. (3.7) we obtain

T
< ng (xL ) > Figure 16a

+oo 0 0o Foy 21 % 21% g
_ 4 / 2 brrisay . .
= - d*/d / 7/ d*/ d*/d Ut
g/O “ —00 2 0 20&382 29% - 2% : Z( v )”

2

xtr{y®p, (@ le T (ap, + p )|z [0opr, 2V W2, 21) 20, 2]

x4 (2L, 21 )t (2, —oopils (21| (ap, +¢l)ei7tz2* )}ji (F.33)
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The integration over the longitudinal directions z;” and 25 yields

<ngT (xL)>Figure 16a (F.34)
+0  do Z1% Z1% —iasp
_ 4 2 1 (abrrTaay 5 1
= - d dzy dz, (LU t");4t 1
/0 20352 / Z/Z% & /z2* Z (Ui r{’Y Prl@] ] |z1)

oo 5l e ST [ ool e o) )

We can now perform the Fourier transform in coordinate space and arrive at

(QabT(ﬂu))Figure 16a

i [ e B o

<loopn, 2 1) AP L 2 (f L } (F.35)
performing the trace over the Dirac gamma-matrices and using (#—#) | (#—#)1 = —(v—2)%

we obtain

< ngT (xJ_ ) > Figure 16a

_ 8;3/+°°da/d2 o thTtaz]g/ / dz,
([oopl,z*] tctr{’)/ 3251 ( [Z*, ]de( )td[ *ﬂ_oopl]Z})ji

/ Tda / (th 1) Qs ji(=1) (F.36)

LU—Z

where in the last step we inserted the Qs, definition eq. (4.10). Until now the Wilson line
operator U;b was only a spectator, inserting it back we finally obtain

<U;b Q§§T>Figure 16a (F.37)
tood
_ 043 / @/dQ UabT {thTtaQBZ}

- _78 e d2 T N2 o TI' T ’I‘I' z T - 7’I‘I' T z
27T2/0 - / z(x—z)’i o | DUV Te{ Q52U — 1 Tr{U1 05}

Notice that on the Lh.s. of eq. (F.37) we have trace in the adjoint representation and
operator Q% defined in (6.45), while on the r.h.s. we have trace over the fundamental
representation with operator Qs, defined in eq. (4.10). Following similar steps, the result
of diagram in figure 16a for the Q%ZT operator is

<Q1x Figure 16a

9 / dzl*/ dza. [~oop1, 2.5 w(ZQ*)Zﬁfl t°[224, 214) 2t U0 (214) [214, 00P1 24
+o00 B
= 92/0 dz14 /_Oodzz*(th;ta)ijtr{ipl (Vi(z10, 1) Vi (226, 21) })

! +° da 1
— s — | d*s —— Te{tPUIt* 0.} . F.
I K e R U R (£.38)

27?2
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Thus we have

<U5b Q%2T>Figure 16a (F39)

—_%/+wm/d2212
472 Jo « (x—2)7

We now consider diagram in figure 16b which is the one with the gluon sub-eikonal correc-

1
T {U, U} Te{ Q1 -UJ} — & Te{Uf Q1 <}

tion €% Fj; in the quark propagator. Let us start again with operator QabT
<Qgs; >Figure 166 (F40)

+
2(92/ dZ1*/ dzg. [—00p1, 22451 (224) Y Py 1220, 2140t (214) [215, 001 ] 1)

+o0 _
= —92/0 dzl*/_ o (PP UT") it {7, (1) (210, L) (220, 1)) }

we now need quark propagator (3.2) and proceeding as before we integrate over the longi-
tudinal coordinates z1, and z9, and perform the Fourier transform we arrive at

T
<Qgg >Figure 166

a oo 0 da 1 Zp2 4
G (tPUlt )ij/o le*/_oodZQ* tr{'y5p1/0 —(zp|e” w1 (ap, +pJ_)]zl)p2’yS

20 as

zg
4a

g* [Teda iF -2 iz —=%)
87T/ a { p127r( z)% P 5277(3:—7:)%}

+0o0 .
Xig/ Az ([0op1, 24] 2€7 Fyj 24, —00pi]. )i (CPUT%)5
— 00

D) . p?
/ dsz*[ooplaz*]zeszij[Z*a —oop1]:(z1|(ap1 +p e’ ng*\xﬁ

= _27_‘_2 — HJ _ Z)Q g/ dz*([ooph Z*]zelJZEFi]’ [Z*a _Oopl]z)ij(th;ta)ij
1 J-
+00d
= / a / o M #utia) (F.41)

where we used tr{’y5p2(¢ — ;f)J_pQ'y (4 —#)1} = 2s(x — 2)2 and definition of operator F,
eq. (3.6).
Next, we consider Q‘ng and proceed in the same way

2 0o ;
<QC1L2T>Figure 166 — 571/0+ dfﬁ { (¢ ﬁ) 5 (ﬁ ¢) 2 }

o' e 2r(z — 2)% P 2m(x — 2)]

+00 ..
><ig/ dz*([oopl, Z*]zﬁwFij [Z*, —OOpl]z)ij(th;ta)ij =0 (F.42)
—00

where we used tr{ip, (¥ — ;f)J_pﬂE’(# —#)1} =0, so we find that the quark operator Q$”
does not mix with the gluon operator F under one loop evolution. We have obtained the
same result for the quark operator Q; defined in (4.9).

Summing up diagrams in figure 16a and b for operator Q5$T, we have

abt . s +ooda/ d*z brrtra
<Q5x >F1gure 16 — 271'2 /0 N ($ _ Z)%_ Tr{(fz + Q5z)t Uxt } (F'43)
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from which we can easily deduce
ab g oo dO[/ dQZ + + a b
e 16 = — % e U0 F.44
R M) et (S RICA (F.44)
The evolution of operator Tra{UJ]-"x}, diagrams in figure 9 and figure 10 can be deduced
from Tr{UJ]—}}, by changing t* — T* and Tr — Tr, in eq. (6.49).

We can conclude that the evolution of Tra{UJ(]:x + Qs,)}, excluding the BK-type
diagrams, is

(Tra{ U (Fe + Q52) PFigures 94 10+ 16

Qs da / 2 1 + T b b
- _ s — | d —=Tr{(F] + QL U, "\ U?
272 /0 z ( 2)2 {( z 5z) } Y

(z—2)3(y—2)1

_(((x—z,z—y) n 1

+2 Tro {U, T*UST"} l - 2)x(Z-7) (Q — Q)

:L“fz)i(yfz)i (xfz)i

)(Qt+ Q4 7v)

i(q1,y—2) _ i(q1,x—2)
~m?[ ¢ - 6@ (z — x)FLe
1L

} (F.45)

Note, that in the r.h.s. we have trace in the adjoint representation, while in the lL.h.s. we
have trace in the fundamental representation in the first term, and trace in the adjoint
representation in the second term. In eq. (F.45) we have mixing with operator O (x )
which may contribute to spin in the non forward case. Evolution equation (F.45) agrees
with the one calculated in refs. [7, 8] except for the mixing term proportional to o)) (x1).
However, when we perform the color algebra,Athe evolutioil equation (F.45) is entirely

written in terms of operators Qq(z1) Qs(x 1), Qi(z1), and Qs(z ).
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