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1 Introduction

The asymmetry of the intrinsic nucleon structure is a fascinating phenomenon that demon-
strates the complexity of the underlying theory of strong interactions, Quantum Chromo-
dynamics (QCD). By their very nature, asymmetries are related to a nontrivial three-
dimensional (3D) structure of the nucleon and could not be fully understood within the
collinear partonic picture. A more adequate approach for studies of such phenomena is the
transverse momentum dependent (TMD) factorization theorem [1–7], which resolves the
transverse components of the parton’s momentum in addition to the collinear one and is
sensitive to the short (perturbative) and long (nonperturbative) distance QCD dynamics.
The TMD factorization theorem associates the correlation of the nucleon’s spin and the
transverse momentum of an unpolarized parton with the Sivers function [8, 9]. In this
paper, we present a global QCD analysis and the extraction of the Sivers function from
Semi-Inclusive Deep Inelastic Scattering (SIDIS), Drell-Yan (DY), and W±/Z production
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data with next-to-next-to-leading order (NNLO) and next-to-next-to-next-to-leading or-
der (N3LO) of TMD evolution and provide a detailed description of results presented in
ref. [10].

Within the TMD factorization theorem, nonperturbative effects of collinear and trans-
verse parton motion are included in the TMD distribution (TMD PDF) and fragmentation
(TMD FF) functions. In its modern form, the TMD factorization theorem has been proven
in refs. [4, 7, 11], to which we refer the reader for the theory details. A natural subject of the
TMD factorization is inelastic sufficiently inclusive processes with two observed scales, such
as SIDIS [3–5, 12, 13], DY [2, 7, 14, 15] and an almost back-to-back hadron pair production
in Semi-Inclusive e+e− Annihilation (SIA) [1, 4, 16]. These scales are a large hard scale, Q,
(that is the virtuality of the photon in SIDIS, the invariant mass of the dilepton pair in DY
and SIA) and a smaller scale, qT (that is the transverse momentum of the produced hadron
(SIDIS), the transverse momentum of the dilepton pair (DY), or the transverse momen-
tum disbalance of produced hadrons (SIA)). These processes could be described by several
universal TMD PDFs, TMD FFs, and the universal nonperturbative evolution kernel (the
so-called Collins-Soper (CS) kernel [2]). Over the last few years, it was demonstrated
that the TMD factorization framework is indeed universal, and the same TMD functions
describe a large body of data for unpolarized SIDIS and DY [17, 18]. The next step of
phenomenological verification for the TMD factorization theorem is a demonstration of the
universality of polarized distributions and, in particular, the Sivers function — one of the
most prominent TMD distributions. This important step is the goal of our paper.

The Sivers function attracted a lot of attention in the literature [19–32] since its inven-
tion in the early 90’s [8, 9], when it was suggested as a possible mechanism for generation of
the transverse left-right asymmetry in inclusive pion production in polarized proton-proton
scattering [33]. In the modern generation of polarized experiments, transverse single-spin
asymmetries (TSSAs) related to the Sivers function have been measured in SIDIS, DY and
W±/Z production processes by HERMES [34, 35], COMPASS SIDIS [36–39], COMPASS
DY [40], JLab [41, 42] and STAR [43]. The interpretation of these data poses certain dif-
ficulties, because in many cases they are collected at a low factorization scale Q, and with
a relatively low statistics. The situation will improve with the upcoming high-statistics
measurements by Jefferson Lab 12GeV Upgrade [44] which will explore the large-x region.
The future Electron-Ion Collider (EIC) [45, 46] has a dedicated program for measurements
of TSSAs in the broad kinematic range and with large arms in Q, qT , and the collinear
momentum fraction x. The experimental exploration of the Sivers function is one of the
goals of polarized SIDIS and DY experimental programs of future and existing experimen-
tal facilities such as the Electron Ion Collider, Jefferson Lab 12GeV Upgrade, RHIC [47]
at BNL, COMPASS [48, 49] at CERN, and SpinQuest at Fermilab [50, 51].

Theory-wise the Sivers function is the P-odd component of the matrix element of the
unpolarized TMD operator. The Sivers function inherits all general properties of TMD
distributions. Nonetheless, it is the Sivers function that reveals experimentally the specific
feature of TMD operators, namely, the half-infinite Wilson lines that resum the gluon
interactions with the spectator particle participating in the process [52]. According to the
TMD factorization theorem, Wilson lines in the TMD operator point to the future light-
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cone time direction in the case of SIDIS (out-going particle), whereas in the case of DY
process (in-coming particle), they point to the past. For the majority of TMD distributions,
the direction of Wilson lines does not lead to any observable effect due to the T-invariance
of strong interaction. However, for the Sivers function (and also for the Boer-Mulders
function [12]) the change of Wilson line’s direction results in the function with the same
absolute value and an opposite sign [53–55]:

f⊥1T (x, kT )[SIDIS] = −f⊥1T (x, kT )[DY]. (1.1)

Another feature of the half-infinite Wilson lines is revealed in the regime of the small-
b (or large transverse momentum), see ref. [56]. For ordinary TMD distributions, half-
infinite Wilson lines compensate each other in b→ 0 limit, and result in spatially compact
operators, but not for the Sivers function, as the resulting operator contains gluon fields
integrated over all positions along the light-ray [56–60]. The resulting function is the key
ingredient of the collinear factorization of TSSAs: a collinear twist-3 function called the
Qiu-Sterman (QS) function [61–64]. In the present work, we determine the QS function in
a model independent way by explicit inversion of the small-b expansion.

An essential aspect of TMD distributions is their scale-dependence (evolution), as
predicted by QCD evolution equations. The analyses that described (or predicted) both
SIDIS and DY data from refs. [23, 28, 30] used the parton model approximation without the
TMD evolution and demonstrated a good agreement with the experiment. These analyses
assumed suppression of evolution effects in asymmetries and indicated [28, 30] the Sivers
function’s universality, however, they did not capture the full complexity of QCD evolution
for TMD distributions. On the other hand, the analyses that included TMD evolution,
refs. [27, 31] had problems and did not achieve better agreement with the DY data compared
to refs. [23, 28, 30]. This situation constitutes a puzzle in establishing the status of the TMD
factorization theorem because the scale dependence and the nonperturbative and universal
CS kernel are among its principal elements, and the predictive power and precision of the
TMD factorization should improve when higher orders are included.

In this work, and ref. [10], we demonstrate the universality of the Sivers function and
describe simultaneously SIDIS, Drell-Yan, and W±/Z boson production data using TMD
evolution and the universal nonperturbative CS kernel extracted from the unpolarized mea-
surements. Our analysis is similar in spirit, but distinct in numerous smaller elements from
previous studies [19–32]. Let us point the most important peculiarities, which altogether
lead to the success of our description.

• We use the SV19 [18] extraction as an input for unpolarized TMD distributions and
nonperturbative TMD evolution (CS kernel). The selection of input unpolarized
distributions is of principal importance for the analysis of TSSAs, because they enter
both the numerator (convoluted with the Sivers function) and the denominator (the
unpolarized cross-section) of the observed asymmetry. SV19 extraction is made by the
simultaneous fit of the unpolarized DY and SIDIS data on cross-sections differential
in the transverse momentum, spanning from relatively low energy experiments such
as HERMES, to the highest energies of the LHC.
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• The present fit is performed with NNLO and N3LO TMD evolution (together with
NNLO matching for unpolarized distribution in SV19). The latest studies [18, 65–
67] demonstrated the importance of the perturbative input for a good agreement of
theory with the data.

• In contrast to many of the previous extractions, we do not use any collinear function
in the ansatz for the Sivers function. In fact, a parametrization of the Sivers function
starting from the collinear PDFs is not a well founded approximation, because the
Sivers function generally belongs to a different class of functions, and thus such an
approximation only biases the extraction.

• The key element of our analysis is the ζ-prescription [68]. In the nutshell, the ζ-
prescription is a particular selection of the reference scale for the TMD evolution,
which totally decouples nonperturbative evolution from the nonperturbative TMD
distributions. In this scheme a TMD distribution is defined as a universal function
without any specific relation to the collinear distributions. Exactly this property
allows us to use NNLO or N3LO TMD evolution (with NNLO or N3LO hard coef-
ficient functions, and NNLO matching for unpolarized distributions inherited from
SV19) together with a free parametrization for the Sivers function in a strict theoret-
ical manner.

• We use a conservative data cut, which guaranties that the selected data could be
described within TMD factorization approach derived in the approximation of a large
hard scale Q, and a low transverse momentum, qT . Experimental data are also
carefully selected to avoid double counting. The resulting data set becomes relatively
small in comparison to other extractions, however the latest 3D binning data set by
HERMES [35] allows us to obtain enough data for the analysis.

Let us mention that the SV19 extraction [18] is also performed using these principles,
and demonstrated a perfect agreement with the data. The numerical computations are
performed with artemide [69] — the multi-purpose package for phenomenology within the
TMD factorization framework. The results of the SV19 extraction can be found at [69]
(and the analysis code can be found at [70]).

The paper is organized as follows. In section 2 we recall aspects of the TMD factor-
ization formalism needed to analyze and interpret the experimental data. The extraction
procedure and the uncertainty estimation approach are described in section 3. Section 4 is
devoted to the description of results of the global QCD analysis of the data related to the
Sivers function, exploration of the properties of extracted Sivers function, and extraction
of the QS functions. We finally conclude and discuss further improvements in section 5.

2 Formalism

We start by summarizing theoretical formalism and presenting expressions that describe
DY process and SIDIS cross-sections within TMD factorization. An interested reader can
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find details about TMD factorization and derivations of cross-sections for these processes
in refs. [4, 13, 15, 23, 68, 71].

2.1 Definition of TMD distributions

The unpolarized TMD PDF, f1, the unpolarized TMD FF, D1, and the Sivers function,
f⊥1T , parametrize the matrix element of the vector TMD operator. In the position space,
they are defined as follows

Φ[γ+]
q←h(x, b;µ, ζ) ≡

∫
dλ

2πe
−ixλP+〈P, S|q̄(λn+ b)[nλ+ b,±∞n+ b]γ

+

2 [±∞n, 0]q(0)|P, S〉

= f1;q←h(x, b;µ, ζ) + iεµνT bµSν M f⊥1T ;q←h(x, b;µ, ζ), (2.1)

∆[γ+]
q→h(z, b;µ, ζ) ≡ 1

2zNc

∫
dλ

2πe
−iλP+

h
/z
∑
X

〈0|γ
+

2 [−∞n+ b, nλ+ b]q(nλ+ b)|h,X〉

× 〈h,X|q̄(0)[0,−∞n]|0〉 = D1,q→h(z, b;µ, ζ), (2.2)

where Pµ, Sµ andM are the momentum, the spin-vector and the mass of the hadron, Pµh is
the momentum of the produced hadron h, and bµ is a transverse vector.1 TMD distributions
depend on x and z, which are light-cone momentum fractions for incoming quark q and the
produced hadron h correspondingly, and the transverse separation b. Also, TMD distribu-
tions depend on the ultraviolet µ and the rapidity ζ renormalization scales, which we discuss
below. We adopt the standard notation for components of the light-cone decomposition,
vµ = v+nµ + v−n̄µ + vµT with n2 = n̄2 = 0 and n · n̄ = 1, and the transverse anti-symmetric
tensor εµνT = ε−+µν with ε12

T = −ε21
T = 1. The staple gauge-link points to +∞(−∞) in the

case of TMD distributions measured in SIDIS (DY), and assures the gauge invariance of
the TMD operator. The unpolarized distributions are independent of the direction of the
staple gauge-link in SIDIS and DY, whereas the Sivers distribution changes the sign while
the absolute size remains the same, see refs. [53–55], and eq. (1.1) in b-space reads

f⊥1T (x, b;µ, ζ)[SIDIS] = −f⊥1T (x, b;µ, ζ)[DY]. (2.3)

For definiteness, in the formulas for a particular process we use the notation f⊥1T for the
Sivers function without explicit indication of the process, and the sign change between DY
and SIDIS is implemented in calculations. All our results of the Sivers function extraction
will be presented for the SIDIS definition.

1Let us note that the relative position of quark fields is important since it defines the direction of bµ,
and hence the sign convention for the Sivers function. For instance, TMD operators are defined in ref. [72]
as ∼ q̄(0) . . . q(λn + b), which results in −iεµνT bµSν prefactor for the Sivers function, compare to eq. (2.1).
Taking the direction of b into account, the definition used here coincides with definitions in refs. [60, 72, 73]
so that the final expressions for the cross section also coincide. Notice also that ref. [72] denotes the Sivers
function in configuration space as f̃⊥(1)

1T making explicit the Fourier transform from the momentum space
to the position space and a derivative with respect to b. This notation corresponds to our notation of f⊥

1T
as we start directly from parametrizations of TMD distributions in the position space.
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The dependence on the scales µ and ζ is given by a pair of TMD evolution equations [4,
68, 74]

µ2dF (x, b;µ, ζ)
dµ2 = γF (µ, ζ)

2 F (x, b;µ, ζ), (2.4)

ζ
dF (x, b;µ, ζ)

dζ
= −D(b, µ)F (x, b;µ, ζ), (2.5)

where F is any TMD distribution (f1, f⊥1T , or D1 in the current context). The first equation
is the ordinary renormalization group equation, with γF being the ultraviolet anomalous
dimension for the TMD operator. The second equation is the result of the factorization of
rapidity anomalous dimension, with D being the Collins-Soper kernel2 (or rapidity anoma-
lous dimension). The Collins-Soper kernel is a fundamental universal function that has
explicit operator definition and parametrizes properties of QCD vacuum [75]. It is a uni-
versal function, nonperturbative at large-b while at small-b it is calculable in terms of the
perturbative expansion in the strong coupling constant αs, whereas it has to be extracted
from the experimental data. Both quark and rapidity anomalous dimensions are known up
to N3LO in the perturbative regime, see refs. [76–79].

Using the evolution equations one relates measurements performed at different energies.
It is convenient to select certain value of the pair (µ, ζ) as a reference scale. There are
several choices of the reference scale (µ, ζ) used in the literature, see refs. [4, 17, 68]. In
this work we use the so-called ζ-prescription [68]. It consists in selection of the reference
scale (µ, ζ) = (µ, ζµ(b)) on the equipotential line (of (γF ,−D)-field) that passes through
the saddle point. In this case, the reference TMD distribution, called the optimal TMD
distribution, is independent on µ (by definition) and perturbatively finite in the whole
range of µ and b. The solution of the TMD evolution equations from eqs. (2.4), (2.5) can
be written in the following simple form

F (x, b;µ, ζ) =
(

ζ

ζµ(b)

)−D(b,µ)

F (x, b), (2.6)

where F (x, b) on the right-hand side of the equation (2.6) is the optimal TMD distribu-
tion [65]. The function ζµ(b) is a known function [80] of the nonperturbative Collins-Soper
kernel. In our notations, the optimal TMD distribution F (x, b) has no scaling arguments,
which emphasizes its scale independence.

2.2 Sivers asymmetry in SIDIS

The differential SIDIS cross section of the inclusive hadron production in the electron
scattering off a transversely polarized target (e(l) +h1(P, S)→ e(l′) +h2(ph) +X) has the
following structure [13, 81–83]

dσ

dx dy dz dφSdφh dP
2
hT

= α2
em(Q)
Q2

y

2(1− ε)
{
FUU,T + |S⊥| sin(φh − φS)F sin(φh−φS)

UT,T + . . .
}
,

(2.7)
2Our definition of the rapidity anomalous dimension corresponds to K̃ and γν used in refs. [4] and [74]

as D = −K̃/2 = −γν/2.
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where

q2 = −Q2, x = Q2

2P · q , y = P · q
P · l

, z = P · Ph
P · q

, ε = 1− y
1− y + y2

4
, (2.8)

where q = l− l′ is the momentum of the virtual photon. The variables φh and PhT are the
angle and the absolute value of transverse component of the produced hadron’s momentum,
measured in the laboratory frame. The azimuthal angles for transverse components of the
produced hadron (φh) and the spin of the target hadron (φS) are defined relative to the
lepton plane [84]. The dots denote other angular modulations that are not interesting in
the current context, and also the power suppressed structure functions [13], such as FUU,L
and F sin(φh−φS)

UT,L , which do not contribute at our order of accuracy. We define the shorthand
notation

BSIDIS
n [fD] ≡

∑
q

e2
q

∫ ∞
0

bdb

2π b
nJn

(
b|PhT |
z

)
fq←h1(x, b;µ, ζ1)Dq→h2(z, b;µ, ζ2) (2.9)

where f and D are TMD PDF and FF, Jn is the Bessel function of the first kind and
eq are electric charges of quarks q and the summation runs over all active quarks and
antiquarks. Within the TMD factorization the expressions for structure functions FUU,T
and F sin(φh−φS)

UT,T are

FUU,T =
∣∣∣CV (Q2, µ2)

∣∣∣2 BSIDIS
0 [f1D1] , (2.10)

F
sin(φh−φS)
UT,T = −M

∣∣∣CV (Q2, µ2)
∣∣∣2 BSIDIS

1

[
f⊥1TD1

]
, (2.11)

where CV is the quark vector form-factor and the hadron mass M is originated from the
definition of the Sivers function eq. (2.1).

Let us emphasize the combination |PhT |/z that enters the argument of the Bessel
function in eq. (2.9). It is originated from the Lorenz transformation from the factorization
frame, where the factorization theorem is derived, to the photon-proton center of mass
frame, in which experimental data are usually analyzed, see ref. [84]. This combination
serves as a small parameter, and power corrections to eqs. (2.10) and (2.11) have a generic
size O((PhT /z/Q)2). The accurate transformation between the frames must account for
masses of initial and final hadrons. In this case, the argument of the Bessel function is
more complicated [18]. Here, we omit these complications, which is valid in Q→∞ limit.

The scales of the factorization should be selected such that µ ∼ Q, and ζ1ζ2 = Q4 [4,
11, 74, 85–87]. We use

µ2 = Q2, ζ1 = ζ2 = Q2. (2.12)

The resulting products of TMD distributions are to be evolved to the scale of the ex-
perimental measurement. Since the TMD evolution is independent of the flavor and the
spin, all structure functions (at the leading TMD twist) have common evolution proper-
ties [88]. In the case of the ζ-prescription, using eq. (2.6) one derives that products of
TMD distributions in eq. (2.9) turn into

fq←h1(x, b;Q,Q2)Dq→h2(z, b;Q,Q2) = R(b,Q)fq←h1(x, b)Dq→h2(z, b) , (2.13)
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Figure 1. The dependence of the single-spin Sivers asymmetry on Q at fixed values of x = 0.12,
z = 0.32, and PhT = 0.14GeV (these values correspond to a particular bin of HERMES [35]).
Different perturbative orders are compared. In all cases unpolarized TMD PDF, TMD FF, the Sivers
function and the nonperturbative part of the CS kernel are the same. The change of the perturbative
order influences the order of perturbative part of CS kernel, TMD anomalous dimension.

where we introduced the evolution factor

R(b,Q) =
(

Q2

ζQ(b)

)−2D(b,Q)

(2.14)

Therefore, in the TMD factorization framework structure functions are Fourier transforms
of products of three b-dependent universal factors: two TMD distributions fq←h and Dq→h,
and the evolution factor R. Each of these factors governs dependence on a particular kine-
matic variable, x and z for TMD distributions, and Q for evolution factor, and altogether
they are integrated over b with a Bessel function.

The single-spin Sivers asymmetry that is measured in SIDIS experiments, is the ratio
of structure functions

A
sin(φh−φS)
UT ≡

F
sin(φh−φS)
UT,T

FUU,T
= −M

BSIDIS
1

[
f⊥1TD1

]
BSIDIS

0 [f1D1]
. (2.15)

Combining expressions from eqs. (2.10), (2.11), (2.13) we obtain the following formula

A
sin(φh−φS)
UT = −M

∑
q e

2
q

∫∞
0

bdb
2π b J1

(
b|PhT |
z

)
R(b,Q)f⊥1T,q←h1

(x, b)D1,q→h2(z, b)∑
q e

2
q

∫∞
0

bdb
2π J0

(
b|PhT |
z

)
R(b,Q)f1,q←h1(x, b)D1,q→h2(z, b)

. (2.16)

The dependence onQ in (2.16) is enclosed in the factors R(b,Q). They are the only part
of our computation that depends on the perturbative input since the hard coefficient func-
tions |CV |2 exactly cancel in the ratio eq. (2.16). The perturbative order is defined by the or-
der of TMD anomalous dimension (2.4) and by the perturbative part of CS-kernel (2.5) (see
also eq. (2.29)). Nowadays, these anomalous dimensions are known up to three-loop order,
i.e. up to α3

s [76–79]. This maximum order (the Γcusp part is taken with one order higher, i.e.
at α4

s [89]) we refer as N3LO, according to the standard nomenclature (see ref. [18] for ex-
tended discussion and references). Currently, one can define four consequent orders of per-
turbative input, starting from LO, which contains Γcusp at LO, and null for other anomalous
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dimensions. In figure 1 we demonstrate3 the comparison of different orders and the general
behavior of asymmetry as a function of Q. The convergence of the series is good. The
difference between orders is almost homogeneous at different Q and ∼ 50% at LO→NLO,
∼ −7% at NLO→NNLO, and ∼ 3% at NNLO→N3LO. Also, we notice a very rapid behav-
ior of asymmetry at small values of Q. Figure 1 is given for SIDIS and values of x = 0.12,
z = 0.32, and PhT = 0.14GeV are taken from a particular bin in HERMES kinematics [35].
For other values of x, z, and PhT , and for DY measurement, the behavior is similar.

2.3 Transverse single-spin asymmetry in DY process

Using notations of ref. [15], the differential cross-section for DY reaction (h1(P1, S) +
h2(P2)→ l+(l) + l−(l′) +X) can be written as

dσ

dQ2 dy dϕ dq2
T

= α2
em(Q)
9sQ2

{
F 1
UU + |ST | sin(ϕ− φS)F 1

TU + . . .
}
, (2.17)

where

q2 = Q2, s = (P1 + P2)2, x1 =

√
Q2

s
ey, x2 =

√
Q2

s
e−y, (2.18)

where q = l + l′ is the momentum of the electroweak boson, and y is its rapidity. The
variables ϕ and qT are the angle and the absolute value of the transverse component of the
momentum of the electroweak boson measured in the center-of-mass frame. The ellipsis
denotes other DY structure functions.

The shorthand notation from eq. (2.9) for DY reads

BDY
n [f1 f2] ≡

∑
q

e2
q

∫ ∞
0

bdb

2π b
nJn (b|qT |) f1;q←h1(x1, b;µ, ζ1)f2;q̄←h2(x2, b;µ, ζ2) , (2.19)

where f1 and f2 are TMD distributions, Jn is the Bessel function of first kind and eq
are electric charges of quarks q and the summation runs over all active quarks and anti-
quarks. The TMD factorization gives the following expressions for structure functions
(cf. (2.10), (2.11))

F 1
UU =

∣∣∣CV (−Q2, µ2)
∣∣∣2 BDY

0 [f1 f1] , (2.20)

F 1
TU = −M

∣∣∣CV (−Q2, µ2)
∣∣∣2 BDY

1 [f⊥1T f1] , (2.21)

where CV (−Q2, µ2) is the quark vector form factor for the space-like momentum trans-
fer. Further steps are analogous to the SIDIS case (2.13) and the final expression for the
transverse spin-asymmetry in the ζ-prescription reads

ATU ≡
F 1
TU

F 1
UU

= −M
∑
q e

2
q

∫∞
0

bdb
2π b J1 (b|qT |)R(b,Q)f⊥1T,q←h1

(x1, b)f1,q̄←h2(x2, b)∑
q e

2
q

∫∞
0

bdb
2π J0 (b|qT |)R(b,Q)f1,q←h1(x1, b)f1,q̄←h2(x2, b)

. (2.22)

3We anticipate and use in figure 1 our results of extraction of the Sivers function that we will perform in
section 4.1. The Q dependence of the asymmetry depends mainly on the evolution factor R that is known
from the analysis of unpolarized data. The dependence on the parameters describing nonperturbative TMD
functions is quite weak therefore a similar Q behavior is anticipated for all TSSAs that include J1

(
b|PhT |
z

)
.
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In some cases, discussed also in the following sections, experimental measurements provide
asymmetries which are related to ATU . In particular, the asymmetry AN [43] measured by
STAR Collaboration is defined as the asymmetry relative to cosϕ with ST oriented along
y. In this case, cosϕ = − sin(ϕ− φs) and thus

AN = −ATU . (2.23)

Another important case is the process h1(P1)+h2(P2, S)→ l+l−+X (i.e. with the polarized
hadron h2) measured by COMPASS [40]. In this case

AUT = −ATU (f⊥1T ↔ f1), (2.24)

where the exchange of Sivers and unpolarized TMD PDFs takes place in the numerator
of (2.22). In order to explain the origin of the minus sign in (2.24) let us recall that
the definition in eq. (2.1) is written for the operator with γ+. The directions n and n̄

are associated with the large components of P1 and P2, correspondingly. Therefore, the
Sivers function for the operator with γ−, corresponding to the large momentum P2, has a
prefactor −iεµνT bµSν , since ε+−µν = −εµνT . The detailed discussion on different asymmetries
related to AUT and relation between them can be found in refs. [90, 91].

At high Q the Drell-Yan pair production should account also for weak boson channels.
To account for various channels in eq. (2.19) one should replace∑

q

e2
q →

∑
l,q,ch.

zch.
l zch.

q ∆ch., (2.25)

where zl and zq are combinations of couplings associated with lepton and quark vertices,
and ∆ is the product of propagators multiplied by Q4. In the case of the neutral boson
production, expressions for zf (where f = q or l) and ∆, for the channels in eq. (2.25),
ch. ∈ {γγ, γZ, ZZ} are

ch. = γγ : zγγf = e2
f , ∆γγ = 1,

ch. = γZ : zγZf = T3 − 2efs2
W

2s2
W c

2
W

, ∆γZ = 2Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 + Γ2

ZM
2
Z

, (2.26)

ch. = ZZ : zZZf = e2
f , ∆ZZ = Q4

(Q2 −M2
Z)2 + Γ2

ZM
2
Z

,

where f = q, l. While in the case of charged-boson production there exists a single channel

ch. = WW : zWW
f = |Vff

′ |2

4s2
W

, ∆WW (Q2) = Q4

(Q2 −M2
W )2 + Γ2

WM
2
W

. (2.27)

In these expressions ef is the electric charge, T3 is the third component of the iso-spin,
sW and cW are the sine and the cosine of the Weinberg angle, Vff ′ is the element of the
Cabibbo-Kobayashi-Maskawa matrix, ΓZ andMZ are the decay-width and the mass of the
Z boson, and ΓW and MW are the decay-width and the mass of the W boson.

Let us emphasize that in the presented expressions, we omitted the target- and
product-mass corrections. Accounting for these corrections modifies many factors in for-
mulas (2.7), (2.10), (2.11), (2.17), (2.21), (2.20), including the values of collinear variables
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x and z, values for PhT and ε (the corresponding expressions can be found in refs. [18, 92]).
It was shown that the accounting for these power corrections improves the quality of ex-
traction of unpolarized TMD distributions, see ref. [18]. At small-Q or large qT /Q, which
is a typical situation for the kinematical region of many experimental measurements, these
corrections push values of kinematic variables closer to the phase space’s border, and the-
ory predictions become unstable. To stabilize predictions with respect to these corrections,
we decided to neglect mass corrections in this analysis and leave a more profound analysis
of the influence of target and produced hadron mass corrections to a future publication.
We also make sure that neglecting mass corrections does not spoil our results by restricting
the data used in our analysis to small values of qT /Q, where the influence of target and
product mass corrections is relatively small.

2.4 Nonperturbative parametrization for the Sivers function

The optimal TMD distributions in the expressions (2.16), (2.22) are universal nonpertur-
bative functions which should be determined from the comparison with experimental data.
In principle, at small values of b these functions could be related to collinear distributions
through the operator product expansion. Generally, accounting of the small-b relation
significantly reduces the parametric freedom since any modification of small-b behavior ap-
pears as power corrections in b2. Thus, the typical ansatz for a TMD distribution F (x, b)
has the following generic form

Ff←h(x, b) =
∑
f ′

[Cf←f ′(ln(bµ))⊗ ff ′←h(µ)](x) · fNP (x, b), (2.28)

where C is the perturbative coefficient function, ff ′←h(x, µ) is a collinear parton distri-
bution, ⊗ is an integral convolution in variable x (for twist-2 collinear distributions it is
the Mellin convolution), and fNP is some function that parametrizes nonperturbative b-
shape of the TMD distribution such that fNP (x, b → 0) = O(b2). The expressions for
perturbative matching coefficient for unpolarized distributions were obtained at NNLO in
refs. [73, 93], and for Sivers function at NLO in ref. [73].

The ansatz (2.28) works well for the unpolarized TMD distributions, where corre-
sponding collinear distributions are known very precisely from different experiments. In
particular, the SV19 global fit of DY and SIDIS data made in ref. [18] is based on this
ansatz with NNLO coefficient functions. The SV19 fit was performed with NNLO and
N3LO TMD evolution, and with the Collins-Soper kernel parameterized as

D(b, µ) = Dresum(b∗, µ) + c0bb
∗, (2.29)

where b∗ = b/
√

1 + (b/(2 GeV−1)2, Dresum is the resummed expression for the perturbative
part, and c0 is a fitting parameter. The model (2.29) has linear asymptotic at large-b. This
behavior is in agreement with the model calculations and analysis of large-b behavior of
the Collins-Soper kernel performed in refs. [75, 94]. The coefficient c0 can be related to the
gluon condensate and its extracted values agrees [75] with its known values. The SV19 fit
demonstrates perfect agreement of the theory with the data. In particular, χ2/Npt is 1.1
for DY (with Npt = 457) and 0.95 for SIDIS (with Npt = 582).
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The pion unpolarized TMD PDF was extracted in the same framework in ref. [80], what
we refer to as Vpion19. The values of nonperturbative parameters for SV19 and Vpion19
fits together with Monte-Carlo replicas are publicly available via artemide repository4 [69].

In the case of the Sivers function the perturbative NLO matching has been derived in
refs. [60, 73]. It has the following expression (see also section 4.5)

f⊥1T (x, b) = −πT (−x, 0, x;µ) + πas(µ)C(µ2b2)⊗ T (x;µ) +O(a2
s) , (2.30)

where as = g2/(4π)2 is the strong coupling constant and the function T (x1, x2, x3)
parametrizes twist-3 quark-gluon-quark correlator ∼ q̄(z1)γ+Fµ+(z2)q(z3). This function
mixes with functions ∆T , G± that parametrizes another twist-3 correlations, and in (2.30)
are collectively denoted as T . The twist-3 distributions have support −1 < x1,2,3 < 1
with x1 + x2 + x3 = 0, and the integral convolution ⊗ in (2.30) projects it to a single
variable x. The tree order term in eq. (2.30), T (−x, 0, x), is the Qiu-Sterman (QS) func-
tion [61, 63, 95, 96]. The QS function is not an autonomous function, in the sense that its
evolution involves the values of arguments outside of the line (−x, 0, x), and mixes with
functions ∆T and G± [97]. None of these functions is known, and thus accounting for
small-b asymptotic in the sense of eq. (2.28) is not a feasible way of constructing the ex-
pression to be used in phenomenology. Therefore, in the present work, we will not use the
small-b matching for Sivers function.

Instead, we consider the optimal Sivers function as a generic nonperturbative function
that we will extract directly from the data. We do not put any special restrictions on the
parametrization, apart from the usual constraints. We require f⊥1T (x → 1, b) . (1 − x),
f⊥1T (x → 0, b) . x−1 to ensure integrability and vanishing of the Sivers function at x = 0
and x = 1. Also, we require that f⊥1T (x, b) is a function of x and b2 to mimic the operator
product expansion structure. We have explored many parametric forms and selected the
following one, which is flexible enough to reveal the Sivers function, but at the same time
is not overwhelmed with free parameters:

f⊥1T ;q←h(x, b) = Nq
(1− x)xβq(1 + εqx)

n(βq, εq)
exp

(
− r0 + xr1√

1 + r2x2b2
b2
)
, (2.31)

where n(β, ε) = (3 + β + ε+ εβ)Γ(β + 1)/Γ(β + 4), such that∫ 1

0
dxf⊥1T ;q←h(x, 0) = Nq. (2.32)

The b-dependent factor mimics fNP (x, b) used in SV19 fit, with a reduced number of pa-
rameters. Notice that b and x dependencies do not factorize in our parametrization. The
experimental data on Sivers asymmetries is available for various final states, including
charged pions and kaons. The quark composition of those final states allows access to u,

4The original SV19 fit accounted for the target-mass corrections in kinematics. In the current fit we
omit mass-correction. For consistency, we have rerun the SV19 code without target-mass corrections. The
resulting χ2/Npt is around 1.3 for DY and 1.05 for SIDIS, see also discussion in ref. [18]. The updated
sets of TMD distributions marked as SV19_all=0 can be found in [69]. The same procedure is applied to
Vpion19 TMD set for the pion TMD distributions.
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d, s quark flavors but is not sufficient to distinguish other sea quarks, such as ū, d̄, and s̄.
The Sivers function for heavy quark flavors b and c cannot be extracted with the current
data either. Thus, we will distinguish separate functions for u, d, s quarks, and a single
sea Sivers function for ū, d̄ and s̄ quarks. We nullify the Sivers function for b and c flavors.
We also set βs = βsea and εs = εsea = 0, since they are not restricted by the existing
experimental data. Large-x region of the data is also limited at the moment to x . 0.5 and
we therefore are using a general (1− x) factor in our parametrization. In total we have 12
free parameters: Nu, Nd, Ns and Nsea that dictates the general scale, βu, βd and βsea that
gives small-x asymptotic (βi > −1), εu and εd to fine-tune of valence distributions, and r0,
r1 and r2 for x-dependence in parameterization of transverse momentum behavior (ri > 0).

Let us emphasize that the absence of small-b matching in the optimal Sivers function
is not in contradiction with the perturbative order of TMD evolution (NNLO and N3LO
in the current case) or the perturbative order of matching to other distributions (NNLO
for unpolarized distributions). The utilization of different orders for components in TMD
factorization is consistent within the ζ-prescription, as well as, in other schemes with fixed
reference scale for TMD distributions, discussed e.g. in ref. [94], but is not consistent in
the resummation-like schemes e.g. used in refs. [27, 29, 31]. In the latter scheme, one
would need to use the matching function for Sivers function at N3LO, which is not yet
available [73]. For resummation-like schemes of scale-fixation, where the scales of TMD
distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee
the compensation of scaling logarithms.

3 Global analysis procedure

In this section we discuss basic principles of the global QCD analysis, data selection, fit
procedure, and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative
transverse momentum δ, defined as

δ = |PhT |
zQ

(in SIDIS), δ = |qT |
Q

(in DY). (3.1)

The large-Q requirement is needed to suppress the power corrections ∼ M2/Q2 and ∼
Λ2/Q2, where Λ is a general nonperturbative scale of QCD. Since M and Λ are ∼ 1GeV,
we impose the restriction 〈Q〉 > 2GeV, which limits possible power corrections to around
10 − 20% for the lowest energy data points. The optimal values of δ for applicability of
TMD factorization were studied in ref. [65] (and were further confirmed by independent
studies in refs. [18, 67]), where it was shown that phenomenologically TMD factorization
is valid for δ < 0.2− 0.3, and is strongly violated for large values of δ. In the current study
we impose δ < 0.3, assuring that we accommodate data points from as many experiments
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Figure 2. Distribution of the experimental data over the values of x and δ eq. (3.1).

as possible, still preserving applicability of TMD factorization, see figure 2. Summarizing
our data selection cuts, we apply the following selection criteria

〈Q〉 > 2 GeV and δ < 0.3. (3.2)

These restrictions are consistent with the applicability of the TMD factorization theorem
as discussed in ref. [65]. However, we hope that a part of power corrections cancels in the
ratio of structure functions measured experimentally (2.16), (2.22). The more stringent
conditions (say δ < 0.2) would secure the TMD approach, but they are hardly applicable
to the modern data, which is dominated by the low-energy measurements. Our data
selection cuts (3.2) are the most stringent among all other extractions of Sivers function,
compare to refs. [19–22, 25–30].

The Sivers asymmetry in SIDIS has been measured by HERMES [34, 35], COM-
PASS [36, 39]5 and JLab Hall A [41] collaborations. DY measurements of the transverse
spin-asymmetry were performed by the COMPASS Collaboration [40] in the pion-induced
DY process and by the STAR Collaboration [43] in W±/Z production. After application
of our data selection cuts (3.2) we have 76 data points in total (63 for SIDIS, and 13 for
DY). The distribution of the points in the (x, δ)-plane is shown in figure 2. The synopsis
of data is presented in table 1.

A large portion of the SIDIS data comes from a recent HERMES analysis [35] that uses
a three-dimensional kinematic binning and enlarged phase space. It is the three-dimensional
binning that allows a clean separation of the TMD factorization region. On the contrary,
the Compass and JLab measurements provide effectively “one-dimensional binning”, i.e.,
only one of the kinematic variables has narrow binning, while the rest are integrated over
a wide range. Only the PhT -differential measurements could be studied in such cases. The
z-differential and x-differential measurements have PhT integrated over the full kinematic
range and thus could not be fully described by the TMD factorization theorem. Even for the
PhT -differential binning, the TMD factorization is hard to apply due to the presence of z−1

in the data selection rules (3.2). Almost every bin of COMPASS and JLab measurements
borders with a region of the phase space where the TMD factorization is strongly violated

5We do not include COMPASS measurements [37, 38] because we are interested in multi-dimensional
binning of [39] and these two measurements overlap substantially in their experimental sample with [39].
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Dataset name Ref. Reaction # Points Av.Uncertainty

Compass08 [36]

d↑ + γ∗ → π+ 1 / 9 1.2%
d↑ + γ∗ → π− 1 / 9 1.1%
d↑ + γ∗ → K+ 1 / 9 3.4%
d↑ + γ∗ → K− 1 / 9 5.1%

Compass16 [39]
p↑ + γ∗ → h+ 5 / 40 1.6%
p↑ + γ∗ → h− 5 / 40 2.0%

Hermes [35]

p↑ + γ∗ → π+ 11 / 64 2.6%
p↑ + γ∗ → π− 11 / 64 3.1%
p↑ + γ∗ → K+ 12 / 64 6.1%
p↑ + γ∗ → K− 12 / 64 10.8%

JLab [41, 42]

3He↑ + γ∗ → π+ 1 / 4 13.9%
3He↑ + γ∗ → π− 1 / 4 8.0%
3He↑ + γ∗ → K+ 1 / 4 7.0%
3He↑ + γ∗ → K− 0 / 4 —

SIDIS total 63
CompassDY [40] π− + d↑ → γ∗ 2 / 3 12.2%
Star.W+

[43]
p↑ + p→W+ 5 / 5 16.1%

Star.W- p↑ + p→W− 5 / 5 32.2%
Star.Z p↑ + p→ γ∗/Z 1 / 1 33.%
DY total 13
Total 76

Table 1. Synopsis of the data sets used in the analysis. The fourth column “# Points” shows
the number of data points selected after application of cuts from eq. (3.2) and the total number of
available data points. The last column shows the average uncorrelated error for points in the data
set (after application of (3.2)).

(PhT /z ∼ Q). Consequently, we were forced to use the average kinematics to include these
data points into the fit. The ignorance of the bin integration effects is compensated by large
uncertainties of these measurements but could lead to a systematic error in our extraction.
We also use the averaged kinematics for HERMES measurement as it is suggested by the
HERMES collaboration, because effects of the bin-integration are already included in the
systematic uncertainty of the data.6

In the case of DY measurements, the bin integration effects are larger due to the
larger bin sizes. These effects are especially significant for electroweak boson production,
where the cross-section changes rapidly. Thus, we perform the integration over the bin size
separately for the numerator and denominator of eq. (2.22).

6We thank Gunar Schnell for clarification of this point.
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3.2 Fit procedure and estimation of uncertainties

To estimate the goodness of theory prediction against the experimental measurements we
use the χ2-test function defined as

χ2 =
n∑

i,j=1
(mi − ti)V −1

ij (mj − tj), (3.3)

where mi is the central value of the i’th measurement, ti is the theory prediction for it,
and Vij is the covariance matrix. The covariance matrix is build as usual

Vij = δij

Nuncor.∑
l=1

(σ(l),uncor.
i )2 +

Ncor.∑
l=1

σ
(l),cor.
i σ

(l),cor.
j , (3.4)

where σ
(l),uncor.
i (σ(l),cor.

i ) are uncorrelated (correlated) uncertainties of i’th measure-
ment. In the case of asymmetries the main source of the correlated uncertainties is the
beam/target polarization dilution. This definition takes into account the nature of exper-
imental uncertainties, and gives a faithful estimate of the agreement between the experi-
mental data and the theory prediction.

The evaluation of the theory prediction for a given set of model parameters is made by
artemide. Artemide [69] is the fortran library for numerical computations within TMD fac-
torization approach. It allows for a flexible implementation of any nonperturbative model
for TMD distributions alongside with NNLO and N3LO perturbative order precision [76,
79, 93, 98]. The evaluation of χ2 function and the data analysis is performed via the Python
interface for artemide, which is (together with all programs used for the current fit) avail-
able in ref. [70]. The minimization of χ2 is made with iminuit package (MINUIT2) [99].

The measured polarized asymmetries are weighted by unpolarized cross-section,
see (2.16), (2.22). The unpolarized cross-section is also evaluated by artemide with SV19
and Vpion19 sets. In contrast to other extractions, the SV19 set of unpolarized distribu-
tion is extracted from the fit to the large set of DY and SIDIS data without application of
additional normalization conditions.

There are two sources of uncertainties in the determination of the Sivers function. The
main one is the uncertainties of the experimental data. The other important source is the
uncertainties in the determination of unpolarized TMD distributions and the nonpertur-
bative part of TMD evolution. We have estimated both uncertainties using the replica
method [100]. The present precision of the experimental data does not restrict values of
parameters for the Sivers function strongly, and the χ2-test function does not have an iso-
lated global minimum. The obtained uncertainty bands and underlying distributions are
very broad and asymmetric, see figure 3. Therefore, we use the notations from eq. (3.5) to
faithfully represent the uncertainties of our determination. However, we stress that only
the whole set of obtained replicas is meaningful and provides complete information.

To estimate the uncertainties due to the experimental data, we follow the procedure
described in ref. [100]. The method’s essence is to generate pseudo-data replicas derived
from the experimental data with central values randomly distributed according to the ex-
perimental uncertainties. In this procedure, one accounts for the origin of the uncertainties
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Figure 3. Examples of histograms of parameter distribution for r1 and Nsea obtained in the
joined fit of SIDIS and DY data. The orange histogram is the distribution due to experimental
uncertainties (500 replicas). The blue histogram is the distribution due to SV19 extraction (300
replicas). The green dashed line and green band (the black line and blue band) show positions of
the mean value and 68%CI for distribution due to experimental uncertainties (due to SV19 fit).

and properly re-scales the error-bands in the pseudo-data. For each replica, we find the
values of the nonperturbative parameters that minimize the value of χ2-test function. The
resulting set of parameter-vectors samples the empirical probability density distribution of
parameters. Therefore, with a sufficiently large number of replicas, we can reliably esti-
mate uncertainties for the Sivers function and related observables. We use 500 replicas,
which give a reliable precision (2-3 significant digits) that we have verified by computing
and comparing to 1000 replicas for several cases.

The uncertainty for SV19 extraction of unpolarized TMD distributions is accounted
for by including the distribution of 300 replicas from SV19 analysis (both for NNLO and
N3LO). To estimate the uncertainties due to unpolarized TMD PDFs, we have minimized
χ2 for each replica of SV19 set with central values of experimental data points. Note that
this computation requires a re-evaluation of the normalization factors for asymmetries for
each replica.

After the implementation of these two procedures, we have two distributions of model
parameters — due to the data uncertainty and due to the uncertainties of unpolarized
TMD distributions. For the ideal data/theory input, almost Gaussian statistics for distri-
butions of parameters and observables should be observed. In our case, we have found the
distributions that deviate significantly from the Gaussian shape (especially the ones due
to the experimental uncertainties). Typically, they are skewed and have long, power-like
tails. Two examples of replica distributions (we select parameters r1 and Nsea as examples
with the widest distribution due to SV19 uncertainty) and their parameters determination
are shown in figure 3. We also observed that the distribution due to SV19 uncertainty is
much narrower (in most cases by order of magnitude) and less skewed compared to the
distribution due to the uncertainty of the experimental data. Therefore, we use the mean
value of the distribution due to SV19 uncertainty as to the central fit value (CF value).
CF value is the value of our best estimate of the true values for the parameters. The
uncertainty is given by 68% confidence interval (68%CI) computed with distribution due
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Figure 4. An example of evaluation of an observable (here it is the optimal Sivers function for
d-quark at x = 0.1 as a function of b). The observable is computed for all sets of replicas for each
point (an example of the distribution at b = 0.5 (GeV−1) is shown in the left panel). The color
notation is the same as in figure 3.

to the data uncertainty using the bootstrap method, see refs. [101, 102]. The results for
observables are presented in the form

observable = CF value+δ1
−δ2

, (3.5)

where δ1,2 distances to boundaries of 68%CI. For continuous functions such as the Sivers
function, we use the same method for each point; see an example in figure 4. The resulting
distributions of replicas are available as a part of artemide distribution [103].

Let us explain our choice of CF values. There are several strategies for determination
of CF value used in the literature, compare e.g. with [22, 29, 31]. Usually, one uses the fit
to central values of data, and thus it is close to the true minimum of χ2 test. However,
such a choice is also problematic because resulting parameters could lie outside of 68%CI
(see e.g. [29]). Such a situation could happen due to the over-fitting or due to the skewness
of distributions. The usage of CF value avoids these problems because averaging over SV19
replicas washes out possible over-fitted cases and remains close to the global minimum of
χ2, and therefore is highly probable.

In the plots that represent our results, we do not show the uncertainty due to the un-
polarized SV19 input. The main reason is that it is small in comparison to the data-related
uncertainty. Another reason is that two uncertainty bands could not be combined to the
total uncertainty as a quadrature due to the essential non-Gaussianity of distributions. The
accurate determination of total uncertainty requires the generation of multiple replicas for
each replica of SV19 and thus is very computationally costly. Provided that the uncertainty
due to the data is dominating in all cases compared to the uncertainty due to the unpo-
larized distributions, we have decided to showcase only the former. However, generally
speaking, the uncertainty band due to the unpolarized input is not negligible, contrary to
the commonly used assumption. To our best knowledge, this is the first estimation of such
uncertainty in the analysis of polarized TMD distributions.
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Figure 5. Comparison of χ2/Npt for different values of δ. The fits are made for SIDIS+DY at
N3LO setup. Gray numbers at the top of the figure show the number of points. At δ = 0.375 the
additional point of π-induced DY contributes with a very large χ2 (red line). For δ > 0.375 only
SIDIS points are added.

3.3 Test of the factorization region limit

The TMD factorization works at small values of δ, see eq. (3.1), see also discussion in
ref. [92]. A priori, the size of power corrections, which violate the factorization approach,
is not known. For that reason, one should implement a data selection cut, eq. (3.2), and
exclude the data with large values of δ. In this section, we perform a survey of different
values of δ and thus test the boundary for the TMD factorization for asymmetries.

To test TMD factorization’s applicability, we perform fits of the data selected with
different values of δ in eq. (3.2). The fits are executed at NNLO accuracy. In the region
where the factorization theorem is applicable, one expects the value of χ2/Npt ' 1, and
grows to larger values outside of the applicability region. In other words, the plot of χ2/Npt

versus δ should have a plateau in the validity range of the factorization theorem. Such a test
has been suggested in ref. [65] and successfully applied for unpolarized SIDIS and DY data
analysis, where it was found that the optimal data cut is δ ∼ 0.2− 0.25, see refs. [18, 67].
It has been shown that for DY processes, the data with δ > 0.3 are poorly described by the
TMD factorization formula. In contrast, the situation for SIDIS is better, and one could go
up to δ ∼ 0.3−0.35 [18] without significant loss of quality of the fit. These numbers served
as the rationale for the initial estimation of our current data selection cut in eq. (3.2).

The results of our current test are shown in figure 5, which has a clear plateau χ2/Npt '
1 for δ < 0.4. The quality of the fit drops drastically for δ > 0.4 for SIDIS. This result agrees
with the general expectations. Indeed, one could expect that power corrections partially
cancel in asymmetry, and thus the kinematic range for the applicability of factorization
theorems becomes slightly wider. Since, in the SIDIS unpolarized case δ < 0.3 − 0.35 the
observation of rough agreement for δ . 0.4 is anticipated.

The situation for DY is less certain because the total number of points is small. All
points included into the fit have δ < 0.22 (see figure 2). There is only one additional point to
include. This point is measured in pion-induced DY at COMPASS [40], and it has δ = 0.36
and a wide qT -bin up to values qT ' Q. This point is outside of the applicability range,
and the prediction strongly disagrees with the measurement (χ2 ∼ 8). The main source of
the disagreement is the denominator in eq. (2.22), which becomes negative. The negative

– 19 –



J
H
E
P
0
5
(
2
0
2
1
)
1
5
1

Name χ2/Npt[SIDIS] χ2/Npt[DY] χ2/Npt[total]
SIDIS at NNLO 0.88+0.13

+0.03 1.29+0.45
−0.30 no fit 0.95+0.16

+0.00

SIDIS+DY at NNLO 0.90+0.13
+0.02 0.94+0.25

−0.01 0.91+0.13
+0.04

SIDIS at N3LO 0.87+0.13
+0.03 1.23+0.50

−0.24 no fit 0.93+0.16
+0.01

SIDIS+DY at N3LO 0.88+0.15
+0.04 0.90+0.31

+0.00 0.88+0.15
+0.05

Table 2. Values for χ2/Npt in different fits. Note, that for the cases included in the fit the CF
value of χ2 lies outside the 68%CI. This is because CF realizes the minimum of χ2 distribution,
whereas the 68%CI (roughly) excludes 16% of boundary replicas.

values for cross-section are typical for TMD factorization formula in the region beyond its
validity. To get the positive cross-section valid in the full range of qT one should match it to
the collinear picture via the so-called Y -term [4]. This goes far beyond the present study.

We conclude that even though the region of TMD factorization widens slightly for
asymmetries, one has to be cautious when including the data outside of the TMD factor-
ization region. In the following sections, we analyze only the data with δ < 0.3. This
value corresponds to our best estimate of the region of data appropriate for the TMD fac-
torization approach description. Future work that will include matching to the collinear
factorization is needed to widen the region of the data used in the global analysis.

4 Results of extraction

This is the main section of our work. We describe in detail results of N3LO extraction of
the Sivers function, also presented in ref. [10]. We discuss the Sivers function in momentum
and position spaces, discuss positivity constraints, show the 3D tomography of the nucleon
via the Sivers function, extract the Qiu-Sterman functions, and study the significance of
the sign change of the Sivers function between SIDIS and DY.

4.1 Fit of the data

Using the approach described in the previous sections, we performed several fits with
different setups. In particular, we distinguish the fits with and without inclusion of DY
data, with a purpose to estimate the universality of the Sivers function. Also we performed
separate fits at NNLO and N3LO perturbative precision for the TMD evolution. The
synopsis of χ2 values is presented in table 2. The distribution of contributions to χ2 per
experiments is shown in table 3. The values of nonperturbative parameters extracted in
these fits are given in table 4 and in figure 6.

The main observation that follows from table 2 is that the Sivers function extracted in
SIDIS data only nicely describes the DY data, even without extra tuning. Indeed, the Sivers
function extracted at NNLO from SIDIS data results in χ2/Npt = 1.29 for DY data, and
the agreement improves slightly at N3LO. The overall quality of the description of SIDIS
and DY data from the SIDIS data only fit with χ2/Npt = 0.93 indicates the consistency
of the data with the universality of the Sivers function. The inclusion of DY data into
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Figure 6. The comparison of values for model parameters obtained in fits. Numerical values of
parameters are given in table 4. The blue dashed line and blue numbers show the average over all
fits, in order to estimate the stability of fit results.

the fit reduces the χ2 associated with DY. It modifies some nonperturbative parameters,
especially those related to the high-x behavior of the Sivers function, such as β and ε, see
figure 6. Let us mention that this is the first consistent description of polarized Drell-Yan
data in the TMD formalism with TMD evolution. The inclusion of DY data in the fit does
not result in the worsening of a description of SIDIS data, and thus the fit demonstrates
the absence of the tension between SIDIS and DY data. The inclusion of both SIDIS and
DY data sets results in a better overall description of the data χ2/Npt = 0.88 (at N3LO)
and the most precise determination of the Sivers function. We, therefore, believe that our
extraction demonstrates the universality of the Sivers function.

The values of model parameters extracted with and without DY data agree within
68%CI, see figure 6. The main impact of the inclusion of DY data into fit happens on
CF values of parameters (r1, Nd, Nsea, βs) and to a lesser degree on (βu, εu). Other param-
eters are almost unaffected by the inclusion of DY data due to the bigger experimental
uncertainty of DY data, see table. 1.

A previous attempt to describe DY W and Z data with TMD evolution was made
in ref. [31]. It faced serious problems giving the best χ2/Npt ∼ 1.5 − 1.9 for W±/Z data
(depending on additional assumptions on the evolution of the Sivers function). In our case,
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SIDIS Npt χ2/Npt DY Npt χ2/Npt

Compass08 4 0.29+0.30
−0.01 CompassDY 2 0.19+0.49

−0.15

Compass16 10 0.34+0.36
+0.01 STAR.W+ 5 0.72+0.69

+0.40

Hermes π+ 11 0.79+0.16
−0.05 STAR.W- 5 0.92+0.31

−0.14

Hermes π− 11 0.49+0.08
+0.01 STAR.Z 1 2.04+0.10

−1.15

Hermes K+ 12 1.36+0.15
−0.11

Hermes K− 12 1.62+0.12
−0.01

Jlab 3 0.26+1.13
−0.04

SIDIS total 63 0.88+0.15
+0.05 DY total 13 0.90+0.31

+0.00

Total SIDIS and DY 76 0.88+0.15
+0.05

Table 3. Distribution of χ2 values over the data sets. The results are for the fit SIDIS+DY at
N3LO. For other fits the distributions are analogous.

Parameter
SIDIS DY+SIDIS SIDIS DY+SIDIS

at NNLO at NNLO at N3LO at N3LO
r0 0.95+0.70

−0.94 0.58+0.71
−0.57 0.94+0.71

−0.93 0.54+0.60
−0.53

r1 0.09+5.90
−0.09 4.8+1.9

−3.1 1.02+4.96
−1.02 5.22+1.18

−3.43

r2 195.+434.
−20. 192.+101.

−119. 223.+409.
−47. 203.+71.

−133.

Nu −0.013+0.008
−0.007 −0.020+0.013

−0.020 −0.012+0.007
−0.008 −0.017+0.011

−0.023

βu −0.35+0.07
−0.06 −0.35+0.09

−0.10 −0.33+0.06
−0.07 −0.36+0.09

−0.11

εu −3.9+0.5
−0.3 −3.9+0.6

−0.6 −3.8+0.4
−0.4 −3.9+0.6

−0.6

Nd 0.34+0.25
−0.21 0.40+0.20

−0.18 0.34+0.25
−0.21 0.37+0.18

−0.17

βd −0.77+0.61
−0.13 −0.51+0.70

−0.29 −0.82+0.66
−0.08 −0.7+0.77

−0.11

εd 1.8+20.0
−2.8 9.4+13.9

−9.9 3.6+18.4
−4.7 9.0+17.6

−9.1

Ns 0.43+0.42
−0.34 0.90+0.83

−0.56 0.48+0.37
−0.38 0.76+0.89

−0.43

Nsea −0.23+0.15
−0.21 −0.51+0.22

−0.31 −0.23+0.15
−0.22 −0.47+0.21

−0.32

βs = βsea 2.3+0.7
−1.2 2.5+0.8

−0.7 2.3+0.7
−1.2 2.5+0.8

−0.7

Table 4. Values of parameters obtained in various fits. The visual representation of the table is
given in figure 6.
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the χ2/Npt for DY and W±/Z data close to 1 even without the inclusion of these data into
the fit. Unfortunately, it is not possible to directly compare our and [31] approaches and
find the origin of the disagreement. Although the main spirit of both works is similar, the
number of smaller differences is significant. Let us mention the differences between these
works that, in our opinion, influence the results. First, in SV19 and in the present extrac-
tion, we operate with the data that definitely belong to the TMD factorization region. In
contrast, in ref. [31] the cut is much wider, δ < 0.75, assuming possible cancellation of power
corrections to TMD factorization (see section 3.3). Second, we use the unpolarized TMD
distributions extracted in SV19. So far, SV19 is the only extraction of unpolarized TMD
distributions that describes both SIDIS and DY data without additional normalization
conditions. The other differences are the TMD evolution implementation (ζ-prescription
vs. CSS-like ansatz) and the nonperturbative model for the Sivers function. In particular,
our parametrization for the Sivers function is more flexible compared to ref. [31] and allows
sea quark contributions to be large in the large-x region.

In the remainder of the section, we will discuss details of the description of various
SIDIS and DY data sets coming from various experiments considered in this analysis (see
also table 3). We present results of the description and discuss the data.

HERMES data set [35]. In our fit we use the latest updated data on Sivers asymmetry
in SIDIS by the HERMES Collaboration [35] on the proton target for π±, K±. The incident
electron energy is Plab = 27.5GeV. Events were selected subject to the requirements Q2

> 1GeV2, W 2 > 10GeV2, 0.1 < y < 0.95, and 0.023 < x < 0.6. Hadrons were accepted
if 0.2 < z < 0.7. The data are presented in a three-dimensional binning in x, z, and PhT
(GeV). The correlated uncertainty of the data is 7.3% due to the accuracy of the target
polarization determination. Importantly, the systematic uncertainty of HERMES data
already includes possible effects of the bin-integration, and thus the theory prediction for
this data set must be evaluated using the average bin kinematics. For the SIDIS subset,
the largest χ2/Npt is for K− production measured at HERMES (typical values ∼ 1.6 for 12
points). The next-to-the-largest χ2/Npt is for K+-production measured at Hermes (typical
values ∼ 1.3 for 12 points). The rest of the SIDIS data, for π± and h±, have partial χ2/Npt

which are smaller than 1. These relatively large contributions may be related to either
poor knowledge of Kaon fragmentation functions or sea quark Sivers function. Description
of HERMES data is presented in figure 7 where we plot only the data with δ < 0.5 and
show description for both the data used in the fit (solid points) and the data not used in
the fit (open points).

JLab data set [41, 42]. Jefferson Lab experiments in HALL A measured Sivers asym-
metry on 3He target for π± [41] and K± [42]. The experiment, conducted at Jefferson Lab
using a 5.9GeV electron beam, covers a range of 0.14 < x < 0.34 with 1.3 < Q2 < 2.7GeV2.
SIDIS events were selected using cuts on the four-momentum transfer squared Q2 > 1GeV2,
the hadronic final-state invariant massW > 2.3GeV. The data were presented as Bjorken-x
projection. We show the description of JLab HALL A data [41, 42] in figure 8.
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Figure 7. Description of HERMES data [35] for π± and K±, only data with δ < 0.5 are shown.
The data are presented as the function of x and the 3D binning of the data is indicated by the bin
sizes in PhT (GeV) and z. Solid (open) symbols data used (not used) in the fit. Blue line is the CF
and the blue box is 68%CI of the fit of the data and prediction for the data not used in the fit.
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prediction for the data not used in the fit.
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Figure 9. Description of COMPASS SIDIS data [36] for π± and K±, only data with δ < 0.5 are
shown. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the blue box
is 68%CI of the fit of the data and prediction for the data not used in the fit.

−0.1

0.0

0.1

A
si

n
(φ

h
−
φ
S
)

U
T

h+ 1
<
Q

2
<

4

−0.1

0.0

0.1 h− 1
<
Q

2
<

4

−0.1

0.0

0.1 h+ 4
<
Q

2
<

6.25

0.1 0.2

x

−0.1

0.0

0.1 h−

0.2 0.4 0.6 0.8

z
0.2 0.4 0.6 0.8

PhT (GeV)

4
<
Q

2
<

6.25

−0.1

0.0

0.1

A
si

n
(φ

h
−
φ
S
)

U
T

h+

6.25
<
Q

2
<

16

−0.1

0.0

0.1 h−

6.25
<
Q

2
<

16

−0.1

0.0

0.1 h+ 16
<
Q

2
<

81

0.1 0.2

x

−0.1

0.0

0.1 h−

0.2 0.4 0.6 0.8

z
0.2 0.4 0.6 0.8

PhT (GeV)

16
<
Q

2
<

81

Figure 10. Description of multi-dimensional COMPASS SIDIS proton data [39]. Sivers asymmetry
for z > 0.1 in the four Q2-ranges as a function of x, z and PhT for unidentified charged hadrons h±,
only data with δ < 0.5 are shown. Solid (open) symbols data used (not used) in the fit. Blue line is
the CF and the blue box is 68%CI of the fit of the data and prediction for the data not used in the fit.

Compass08 [36] and Compass16 [39] data sets. COMPASS measured the Sivers
asymmetry using different targets (iso-scalar samples from 2003-2004 data [36] and pro-
ton sample for unidentified charged hadrons from 2010, multi-dimensional data [39]) with
incident muon energy Plab = 160GeV. In these measurements, the cuts on the photon vir-
tuality Q2 > 1GeV2 and the mass of the hadronic final state W 2 > 25GeV2 were applied,
as well as 0.1 < y < 0.9. To simulate the isospin target (deuteron), we make the iso-spin
rotation for components of the Sivers function

f⊥1T,u←d = f⊥1T,d←d =
f⊥1T,u←p + f⊥1T,d←p

2 . (4.1)
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Figure 11. Description of Compass DY data [40] as a function of xF and qT (GeV). Solid (open)
symbols data used (not used) in the fit. Blue line is the CF and the blue box is 68%CI of the fit of
the data and prediction for the data not used in the fit.

The measurement Compass08 is made for π± and K± fragmenting hadrons (we omit the
π0 and K0 measurements because SV19 extraction does not have these fragmentation func-
tions). The Compass16 measurements is made for charged hadrons h±, which in SV19 are
approximated as sum of pion and kaon components h± = π±+K± ignoring the higher-mass
contribution. We show the description of COMPASS SIDIS data [36] in figure 9 and [39]
in figure 10. One can see that, as in previous cases, the data description is good even for
the data not used in the fit.

CompassDY [40] data set. The data were taken using a high-intensity π− beam of
190GeV and the transversely polarized isoscalar NH3 target. Sivers asymmetry was ex-
tracted using di-muon events with the invariant mass between 4.3GeV and 8.5GeV. The
measured asymmetry, AUT , is given in (2.24). Notice that our definition of AUT from
eq. (2.24) corresponds to the definition from ref. [40] AUT = AsinφS

T . The data is presented
in the one-dimensional binnings over xπ, xN , xF , qT . In non-qT binning, the integration
over qT spans up to 5GeV, i.e., includes the domain with qT > Q. Therefore, only the qT -
binned data could be analyzed within TMD factorization. We show a description of the data
in figure 11. One can see that the resulting Sivers function describes well the data on qT -
dependence that we use in the fit and predict the data on xF -dependence not used in the fit.

STAR [43] data set. The STAR Collaboration at RHIC measured the transverse single-
spin asymmetry of weak boson ( charged (W±) and neutral (Z/γ)) production in polarized
proton-proton collisions at

√
s=500GeV. It is described by AN (2.23) with inclusion of

modified factors (2.26), (2.27). The results were presented as a function of rapidity, y,
and the bosons’ transverse momentum, qT . The measured values of asymmetry are much
higher (up 60%) than typical asymmetries in SIDIS, which present a certain problem in
their description. We show the description of STAR data [43] in figure 12. One can see that
our global analysis gives a good description of qT dependent data for W± production. We
also describe well y dependent data that is not used directly in the fit for W± and a single
point for Z-boson production that we use in the fit. It is the first agreement with the data
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Figure 12. Description of the transverse single-spin asymmetry data [43] for W± and Z boson
production measured by STAR in polarized proton-proton collisions at

√
s = 500GeV. Left column,

the data as a function of y for W± and Z, the right column, the data as a functions of qT GeV for
W±. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the blue box is
68%CI of the fit of the data and prediction for the data not used in the fit.

of extraction of the Sivers function with TMD evolution to our best knowledge. For the DY
subset, the main contribution to the χ2/Npt is due to a single Z−boson production point
(AN = 0.6± 0.33) measured at RHIC. Despite the large error, this single point contributes
significantly with ∆χ2 = (2.9, 1.6, 2.8, 1.6) into fits (SIDIS at NNLO, SIDIS+DY at NNLO,
SIDIS at N3LO, SIDIS+DY at N3LO). Let us notice that for W and Z bosons productions,
one should also account for contributions of c and b quarks, which are currently neglected.

N3LO fit does not essentially change the result of the fit compared to NNLO. It is
expected because the difference between NNLO and N3LO evolution is relatively marginal,
see figure 1, especially in comparisons to the large uncertainties of experimental measure-
ments of asymmetries. The values of χ2 are practically unchanged. As for the values of
parameters, we observe that they agree within the error-bands, thus corroborating the
stability of evolution effects and the fit results.

4.2 Sivers function in the position and the momentum spaces

The extracted Sivers function in position space for u and d quarks is shown in figure 13. Its
values have notably large uncertainties, which we demonstrate by shaded areas. Another
distinctive feature of our extraction is a non-positive definiteness of the Sivers function.
The Sivers function is related to a difference of unpolarized quark densities in momentum
space inside transversely polarized protons, f⊥1T ∼ ρ1(ST )− ρ1(−ST ), see eq. (4.2). Thus,
it is not sign-definite, and can have nodes [104, 105], which is realized by the parameter ε.
Moreover, the presence of a node is predicted by various models [104, 106–108]. The Sivers
function for u quark in our extraction, see figure 13, turns positive at large-x. However,
it can stay negative within 68%CI. Although such behavior looks unusual, it does not
contradict any known properties of the Sivers function.
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Figure 13. The (b, x)-landscape of the optimal Sivers function f⊥1T (x, b) for d-quark (the left panel)
and u-quark (the right panel). The grid shows the CF value, whereas the shaded (blue and green)
regions on the boundaries demonstrate the 68%CI.

(a) (b)

(c) (d)

Figure 14. The Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks
at x = 0.1 and µ = 2GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized
TMD PDF extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function
is multiplied by −1 and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).
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In the momentum representation the TMD distributions for unpolarized quarks are
defined as7∫

d2b

(2π)2 e
i(bkT )Φ[γ+]

q←h(x, b;µ, ζ) = f1;q←h(x, kT ;µ, ζ)− ε
µν
T kTµSTν

M
f⊥1T ;q←h(x, kT ;µ, ζ), (4.2)

where kT is the two-component Euclidean vector of traverse momentum, and Φ[γ+]
q←h is given

by the left-hand-side of eq. (2.1). Performing the angular integration in eq. (4.2) we find

f1;q←h(x, kT ;µ, ζ) =
∫ ∞

0

bdb

2π J0(b|kT |)f1;q←h(x, b;µ, ζ), (4.3)

f⊥1T ;q←h(x, kT ;µ, ζ) = M2
∫ ∞

0

bdb

2π
b

|kT |
J1(b|kT |)f⊥1T ;q←h(x, b;µ, ζ). (4.4)

The momentum space representation has complicated evolution properties since the TMD
evolution factor is multiplicative in the position space. The notion of the optimal TMD
distribution is less useful in the momentum space because it involves the integration over
all scales. For that reason, we only show the TMD distributions in the momentum space
at a fixed scale.

The extracted Sivers function is shown in figure 14. The Fourier transformation,
eq. (4.4), effectively inverses the ranges of variables. Therefore, a large uncertainty at
large-b (given by parameters r0,1,2) transforms to a large uncertainty at small-kT . For
comparison, we also show the values and uncertainties of the unpolarized TMD PDFs
extracted in SV19 fit. We observe that the Sivers function’s typical size is about 4-5 times
as small as the corresponding unpolarized distribution. Figure 14 shows the functions at
x = 0.1, for other values of x of the data used in our fit x ∼ 0.01− 0.25 profiles are similar.

It is also instructive to compare the extracted Sivers functions in kT space to other
extractions. In figure 15 we show a comparison of our results at x = 0.1 and µ = 2GeV to
JAM20 [30] , PV20 [29], EKT20 [31] as a function of transverse momentum kT . One can
see that at this particular scale the extracted functions compare well in the region of low
transverse momentum, kT � Q, and start deviating from LO results of JAM20 [30] in the
region of higher transverse momentum, kT ∼ Q. This is expected as our parametrization in
b space is more complicated, it smoothly changes between gaussian and exponential and has
x dependence, compared to a simple gaussian x independent form assumed in ref. [30]. In
figure 15 one can also see extraction PV20 [29] (magenta hatched region) performed at NLL
and EKT20 [31] (violet hatched region, dashed line) performed at NNLL. All extractions
agree within the error band, however the shape and the size of functions are different.
Differences are related to different parametric forms of the nonperturbative functions and
different treatment in implementation of the evolution. Clearly more experimental data
are needed to obtain a more precise extraction of the Sivers functions.

In figure 16, we demonstrate the impact of QCD evolution in the momentum space.
We show u quark Sivers function calculated by eq. (4.4) at four different scales Q = 1.5,
5, 20, 91GeV. As one can see, the evolution modifies the shape and the amplitude of the
Sivers function.

7Notice that we do not distinguish the symbols for the Sivers functions in the position and the momentum
spaces, they are related by the Fourier transform of eq. (4.4). It is intended by the functional arguments, b
or kT , which function we use.
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(a) (b)

Figure 15. The comparison of the Sivers function extractions in the momentum space for u, d,
quarks at x = 0.1 and µ = 2GeV. Our results, black solid line and the blue band, are compared
to JAM20 [30] (gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched
region), EKT20 [31] (violet hatched region, dashed line).

0 1 2 3 4 5 6 7
10-4

10-3

10-2

10-1

1

Figure 16. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT

(GeV). The bands are the 68%CI. The calculations are performed at four different values of Q.

4.3 Positivity constraints for the Sivers function

In ref. [109] the positivity constraints for TMD distributions were derived assuming the
positive-definiteness of the polarization matrix due to its probabilistic interpretation in the
parton model. In particular, the positivity constraint involving the Sivers function is

k2
T

M2

(
g1T (x, kT )2 + f⊥1T (x, kT )2

)
6 f1(x, kT )2, (4.5)

where g1T is the worm-gear T or Kotzinian-Mulders [110, 111] function. Generally, such
positivity constraints are not respected in the quantum field theory due to renormalization
effects, which are only enhanced in the TMD case by renormalizing rapidity divergences.
Recall in particular that even cross-sections become negative in the region outside of the
TMD factorization validity. In some cases the violation of positivity constraints is very
significant, e.g., for linearly polarized gluon TMD PDF discussed in ref. [112]. As far as
our analysis includes the TMD evolution, we expect that the positivity constraint is not
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Figure 17. The function pos(x, kT , µ) defined in eq. (4.6) at µ = 2 (GeV) for u quark, d quark, ū
quark, s quark. The positivity constraint (4.5) is violated in the yellow-to-blue shaded region.

applicable, given that it is based on the tree order approximation argument. Nonetheless,
it is instructive to check the constraint from eq. (4.5).

In figure 17 we plot the function

pos(x, kT , µ) = 1− k2
T

M2

(
f⊥1T (x, kT ;µ, µ2)
f1(x, kT ;µ, µ2)

)2

, (4.6)

as the function of x and kT at µ = 2GeV. One has pos > 0 (pos < 0) for the regions where
eq. (4.5) is (not) satisfied in the absence of g1T contribution. For the values of the Sivers
function we take the largest boundary of 68%CI. We observe that the positivity constraint
is satisfied everywhere except for the unmeasured large-x region. If we consider the lowest
boundary of 68%CI the region pos > 0 is much larger, in particular, u quark satisfies
eq. (4.5) in the full range of (x, kT ). Also the picture depends on the scale, and improves
(in the sense that the region pos > 0 becomes wider) for larger scales. We conclude that
our extraction does not contradict the positivity constraint in the regions reached by the
experimental data used in this analysis.

4.4 3D tomography of the nucleon and the Sivers function

The magnitude of the Sivers function extracted in our fit is generally much smaller than the
unpolarized TMD PDF. To present the distortion effect on the unpolarized quarks driven
by the hadron polarization, we introduce the momentum space quark density function

ρ1;q←h↑(x,kT ,ST , µ) = f1;q←h(x, kT ;µ, µ2)− kTx
M

f⊥1T ;q←h(x, kT ;µ, µ2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of
unpolarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy),
where Sx = 0, Sy = 1, compare to eq. (4.2). In figure 18 we plot ρ at x = 0.1 and µ = 2GeV.
To present the uncertainty in unpolarized and Sivers function, we randomly select one
replica for each point of a figure. Thus, the color fluctuation roughly reflects the uncertainty
band of our extraction. The presented pictures have a shift of the maximum in kTx, which is
the influence of Sivers function that introduces a dipole modulation of the momentum space
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Figure 18. Tomographic scan of the nucleon via the momentum space quark density function
ρ1;q←h↑(x,kT ,ST , µ) defined in eq. (4.7) at x = 0.1 and µ = 2GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in
the plot is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon
polarization vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in
order to highlight the shift of the distributions along x̂-direction due to the Sivers function.

quark densities. This shift corresponds to the correlation of the Orbital Angular Momentum
(OAM) of quarks and the nucleon’s spin. One can see from figure 18 that u quark has a
negative correlation and d quark has a positive correlation. Without OAM of quarks, such
a correlation and the Sivers function are zero, and thus we can observe in figure 18 the
evidence of the presence of OAM of u and d quarks in the wave function of the nucleon.

Let us also discuss the tomographic scan of the nucleon both in x and kT . We plot in
figure 19 the momentum space quark density function ρ1;q←h↑(x,kT ,ST , µ) from eq. (4.7)
as function of both x and kTx in order to assess the region in which the Sivers effect has the
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most influence. The color scheme is chosen to be proportional to the function elevated to
power 1/3 in order not to underestimate the region where the function is not big. The asym-
metry in color and contours between negative and positive kTx indicates the asymmetry of
the distribution and the important influence of the Sivers function. From figure 19 one can
see that the existing data indicate that most of the correlation between the spin and the
motion of the partons happens in the region of large to moderate x. In the low-x region, the
momentum space quark density becomes almost symmetric, and it indicates that the Sivers
effect becomes smaller and corresponding experimentally observed asymmetry is small. Of
course, one has to consider that there is no experimental data in the low-x region available
yet, so our findings must be corroborated by the future Electron-Ion Collider data. At the
same time, it is crucial to explore the large-x region where the effect is the largest, and the
future Jefferson Lab 12GeV data will be important for the exploration of this region.

4.5 Determination of the Qiu-Sterman function

At small-b the Sivers function f⊥1T (x, b) can be expressed via the operator product
expansion (OPE) through the collinear twist-3 distributions [59, 73, 86, 113, 114]. In
our determination we do not use this relation as twist-3 functions are largely unknown.
Instead, we will use the opposite strategy and determine the collinear twist-3 component
from the extracted Sivers function. Such a determination has a limited power, and
allows to extract only Qiu-Sterman (QS) function with certain systematic uncertainty.
Nonetheless, such an extraction is meaningful, especially because the information on
twist-3 distributions is very limited. Moreover, the extraction of QS function given here
is much less theoretically biased in comparison to other extractions, such as those made
in refs. [27, 31], where QS function is parametrized via twist-2 distributions and expected
to have DGLAP-type evolution equation.

The complete expression for matching of the Sivers function to collinear twist-3 distri-
butions at NLO was derived in ref. [73]. In the ζ-prescription, this expression reads

f⊥1T,q←h(x,b) =−π
{
Tq(−x,0,x;µ)+as(µ)

[
−2LµP ⊗T −CF

π2

6 T (−x,0,x;µ) (4.8)

+
∫ 1

−1
dξ

∫ 1

0
dyδ(x−yξ)

(
− ȳ

Nc
Tq(−ξ,0, ξ;µ)+ 3yȳ

2ξ G
(+)(−ξ,0, ξ;µ)

)
+O(a2

s)
]

+O(b2)
}
,

where ȳ = 1−y, Nc = 3 is the number of colors, CF = (N2
c −1)/(2Nc) = 4/3, as = g2/(4π)2

is the strong coupling constant, and Lµ = ln(µ2b2e2γE/4). The function T is the twist-3
collinear distribution defined by the matrix element

〈p, s|gq̄(z1n)[z1n, z2n]/nFµ+(z2n)[z2n, z3n]q(z3n)|p, s〉 (4.9)

= 2εµνT sν(np)2M

∫ 1

−1
dx1dx2dx3δ(x1 + x2 + x3)e−i(np)(x1z1+x2z2+x3z3)Tq(x1, x2, x3),

where Fµν is the gluon-strength tensor, n is a light-cone vector. The function G(+) is a
similar matrix element with three Fµ+’s. Its explicit form is not important for the present
discussion and can be found in ref. [73]. The notation P ⊗ T refers to the leading order
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Figure 19. Tomographic scan of the nucleon in (x, kT ) via the momentum space quark density
function ρ1;q←h↑(x,kT ,ST , µ) defined in eq. (4.7) at µ = 2GeV. Panel (a) is for u-quarks, panel (b)
is for d-quark, panel (c) is for sea-quark, and panel (d) is for s-quark. The color scheme is defined
as explained in the text.

evolution kernel for Tq(−x, 0, x). It has the form of a complicated integral convolution that
involves function Tq, ∆Tq (the analog of T with γµ → γµγ5) and G(±). The expression
for this kernel can be found in refs. [73, 97]. It is crucial that the evolution term involves
twist-3 function for a generic argument (x1, x2, x3), but not just (−x, 0, x) as for QS matrix
element. Moreover, the dominant contribution to this convolution is given by the integral
along (−x, x − ξ, ξ)-line with ξ ∈ [x, 1], whereas the contribution from the QS-component
(−ξ, 0, ξ) is suppressed by almost two orders of magnitude [97, 115]. The scale µ in (4.8)
is the scale of OPE, and present only on the right-hand side of eq. (4.8). The sum of all
terms becomes µ independent, so that the left-hand side, corresponding to the optimal
Sivers function, does not depend on µ.
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The right-hand side of eq. (4.8) depends on four nonperturbative functions, each of
which is a function of two variables (x1, x2,−x1− x2). To reduce the number of unknowns
we set

µ = µb = 2e−γE/b, (4.10)

such that Lµ = 0. This choice essentially reduces number of functions and parametric
freedom since the remaining functions are only Tq(−x, 0, x) and G(+)(−x, 0, x), i.e. QS-
functions for the quark and the gluon. The resulting expression can be inverted by means
of the perturbation theory

Tq(−x, 0, x;µb) = − 1
π

(
1 + CFas(µb)

π2

6

)
f⊥1T ;q←h(x, b)− as(µb)

π

∫ 1

−1
dξ

∫ 1

0
dyδ(x− yξ)

×
(

ȳ

πNc
f⊥1T,q←h(ξ, b) + 3yȳ

2ξ G
(+)(−ξ, 0, ξ;µb)

)
+O(a2

s) +O(b2). (4.11)

This expression can be written as

Tq(−x, 0, x;µb) = − 1
π

(
1 + CFas(µb)

π2

6

)
f⊥1T ;q←h(x, b) (4.12)

−as(µb)
π

1∫
x

dy

y

[
ȳ

Nc
f⊥1T ;q←h

(
x

y
, b

)
+ 3y2ȳ

2x G(+)
(
−x
y
, 0, x

y
;µb
)]

+O(a2
s) +O(b2) .

To use this expression, we should select a reasonably small value of b, such that power
corrections are negligible. Simultaneously, b could not be too close to 0 because this region
corresponds to a very high-energy and thus unreliable in the current extraction. The reason-
able compromise is b ' 0.11GeV−1 such that µb = 10GeV. In this case, we could estimate
the introduced systematic uncertainty due to omitted power corrections as O(M2b2) ∼ 1%,
which is smaller than perturbative uncertainties at this scale. Extraction of the QS func-
tion at lower scales, µ ∼ 2GeV, is not reliable in this approach as the corresponding value
of b ∼ 0.5GeV−1 is relatively large, and the power corrections become to be not negligi-
ble. The gluon function G(+) is also unknown, so we set it to be zero. The resulting QS
functions are shown in figure 20 by the black line, with 68%CI (blue band). To estimate
the uncertainty due to the unknown gluon contribution we approximate G(+)(−x, 0, x) =
±(|Td(−x, 0, x)|+ |Tu(−x, 0, x)|).8 The resulting band for CF value is shown in black and
in green for 68%CI. The effects of gluons are not negligible for x . 0.2. The extracted QS
function is in general agreement with the model computations made in the light-cone wave
function model in ref. [115]. We also compare our results to other extractions of the QS func-
tions.9 These are the extraction from ref. [30] made in the parton model approximation with
SIDIS, DY, pp and AN asymmetries; the NLL extraction from ref. [29] from SIDIS data;
and the NLO/NNLL extraction from ref. [31] from SIDIS (and DY) data. One can see that
our results confirm the signs of the QS functions for u and d quarks found in refs. [29–31].

8We leave a more detailed investigation of the possible gluon contributions to a future publication.
9The definition of the QS function vary in different analyses. The following relations can be found for

the QS functions used: −πTq(−x, 0, x;µ)|our = f
⊥(1)
1T (x, µ)|[29] = −TF (x,x;µ)

2M |[31] = πFFT (x, x;µ)|[30].
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Figure 20. Qiu-Sterman function at µ = 10GeV for different quark flavors, derived from the
Sivers function (4.11). Our results are labeled as BPV20. The black line shows the CF value. Blue
band shows 68%CI without gluon contribution added. The green band shows the band obtained by
adding the gluon contribution estimated to be G(+) = ±(|Td|+ |Tu|) as described in the text. Our
results are compared to JAM20 [30] (gray dashed line with the error corridor hatched), PV20 [29]
(magenta hatched region), EKT20 [31] (violet hatched region, dashed line).
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Figure 21. Normalized distribution of replica’s χ2 for f⊥1T [DY ] = +f⊥1T [SIDIS] (yellow) and
f⊥1T [DY ] = −f⊥1T [SIDIS] (blue) cases. The bands show the 68%CI intervals for χ2 values. The
continuous blue line is the χ2-distribution with 75 d.o.f.

We obtain non-negligible functions for s and sea quarks, and our extraction shows big-
ger functions in relatively large-x regions and disagrees with the signs obtained in ref. [31].
The reason partially because our QS functions for u quarks that changes sign in the large-x
region. Another reason is that ref. [31] and ref. [29] use collinear unpolarized distributions
to parametrize the QS functions and therefore cannot obtain sizable functions for sea quarks
in the large-x region. The QS function belongs to a different type of function, and we be-
lieve that parametrizations of twist-3 functions that utilize collinear twist-2 functions are
not optimal and may bias the results of the extraction.

We have studied the functional shape of the Sivers functions, and in particular we
constrained all ε > 0 to remove the nodes from the Sivers function. It turns out that a
good description of the data with χ2/Npt < 1 is still possible. Another study that we
performed was dedicated to the large-x behavior of the Sivers functions, namely, we added
an extra factor (1−x) to our ansatz (this choice is inspired by the model calculations made
in refs. [53, 54], where it was found that the Sivers functions behave as (1 − x)2 in the
large-x region). The resulting fit is also good with χ2/Npt < 1, and, in particular, for the
sea quarks and s-quarks the resulting functions become much smaller in the large-x region.

We conclude that the current data do not constrain the large-x (and small-x) behavior
of the Sivers functions and they exhibit large uncertainties in the region of x > 0.3 and
x < 0.01. Future data from EIC and JLab 12 will be very important for exploration of
both small-x and large-x behavior of the Sivers functions.

4.6 Analysis of the sign change

The sign-change of the Sivers function (2.3) is one of the principal predictions of the TMD
factorization theorem. It follows from the nontrivial shape of the gauge-link contour within
TMD operators (2.1) and would be absent in the case of a straight gauge link. Here, we
attempt to estimate the significance of the sign-change.

To make a test of the sign change, we performed an independent fit of SIDIS and DY
data with f⊥1T [SIDIS] = +f⊥1T [DY ], i.e., assuming the Sivers function does not change the
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f⊥1T [DY ] = −f⊥1T [SIDIS] f⊥1T [DY ] = +f⊥1T [SIDIS]

χ2/Npt 0.88+0.16
+0.06 1.00+0.22

+0.08

p-value (CF) 0.74 0.44
p-value 68%CI [0.60, 0.34] [0.28, 0.08]

p-value 68%CI (SIDIS) [0.67, 0.42] [0.53, 0.11]
p-value 68%CI (DY) [0.56, 0.17] [0.68, 0.02]

Table 5. Comparison of χ2 and p-values between the fit with and without sign-change for Sivers
function.

sign. The fit is performed at N3LO. The comparison of fits with and without sign-change
is presented in table 5. The CV fit demonstrates good values of χ2/Npt = 1.00, with
the 68%CI being [1.08, 1.22]. The (normalized) histograms of χ2 replicas for same- and
opposite-sign fits are shown in figure 21, together with χ2 distribution forNpt−1=75 degrees
of freedom. The p-values of different cases are calculated as areas under the sampling
distribution in [χ2

tot,∞) interval, and given in table 5. The case f⊥1T [SIDIS] = +f⊥1T [DY ]
has somewhat higher χ2, and consequently lower p-value. Nonetheless, the difference is
not large, and 68%CI almost overlap. Therefore, we conclude that one cannot strictly
discriminate with the current experimental data the possibility of the Sivers function having
the same sign in DY and SIDIS.

The fit with f⊥1T [SIDIS] = +f⊥1T [DY ] demonstrates very different features in comparison
to the fit with the sign-change. In particular, the distribution of χ2 for SIDIS and DY
independently is broader. So, 68% CI of χ2/Npt for SIDIS data is [0.96, 1.21] and for DY
data is [0.80, 1.88] (compare to [0.90, 1.00] and [0.81, 1.27] in the case of the sign-change,
correspondingly). Simultaneously, the 68%CI for the total χ2 is broader and located at
higher values. This indicates a tension with the data in the same-sign approach, namely,
the Sivers function that provides a better description for SIDIS gives a worse description
for DY and vice-versa.

It is also instructive to compare Sivers functions extracted in both fits. We have
found that the parameters extracted in both cases agree within 68%CI’s, except for Nsea-
parameter, which flips the sign. It shows that u, d, and s components are mainly con-
strained by the SIDIS data, where the dominant contribution comes from q + γ∗ → q

sub-process. In the DY process, the anti-quarks play a more significant role since the dom-
inant sub-process is q + q̄ → γ∗. Given that the unpolarized TMD for anti-quarks is much
smaller than for quarks, the sign for anti-quark Sivers function almost exclusively defines
the sign of the asymmetry of W±/Z production in polarized p+ p collision.

5 Conclusions

We extract Sivers function from the global fit of SIDIS, pion-induced Drell-Yan and W±/Z-
bozon production experimental data. For the first time, using TMD evolution, we demon-
strate the universality of TMD factorization description for SIDIS and DY transverse spin
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asymmetries. Our analysis is done in the ζ-prescription with the unpolarized TMD dis-
tributions and nonperturbative CS-kernel extracted in [18] (SV19), together with NNLO
and N3LO TMD evolution. Our results compare well in magnitude with the existing ex-
tractions [19–32] and confirm the sign of Sivers function for u and d quarks while we also
obtain a non-negligible Sivers function for s quark and anti-quarks. The analysis was done
with artemide package [69]. The fitting codes and the results of the extraction (in the
form of replica-distribution for model parameters) are publicly available at [70] and [103].

To demonstrate the Sivers function’s universality, we perform an independent fit of
Sivers function from the SIDIS data only and confirm that it also describes well the DY
data without any need for re-fitting. It is the first explicit attempt to check the universal-
ity for Sivers function with TMD evolution to our best knowledge. It is clear that more
experimental and theoretical work is needed to fully confirm the universality of the Sivers
functions. The previous successful attempt was made in the parton model approximation in
refs. [28, 30]. Moreover, it is the first time SIDIS and DY data on transverse-spin asymme-
tries are consistently described together with a good χ2. The previous attempt to make a
joined fit of Sivers function with TMD evolution [31] faced a problem due to the difficulty in
describing the large values of asymmetries in W±/Z-production data measured by RHIC.
In our analysis, we do not observe any difficulties with this data set. Although our approach
is based on the same general theoretical ground as that of [31], our approach has a number
of improvements with respect to others, and each of them could be deciding. One of such
improvements is the usage of the ζ-prescription. The central feature of the ζ-prescription is
the separation of perturbative and nonperturbative elements of the TMD factorization. So,
we non-controversially use the NNLO or N3LO TMD evolution, NNLO small-b matching
for unpolarized ingredients (TMD PDF, TMD FF, and CS-kernel), without specification
of the collinear limit for the Sivers function. On the one hand, we use the best possible
perturbative input and unpolarized nonperturbative parts fitted to the global data. On the
other, the Sivers function is extracted as an entirely nonperturbative function of x and b,
and such a parametrization allows for sizable contributions from sea quarks in the large-x
region, and this may be a decisive difference with respect to the analysis of ref. [31].

In turn, the extracted Sivers function was used to determine the QS-function, with the
NLO matching relation. To our best knowledge, it is the first unbiased determination of
the QS-function since all previous extractions made certain assumptions on its evolution.

Another important point is the conservative selection of the data. The TMD factor-
ization is valid at small values of δ = qT /Q for DY, and δ = PhT /(zQ) for SIDIS. In our
analysis we used only the data with δ < 0.3, which is much more strict compared to other
fits [29, 31, 31]. It resulted in a relatively smaller data pool (76 points in total), which is
guaranteed to belong to the TMD factorization domain. Additionally, we performed the
test of limits for δ, and found that one can raise δ to 0.4 in the case of the transverse
single-spin asymmetry measured in SIDIS.

We have also performed a test of the sign-change relation between SIDIS and DY
definitions of the Sivers function. We found that the fit without sign-flip converges to
values of χ2 only slightly worse than the fit with the predicted sign-flip. Therefore, we
cannot statistically disregard this possibility. We have observed that the sign of the DY
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asymmetry is strongly correlated to the sign of the Sivers function for sea quarks, which
is also apparent from the partonic channel consideration. Therefore, to clearly distinguish
sign-flip/non-sign-flip scenarios, one needs the data with more substantial restrictions on
the sea contribution, such as DY and kaon-production in SIDIS. Indeed, the on-going
analysis of DY production by STAR, COMPASS, and the future Electron-Ion Collider will
constraint the sea quark Sivers function.

We present in figures 18 and 19 the momentum space tomographic slices of the trans-
versely polarized nucleon. These slices are representations of the three-dimensional (3D)
nucleon structure encoded in TMD PDFs. The future and existing facilities such as the
Electron-Ion Collider and Jefferson Lab 12GeV Upgrade physics programs aim at sharp-
ening our understanding of the 3D structure of the nucleon. We will study the impact of
JLab and EIC data on the Sivers function’s knowledge in the forthcoming publication.

Our results set a new benchmark and the standard of precision for studies of TMD
polarized functions. They will be important for theoretical, phenomenological, and exper-
imental studies of the 3D nucleon structure and the planning of experimental programs of
existing and future facilities, such as Jefferson Lab 12GeV Upgrade, Electron-Ion Collider,
and others [44–51].
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