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Abstract: We present the first lattice investigation of coupled-channel DD̄ and DsD̄s

scattering in the JPC = 0++ and 2++ channels. The scattering matrix for partial waves l =
0, 2 and isospin zero is determined using multiple volumes and inertial frames via Lüscher’s
formalism. Lattice QCD ensembles from the CLS consortium with mπ ' 280MeV, a '
0.09 fm and L/a = 24, 32 are utilized. The resulting scattering matrix suggests the exis-
tence of three charmonium-like states with JPC = 0++ in the energy region ranging from
slightly below 2mD up to 4.13GeV. We find a so far unobserved DD̄ bound state just
below threshold and a DD̄ resonance likely related to χc0(3860), which is believed to be
χc0(2P ). In addition, there is an indication for a narrow 0++ resonance just below the
DsD̄s threshold with a large coupling to DsD̄s and a very small coupling to DD̄. This
resonance is possibly related to the narrow X(3915)/χc0(3930) observed in experiment also
just below DsD̄s. The partial wave l = 2 features a resonance likely related to χc2(3930).
We work with several assumptions, such as the omission of J/ψω, ηcη and three-particle
channels. Only statistical uncertainties are quantified, while the extrapolations to the
physical quark-masses and the continuum limit are challenges for the future.
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1 Introduction

Since the discovery of the J/ψ meson in 1970s a multitude of charmonium bound states and
resonances have been found with energies ranging up to almost 5GeV. A simple cc̄ quark
model provides a reasonable description of the levels below the strong decay thresholds and
also some of the states above, however, there are clearly too many states to fit into this pic-
ture. Some mesons, such as the charged Zc states certainly have additional quark content,
while for other states the interpretation is not so clear. On the theory side the nature of
these states is being explored in tetraquark, molecular, and hybrid meson models, among
others, while on the experimental side insight is provided by establishing their quantum
numbers, decay modes and widths. Lattice QCD studies of the charmonium spectrum
have a significant role to play in terms of guiding experimental searches, determining the
quantum numbers of the states not well established as well as investigating their internal
structure.

In this work we focus on the isoscalar channel I(JPC) = 0(0++) in the region up to
4.13GeV for which there are a number of open questions. The ground state, χc0(1P ),
found well below the DD̄ threshold is interpreted as the 31P0 cc̄ level of the quark model
and is the only well established state. In the energy region around 3.9GeV, above the
threshold, one expects a corresponding excited state. So far, three hadrons have been
observed with the possible assignment of JPC = 0++: the X(3860), a broad resonance
detected by Belle [1, 2], and two narrow resonances just below the DsD̄s threshold — the
χc0(3930) discovered in the DD̄ channel by LHCb [3, 4] and the X(3915) observed through
it’s decay into J/ψω [5–8] (with the assignment of JPC = 0++ or 2++). While the latter two
resonances could be the same state, their narrowness may indicate exotic content, where
X(3915) has been interpreted as cc̄ss̄ meson in ref. [9]. Predictions have also been made
for an additional, as yet unobserved, bound state just below the DD̄ threshold [10, 11].

The determination of the low lying charmonium spectrum on the lattice is relatively
straightforward, with the energy levels being directly accessed from correlation functions
measured on the configurations generated in the Monte-Carlo simulation. Systematics aris-
ing from finite lattice spacing and simulating with unphysical light (sea) quark masses must
be addressed by carrying out a continuum and quark-mass extrapolation. Near and above
threshold, the analysis is considerably more challenging with information on the masses
and (for resonances) also the widths being inferred from scattering amplitudes which can
be obtained from the finite volume spectra via the Lüscher method [12–14]. Two-particle
interpolators must be included in the basis of operators for the construction of the correla-
tion functions in order to reliably determine these spectra. Simulating charmonia in flight
provides additional levels with which to probe the scattering matrix, however, the identifi-
cation of the continuum spin and parity quantum numbers of the levels is complicated due
to the reduced symmetry on the lattice. In addition, for the energy range of interest both
the DD̄ and DsD̄s thresholds must be considered leading to a coupled-channel scattering
analysis.

So far, the coupled-channel scattering matrix has been extracted for several light-
meson systems, for example, πK, ηK [15, 16], πη, KK̄ [17] and ππ,KK̄, ηη [18] by the
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Hadron Spectrum collaboration. In the heavy sector, there has been one investigation
of Dπ,Dη,DsK̄ scattering in isospin-1/2 [19] and a recent analysis of the Zc(3900) via
D∗D̄, J/ψπ scattering [20]. The HALQCD collaboration has also investigated the Zc(3900)
using a different approach which involves solving the Schrödinger equation with potentials
determined on the lattice [21, 22]. Pioneering works such as these were limited to a single
lattice spacing and unphysical light-quark masses.

The charmonium scalar channel has previously been studied by some of the authors
considering only DD̄ scattering with total momentum zero [23]. Here we present a lattice
study of scattering in the coupled-channelsDD̄ andDsD̄s with quantum numbers I = 0 and
JPC = 0++, 2++. This represents the first determination of the coupled-channel scattering
matrix from lattice QCD in the charmonium system with isospin zero. Two lattice volumes
are employed for the charmonium system at rest and in flight. This analysis uses the same
lattice setup as our previous article on the identification of the spin and parity of the single
hadron spectrum [24] and the investigation of single channel DD̄ scattering for JPC = 1−−

and 3−− [25]. While the present study represents a significant improvement on previous
work, some simplifications remain and a comparison of the results for the masses and widths
with experiment is qualitative. Within the energy range of interest, additional scattering
channels, such as the J/ψω, ηcη and those involving three particles, could in principle also
be relevant. The effects of these channels will be investigated in the future, along with
systematics associated with finite lattice spacing and unphysical light quark masses.

The remainder of the paper is organized as follows. We begin by reviewing the essential
general aspects of one-channel and two-channel scattering in section 2. The details of the
lattice setup and methodology are given in section 3 and the single- and two-meson interpo-
lators used in the correlation functions are discussed in section 4. Simplifying assumptions
made in this study are summarized in section 5. The first step in extracting the scattering
amplitudes is to compute the finite-volume spectra from the correlation functions. Our
analysis and the final spectra are presented in section 6. An overview of determining the
scattering amplitudes from the lattice eigen-energies is provided in section 7. Our results
for the JPC = 0++ and 2++ channels are detailed in section 8 and the relation to states ob-
served in experiment is discussed in section 9. Finally, section 10 presents our conclusions.
More details are given in several appendices.

2 Generalities on scattering matrices, poles, hadron masses and widths

The masses and widths of strongly-decaying resonances should be inferred from the study
of scattering processes where these resonances appear. In this section, we briefly review
relevant concepts regarding scattering matrices, complex energy planes, pole singularities,
hadron masses, and their decay widths. The first part lists definitions and notations for
the scattering amplitudes, the phase space factors, etc. . The second part discusses naming
conventions for various Riemann sheets, pole singularities in the complex energy plane and
their relation to the hadron properties.
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2.1 Scattering matrices for real energies

The unitary scattering amplitude S for one-channel scattering (DD̄ or DsD̄s) of spin-less
particles in partial wave l is generally parametrized in terms of the energy-dependent phase
shift δ(Ecm),

S = 1 + 2 i ρt = e2iδ , (2.1)

t−1 = cot δ ρ− i ρ = 2
Ecm p2l K̃

−1 − i ρ with K̃−1 = p2l+1 cot δ ,

where ρ ≡ 2p/Ecm, p denotes the momentum of the scattering particles in the center-of-
momentum frame and t is the scattering amplitude. The factors p−2l in front of K̃−1 lead
to smooth behavior close to the threshold. In the case of t exhibiting simple Breit-Wigner
type behavior, K̃−1/Ecm falls linearly as a function of E2

cm,

t(Ecm) = −Ecm Γ(Ecm)
E2

cm −m2
R + i Ecm Γ(Ecm)

, Γ(Ecm) = g2 p
2l+1

E2
cm

,
K̃−1

Ecm
= m2

R − E2
cm

g2 . (2.2)

The phase shift equals π/2 at Ecm = mR, while the width Γ(Ecm) is parametrized in terms
of the coupling g and the phase space. S, t, K̃ and δ depend on Ecm and partial wave l
(the dependence on l is not written explicitly).

For coupled-channel scattering of DD̄ and DsD̄s in partial wave l, the scattering ma-
trices S are energy-dependent 2× 2 unitary matrices,

Sij = δij + 2 i √ρiρj tij =
{
η e2iδi

i = j√
1− η2 ei(δ

i+δj) i 6= j
,

(t−1)ij = 2
Ecm plip

l
j

(K̃−1)ij − i ρi δij , (2.3)

ρi ≡ 2pi/Ecm =
√

1− (2mi)2/E2
cm , i, j = 1 (DD̄), 2 (DsD̄s) .

The momenta of D and Ds in the center-of-momentum frame are denoted by p1 and p2,
respectively. t is the scattering matrix and K̃(Ecm) is a real symmetric matrix. We follow
the definition of t by the Hadron Spectrum collaboration (e.g. [15]) and the definition of
K̃ from ref. [26].1

2.2 Continuation to complex Ecm, Riemann sheets and poles

In experiment and lattice QCD simulations the scattering matrices S(Ecm) are determined
for real energies. The theoretical interpretation in terms of (virtual) bound states and
resonances is conventionally made via the poles in the t-matrix, analytically continued to
the complex s-plane. The feature that leads to interesting physics is the square root branch
cut related to ρ = 2p/Ecm =

√
1− (2m)2/E2

cm starting from the threshold connecting the
physical Riemann sheet (or sheet I), conventionally chosen to have Im(ρ) > 0, to the

1Note that unlike in ref. [26] we do not divide our energy levels or physical quantities by the mass of the
scattering particles.
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Figure 1. Sketch of the pole locations in the scattering matrix t that typically affect the experi-
mental rates on the physical axes (denoted by the cyan line) for one-channel scattering (left) and
two coupled channels (right). The Roman numbers indicate the Riemann sheets where the poles
are located according to eq. (2.4). Poles immediately below a threshold, indicated by crosses, can
also have observable effects on the physical axes above the respective threshold.

unphysical Riemann sheet (or sheet II), which has Im(ρ) < 0. For a two channel system,
there will be four Riemann sheets, such that

sheet I : Im(ρD) > 0, Im(ρDs) > 0 , sheet II : Im(ρD) < 0, Im(ρDs) > 0 , (ρi = 2pi/Ecm) ,
sheet III : Im(ρD) < 0, Im(ρDs) < 0 , sheet IV : Im(ρD) > 0, Im(ρDs) < 0 .

(2.4)

Bound states, virtual bound states and resonances are related to pole singularities of
t in the complex s-plane. These poles affect the physical axes, indicated by the cyan line
in figure 1, along which the experimental measurements are made. Figure 1 presents a
schematic picture of various pole locations in our study, that can affect scattering ampli-
tudes/matrices along the physical axes for one-channel and two-channel scattering. The
location of the poles are related to the masses and widths via Epcm = m− i

2Γ for resonances
and Epcm = m for the (virtual) bound states.

In the close vicinity of the pole, the scattering matrix has the energy dependence

tij ∼
ci cj

(Epcm)2 − E2
cm

for Ecm ' Epcm , i = 1 (DD̄), 2 (DsD̄s) , (2.5)

and the residue (cicj) can typically be factorized into the couplings ci,2 whose relative
size is related to the branching ratios of a resonance (associated with the pole) to both
channels i = 1, 2.

3 Lattice details

We employ two ensembles generated with Nf = 2 + 1 non-perturbatively O(a) improved
Wilson dynamical fermions provided by the Coordinated Lattice Simulations (CLS) con-
sortium [27, 28]. The quark masses mu/d,s are chosen along a trajectory that approaches
the physical point holding the average quark mass, 2mu/d +ms, constant. The ensembles,

2The couplings ci should not be confused with the coupling g (2.2) that will be used to parametrize the
full width of a resonance.
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mπ [MeV] mK [MeV] mD [MeV] mD∗ [MeV] mDs [MeV] aMav [MeV]
280(3) 467(2) 1927(2) 2050(2) 1981(1) 3103(3)

Table 1. Hadron masses in physical units for the gauge configurations used in this project, where
Mav = (mηc + 3mJ/ψ)/4. The hadrons containing charm quarks are from κc = 0.12315.

denoted H105 and U101, have an inverse gauge coupling β = 6/g2 = 3.4, corresponding to
a lattice spacing a = 0.08636(98)(40) fm and volumes NT ×N3

L = 128× 243 and 96× 323,
respectively [29]. Open boundary conditions in time are imposed [30] and the sources of
the correlation functions are placed in the bulk away from the boundary. We remark that
these correlation functions do not show any effects related to the finite time extent in the
time regions analyzed. For H105 we use replica r001 and r002 for which the issue of nega-
tive strange-quark determinants described in ref. [31] is not of practical relevance. For our
analysis we use 255 (492) configurations on two replicas for ensemble U101 (H105).

The masses of the pion, kaon, D and Ds mesons determined on the larger ensemble
are shown in table 1. Note that the chosen quark-mass trajectory leads to a larger than
physical mu/d and a smaller than physical ms. This means that the splitting between
the DD̄ and DsD̄s thresholds is smaller than in experiment, emphasizing the need for a
coupled-channel analysis. We employ the charm-quark hopping parameter κc = 0.12315
corresponding to a charm-quark massmc and spin-averaged 1S-charmonium massMav that
are slightly larger than their physical values. For estimates of the statistical uncertainty
we use the bootstrap method with (asymmetric) error bars resulting from the central 68%
of the samples. Further details are collected in appendix A. The correlation matrices
are averaged over several source-time slices and momentum polarizations to increase the
statistical precision. Note that all quoted uncertainties are statistical only, and that results
quoted in MeV have been obtained using the central value of the lattice scale without
propagating its statistical or systematic uncertainties into the results.

For hadrons with charm quarks, non-negligible discretization effects are observed when
computing the dispersion relation on lattices with a ≈ 0.086 fm. A comparison of the finite
momentum lattice energies and the continuum dispersion relation for the D meson on the
two ensembles utilised in this work is given in table II of ref. [25]. The deviations found
are small but statistically significant. A similar picture is observed for the Ds meson. Note
that, these deviations may spoil the finite-volume analysis outlined in section 7, which
assumes the continuum dispersion relation. In particular, it is important to ensure that if
the energy shifts observed with respect to nearby non-interacting two hadron levels are zero
then the resulting phase shift arising from the finite-volume analysis is also zero. In order
to achieve this and mitigate the affect of the discretisation effects we adopt the analysis
strategy described in section IV.B. of ref. [25]. Below we reiterate the most important
details of the method.

First the energy shift of each interacting eigenstate with respect to a nearby non-
interacting two-hadron level H1(~p1)H2(~p2) is computed

(∆Elat)s = (Elat)s − (Elat
H1(~p1))s − (Elat

H2(~p2))s , (3.1)

– 6 –
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where ~p1,2 = ~n1,2
2π
L , ~p1 + ~p2 = ~P and s denotes the bootstrap sample. Here, (Elat)s is

the energy of the interacting two-hadron system, while (Elat
Hi(~pi))s is the energy of a single

hadron (either D or Ds meson in this paper) with momentum ~pi measured on the lattice.
We then use

(Ecalc)s = (∆Elat)s +
(
Econt
H1(~p1)

)
s

+
(
Econt
H2(~p2)

)
s

(3.2)

as input to the quantization condition (see eq. (7.1)) for each bootstrap sample s. The
energies (Econt

Hi(~pi))s are computed from the continuum dispersion relation using the lattice
momenta ~p1,2 and the single-hadron (D andDs) masses at rest. The resulting energies Ecalc

are equal to Elat in the naive continuum limit a→ 0 by construction. The non-interacting
levels are chosen via an analysis of the overlap factors by identifying those levels that
are dominated by the corresponding two hadron interpolators.3 In the case where more
than one suitable nearby level was identified, we found the results obtained for Ecalc were
consistent. A comparison of Ecalc with Elat is presented in appendix B.

For further details of the lattice methodology, in particular of the setup for computing
the quark propagators with the (stochastic) distillation method [32, 33] we refer the reader
to our previous papers [24, 25].

4 Interpolators

The main aim of this work is to investigate the coupled-channel DD̄-DsD̄s scattering ampli-
tudes and cross-sections in the channel I(JPC) = 0(0++) in the energy range encompassing
the DD̄ threshold up to 4.13GeV. Following Lüscher’s approach [12–14, 34], this requires
a reliable extraction of the finite-volume charmonium spectrum below 4.13GeV on several
different volumes and/or in different momentum frames. In this study, we consider the
charmonium spectrum in four different lattice irreducible representations (irreps) Λ:

i) ΛP = A+
1 , |~P |2 = 0 , JP [λ] = 0+[0] ,

ii) Λ = A1 , |~P |2 = 1 , JP [λ] = 0+[0], 2+[0] ,

iii) Λ = A1 , |~P |2 = 2 , JP [λ] = 0+[0], 2+[0], 2±[2] ,

iv) Λ = B1 , |~P |2 = 1 , JP [λ] = 2±[2] . (4.1)

The squared momenta |~P |2 in the lab frame are given in units of (2π/L)2. Charge
conjugation C = + is a good quantum number in all frames and hence is suppressed
for brevity. On the right of eq. (4.1), we list all relevant states with quantum numbers
JP [λ] contributing to the respective irreps. Here λ refers to the helicity of the state. The
first three irreps are relevant for an investigation of the JP = 0+ channel. The irreps
in the moving lab frames also receive contributions from states with JP [λ] = 2+[0] and
2±[2] within the energy range of interest.4 The analysis of the spectrum in the B1 irrep
constrains the parameters for DD̄ scattering with l = 2. This partial wave inevitably

3The overlap factor refers to the overlap of an operator O with an eigenstate |n〉, 〈0|O|n〉.
4States with other JP , such as 3+, contribute at higher energies. We assume these higher lying states

to have negligible influence in the energy range considered.
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|~P |2 Λ(P )C O Nops |~P |2 Λ(P )C O Nops

Oh 0 A++
1 c̄c 7 Dic4 1 B+

1 c̄c 11
D(0)D̄(0) 2 D(2)D̄(1) 1
D(1)D̄(1) 1 Dic2 2 A+

1 c̄c 28
Ds(0)D̄s(0) 2 D(2)D̄(0) 2
D∗(0)D̄∗(0) 2 D(1)D̄(1) 2
J/ψ(0)ω(0) 2 D(2)D̄(2) 1

Dic4 1 A+
1 c̄c 17 D(3)D̄(1) 1

D(1)D̄(0) 2 Ds(2)D̄s(0) 1
D(2)D̄(1) 1 Ds(1)D̄s(1) 1
Ds(1)D̄s(0) 2 J/ψ(2)ω(0) 3
J/ψ(1)ω(0) 2

Table 2. The single- and two-meson interpolators utilized in each lattice irrep Λ(P )C considered
in this study. We use the simplified notation M1(~p 2

1 )M2(~p 2
2 ) for the two-meson interpolators with

the momentum ~pi of each meson (i = 1, 2) given in units of 2π/L. The full expressions are omitted
for brevity. Nops indicates the number of operators of each type employed.

contributes to the finite-volume spectrum of irreps A1 with P > 0. We utilize a large basis
of single-meson as well as two-meson interpolators in the above irreps to reliably determine
the relevant low energy spectrum.

As in our previous publications [24, 25], we construct the single-meson interpolators
following the procedure in refs. [35, 36], using up to two gauge covariant derivatives. Table 2
lists the number of single-meson operators employed in each of the finite-volume irreps
considered. The procedure discussed in ref. [24] guides us in assigning the quantum numbers
JP [λ] to the extracted energy levels and aids us in selecting the levels relevant for the
amplitude analysis.

The DD̄ as well as DsD̄s interpolators are constructed following the same procedure as
in ref. [25]. The momentum combinations implemented in this study are given in table 2.
The two operators for D(s)(0)D̄(s)(0) differ in terms of the gamma matrices employed:
γ5 or γtγ5 for each meson. Similarly, for D∗(0)D̄∗(0) and J/ψ(0)ω(0), two operators are
constructed by employing γi or γtγi for the spin structure. Only one eigenstate related to
J/ψ(0)ω(0) or D∗(0)D̄∗(0) is expected in the non-interacting limit. We also include two-
meson operators involving spin 1 mesons, such as J/ψω and D∗D̄∗ (see table 2). For non-
zero momenta, the construction of such operators needs additional care and we follow the
induced representation method described in appendix A2 of ref. [37]. In the |~P |2 = 2 frame,
for example, we implement three linearly independent J/ψ(2)ω(0) operators and observe
three almost-degenerate eigenstates. These operators are not included when extracting the
finite volume spectrum for the amplitude analysis, as discussed in section 5.
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5 Assumptions and simplifications in the present study

This study is performed using lattice gauge ensembles with two different physical volumes
at a single lattice spacing and at unphysical quark masses (the resulting masses of key
hadrons are given in table 1). As a consequence, only a qualitative comparison of the
results can be made with experiment.

Unlike for light hadrons [38], scattering studies in the charmonium sector are still
at an early stage. For the physical states we are interested in, a three-particle channel
and multiple two-particle channels are open and all could, in principle, be relevant. One
possible approach is to simulate at very heavy pion (and kaon) mass, such that the number
of relevant decay modes is reduced to a few two-hadron modes, which can then be fully
explored. This approach has the disadvantage that the quark masses are far removed
from their physical values, making a comparison to experiment a challenge. We opt for
a strategy where we simulate at a moderate pion mass of 280MeV and take into account
the scattering channels expected to be most relevant for the physics close to the open-
charm threshold(s). Some additional channels are neglected (as discussed below), however,
our assumptions about which thresholds are relevant can be relaxed successively in future
calculations.

Neglecting certain scattering channels in our study is relevant in two different ways,
which could be seen as two different assumptions. Some channels are already neglected
in constructing the correlator matrices. This implicitly assumes that the neglected multi-
hadron correlators would simply yield additional energy levels rather than significantly
modifying the extracted spectrum. Additionally, we assume that the resulting energy lev-
els can be analyzed with the (coupled-channel) formalism for the channels we deem to be
dominant, which might fail if there is significant coupling to neglected channels. Beyond
the scattering channels investigated explicitly, our current study includes J/ψω and (some)
D∗D̄∗ operators in the interpolator basis. Due to the poor signal obtained for light isoscalar
mesons, the energy levels close to the non-interacting J/ψω levels are not very precisely de-
termined and would not provide strong constraints on the scattering matrix. In particular,
almost all energy levels dominated by J/ψω interpolators fall within one standard devia-
tion of the non-interacting J/ψω energies, and — apart from the additional energy levels
which appear — the other finite-volume energies do not shift significantly when including
these interpolators. Section 6 will present the finite volume spectrum up to 4.13GeV based
on all the operator types in table 2, apart from the J/ψω operators (see figure 2). Note
that for our lattices the J/ψω threshold is located at approximately 3.95GeV.

We also neglect the ηcη channel which has a threshold of around 3.54GeV. We remark
that this decay channel has not been observed for any of the experimental candidates
mentioned in the introduction (and discussed in more detail in section 9). Operators with
more than two hadrons are also not implemented. The lowest three-hadron threshold is for
the decay into χc0ππ at 4.02GeV. This threshold is within the energy region we consider,
close to the upper end.

The analysis of DD̄ scattering with l = 2 assumes that the coupling to the channel
DsD̄s with l = 2 is negligible in the analyzed energy region and hence is omitted. We
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also neglect the coupling to DD̄∗ with l = 1, which contributes to irrep B1. The DD̄∗

threshold opens at 4.0GeV, while the lowest non-interacting level D∗(2)D̄(1) would appear
at Ecm ' 4.2GeV and 4.1GeV on the NL = 24 and 32 ensembles, respectively, which is at
the upper limit of the analyzed region (see figure 2). We also assume negligible effect of
the D∗D̄∗ channel with threshold at 4.1GeV.

As in all studies of charmonium-like resonances to date, charm annihilation Wick
contractions are omitted. All the remaining contraction diagrams arising from the single-
and two-meson operators in our basis (shown in figure 1 of ref. [23]) are computed following
the procedures described in our previous publications [24, 25].

We stress that we determine the finite-volume spectra at a single lattice-spacing and
are therefore unable to quantify the uncertainty associated with the lattice discretization.
In particular, the uncertainty arising from the heavy quark discretization may be non-
negligible. As discussed in the previous section, the dispersion relation deviates from the
continuum relation in our study and spin-splittings are also likely to be affected [39, 40].
In general, lattice spacing effects in heavy-light mesons and charmonium are different with
the net result that even at physical light-quark masses the open-charm thresholds can be
shifted with respect to the measured charmonium states at finite lattice spacing.

6 Determination of the finite-volume spectrum

This section presents the eigen-energies En that will be used to determine the scattering
matrices. The energies are obtained from the correlation matrices Cij(t) = 〈Oi(t)O†j(0)〉
via the widely-used variational method. This involves solving the generalized eigenvalue
problem C(t)u(n)(t) = λ(n)(t)C(t0)u(n)(t) for the eigenvalues λ(n)(t) and the eigenvectors
u(n)(t) [41–43]. We use the reference time t0/a = 3 or 4. The eigen-energies are extracted
from 1-exponential fits to the eigenvalues λ(n)(t) = Ane

−Ent with the fit range, in most
cases, starting between timeslices 10 and 12.

The finite-volume spectrum of the charmonium system with isospin I = 0 and C = +1
is shown in figure 2. We present the spectrum in the center-of-momentum (cm) frame
Ecm,n = [E2

n − ~P 2]1/2,5 for irreducible representations ΛP = A
(+)
1 , B1 and total momenta

|~P |2 = 0, 1, 2. These irreps give information on the charmonium(like) states and D(s)D̄(s)
scattering in the channels with JPC = 0++, 2±+ (see eq. (4.1)). The energies indicated by
the black-circles are used to extract information on D(s)D̄(s) scattering. These energies are
near or above the DD̄ threshold and are precise enough to reliably resolve the energy-shifts
with respect to the non-interacting energies of D(s)D̄(s) (indicated by the solid lines). The
light-blue circles are the energy levels related to ground-state charmonia with JP = 2±.

7 Determining scattering matrices from lattice finite-volume energies

The bound states and resonances are inferred from the scattering matrices as briefly re-
viewed in section 2. The infinite-volume scattering matrix S(Ecm) is related to the finite-

5Here, the energy in the lattice frame En stands for Ecalc
n obtained according to eq. (3.2) or eq. (17) of

ref. [25].
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Figure 2. The eigen-energies in the center-of-momentum frame (Ecm) for the charmonium-like
system with I = 0 and C = +1. Results are presented for irreducible representations ΛP = A

(+)
1 , B1

and total momenta |~P |2 = 0, 1, 2, which give information on the channels with JPC = 0++, 2±+.
The data points correspond to the eigen-energies obtained from the lattice simulation: the black
circles are used to extract the coupled-channel scattering matrices for DD̄ −DsD̄s, while the blue
circles are omitted from the scattering analysis. The solid and dashed red (green) lines correspond
to discrete DD̄ (DsD̄s) eigen-energies in the non-interacting limit: solid lines correspond to the
operators that are implemented, while dashed lines correspond to the lowest-lying energies from
operators that are not implemented. Dotted lines represent thresholds. The data points indicated
by the light blue circles correspond to ground-state charmonia with JPC = 2++ and 2−+, which
appear at m ' 3.56GeV and 3.83GeV, respectively. Some points are shifted horizontally slightly
for clarity.

volume two-hadron spectrum for real energies Ecm above the threshold and somewhat
below it through the well-known Lüscher relation [12–14]. The eigen-energies of the cou-
pled channel DD̄ −DsD̄s system given in the previous section provide information on the
2 × 2 scattering matrix S(Ecm) for these coupled channels via the generalization of this
formalism [34, 44, 45], considered (for other channels), for example, in refs. [16, 17, 19].
The S matrix can be expressed in terms of a real function K̃(Ecm) for one-channel scat-
tering (2.1) and a real symmetric 2 × 2 matrix K̃(Ecm) for two coupled channels (2.3),
as detailed in the next section. K̃ uniquely determines S, while both depend also on the
partial wave l. We use the spectrum from the previous section to determine K̃(Ecm) using
the publicly available package TwoHadronsInBox [46].

The relation between discrete lattice eigen-energies Ecm and K̃-matrix for coupled-
channel scattering is referred to as the quantization condition [46]

det[K̃−1
l;ij(Ecm) δll′ −B

~P ,Λ
ll′;i (Ecm) δij ] = 0 . (7.1)
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Both terms in the determinant are matrices in the space of partial waves l, l′ and channels
i, j (DD̄, DsD̄s or both), and the determinant is evaluated over both indices. K̃l;ij δll′ is
an unknown matrix in channel space that depends on the partial wave l; it is diagonal in
l since the good quantum numbers in continuum scattering of spin-less particles (such as
D and Ds) are J , S = 0 and l = J − S = J . The B ~P ,Λ

ll′;i (Ecm) are known box-functions [46]
that are in general non-diagonal in the partial wave index.

In one-channel scattering and when only partial wave l contributes, relation (7.1) sim-
plifies to K̃−1(Ecm) = B

~P ,Λ(Ecm), since the argument of the determinant is a 1×1 matrix.
The values of K−1(Ecm) will be shown as points in figures for one-channel scattering.
For two coupled channels, for the case when only partial wave l contributes, the deter-
minant equation (7.1) provides one relation between K̃11(Ecm), K̃22(Ecm) and K̃12(Ecm)
for each energy level, complicating the determination of those functions. Therefore, we
follow the strategy proposed in ref. [44], where the K̃ij(Ecm) are parametrized as functions
of the energy. In this strategy, the K̃-matrix elements are determined by requiring that
relation (7.1) is simultaneously satisfied for all relevant lattice energies Ecm.

We will focus on certain interesting and rather narrow energy regions, where a linear
dependence on s is expected to be a good approximation

K̃−1
ij (s)
√
s

= aij + bijs , s = E2
cm . (7.2)

Such a parametrization is equivalent to a Breit-Wigner parametrization in the resonance
region and is also similar to the well-known effective range expansion K−1

ij (s) = cij + dijp
2

near threshold, where p is the momentum of the scattering particles in the center-of-
momentum frame. We determine the parameters aij and bij following the strategy discussed
above, using the determinant residual method proposed in [46], which is briefly described
in appendix C. A posteriori, we always verify that the resulting parametrization predicts
via eq. (7.1) the same number of eigen-energies observed in the actual simulation in the
relevant energy range; this is shown in the Ω plots for some fits in appendix D. This
procedure will be followed for the extraction of the coupled-channel scattering matrix as
well as for one-channel scattering.

This study is based on the parametrization in eq. (7.2). Alternatively, one could
parametrize K̃ij(s) itself with common pole terms in both channels, such as those tabulated
in table IV of ref. [47]. We have performed fits with different parametrizations of K̃ij(s)
(single pole, double pole, triple pole, poles with polynomial terms, etc.). We find that
fits (for coupled DD̄−DsD̄s scattering) with a single-pole in the higher energy region are
not consistent with our data. Including two or more poles/resonances leads to fits with
six or more parameters. We observed that the data used in this work is insufficient to
accommodate such a large number of parameters and hence such an analysis is beyond
scope of this work. An investigation of the model-independence of the findings presented
here requires extending the lattice calculation to include a larger set of ensembles with high
statistics.

The box-function B ~P ,Λ
ll′;i (Ecm) can have off-diagonal elements for l′ 6= l due to the lack of

rotational symmetry in a finite box. This will result in contributions from multiple partial
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waves in the quantization condition eq. (7.1) for a given lattice irrep Λ. We consider
partial waves l = 0 and l = 2 and ignore contributions from l ≥ 3, which is a reasonable
assumption in the energy region considered for the respective irreps. In this case the only
non-diagonal elements Bll′ among the A1(P 2 6= 0) irreps that are nonzero are BP=001,A1

02
and BP=110,A1

02 . These will be taken into account in the analysis of section 8.4.2.

8 Results for various channels and energy regions

In this section we present our results for the scattering matrices, pole positions, masses,
and widths of JPC = 0++ and 2++ charmonium(like) states in various energy regions and
with varying assumptions. The energy range from slightly below 2mD up to 4.13GeV is
divided into smaller intervals, where the elements of the coupled DD̄ − DsD̄s scattering
matrix are separately parametrized according to eq. (7.2) or as a constant. The details
of the parametrizations and the results are presented in separate subsections below, while
information on the energy levels considered in each case is given in appendix D.

A single description of the whole energy region requires a finite-volume analysis involv-
ing many more parameters, which results in more challenging and unstable fits. Such an
analysis is beyond the scope of the current investigation. Our inferences and conclusions
are based on the finite-volume analysis of separate energy regions. Similar parametriza-
tions to those employed for the separate energy regions, are employed collectively to a
wider energy range in appendix E as an additional consistency check.

8.1 DD̄ scattering with l = 0 near threshold

The narrow energy region near the DD̄ threshold is significantly below the DsD̄s threshold
and can be treated in a one-channel approach. We employ the parametrization in eq. (7.2)

p cot δl=0
DD̄

Ecm
= (K̃−1)l=0

11
Ecm

= a′11 + b′11E
2
cm , (8.1)

which is equivalent to the effective range expansion p cot δ0 = 1/a0 +r0p
2/2 near threshold.

Four lattice energy levels with Ecm closest to 2mD (listed in appendix D.1) are utilized to
determine the parameters via the quantization condition (7.1). We find

a′11 = −2.4413± 0.2986
b′11 = (0.8519± 0.1067) a2 , cor =

[
1. −0.98

1.

]
,

χ2

d.o.f. = 1.5 , (8.2)

where cor is the correlation matrix defined in appendix A. The fit is shown in figure 3a.
This scattering matrix leads to a bound state at the energy Ecm = m when the scattering
matrix t (2.1) has a pole on the real axis below threshold on sheet I

t = 1
ρ(cot δ − i) =∞ → cot δ = i , (8.3)

p cot δ/Ecm = ip/Ecm = −|p|/Ecm , (p = i|p|) . (8.4)

The l.h.s. of the second equation is shown as the red line in the figure, while the r.h.s. is
indicated by the orange line. The bound state occurs at the value Ecm = m, where the two
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Figure 3. DD̄ scattering in partial wave l = 0 near threshold. The green dashed line denotes the
DD̄ threshold in the simulation where mD ' 1927MeV. (a) The violet crosses show the quantity
p cot δ/Ecm, related to the scattering phase shift δ, as a function of center-of-mass energy Ecm.
The red line indicates the parametrization of eqs. (8.1) and (8.2). The orange line represents
ip/Ecm. A bound state is located at the energy where the red and orange curves intersect. (b) The
quantity ρ|t|2 that is proportional to the number of DD̄ events in experiment NDD̄ ∝ pσ ∝ ρ|t|2
(ρ = 2p/Ecm). The gray bands represent the uncertainty as defined in appendix A. (c) Position of
the pole of the scattering matrix on sheet I: the real component corresponds to the binding energy,
presented in eq. (8.5).

curves intersect. The slope of p cot δ at the intersection, is smaller than the slope of −|p|,
as required for an s-wave bound state (see section VC of [25]). The location of the pole in
the scattering matrix is shown in figure 3c. The bound state appears just below the DD̄
threshold with the binding energy

χDD̄c0 : m− 2 mD = −4.0 +3.7
−5.0 MeV . (8.5)

We denote this state by χDD̄c0 , indicating it has JPC = 0++ and a strong connection to the
DD̄ threshold. This state comes in addition to the conventional χc0(1P ), which is found
significantly below threshold. Experiments cannot explore DD̄ scattering below threshold,
however, a closeby bound state below threshold could be identified experimentally through
a sharp increase of the rate just above threshold. Figure 3b shows a dimensionless quantity
ρ|t|2 related to the number of events NDD̄ ∝ pσ ∝ ρ|t|2 expected in experiment. It features
a peak above threshold, which increases much more rapidly than the phase space.

Such a DD̄ bound state was not claimed by experiments so far. A similar state was
predicted in phenomenological models [10, 48, 49], and some indication for it was suggested
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in the experimental data [11, 50] and in data from the lattice simulation of ref. [23]. A
more detailed discussion follows in the summary in section 9.

Details of the fit (8.2) and some variations thereof are provided in appendix D.1. In
these fits, the ensemble average of the data gives rise to a bound state, while a very small
proportion of the bootstrap samples instead produce a virtual bound state. This indicates
that our lattice results, at the employed quark masses, favour the existence of a bound
state. However, with the present statistical accuracy, one cannot completely rule out the
existence of a virtual bound state. The robust conclusion is that we observe a significant
DD̄ interaction near threshold, leading to one state just below threshold. Such a state
leads to an increase of the DD̄ rate above threshold irrespective of whether it is a bound
or a virtual bound state. Note that it is not known whether this state would also feature
in a simulation with physical quark masses.

8.2 DsD̄s scattering with l = 0 near threshold in the one-channel approxi-
mation

The DsD̄s channel carries the same quantum numbers as DD̄ necessitating the consider-
ation of coupled-channel scattering. In this subsection we aim to get a rough estimate of
DsD̄s scattering in the one-channel approximation, which will also provide initial guesses
for the parameters when coupled channel scattering is considered in section 8.4. The DsD̄s

scattering near threshold is parametrized by

p cot δl=0
DsD̄s

Ecm
= (K̃−1)l=0

22
Ecm

= a22 + b22E
2
cm . (8.6)

We employ the quantization condition (7.1) together with four lattice energies close to this
threshold that are dominated by DsD̄s interpolators (listed in appendix D.2) and obtain

a22 = −2.0473± 0.1513
b22 = (0.6737± 0.0514) a2 , cor =

[
1. −0.999

1.

]
,

χ2

d.o.f. = 2.8 . (8.7)

The resulting fit is shown in figure 4a. The scattering matrix has a bound state pole at
the energy Ecm = m where condition (8.3) is satisfied, see figure 4c. Again, the slope of
p cot δ is smaller than the slope of −|p| at the position of the pole, as required for an s-wave
bound state (see section VC of [25]).

We find a shallow DsD̄s bound state at

χDsD̄s
c0 : m− 2mDs = −6.2 +3.8

−2.0 MeV (8.8)

that we denote χDsD̄s
c0 , indicating it has JPC = 0++ and a strong connection to the DsD̄s

threshold. This state is responsible for the significant increase in the DsD̄s rate shown
in figure 4b just above threshold. In order to search for the χDsD̄s

c0 in experiment an
exploration of the DsD̄s invariant mass near threshold would be invaluable. In one-channel
DsD̄s scattering, considered here, the state is decoupled from DD̄, while it will become
a narrow resonance and acquire a small width when the coupling to DD̄ is considered in
section 8.4.
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Figure 4. DsD̄s scattering in partial wave l = 0 in the one-channel approximation. The green
dashed line denotes the DsD̄s threshold in the simulation, where mDs

' 1981MeV. (a) The violet
crosses show the quantity p cot δ/Ecm, related to the scattering phase shift δ, as a function of center-
of-mass energy Ecm. The red line indicates the parametrization of eqs. (8.6) and (8.7). The orange
line represents ip/Ecm. A bound state is located at the energy where the red and orange curves
intersect. (b) The quantity ρ|t|2 that is proportional to the number of DsD̄s events in experiment
NDsD̄s

∝ pσ ∝ ρ|t|2 (ρ = 2p/Ecm). (c) Position of the pole of the scattering matrix on sheet I: the
real component corresponds to the binding energy, presented in eq. (8.8).

Two candidates χc0(3930) [3] andX(3915) [2] (which may correspond to the same state)
have already been observed in experiment just below the threshold 2mexp

Ds
' 3936MeV; they

have a small coupling to DD̄ and a small width. If the DsD̄s bound state (8.8) corresponds
to χc0(3930) and/or X(3915), it naturally explains both features as will be discussed in
section 9.

8.3 DD̄ scattering with l = 2 and JPC = 2++ resonance

This channel features charmonia with JPC = 2++. It is not the main focus of our study,
however, an estimate of its scattering amplitude is required to extract the l = 0 scattering
amplitude using eq. (7.1). We consider the energy region encompassing the 2++ resonance
and neglect the coupling to DsD̄s scattering with l = 2, which we assume to be negligible
in this region. The scattering amplitude is parametrized by the Breit-Wigner form (2.2)

p5 cot δl=2
DD̄

Ecm
= (K̃−1)l=2

11
Ecm

= a+ b E2
cm = m2

J2 − E2
cm

g2
J2

, (8.9)
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Figure 5. DD̄ scattering in partial wave l = 2 in the energy region around the conventional
χc2(3930) resonance. (a) The purple crosses show the quantity p cot δ/Ecm and the red line repre-
sents a simple Breit-Wigner resonance fit. (b) The quantity ρ|t|2 that is proportional to the number
of DD̄ events in experiment NDsD̄s

∝ pσ ∝ ρ|t|2 shows a resonance peak. (c) The position of the
χc2(3930) resonance pole Epcm = m− i

2Γ of the scattering matrix on sheet II from eq. (8.11).

and the parameters are extracted via the quantization condition (7.1). We find

mJ2 = (1.762± 0.016)a−1 = (4.026± 0.036) GeV,
gJ2 = (10.8± 3.0)a = (4.7± 1.3) GeV−1 cor =

[
1. 0.54

1.

]
,

χ2

d.o.f. = 1.0 ,

(8.10)
using the four lattice energies closest to the resonance region (employing irreducible rep-
resentation B1 with total momentum |~P | = 1 as detailed in appendix D.3). The corre-
sponding fit is shown in figure 5a. The mass mJ2 corresponds to the energy where the
phase-shift reaches π/2, which is close-to the 2++ resonance mass obtained from the pole
position below, while the coupling gJ2 is related to its width as shown in eq. (2.2).

The position of the pole Epcm of the scattering matrix (8.9) on sheet II provides a better
way of determining the resonance mass m and width Γ. We obtain

χc2(3930) : Ep = (4.008 +0.014
−0.022) − i

2 (0.064+0.032
−0.042) GeV = m− i

2Γ. (8.11)

The pole is plotted in figure 5c. This leads to the lowest JPC = 2++ resonance above DD̄
threshold with

χc2(3930) : m−Mav = 905 +14
−22 MeV , Γ = 64+32

−42 MeV , g = 4.5+0.7
−1.5 GeV−1 , (8.12)

– 17 –



J
H
E
P
0
6
(
2
0
2
1
)
0
3
5

where g parametrizes the width Γ = g2p5/m2. This likely corresponds to the well-
established resonance χc2(3930) = χc2(2P ) [2]; a detailed comparison with experiment
is made in section 9. The resonance mass and the coupling obtained from the pole and
from eq. (8.10) are consistent, which is expected for a narrow resonance.

The next higher 2++ charmonium is estimated6 to be near Ecm ' 4.2GeV, which is
above our region of interest. We assume it to be narrow and to have a negligible effect on
the analysis of the lower-lying 2++ resonance.

8.4 Coupled DD̄, DsD̄s scattering with l = 0 for Ecm ' 3.93–4.13GeV

Finally, we turn to the coupledDD̄−DsD̄s scattering. We focus on the energy region Ecm '
3.93–4.13GeV near the DsD̄s threshold and we find an indication for several interesting
hadrons. The scattering matrix for partial wave l = 0 is parametrized as

(K̃−1)l=0

Ecm
=
(
a11 + b11E

2
cm a12

a12 a22 + b22E
2
cm

)
≡

m2
J0−E

2
cm

g2
J0

a12

a12 a22 + b22E
2
cm

 , (8.13)

with the off-diagonal element held constant in Ecm. Of the two equivalent parametrizations
shown above, we will utilize the one on the r.h.s. The 5 parameters in eq. (8.13) are
determined using all levels of irreps A(+)

1 within the energy region Ecm = 3.93− 4.13GeV
displayed in figure 2: there are 14 levels from three frames with P 2 = 0, 1, 2 and from
two spatial volumes NL = 24, 32 (see the black circles in the figure). The quantization
condition (7.1) for A(+)

1 irreps depends on the scattering amplitudes for l = 0, which we
aim to determine. However, it also depends on the scattering amplitudes for l = 2 when
P > 0. Below we present analyses both including and excluding the contribution from the
l = 2 partial wave.

8.4.1 Analysis omitting l = 2

In the first analysis we omit the contribution of the partial-wave l = 2. This is expected to
be a fair approximation since l = 2 effects DD̄ scattering only in the narrow 2++ resonance
region that is at the upper end of the current energy range of interest. The 5 parameters of
the scattering matrix (8.13) are determined employing 13 out of 14 eigen-energies, where
the level dominated by c̄c[J=2] operators is omitted7

mJ0 = (1.744± 0.0060)a−1 = (3.986± 0.014) GeV
gJ0 = (0.473± 0.023)a−1 = (1.08± 0.053) GeV
a22 = −1.474± 0.019
b22 = (0.490± 0.010)a2

a12 = −0.0362± 0.0011

cor =


1. −0.034 0.0756 0.11 0.049

1. 0.049 0.041 0.26
1. 0.12 0.030

1. 0.16
1.

 ,

χ2

d.o.f. = 0.47 .

(8.14)
6This is based on the second excited level in irrep E++ with P = 0 that employs only c̄c interpolators.
7This level corresponds to the 5th excited state in the A1 irrep with P = 1 on the smaller volume,

NL = 24, see figure 2.
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The lattice energy levels and the levels predicted by this parametrization are compared in
appendix D.4, where we verify that the same number of levels is observed and predicted.

The resulting scattering matrix has several poles in the energy region investigated and
their locations (Epcm) in the complex energy plane are shown in the left pane of figure 6.
The couplings ci to both channels are extracted from the behavior of tij near the poles
using eq. (2.5) and are given in the same figure.

8.4.2 Analysis including l = 0 and l = 2

In the following we present our main result for the coupled channel scattering in the energy
region 3.93− 4.13GeV. We fix the scattering amplitude for DD̄ scattering in partial wave
l = 2 to the values in eq. (8.10), while DsD̄s scattering in partial wave l = 2 is neglected.
The parameters of the coupled DD̄, DsD̄s scattering matrix (8.13) with l = 0 are then
determined using all 14 eigen-energies in the energy region of interest (from irreps A(+)

1 )

mJ0 = (1.744± 0.0011)a−1 = (3.986± 0.026) GeV
gJ0 = (0.583± 0.028)a−1 = (1.333± 0.064) GeV
a22 = −2.409± 0.018
b22 = (0.800± 0.009)a2

a12 = −0.0176± 0.0005

cor =


1. −0.078 0.13 0.079 0.023

1. −0.12 −0.14 0.33
1. −0.0019 −0.18

1. −0.0096
1.

 ,

χ2

d.o.f. = 0.30 .

(8.15)

The coupling between channels a12 is non-zero but small. We also performed a study where
five parameters for l = 0 and two parameters for l = 2 are fitted simultaneously using 18
levels of irreps A(+)

1 and B1, and we obtain consistent results.
The scattering matrix has several poles in the energy region investigated and their

locations (Epcm) in the complex energy plane are shown in the right pane of figure 6. The
elements of scattering matrix tij (2.5) near the poles are parametrized by the couplings
ci presented in the same figure. These give information on the couplings of a resonance
(associated with the pole) to both channels i = 1, 2. The location of poles and the cor-
responding ci are similar to those extracted in the analysis omitting l = 2, shown in the
left pane of figure 6. The experimental rates are related to the values of √ρiρj |tij |2 on the
physical axes, which are presented for DD̄ → DD̄, DsD̄s → DsD̄s and DD̄ → DsD̄s in
figure 7. Alternatively, the unitary 2×2 scattering matrix S (2.3) on the physical axes can
be described by the phase shifts δDD̄, δDsD̄s and inelasticity η, which are shown in figure 8.

We find that the DD̄ and DsD̄s channels are not strongly coupled, which can be seen
from the inelasticity η ' 1 in figure 88 and from the smallness of the off-diagonal element
a12 in eqs. (8.15) and (8.13). Our results suggest there are two 0++ resonances in this
energy region: a narrow resonance dubbed χDsD̄s

c0 just below the DsD̄s threshold and a
broader one denoted by χ′c0.

8The inelasticity is equal to one below the DsD̄s threshold by construction due to the Θ-function
in eq. (2.3).
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Figure 6. Coupled channel DD̄, DsD̄s scattering in partial wave l = 0: the analysis omitting
l = 2 (left) and including l = 2 (right). Top: location of the poles in tij (8.13), (8.14), (8.15)
in the complex energy plane. The orange poles are on Riemann sheet II, the magenta poles are
on sheet III and the violet poles are on sheet IV (see eq. (2.4)). There is only one pole near the
DsD̄s threshold for each bootstrap sample and it appears either on sheet II or the nearby sheet IV.
The green dashed line denotes the DsD̄s threshold with mDs

' 1981MeV. Middle and bottom:
the couplings c2i to channels i = 1 (DD̄) and i = 2 (DsD̄s) as extracted from the respective pole
residues according to eq. (2.5). The symbol fillings distinguish the two orange poles.
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Figure 7. Coupled channel DD̄, DsD̄s scattering in partial wave l = 0. The three plots show
the quantity √ρiρj |tij |2 ∝ p|σ| on the physical axes, that is related to the number of events in
experiment (ρ = 2p/Ecm) for DD̄ → DD̄ (left), DsD̄s → DsD̄s (middle) and DD̄ → DsD̄s (right).
The green lines indicate the DsD̄s threshold with mDs

' 1981MeV. The gray bands represent the
uncertainty defined in appendix A.
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function of Ecm. The green lines indicates the DsD̄s threshold with mDs

' 1981MeV. The gray
bands represent the uncertainty.

The broader 0++ resonance χ′
c0. It is related to the pole indicated in red on sheet III

χ′c0 : Ep = (3.983 +0.028
−0.020) − i

2 (0.058 +0.006
−0.011) GeV = m− i

2Γ . (8.16)

This pole affects the scattering amplitude on the physical axes above the DsD̄s threshold
and is responsible for a peak around 3.98GeV in the DD̄ → DD̄ rate shown in the left
pane of figure 7. The presence of this pole is also reflected in the phase shift δDD̄0 , which
increases gradually starting from 2mDs as is evident in the left pane of figure 8. The nearby
pole on sheet II does not have a significant influence on the physical scattering above the
second threshold. The pole residues indicate that this state decays predominantly to DD̄,
while the decay to DsD̄s is suppressed, as evidenced by |c1| � |c2|, see in the last two rows
of figure 6 for the pole presented in red. The resonance parameters are

χ′c0 : m−Mav = 880+28
−20 MeV, Γ = 58 +6

−11 MeV , g = 1.35 +0.04
−0.08 GeV , (8.17)

whereMav = 1
4(3mJ/ψ+mηc), and the coupling g parametrizes the full width Γ = g2pD/m

2.
The possible relation of this state to the broad resonance χc0(3860) discovered by Belle in
2017 [1, 2] is discussed in section 9.

The narrow 0++ resonance χDsD̄s
c0 near the DsD̄s threshold. It is related to the

pole on sheet II, indicated by the top-filled orange symbols in the first row of figure 6. Its
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location relative to the threshold is given by

χDsD̄s
c0 : Epcm − 2mDs = (−0.2 +0.16

−4.9 ) − i

2 (0.27 +2.5
−0.15) MeV = m− i

2Γ . (8.18)

This resonance is related to the bound state in the analysis of DsD̄s-scattering in the
one-channel approximation of section 8.2. The pole on sheet II and the nearby pole on
sheet IV correspond to this resonance and are mutually exclusive across the bootstrap
samples. Further details on this can be found in appendix D.4. It is clear from figure 7
that the resonance pole leads to a sharp rise in the DsD̄s → DsD̄s and DD̄ → DsD̄s

rates just above 2mDs . The increased DD̄ → DsD̄s rate is also responsible for a dip in
the DD̄ → DD̄ rate at 2mDs and all three features should be used as a signature for
experimental searches of this state. Note that the magnitude of the DsD̄s → DsD̄s peak
above 2mDs is larger when the pole is closer to the threshold.

χDsD̄s
c0 couples predominantly to DsD̄s and very weakly to DD̄ (one can see that

|c2|2 � |c1|2 in figure 6). The mass difference of the state with respect to the threshold
and its narrow total width Γ = g2pD/m

2 parametrized in terms of g are

χDsD̄s
c0 : m− 2mDs = −0.2 +0.2

−0.3 MeV , Γ = 0.27 +2.5
−0.15 MeV , g = 0.096 +0.215

−0.033 GeV .

(8.19)

On the experimental side, the newly discovered χc0(3930) [3] and the X(3915) [2] lie near
the DsD̄s threshold and have very small or zero decay rate to DD̄. The indication for a
DsD̄s state in our study explains both properties, as detailed in section 9.

The parameters of the scattering matrix obtained from the analysis including or exclud-
ing l = 2 are similar, with the exception of a22 and b22. These parametrize DsD̄s → DsD̄s

and differ between the coupled-channel analysis and the one-channel approximation, how-
ever, both analyses lead to a state just below the DsD̄s threshold on the real axis (see
figure 4c) or slightly away from it. The conclusion that there is a near-threshold pole is
robust, while its exact location and the effect on physical scattering need to be investigated
in a simulation with higher statistics and a better control of systematic uncertainties.

9 Summary of the resulting hadrons and their relation to experiment

Below we summarize the properties of the charmonium-like hadrons found in this simu-
lation. These are denoted by the conventional names χc0(1P ), χc2(1P ), χc2(3930) when
the identification with experimental states is unambiguous, while the other states found
are denoted χ′c0, χDD̄c0 and χDsD̄s

c0 . The subscripts c0 and c2 indicate the assignment of
JPC = 0++ and 2++, respectively. The location of the poles in the complex energy plane
related to these hadrons are given in figure 9, while the corresponding masses are compared
to experiment in figure 10. Due to the unphysical quark masses employed in the simula-
tion, the hadron masses obtained are not compared to experiment directly. Instead, the
difference m−Eref is utilized, where the reference energy Eref is either a nearby threshold
or the spin-averaged charmonium mass Mav = 1

4(3mJ/ψ +mηc). The positions of the DD̄
and DsD̄s thresholds are given by the masses mD ' 1927MeV and mDs ' 1981MeV.
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and X(3915) [2] may be the same state.
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The resonance decay widths depend on the phase space p2l+1 evaluated for the meson
momenta (in the cm-frame) at the resonance energy, which in turn depends on the position
of the threshold. The latter is different in the simulation and in experiment. Therefore it
is customary to compare the coupling g that parametrizes the full width of a hadron

Γ ≡ g2p2l+1
D /m2 with l = 0, 2 for JPC = 0++, 2++ , (9.1)

as g is expected to be less dependent on the quark masses than the width itself.

9.1 χc0(1P ) and χc2(1P )

These states lie significantly below the DD̄ threshold and their masses are extracted from
the ground state energies m = E1(P = 0) in irreps A++

1 and E++, with JPC = 0++ and
2++, respectively. We obtain

χc0(1P ) : m−Mav = 358± 2 MeV , m = 3461± 2 MeV , (9.2)
χc2(1P ) : m−Mav = 462± 3 MeV , m = 3565± 3 MeV , (9.3)

which can be compared to the experimental values

exp χc0(1P ) : m−Mav = 346.1± 0.3 MeV , (9.4)
exp χc2(1P ) : m−Mav = 487.52± 0.14 MeV . (9.5)

9.2 0++ state χDD̄c0 slightly below DD̄ threshold

We find a shallow DD̄ bound state labeled χDD̄c0 with binding energy

m− 2 mD = −4.0 +3.7
−5.0 MeV . (9.6)

Note that it is not known whether this bound state would also feature in a simulation with
physical quark masses. Such a state has not been claimed by experiments.

The existence of a shallow DD̄ bound state dubbed X(3720) was already suggested
by an effective phenomenological model in ref. [10]9 featuring also exchanges of vector
mesons. Ref. [11] indicates that there may already be some evidence for such a state in
the DD̄ invariant mass distribution from Belle [50], which shows an enhancement just
above threshold. The DD̄ rate from Babar [51] also shows a hint of enhancement just
above threshold (see figure 5 of [51]). In a molecular picture, a 0++ state is expected as a
partner of X(3872) via heavy-quark symmetry arguments [48, 49]. A similar virtual bound
state with a binding energy of 20MeV follows from the data of the only previous lattice
simulation of DD̄ scattering [23].10

Experimental searches for this state in inclusive final states are challenging since the
region above the DD̄ threshold can be populated by DD̄ from X(3872) → DD̄∗ → DD̄π

(see, for example, ref. [52]). Various strategies for the experimental search of such a state
in exclusive decays were proposed: B0+ → D0D̄0K0+ [53], ψ(3770) → D0D̄0γ [54], γγ →
DD̄ [55], ψ(3770, 4040)→ ηη′γ and e+e− → ηη′J/ψ [56].

9This state with m ' 3.718GeV is listed in table 4 of ref. [10].
10The presence of this state was not mentioned in ref. [23], as such virtual bound states were not

searched for.
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9.3 2++ resonance and its relation to χc2(3930)

We find a resonance with JPC = 2++ in l = 2 DD̄ scattering with the following properties

χc2(3930) : m−Mav = 904 +14
−22 MeV , g = 4.5+0.7

−1.5 GeV−1 . (9.7)

This is most likely related to the conventional χc2(3930) resonance (also called χc2(2P ))
discovered by Belle [57]

exp χc2(3930) : m−Mav = 854± 1 MeV , g = 2.65± 0.12 GeV−1 . (9.8)

Here g parametrizes the width Γ = g2 p5
D/m

2. The masses are reasonably close, while the
coupling from lattice QCD is larger that in experiment. However, the couplings are also
not inconsistent given the large statistical error from our simulation and the unquantified
systematic uncertainties discussed in section 5.

9.4 Broad 0++ resonance and its possible relation to χc0(3860)

This resonance couples mostly to DD̄ and has a very small coupling to DsD̄s. Its resonance
parameters are

χ′c0 : m−Mav = 880+28
−20 MeV , g = 1.35 +0.04

−0.08 GeV . (9.9)

These can be compared to the scalar resonance χc0(3860) discovered by Belle in 2017 [1],11

exp χc0(3860) : m−Mav = 793 +48
−35 MeV , g = 2.5+1.2

−0.9 GeV , (9.10)

based on the following arguments: the mass and coupling are reasonably consistent with
experiment, in particular, when considering the experimental errors and the systematic
uncertainties in the lattice results. The mass is also close to the value obtained from the
only previous lattice study of DD̄ scattering [23],12 although the width and coupling are
larger in the present work.

The experimental couplings g of χc0(3860) and χc2(3930), quoted in eqs. (9.10)
and (9.8), respectively, are similar, and their widths differ mainly because of the differ-
ent phase space. On the lattice side, the χ′c0 coupling in eq. (9.9) is smaller than the
χc2(3930) coupling in eq. (9.7), however, both have large uncertainties.

Narrow 0++ resonance χDsD̄s
c0 and its possible relation to χc0(3930), X(3915).

We find a narrow 0++ resonance near the DsD̄s threshold. It has a large coupling to DsD̄s

and a very small coupling to DD̄. The latter is responsible for its small decay rate to DD̄
and the small total width. This state corresponds to the bound state in one-channel DsD̄s

scattering discussed in section 8.2. We compare the resulting resonance parameters

χDsD̄s
c0 : m− 2mDs = −0.2 +0.16

−4.9 MeV , g = 0.10 +0.21
−0.03 GeV (9.11)

11For the couplings calculated from the experimental values we vary both the mass and width by ±1σ
and take the maximal positive and negative deviations as the uncertainties.

12The value to compare is m −Mexp
av ' 0.90GeV and 0.93GeV from the fits in eqs. (6.3) and (6.7) of

ref. [23], respectively.
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with two experimental states that share similar features to the state we find,

exp χc0(3930) : m− 2mDs = −12.9± 1.6 MeV , Γ = 17± 5 MeV , g = 0.67± 0.10 GeV ,

exp X(3915) : m− 2mDs = −18.3± 1.9 MeV , Γ = 20± 5 MeV , g = 0.72± 0.10 GeV .

(9.12)

The χc0(3930) with JPC = 0++ was very recently discovered inDD̄ decay by LHCb [3]. The
X(3915) was observed by Belle [6] and BaBar [5, 7, 8] in J/ψω decay and has JPC = 0++

or 2++, while its decay to DD̄ was not observed [2]. They might represent the same state
if X(3915) is a scalar. Both experimental states lie just below the DsD̄s threshold. One
would naturally expect 0++ states with this mass to be broad, given the large phase space
available to DD̄ decay. Their narrow widths can only be explained if their decay to DD̄ is
suppressed by some mechanism.

If the resonance found on the lattice is indeed related to X(3915)/χc0(3930), our re-
sults indicate that this state owes its existence to a large interaction in the DsD̄s channel
near threshold, which naturally explains why its width is small and its decay to DD̄ is
suppressed. Note that a detailed quantitative comparison of lattice and experimental re-
sults in eqs. (9.11) and (9.12) is not possible due to the unphysical masses of the quarks
in the lattice study and due to the omission of decays to J/ψω and ηcη, which may affect
the determination of the width. The qualitative comparison, however, suggests the exis-
tence of a DsD̄s resonance with small coupling to DD̄. This could be further investigated
experimentally by considering the DsD̄s invariant mass spectrum near threshold, where a
peak (see figure 7) would be visible for a state just below threshold.

The X(3915) was proposed to be a ground c̄cs̄s state within the diquark-antidiquark
approach by Polosa and Lebed [9]. The identification c̄cs̄s was considered also in phe-
nomenological studies [58, 59].

10 Conclusions

We presented a lattice study of coupled-channel DD̄–DsD̄s scattering in the JPC = 0++

and 2++ quantum channels with isospin 0. Using the generalized Lüscher method and
a piecewise parametrization of the energy region from slightly below 2mD to 4.13GeV,
the coupled-channel scattering matrix S along the real energy axis was determined. The
resulting S was then analytically continued to search for pole singularities in the complex
energy plane that can affect the scattering amplitudes/parameters along the physical axes.
Our study utilized the spectrum in three different inertial frames determined on two CLS
ensembles with u/d and s quarks, spatial extents ∼2.07 fm and ∼2.76 fm and a single lattice
spacing ∼0.086 fm.

In addition to χc0(1P ), the results suggest three charmonium-like states with JPC =
0++ below 4.13GeV. One is a yet undiscovered DD̄ bound state just below threshold. The
second is a narrow resonance just below the DsD̄s threshold predominantly coupled to
DsD̄s. This state is possibly related to the narrow resonance X(3915)/χc0(3930), which is
also below the DsD̄s threshold in the experiments. The third feature is a DD̄ resonance
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possibly related to the χc0(3860) observed by Belle, which is believed to be χc0(2P ). An
overview of the resulting pole structure of the coupled-channel DD̄–DsD̄s scattering matrix
in the complex energy plane is given in figure 9, and the possible implications of this
singularity structure for experiments are illustrated in figures 7 and 8. The masses are
compared to experiment in figure 10 and summarized in section 9.

Turning to states with JPC = 2++, the mass of the ground state χc2(1P ) was de-
termined directly from the lattice energy and is compared with the experimental value in
eq. (9.3). We have assumed the 2++ resonance to be coupled only with the DD̄ scattering
channel in the l = 2 partial wave and have parametrized this with a Breit-Wigner form.
The resonance parameters are extracted and compared with the experimental values of the
conventional χc2(3930) in eqs. (9.7) and (9.8). These are then fixed for the finite-volume
coupled-channel analysis discussed in section 8.4.2. We find the estimates for positions
and residues for the poles with JPC = 0++ to be robust with the exclusion/inclusion of
the l = 2 partial wave contribution to the analysis. The resulting pole positions and the
residues from either study are shown in figure 6.

In this study we worked with several simplifying assumptions (detailed in section 5)
necessary for a first investigation of this coupled-channel system. The lattice QCD ensem-
bles we used have heavier-than-physical light and charm quarks and a lighter-than-physical
strange quark. This results in a smaller-than-physical splitting between the DD̄ and the
DsD̄s thresholds. In future studies, it will be important to systematically improve upon the
current results by successively relaxing our assumptions, for example, by explicitly includ-
ing ηcη interpolating fields and adding this channel as well as J/ψω to the coupled-channel
study. It is also essential to investigate additional parametrizations to test the model inde-
pendence of our findings and this will require a larger set of ensembles with high statistics.
With regard to the pole structure observed in this work, it would be particularly interesting
to investigate how our observations, such as the shallow DD̄ bound state and our X(3860)
candidate evolve when simultaneously approaching the limit of physical quark masses and
the continuum limit.
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A Error treatment

Central values for all quantities Q̄ are obtained from the average of correlation matrices
over the gauge ensemble, while the errors are based on Nb = 999 bootstrap samples. The
1σ standard error formulae for a Gaussian-distributed quantity Q provides the range that
captures the central 68% of the bootstrap samples, which is represented by the gray bands
in various figures.13 We present resonance masses, widths/couplings, pole positions, phase
shifts and |t| with the asymmetric errors Q̄+σ+

−σ− , where the interval [Q̄−σ−, Q̄+σ+] contains
the central 68% of the bootstrap samples. The remaining quantities such as energies,
parameters of the scattering matrices are provided with symmetric errors σ = √covii.
Here cov is the modified correlation matrix defined as

corij = covij√coviicovjj
, covij = M

Nb

′∑
b

(Qbi − Q̄i)(Qbj − Q̄j) , M = 1
0.4432 . (A.1)

The sum indicated by a prime runs over the bootstrap samples b in which Qbi and Qbj are
not among the 16% of the values excluded on either end. covii in eq. (A.1) is equal to
the standard covariance 1

Nb

∑Nb
b=1(Qbi − Q̄i)2 for Gaussian-distributed quantities. covij also

coincides with the standard covariance for completely correlated or uncorrelated Gaussian-
distributed quantities i and j. We have verified that the standard covariance and cov
render almost identical errors on the energies and most of the parameters of the scattering
matrix. The advantage of the modified correlation matrix is the exclusion of outliers for
non-Gaussian distributions with long tails. Such distributions might occur for the bootstrap
samples of scattering-matrix parametrizations due to the highly non-linear nature of the
box-functions B(Ecm) in eq. (7.1).

B Eigen-energies

The figure 11 compares the original eigen-energies Elat
cm and the eigen-energies Ecalc

cm obtained
via eq. (3.2). The energies Ecalc are taken as inputs to the scattering matrix according to
our approach towards disretization errors, as outlined in section 3.

13The central value Q̄ corresponds to the average over the gauge configurations and not to the average
of the bootstrap samples, therefore it is possible that Q̄ is not within the range captured by the 68% of the
bootstrap samples.
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Figure 11. The lower figures present the original eigen-energies Elat
cm in four irreducible represen-

tations considered. The upper figures present the eigen-energies Ecalc
cm obtained via eq. (3.2) and

match those in figure 2. The Ecalc are inputs to our scattering analysis, while Elat are considered
to be less reliable input according to the discussion in section 3.
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C Fitting the parameters of the scattering matrix

The parameters of the matrix K̃ are determined from the energies presented in figure 2
via the quantization condition (7.1) following the determinant residual method proposed in
ref. [46]. In this method, one determines the parameters such that the zeros of the Ω(Ecm)
function (which are identical to the zeros of the determinant in eq. (7.1))

Ω(Ecm) = det(A)
det((µ2 +AA†)1/2)

, A(Ecm) = K̃−1(Ecm)−B(Ecm) , (C.1)

are as close as possible to Ecm extracted from the lattice. Our results are based on fits
with µ = 1 and the parameters change negligibly for values of µ in the interval [0.5, 8].
Examples of Ω(Ecm) as a function of Ecm for the resulting parameters of the scattering
matrix are given in figures 13 and 16. The values of Ecm where Ω(Ecm) crosses zero are
indeed near the positions of the observed lattice energies. We have verified that the number
of zero-crossings equals the number of observed eigenstates in the energy-regions relevant
for all our fits.

D More details on the analysis of the scattering channels

Below we specify the energy levels used for each analysis, referring to levels Ecm,n plotted
in figure 2 counting from the lowest state with n = 1. Their values, their errors and
covariance matrices can be obtained from the authors on request. The masses of the
scattering particles are mDa = 0.8433(7) and mDsa = 0.8670(4) on the L/a = 32 ensemble
and mDa = 0.846(1) and mDsa = 0.8669(6) on the L/a = 24 ensemble. For simplicity,
we use the phase space factor from the full ensemble average during the pole search for all
bootstrap samples. The central values are not affected by this procedure.

D.1 DD̄ scattering with l = 0 near threshold

This analysis employs four energy levels closest to the 2mD threshold in the A(+)
1 irreps

shown in figure 2: these are levels n = 2(3) from |~P | = 0(1) on both volumes. The
charmonium-like state obtained lies just below threshold, therefore the relative error on its
binding energy given in eq. (8.5) is large. We note that 6% of the bootstrap samples do not
render any poles on the real axes — this corresponds to the bootstraps for which p cot δ/Ecm
just fails to cross the orange line in figure 3a. An additional 6% of the bootstrap samples
render a virtual bound state — this corresponds to the bootstraps for which p cot δ/Ecm
crosses ip/Ecm = |p|/Ecm rather than−|p|/Ecm in figure 3a. Both of these scenarios happen
in extreme cases and end up within the 32% of bootstrap samples that are excluded when
computing the errors via (A.1). In figure 12, we present the pole positions along the
(virtual) bound state constraints across the bootstrap samples showing the continuous
distribution of the poles along the constraint curves and hence also across the Riemann
sheets.

The preferred fit with the scattering parameters (8.2) utilizes the 4 levels shown in
violet in figure 3a. We also performed the fits using the 3 lowest levels, the 6 lowest levels
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Figure 12. Pole distribution [gray filled circles] along the (virtual) bound state constraints [(cyan)
orange dashed curve] in the elastic DD̄ scattering. The energy levels [violet filled circles] considered
in the fit and the fit results [red solid line and the gray band] are also shown. The two gray dashed
lines represent the two extreme cases, one with the virtual bound state and one with no poles on
the real axes.

and all 7 levels shown: the ensemble averages of the data lead to a bound state in all these
fits and the binding energy is within the error given in eq. (8.5).

This analysis of DD̄ scattering near threshold includes only the eigen-states with ener-
gies close to the threshold and omits the eigen-state related to χc0(1P ), which is significantly
below threshold. We are unable to constrain the DD̄ scattering below the lowest violet
point in figure 3a. Hence, the pole at around Ecm ' 3.80GeV, which would arise at the
crossing of the orange and red curves (and would violate the consistency check, see section
VC of [25]), is below the region in which our analysis can reasonably be applied and also
outside of the energy range of interest.

D.2 DsD̄s scattering with l = 0 near threshold in the one-channel approxi-
mation

This analysis employs only those eigenstates whose overlaps are dominated by DsD̄s oper-
ators and that do not have significant overlap with DD̄ operators. These are the four levels
in figure 2 near the DsD̄s threshold in the A(+)

1 irreps: levels n = 3, 4 from |~P |2 = 0, 1 on
the NL = 24 ensemble and levels n = 4, 7 from |~P |2 = 1, 2 on NL = 32. Here 97% of the
bootstrap samples result in a bound-state pole, while 2.3% result in a virtual bound-state
pole and 0.7% do not render any poles on the real axis — the latter two cases end up
among the extremal 32% of bootstrap samples.

D.3 DD̄ scattering with l = 2

DD̄ scattering in partial wave l = 2 is the not the main focus of our study. It was considered
in order to investigate and constrain its contribution to the A1 irreps we have studied. Since
this partial wave was initially not the goal of our study, we did not evaluate all irreps where
it appears (for example E+ and T+

2 for P = 0), instead we implemented only the B1 irrep
with |~P |2 = 1. The extraction of the phase shift in eqs. (8.10), (8.11) employs four lattice
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Figure 13. The function Ω(Ecm) (defined in eq. (C.1)) for the resulting scattering matrix of the
coupled channels DD̄ −DsD̄s (8.14) is given by the orange line. The observed eigen-energies are
given by the circles: the black levels are employed to fit the parameters (8.14), while the blue circles
are not.

levels in the B1 irrep with |~P |2 = 1: these are levels n = 3, 4 on both lattice volumes (levels
n = 1, 2 correspond to the ground states with JPC = 2++ and 2−+, respectively). A fit
using only three lattice levels (omitting the higher level on the smaller volume) renders the
resonance pole position Ep = (4.013 +0.013

−0.016 )− i
2 (0.098+0.044

−0.057) GeV. This is compatible with
our main result (8.11) and has a larger central value for the width.

D.4 Coupled DD̄, DsD̄s scattering with l = 0 for Ecm ' 3.9–4.13GeV

Figure 13 shows an example of Ω(Ecm) (C.1) for the parameters of the coupled-channel
scattering matrix given in eq. (8.14). The values of Ecm at which Ω crosses zero are indeed
near the observed eigen-energies (indicated by the black circles). The number of crossings
agrees with the number of observed levels in the relevant energy ranges.
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Figure 14. Pole distribution of different poles, presented in figure 6, across various bootstrap
samples in the complex pDs

plane where pDs
is the momentum of the Ds meson in DsD̄s scattering

in the CMF. The color coding of the poles are the same as in figure 6. The pole positions for
the ensemble average of the data are shown with gray unfilled circles. The gray solid (dot-dashed)
curves represent the lines of constant real (imaginary) aEcm. The cyan line represents the physical
axis presented in figure 1. The red dashed lines indicate the region below the elastic threshold,
where the sheets are not connected.

In figure 14, we present the pole distribution across the bootstrap samples for various
poles we extract in the complex pDs plane, where pDs is the momentum of the Ds meson
in DsD̄s scattering in the CMF. The two islands of poles, one in sheet II and the other
in sheet IV, lying close to Im(apDs) are mutually exclusive and hence represent the same
dynamics. The island in sheet II constitutes 70% of the samples, while a pole appears at
a similar location on sheet IV in the remaining samples. Hence the results for the pole
location related to χDsD̄s

c0 given in eq. (8.18) are based on the samples for which this pole
appears on sheet II, whereas the errors on the rates and phase shifts presented in figures 7
and 8 are computed from the entire bootstrap samples.

E Coupled DD̄, DsD̄s scattering in a wider energy region

In section 8, we discussed the analysis of rather narrow energy ranges with a linear and/or
constant parametrization in s for the elements K̃−1

ij (s)/
√
s (see eq. (8.13)). A single de-

scription of coupled DD̄ − DsD̄s scattering encompassing the whole of the energy range
from 2mD up to 4.13GeV requires additional parameters. This is difficult as, with the
statistics and the number of lattice QCD ensembles available to us, the fits become un-
stable. Instead, as a cross-check, we model the infinite-volume scattering matrix in the
wider energy range using the parametrizations similar to those presented in section 8. One
of the aims is to verify that the resulting scattering matrix predicts the same number of
finite-volume energy levels as observed n the actual simulation.
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The t-matrix elements are modeled in the energy range Ecm ' 2mD − 4.13GeV as
shown for K̃−1/

√
s in figure 15. We require that they are continuous in energy and that

they have continuous derivative. In the high energy region they asymptote to the linear
dependence on s (7.2), (8.13) and the parameters are fixed to the values (8.14) obtained
from the coupled-channel analysis. Below we provide more details on each t-matrix element
in turn:

t11 The energy region considered is divided into three intervals, as shown by the red
line in the figure. t11 asymptotes to the coupled and single channel results (of the
main text) in the high and middle energy intervals, respectively. In order to ensure a
smooth transition between two regions, we emply hyperbola-type shape for K̃−1

11 /
√
s[

K̃−1
11√
s
− a11 − b11s

][
K̃−1

11√
s
− a′11 − b′11s

]
= chyp (E.1)

that smoothly asymptotes14 to the linear dependences K̃−1
11 /
√
s = a11 + b11s (8.14)

and K̃−1
11 /
√
s = a′11 + b′11s (8.2). The four parameters a, b are fixed to the values in

the main text. The value of the smoothing parameter chyp is the only free parameter
of K̃−1

ij in this appendix. Its value chyp = 0.00021(2) is obtained from fitting the
scattering matrix to all energy levels and the resulting fit has χ2/d.o.f. = 1.8. In the
region below DD̄ threshold, we choose a shape of K̃−1

11 which prevents the occurrence
of a second bound-state (this would correspond to the red and orange lines in the
figure intersecting a second time). The exact form of this choice is not important as
this is beyond the region of interest.

t12 In the upper region K̃−1
12 /
√
s asymptotes to the constant value of the coupled channel

analysis (8.14). In the region nearDD̄ threshold, where the effects fromDsD̄s channel
are expected to be negligible, it asymptotes to zero. The smooth transition between
two constant values is ensured by using the sigmoid function.

t22 This element is parametrized as in eq. (8.14), for the entire energy region, see the
black line in the figure. Note that we ignore any crossing of the DsD̄s bound state
condition with the t22 parametrization that occurs well below the DD̄ threshold.

We find that the number of poles with the above-designed scattering matrix is the
same as that obtained from the analysis of the separate energy regions. The pole locations
on the various complex Riemann sheets and their residues are also almost unchanged.
Following Lüscher’s finite-volume analysis, we extracted the finite-volume spectrum from
this scattering matrix. In figure 16, we present the Ω(Ecm) function defined in eq. (C.1).
The zeros of Ω(Ecm) are the predictions for the finite-volume spectrum derived from the
scattering matrix. The points indicate the energy levels observed in the actual simulation.
It is clear from the figure that the predicted spectrum agrees qualitatively with the lattice
energy levels within the energy range of interest and that the same number of levels are
obtained.

14The transition is smooth for positive chyp, while it corresponds to an abrupt transition between two
lines for chyp = 0.
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Figure 15. The modeled K̃−1/
√
s -matrix elements for the coupled DD̄−DsD̄s scattering: red for

DD̄ → DD̄, black for DsD̄s → DsD̄s and blue for DsD̄s → DD̄. The green dashed lines indicate
the DD̄ and the DsD̄s thresholds. The left orange dashed line gives the bound state constraint for
DD̄ channel. The right orange line gives the bound state constrain for the DsD̄s channel in the
limit that the two channels are decoupled.
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Figure 16. The Ω(Ecm) function (defined in eq. (C.1)) for the scattering matrix of the coupled
channels DD̄ − DsD̄s in the wider energy region (Ecm ' 2mD − 4.1GeV) is given by the orange
line. The observed eigen-energies are given by circles and the coloring is the same as in figure 2.
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