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We present the nonperturbative computation of renormalization factors in the RI0-ðSÞMOM (regulari-
zation independent (symmetric) momentum subtraction) schemes for the QCD gauge field ensembles
generated by the CLS (coordinated lattice simulations) effort with three flavors of nonperturbatively
improved Wilson (clover) quarks. We use ensembles with the standard (anti-)periodic boundary conditions
in the time direction as well as gauge field configurations with open boundary conditions. Besides flavor-
nonsinglet quark-antiquark operators with up to two derivatives we also consider three-quark operators
with up to one derivative. For the RI0-SMOM scheme results we make use of the recently calculated three-
loop conversion factors to the MS scheme.
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I. INTRODUCTION

Matrix elements of local operators between hadron states
contain valuable information on hadron structure. For
example, decay constants, moments of parton distributions
and light-cone distribution amplitudes can be written in this
form. In order to compute such quantities from QCD,
nonperturbative methods are required. One possibility is
lattice QCD: After a Wick rotation from Minkowski to
Euclidean space the ensuing Euclidean functional integral
of QCD is regularized with the help of a lattice discretiza-
tion such that a numerical evaluation through Monte Carlo
simulations becomes possible.
Hadronic matrix elements of local operators in general

are ultraviolet (UV) divergent quantities. These are regu-
larized on the lattice and their dependence on the cutoff is
then treated by the renormalization procedure. In a pertur-
bative continuum calculation, such as in dimensional
regularization, the UV divergences are removed order by
order in the expansion in the coupling constant by imposing
a given condition on how the divergent part is subtracted
(MS schemes). In lattice Monte Carlo simulations,

expectation values and matrix elements of bare operators
are determined nonperturbatively. Such quantities are how-
ever not interesting per se, but only as input for further
computations in particle phenomenology. A calculation of
the renormalization constants, e.g., in lattice perturbation
theory, is therefore required to absorb the divergences of bare
operators that appear as the lattice spacing a is sent to zero,
and to convert the lattice results to the continuum schemes
commonly adopted in phenomenology.
Unfortunately, the convergence of lattice perturbation

theory is rather slow. Many strategies have been developed
to address this limitation in the last decades. An alternative
possibility is to employ an intermediate scheme which is
applicable both in the continuum and on the lattice. The
RI0-MOM scheme [1] is a regularization independent
scheme where the renormalization condition is imposed
on amputated vertex functions in momentum space at a
renormalization scale determined by the external momenta.
The renormalization constants in the RI0-MOM scheme can
be calculated nonperturbatively on the lattice just by
computing the expectation value of the vertex function on
an ensemble of gauge-fixed configurations. The conversion
(or matching) from the RI0-MOM to the MS schemes is then
performed straightforwardly by a perturbative calculation in
the continuum with dimensional regularization.
The continuum limit a → 0 is achieved by extrapolating

results obtained at many nonvanishing lattice spacings a.
As the lattice spacing is reduced, standard QCD simulation
algorithms suffer from critical slowing down, meaning that
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an increasing hybrid Monte Carlo (HMC) simulation time
is required to fully sample the configuration space. If gauge
(and fermion) fields fulfill (anti)periodic boundary con-
ditions in all directions, the simulation will eventually get
stuck in a fixed topological sector and ergodicity is lost.
Open boundary conditions in the time direction have been
proposed to solve this topological freezing problem at small
lattice spacings [2]. The modification of the space-time
manifold allows the topological charge Qtop to differ from
an integer value, even in the continuum limit, thereby
allowing for small continuous fluctuations of Qtop during
the HMC trajectory. This approach has been adopted within
the CLS (coordinated lattice simulations) effort [3–5].
The breaking of translational invariance in the time

direction is a drawback of open boundary conditions.
Space-time correlators corresponding to physical particles
can still be safely measured in the bulk of the lattice, far
away from the boundaries. However, it is not a priori clear
how the same procedure can be applied to vertex functions
and correlators in momentum space. Here we show that this
is indeed possible and present our approach to the compu-
tation of the renormalization constants in the RI0-ðSÞMOM
schemes on nf ¼ 2þ 1 CLS ensembles [3] with degener-
ate light and strange quark masses.
We consider a large variety of nonsinglet quark-anti-

quark operators with up to two derivatives as well as three-
quark operators with up to one derivative employing
lattices with lattice spacings down to about 0.04 fm.
Treating the quark-antiquark operators in the RI0-SMOM
scheme, we make use of the recently calculated three-loop
conversion factors [6–8] in order to reduce the systematic
error due to the truncation of the perturbative expansion.
With the help of Ward identities, the renormalization and

improvement of the vector current is studied in Ref. [9]
within the CLS setup. On a subset of the CLS ensembles
with periodic boundary conditions some renormalization
factors have been evaluated for a restricted range of lattice
spacings in Ref. [10] using the RI0-MOM scheme. Utilizing
Schrödinger functional techniques, the ALPHA collabora-
tion has computed several (ratios of) renormalization
factors within the CLS setup, see, e.g., Refs. [11–16].
The paper is organized as follows. In the next section we

describe the quark-antiquark operators studied, the
employed renormalization schemes as well as their numeri-
cal implementation on lattices with periodic and open
boundary conditions. Section III discusses the renormali-
zation of three-quark operators. In Sec. IV we explain
briefly the perturbative subtraction of lattice artifacts.
Section V is devoted to the chiral extrapolation required
to obtain a mass-independent renormalization procedure.
Our conventions regarding continuum perturbation theory
are collected in the following section. In Sec. VII we
discuss the dependence of our results on the renormaliza-
tion scale. The next section details the two basic methods
that we apply to extract our final numbers. Some of these

results are discussed in Sec. IX. Section X contains a short
summary. Technical details and results from perturbation
theory that are used in our computations are given in the
Appendices A–G. Tables of our results can be found in
Appendix H. The mixing matrices of the quark-antiquark
and the three-quark operators are given as Supplemental
Material [17].

II. QUARK-ANTIQUARK OPERATORS

A. Multiplets of quark-antiquark operators

The main focus of our calculations is the renormalization
of quark-antiquark operators involving up to two covariant
derivatives acting on the quark fields. Three-quark oper-
ators, relevant for the computation of moments of baryon
distribution amplitudes, can be treated analogously and will
be discussed in Sec. III.
The elementary building blocks of local quark-antiquark

operators are of the form

ψ̄f
αðxÞΓαβψ

f0
β ðxÞ; ð1Þ

ψ̄f
αðxÞΓαβD

↔

μψ
f0
β ðxÞ; ð2Þ

ψ̄f
αðxÞΓαβD

↔

μD
↔

νψ
f0
β ðxÞ; ð3Þ

where f; f0;… are flavor indices, α; β;… are spinor indices
and Γ denotes a Dirac matrix. Color indices are suppressed

and we define D
↔

μ ¼ D⃗μ − D⃖μ. On the lattice the covariant
derivatives are replaced by the standard (symmetric)
discretized versions. We restrict ourselves to the flavor-
nonsinglet case choosing, e.g., f ≠ f0. Flavor-singlet oper-
ators could be constructed by summing over f ¼ f0.
In order to retain as much of the continuum symmetry as

possible on the lattice we consider multiplets of operators
which transform irreducibly under the hypercubic group
H(4) and enjoy a definite charge conjugation parity. Since
the constraints imposed by space-time symmetry are less
stringent on the lattice than in the continuum the possibil-
ities for mixing increase. The choice of the operator
multiplets is hence guided by the desire to avoid mixing
as far as possible, especially mixing with operators of lower
dimension.
When nonforward matrix elements of operators with

derivatives are considered, either in the renormalization
procedure or between hadronic states, we must be prepared
to find mixing with so-called total-derivative operators, i.e.,
operators of the generic form ∂μ∂ν � � � ψ̄ð� � �Þψ . This type of
mixing occurs already in the continuum and is therefore
unavoidable on the lattice. However, due to charge con-
jugation invariance, which is exact also on the lattice, we
encounter this phenomenon only in the case of operators
with two derivatives. The operator multiplets that we
consider are compiled in Appendix A.
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B. Renormalization schemes

In this section we describe our implementation of the
RI0-MOM scheme [1] and the RI0-SMOM scheme [18].

Let OðiÞ
m ðxÞ (i ¼ 1; 2;…; d, m ¼ 1; 2;…;M) denote M

multiplets of local quark-antiquark operators which trans-
form identically according to an irreducible, unitary,
d-dimensional representation of H(4). We call the unrenor-
malized, but (lattice-)regularized vertex functions (in

Landau gauge) VðiÞ
m ðp; qÞ, where p and q are the external

quark momenta. The corresponding renormalized (in the

MS scheme) vertex functions are denoted by V̄ðiÞ
m ðp; qÞ.

The dependence of V̄ðiÞ
m on the renormalization scale μ is

suppressed for brevity. Note that VðiÞ
m as well as V̄ðiÞ

m carry
spinor indices and are therefore to be considered as
4 × 4-matrices. (The color indices have been averaged
over.) When all mixing multiplets are taken into account,
we should have (up to power corrections in the lattice
spacing)

V̄ðiÞ
m ðp; qÞ ¼ Z−1

q

XM
m0¼1

Zmm0VðiÞ
m0 ðp; qÞ; ð4Þ

where Z is the matrix of renormalization and mixing
coefficients and Zq is the wave function renormalization
constant of the quark fields.
The renormalization factors depend on the renormaliza-

tion scale μ as well as on the cutoff, i.e., the lattice spacing
a. A third dimensionful quantity appearing in this con-
nection is the asymptotic scale parameter Λ. Being dimen-
sionless, the renormalization factors in a mass-independent
renormalization scheme such as the RI0-ðSÞMOM scheme
can only depend on two dimensionless combinations of
these three quantities, e.g., on aμ and aΛ, or functions
thereof, such as the bare lattice or the renormalized
coupling constant. In the following, we shall suppress all
arguments that are not needed in the respective context and
write, e.g., Zðμ; aÞ, ZðμÞ or simply Z.
In the RI0-ðSÞMOM scheme we denote the matrix of

renormalization and mixing coefficients by Ẑ and the quark
field renormalization factor by Ẑq. The definition of Ẑq will
be given below in Eq. (16). The renormalized vertex
function is then written as

VðiÞ
m ðp; qÞR ¼ Ẑ−1

q

XM
m0¼1

Ẑmm0VðiÞ
m0 ðp; qÞ: ð5Þ

With the lattice Born term B̂ðiÞ
m ðp; qÞ corresponding to

VðiÞ
m ðp; qÞ, we obtain

Xd
i¼1

trðVðiÞ
m ðp; qÞRB̂ðiÞ†

m0 ðp; qÞÞ

¼ Ẑ−1
q

XM
m00¼1

Ẑmm00
Xd
i¼1

trðVðiÞ
m00 ðp; qÞB̂ðiÞ†

m0 ðp; qÞÞ: ð6Þ

The RI0-ðSÞMOM scheme is now defined by requiring that
for a given momentum geometry p ¼ p̂, q ¼ q̂ the left-
hand side of this equation coincides with the corresponding
tree-level expression:

Xd
i¼1

trðVðiÞ
m ðp̂; q̂ÞRB̂ðiÞ†

m0 ðp̂; q̂ÞÞ

¼
Xd
i¼1

trðB̂ðiÞ
m ðp̂; q̂ÞB̂ðiÞ†

m0 ðp̂; q̂ÞÞ: ð7Þ

In this way we arrive at our renormalization condition

Xd
i¼1

trðB̂ðiÞ
m ðp̂; q̂ÞB̂ðiÞ†

m0 ðp̂; q̂ÞÞ

¼ Ẑ−1
q

XM
m00¼1

Ẑmm00
Xd
i¼1

trðVðiÞ
m00 ðp̂; q̂ÞB̂ðiÞ†

m0 ðp̂; q̂ÞÞ: ð8Þ

As the RI0-ðSÞMOM scheme should be mass independent,
we have to impose this condition in the chiral limit. The
sum over all members of the operator multiplets ensures
that all lattice symmetries are preserved, if the individual
operators are normalized such that they transform accord-
ing to a unitary representation of H(4).
In the RI0-MOM scheme we choose

p̂ ¼ q̂ ¼ μ

2
ð1; 1; 1; 1Þ ð9Þ

while in the RI0-SMOM scheme we require p̂2 ¼ q̂2 ¼
ðp̂ − q̂Þ2 ¼ μ2, which may be achieved by taking

p̂ ¼ μffiffiffi
2

p ð1; 1; 0; 0Þ; q̂ ¼ μffiffiffi
2

p ð0; 1; 1; 0Þ: ð10Þ

Note that in our conventions the time component is the last
component of the momenta. The choice of the momentum
directions is to be considered as belonging to the definition
of the renormalization scheme. It should be mentioned that
the mixing with total-derivative operators can be taken into
account only within the RI0-SMOM scheme, because these
operators do not contribute in forward matrix elements.
If there is no mixing (M ¼ 1), the formulas simplify.

Omitting the superfluous multiplet indices m and m0 in this
case, we can write

ẐẐ−1
q ¼

P
d
i¼1 trðB̂ðiÞB̂ðiÞ†ÞP
d
i¼1 trðVðiÞB̂ðiÞ†Þ : ð11Þ

In the case of the (flavor-nonsinglet) local vector and
axial-vector currents one may want to modify the above
renormalization conditions such that they are consistent
with the respective Ward identities. Calling the vertex
function of the local vector current Vμ (with the flavor
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indices suppressed) Vμðp; qÞ, we use the renormalization
condition

Ẑ−1
q Ẑ

X
μ

trðVμðp̂; p̂Þðγμ − =̂pp̂μ=p̂2ÞÞ

¼
X
μ

trðγμðγμ − =̂pp̂μ=p̂2ÞÞ ¼ 12 ð12Þ

in the case of the RI0-MOM scheme. In the RI0-SMOM
scheme we employ the renormalization condition [18]

Ẑ−1
q Ẑ

X
μ

trðVμðp̂; q̂Þðp̂μ − q̂μÞð=̂p − =̂qÞÞ ¼ 4ðp̂ − q̂Þ2:

ð13Þ

Similarly, we have for the axial-vector current Aμ with
vertex function Aμðp; qÞ the renormalization condition

Ẑ−1
q Ẑ

X
μ

trðAμðp̂; p̂Þγ5ðγμ − =̂pp̂μ=p̂2ÞÞ ¼ 12 ð14Þ

in the RI0-MOM scheme and

Ẑ−1
q Ẑ

X
μ

trðAμðp̂; q̂Þðp̂μ − q̂μÞγ5ð=̂p − =̂qÞÞ ¼ 4ðp̂ − q̂Þ2

ð15Þ

in the RI0-SMOM scheme.
In the RI0-MOM scheme as well as in the RI0-SMOM

scheme the wave function renormalization constant of the
quark fields Ẑq is determined from the quark propagator
Sðp̂Þ according to

Ẑq ¼
trð−iPλγλ sinðap̂λÞaS−1ðp̂ÞÞ

4
P

λ sin
2ðap̂λÞ

ð16Þ

with p̂2 ¼ μ2. Other definitions of Ẑq have been proposed
in the literature, mainly with the aim of reducing lattice
artifacts, see, e.g., Refs. [18–21].
Using the lattice Born term instead of the continuum

Born term in the renormalization condition (8) and pro-
ceeding analogously in the calculation of Ẑq ensures that Ẑ
is the unit matrix in the free case. Note, however, that in
many cases there is no difference between employing the
lattice or the continuum Born terms for our choice of the
momentum directions.
The renormalization matrix Ẑ leads from the bare lattice

operators to renormalized operators in our regularization
independent RI0-ðSÞMOM scheme. The matrix Z trans-
forming the bare operators into renormalized operators in
the MS scheme of dimensional regularization is then given
by Z ¼ CẐ, where the matrix C is calculated from

XM
m00¼1

Xd
i¼1

Cmm00 trðBðiÞ
m00 ðp̂; q̂ÞBðiÞ†

m0 ðp̂; q̂ÞÞ

¼ Cq

Xd
i¼1

trðV̄ðiÞ
m ðp̂; q̂ÞBðiÞ†

m0 ðp̂; q̂ÞÞ: ð17Þ

Here BðiÞ
m is the continuum Born term, and the factor Cq is

the analogue of C for the quark wave function renormal-
ization constant, i.e., Zq ¼ CqẐq. Note that Cq and the
conversion matrix C are completely determined from a
calculation in continuum perturbation theory. If the renorm-
alization of the vector or axial-vector current is performed
consistently with the Ward identities, cf. Eqs. (12)–(15), the
conversion factor C is equal to one in these cases.
One can avoid the use of the quark wave function

renormalization constant by computing ratios Z=ZV with
the help of the RI0-ðSÞMOM scheme and determining the
renormalization constant ZV of the local vector current Vμ

by other methods, e.g., from matrix elements of Vμ between
hadronic states of given electric charge.
As already mentioned, all of the above calculations

should be performed for massless quarks so that our
renormalization schemes are mass independent. In practice,
Monte Carlo simulations with our boundary conditions
require nonvanishing quark masses. Therefore we compute
Ẑ first at nonzero masses and perform an extrapolation to
the chiral limit in the end, see Sec. V. In order to avoid
unnecessary complications with this extrapolation we
take the quark masses in the simulations to be flavor
independent.

C. Numerical implementation

The CLS ensembles that we use are listed in Table I
along with their most relevant properties. On the coarser
lattices (β ¼ 3.34, 3.40, 3.46, 3.55) we have ensembles
with the standard boundary conditions at our disposal, i.e.,
periodic boundary conditions in all four directions for the
gluons and periodic (antiperiodic) boundary conditions in
space (time) for the quarks. In this case we use the term
periodic boundary conditions as shorthand. The corre-
sponding ensembles are labeled ‘p’ in Table I. On the
finer lattices (β ¼ 3.70, 3.85) only ensembles with open
boundary conditions in time, labeled ‘o’, are available [3].
It should be noted that the ensembles H101, U103, H200,
and N202 are only used for the assessment of systematic
uncertainties and not for the evaluation of our final results.
The lattice spacings have been determined from the

Wilson flow time at the SU(3) symmetric point in lattice
units t�0=a

2, where the SU(3) symmetric point is defined by
12t�0m

2
π ¼ 1.11. Equating t�0 with the result μ�ref ¼

ð8t�0Þ−1=2 ≈ 478 MeV of Ref. [22] we arrive at the values
given in Table II.
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Our calculations are based on correlation functions with
external quark lines. Therefore we are forced to work in a
fixed gauge. As usual we choose the Landau gauge,
because this gauge can be implemented on the lattice as
well as in continuum perturbation theory. The required
correlation functions are evaluated with the help of
momentum sources. On the ensembles with periodic
boundary conditions this procedure is straightforward to
implement [23,24], and the relevant formulas are given in
Sec. II C 1. In the case of open boundary conditions some
modifications are necessary, which will be discussed in
Sec. II C 2.

1. Periodic boundary conditions

For a given operator OðxÞ we start from the three-point
function

Gαβðp; qÞ ¼
a12

V

X
x;y;z

e−ip·x−iðq−pÞ·zþiq·yhψαðxÞOðzÞψ̄βðyÞi

ð18Þ

and the quark propagator

SαβðpÞ ¼
a8

V

X
x;y

e−ip·ðx−yÞhψαðxÞψ̄ βðyÞi; ð19Þ

where V denotes the (dimensionful) volume of the lattice.
Since we use flavor-independent quark masses, flavor
indices have been omitted. In the case of a flavor-nonsinglet
operator O we have only quark-line connected contribu-
tions in the three-point function G, while for a flavor-
singlet operator there would be an additional quark-line
disconnected contribution. The quark propagator S always
refers to a single flavor.
Note that due to translation invariance one of the sums in

the above expression (18) is redundant. For example, one
could restrict the sum over z to a single lattice point
omitting at the same time a factor a4=V. However, the
volume averaging connected with this sum suppresses
statistical fluctuations very efficiently and is therefore
highly advantageous.
Due to the invariance under global color transformations,

which survives the Landau gauge fixing, both of these
correlation functions are proportional to the unit matrix in
color space. We assume that the color indices have been
averaged over, as we already did in Sec. II B, so that G and
S are 4 × 4 matrices.
The vertex function of the operator O is then con-

structed as

Vðp; qÞ ¼ S−1ðpÞGðp; qÞS−1ðqÞ: ð20Þ

The calculation of the correlation functions with the help
of momentum sources proceeds as follows. If Mðx; yÞ
represents the fermion matrix on a given gauge field
configuration, we compute the quark propagator Ŝðx; yÞ
with a momentum source by solving the lattice Dirac
equation

a4
X
z

Mðy; zÞ
�
a4
X
x

Ŝðz; xÞeip·x
�

¼ eip·y: ð21Þ

TABLE I. List of ensembles. The inverse gauge coupling β
determines the lattice spacing, while the spatial and temporal
extents fix the lattice geometry N3

s × Nt. Boundary conditions in
the time direction are either periodic (p) or open (o). The hopping
parameter κ determines the corresponding quark mass; the
resulting approximate pion mass mπ is given in units of MeV,
followed by the spatial lattice size in pion mass units.

Ens. β Ns Nt bc κ mπ mπL

A650 3.34 24 48 p 0.1366 368 4.4
A652 3.34 24 48 p 0.1365695 429 5.1
A651 3.34 24 48 p 0.1365 552 6.6

rqcd017 3.40 32 32 p 0.136865 235 3.3
rqcd021 3.40 32 32 p 0.136813 338 4.7
rqcd016 3.40 32 32 p 0.13675962 420 5.9
H101 3.40 32 96 o 0.13675962 420 5.9
U103 3.40 24 128 o 0.13675962 420 4.4
rqcd019 3.40 32 32 p 0.1366 603 8.4

X450 3.46 48 64 p 0.136994 263 4.9
rqcd030 3.46 32 64 p 0.1369587 317 3.9
B450 3.46 32 64 p 0.13689 418 5.2
rqcd029 3.46 32 64 p 0.1366 707 8.7

X251 3.55 48 64 p 0.1371 266 4.2
X250 3.55 48 64 p 0.13705 348 5.4
rqcd025 3.55 32 64 p 0.137 412 4.3
H200 3.55 32 96 o 0.137 412 4.3
N202 3.55 48 128 o 0.137 412 6.4
B250 3.55 32 64 p 0.1367 707 7.4

N300 3.70 48 128 o 0.137 422 5.1
N303 3.70 48 128 o 0.1368 641 7.8

J500 3.85 64 192 o 0.136852 410 5.2
N500 3.85 48 128 o 0.13672514 599 5.7

TABLE II. Lattice spacings.

β 3.34 3.40 3.46 3.55 3.70 3.85

1=a2½GeV2� 4.05 5.31 6.77 9.46 15.77 25.54
a [fm] 0.098 0.086 0.076 0.064 0.050 0.039
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The quark propagator SðpÞ in momentum space is then
evaluated as the gauge field average of

a8

V

X
x;y

e−ip·ðx−yÞŜðx; yÞ

¼ a8

V

X
x

e−ip·x
�X

y

Ŝðx; yÞeip·y
�
: ð22Þ

Representing
P

z e
−iðq−pÞ·zOðzÞ as

X
z;z0

e−iðq−pÞ·ðzþz0Þ=2ψ̄ðzÞJðz; z0Þψðz0Þ; ð23Þ

the quark-line connected part of Gðp; qÞ is obtained as the
gauge field average of

Ĝðp; qÞ ¼ a12

V

X
x;y;z;z0

e−ip·x−iðq−pÞ·ðzþz0Þ=2þiq·yŜðx; zÞJðz; z0ÞŜðz0; yÞ

¼ a4

V

X
z;z0

e−iðq−pÞ·ðzþz0Þ=2γ5

�
a4
X

x
Ŝðz; xÞeip·x

�†
γ5Jðz; z0Þ

�
a4
X
y

Ŝðz0; yÞeiq·y
�
: ð24Þ

The statistical errors are computed with the help of the
(single elimination) jackknife procedure. As a relatively
small number of configurations is sufficient for our pur-
poses, we can choose them such that they are statistically
independent to a good accuracy. Hence we refrain from
binning.
If one imposes the standard boundary conditions on the

quark fields, the possible spatial components of the quark
momenta p on an N3

s × Nt lattice are integer multiples
of 2π=ðaNsÞ while the time components are of the form
ðnþ 1=2Þ2π=ðaNtÞ with n ∈ Z. Such momenta do not
allow us to satisfy the condition (9) (or the condition (51)
for three-quark operators below) exactly. Therefore we
employ twisted boundary conditions [25] when solving the
lattice Dirac equation (21). For twist τ in the spatial
directions we get spatial momentum components p1 ¼
p2 ¼ p3 ¼ ðnþ τ=2Þ2π=ðaNsÞ. In the RI0-MOM scheme
the corresponding temporal twist is then chosen such that
p4 ¼ p1 ¼ p2 ¼ p3. We employ the five values τ ¼ 0.0,
0.4, 0.8, 1.2, 1.6. In the RI0-SMOM scheme with the
momenta (10) twisted boundary conditions are not
required. Nevertheless, we use the same twist values as
in the RI0-MOM scheme, because a larger number of
momenta appears to be beneficial in the analysis.
Besides the renormalization factors themselves one

might also be interested in ratios of these factors, either
in order to avoid the appearance of the quark wave function
renormalization constant or because the physical quantity
to be studied is a ratio of matrix elements of different
operators and is hence renormalized by the ratio of the
corresponding renormalization factors. The latter case
appears for example when moments of hadron distribution
amplitudes are computed [26–30]. Such ratios of renorm-
alization coefficients can be evaluated “directly” by com-
puting them on the single jackknife ensembles and then
analyzing the results as for individual renormalization
factors.

2. Open boundary conditions

On the ensembles with open boundary conditions we have
to modify our computational strategy. In order to avoid
instabilities in the inversion of the fermion matrix, i.e., in the
evaluation of the quark propagators, the support of the
momentum sources is no longer taken to be the whole N3

s ×
Nt lattice, but replaced with a subvolume of sizeN3

s × ðNt −
2ΔÞ situated symmetrically about the center of the lattice,
thus keeping a distance of Δ · a from the temporal bounda-
ries. Moreover, we have to take into account that the
invariance under translations in the time direction is broken.
Still, in the bulk of the lattice, i.e., at sufficiently large
distances from the temporal boundaries, the effects of this
symmetry loss should be negligible. Thereforewe restrict the
sum over the operator position z in the three-point function
(18) to an even smaller volume of size N3

s × ðNt − 2Δ̃Þ,
again centered at the midpoint of the lattice.
In our calculations we choose Δ ¼ 4 and Δ̃ ¼ 32. To

motivate these choices we plot spatial sums of correlation
functions against time on the ensemble J500 in Figs. 1 and 2.
In Fig. 1we do this for the quark propagator (19) and in Fig. 2

for the three-point function (18) of the operator ψ̄γ1D
↔

4ψ. In
both caseswe show the real parts of all 16 components for the
momentum geometry (9) of the RI0-MOM scheme with
μ ≈ 2 GeV. The dotted vertical lines indicate the source
volume, while the blue vertical lines limit the subvolume that
will be used for the final summation. It should be noted that
the “flatness” of the data in the bulk improveswith increasing
μ and that μ ¼ 2 GeV is the lowest scale entering our final
analysis. We remark that J500 corresponds to our smallest
lattice spacing. Therefore, at the other β values, Δ̃ · a ¼ 32a
is bigger if expressed in physical units.
Also the implementation of the Landau gauge requires

some modifications on lattices with open boundary con-
ditions. On a given lattice gauge field configuration the
Landau gauge is imposed by maximizing the functional
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F½U� ¼ a4

V

X
x;μ

Re½trUμðxÞ� ð25Þ

with respect to the gauge transformation field ΩðxÞ acting
on the link variables UμðxÞ as

UμðxÞ → ΩðxÞUμðxÞΩ†ðxþ μ̂Þ: ð26Þ

The corresponding Lie-algebra valued field AμðxÞ is given
by the traceless anti-Hermitian part of the gauge-fixed link
field UμðxÞ, i.e.,

AμðxÞ ¼
1

2a
ðUμðxÞ − U†

μðxÞÞ
����
traceless

: ð27Þ

The maximization can be performed, for instance, by a
local overrelaxation algorithm. We continue the minimi-
zation iterations until

a2

12V

X
x;μ

tr½ðAμðxÞ − Aμðx − μ̂ÞÞ2�; ð28Þ

the deviation from the Landau gauge condition, is smaller
than 10−10. In the case of open boundary conditions we
somewhat modify this procedure: In the sum in Eq. (25) an
additional factor 1=2 is attached to the spatial links living

FIG. 2. Components of the three-point function of the operator ψ̄γ1D
↔

4ψ on ensemble J500 summed over space as a function of time (in
lattice units). The magnitude of the momentum is given by μ ≈ 2 GeV and a−1 ≈ 5 GeV. The blue and dotted grey lines are as in Fig. 1.

FIG. 1. Components of the quark propagator on ensemble J500 summed over space as a function of time (in lattice units). The
magnitude of the momentum is given by μ ≈ 2 GeV and a−1 ≈ 5 GeV. The volume for the momentum source is limited by the dotted
grey lines. The volume for the final summation is indicated by the blue lines.
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on the boundaries at x4 ¼ 0 and x4 ¼ aNt, in analogy to the
modification of the standard plaquette gauge action [2].

3. Finite size effects

The finite volume of our lattices may distort our results.
On the one hand, we should therefore consider lattices of
different size with otherwise identical parameters and
perform an infinite volume limit in the end. This would
amount to a rather demanding procedure. On the other
hand, renormalization is a short-distance phenomenon.
Hence one may expect that the evaluation of renormaliza-
tion factors is not severely affected by finite size effects, at
least for not too small renormalization scales.
In the end we are restricted to the ensembles in Table I,

which do not allow us to perform a systematic infinite
volume limit. However, for two simulation points
(β ¼ 3.40, κ ¼ 0.13675962 and β ¼ 3.55, κ ¼ 0.137) we
do have ensembles with different spatial volumes at our
disposal so that we can get at least some hints at the size of
finite volume effects. This is illustrated in Fig. 3 for the v2b
operators given in Eq. (A7). We show ZRGI, as defined in
Eq. (67) below, obtained on a spatial volume N3

s ¼ 323 at
β ¼ 3.55, κ ¼ 0.137 with periodic boundary conditions
(blue squares) as well as on two lattices with open
boundary conditions, 323 (black circles) and 483 (red
triangles). The amount of agreement between the blue
squares and the black circles indicates the consistency
between the results from open and periodic boundary
conditions, while the comparison of the black circles with
the red triangles gives an impression of the finite size

effects. Note that only results with μ2 ≥ 4 GeV2 will enter
our final analysis.

III. THREE-QUARK OPERATORS

In this section we describe briefly the renormalization of
three-quark operators, which appear in the description of
baryon distribution amplitudes [26,27].
Every local three-quark operator can be represented as a

linear combination of the operators

Ψf1f2f3
α1α2α3ðl̄1; l̄2; l̄3; xÞ
¼ ϵijkðDl̄1ψ

f1ðxÞÞiα1ðDl̄2ψ
f2ðxÞÞjα2ðDl̄3ψ

f3ðxÞÞkα3 : ð29Þ

Here we use a multi-index notation for the covariant
derivatives, Dl̄ ≡Dλ1 � � �Dλl . Aiming again at a mass-
independent renormalization scheme we assign the same
mass to all flavors and eventually consider the chiral limit.
In an abbreviated notation we write the above operators as

Ψf
αðl̄; xÞ: ð30Þ

Then we have

Ψfπ
απ ðl̄π; xÞ ¼ Ψf

αðl̄; xÞ ð31Þ

for all permutations π in the symmetric group S3 of three
elements, where

Ψfπ
απ ðl̄π; xÞ ¼ Ψfπð1Þfπð2Þfπð3Þ

απð1Þαπð2Þαπð3Þ ðl̄πð1Þ; l̄πð2Þ; l̄πð3Þ; xÞ: ð32Þ

From these “elementary” operators we construct the oper-
ators of interest with the help of flavor structures F and
spinor structures S according to

FfSl̄αΨ
f
αðl̄; xÞ; ð33Þ

where a sum over all (multi-)indices that appear twice is
implied.
In the case of the quark-antiquark operators one has to

distinguish between flavor-singlet and flavor-nonsinglet
operators corresponding to the decomposition 3 ⊗ 3̄ ¼
1 ⊕ 8 under flavor SU(3). For our three-quark operators
we have the decomposition 3⊗ 3⊗ 3¼ 1⊕ 8⊕ 8⊕ 10.
The flavor-singlet (flavor-decuplet) representation corre-
sponds to the totally antisymmetric (totally symmetric or
trivial) representation of S3. The two flavor octets, called
mixed symmetric (MS) and mixed antisymmetric (MA),
form a basis for the two-dimensional representation of S3.
More explicitly, we have the singlet flavor structure
FB;f1f2f3
s with

FB;fπ
s ¼ sgnðπÞFB;f

s ; ð34Þ

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

Z
R

G
I

5 1 2 5 10 2 5 10
2

2

2
[GeV

2
]

FIG. 3. Results for ZRGI for the v2b operators obtained at
β ¼ 3.55, κ ¼ 0.137 on the ensembles rqcd025 (volume
323 × 64, periodic boundary conditions, blue squares), H200
(volume 323 × 96, open boundary conditions, black circles), and
N202 (volume 483 × 128, open boundary conditions, red trian-
gles). Data to the left of the vertical green dotted line do not enter
our analysis.
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decuplet flavor structures FB;f1f2f3
d with

FB;fπ
d ¼ FB;f

d ; ð35Þ

and the octet flavor structures FB;f1f2f3
ot , where the second

subscript t takes the value t ¼ 1 for MS and t ¼ 2 for MA.
The spinor structures should be chosen to yield a flavor-

spinor structure that is totally symmetric under simulta-
neous permutations of the flavor, spinor and derivative
indices fa, αa, l̄a (a ¼ 1, 2, 3). Furthermore, the operator
multiplets should transform irreducibly under the spinorial
hypercubic group Hð4Þ, which replaces the hypercubic
group H(4) in the case of fermionic operators [31]. The
group Hð4Þ has five irreducible spinorial representations:
τ
4

1, τ
4

2, τ8, τ
12

1 and τ
12

2 . (The superscripts indicate the
dimension of these representations.) Multiplets transform-
ing according to these representations have been given in
Ref. [32]. Starting from these operators we construct
multiplets of spinor structures

Sðm;iÞ;l̄
s;α ; Sðm;iÞ;l̄

d;α ; Sðm;iÞ;l̄
ot;α ; ð36Þ

which transform under S3 identically to their flavor
counterparts:

Sðm;iÞ;l̄π
s;απ ¼ sgnðπÞSðm;iÞ;l̄

s;α etc: ð37Þ

Here m labels the different Hð4Þ multiplets and i labels the
different members of the multiplets. Then

X2
t¼1

FB;f
ot S

ðm;iÞ;l̄
ot;α ð38Þ

is indeed totally symmetric under simultaneous permuta-
tions of the flavor, spinor and derivative indices. An
analogous statement holds for the singlet and the decuplet.
The corresponding operators Sl̄αΨ

f
αðl̄; xÞ with zero and one

derivative have been given in Ref. [26] for generic flavors.
For the reader’s convenience they are collected in
Appendix B. They are chosen such that they do not mix
with operators of lower dimension. Moreover, there is no

mixing between operators transforming according to non-
equivalent representations of S3.
In the case of the flavor-octet operators we find

FB;f
ot S

ðm;iÞ;l̄
ot;α Ψf

αðl̄; xÞ ¼ 1

2

X2
t0¼1

FB;f
ot0 S

ðm;iÞ;l̄
ot0;α Ψf

αðl̄; xÞ ð39Þ

for t ∈ f1; 2g. Therefore we can always work with the MA
flavor structure (t ¼ 2) and assume that the flavor-spinor
structure factorizes into a flavor structure and a spinor
structure as in Eq. (33). For the singlet and decuplet
operators this factorization is trivially satisfied.
Our renormalization procedure for the three-quark oper-

ators is similar to the RI0-SMOM scheme used in the case of
the quark-antiquark operators. In particular, we compute
the quark field renormalization factor Zq from the quark
propagator as above, see Eq. (16).
For an operator of the form (33) we consider (in Landau

gauge) the vertex function

Λðp1; p2; p3Þf1f2f3α1α2α3 ≡ ΛðpÞfα
¼

X
π∈S3

FfπSl̄βH
β
απ ðl̄;pπÞ ¼

X
π∈S3

FfπSl̄πβπH
βπ
απ ðl̄π;pπÞ: ð40Þ

Here Hβ
αðl̄;pÞ≡Hβ1β2β3

α1α2α3ðl̄1; l̄2; l̄3;p1; p2; p3Þ denotes the
“flavorless” amputated four-point function with open
spinor indices α1, α2, α3 (β1, β2, β3) at the external quark
lines (at the operator), pictorially represented in Fig. 4.
More explicitly, we have

Hβ1β2β3
α1α2α3ðl̄1; l̄2; l̄3;p1; p2; p3Þ ¼

X
x1;x2;x3

eiðp1·x1þp2·x2þp3·x3Þϵi1i2i3ϵj1j2j3hŜi1j1β1α
0
1
ðl̄1; 0; x1ÞŜi2j2β2α

0
2
ðl̄2; 0; x2ÞŜi3j3β3α

0
3
ðl̄3; 0; x3Þi

× S−1ðp1Þα0
1
α1
S−1ðp2Þα0

2
α2
S−1ðp3Þα0

3
α3
: ð41Þ

As in the case of the quark-antiquark operators, SðpÞ
denotes the (color averaged) quark propagator. Propagators
with covariant derivatives acting at x are denoted by

Ŝijαβðl̄; x; yÞ, and h� � �i indicates the average over the gauge
fields fixed to Landau gauge.
Since in the present context all quark masses are equal,

the propagators do not need a flavor label. In our setup, the

FIG. 4. Four-point function of a three-quark operator.
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external momenta are chosen such that p2
1 ¼ p2

2 ¼ p2
3 ¼

ðp1 þ p2 þ p3Þ2 ¼ ðp1 þ p2Þ2 ¼ ðp1 þ p3Þ2 ¼ μ2 with
the renormalization scale μ.
We write the mixing operator multiplets for a fixed flavor

structure FB;f
o2 in the form

OðiÞ
m ðxÞ ¼ FB;f

o2 S
ðm;iÞ;l̄
o2;α Ψf

αðl̄; xÞ ð42Þ

and analogously with o2 replaced by o1, s or d. The
corresponding vertex functions are given by

ΛðOðiÞ
m jpÞfα ¼

X
π∈S3

FB;fπ
o2 Sðm;iÞ;l̄

o2;β Hβ
απðl̄;pπÞ: ð43Þ

The renormalized vertex functions take the form

ΛRðOðiÞ
m jpÞfα ¼

X
π∈S3

FB;fπ
o2 ½Sðm;iÞ;l̄

o2;β Hβ
απðl̄;pπÞ�R; ð44Þ

where

½Sðm;iÞ;l̄
o2;β Hβ

αðl̄;pÞ�R ¼
X
m0

Ẑ−3=2
q Ẑmm0Sðm

0;iÞ;l̄
o2;β Hβ

αðl̄;pÞ: ð45Þ

The renormalization and mixing coefficients Ẑmm0 are
fixed by the renormalization condition

X
i

ΛRðOðiÞ
m jpÞfαðΛBornðOðiÞ

m0 jpÞfαÞ�

¼
X
i

ΛBornðOðiÞ
m jpÞfαðΛBornðOðiÞ

m0 jpÞfαÞ�; ð46Þ

which is analogous to Eq. (8) for quark-antiquark oper-
ators. The superscript “Born” indicates the corresponding
tree level expression (Born term). This is again taken with
all lattice artifacts included.
More explicitly our renormalization condition can be

written as

X
m00

Ẑ−3=2
q Ẑmm00Lm00m0 ¼ Rmm0 ð47Þ

with

Lmm0 ¼
X
i

X2
t¼1

Sðm;iÞ;l̄
ot;β ðSðm0;iÞ;l̄0

ot;β0 Þ�Hβ
αðl̄;pÞ

× ðHβ0
α ðl̄0;pÞBornÞ� ð48Þ

and

Rmm0 ¼
X
i

X2
t¼1

Sðm;iÞ;l̄
ot;β ðSðm0;iÞ;l̄0

ot;β0 Þ�Hβ
αðl̄;pÞBorn

× ðHβ0
α ðl̄0;pÞBornÞ�: ð49Þ

For singlet and decuplet one gets analogous equations
where, of course, no sums over t appear. So we have

Ẑmm0 ¼ Ẑ3=2
q ðRL−1Þmm0 : ð50Þ

The corresponding (matrices of) renormalization factors
leading to operators renormalized in the MS scheme are
constructed with the help of (matrices of) conversion
factors calculated in continuum perturbation theory, where
we use the particular version of the MS scheme introduced
in Ref. [33]. Due to the complexity of higher-loop
calculations we had to limit ourselves to one-loop accuracy
[34]. Also the anomalous dimensions of our operators are
in general only known to one loop, with the exception of
the operators without derivatives, for which the anomalous
dimensions have been calculated to three loops [35].
The evaluation of the correlation functions on lattices

with periodic and open boundary conditions as well as
the chiral extrapolation proceed in complete analogy to
the case of quark-antiquark operators. For the external
momenta we have taken

p1 ¼
μ

2
ðþ1;þ1;þ1;þ1Þ;

p2 ¼
μ

2
ð−1;−1;−1;þ1Þ;

p3 ¼
μ

2
ðþ1;−1;−1;−1Þ; ð51Þ

employing twisted boundary conditions.

IV. PERTURBATIVE SUBTRACTION
OF LATTICE ARTIFACTS

For larger values of the renormalization scale μ lattice
artifacts will show up. Given the fact that for most operators
Z has to diverge as a → 0, it is not immediately obvious
what one should call lattice artifacts in the present context.
In order to clarify this point it is useful to have a look at the
calculation of Z in lattice perturbation theory. Evaluating
the required correlation functions to one-loop order at
vanishing quark mass yields results of the form

Zðμ; aÞ ¼ 1 −
g2

16π2
ððγ0=2Þ lnða2μ2Þ þ Δþ Fða2μ2ÞÞ;

ð52Þ

where g is the bare coupling constant and Fð0Þ ¼ 0. What
is usually quoted as the one-loop result from lattice
perturbation theory is the above expression with all con-
tributions that go to zero for a → 0 omitted, i.e.,
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1 −
g2

16π2
ððγ0=2Þ lnða2μ2Þ þ ΔÞ: ð53Þ

From this point of view the quantity Fða2μ2Þ would
be considered as a lattice artifact, which vanishes for fixed
μ like a2 (up to logarithms) as a → 0 [36]. However,
keeping such contributions (or part of them) should not
change the continuum limit of the renormalized quantities.
Nevertheless, it seems to be generally expected that sup-
pressing the above sort of lattice artifacts in the renorm-
alization factors would also reduce the lattice artifacts in the
renormalized quantities.
One can realize such a suppression by calculating

expressions for the lattice artifacts in (one-loop) lattice
perturbation theory and subtracting these from the data
[24,37]. Using the above notation this means subtracting

−
g2

16π2
Fða2μ2Þ: ð54Þ

We have computed Fða2μ2Þ for the quark-antiquark oper-
ators with less than two derivatives in the RI0-MOM and the
RI0-SMOM schemes (see Appendix C for details).
Of course, the bare coupling g2 in this expression could

be replaced by other sensible definitions of the coupling
constant such as the boosted coupling

g2
□
¼ g2

1
3
trU□

; ð55Þ

where 1
3
trU□ denotes the average plaquette. In most cases,

both choices of the coupling constant seem to reduce the
discretization effects by about the same amount, though
with opposite signs of the remaining lattice artifacts.
In the following we shall restrict ourselves to the

straightforward case of the bare coupling. A scale-
dependent choice of the coupling has been proposed
in Ref. [10].

V. CHIRAL EXTRAPOLATION

Aiming at a mass-independent renormalization scheme
we should use massless quarks. However, the boundary
conditions that we employ in our Monte Carlo simulations
require massive quarks. Hence we must extrapolate
the results obtained in our simulations with three mass-
degenerate quarks to the chiral limit, where all quark
masses vanish.
At β ¼ 3.34 there are ensembles with periodic boundary

conditions for three different quark masses available, while
for each of the next three β values (β ¼ 3.40, 3.46, 3.55) we
have ensembles with periodic boundary conditions for four
different masses, see Table I. On the two finest lattices
(β ¼ 3.70, 3.85) we have only two different masses each at

our disposal. All of these ensembles will be used for the
chiral extrapolation.
One-loop lattice perturbation theory [19] suggests that

the leading mass dependence is linear in the quark mass.
Therefore, in a first approach, we extrapolate linearly in
m2

π . On the coarser lattices we observe a rather mild
mass dependence of the vertex functions, especially for
larger scales, so that we are confident that the linear
extrapolations yield reliable results also on the two
finest lattices. The chiral extrapolations are performed at
fixed external momenta. As these depend on the lattice
size (see Sec. II C 1) it is in some cases necessary to
interpolate between the simulated momenta. This is
done linearly in μ2. As an example we show the chiral
extrapolation of the tensor density at β ¼ 3.55 for three
scales in Fig. 5.
On the coarser lattices we could perform additional

quadratic (in m2
π) extrapolations in order to estimate the

uncertainties connected with taking the chiral limit.
However, this is not possible on the two finest lattices.
In order to get nevertheless an impression of the importance
of m4

π terms in the full range of β we have used the
following procedure as a second approach.
Since the renormalization factors computed in the

massless theory suffice to renormalize also the vertex
functions evaluated with nonvanishing quark masses, it
follows that

Ẑðμ; a; mπÞẐðμ; a; 0Þ−1 ð56Þ

has a finite continuum limit a → 0. Here we have indicated
the dependence of the renormalization matrix Ẑ on the
renormalization scale μ, the lattice spacing a and the pion
mass mπ explicitly. Note that μ has to be kept fixed in
physical units as a → 0. The existence of the continuum
limit of Ẑðμ; a; mπÞẐðμ; a; 0Þ−1 motivates the following
ansatz for the mass dependence:

0.86

0.865

0.87

0.875

0.88

0.0 0.1 0.2 0.3 0.4 0.5

m
2

[GeV
2
]

2
= 8.432 GeV

2

2
= 9.453 GeV

2

2
=10.533 GeV

2

FIG. 5. Local chiral extrapolation for the tensor density in the
RI0-SMOM scheme at β ¼ 3.55.
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Ẑðμ; a; mπÞ ¼ ½1þ ðb0ðμÞ þ b1ðμÞaÞm2
π

þ ðc0ðμÞ þ c1ðμÞaÞm4
π�Ẑðμ; a; 0Þ: ð57Þ

Note that the coefficients b0, b1, c0, and c1 are of
mass dimension −2, −1, −4, and −3, respectively.
One-loop lattice perturbation theory [19] reveals contribu-
tions proportional to amq. Therefore we include terms
linear in a to describe the lattice spacing dependence of
Ẑðμ; a; mπÞẐðμ; a; 0Þ−1. Since we have to work at the same
value of μ for all lattice spacings, it is necessary to
interpolate the scale dependence of the Ẑ data. For this
purpose we use cubic splines in lnða2μ2Þ.
If we consider M mixing operator multiplets, the

quantities b0ðμÞ, b1ðμÞ, c0ðμÞ, c1ðμÞ and Ẑðμ; a; 0Þ are
M ×M matrices. For a given value of μ we have therefore
ð4þ naÞM2 parameters, if we use data for na values of a. In
the case of the quark-antiquark operators, where na ¼ 6,
these 10M2 parameters are fitted to 19M2 data points
corresponding to the 19 available combinations of a and
mπ . In the case of the three-quark operators we do not have
data for β ¼ 3.34 at our disposal, hence na ¼ 5, and 9M2

parameters must be fitted to 16M2 data points. For M > 2
the number of free parameters becomes prohibitively large,
and we have to restrict ourselves to separate fits for each β.
In the following we shall call the first approach “local

chiral extrapolation” because the extrapolation is per-
formed independently for each β. The second approach
will be referred to as a “global chiral extrapolation.” The
latter method addresses the limitation that we do not have
the same coverage of pion masses at all the lattice spacings,
while the former approach has been used in our previous
publications. One finds rather good agreement between the

two procedures, which improves for larger scales. An
example is shown in Fig. 6. Nevertheless we consider
the global chiral extrapolation to be more reliable, because
in this case we expect the extrapolation on the two finest
lattices to benefit from the information on the behavior at
small masses, which is available only on the coarser
lattices.

VI. INPUT FROM CONTINUUM
PERTURBATION THEORY

Continuum perturbation theory is used for the calcula-
tion of the conversion factors. Moreover, in order to control
the scale dependence of the renormalization factors we
need perturbative expressions forWðμ; μ0Þ ¼ ZðμÞZ−1ðμ0Þ.
In both cases the running coupling ḡðμÞ is required.
The scale dependence of ḡðμÞ is controlled by the β

function

βðḡÞ ¼ μdḡ=dμ; ð58Þ

where the derivative is to be taken at fixed bare parameters
and fixed cutoff. The perturbative expansion of βðḡÞ can be
written as

βðḡÞ ¼ −β0
ḡðμÞ3
16π2

− β1
ḡðμÞ5
ð16π2Þ2 − β2

ḡðμÞ7
ð16π2Þ3 þ � � � : ð59Þ

The values of the coefficients β0–β4 in the MS scheme are
listed in Eqs. (D1)–(D5). Integrating Eq. (58) one obtains

μ

Λ
¼

�
β0

16π2
ḡðμÞ2

� β1
2β2

0 exp

�
1

2β0
·
16π2

ḡðμÞ2
�

× exp

�Z
ḡðμÞ

0

dg0
�

1

βðg0Þ þ
1

β0

16π2

g03
−
β1
β20

1

g0

��
ð60Þ

with the Λ parameter appearing as an integration constant.
The running of the Z matrices is governed by the

anomalous dimension matrix

γðḡÞ ¼ −
�
μ
dZ
dμ

�
Z−1; ð61Þ

whose perturbative expansion reads

γðḡÞ ¼ γ0
ḡðμÞ2
16π2

þ γ1

�
ḡðμÞ2
16π2

�
2

þ γ2

�
ḡðμÞ2
16π2

�
3

þ � � � :

ð62Þ

Again, the bare parameters and the cutoff are kept constant
when taking the derivative.
We define the quark field renormalization constant Zq so

that the renormalized quark propagator is obtained from the
bare propagator by multiplication with Zq, i.e., we use the
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FIG. 6. Comparison between the local chiral extrapolation
(black circles) and the global chiral extrapolation (red crosses)
for the tensor density in the RI0-SMOM scheme at the scales
μ2 ¼ 4 GeV2 (upper set of data points) and μ2 ¼ 10 GeV2 (lower
set of data points). The extrapolated Ẑ values are plotted against
the bare coupling g2.
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continuum analogue of Eq. (16). For the anomalous
dimension of the quark field we adopt the definition

γqðḡÞ ¼ −μ
dZq

dμ
Z−1
q : ð63Þ

Collections of coefficients γi in the MS scheme can be
found in Appendix D for our quark-antiquark operators as
well as for the quark field and in Appendix E for our three-
quark operators.

Taking the derivative with respect to the running cou-
pling ḡðμÞ, we get

dZ
dḡ

¼ −
γðḡÞ
βðḡÞZ: ð64Þ

This system of differential equations can formally be solved
in the form

ZðμÞZ−1ðμ0Þ ¼
X∞
n¼0

ð−1Þn
Z

ḡðμÞ

ḡðμ0Þ
dgn

Z
gn

ḡðμ0Þ
dgn−1 � � �

Z
g2

ḡðμ0Þ
dg1

γðgnÞ
βðgnÞ

� � � γðg2Þ
βðg2Þ

γðg1Þ
βðg1Þ

: ð65Þ

In the general case of M mixing multiplets of operators
this expression may be difficult to evaluate, because the
M ×M matrices γðgÞ do not necessarily commute for
different values of the coupling g. If there is no mixing
(M ¼ 1) the formula simplifies to

ZðμÞZ−1ðμ0Þ ¼ exp

�
−
Z

ḡðμÞ

ḡðμ0Þ
dg0

γðg0Þ
βðg0Þ

�
: ð66Þ

In analogy to the definition of the Λ parameter we can
define the so-called RGI (renormalization group invariant)
Z, which is independent of scale and scheme:

ZRGI ¼
�
2β0

ḡðμÞ2
16π2

�− γ0
2β0

× exp

�Z
ḡðμÞ

0

dg0
�
γðg0Þ
βðg0Þ þ

γ0
β0g0

��
ZðμÞ: ð67Þ

Of course, the independence of scale and scheme is
strictly realized only if the β function and the anomalous
dimension γ are exactly known (including nonperturbative
contributions). In practical applications this is usually not
the case, except for the vector current and the nonsinglet
axial-vector current, whose anomalous dimensions are
known to vanish exactly. In all the other cases one must
be prepared to encounter violations of the scale and scheme
independence due to truncation errors in the perturbative
approximations.
With the help of the methods described in Secs. II B and

II C we can compute Ẑ, the renormalization matrix leading
from the bare lattice operators to operators renormalized in
the RI0-ðSÞMOM scheme, for some range of renormaliza-
tion scales μ. In order to evaluate the matrix Z transforming
the bare operators into MS operators we need in addition
the conversion matrix (or conversion factor if there is no
mixing) C, cf. Eq. (17) in the case of quark-antiquark
operators. This is calculated in continuum perturbation
theory leading to results of the form

CðμÞ ¼ 1þ c1
ḡðμÞ2
16π2

þ c2

�
ḡðμÞ2
16π2

�
2

þ c3

�
ḡðμÞ2
16π2

�
3

þ � � � :

ð68Þ

For selected quark-antiquark operators, explicit expressions
for the coefficients c1, c2, … are compiled in Appendix F.
For three-quark operators, see Appendix G.
With the β function and the anomalous dimension

function γ given to some order in perturbation theory,
we calculate the integrals in (60) and (66) analytically if
possible or else by numerical integration. In the case of two
mixing multiplets with a nondiagonal matrix of anomalous
dimensions, the integral representation (65) of the scale
dependence of Z is not very helpful. Instead of trying to
evaluate the expression (65) we solve the system of
differential equations (64) with the help of a power series
expansion in ḡ following Ref. [38].
In principle, one has a lot of freedom in choosing the

renormalization scheme for the anomalous dimension, the
coupling constant in the conversion factor etc., cf. Ref. [24].
If therewere no truncation errors,ZRGI wouldbe independent
of all these choices. In practice, we consider only the MS
scheme. In order to obtain an estimate of the truncation errors
we vary the number of loops taken into account.

VII. LOOKING FOR A WINDOW

At this point, the results for the Z factors (extrapolated to
the chiral limit and converted to the MS scheme) suffer
from two problems: the truncation errors of the perturbative
expressions for the γ and β functions and the conversion
matrix (factor) C on the one side and the lattice artifacts on
the other side. The former grow as μ becomes smaller,
while the latter increase as μ gets larger. Ideally, one would
like to find a window, i.e., a μ interval where both errors are
negligible. This would require

1=L2 ≪ Λ2
QCD ≪ μ2 ≪ π2=a2 ð69Þ
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for a lattice of linear extent L. Then lattice artifacts would
be negligible and the scale dependence could be described
by low-order continuum perturbation theory. In such a
window the results for ZRGI would be independent of the
scale μ, i.e., when plotted against μ they would show a
plateau, and the final value for ZRGI could be read off at a
value μ within this window.
Unfortunately, such an ideal situation is hard to achieve

at the present lattice spacings. Although in recent years
there has been considerable progress in the perturbative
evaluation of anomalous dimensions and conversion fac-
tors, the convergence of the perturbative expansions, in
particular for the conversion factors, is not always sat-
isfactory. Therefore the results for ZRGI will usually not be
independent of μ even for values μ ≈ 2 GeV.
For increasing values of μ lattice artifacts will become

larger. Nevertheless, the continuum limit of renormalized
quantities remains in principle well-defined also for higher
renormalization scales. Therefore one can simply use Z
evaluated at some convenient, fixed scale μ and hope that
the continuum limit is under control. However, one may
expect that suppressing the lattice artifacts in the Z factors
would also make the behavior of the renormalized quan-
tities for a → 0 more benign.
One possibility to realize such a suppression consists in

fitting the ZRGI data with a suitable ansatz for the lattice
artifacts. Since the values of p2 ¼ a2μ2 actually appearing
in the data cover only a finite interval which does not
extend down to 0, a polynomial in p2 would be a
reasonable choice.
Alternatively one can calculate expressions for the lattice

artifacts in lattice perturbation theory and subtract these
from the data as explained in Sec. IV. While this procedure
reduces the scale dependence of the ZRGI data already
substantially, some lattice artifacts will in general remain,
which can still be fitted.
Lattice artifacts can be studied in a much clearer way for

quantities that have a decent continuum limit. This is not
the case for the Z factors themselves, but for ratios
ZðμÞZ−1ðμ0Þ of renormalization factors (matrices) at differ-
ent renormalization scales [39]. Therefore these ratios offer
a possibility to investigate the impact of discretization
effects in our calculations. After performing a continuum
limit we can see how well the scale dependence is described
by continuum perturbation theory. Such investigations have
already been performed for various operators in a number
of different settings, see, e.g., Refs. [40–42]. In this way we
should be able, at least for these quantities, to disentangle
lattice artifacts and truncation errors, which otherwise are
hard to separate unambiguously.
We show ZðμÞZ−1ðμ0Þ for the tensor density in Fig. 7

comparing results obtained with conversion factors at
different orders in perturbation theory. The statistical errors
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FIG. 7. Ratios of the renormalization factor of the tensor
density evaluated in the RI0-SMOM scheme at different scales
with the scale in the denominator fixed at μ20 ¼ 24 GeV2. The
nonperturbative results at finite β have been computed in the
RI0-SMOM scheme, lattice artifacts have been subtracted per-
turbatively, and a global chiral extrapolation has been performed.
Finally, the values have been converted to the MS scheme using
one-loop, two-loop and three-loop (from top to bottom) pertur-
bation theory and extrapolated to the continuum limit (β ¼ ∞).
The curves show the behavior calculated in three-loop perturba-
tion theory in the MS scheme.
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of the ratios have been calculated from the errors of
numerator and denominator by means of error propagation.
For the continuum extrapolation we have employed a
second-order polynomial in a2. The agreement with the
perturbative scale dependence shown by the curves
improves significantly as we go from one-loop to three-
loop conversion factors. In general the perturbative series
for the conversion factors is less well behaved than the
expansions of the anomalous dimensions, which tend to
converge quite fast. When plotting ZRGI against μ we must
therefore be prepared to find visible deviations from a
plateau also for moderate values of μ, where lattice artifacts
should be small.
If the one-loop lattice artifacts are not subtracted, the

agreement with the perturbative running is less satisfactory,
even if the three-loop conversion factor is used. For the
tensor density this is demonstrated in Fig. 8, which should
be compared with the lowest panel in Fig. 7.

Particularly good agreement with the perturbative run-
ning is observed for the pseudoscalar density as Fig. 9
shows. In this case we can even use the five-loop expression
for the anomalous dimension (see Appendix D), but the
difference with the three-loop results would be hardly
visible in the figure.
In some cases the anomalous dimension is even known

exactly, e.g., for (partially) conserved currents. For the
axial-vector current the scale dependence, which we find
from our nonperturbative calculations, is displayed in
Fig. 10, where the renormalization condition (8) has been
employed. Using instead Eq. (14) leads to a less satisfac-
tory agreement with the expectations, although the con-
version factor is exactly equal to 1 in this case so that all
sources of truncation errors disappear. While in Fig. 10 the
deviation from 1 in the continuum limit remains below
0.002, it reaches about 0.007 in the same range of scales
when Eq. (14) is applied.
Another case where truncation errors are absent in the

anomalous dimension as well as in the conversion factor is
given by the ratio ZS=ZP, see Fig. 11.
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FIG. 8. The same as the lowest panel in Fig. 7, but without the
perturbative subtraction of lattice artifacts.
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FIG. 9. The same as the lowest panel in Fig. 7, but for the
pseudoscalar density and with the MS curve computed in five-
loop perturbation theory.
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FIG. 10. The same as the lowest panel in Fig. 7, but for the
axial-vector with the renormalization condition (8).
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FIG. 11. The same as the lowest panel in Fig. 7, but for the ratio
ZS=ZP.
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For the three-quark operators the conversion matrices are
only known to one-loop accuracy, see Appendix G. As an
example we consider the operator (B3) and compare in
Fig. 12 ZðμÞ=Zðμ0Þ with the scale dependence obtained in
three-loop perturbation theory. As above, we have used a
second-order polynomial in a2 for the continuum extrapo-
lation of ZðμÞ=Zðμ0Þ.
As the figures show, there may be significant differences

between the perturbative predictions for the scale depend-
ence and the values of ZðμÞZ−1ðμ0Þ even after an extrapo-
lation to the continuum limit. When plotting ZRGI rather
than these ratios we should therefore expect to see devia-
tions from a constant, not only due to the truncation of the
perturbative series but also due to lattice artifacts. As an
example we show in Fig. 13 ZRGI

a2 computed with the help
of the two-loop and the three-loop conversion factors from
the RI0-MOM results. Using the locally chirally extrapo-
lated data for the purpose of these plots enables us to reach
rather large scales for the higher β values, where the lattice
artifacts are particularly pronounced.
Indeed for most of the curves there is no interval in μ2

where a plateau can be seen. There are several reasons for
this behavior. At very small scales finite size effects might
not be negligible and perturbation theory will probably
break down completely. Moreover, the chiral extrapola-
tion is less stable in this region. Beyond 2 or 3 GeV2

truncation effects compete with lattice artifacts. Both
effects tend to increase the ZRGI values (at least in the
case at hand). The truncation effects are independent of β,
decrease as a function of μ2 and get smaller when higher
orders in the perturbative expansion are taken into

account. The effect of changing the loop order of the
conversion factor can be seen by comparing the top and
the bottom panels in Fig. 13. In both plots the scale

2-loop conversion

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Z
a 2R

G
I

5 1 2 5 10 2 5 10
2

2

2
[GeV

2
]

 = 3.34
 = 3.40
 = 3.46
 = 3.55
 = 3.70
 = 3.85

3-loop conversion

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Z
a 2R

G
I

5 1 2 5 10 2 5 10
2

2

2
[GeV

2
]

 = 3.34
 = 3.40
 = 3.46
 = 3.55
 = 3.70
 = 3.85

FIG. 13. ZRGI for Oa2 computed from the locally chirally
extrapolated RI0-MOM results with the help of the two-loop (top
panel) and the three-loop (bottom panel) conversion factor. In
both cases the five-loop anomalous dimension has been used.
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FIG. 12. Ratios of the renormalization factor of the three-quark
operator (B3) evaluated in the RI0-SMOM scheme at different
scales with the scale in the denominator fixed at μ20 ¼ 24 GeV2.
The nonperturbative results at finite β have been computed in the
RI0-SMOM scheme and a global chiral extrapolation has been
performed. Finally, the values have been converted to the MS
scheme using one-loop perturbation theory and extrapolated to
the continuum limit (β ¼ ∞). The curve shows the behavior
calculated in three-loop perturbation theory in the MS scheme.
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dependence in the MS scheme has been computed
from the five-loop results for the anomalous dimension
and the β function (see Appendix D). Using instead the
four-loop approximation would only lead to hardly visible
changes.
The discretization artifacts, on the other hand, depend only

on a2μ2 for fixed β, being proportional to a2μ2 in a first
approximation. They increase as a function of μ2, but
decrease at a given μ2 when β gets larger. The combination
of both effects produces a structure in the data, which moves
to higher scales and eventually becomes aminimumasa gets
smaller. Depending on the loop order theremay appear “fake
plateaus,” e.g., for β ¼ 3.34 in the two-loop case or for β ¼
3.55 when the three-loop conversion factor is employed.
A plot of ZRGI as a function of μ2 for the three-quark

operator (B3) is shown in Fig. 14.

VIII. TOWARD FINAL RESULTS

In this section we present results for the renormalization
and mixing coefficients obtained by two different methods.
The first method, employed in our previous papers, e.g.,
Refs. [27–29], makes use of fits of the scale dependence.
We call it the fit method in the following. In the second
method we evaluate the renormalization factors at some
suitable fixed scale and evolve them perturbatively to the
desired reference scale. This method will be referred to as
the fixed-scale method.
In the fit method we try to exploit as much of the

available nonperturbative information as possible by per-
forming a joint fit of the μ-dependence of the (chirally
extrapolated) renormalization matrices Zðμ; aÞMC for sev-
eral β values. As explained above, the fit should describe
(and hence suppress) the lattice artifacts vanishing like a
power of a.
The choice of the fitting procedure is motivated by the

following considerations. From the matrix of anomalous
dimensions (evaluated for asmany loops as possible) one can
calculate a corresponding approximation of Wðμ; μ0Þ ¼
ZðμÞZ−1ðμ0Þ, which should describe the μ-dependence for
sufficiently large scales μ if there were no discretization
effects. As our renormalization conditions respect the hyper-
cubic symmetry of our lattices, the discretization artifacts
must beH(4) invariant functions of themomenta defining the
renormalization scheme. Invariant polynomials in the
momentum components are, e.g., given by

X
μ

p2
μ;
X
μ

q2μ;
X
μ

pμqμ;
X
μ

p4
μ;
X
μ

pμq3μ;… ð70Þ

Hence an ansatz for the description of the lattice artifacts can
be constructed from terms like

a2p2;
a2

p2

X
μ

p4
μ;
a4

p2

X
μ

p6
μ;… ð71Þ

see, e.g., Refs. [43–45]. For the momenta p̂, q̂,… chosen in
our renormalization conditions [see Eqs. (9), (10), and (51)]
all these terms reduce to powers of a2μ2.
Adding such an ansatz for the effective description of the

lattice artifacts, we arrive at the following fit function for
the matrices Zða; μÞMC:

Zðμ; aÞMC ¼ Wðμ; μ0ÞZðμ0; aÞ þ A1a2μ2 þ A2ða2μ2Þ2
þ A3ða2μ2Þ3: ð72Þ

The fit parameters are the entries of the renormalization
matrices Zðμ0; aÞ at the reference scale μ0 and the entries of
the three matrices Ai parametrizing the lattice artifacts.
Performing a joint fit for several β values we neglect a
possible dependence of Ai on the gauge coupling g2, which
we only vary by 15%.
Representing Wðμ; μ0Þ as ΔZðμÞ−1ΔZðμ0Þ with

ΔZðμÞ ¼ ZRGIZ−1ðμÞ we can write

Zðμ; aÞMC ¼ ΔZðμÞ−1ZRGIðaÞ þ A1a2μ2 þ A2ða2μ2Þ2
þ A3ða2μ2Þ3: ð73Þ

Therefore one has the equivalent options of using either
Zðμ0; aÞ or ZRGIðaÞ as fit parameter. In the following we
shall give our results for Zðμ0; aÞ with μ20 ¼ 4 GeV2,
because these are more immediately useful, in particular
in the presence of mixing.
The fluctuations at different scales are correlated. Hence

we estimate the statistical uncertainty of the fit result
Zðμ0; aÞ by the statistical error of the closest (in μ) data
point. In most cases this procedure leads to errors that are
still quite small.
The systematic uncertainties are much more important.

In order to estimate them we perform a number of fits
varying exactly one element of the analysis at a time, see
Table III. We choose two values of the lower limit μ1 of the
fit range. For the parametrization of the discretization
artifacts we either take the complete expression in
Eq. (72) with ndisc ¼ 3 terms or we set A3 ¼ 0 correspond-
ing to ndisc ¼ 2. The uncertainty due to the scale setting is
taken into account by multiplying the values of 1=a2 given

TABLE III. Choices for the fits in the case nmax
loops ¼ 3. Further

explanations are given in the text.

Fit χ μ21 ½GeV2� ndisc λ2scale ΛMS [MeV] nloops

1 g 4 3 1.0 341 3
2 g 10 3 1.0 341 3
3 g 4 2 1.0 341 3
4 g 4 3 1.03 341 3
5 g 4 3 1.0 353 3
6 g 4 3 1.0 341 2
7 l 4 3 1.0 341 3
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in Table II by λ2scale ¼ 1.03. This value contains the scale
uncertainty of 8t�0 ¼ ðμ�refÞ−2 given in Ref. [22] and the
largest error of our determination of t�0=a

2, added in
quadrature. Also ΛMS is varied within its uncertainty [22].
In order to estimate the error caused by the truncation of the
perturbative expansion of the conversion factors we
reduce the number of loops nloops used in the calculation
of the conversion factors by one, compared to the maximal
value nmax

loops that is available. The size of the truncation
error is taken to be one half of the resulting difference,
because going, e.g., from two loops to three or more loops
in the perturbative expansion is expected to lead to a
smaller change than going from one loop to two loops, at
least for sufficiently large scales. For the quark-antiquark
operators we have nmax

loops ¼ 3 in the RI0-MOM scheme,
while in the RI0-SMOM scheme we have to be satisfied
with nmax

loops ¼ 2 for the tensor operators with derivatives.
The symmetry properties of our operator multiplets can be
found in Table IV in Appendix A, and numerical values of
the coefficients in the perturbative expansion of the
conversion factors are given in Table V in Appendix F.
For the three-quark operators only one-loop results for
the conversion factors are available so that in these
cases nmax

loops ¼ 1.
Another source of systematic error is the chiral extrapo-

lation, all the more as on the two finest lattices we have
only two different masses at our disposal. We try to
estimate the related uncertainty by comparing results
obtained by means of the local and the global chiral
extrapolation, cf. Sec. V. In the column of Table III labeled
by χ these two choices are indicated by the letters g and l for
the global and the local chiral extrapolation, respectively. It
should however be noted that the upper limits of the fit
ranges differ for data which have been locally or globally
extrapolated. In both cases we include all available data
points with μ ≥ μ1 in the fit. In the case of the local chiral
extrapolation the upper limit is therefore determined by the
largest momenta considered. These have an approximately
fixed value in lattice units corresponding to a2μ2 ≈ 10 in
the RI0-MOM scheme and a2μ2 ≈ 5 in the RI0-SMOM
scheme for the quark-antiquark operators and a2μ2 ≈ 11 for
the three-quark operators. The global chiral extrapolation,
on the other hand, requires the same scale in physical units
for all β values. Thus the upper limit of the fit range is
essentially determined by the largest scale available at the
smallest β. In the case of the quark-antiquark operators,
where this is β ¼ 3.34, the fit range extends up to
approximately μ2 ¼ 50 GeV2 in the RI0-MOM scheme
and μ2 ¼ 25 GeV2 in the RI0-SMOM scheme. For the
three-quark operators we do not have data at β ¼ 3.34, and
the fit range for the global chiral extrapolation extends up to
approximately μ2 ¼ 75 GeV2.
As our central value we take the outcome of fit 1 with the

statistical error determined as explained above. The six

differences due to the discussed systematic uncertainties
are added in quadrature to yield our final estimate of the
systematic error. In most cases, the error due to the
truncation of the perturbative expansion of the conversion
factor is the largest contribution to the total systematic
uncertainty.
The results obtained in this way, based on the RI0-MOM

scheme, are collected in Tables VI–VIII, see Appendix H.
Table VI (VII) contains results for operators with less than
two derivatives obtained without (with) the perturbative
subtraction of lattice artifacts. Here Z0

V and Z0
A have been

determined with the help of the renormalization conditions
(12) and (14), respectively, while for ZV and ZA the
standard definition (8) has been used. In Table VIII we
present the Z factors for operators with two derivatives, for
which the perturbative subtraction of lattice artifacts is not
yet available.
Ideally, Z factors determined with the help of the fit

method should agree within errors, whether or not lattice
artifacts have been perturbatively subtracted. A comparison
of Tables VI and VII shows to which extent this expectation
is fulfilled. Note that the fit method, which tries to suppress
discretization effects as far as possible, is quite close in
spirit to what is done in lattice perturbation theory, where
(powerlike) lattice artifacts are completely eliminated,
cf. Sec. IV.
The fixed-scale method for the determination of the

renormalization and mixing factors proceeds as follows.
We first interpolate the chirally extrapolated data by cubic
splines in lnða2μ2Þ. Using this interpolation we can read off
Z and its statistical error at some scale μ2, which we choose
to be μ2 ¼ 10 GeV2, and evolve the result perturbatively to
the desired reference scale μ20 ¼ 4 GeV2. Thus the stat-
istical error stems from a higher scale than in the fit method
and is therefore smaller. Again, the systematic uncertainties
are usually considerably larger than the statistical error. The
uncertainties due to the scale setting and the error in ΛMS
are taken into account in the same way as in the fit method,
cf. the entries for fits 4 and 5 in Table III. Also the error
caused by the truncation of the perturbative expansion of
the conversion factors is estimated through the same
procedure as described above. The uncertainty due to
the chiral extrapolation is again determined from the
difference between the results obtained by means of the
local and the global chiral extrapolation. These four
systematic errors are added in quadrature to yield our final
estimate of the total systematic uncertainty. The central
value and its statistical error are taken from the interpo-
lation of the globally chirally extrapolated data.
In Tables IX–XI (see Appendix H) we display the results

coming from the fixed-scale method, based on the
RI0-MOM scheme, separately for operators with less than
two and with two derivatives obtained with and without the
perturbative subtraction of lattice artifacts. In the fixed-
scale approach we keep the lattice artifacts as they are
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generated in the simulations and try to get rid of them only
when performing the continuum limit of physical (renor-
malized) quantities. Therefore, results obtained by this
method with and without the perturbative subtraction of
lattice artifacts need not coincide. By definition, the choice
μ2 ¼ 10 GeV2 is fixed and a variation of this value does not
enter the systematics.
The corresponding results for the RI0-SMOM scheme are

presented in Tables XII–XVII in Appendix H, again
separately for the operators without derivatives (with and
without perturbative subtraction of lattice artifacts) and for
operators with derivatives. The results in Tables XII–XIV
have been obtained with the help of the fit method, while
results coming from the fixed-scale method can be found in
Tables XV–XVII. In the cases where mixing occurs, i.e.,
for Ov3, Oa2 , Oh2a , Oh2b , and Oh2c , we have given only the
element Z11 of the renormalization and mixing matrix,
which can be compared with the RI0-MOM result. The full
2 × 2 mixing matrices can be found in the Supplemental
Material [17]. In the case of the three-quark operators,
where mixing matrices of size up to 4 × 4 appear, the
results are presented in the Supplemental Material [17]
only.
When evaluating renormalized quantities one can take

into account the systematic uncertainties of the renormal-
ization coefficients by error propagation and subsequent
continuum extrapolation. However, in the presence of
operator mixing, it might be more reasonable to use the
various determinations of Z that go into the estimation of
the systematic error, e.g., the results from fits 2–7 in the fit
method, in order to compute the corresponding renormal-
ized quantities and to use these numbers to estimate the
systematic uncertainty of the renormalized quantity in the
continuum limit. This is the procedure that we have applied
in Refs. [27–29]. Note that in Ref. [29] the renormalization
and mixing coefficients were determined with the help of
the fit method applied to a smaller set of locally chirally
extrapolated data. In spite of these and a few further little
differences the values used in Ref. [29] are consistent with
our present results using two-loop conversion factors. An
update of Ref. [29] using the new three-loop conversion
factors can be found in Ref. [30].

IX. DISCUSSION

For a large set of quark-antiquark operators as well as
for some three-quark operators we have presented renorm-
alization factors computed with the help of various meth-
ods. For each of the quark-antiquark operators we end up
with up to eight different results. When multiplied with
the corresponding bare matrix elements, all of these
renormalization factors should lead to the same continuum
limit. This means that for a given operator, ratios
Zð1Þðμ; aÞ=Zð0Þðμ; aÞ of two determinations Zð1Þ and Zð0Þ
of the renormalization factor must tend to one as a → 0.
However, one has to keep in mind that this statement holds

only up to errors due to the truncation of the perturbative
series entering the evaluation of Zð1Þ and Zð0Þ. The same
considerations apply of course when one compares renorm-
alization factors of a given operator computed using
entirely different methods.
In the following we shall discuss a selection of examples

of such ratios. In Figs. 15–18 we show for a few operators
ratios of renormalization factors determined in this paper
by different methods, plotted against a2. In all cases lattice
artifacts have been subtracted perturbatively and the errors
have been computed by error propagation of the statistical
errors of the numerator and the denominator. These do not
include the systematics discussed above.
Ratios of different determinations of Z0

A are displayed in
Fig. 15. As in this case the anomalous dimension vanishes
identically and the conversion factor is exactly equal to one,
there are no uncertainties due to truncations of perturbative
expansions and all ratios considered here should tend to one
in the continuum limit. The plot suggests that this is indeed
the case within the statistical errors.
The next example (Fig. 16) is ZA. In this case the

anomalous dimension is also known exactly, but the con-
version factor is only known to three loops. Therefore
truncation errors are to be expected. Indeed, the results
obtained with the three-loop conversion factor differ
significantly from those obtained with the two-loop con-
version factor and extrapolate to a value closer to one.
A similar behavior is found for operators with one

derivative. For these operators also the anomalous

statistical errors only
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FIG. 15. Ratios of different determinations of Z0
A plotted

against a2. For the black circles (red triangles) the fit (fixed-
scale) method has been used, in the numerator within the
RI0-MOM scheme and in the denominator within the
RI0-SMOM scheme. The blue squares (green diamonds) re-
present results obtained in the RI0-MOM (RI0-SMOM) scheme
with the fit method employed for the numerator and the fixed-
scale method employed for the denominator. The systematic
errors of the RI0-MOM numbers amount to 2‰ at most, while the
RI0-SMOM numbers obtained with the fit (fixed-scale) method
suffer from systematic uncertainties of up to 5‰ (2‰).
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dimension is only known to a finite order in perturbation
theory. However, it turns out that the perturbative expansion
of the anomalous dimension converges much faster than the
expansion of the conversion factor. As an example we
consider Zv2b in Fig. 17, where the five-loop expression for
the anomalous dimension is used throughout, but the
number of loops taken into account in the conversion
factor is varied. The effect of this variation is clearly visible
and goes into the desired direction.
Finally, we show in Fig. 18 ratios of different determi-

nations of ZS, with the RI0-MOM (RI0-SMOM) scheme
employed in the numerator (denominator). For a → 0 the
value of ZS determined with the help of the RI0-SMOM
scheme is about 5% larger than the number from the
RI0-MOM scheme. Unusually large differences between the
two methods for the scalar density have already been
reported in Ref. [46] at two relatively large values of the
lattice spacing, using a different lattice action. In that case
the matching between the RI0-SMOM and the MS scheme
could only be carried out at two-loop order. In Fig. 18 we
only display the statistical errors, however, also when
including the systematic uncertainties, the result is unsat-
isfactory. This becomes even more apparent for the out-
come of the fixed-scale method, which carries smaller
statistical and systematic errors. In both cases (fit and fixed-
scale method) the results obtained with the three-loop
conversion factor are closer to unity than those obtained
with the two-loop conversion factor. In comparison to the
other operators, the perturbative coefficients for the

matching between the MS and the RI0-SMOM schemes
are quite small, see Table V. Therefore, we suspect that our
estimate of the perturbative uncertainty as half of the
difference between the results obtained from two- and
three-loop matching may be an underestimate for this
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FIG. 17. Ratios of different determinations of Zv2b plotted
against a2. For the filled symbols the fit method has been used,
in the numerator within the RI0-MOM scheme and in the
denominator within the RI0-SMOM scheme. The open symbols
represent results obtained in the RI0-MOM scheme with the fit
method employed for the numerator and the fixed-scale method
employed for the denominator. The circles (triangles) show
determinations using the three-loop (two-loop) conversion factor.
For the results obtained with the three-loop conversion factors,
the systematic uncertainty amounts to about 1% (2–3%) in the
case of the RI0-MOM (RI0-SMOM) scheme.
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FIG. 18. Ratios of different determinations of ZS plotted against
a2. For the filled (open) symbols the fit (fixed-scale) method has
been used, in the numerator within the RI0-MOM scheme and in
the denominator within the RI0-SMOM scheme. The circles
(triangles) show determinations using the three-loop (two-loop)
conversion factor. For the results obtained with the three-loop
conversion factors, the systematic uncertainty amounts to 2%
(3–4%) in the case of the RI0-MOM scheme and the fixed-scale
(fit) method, it is about 0.4% (0.5–1.5%) in the case of the
RI0-SMOM scheme and the fixed-scale (fit) method.
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FIG. 16. Ratios of different determinations of ZA plotted
against a2. For the filled symbols the fixed-scale method has
been used, in the numerator within the RI0-MOM scheme and in
the denominator within the RI0-SMOM scheme. The open
symbols represent results obtained in the RI0-SMOM scheme
with the fit method employed for the numerator and the fixed-
scale method employed for the denominator. The circles (tri-
angles) show determinations using the three-loop (two-loop)
conversion factor. For the results obtained with the three-loop
conversion factors, the systematic uncertainty is up to 3‰ (7‰)
in the case of the fixed-scale (fit) method.
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particular operator. Unfortunately, we cannot carry out a
similar comparison between the RI0-SMOM and the
RI0-MOM schemes for ZP, which shares its perturbative
matching and its anomalous dimension with ZS, since the
RI0-MOM scheme is unsuitable in this case.
Within CLS some renormalization factors have also been

computed by other groups, utilizing the RI0-MOM scheme
[10] or Schrödinger functional techniques [11,12,14,15]. In
Figs. 19–22 we show for a few examples ratios of such
alternative results divided by our numbers. For this com-
parison we employ our results with the perturbative
subtraction of lattice artifacts and add our statistical and
systematic errors in quadrature, since we cannot separate
these two sources of uncertainties in the case of the
alternative determinations.
We begin with ZS=ZP and ZP=ðZSZ0

AÞ. In these cases, our
results are free of perturbative ambiguities, because the
anomalous dimensions as well as the conversion factors
cancel between numerator and denominator. Nevertheless,
systematic errors can be rather large, as, e.g., Table XII
shows. We denote the renormalization factor of the axial-
vector current byZ0

A, because for our numbersweuse the data
obtained with the help of the renormalization condition (14).
The ratio ZS=ZP has been studied by the ALPHA collabo-
ration in Ref. [15]. We divide the values given in the column
“WI(1468)” of Table 6 in Ref. [15] by our numbers deter-
minedwith the help of the fixed-scale and the fitmethod. The
results are shown in Fig. 19 as black circles and red triangles,
respectively, plotted against a2. Indeed, these ratios of
independent determinations appear to approach unity in
the continuum limit. However, the curvature that we see
whenplotting the data as a function ofa2 indicates thatwithin
our range of lattice spacings the discretization effects are not
purelyOða2Þ. It needs to be seen which of the three methods
(Ref. [15], fit method, fixed-scale method) will result in the

most convincing continuum limit extrapolation, onceZS=ZP
is multiplied by corresponding ratios of matrix elements,
computed in lattice simulations.
In Fig. 20 we divide the combination ZP=ðZSZAÞ of the

ALPHA collaboration given in Table 4 (trajectory LCP-1)
of Ref. [14] by our results on ZP=ðZSZ0

AÞ obtained in the
RI0-SMOM scheme with the fixed-scale method (black
circles). The data appear to overshoot the continuum limit
expectation by about 2%. Repeating this exercise for the
ZP=ðZSZAÞ combination, determined by the RQCD col-
laboration [47] from a fit to axial Ward identity quark
masses [5] (red triangles), some curvature of the data
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FIG. 19. Ratios of different determinations of ZS=ZP plotted
against a2. The black circles (red triangles) show the values of
ZS=ZP given in the column “WI(1468)” of Table 6 in Ref. [15]
divided by our results obtained in the RI0-SMOM scheme with
the fixed-scale (fit) method.
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FIG. 20. Ratios of different determinations of ZP=ðZSZ0
AÞ

plotted against a2. The black circles represent the numbers for
ZP=ðZSZAÞ in Table 4 (trajectory LCP-1) in Ref. [14] divided by
our results obtained in the RI0-SMOM scheme with the fixed-
scale method. The red triangles show data of the RQCD
collaboration [47] for ZP=ðZSZAÞ determined from axial Ward
identity masses [5] divided by our results obtained in the
RI0-SMOM scheme with the fixed-scale method.
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FIG. 21. Ratios of different determinations of Z0
A plotted

against a2. The black circles (red triangles) show the values
given in the column Zl

A;sub of Table 7 in Ref. [12] divided by our
results obtained in the RI0-SMOM scheme with the fixed-scale
(fit) method.
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becomes apparent. Still, the figure does not contradict the
expectation that the value of one will be reached in the
continuum limit.
In Fig. 21 we plot ratios of the renormalization factor ZA

determined by the ALPHA collaboration [12], divided by
our results on Z0

A, obtained with the fixed-scale and the fit
methods. Both ratios tend to unity in the continuum limit
and again this approach is not linear in a2 within the range
of lattice spacings covered. We can also compare the ratio
ZA=ZP of Ref. [13] with our results on Z0

A=ZP obtained
from the RI0-SMOM scheme. Using either the fit or the
fixed-scale method, in the continuum our results appear to
be smaller by 2%. In the latter case this deviation exceeds
the combined statistical and systematic errors of our
numbers by a factor of about three. Given that the axial-
vector renormalization constants agree between different
determinations, as does ZS=ZP (see Figs. 21 and 19), this
tension is consistent with the observation made in Fig. 18
that ZS is larger using the RI0-SMOM scheme than using
the RI0-MOM scheme. Therefore, we cannot exclude the
possibility that our ZP is somewhat overestimated, e.g., due
to perturbation theory uncertainties.
As our last example we consider Zv2b, the renormaliza-

tion factor of an operator containing a covariant derivative.
In Fig. 22 our results are compared with the numbers
obtained in Ref. [10]. These were determined in the
RI0-MOM scheme at β ¼ 3.40, 3.46 and 3.55 using an
approach similar to our fit method, though some details
differ. Therefore we compare them with our fit results
obtained in the RI0-MOM scheme. Within the errors the
ratios are compatible with unity for all three β values,
although the numbers given in Ref. [10] seem to lie
consistently above ours. Similar observations apply for
the other operators with one derivative studied in Ref. [10].
In view of the multitude of up to eight determinations of

the renormalization factors for a single operator given in

this paper, the question arises, which values should be used
in a particular situation. To answer this question a few
criteria can be given. The decision in favor of the RI0-MOM
or RI0-SMOM intermediate scheme is obvious when non-
forward matrix elements of operators are required which
mix with total-derivative operators. In such cases the
RI0-SMOM scheme is mandatory. It is also strongly
preferred for the pseudoscalar density, because the pion
pole makes the chiral extrapolation problematic in the
RI0-MOM scheme. For all operators that are unaffected by
the pion pole and for which the kinematics of the RI0-MOM
scheme is admissible, the choice of the intermediate
scheme is purely a matter of taste, with the possible
exception of the scalar density, where the RI0-SMOM
scheme may be more favorable because of the smaller
coefficients in the perturbative expansion (68) of the
conversion factor (see Table V).
Concerning the distinction between the fit method and

the fixed-scale method one can say that the fit method tries
to suppress the power-like lattice artifacts as far as possible.
The fixed-scale method, on the other hand, does not care
about lattice artifacts so that they will be taken into account
only in the continuum extrapolation of the physical
observables. If the data for the observables allow to perform
such an extrapolation reliably, the fixed-scale method could
be preferable. However, if data are available for a few
lattice spacings only (maybe only for a single value) and a
decent continuum extrapolation is impossible, renormali-
zation factors determined with the help of the fit method
might lead to estimated results which are closer to the
continuum value. Similarly, the perturbative subtraction of
lattice artifacts may be more useful when a careful
continuum limit is still out of reach, while it does not
help that much when the power-like lattice artifacts are
taken care of by the continuum extrapolation anyway.

X. SUMMARY

Using the Rome-Southampton method and variants
thereof, we have computed renormalization and mixing
factors nonperturbatively within the CLS setup, i.e., for
nf ¼ 2þ 1 flavors of nonperturbatively improved Wilson
quarks and the Lüscher-Weisz action with tree-level
coefficients for the gluons. We have developed an
approach that allows us to include in our analysis also
ensembles with open boundary conditions in the time
direction. Quark-antiquark operators as well as three-
quark operators have been considered with the help of a
variety of methods. The fit method has already been
employed previously in our papers [27,29]. Comparing
the results obtained with different methods allows us to
check the consistency of the employed procedures in the
continuum limit. For applications we recommend the
numbers from the fixed-scale method given in
Tables XVI and XVII in Appendix H. The corresponding
values from the fit method are collected in Tables XIII
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FIG. 22. Ratios of different determinations of Zv2b plotted
against a2. The values given in Table 4 of Ref. [10] have been
divided by our results obtained in the RI0-MOM scheme with the
fit method.
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and XIV. The 2 × 2 mixing matrices of quark-antiquark
operators and the results for the three-quark operators can
be found in the Supplemental Material [17].
Regarding the renormalization factor ZS, we see incon-

sistencies on the several percent level that at present we
cannot explain. Similar problems have been reported in
Ref. [46]. Since the ratio ZS=ZP appears to be consistent
with other determinations and the discrepancy reduces if
the matching to the MS scheme is carried out at a higher
perturbative order, we suspect that for the scalar and
pseudoscalar densities, there may be an unusually large
perturbation theory uncertainty of about 2–3% that we
underestimated. By implication, the results on Z0

A=ZP
should be considered with caution. In many cases, with
our accuracy and within the range of lattice spacings
covered, the approach to the continuum limit of ratios
between determinations using different methods is not a
linear function of a2. Therefore, it is advisable to employ
more than one set of renormalization factors in continuum
extrapolations of nonperturbative matrix elements.
At present, on the two finest lattices there are only two

different masses each available. This fact limits the accu-
racy of the required chiral extrapolations. Generating
additional ensembles with smaller masses is desirable.
Another limitation of the accuracy of our results arises

from the necessity to use continuum perturbation theory.
For many operators the conversion or matching factors
needed to obtain results in the MS scheme are now known
to three loops, but the convergence of these perturbative
expansions is generally not too good, in contrast to the
anomalous dimensions, which control the scale depend-
ence. Therefore further efforts in the perturbative evaluation
of matching factors would be helpful, especially for the
(pseudo)scalar operator, but also for three-quark operators,
for which the matching factors are presently only known to
one-loop accuracy.
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APPENDIX A: QUARK-ANTIQUARK OPERATOR
MULTIPLETS

In this Appendix we list the multiplets of quark-
antiquark operators that we consider. Flavor indices are
omitted for simplicity. Color and spinor indices are sup-
pressed. As usual, f� � �g will denote the symmetrization
of all enclosed indices. While a universal factor multiplying
all members of a multiplet is irrelevant for the renormal-
ization, it is important to ensure that the ratios of
the individual normalization factors are such that the
operators transform under H(4) according to a unitary
representation.
We start with the operators without derivatives. Their

mass dimension equals three and they do not mix with other
operators (operator multiplets). The scalar density

SðxÞ ¼ ψ̄ðxÞ1ψðxÞ ðA1Þ

and the pseudoscalar density

PðxÞ ¼ ψ̄ðxÞγ5ψðxÞ ðA2Þ

form multiplets of dimension one. In the cases of the local
vector current

VμðxÞ ¼ ψ̄ðxÞγμψðxÞ ðA3Þ

and the local axial-vector current

AμðxÞ ¼ ψ̄ðxÞγμγ5ψðxÞ ðA4Þ

we have multiplets of dimension four (μ ¼ 1, 2, 3, 4). The
components of the tensor density (or tensor current)
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T μνðxÞ ¼ ψ̄ðxÞi½γμ; γν�ψðxÞ ðA5Þ

with 1 ≤ μ < ν ≤ 4 make up a six-dimensional multiplet.
The operators with a single covariant derivative have

mass dimension four. We consider the following multiplets,
which in the flavor-nonsinglet case do not mix with any
other operators. The names we give to the operators and to
the corresponding renormalization factors (matrices) are
motivated by the nomenclature for the moments of the
parton distribution functions of the nucleon.
The v2a operators

ψ̄ðxÞγfμD
↔

νgψðxÞ; ðA6Þ

where 1 ≤ μ < ν ≤ 4, form a multiplet of dimension six,
while the v2b operators

ð1=2Þψ̄ðxÞðγ1D
↔

1 þ γ2D
↔

2 − γ3D
↔

3 − γ4D
↔

4ÞψðxÞ;
ð1=

ffiffiffi
2

p
Þψ̄ðxÞðγ3D

↔

3 − γ4D
↔

4ÞψðxÞ;
ð1=

ffiffiffi
2

p
Þψ̄ðxÞðγ1D

↔

1 − γ2D
↔

2ÞψðxÞ ðA7Þ

span a three-dimensional multiplet.
Analogously we define the r2a operators

ψ̄ðxÞγfμD
↔

νgγ5ψðxÞ; ðA8Þ

with 1 ≤ μ < ν ≤ 4, and the r2b operators

ð1=2Þψ̄ðxÞðγ1D
↔

1 þ γ2D
↔

2 − γ3D
↔

3 − γ4D
↔

4Þγ5ψðxÞ;
ð1=

ffiffiffi
2

p
Þψ̄ðxÞðγ3D

↔

3 − γ4D
↔

4Þγ5ψðxÞ;
ð1=

ffiffiffi
2

p
Þψ̄ðxÞðγ1D

↔

1 − γ2D
↔

2Þγ5ψðxÞ: ðA9Þ

With the help of the abbreviation

OT
νμ1μ2ðxÞ ¼ ψ̄ðxÞi½γν; γμ1 �D

↔

μ2ψðxÞ ðA10Þ

we can write the eight h1a operators as

ð1=
ffiffiffi
6

p
ÞðOT

123ðxÞ þOT
231ðxÞ − 2OT

312ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

124ðxÞ þOT
241ðxÞ − 2OT

412ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

134ðxÞ þOT
341ðxÞ − 2OT

413ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

234ðxÞ þOT
342ðxÞ − 2OT

423ðxÞÞ;
ð1=

ffiffiffi
2

p
ÞðOT

213ðxÞ þOT
231ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

214ðxÞ þOT
241ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

314ðxÞ þOT
341ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

324ðxÞ þOT
342ðxÞÞ: ðA11Þ

The h1b operators

ð1=
ffiffiffi
6

p
ÞðOT

122ðxÞ þOT
133ðxÞ − 2OT

144ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

211ðxÞ þOT
233ðxÞ − 2OT

244ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

311ðxÞ þOT
322ðxÞ − 2OT

344ðxÞÞ;
ð1=

ffiffiffi
6

p
ÞðOT

411ðxÞ þOT
422ðxÞ − 2OT

433ðxÞÞ;
ð1=

ffiffiffi
2

p
ÞðOT

122ðxÞ −OT
133ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

211ðxÞ −OT
233ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

311ðxÞ −OT
322ðxÞÞ;

ð1=
ffiffiffi
2

p
ÞðOT

411ðxÞ −OT
422ðxÞÞ ðA12Þ

form an eight-dimensional multiplet as well.
The operators with two derivatives are of mass dimen-

sion five. In the flavor-nonsinglet case at leading twist one
can choose them such that they do not mix with operators
of lower mass dimension. However, when nonforward
matrix elements are needed, as they appear, e.g., in the
RI0-SMOM scheme, we cannot avoid the mixing with the
so-called total-derivative operators, which occurs already in
the continuum. Therefore we consider in the case of the v3
operators the two four-dimensional multiplets

OðρÞ
1 ðxÞ ¼ ψ̄ðxÞðD⃗fμD⃗ν þ D⃖fμD⃖ν − 2D⃖fμD⃗νÞγλgψðxÞ;

OðρÞ
2 ðxÞ ¼ ψ̄ðxÞðD⃗fμD⃗ν þ D⃖fμD⃖ν þ 2D⃖fμD⃗νÞγλgψðxÞ

ðA13Þ

with fμ; ν; λ; ρg ¼ f1; 2; 3; 4g. They transform identically

under H(4). Note that in the continuum the operator OðρÞ
1

can be written as

OðρÞ
1 ðxÞ ¼ ψ̄ðxÞγfμD

↔

νD
↔

λgψðxÞ; ðA14Þ

while OðρÞ
2 is the second derivative of the vector current:

OðρÞ
2 ðxÞ ¼ ∂fμ∂νVλgðxÞ: ðA15Þ

On the lattice, this relation is violated because of lattice
artifacts in the derivatives. Analogous remarks hold also for
the remaining operators with two derivatives. These com-
prise the a2 operators

OðρÞ
1 ðxÞ ¼ ψ̄ðxÞðD⃗fμD⃗ν þ D⃖fμD⃖ν − 2D⃖fμD⃗νÞγλgγ5ψðxÞ;

OðρÞ
2 ðxÞ ¼ ψ̄ðxÞðD⃗fμD⃗ν þ D⃖fμD⃖ν þ 2D⃖fμD⃗νÞγλgγ5ψðxÞ;

ðA16Þ

again with fμ; ν; λ; ρg ¼ f1; 2; 3; 4g, as well as the h2a, h2b,
and h2c operators.
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In order to define the latter we use the abbreviation

OT�
νμ1μ2μ3ðxÞ
¼ ψ̄ðxÞi½γν; γμ1 �ðD⃗μ2D⃗μ3 þ D⃖μ2D⃖μ3 � 2D⃖μ2D⃗μ3ÞψðxÞ:

ðA17Þ

The first multiplet of the h2a operators is then given by

Oð1Þ
1 ðxÞ ¼ −

ffiffiffi
6

p
OT−

4f123gðxÞ;
Oð2Þ

1 ðxÞ ¼ ð
ffiffiffi
3

p
=2Þð−3OT−

3f124gðxÞ −OT−
4f123gðxÞÞ;

Oð3Þ
1 ðxÞ ¼ ð3=2ÞðOT−

1f234gðxÞ −OT−
2f134gðxÞÞ: ðA18Þ

Replacing OT− by OTþ yields the corresponding second
multiplet O2 with the identical transformation behavior
under H(4). In the case of the h2b operators we have the first
multiplet

Oð1Þ
1 ðxÞ ¼

ffiffiffiffiffiffiffiffi
3=2

p
ðOT−

1f122gðxÞ −OT−
1f133gðxÞ þOT−

2f233gðxÞÞ;
Oð2Þ

1 ðxÞ ¼ ð
ffiffiffi
3

p
=4Þð−2OT−

1f122gðxÞ −OT−
1f133gðxÞ

þ 3OT−
1f144gðxÞ þOT−

2f233gðxÞ − 3OT−
2f244gðxÞÞ;

Oð3Þ
1 ðxÞ ¼ ð3=4Þð−OT−

1f133gðxÞ þOT−
1f144gðxÞ −OT−

2f233gðxÞ
þOT−

2f244gðxÞ − 2OT−
3f344gðxÞÞ: ðA19Þ

Again, the second multiplet O2 is obtained by replacing
OT− with OTþ. Finally, as the first multiplet of the h2c
operators we take

Oð1Þ
1 ðxÞ

¼ OT−
13f32gðxÞ þOT−

23f31gðxÞ −OT−
14f42gðxÞ −OT−

24f41gðxÞ;
Oð2Þ

1 ðxÞ
¼ OT−

12f23gðxÞ þOT−
32f21gðxÞ −OT−

14f43gðxÞ −OT−
34f41gðxÞ;

Oð3Þ
3 ðxÞ

¼ OT−
12f24gðxÞ þOT−

42f21gðxÞ −OT−
13f34gðxÞ −OT−

43f31gðxÞ;
Oð4Þ

1 ðxÞ
¼ OT−

21f13gðxÞ þOT−
31f12gðxÞ −OT−

24f43gðxÞ −OT−
34f42gðxÞ;

Oð5Þ
1 ðxÞ

¼ OT−
21f14gðxÞ þOT−

41f12gðxÞ −OT−
23f34gðxÞ −OT−

43f32gðxÞ;
Oð6Þ

1 ðxÞ
¼ OT−

31f14gðxÞ þOT−
41f13gðxÞ −OT−

32f24gðxÞ −OT−
42f23gðxÞ:

ðA20Þ

The corresponding multipletO2 is constructed as in the two
previous cases.
In the RI0-MOM case the respective second multiplets

O2 do not contribute because their forward matrix elements
vanish.
In Table IV we give the H(4) irreducible representations

in the notation of Ref. [58] and the charge conjugation
parity for our operator multiplets.

APPENDIX B: THREE-QUARK OPERATOR
MULTIPLETS

In the case of three-quark operators it is convenient to
employ operator multiplets that transform irreducibly not
only with respect to the spinorial hypercubic group Hð4Þ but
alsowith respect to the group S3 of permutations of the three
quark flavors. The latter group has three nonequivalent
irreducible representations, which we label by the names
of the corresponding ground state particle multiplets in a
flavor symmetric world. Therefore, the one-dimensional
trivial representation is labeled by D in Appendix G, the
one-dimensional totally antisymmetric representation by S
and the two-dimensional representation by O.
Following Ref. [26] we construct multiplets with the

desired transformation properties from the multiplets
defined in Ref. [32]. For operators without derivatives in

the representation τ
12

1 of Hð4Þ we have one doublet of
operator multiplets transforming according to the two-
dimensional representation of S3,

O12

1 ¼
8<
:

1ffiffi
6

p ðO7 þO8 − 2O9Þ
1ffiffi
2

p ðO7 −O8Þ

9=
;; ðB1Þ

(with the first multiplet being mixed-symmetric and the
second one being mixed-antisymmetric) and one operator
multiplet transforming trivially under S3:

D12

1 ¼ 1ffiffiffi
3

p ðO7 þO8 þO9Þ: ðB2Þ

TABLE IV. Operator multiplets and their transformation behav-
ior under H(4). The charge conjugation parity is denoted by C.

Operator Representation C Operator Representation C

S τð1Þ1
þ1 Or2b τð3Þ4

−1
P τð1Þ4

þ1 Oh1a τð8Þ2
þ1

V τð4Þ1
−1 Oh1b τð8Þ1

þ1

A τð4Þ4
þ1 Ov3 τð4Þ2

−1
T τð6Þ1

−1 Oa2 τð4Þ3
þ1

Ov2a τð6Þ3
þ1 Oh2a τð3Þ2

−1
Ov2b τð3Þ1

þ1 Oh2b τð3Þ3
−1

Or2a τð6Þ4
−1 Oh2c τð6Þ2

−1
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For operators without derivatives in the Hð4Þ representation
τ
4

1 we have one multiplet that is totally antisymmetric under
flavor permutations,

S4

1 ¼
1ffiffiffi
3

p ðO3 −O4 −O5Þ; ðB3Þ

and two doublets of operator multiplets transforming
according to the two-dimensional representation of S3:

ðO4

1Þ1 ¼
8<
:

1ffiffi
2

p ðO3 þO4Þ
1ffiffi
6

p ð−O3 þO4 − 2O5Þ

9=
; ; ðB4Þ

ðO4

1Þ2 ¼
8<
:

O2

1ffiffi
3

p ð2O1 þO2Þ

9=
;: ðB5Þ

In the case of operators with one derivative we restrict
ourselves to multiplets that transform according to the Hð4Þ
representation τ122 , because only these are safe from mixing

with lower-dimensional operators. There are twelve lin-
early independent multiplets with this transformation
behavior [32]. In Appendix A. 2 of Ref. [32] one can
find explicit expressions for four multiplets, labeled OD5,
OD6, OD7, OD8, where the derivative acts on the third
quark field. As the transformation properties of the oper-
ators do not depend on the position of the derivative, the
remaining eight multiplets can be constructed by moving
the derivative to the second or to the first quark field. In the
following we replace theD by f, g, or h in order to indicate
on which quark field the covariant derivative acts: f (g, h)
means that the derivative acts on the first (second, third)
quark field.
In this way we get one multiplet that is totally anti-

symmetric under S3,

S12

2 ¼ 1ffiffiffi
6

p ½ðOg5 −Oh5Þ þ ðOh6 −Of6Þ þ ðOf7 −Og7Þ�:

ðB6Þ

Additionally there are four doublets of operator multiplets
corresponding to the two-dimensional representation of S3,

ðO12

2 Þ1 ¼
8<
:

1

3
ffiffi
2

p ½ðOf5 þOg5 þOh5Þ þ ðOf6 þOg6 þOh6Þ − 2ðOf7 þOg7 þOh7Þ�
1ffiffi
6

p ½ðOf5 þOg5 þOh5Þ − ðOf6 þOg6 þOh6Þ�

9=
;; ðB7Þ

ðO12

2 Þ2 ¼
8<
:

1
6
½ð−2Of5 þOg5 þOh5Þ þ ðOf6 − 2Og6 þOh6Þ − 2ðOf7 þOg7 − 2Oh7Þ�

1

2
ffiffi
3

p ½ð−2Of5 þOg5 þOh5Þ − ðOf6 − 2Og6 þOh6Þ�
�
; ðB8Þ

ðO12

2 Þ3 ¼
8<
:

1
2
½ðOg5 −Oh5Þ − ðOh6 −Of6Þ�

1

2
ffiffi
3

p ½ðOh5 −Og5Þ þ ðOf6 −Oh6Þ − 2ðOg7 −Of7Þ�

9=
;; ðB9Þ

ðO12

2 Þ4 ¼
8<
:

1ffiffi
6

p ðOf8 þOg8 − 2Oh8Þ
1ffiffi
2

p ðOf8 −Og8Þ

9=
;; ðB10Þ

and three operator multiplets transforming trivially under flavor permutations:

ðD12

2 Þ1 ¼
1

3
½ðOf5 þOg5 þOh5Þ þ ðOf6 þOg6 þOh6Þ þ ðOf7 þOg7 þOh7Þ�; ðB11Þ

ðD12

2 Þ2 ¼
1

3
ffiffiffi
2

p ½ð−2Of5 þOg5 þOh5Þ þ ðOf6 − 2Og6 þOh6Þ þ ðOf7 þOg7 − 2Oh7Þ�; ðB12Þ

ðD12

2 Þ3 ¼
1ffiffiffi
3

p ðOf8 þOg8 þOh8Þ: ðB13Þ
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APPENDIX C: LATTICE SPACING ARTIFACTS
IN ONE-LOOP LATTICE PERTURBATION

THEORY

We summarize in this Appendix our results for the
term Fða2μ2Þ in Eq. (52). This term is calculated
numerically in lattice perturbation theory for the quark
propagator and all quark-antiquark operators with less
than two derivatives for a set of renormalization scales
a2μ2. To be consistent with our nonperturbative calcu-
lation, we use the Landau gauge, apply exactly the
RI0-ðSÞMOM renormalization conditions described in
Sec. II B and use the lattice expressions for the propa-
gators and vertices corresponding to our action. In
particular, the improved gauge action [59] leads to a
complicated gluon propagator consisting of many terms,
which slows down the calculation considerably.
The analytical part of the calculation is performed in

FORM (v4.2.1) [60]. In FORM we implement the
RI0-ðSÞMOM renormalization conditions and insert the
one-loop expressions for the respective correlation func-
tions. The corresponding diagrams are shown in Fig. 23.
For the quark self-energy there are two diagrams, a sunset
and a tadpole diagram, and for all operator insertions a
vertex diagram. In addition there is a tadpole and a left- and
a right-sail diagram for operators with one derivative.
The propagators and the quark-gluon vertex on the lattice

can be found in standard textbooks or in the review [61].
This review contains many useful expressions, for example,
the gluon propagator and the three vertices for the operator
insertion ψ̄ðxÞγμD⃗νψðxÞ at zero momentum transfer, which
enter the calculation of the RI0-MOM renormalization
constants Zv2a and Zv2b .

For the RI0-SMOM scheme the operator vertices at finite
momentum transfer are required. A straightforward calcu-

lation, e.g., for the operator ψ̄ðxÞγμD
↔

νψðxÞ yields contri-
butions of order g0, g1 and g2:

Vð0Þ
μν ðp; p0; QÞ ¼ þiγμ

2

a
sin

�
aðp0 þ pÞν

2

�
cos

�
aQν

2

�
;

ðC1Þ

Vð1Þ;a
μν ðp;p0;QÞ ¼ þiγμ2gTa cos

�
aðp0 þpÞν

2

�
cos

�
aQν

2

�
;

ðC2Þ

Vð2Þ;ab
μν ðp; p0; QÞ ¼ −iγμ

ag2

2
fTa; Tbg sin

�
aðp0 þ pÞν

2

�

× cos

�
aQν

2

�
: ðC3Þ

For brevity, the factor ð2πÞ4 and the momentum con-
serving δ function have been omitted. The incoming and
outgoing quark momenta are denoted by p and p0,
respectively, and Q ¼ p0 − p is the quark momentum
transfer at the vertex. The matrices Ta are the standard
SU(3) generators. For operators without derivatives, there
is only Vð0Þ and this equals the gamma matrix structure of
the respective operator insertion, because the sine and
cosine functions in Eq. (C1) are due to the derivative in the
operator.
Taking the traces in the renormalization conditions,

FORM generates very long expressions for the one-loop
part of the renormalization constants. These expressions

(a) (b) (c)

(d) (e) (f)

FIG. 23. One-loop diagrams for the quark self-energy (a,b) and quark bilinears (c,d,e,f) with momentum transfer at the operator
insertion (solid box). For operators without derivative the last row of diagrams is absent.
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have to be integrated over the internal gluon loop
momentum (see Fig. 23). This is performed numerically
using a separate C++ program and the library cuba-
ture [62]. The external momenta are kept fixed, i.e., for
each setup of external quark momenta a separate numeri-
cal integration is performed. The quark momenta are
chosen to exactly match those for the nonperturbative
calculation.
To speed up the integration, we use FORM’s output

optimization feature (Format O3) to generate compact
integration kernels as input for our C++ program.
Compared to the other FORM operations, this final output
optimization is CPU-time intensive and uses a Monte Carlo
Tree Search to find an optimal Horner scheme for a kernel.
In this way, the final expressions for the integration kernels
become compact multivariate polynomials whose numeri-
cal evaluation (for each integration step) is less CPU-time
intensive than that of the original kernel.
After integration the one-loop contribution to Z for each

operator can be written as [cf. Eq. (52)]

zða2μ2Þ ¼ ðγ0=2Þ lnða2μ2Þ þ Δþ Fða2μ2Þ; ðC4Þ
where the first two terms are known from lattice perturbation
theory in the limit a → 0 and Fð0Þ ¼ 0. Subtracting these
terms from the numerical results for zða2μ2Þ gives Fða2μ2Þ.
Note thatF at fixeda2μ2 would also depend on the directions
of the external momenta if they are varied. For our
RI0-ðSÞMOM renormalization conditions, however, the
momentum directions are fixed, cf. Eqs. (9) and (10).
Hence there is only a single curveFða2μ2Þ for each operator.
Figure 24 shows the numerical results for Fða2μ2Þ,

separately for the RI0-MOM and RI0-SMOM schemes as
well as for operators without derivatives and with one
derivative. In the case of the RI0-MOM scheme, analytical
expressions for Fða2μ2Þ valid up to Oða2Þ can be derived
from results in the literature [36,63]. They are included in
Fig. 24 for comparison (solid lines) and agree well with our
numerical results for a2μ2 ≲ 0.4. Beyond this point devia-
tions are clearly seen and corrections of higher order in a
seem to become important.

FIG. 24. Numerical results for Fða2μ2Þ versus a2μ2 for operators with (bottom) and without (top) derivative in the RI0-MOM scheme
(left panels) and in the RI0-SMOM scheme (right panels), displayed as data points connected by lines. The top panels also show Fða2μ2Þ
for the quark propagator where the quark momentum direction matches that of the respective RI0-ðSÞMOM condition. Analytical results
for Fða2μ2Þ valid up to Oða2Þ are shown as solid lines. The deviations from zero of the data points at small a2μ2 are numerical artifacts
and can be ignored.
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APPENDIX D: RENORMALIZATION GROUP
FUNCTIONS FOR QUARK-ANTIQUARK

OPERATORS

For the reader’s convenience we collect in this Appendix
perturbative results for the QCD β function and the
anomalous dimension of the quark-antiquark operators
considered in this paper.
In the MS scheme the coefficients of the β function, as

defined in Eqs. (58) and (59), are given by [64–66]

β0 ¼ 11 −
2

3
nf; ðD1Þ

β1 ¼ 102 −
38

3
nf; ðD2Þ

β2 ¼
2857

2
−
5033

18
nf þ

325

54
n2f; ðD3Þ

β3 ¼
149753

6
þ 3564ζ3 −

�
1078361

162
þ 6508

27
ζ3

�
nf þ

�
50065

162
þ 6472

81
ζ3

�
n2f þ

1093

729
n3f; ðD4Þ

β4 ¼
8157455

16
þ 621885

2
ζ3 −

88209

2
ζ4 − 288090ζ5

þ
�
−
336460813

1944
−
4811164

81
ζ3 þ

33935

6
ζ4 þ

1358995

27
ζ5

�
nf

þ
�
25960913

1944
þ 698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

�
n2f

þ
�
−
630559

5832
−
48722

243
ζ3 þ

1618

27
ζ4 þ

460

9
ζ5

�
n3f

þ
�
1205

2916
−
152

81
ζ3

�
n4f: ðD5Þ

Here and in the following, nf denotes the number of flavors
and ζn is the value of Riemann’s ζ-function at n.
We now turn to the coefficients of the anomalous dimen-

sion in the MS scheme employing the conventions given in
Eqs. (61) and (62). An anticommuting γ5 is assumed.
Of course, the vector current and the (nonsinglet) axial-

vector current have vanishing anomalous dimension. For
T μν we have [67]

γ0 ¼
8

3
; ðD6Þ

γ1 ¼
724

9
−
104

27
nf; ðD7Þ

γ2 ¼
105110

81
−
1856

27
ζ3 −

�
10480

81
þ 320

9
ζ3

�
nf −

8

9
n2f:

ðD8Þ

For S and P one finds [68,69]

γ0 ¼ −8; ðD9Þ

γ1 ¼ −
404

3
þ 40

9
nf; ðD10Þ

γ2 ¼ −2498þ
�
4432

27
þ 320

3
ζ3

�
nf þ

280

81
n2f; ðD11Þ

γ3 ¼ −
4603055

81
−
271360

27
ζ3 þ 17600ζ5 þ

�
183446

27
þ 68384

9
ζ3 − 1760ζ4 −

36800

9
ζ5

�
nf

þ
�
−
10484

243
−
1600

9
ζ3 þ

320

3
ζ4

�
n2f þ

�
664

243
−
128

27
ζ3

�
n3f: ðD12Þ

The five-loop coefficient has been calculated as well [70]:
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γ4 ¼ −
99512327

81
−
92804932

243
ζ3 − 193600ζ23 þ

1396252

9
ζ4 þ

463514320

243
ζ5 − 484000ζ6 − 825440ζ7

þ
�
150736283

729
þ 25076032

81
ζ3 þ

151360

9
ζ23 −

4077484

27
ζ4 −

99752360

243
ζ5 þ

1276000

9
ζ6 þ

3640000

27
ζ7

�
nf

þ
�
−
2641484

729
−
4021648

243
ζ3 −

92800

27
ζ23 þ

332600

27
ζ4 þ

528080

81
ζ5 −

184000

27
ζ6

�
n2f

þ
�
−
91865

729
−
25696

81
ζ3 −

896

9
ζ4 þ

10240

27
ζ5

�
n3f þ

�
520

243
þ 640

243
ζ3 −

128

27
ζ4

�
n4f: ðD13Þ

The v2a, v2b, r2a, and r2b operators have the same anomalous dimension. From Ref. [71] we obtain

γ0 ¼
64

9
; ðD14Þ

γ1 ¼
23488

243
−
512

81
nf; ðD15Þ

γ2 ¼
11028416

6561
þ 2560

81
ζ3 −

�
334400

2187
þ 2560

27
ζ3

�
nf −

1792

729
n2f: ðD16Þ

The coefficient γ3 can be found from Ref. [72]:

γ3 ¼
6200738288

177147
þ 52121728

6561
ζ3 −

14080

27
ζ4 −

2498560

243
ζ5 þ

�
−
334439344

59049
−
12645952

2187
ζ3 þ

129280

81
ζ4 þ

29440

9
ζ5

�
nf

þ
�
2169808

19683
þ 5120

27
ζ3 −

2560

27
ζ4

�
n2f þ

�
−
8192

6561
þ 1024

243
ζ3

�
n3f: ðD17Þ

The five-loop contribution has been calculated in Ref. [73]:

γ4 ¼
3364807978412

4782969
þ 40209657632

177147
ζ3 −

276459616

2187
ζ4 −

20140392320

19683
ζ5 þ

234874880

2187
ζ23

þ 68710400

243
ζ6 þ

139807808

243
ζ7

þ
�
−
227462023672

1594323
−
3959139616

19683
ζ3 þ

772997248

6561
ζ4 þ

1803282880

6561
ζ5

−
9598976

729
ζ23 −

78070400

729
ζ6 −

8655808

81
ζ7

�
nf

þ
�
808174192

177147
þ 96501760

6561
ζ3 −

22962688

2187
ζ4 −

12238720

2187
ζ5 þ

26624

9
ζ23 þ

147200

27
ζ6

�
n2f

þ
�
20641064

177147
þ 1234688

6561
ζ3 þ

9728

81
ζ4 −

81920

243
ζ5

�
n3f þ

�
−
44032

59049
−
8192

2187
ζ3 þ

1024

243
ζ4

�
n4f: ðD18Þ

For the v3 and a2 operators we extract from Refs. [74,75]

γ0 ¼
100

9
; ðD19Þ

γ1 ¼
34450

243
−
830

81
nf; ðD20Þ

γ2 ¼
64486199

26244
þ 2200

81
ζ3 −

�
967495

4374
þ 4000

27
ζ3

�
nf −

2569

729
n2f: ðD21Þ
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Note that the coefficient of nf in γ2 was incorrectly given in Ref. [24] due to a misinterpretation of the results of Ref. [76].
The ensuing difference in the anomalous dimension is however small, because the coefficient changes just from 392.948 to
399.275. The four-loop coefficient γ3 can be found in Ref. [77]:

γ3 ¼
69231923065

1417176
þ 73641835

6561
ζ3 −

12100

27
ζ4 −

3669100

243
ζ5

þ
�
−
1978909951

236196
−
19276720

2187
ζ3 þ

200200

81
ζ4 þ

46000

9
ζ5

�
nf

þ
�
3466612

19683
þ 24400

81
ζ3 −

4000

27
ζ4

�
n2f þ

�
−
23587

13122
þ 1600

243
ζ3

�
n3f: ðD22Þ

From Ref. [73] we get the five-loop result

γ4 ¼
309669533018351

306110016
þ 281169024521

708588
ζ3 −

763282685

4374
ζ4 −

31249942865

19683
ζ5 þ

338652080

2187
ζ23

þ 100900250

243
ζ6 þ

383634265

486
ζ7

þ
�
−
2579650329389

12754584
−
12276163259

39366
ζ3 þ

1173351925

6561
ζ4 þ

2845162870

6561
ζ5 −

14484320

729
ζ23

−
120810500

729
ζ6 −

13101340

81
ζ7

�
nf

þ
�
9569184149

1417176
þ 5525302

243
ζ3 −

35574820

2187
ζ4 −

19976200

2187
ζ5 þ

41600

9
ζ23 þ

230000

27
ζ6

�
n2f

þ
�
238595185

1417176
þ 1769720

6561
ζ3 þ

5200

27
ζ4 −

128000

243
ζ5

�
n3f þ

�
−
259993

236196
−
13280

2187
ζ3 þ

1600

243
ζ4

�
n4f: ðD23Þ

The three-loop anomalous dimension of the h1a and h1b operators can be found in Refs. [78,79]:

γ0 ¼ 8; ðD24Þ

γ1 ¼ 124 − 8nf; ðD25Þ

γ2 ¼
19162

9
−
�
5608

27
þ 320

3
ζ3

�
nf −

184

81
n2f: ðD26Þ

For the h2a, h2b, and h2c operators we obtain from Ref. [75]

γ0 ¼
104

9
; ðD27Þ

γ1 ¼
38044

243
−
904

81
nf; ðD28Þ

γ2 ¼
17770162

6561
þ 1280

81
ζ3 −

�
552308

2187
þ 4160

27
ζ3

�
nf −

2408

729
n2f: ðD29Þ

Finally, we can take the anomalous dimension of the quark field [see Eq. (63)] in Landau gauge to four loops from Ref. [80]:

γ0 ¼ 0; ðD30Þ

γ1 ¼
134

3
−
8

3
nf; ðD31Þ
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γ2 ¼
20729

18
− 79ζ3 −

1100

9
nf þ

40

27
n2f; ðD32Þ

γ3 ¼
2109389

81
−
565939

162
ζ3 þ

2607

2
ζ4 −

761525

648
ζ5 −

�
324206

81
þ 4582

27
ζ3 þ 79ζ4 þ

320

3
ζ5

�
nf

þ
�
7706

81
þ 320

9
ζ3

�
n2f þ

280

243
n3f: ðD33Þ

In the case of the RI0-SMOM scheme we have to take
into account that operators with two derivatives mix with
total-derivative operators. This concerns the v3 and a2
operators as well as the h2a, h2b, and h2c operators. The
anomalous dimension becomes a 2 × 2 matrix, whose 1-1
element coincides with the anomalous dimension given
above. For the v3 and a2 operators the only other nonzero
entry is the 1-2 element. This matrix element can be
calculated from the results given in Refs. [79,81]. Trans-
forming these results to our operator basis one finds

ðγ0Þ12 ¼ −
20

9
; ðD34Þ

ðγ1Þ12 ¼ −
5954

243
þ 118

81
nf: ðD35Þ

In our computations we use also the three-loop coefficient
ðγ2Þ12, which can be evaluated with the help of unpublished
results of John Gracey [82]. Recently, the three-loop
coefficients missing in Ref. [81] have been calculated
numerically [8]. Utilizing these numbers one finds

ðγ2Þ12 ¼ −417.165þ 64.0972nf þ 1.09319n2f: ðD36Þ

For the h2a, h2b, and h2c operators the anomalous dimen-
sion matrix has three nonvanishing entries. The 1-1 element
is identical to the anomalous dimension of these operators
given above, while the 2-2 element coincides with the
anomalous dimension of the tensor density T μν. Trans-
forming the results given in Ref. [28] to our operator basis
one obtains for the last nonvanishing matrix element

ðγ0Þ12 ¼ −
16

9
; ðD37Þ

ðγ1Þ12 ¼ −
2720

243
þ 80

81
nf; ðD38Þ

ðγ2Þ12 ¼ −
6826684

32805
−
6848

405
ζ3

þ
�
28660

2187
þ 640

27
ζ3

�
nf þ

544

729
n2f: ðD39Þ

APPENDIX E: ANOMALOUS DIMENSIONS OF
THREE-QUARK OPERATORS

In this Appendix we present the anomalous dimensions
of the three-quark operators that we consider. For the
operators without derivatives three-loop results have been
obtained in Ref. [35].
For the multiplets (B1) and (B2) transforming according

to the Hð4Þ representation τ
12

1 we have

γ0 ¼
4

3
; ðE1Þ

γ1 ¼
236

3
−
112

27
nf; ðE2Þ

γ2 ¼
18496

9
−
544

3
ζ3 −

�
16168

81
þ 160

9
ζ3

�
nf þ

128

81
n2f:

ðE3Þ

In the case of the multiplets (B4) and (B5) one finds a
diagonal matrix of anomalous dimensions with the entries

ðγ0Þ11 ¼ −4; ðE4Þ

ðγ1Þ11 ¼
100

3
−
32

9
nf; ðE5Þ

ðγ2Þ11 ¼
10988

9
þ
�
−
4264

27
þ 160

3
ζ3

�
nf þ

112

27
n2f; ðE6Þ

ðγ0Þ22 ¼ −4; ðE7Þ

ðγ1Þ22 ¼
140

3
−
32

9
nf; ðE8Þ

ðγ2Þ22 ¼
10784

9
þ 32ζ3 þ

�
−160þ 160

3
ζ3

�
nf þ

112

27
n2f:

ðE9Þ

In the case of the multiplet (B3) we have

γ0 ¼ −4; ðE10Þ
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γ1 ¼
100

3
−
32

9
nf; ðE11Þ

γ2 ¼
10988

9
þ
�
−
4264

27
þ 160

3
ζ3

�
nf þ

112

27
n2f: ðE12Þ

For the operators with one derivative, only one-loop
anomalous dimensions are available. For the multiplet
(B6) we have

γ0 ¼
52

9
ðE13Þ

The 4 × 4 anomalous dimension matrix of the octet
multiplets (B7)–(B10) is diagonal in one-loop order:

γ0 ¼ diagð4=3; 20=3; 52=9; 8Þ: ðE14Þ
In the case of the decuplet multiplets (B11)–(B13) we get a
3 × 3 anomalous dimension matrix:

γ0 ¼ diagð4=3; 20=3; 4Þ: ðE15Þ

APPENDIX F: CONVERSION FACTORS FOR
QUARK-ANTIQUARK OPERATORS

In this Appendix we compile results for the expansion
coefficients of the conversion matrices (factors) of our
operators. The conversion matrices C are defined in
Eq. (17) and their perturbative expansion is given in Eq. (68).
We start with the RI0-MOM scheme. From Ref. [80] we

get for S and P

c1 ¼
16

3
;

c2 ¼
4291

18
−
152

3
ζ3 −

83

9
nf;

c3 ¼
3890527

324
−
224993

54
ζ3 þ

2960

9
ζ5 −

�
241294

243
−
4720

27
ζ3 þ

80

3
ζ4

�
nf þ

�
7514

729
þ 32

27
ζ3

�
n2f: ðF1Þ

For Vμ and Aμ one finds from Ref. [83]

c1 ¼ 0;

c2 ¼ −
67

6
þ 2

3
nf;

c3 ¼ −
52321

72
þ 607

4
ζ3 þ

�
2236

27
− 8ζ3

�
nf −

52

27
n2f: ðF2Þ

With the help of Ref. [83] we find for T μν

c1 ¼ 0;

c2 ¼ −
3847

54
þ 184

9
ζ3 þ

313

81
nf;

c3 ¼ −
9858659

2916
þ 678473

486
ζ3 þ

1072

81
ζ4 −

10040

27
ζ5 þ

�
286262

729
−
2096

27
ζ3 þ

80

9
ζ4

�
nf −

�
13754

2187
þ 32

81
ζ3

�
n2f: ðF3Þ

In the case of the v2a and r2a operators one extracts from Ref. [78]

c1 ¼ −
130

27
;

c2 ¼ −
113084

729
þ 86

3
ζ3 þ

2938

243
nf;

c3 ¼ −
2105418469

314928
þ 18986323

8748
ζ3 −

640

81
ζ4 −

47335

81
ζ5 þ

�
17190598

19683
−
4492

81
ζ3 þ

640

27
ζ4

�
nf −

�
127772

6561
þ 256

243
ζ3

�
n2f:

ðF4Þ

For the v2b and r2b operators we get from Ref. [78]
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c1 ¼ −
124

27
;

c2 ¼ −
98072

729
þ 268

9
ζ3 þ

2668

243
nf;

c3 ¼ −
849683327

157464
þ 7809041

4374
ζ3 −

640

81
ζ4 −

36410

81
ζ5 þ

�
14433520

19683
−
4184

81
ζ3 þ

640

27
ζ4

�
nf −

�
105992

6561
þ 256

243
ζ3

�
n2f:

ðF5Þ

For the h1a and h1b operators one obtains from Ref. [78]

c1 ¼ −
14

3
;

c2 ¼ −
985

6
þ 98

3
ζ3 þ 13nf;

c3 ¼ −
8834075

1296
þ 235505

108
ζ3 −

17545

27
ζ5 þ

�
449921

486
−
562

9
ζ3 þ

80

3
ζ4

�
nf −

�
5050

243
þ 32

27
ζ3

�
n2f: ðF6Þ

Similarly, Ref. [75] yields for the h2a, h2b, and h2c operators the coefficients

c1 ¼ −
218

27
;

c2 ¼ −
814597

3645
þ 632

15
ζ3 þ

4961

243
nf;

c3 ¼ −
1396663105

157464
þ 113197753

43740
ζ3 −

320

81
ζ4 −

22919

27
ζ5 þ

�
126822281

98415
−
46688

1215
ζ3 þ

1040

27
ζ4

�
nf

−
�
220360

6561
þ 416

243
ζ3

�
n2f: ðF7Þ

For the v3 and a2 operators we have the coefficients

c1 ¼ −
223

27
;

c2 ¼ −
6644237

29160
þ 198

5
ζ3 þ

39599

1944
nf;

c3 ¼ −
3720946031

393660
þ 251485339

87480
ζ3 −

550

81
ζ4 −

5575

6
ζ5 þ

�
2084393177

1574640
−
5219

135
ζ3 þ

1000

27
ζ4

�
nf

−
�
1793923

52488
þ 400

243
ζ3

�
n2f ðF8Þ

extracted from Ref. [75]. For the conversion factor of the quark wave function renormalization Cq one obtains from
Ref. [80] in Landau gauge

c1 ¼ 0;

c2 ¼ −
359

9
þ 12ζ3 þ

7

3
nf;

c3 ¼ −
439543

162
þ 8009

6
ζ3 þ

79

4
ζ4 −

1165

3
ζ5 þ

�
24722

81
−
440

9
ζ3

�
nf −

1570

243
n2f: ðF9Þ

Perturbative expressions for the RI0-SMOM vertex
functions are available in analytic form for up to two
loops [28,81,84,85]. As they are rather complicated, also

the corresponding results for the coefficients of the con-
version factors as derived from Eq. (17) are quite lengthy.
Therefore we give them only in numerical form for nf ¼ 3,
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see Table V. Three-loop results for the operators without
derivatives have recently been obtained in Ref. [6] and for
some operators with derivatives in Ref. [8]. In these papers
the required integrals have been evaluated with the help of
numerical integration. The corresponding results for c3
computed from the given central values are also included in
Table V. Their numerical uncertainty is calculated by means
of error propagation from the errors of the individual
contributions given in Refs. [6,8]. For our final renormal-
ization factors this uncertainty is completely irrelevant. In
the case of the scalar density, there is even an analytic
expression for c3 [7], which agrees perfectly with the
numerical result.
Note that here the mixing with total-derivative operators

has been ignored. Hence the numbers in Table V for the
operators with two derivatives are sufficient only when
forward matrix elements are considered. In order to
facilitate the comparison between the RI0-SMOM and
the RI0-MOM scheme we include also the numerical values
of the coefficients in the RI0-MOM scheme. While for the
scalar and the pseudoscalar densities the coefficients in
the RI0-SMOM scheme are substantially smaller than in the
RI0-MOM scheme, they are quite similar in the other cases.
When nonforward matrix elements are to be investigated,

we have to take into account that operators with two
derivatives mix with total-derivative operators. In this case
we must use the RI0-SMOM scheme, and the conversion
factors become conversion matrices of size 2 × 2whose 1-1
entry coincides with what one gets from Table V. This
concerns the v3 and a2 operators as well as the h2a, h2b, and
h2c operators. One finds for the v3 and a2 operators the
matrices

c1 ¼
� −8.30885 1.34861

0.0382119 −1.73957

�
; ðF10Þ

c2 ¼
�−103.787 31.4819

2.62254 −33.1654

�
: ðF11Þ

For the h2a and h2b operators we have

c1 ¼
� −8.12940 1.35805

0.0191060 −0.196067

�
; ðF12Þ

c2 ¼
� −106.004 13.5855

0.0500372 −31.0241

�
: ðF13Þ

In the case of the h2c operators one gets

c1 ¼
� −8.14087 1.29815

−0.0191060 −0.234279

�
; ðF14Þ

c2 ¼
� −105.975 14.3534

−0.0500372 −31.1242

�
: ðF15Þ

APPENDIX G: CONVERSION FACTORS FOR
THREE-QUARK OPERATORS

In this Appendix we present the conversion matrices
(factors) of the three-quark operators that we consider, as
obtained in Ref. [34] to one-loop accuracy. Here we need
the trigamma function

ψ1ðxÞ ¼
d2

dx2
lnðΓðxÞÞ ¼

Z
∞

0

dt
te−tx

1 − e−t
ðG1Þ

with the special values ψ1ð1=3Þ ≈ 10.0956 and ψ1ð1=4Þ≈
17.1973.
For the multiplets (B1) and (B2) of operators without

derivatives transforming according to the Hð4Þ representa-
tion τ

12

1 we have

CðO12

1 Þ ¼ CðD12

1 Þ ðG2Þ
with

CðD12

1 Þ ¼ 1þ ḡ2

16π2

�
−
5

9
−

5

81
π2 þ 10

27
lnð2Þ

þ 4

27
ψ1ð1=3Þ −

1

27
ψ1ð1=4Þ

�
: ðG3Þ

In the case of the multiplets (B3), (B4), and (B5) one finds

CðS4

1Þ ¼ 1þ ḡ2

16π2

�
17

3
þ 14

27
π2 þ 2

9
lnð2Þ

−
4

9
ψ1ð1=3Þ −

2

9
ψ1ð1=4Þ

�
ðG4Þ

and

TABLE V. Coefficients of conversion factors for nf ¼ 3. In the
cases where loop integrals have been evaluated numerically
estimates of the resulting uncertainties have been included.

Operators Scheme c1 c2 c3

S, P SMOM 0.645519 10.9838 399.63(7)
S, P MOM 5.33333 149.818 5010.89
V, A SMOM −1.33333 −26.8410 −704.85ð14Þ
V, A MOM 0.0 −9.16667 −342.007
T SMOM −0.215173 −31.0741 −1084.85ð11Þ
T MOM 0.0 −35.0728 −1207.96
v2a, r2a SMOM −5.12954 −78.0195 −2220.96ð2Þ
v2a, r2a MOM −4.81481 −84.3915 −2380.58
v2b, r2b SMOM −5.12954 −78.0195 −2220.96ð2Þ
v2b, r2b MOM −4.59259 −65.7966 −1790.84
h1a, h1b SMOM −4.75682 −80.6120 � � �
h1a, h1b MOM −4.66667 −85.8995 −2430.19
v3, a2 SMOM −8.30885 −103.787 −2939.92ð11Þ
v3, a2 MOM −8.25926 −119.143 −3340.75
h2a, h2b SMOM −8.12940 −106.004 � � �
h2a, h2b MOM −8.07407 −111.590 −3111.68
h2c SMOM −8.14087 −105.975 � � �
h2c MOM −8.07407 −111.590 −3111.68
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CðO4

1Þ ¼ CðS4

1Þ12: ðG5Þ

For the multiplet (B6) of operators with one derivative the
conversion factor reads

CðS12

2 Þ ¼ 1þ ḡ2

16π2

�
−
707

162
−

3625

23328
π2 þ 17

54
lnð2Þ

þ 131

486
ψ1ð1=3Þ −

7

288
ψ1ð1=4Þ

�
: ðG6Þ

The octet multiplets (B7)–(B10) have a 4 × 4 mixing
matrix with the diagonal entries

CðO12

2 Þ11 ¼ 1þ ḡ2

16π2

�
−
53

81
−

149

1458
π2 þ 8

27
lnð2Þ

þ 44

243
ψ1ð1=3Þ −

1

54
ψ1ð1=4Þ

�
; ðG7Þ

CðO12

2 Þ22 ¼ 1þ ḡ2

16π2

�
−
845

162
−

5413

23328
π2 þ 11

54
lnð2Þ

þ 143

486
ψ1ð1=3Þ þ

31

864
ψ1ð1=4Þ

�
; ðG8Þ

CðO12

2 Þ33 ¼ 1þ ḡ2

16π2

�
−
707

162
−

3625

23328
π2 þ 17

54
lnð2Þ

þ 131

486
ψ1ð1=3Þ −

7

288
ψ1ð1=4Þ

�
; ðG9Þ

CðO12

2 Þ44 ¼ 1þ ḡ2

16π2

�
−7 −

115

288
π2 þ 4

9
lnð2Þ

þ 1

2
ψ1ð1=3Þ þ

19

288
ψ1ð1=4Þ

�
: ðG10Þ

The only nonvanishing off-diagonal entries are

CðO12

2 Þ21 ¼ 4CðO12

2 Þ12 ¼
ffiffiffi
2

p ḡ2

16π2

�
−

4

81
−

95

2916
π2

−
2

27
lnð2Þ − 5

243
ψ1ð1=3Þ þ

5

108
ψ1ð1=4Þ

�
:

ðG11Þ

In the case of the decuplet multiplets (B11)–(B13) we get a
3 × 3 mixing matrix, whose nonzero entries are given by

CðD12

2 Þmn ¼ CðO12

2 Þmn ðG12Þ

for m; n ∈ f1; 2g and

CðD12

2 Þ33 ¼ 1þ ḡ2

16π2

�
−
11

3
−
19

54
π2 þ 4

9
lnð2Þ

þ 4

9
ψ1ð1=3Þ þ

1

18
ψ1ð1=4Þ

�
: ðG13Þ

APPENDIX H: TABLES OF RESULTS

In this Appendix we present tables of our results
obtained with the help of the methods discussed above.

TABLE VI. Results from fits for operators with less than two derivatives based on the RI0-MOM scheme without the perturbative
subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical
error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7821(11)(65) 0.7899(5)(60) 0.7970(2)(52) 0.8069(4)(47) 0.8220(10)(34) 0.8357(13)(30)
ZS 0.6322(154)(300) 0.6202(71)(255) 0.6089(52)(261) 0.5964(78)(267) 0.5831(119)(233) 0.5729(138)(183)
ZV 0.6915(22)(78) 0.7011(13)(61) 0.7102(7)(53) 0.7229(11)(52) 0.7419(24)(48) 0.7589(33)(54)
Z0
V 0.6968(21)(63) 0.7065(11)(47) 0.7156(7)(39) 0.7279(11)(38) 0.7465(24)(37) 0.7628(32)(45)

ZA 0.7372(24)(74) 0.7449(12)(56) 0.7525(7)(55) 0.7628(13)(59) 0.7782(22)(58) 0.7919(29)(57)
Z0
A 0.7440(22)(42) 0.7514(12)(30) 0.7582(6)(27) 0.7678(13)(29) 0.7823(22)(30) 0.7952(30)(36)

ZT 0.8063(21)(126) 0.8202(10)(99) 0.8337(6)(97) 0.8519(11)(102) 0.8794(23)(99) 0.9048(31)(98)
Zv2a 1.0527(18)(179) 1.0786(9)(167) 1.1020(6)(164) 1.1335(10)(162) 1.1798(21)(161) 1.2228(27)(187)
Zv2b 1.0672(17)(136) 1.0916(9)(128) 1.1136(5)(122) 1.1431(10)(118) 1.1868(19)(116) 1.2269(25)(134)
Zr2a 1.0514(20)(185) 1.0776(10)(172) 1.1012(6)(171) 1.1329(11)(171) 1.1791(23)(167) 1.2217(30)(183)
Zr2b 1.0907(19)(142) 1.1146(10)(135) 1.1358(5)(129) 1.1645(10)(120) 1.2067(20)(107) 1.2452(26)(113)
Zh1a 1.0794(19)(183) 1.1083(8)(172) 1.1344(5)(169) 1.1696(11)(167) 1.2218(22)(166) 1.2702(30)(194)
Zh1b 1.0896(20)(186) 1.1182(11)(175) 1.1440(6)(170) 1.1788(11)(163) 1.2305(22)(158) 1.2787(30)(186)
ZA=ZV 1.0643(32)(47) 1.0613(15)(42) 1.0585(11)(36) 1.0546(16)(28) 1.0486(30)(10) 1.0433(41)(9)
Z0
A=Z

0
V 1.0660(32)(40) 1.0624(17)(29) 1.0589(10)(24) 1.0543(16)(21) 1.0477(30)(19) 1.0424(40)(24)
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TABLE VII. Results from fits for operators with less than two derivatives based on the RI0-MOM scheme with the perturbative
subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical
error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7807(11)(47) 0.7892(5)(44) 0.7968(2)(40) 0.8074(4)(37) 0.8230(10)(29) 0.8369(13)(25)
ZS 0.6041(154)(242) 0.5939(71)(211) 0.5846(52)(214) 0.5744(78)(216) 0.5639(119)(188) 0.5560(109)(148)
ZV 0.6995(22)(35) 0.7098(13)(28) 0.7190(7)(22) 0.7317(11)(17) 0.7506(24)(13) 0.7669(33)(20)
Z0
V 0.7027(21)(25) 0.7130(11)(17) 0.7222(7)(12) 0.7347(11)(8) 0.7533(24)(11) 0.7690(32)(17)

ZA 0.7432(24)(28) 0.7516(12)(23) 0.7593(7)(24) 0.7698(13)(25) 0.7852(22)(25) 0.7983(29)(24)
Z0
A 0.7474(22)(6) 0.7555(12)(4) 0.7626(6)(5) 0.7724(13)(5) 0.7870(22)(9) 0.7995(30)(11)

ZT 0.8182(22)(68) 0.8330(10)(61) 0.8465(6)(59) 0.8649(11)(56) 0.8922(23)(52) 0.9166(31)(49)
Zv2a 1.0632(18)(167) 1.0894(9)(160) 1.1128(6)(154) 1.1444(10)(145) 1.1909(21)(137) 1.2334(27)(155)
Zv2b 1.0727(17)(132) 1.0974(9)(127) 1.1193(5)(121) 1.1489(10)(112) 1.1927(19)(102) 1.2323(25)(110)
Zr2a 1.0615(20)(169) 1.0880(10)(161) 1.1116(6)(155) 1.1433(11)(148) 1.1897(23)(139) 1.2317(30)(148)
Zr2b 1.0970(19)(141) 1.1211(10)(136) 1.1424(5)(129) 1.1712(10)(119) 1.2135(20)(102) 1.2517(26)(100)
Zh1a 1.0890(19)(173) 1.1182(8)(166) 1.1443(5)(160) 1.1797(11)(151) 1.2322(22)(142) 1.2801(30)(158)
Zh1b 1.1002(20)(182) 1.1291(11)(175) 1.1550(6)(166) 1.1900(11)(154) 1.2420(22)(141) 1.2896(29)(154)
ZA=ZV 1.0622(32)(52) 1.0592(15)(46) 1.0565(11)(41) 1.0527(16)(33) 1.0468(31)(16) 1.0418(41)(9)
Z0
A=Z

0
V 1.0636(31)(37) 1.0600(17)(28) 1.0566(10)(21) 1.0521(16)(14) 1.0456(30)(8) 1.0406(40)(15)

TABLE VIII. Results from fits for operators with two derivatives based on the RI0-MOM scheme without the perturbative subtraction
of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical error, while
the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zv3 1.3573(35)(407) 1.3976(18)(394) 1.4333(11)(379) 1.4810(19)(349) 1.5523(42)(290) 1.6192(56)(284)
Za2 1.3607(37)(405) 1.4011(19)(391) 1.4369(11)(377) 1.4848(20)(348) 1.5561(45)(290) 1.6227(61)(278)
Zh2a 1.3774(35)(391) 1.4198(18)(378) 1.4571(10)(365) 1.5072(19)(335) 1.5824(42)(276) 1.6527(57)(269)
Zh2b 1.3839(36)(402) 1.4259(18)(388) 1.4627(11)(376) 1.5123(20)(344) 1.5863(43)(283) 1.6556(58)(265)
Zh2c 1.3854(35)(391) 1.4274(18)(379) 1.4644(11)(366) 1.5141(20)(336) 1.5884(44)(277) 1.6577(58)(266)

TABLE IX. Results for operators with less than two derivatives based on the RI0-MOM scheme, obtained by means of the fixed-scale
method without the perturbative subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in
parentheses gives the statistical error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS
scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.8089(4)(24) 0.8111(2)(24) 0.8144(1)(24) 0.8204(1)(24) 0.8313(4)(28) 0.8426(5)(27)
ZS 0.6978(54)(134) 0.6713(31)(113) 0.6473(23)(110) 0.6220(30)(100) 0.5880(62)(102) 0.5648(85)(118)
ZV 0.7005(8)(12) 0.7074(5)(16) 0.7156(2)(13) 0.7275(3)(10) 0.7472(9)(10) 0.7639(13)(18)
Z0
V 0.7070(8)(15) 0.7137(4)(14) 0.7213(3)(12) 0.7322(3)(6) 0.7501(9)(3) 0.7648(13)(18)

ZA 0.7456(8)(18) 0.7509(4)(15) 0.7565(3)(14) 0.7660(4)(10) 0.7812(9)(12) 0.7947(12)(23)
Z0
A 0.7561(9)(17) 0.7604(5)(12) 0.7648(3)(15) 0.7725(4)(9) 0.7851(10)(3) 0.7965(14)(13)

ZT 0.8083(7)(37) 0.8214(4)(38) 0.8345(2)(39) 0.8541(3)(40) 0.8853(8)(43) 0.9132(11)(46)
Zv2a 1.0482(4)(111) 1.0760(3)(114) 1.1023(2)(118) 1.1389(3)(124) 1.1923(7)(140) 1.2399(10)(137)
Zv2b 1.0666(4)(86) 1.0920(3)(88) 1.1155(2)(91) 1.1478(3)(95) 1.1944(7)(108) 1.2364(9)(106)
Zr2a 1.0438(5)(111) 1.0726(3)(115) 1.0993(2)(119) 1.1363(3)(124) 1.1893(8)(142) 1.2363(11)(138)
Zr2b 1.0898(5)(88) 1.1147(3)(91) 1.1374(2)(93) 1.1685(3)(97) 1.2135(7)(108) 1.2537(10)(105)
Zh1a 1.0761(5)(116) 1.1069(3)(121) 1.1357(2)(125) 1.1756(3)(131) 1.2341(8)(149) 1.2868(11)(147)
Zh1b 1.0887(5)(117) 1.1185(3)(122) 1.1465(2)(126) 1.1857(3)(132) 1.2433(8)(150) 1.2956(11)(147)
ZA=ZV 1.0636(10)(5) 1.0605(6)(7) 1.0566(4)(7) 1.0524(5)(10) 1.0451(11)(7) 1.0397(17)(13)
Z0
A=Z

0
V 1.0688(11)(7) 1.0648(6)(6) 1.0597(4)(5) 1.0541(6)(8) 1.0456(13)(3) 1.0399(19)(7)
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TABLE XI. Results for operators with two derivatives based on the RI0-MOM scheme, obtained by means of the fixed-scale method
without the perturbative subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in
parentheses gives the statistical error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS
scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zv3 1.3590(13)(225) 1.4007(8)(234) 1.4401(5)(243) 1.4945(7)(255) 1.5731(19)(291) 1.6449(27)(284)
Za2 1.3587(14)(226) 1.4011(8)(234) 1.4409(5)(244) 1.4958(7)(256) 1.5741(20)(296) 1.6447(28)(286)
Zh2a 1.3820(13)(213) 1.4250(8)(222) 1.4655(4)(230) 1.5211(7)(242) 1.6010(19)(280) 1.6741(27)(271)
Zh2b 1.3913(14)(215) 1.4335(8)(223) 1.4729(5)(232) 1.5274(7)(243) 1.6058(20)(283) 1.6778(28)(272)
Zh2c 1.3895(14)(214) 1.4324(8)(223) 1.4725(5)(232) 1.5277(7)(243) 1.6071(19)(280) 1.6794(27)(272)

TABLE XII. Results from fits for operators with less than two derivatives based on the RI0-SMOM scheme without the perturbative
subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical
error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7859(9)(91) 0.7938(4)(84) 0.8007(2)(79) 0.8105(3)(71) 0.8253(9)(53) 0.8389(12)(43)
ZS 0.6233(14)(79) 0.6179(7)(73) 0.6128(4)(66) 0.6062(5)(55) 0.5962(11)(37) 0.5864(16)(28)
ZP 0.4958(16)(255) 0.4968(6)(229) 0.4978(3)(205) 0.5006(5)(176) 0.5056(13)(116) 0.5092(19)(66)
ZV 0.7151(11)(96) 0.7236(5)(87) 0.7310(3)(79) 0.7417(4)(67) 0.7581(10)(45) 0.7730(15)(40)
Z0
V 0.7104(13)(86) 0.7192(6)(72) 0.7268(3)(63) 0.7378(5)(53) 0.7550(13)(38) 0.7702(18)(49)

ZA 0.7464(10)(66) 0.7543(4)(62) 0.7612(3)(58) 0.7711(4)(49) 0.7857(10)(37) 0.7988(14)(34)
Z0
A 0.7625(9)(74) 0.7679(4)(63) 0.7724(2)(62) 0.7795(4)(60) 0.7909(10)(46) 0.8017(14)(35)

ZT 0.8313(12)(101) 0.8447(5)(94) 0.8565(3)(87) 0.8731(4)(77) 0.8981(12)(60) 0.9214(16)(62)
Zv2a 1.0707(17)(304) 1.0985(9)(290) 1.1226(6)(278) 1.1552(8)(251) 1.2026(21)(203) 1.2451(28)(177)
Zv2b 1.0655(16)(315) 1.0920(8)(300) 1.1150(6)(288) 1.1465(8)(260) 1.1927(20)(209) 1.2347(28)(180)
Zr2a 1.0640(18)(298) 1.0918(9)(286) 1.1160(6)(273) 1.1486(8)(248) 1.1959(21)(202) 1.2384(30)(172)
Zr2b 1.0842(18)(314) 1.1106(9)(301) 1.1334(6)(288) 1.1644(9)(261) 1.2096(22)(210) 1.2505(30)(177)
Zh1a 1.1388(18)(374) 1.1677(9)(361) 1.1934(6)(351) 1.2274(9)(334) 1.2756(23)(299) 1.3194(32)(270)

(Table continued)

TABLE X. Results for operators with less than two derivatives based on the RI0-MOM scheme, obtained by means of the fixed-scale
method with the perturbative subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in
parentheses gives the statistical error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS
scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7893(4)(23) 0.7961(2)(23) 0.8027(1)(23) 0.8121(1)(24) 0.8266(4)(28) 0.8398(5)(28)
ZS 0.6507(54)(127) 0.6298(31)(105) 0.6105(23)(104) 0.5914(30)(94) 0.5655(64)(98) 0.5483(87)(117)
ZV 0.7038(8)(11) 0.7128(5)(15) 0.7220(2)(13) 0.7341(3)(10) 0.7529(9)(10) 0.7683(13)(19)
Z0
V 0.7080(8)(14) 0.7168(4)(14) 0.7254(3)(12) 0.7368(3)(6) 0.7541(9)(3) 0.7680(13)(19)

ZA 0.7446(8)(18) 0.7525(5)(15) 0.7594(3)(14) 0.7697(4)(10) 0.7848(9)(12) 0.7977(12)(24)
Z0
A 0.7522(9)(17) 0.7591(5)(12) 0.7650(3)(15) 0.7737(4)(9) 0.7868(10)(3) 0.7981(14)(13)

ZT 0.8185(7)(39) 0.8335(4)(39) 0.8470(2)(40) 0.8661(3)(40) 0.8951(8)(43) 0.9207(11)(46)
Zv2a 1.0616(5)(112) 1.0892(3)(115) 1.1149(2)(119) 1.1501(3)(124) 1.2011(7)(140) 1.2465(10)(137)
Zv2b 1.0730(4)(87) 1.0986(2)(89) 1.1219(2)(92) 1.1536(3)(95) 1.1989(7)(108) 1.2397(9)(106)
Zr2a 1.0571(5)(112) 1.0857(3)(116) 1.1117(2)(119) 1.1473(3)(124) 1.1979(8)(142) 1.2428(11)(138)
Zr2b 1.0961(5)(89) 1.1215(3)(91) 1.1442(2)(94) 1.1749(3)(97) 1.2187(7)(108) 1.2579(10)(105)
Zh1a 1.0874(5)(118) 1.1182(3)(122) 1.1466(2)(126) 1.1855(3)(131) 1.2419(8)(149) 1.2927(11)(147)
Zh1b 1.1004(5)(119) 1.1305(3)(123) 1.1582(2)(127) 1.1965(3)(132) 1.2521(8)(150) 1.3024(11)(147)
ZA=ZV 1.0593(10)(6) 1.0566(6)(7) 1.0531(4)(8) 1.0495(5)(10) 1.0430(12)(7) 1.0383(17)(13)
Z0
A=Z

0
V 1.0640(11)(8) 1.0604(6)(7) 1.0557(5)(5) 1.0508(6)(8) 1.0433(13)(3) 1.0383(21)(7)
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TABLE XIII. Results from fits for operators with less than two derivatives based on the RI0-SMOM scheme with the perturbative
subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical
error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7822(9)(70) 0.7908(4)(66) 0.7982(2)(63) 0.8087(3)(57) 0.8241(9)(45) 0.8379(12)(36)
ZS 0.6112(14)(92) 0.6065(7)(85) 0.6022(4)(79) 0.5966(5)(66) 0.5878(11)(44) 0.5791(16)(31)
ZP 0.4879(15)(215) 0.4899(6)(194) 0.4919(3)(172) 0.4956(5)(145) 0.5018(13)(91) 0.5062(19)(49)
ZV 0.7136(11)(76) 0.7227(5)(69) 0.7307(3)(64) 0.7419(4)(56) 0.7587(10)(41) 0.7737(15)(34)
Z0
V 0.7071(13)(59) 0.7166(6)(49) 0.7249(3)(43) 0.7365(5)(37) 0.7543(13)(27) 0.7697(19)(33)

ZA 0.7456(10)(57) 0.7540(4)(54) 0.7613(3)(51) 0.7715(4)(46) 0.7863(10)(37) 0.7994(14)(30)
Z0
A 0.7578(9)(41) 0.7640(4)(36) 0.7693(2)(36) 0.7773(4)(36) 0.7894(10)(30) 0.8005(14)(21)

ZT 0.8321(11)(93) 0.8462(5)(88) 0.8585(3)(83) 0.8755(4)(75) 0.9009(12)(61) 0.9241(16)(52)
Zv2a 1.0731(17)(307) 1.1010(9)(293) 1.1251(6)(282) 1.1578(8)(256) 1.2053(21)(207) 1.2476(28)(177)
Zv2b 1.0672(16)(318) 1.0938(8)(303) 1.1170(6)(290) 1.1485(8)(263) 1.1949(20)(212) 1.2367(28)(179)
Zr2a 1.0666(18)(303) 1.0946(9)(290) 1.1188(6)(279) 1.1515(8)(254) 1.1989(22)(207) 1.2412(30)(172)
Zr2b 1.0862(18)(316) 1.1127(9)(304) 1.1355(6)(293) 1.1666(9)(267) 1.2119(22)(215) 1.2528(30)(177)
Zh1a 1.1412(18)(373) 1.1704(9)(360) 1.1961(6)(351) 1.2302(9)(333) 1.2786(23)(297) 1.3222(32)(268)
Zh1b 1.1554(18)(377) 1.1843(10)(365) 1.2099(6)(355) 1.2436(10)(337) 1.2914(24)(301) 1.3344(32)(270)
ZS=ZP 1.2086(39)(616) 1.2026(17)(567) 1.1960(10)(530) 1.1837(13)(464) 1.1608(33)(306) 1.1392(45)(159)
ZA=ZV 1.0422(7)(50) 1.0414(4)(45) 1.0405(2)(42) 1.0390(2)(36) 1.0362(6)(23) 1.0333(8)(13)
Z0
A=Z

0
V 1.0692(12)(63) 1.0643(6)(48) 1.0599(3)(38) 1.0542(4)(26) 1.0459(9)(16) 1.0395(13)(26)

ZA=ZP 1.4582(39)(426) 1.4785(16)(392) 1.4958(8)(380) 1.5150(12)(350) 1.5379(35)(247) 1.5582(51)(190)
Z0
A=ZP 1.4600(46)(325) 1.4773(16)(309) 1.4910(9)(286) 1.5065(14)(245) 1.5262(41)(158) 1.5442(59)(148)

ZP=ðZSZAÞ 1.0945(34)(446) 1.0897(16)(423) 1.0871(10)(404) 1.0862(12)(342) 1.0903(31)(203) 1.0954(43)(127)
ZP=ðZSZ0

AÞ 1.0751(33)(401) 1.0740(14)(371) 1.0746(10)(349) 1.0775(13)(284) 1.0856(33)(152) 1.0934(46)(102)

TABLE XIV. Results from fits for operators with two derivatives based on the RI0-SMOM scheme without the perturbative subtraction
of lattice artifacts. The chiral extrapolation has been performed globally. The first number in parentheses gives the statistical error, while
the second number is an estimate of the systematic uncertainty. All values refer to the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zv3 1.3792(36)(697) 1.4228(16)(673) 1.4593(13)(657) 1.5092(20)(608) 1.5826(49)(489) 1.6493(68)(386)
Za2 1.3729(37)(682) 1.4168(17)(659) 1.4536(13)(644) 1.5039(19)(593) 1.5776(48)(476) 1.6445(66)(379)
Zh2a 1.4682(40)(725) 1.5111(19)(707) 1.5484(14)(690) 1.5977(20)(653) 1.6668(50)(580) 1.7296(70)(514)
Zh2b 1.4829(41)(740) 1.5251(19)(723) 1.5616(14)(706) 1.6099(20)(669) 1.6776(51)(593) 1.7389(71)(523)
Zh2c 1.4788(38)(739) 1.5212(18)(721) 1.5579(14)(703) 1.6065(21)(665) 1.6747(52)(589) 1.7367(71)(521)

TABLE XII. (Continued)

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zh1b 1.1529(18)(379) 1.1817(10)(365) 1.2071(6)(356) 1.2408(10)(338) 1.2884(24)(302) 1.3315(32)(273)
ZS=ZP 1.2119(39)(635) 1.2065(17)(586) 1.2001(10)(546) 1.1880(14)(477) 1.1657(33)(318) 1.1437(44)(160)
ZA=ZV 1.0412(7)(59) 1.0407(4)(55) 1.0400(2)(51) 1.0387(2)(45) 1.0360(5)(29) 1.0333(8)(18)
Z0
A=Z

0
V 1.0705(12)(60) 1.0655(6)(46) 1.0609(3)(35) 1.0550(4)(25) 1.0466(9)(22) 1.0400(13)(29)

ZA=ZP 1.4529(39)(462) 1.4732(16)(421) 1.4908(8)(412) 1.5102(12)(384) 1.5335(35)(281) 1.5543(51)(212)
Z0
A=ZP 1.4582(47)(335) 1.4753(15)(316) 1.4891(9)(297) 1.5045(15)(258) 1.5239(41)(169) 1.5422(59)(149)

ZP=ðZSZAÞ 1.0893(34)(439) 1.0847(16)(418) 1.0823(10)(399) 1.0816(12)(339) 1.0860(31)(204) 1.0916(43)(126)
ZP=ðZSZ0

AÞ 1.0661(32)(377) 1.0655(14)(351) 1.0666(10)(330) 1.0702(13)(265) 1.0790(34)(137) 1.0876(46)(94)
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TABLE XV. Results for operators with less than two derivatives based on the RI0-SMOM scheme, obtained by means of the fixed-
scale method without the perturbative subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first
number in parentheses gives the statistical error, while the second number is an estimate of the systematic uncertainty. All values refer to
the MS scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.8308(3)(26) 0.8302(2)(25) 0.8307(1)(24) 0.8335(1)(24) 0.8400(3)(31) 0.8484(4)(28)
ZS 0.6343(4)(28) 0.6268(2)(28) 0.6199(1)(28) 0.6111(1)(27) 0.5981(4)(26) 0.5863(5)(25)
ZP 0.5769(5)(40) 0.5635(2)(36) 0.5537(1)(34) 0.5439(1)(32) 0.5344(4)(30) 0.5283(5)(28)
ZV 0.7629(4)(24) 0.7617(2)(22) 0.7621(1)(22) 0.7653(1)(21) 0.7734(4)(23) 0.7831(5)(22)
Z0
V 0.7611(5)(13) 0.7601(3)(11) 0.7606(1)(10) 0.7636(2)(10) 0.7716(5)(9) 0.7807(7)(4)

ZA 0.7776(4)(23) 0.7787(2)(22) 0.7807(1)(22) 0.7856(1)(22) 0.7949(4)(25) 0.8048(5)(25)
Z0
A 0.8171(3)(13) 0.8123(2)(10) 0.8092(1)(9) 0.8074(1)(7) 0.8082(4)(10) 0.8120(5)(12)

ZT 0.8698(4)(35) 0.8746(2)(35) 0.8804(1)(35) 0.8909(1)(36) 0.9098(4)(41) 0.9296(6)(41)
Zv2a 1.0890(6)(107) 1.1133(3)(111) 1.1356(2)(114) 1.1669(3)(118) 1.2127(8)(134) 1.2539(11)(130)
Zv2b 1.0918(6)(107) 1.1135(3)(110) 1.1340(2)(113) 1.1629(3)(117) 1.2055(8)(133) 1.2450(11)(130)
Zr2a 1.0800(6)(107) 1.1046(3)(110) 1.1273(2)(113) 1.1590(3)(117) 1.2049(8)(135) 1.2463(11)(131)
Zr2b 1.1052(6)(109) 1.1278(3)(112) 1.1486(2)(115) 1.1780(3)(119) 1.2206(9)(136) 1.2595(12)(133)
Zh1a 1.1386(6)(197) 1.1650(3)(202) 1.1897(2)(207) 1.2246(3)(214) 1.2761(8)(231) 1.3236(12)(234)
Zh1b 1.1510(6)(199) 1.1777(3)(204) 1.2024(2)(209) 1.2372(3)(216) 1.2884(9)(233) 1.3355(13)(236)
ZS=ZP 1.0988(6)(32) 1.1118(3)(26) 1.1194(2)(23) 1.1235(2)(20) 1.1196(5)(25) 1.1105(8)(24)
ZA=ZV 1.0190(2)(5) 1.0222(1)(4) 1.0243(1)(4) 1.0265(1)(4) 1.0279(2)(4) 1.0279(2)(5)
Z0
A=Z

0
V 1.0736(4)(4) 1.0688(2)(4) 1.0639(1)(7) 1.0574(1)(10) 1.0476(3)(21) 1.0401(5)(20)

ZA=ZP 1.3472(8)(94) 1.3815(4)(94) 1.4098(2)(95) 1.4444(3)(96) 1.4884(9)(103) 1.5245(12)(102)
Z0
A=ZP 1.3977(10)(94) 1.4231(5)(93) 1.4430(3)(94) 1.4660(4)(94) 1.4946(10)(97) 1.5194(14)(99)

ZP=ðZSZAÞ 1.1706(7)(43) 1.1552(3)(38) 1.1443(2)(37) 1.1329(3)(36) 1.1231(7)(47) 1.1183(11)(46)
ZP=ðZSZ0

AÞ 1.1140(6)(20) 1.1073(3)(11) 1.1039(2)(10) 1.1021(3)(10) 1.1043(7)(26) 1.1081(10)(31)

TABLE XVI. Results for operators with less than two derivatives based on the RI0-SMOM scheme, obtained by means of the fixed-
scale method with the perturbative subtraction of lattice artifacts. The chiral extrapolation has been performed globally. The first number
in parentheses gives the statistical error, while the second number is an estimate of the systematic uncertainty. All values refer to the MS
scheme at the scale μ20 ¼ 4 GeV2.

β ¼ 3.34 β ¼ 3.40 β ¼ 3.46 β ¼ 3.55 β ¼ 3.70 β ¼ 3.85

Zq 0.7970(3)(24) 0.8028(2)(23) 0.8082(1)(24) 0.8166(1)(24) 0.8292(3)(31) 0.8414(4)(29)
ZS 0.6071(4)(26) 0.6026(2)(25) 0.5983(1)(25) 0.5929(1)(25) 0.5844(4)(24) 0.5762(5)(24)
ZP 0.5368(5)(34) 0.5300(2)(30) 0.5256(1)(29) 0.5221(1)(28) 0.5200(4)(27) 0.5187(5)(26)
ZV 0.7314(4)(21) 0.7371(2)(20) 0.7427(1)(21) 0.7513(1)(21) 0.7651(4)(22) 0.7780(5)(22)
Z0
V 0.7268(5)(5) 0.7328(3)(6) 0.7386(1)(7) 0.7473(2)(8) 0.7614(5)(8) 0.7742(7)(3)

ZA 0.7551(4)(22) 0.7614(2)(21) 0.7672(1)(21) 0.7761(1)(22) 0.7893(4)(25) 0.8014(5)(25)
Z0
A 0.7760(3)(5) 0.7793(2)(3) 0.7823(1)(3) 0.7873(1)(2) 0.7955(4)(9) 0.8039(5)(12)

ZT 0.8441(4)(35) 0.8557(2)(35) 0.8663(1)(36) 0.8818(1)(37) 0.9053(4)(42) 0.9274(6)(42)
Zv2a 1.0882(5)(108) 1.1140(3)(111) 1.1372(2)(114) 1.1692(3)(118) 1.2150(8)(134) 1.2561(11)(130)
Zv2b 1.0869(6)(108) 1.1108(3)(111) 1.1327(2)(114) 1.1627(3)(117) 1.2062(8)(133) 1.2459(11)(130)
Zr2a 1.0802(6)(107) 1.1063(3)(111) 1.1298(2)(114) 1.1620(3)(118) 1.2079(8)(135) 1.2489(12)(131)
Zr2b 1.1026(6)(110) 1.1269(3)(113) 1.1488(2)(116) 1.1790(3)(120) 1.2221(9)(137) 1.2611(13)(133)
Zh1a 1.1346(6)(197) 1.1634(3)(202) 1.1896(2)(207) 1.2257(3)(214) 1.2779(8)(232) 1.3254(12)(235)
Zh1b 1.1477(6)(199) 1.1765(3)(205) 1.2025(2)(210) 1.2384(3)(216) 1.2903(9)(234) 1.3374(12)(236)
ZS=ZP 1.1128(6)(28) 1.1220(3)(22) 1.1266(2)(20) 1.1275(2)(18) 1.1205(5)(24) 1.1100(7)(24)
ZA=ZV 1.0284(2)(3) 1.0298(1)(3) 1.0306(0)(3) 1.0312(1)(3) 1.0309(1)(4) 1.0297(2)(5)
Z0
A=Z

0
V 1.0667(4)(5) 1.0630(2)(4) 1.0590(1)(7) 1.0536(1)(10) 1.0450(4)(21) 1.0385(5)(20)

ZA=ZP 1.3688(8)(94) 1.4013(4)(93) 1.4277(2)(94) 1.4593(3)(95) 1.4991(9)(102) 1.5320(12)(101)
Z0
A=ZP 1.4008(10)(96) 1.4271(5)(94) 1.4474(3)(94) 1.4703(4)(94) 1.4981(10)(97) 1.5221(14)(98)

ZP=ðZSZAÞ 1.1805(7)(44) 1.1633(3)(39) 1.1514(2)(38) 1.1390(3)(36) 1.1281(8)(47) 1.1223(11)(46)
ZP=ðZSZ0

AÞ 1.1410(6)(24) 1.1301(3)(15) 1.1236(2)(13) 1.1182(3)(12) 1.1161(7)(26) 1.1166(10)(31)
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