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The near-threshold photo or electroproduction of heavy vector quarkonium off the proton is studied in
quantum chromodynamics. Similar to the high-energy limit, the production amplitude can be factorized in
terms of gluonic generalized parton distributions and the quarkonium distribution amplitude. At the
threshold, the threshold kinematics has a large skewness parameter ξ, leading to the dominance of the spin-
2 contribution over higher-spin twist-2 operators. Thus, threshold production data are useful to extract the
gluonic gravitational form factors, allowing studying the gluonic contributions to the quantum anomalous
energy, mass radius, spin, and mechanical pressure in the proton. We use the recent GlueX data on the J=ψ
photoproduction to illustrate the potential physics impact from the high-precision data from the future
Jefferson Laboratory 12 GeV and Electron-Ion Collider physics program.
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I. INTRODUCTION

Recently, there has been rising interest in measuring
the photoproduction of J=ψ particles near the threshold.
Dedicated experiments with such a purpose are running
at Jefferson Laboratory, and similar experiments are
planned at the future Electron-Ion Collider [1]. It has been
proposed in Refs. [2,3] that the photoproduction of J=ψ can
be used to measure the gluon matrix element hPjF2jPi in
the nucleon and provide crucial information about the
trace anomaly contribution to the nucleon mass and mass
radius [2,4–7].
In the literature, different methods have been adopted to

analyze the process. In the vector dominance model [2,3,7],
the vector-meson photoproduction is related to the forward
meson-nucleon scattering where a direct operator product
expansion (OPE) in terms of gluonic matrix elements is
applicable [8–11]. Recently, this process has also been
approached using dispersive analysis [12,13] and holo-
graphic QCD [14–17]. However, a comprehensive

understanding of the process in perturbative QCD in the
threshold region is still lacking except a few early attempts
[18,19]. This is sharply contrary to the largeQ2 and largeW
diffractive region where the process has attracted attention
since the mid-1990s [20–24] with well-established all-
order factorization [25] in terms of generalized parton
distributions (GPDs) [26–28], and the Q2 ¼ 0, large W,
and small t region where the factorization has been
explicitly shown at next to leading order [29]. In this
paper, we study the near-threshold photoproduction of the
heavy vector-meson with mass MV in the heavy-quark
mass limitMV → ∞. In this limit, the process is dominated
by the direct photon coupling with the heavy quarks, and
the heavy-quark production through gluonic subprocesses
including possible intrinsic heavy flavor is suppressed by
αsðMVÞ → 0. We show that the QCD factorization in terms
of gluon GPDs in Ref. [29] remains valid in the threshold
region as well. Different from the proposals in Refs. [2,3]
and recent calculations in a different limit [30,31], the
leading contribution comes from the tensor part of gluonic
energy momentum tensor (EMT) and high-dimensional
twist-2 gluonic operators, due to the emergent light-cone
structure in the largeMV limit. The near-threshold region is
characterized by large skewness parameter ξ ∼ 1 regardless
of the Q2 [31], and the gluon EMT dominates over high-
dimensional operators as well as three-gluon exchanges
[18,30]. Therefore, the process can be used to probe
the gluonic gravitational form factors of the proton,
which provide important information about the gluon
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contributions to the proton’s mass and spin as well as
pressure structures [4,5,32–34].
The organization of the paper is as follows. In Sec. II, we

introduce the near-threshold kinematics of the process,
paying attention to the emergent light-cone structure in
the initial state. In Sec. III, we perform the analysis of the
two-gluon exchange diagram and express the amplitude in
terms of gluon GPDs. In Sec. IV, we Taylor expand the
amplitude in terms of moments of the GPD and show that
the cross section can be expressed in terms of the gluonic
gravitational form factors of the proton for the large
skewness parameter ξ and the decay constant of the heavy
meson. In Sec. V, assuming the dominance of the spin-2
matrix element, we compare our prediction to experiment
data of J=ψ production using the results of the gravitational
form factors extracted from lattice calculation in Ref. [35]
and fit a parametrization of the form factors with the
GlueX [36] data, especially the MA and Cð0Þ, which are
important to the proton mass radius. With those fitted form
factors, we predict the cross section of ϒ production near
threshold. In Sec. VI, we study the polarization effects
and make predictions for polarization-dependent cross
sections which are important for disentangling various
form factors. Finally, we make several comments and
conclude in Sec. VII.

II. NEAR-THRESHOLD KINEMATICS

We first investigate the near-threshold kinematics of the
process. Without loss of generality, we work in the c.m.
frame as shown in Fig. 1, though the final result is frame
independent. The four-momenta of the incoming photon,
outgoing vector meson, incoming proton, and outgoing
proton are denoted by q, K, P, and P0, respectively. We
restrict ourselves to the real photon and near-threshold
region, although similar analysis can be extended to a finite
virtual photon mass Q2. We choose the incoming proton to
move in theþz direction, as in the laboratory frame. In c.m.
frame, the magnitudes of the three-momenta can be
expressed in Lorentz scalars as

jK⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2 − ðMV þMNÞ2ÞðW2 − ðMV −MNÞ2Þ

4W2

s
; ð1Þ

jP⃗j ¼ W2 −M2
N

2W
; ð2Þ

where we label the nucleon mass MN , the c.m. energy
squared W2 ≡ ðPþ qÞ2 ≥ ðMN þMVÞ2, the average pro-
ton four-momentum P̄≡ ðP0 þ PÞ=2, four-momentum
transfer Δ ¼ P0 − P, and associated invariant t≡ Δ2. In
the heavy-quark limit, the vector-boson mass MV ≫ MN .
As a result, W ≫ MN , and the incoming proton travels
almost along the þ light-cone direction in terms of the
light-front coordinate x� ≡ ðx0 � xzÞ= ffiffiffi

2
p

, where xμ is a
four-coordinate. One has

Pμ → 2pμ; ð3Þ

with p ¼ P̄þffiffi
2

p ð1; 1; 0⊥Þ and n ¼ 1ffiffi
2

p
P̄þ ð1;−1; 0⊥Þ being two

opposite light-cone unit vectors. The four-momenta of the
final-state proton and vector meson are

K ¼ ðK0; jK⃗je⃗Þ; ð4Þ

P0 ¼ ðP00;−jK⃗je⃗Þ; ð5Þ

where e⃗ can be in any spatial direction.
In this paper, we mainly focus on the threshold region

defined by the condition that the velocity of the final-state
proton β≡ jK⃗j=P00 is of order 1. This condition implies
that the velocity of the heavy meson is of order OðMN

MV
Þ and

Pþ ¼ MVffiffi
2

p ð1þOðMN
MV

ÞÞ. Right at the threshold, the invariant
momentum transfer t equals

−tth ¼
MNM2

V

MN þMV
; ð6Þ

which is of order MVMN in the heavy-quark limit. As W
increases, the allowed region of −t forms a band
½jtjminðWÞ; jtjmaxðWÞ� between the backward case with
−t ¼ jtjmin and forward case with −t ¼ jtjmax. Near the
threshold, both of them are of order OðMNMVÞ, much
larger thanM2

N . In the standard notation of GPDs [27], this
implies that the skewness

ξ ¼ −
Δ · n
2P̄ · n

¼ Pþ − P0þ

Pþ þ P0þ ¼ 1þO
�
MN

MV

�
; ð7Þ

is close to 1, which has also been observed for the large Q2

region [31]. In Figs. 2 and 3, we show the ξ value on the
ðW;−tÞ plane for J=ψ and ϒ production in the kinemat-
ically allowed region. This condition ξ → 1 near threshold
will allow us to study the form factors of the gluon EMTas
we discuss later.

FIG. 1. The heavy vector-meson photoproduction kinematics in
the c.m. frame.
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III. LEADING-ORDER QCD FACTORIZATION

We now proceed to consider the amplitude of the process
written as

MðqÞ ¼
Z

d4zeiq·zhP0; KðεVÞjεμJμðzÞjPi; ð8Þ

where Jμ is the electromagnetic current operator, εμ is the
polarization vector of the photon normalized as ε2 ¼ −1,
and jKðεVÞi denotes the vector-meson state with momen-
tum K and polarization vector εV normalized as ε2V ¼ −1
and satisfying K · εV ¼ 0. All states are normalized cova-
riantly. In the heavy-quark limit, the leading-order con-
tribution toM is given by two-gluon exchange diagrams as
illustrated in Fig. 4. To calculate these contributions, we
perform the following approximations which are justified
in leading order in OðMN

MV
Þ and OðαSÞ.

First, since the momentum transfer is mostly in the light-
cone direction p, only the þ components of the loop

momenta l and −Δ − l for the gluons are kept in the heavy-
quark loop and can be expressed as

−
Δ
2
þ l ¼ ðξþ xÞpþ � � � ; ð9Þ

−
Δ
2
− l ¼ ðξ − xÞpþ � � � ; ð10Þ

where −1 < x < 1 is the momentum fraction for l. In the
threshold region, ξ approaches 1 in the heavy-quark limit,
though we will keep the ξ dependence in general.
Second, at the large MV limit, we perform the non-

relativistic approximation to the heavy-meson wave func-
tion, which amounts to the substitution

hKðεVÞjψð−k − KÞψ̄ðkÞj0i ¼ 1 − =vV
2

ε�Vffiffiffi
2

p 1þ =vV
2

ϕ̃�ðkÞ:

ð11Þ

Here, vV is the four-velocity of the vector meson, and the
scalar function ϕ̃ðkÞ corresponds to the distribution ampli-
tude of the vector meson. The relative momentum between
the quark and antiquark is of order OðαSMVÞ for hydro-
genlike systems, and to the leading order in αs, we can
further approximate the wave function as

FIG. 2. ξ on the ðW;−tÞ plane in the kinematically allowed
region with MJ=ψ ¼ 3.097 GeV.

FIG. 3. ξ on the ðW;−tÞ plane in the kinematically allowed
region with Mϒ ¼ 9.46 GeV.

FIG. 4. Examples of leading Feynman diagrams that contribute
to heavy vector-meson photoproduction.
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ϕðkÞ ¼ ð2πÞ4δ4
�
k −

MV

2
vV

�Z
d4k0

ð2πÞ4 ϕ̃ðk
0Þ;

¼ ð2πÞ4δ4
�
k −

MV

2
vV

�
ϕð0Þ; ð12Þ

where the velocity vV of the final-state heavy-meson can be
approximated as the static one v ¼ ð1; 0; 0⊥Þ to leading
order in MN

MV
. The ϕð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MV=3
p

ψNRð0Þ is proportional
to the nonrelativistic hydrogenlike wave function ψNR at
the origin. The above meson wave function can be studied
more systematically with nonrelativistic QCD, which
shows that the leading correction to the wave function is
indeed suppressed by order αSðMVÞ [37–39].
Finally, we notice that for collinear gluons in light-cone

gauge Aþ ¼ 0, the A− component is suppressed by the
large boost factor. Therefore, to the leading-order approxi-
mation, it is sufficient to keep the transverse components of
the gluon gauge potential only.
Given these approximations, we can evaluate the

Feynman diagrams in light-cone gauge straightforwardly.
The result for the leading amplitude MðεV; εÞ reads

MðεV; εÞ ¼
8

ffiffiffi
2

p
παSðMVÞ
M2

V
ϕ�ð0ÞGðt; ξÞðε�V · εÞ: ð13Þ

Here, the function Gðt; ξÞ implicitly depends on the
polarization of the initial and final proton which is sup-
pressed and can be expressed in terms of the gluon GPDs as

Gðt; ξÞ ¼ 1

2ξ

Z
1

−1
dxAðx; ξÞFgðx; ξ; tÞ: ð14Þ

where the hard kernel Aðx; ξÞ reads

Aðx; ξÞ≡ 1

xþ ξ − i0
−

1

x − ξþ i0
: ð15Þ

The standard gluon GPD Fg is defined as [40]

Fgðx; ξ; tÞ

≡ 1

ðP̄þÞ2
Z

dλ
2π

eiλxhP0jTr
�
F þ i

�
−
λn
2

�
Fþ
i

�
λn
2

��
jPi;

ð16Þ

where the states are normalized as hPjPi ¼
2EPð2πÞ3δð3Þð0⃗Þ and the renormalization scale has been
omitted. Similar results as in Eqs. (13) and (14) have
been derived in the literature both in the high-energy limit
[41,42] and in the heavy-quark limit [29], but not in the
threshold region as we are interested in here.

In Eq. (14), GPDs are evaluated at a generic ξ. Near
the threshold and in the heavy-quark limit, t approaches
infinity, and ξ is close to 1, as shown in Eq. (7). Therefore,
in principle, one should set ξ ¼ 1 in our equations above.
However, there are two reasons for us to keep the generic ξ
dependency.
First, the expression with generic ξ agrees with the

leading-order result in the kinematic region at large W and
small jtj [29,41,42]. What we have shown is that in the
heavy-quark limit, the validity region of the leading-order
factorization formula (13), (14) in terms of GPDs can be
smoothly extended to the threshold region along the jtjmin
line. It shows that the large MV is sufficient to generate
light-cone structure even in the threshold region. Therefore,
our result can be viewed as a generalization of Ref. [29].
Second, although in the heavy meson limit ξ approaches

1 near threshold, in reality, especially the production of
J=ψ , the kinematic finite meson mass corrections are
important. By using the physical ξ, one can expect to take
part of these kinematic corrections into account.
Given the amplitude above, we can calculate the cross

section, and the result is

dσ
dt

¼ e2e2Q
16πðW2 −M2

NÞ2
1

2

X
polarization

jMðεV; εÞj2;

¼ αEMe2Q
4ðW2 −M2

NÞ2
ð16παSÞ2
3M3

V
jψNRð0Þj2jGðt; ξÞj2; ð17Þ

with eQ the charge of the quark in the unit of proton
charge, and the photon and meson polarization are summed
over. The kinematic prefactor is the same as that in
Refs. [14,15], and in the second line it is shown that
the cross section of near-threshold meson production is
related to the nonrelativistic wave function at origin and the
gluon GPDs. Again, the renormalization scales in GPDs
and wave function have been omitted and shall be on the
order of MV .

IV. EXPANSION IN MOMENTS OF GPD

As shown in Eq. (14), the entire gluon GPD enters in
the amplitude for the threshold region heavy quarkonium
production because of the light-cone dominance. However,
because ξ ∼ 1, one can Taylor expand the Aðx; ξÞ and
express the Gðt; ξÞ in terms of the even moments of the
GPD,

Gðt; ξÞ ¼
X∞
n¼0

1

ξ2nþ2

Z
1

−1
dxx2nFgðx; ξ; tÞ: ð18Þ

The moments can be related to the matrix element of the
gluonic twist-2 operator Oμμ1…μn−2ν

g [40]
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hP0jOμμ1…μn−2ν
g jPi ¼ SūðP0ÞγμuðPÞ

X
i;even

Ag
n;iðtÞΔμ1…ΔμiPμiþ1…Pν

þ SūðP0Þ iσ
μαΔα

2m
uðPÞ

X
i;even

Bg
n;iðtÞΔμ1…ΔμiPμiþ1…Pν

þ S
Δμ

m
ūðP0ÞuðPÞmod ðn; 2ÞCnðtÞΔμ1…Δν: ð19Þ

By parametrizing the GPD,

Fgðx; ξ; tÞ ¼
1

2P̄þ

�
Hgðx; ξ; tÞūðP0ÞγþuðPÞ þ Egðx; ξ; tÞūðP0Þ iσ

þαΔα

2m
uðPÞ

�
; ð20Þ

the moments for the scalar functions H and E can then be written as [40]

Z
1

0

dxx2nHgðx; ξ; tÞ ¼
Xn
i¼0

ð2ξÞ2iAg
2nþ2;2i þ ð2ξÞ2nþ2Cg

2nþ2; ð21Þ

Z
1

0

dxx2nEgðx; ξ; tÞ ¼
Xn
i¼0

ð2ξÞ2iBg
2nþ2;2i − ð2ξÞ2nþ2Cg

2nþ2; ð22Þ

where C-terms represent the highest power in ξ. In particular, for n ¼ 0, we have

Z
1

0

dxHgðx; ξ; tÞ ¼ Ag
2;0ðtÞ þ ð2ξÞ2Cg

2 ≡H2ðt; ξÞ;Z
1

0

dxEgðx; ξ; tÞ ¼ Bg
2;0ðtÞ − ð2ξÞ2Cg

2 ≡ E2ðt; ξÞ: ð23Þ

for the leading moments of the GPDs.
As we will argue, the higher moment contributions shall

be suppressed in the threshold region. If one only keeps the
leading moment n ¼ 0, the Gðt; ξÞ becomes

Gðt; ξÞ ¼ 1

ξ2ðP̄þÞ2 hP
0j 1
2

X
a;i

Fa;þið0ÞFa;þ
i ð0ÞjPi

¼ 1

2ξ2ðP̄þÞ2 hP
0jTþþ

g jPi; ð24Þ

in terms of the matrix elements of gluon EMT in the proton.
We then can derive a formula for the cross section in terms
the gravitational form factors defined through following
parametrization of the matrix element of gluon EMT [27],

hP0jTμν
q;gjPi¼ ūðP0Þ

�
Aq;gðtÞγðμP̄νÞ þBq;gðtÞ

P̄ðμiσνÞαΔα

2MN

þCq;gðtÞ
ΔμΔν−gμνΔ2

MN
þ C̄q;gðtÞMNgμν

�
uðPÞ;

ð25Þ
where A ¼ A2;0, B ¼ B2;0, and C ¼ C2;0 are the same form
factors as in Eq. (23). It leads to the following form of

jGðt; ξÞj2 after summing/averaging over the final and initial
proton spin,

jGðt; ξÞj2 ¼ 1

ξ4

��
1 −

t
4M2

N

�
E2
2

− 2E2ðH2 þ E2Þ þ ð1 − ξ2ÞðH2 þ E2Þ2
�
;

ð26Þ

where H2 ≡H2ðt; ξÞ and E2 ≡ E2ðt; ξÞ are defined in
Eq. (23). Combining with Eq. (17), the cross section of
heavy vector-meson photoproduction can be expressed in
terms of those gravitational form factors. This result agrees
with the holographic QCD predictions [16,17] that the
leading contribution to the cross section is due to exchange
of 2þþ excitations, or the spin-2 twist-2 operators, instead
of the 0þþ F2 operators suggested in Refs. [3,7]. However,
in the holographic approach, the twist-2 part of the
gravitational form factor is dual to the graviton exchange
and is free from the Cg contribution. This differs from the
generic QCD parametrization in Eq. (24). Because of the
EMT conservation, the quantum anomalous energy F2

form factor can be related to the twist-2 ones here. If the
further limit ξ → 0 is taken in Eq. (26), only the A form
factors are leading, and all the results agree. However, this
is inconsistent with our approximation here.
Here, we return to the validity of the moment expansion

in Eq. (18) and the leading moment approximation in
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Eq. (24). Notice that for generic ξ < 1, the GðtÞ has
imaginary part

ImGðt; ξÞ ∝ Fgðξ; ξ; tÞ þ Fgð−ξ; ξ; tÞ; ð27Þ

which implies that the moment expansion in Eq. (18) has
some limitations. However, as ξ gets closer to 1 in the heavy-
quark limit, the above imaginary part vanishes in power of
1 − ξ. The renormalization group evolution will also help to
improve the convergence of the expansion at large renorm-
alization scale μ ∼MV . Indeed, it has been shown that the
asymptomatic form of gluon GPD reads [43,44]

Fasym
g ðx; ξ; tÞ ∝

�
1 −

x2

ξ2

�
2

θ

�
1 −

x
ξ

�
; ð28Þ

which vanishes quadratically at x ¼ ξ. With this form of
asymptotic behavior, one can show that the expansion in
Eq. (18) is convergent. To summarize, Eq. (18) should be a
good approximation forGðt; ξÞ in the threshold regionwhere
ξ is close to 1.
Regarding the validity of the leading moment approxi-

mation in Eq. (24), one can read from Eq. (18) that, due to
the ξ2n in the denominator, Eq. (18) is simultaneously a
moment expansion and a ξ−1 expansion. The closer the ξ to
1, the larger the contribution from the leading term n ¼ 0.
Using the asymptotic form in Eq. (28), in the exact μ ∼
MV → ∞ limit, the ratio between the contribution from
higher (n ≥ 1) moments and the leading moment is

P∞
n≥1

R
1
−1 dx

x2n

ξ2n
Fasym
g ðx; ξ; tÞR

1
−1 dxF

asym
g ðx; ξ; tÞ ¼ 1

4
; ð29Þ

and the total higher-moment contribution is 25%. Notice
that in the large Q2 region, a similar estimation in favor of
the leading moment dominance was first performed
in Ref. [31].
Realistically, when μ ∼MV is not very large and ξ is not

exactly at 1, we can use the ratio between the second and
the leading terms to estimate the effect of the high-order
terms. Using the explicit expressions for GPD moments in
Eq. (21), the ratio between second and leading moments
can be calculated as

Ag
4;0 þ 4ξ2Ag

4;2 þ 16ξ4Cg
4

ξ2ðAg
2;0 þ 4ξ2Cg

2Þ
; ð30Þ

for the moments of H, and

Bg
4;0 þ 4ξ2Bg

4;2 − 16ξ4Cg
4

ξ2ðBg
2;0 − 4ξ2Cg

2Þ
; ð31Þ

for the moments of E. For a quick estimation, one can keep
only the A0 form factors which equal to moments of gluon

parton distribution functions (PDFs) at t ¼ 0. Away from
t ¼ 0, one can use the following dipole model:

Ag
2;0 ¼

�
1 −

t
m2

A

�
−2 Z 1

0

dxxfgðxÞ; ð32Þ

Ag
4;0 ¼

�
1 −

t
m2

A4

�
−2 Z 1

0

dxx3fgðxÞ: ð33Þ

Here, fg is the gluon PDF at zero momentum transfer, and
mA and mA4 are unknown dipole masses. Neglecting the
difference in dipole masses and using the recent CTEQ
global analysis [45], at renormalization scale μ ¼ 1.3 GeV,
one has

R
1
0 dxx

3fgðxÞ
ξ2

R
1
0 dxxfgðxÞ

¼ 0.038
ξ2

: ð34Þ

For J=ψ production, one has ξ ¼ 0.6 right at the threshold,
and the ratio is around 0.1, consistent with the dominance
of the leading moment. Away from the threshold, the ratio
increases as ξ drops, and the dominance of the leading
moment becomes less pronounced. As one increases the
renormalization scale, more momentum fraction is carried
by small x gluons, and the ratio becomes smaller. However,
since the form factor C is also important for the amplitude,
a more realistic estimation needs input from lattice
calculations.

V. GRAVITATIONAL FORM FACTORS FROM
THRESHOLD DATA

As we have discussed in the previous section, threshold
quarkonium photoproduction in the heavy-quark limit is
dominated by the nucleon’s gravitational form factors in the
leading moment approximation. In this section, we study
the phenomenology of determining these gravitational form
factors from realistic heavy quarkonium production data,
neglecting various higher-order corrections which we will
take into account in the future publication. We consider the
J=ψ photoproduction where there are more data available
near the threshold and predict the near-threshold ϒ photo-
production cross section where the heavy-quark expansion
works better.

A. J=ψ photoproduction

To start with, we consider the J=ψ photoproduction total
cross sections from SLAC [46], Cornell [47], and the most
recent GlueX experiments [36]. Given that the GlueX data
seem to deviate from the SLAC and Cornell data, we will
focus on comparing with the GlueX result, which includes
more data as well as some measurements of differential
cross section.
Besides the physical constants such as the proton mass

MN ¼ 0.938 GeV, the J=ψ massMJ=ψ ¼ 3.097 GeV, etc.,
we use the same as in Ref. [15]
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αSðμ ¼ 2 GeVÞ ¼ 0.3: ð35Þ

For the nonrelativistic wave function jψNRð0Þj2, it can be
measured from the leptonic decay rate of J=ψ [39,48,49],

ΓðV → eþe−Þ ¼ 16πα2EMe
2
QjψNRð0Þj2
M2

V

�
1 −

16αs
3π

�
: ð36Þ

Then, one has [49,50]

jψNRð0Þj2 ¼ 1.0952=ð4πÞðGeVÞ3: ð37Þ

As for Gðt; ξÞ, the input of gravitational form factors is
required. At large momentum transfer, it has been argued
that the form factors decay polynomially [51–53] based on
power-counting methods. Here, we use the gravitational
form factors from lattice calculations, which model those
form factors with dipole expansion

AgðtÞ ¼
Agð0Þ

ð1 − t
m2

A
Þ2 ; ð38Þ

CgðtÞ ¼
Cgð0Þ

ð1 − t
m2

C
Þ2 : ð39Þ

In a recent calculation, those parameters are found approx-
imately, mA ¼ 1.13 GeV, mC ¼ 0.48 GeV, Agð0Þ ¼ 0.58,
and Cgð0Þ ¼ −1.0 [35], while the BgðtÞ form factor is
numerically small. These inputs without any fitting param-
eters yield the curve shown in Fig. 5.
On the other hand, our theoretical formulas allow us to

extract the gravitational form factors from the J=ψ photo-
production data. Since the data are quite limited at this stage,
We choose to fit theGlueX total cross section and differential
cross section combined. If we have both Agð0Þ andmC fixed
to be the lattice values in order to avoid overfitting, we get
mA ¼ 1.64� 0.11 GeV, Cgð0Þ ¼ −0.84� 0.82. In Figs. 6
and 7, we compare the fit results with the data from GlueX.
The uncertainties of mA and Cgð0Þ indicate that the data are
more sensitive tomA rather thanCgð0Þ in the region ofGlueX
data. One can of course explore other fitting scenarios
as well.

B. ϒ photoproduction

The above result can be used to predict the ϒ photo-
production rate near threshold with Mϒ ¼ 9.46 GeV and
the wave function at origin for ϒ [49,50],

jψNRð0Þj2 ¼ 5.8588=ð4πÞ ðGeVÞ3: ð40Þ

Considering the effect of running coupling constant,
αS ¼ 0.2 is used for the ϒ production. Then, we have
the predicted total cross section as shown in Fig. 8 and the
predicted differential cross section in Fig. 9. The large mass
of ϒ implies that our calculation in the heavy meson limit
works better forϒ production, as there are fewer theoretical
uncertainties from higher-order correction. However, the
production rate is suppressed by the heavy meson mass,
and thus the cross section is much lower than J=ψ .

FIG. 5. Comparison of the cross section with gravitational form
factors given by lattice [35] with experiments data from SLAC
[47], Cornell [46], and GlueX [36].

FIG. 6. Fit total cross section for J=ψ production compared
with the total cross section measured at GlueX [36]. The
95% confidence band is shown as the shaded region hereafter.

FIG. 7. Fit differential cross section for J=ψ production
compared with the differential cross section at W ¼ 4.58 GeV
measured at GlueX [36].
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C. Quantum anomalous energy, mass radius, and
pressure distribution

The gravitational form factors measured from J=ψ
photoproduction can be used to study mass, spin, and
pressure properties of the nucleon [4,7,27,32,34].
There are two methods to access the quantum anomalous

energy through the matrix elements of the EMT. The first is
through thematrix element ofF2 suggested inRef. [2]. In our
factorization, this is a subleading contribution. Alternatively,
one can also access the same quantity by considering the
trace of the full EMT,

Ha ¼ hPjTμ
μjPi ð41Þ

¼ 1

4
ðAqð0Þ þ Agð0ÞÞMN; ð42Þ

where Aqð0Þ and Agð0Þ are traditionally interpreted as the
momentum fractions carried by quarks and gluons, respec-
tively. The above relation comes from the conservation of the
EMT. Thus, fitting Agð0Þ through heavy-quarkonium pro-
duction data, one obtains the gluonic contribution to the
quantum anomalous energy, and the result can be compared
with the vector-dominance model analysis [2,54]. Of course,

it also provides an alternative determination of the gluonic
momentum fraction in the nucleon. It shall be clear that our
formula for the cross section works for the large t. To
extrapolate to t ¼ 0, one has to learn the t dependence
through lattice QCD calculations.
The scalar and mass radii of the proton are defined

as [34]

hr2is ¼ 6
dAðtÞ
dt

− 18
Cð0Þ
M2

N
;

hr2im ¼ 6
dAðtÞ
dt

− 6
Cð0Þ
M2

N
: ð43Þ

The two different mass radii are related with the Cð0Þ
term as

hr2is − hr2im ¼ −12
Cð0Þ
M2

N
: ð44Þ

The gravitational form factors here are for the total EMT, so
one has AðtÞ ¼ AqðtÞ þ AgðtÞ and CðtÞ ¼ CqðtÞ þ CgðtÞ.
For the quark contribution, we use the lattice data
Cuþdð0Þ ¼ −0.267 or Cuþdð0Þ ¼ −0.421 depending on
the extrapolation method [55]. As for AuþdðtÞ, one could
also fit the form factor with the above dipole expansion as

AuþdðtÞ ¼
Auþdð0Þ	
1 − t

m2
Di;uþd



2
; ð45Þ

for which one has the dipole mass mDi;uþd ≈ 1.8 GeV and
Auþdð0Þ ≈ 0.5 [56]. Then, the quark form factors combined
with the above gluon form factors from fitting give

hr2iA ≡ 6
dAðtÞ
dt

≈ ð0.42 fmÞ2; ð46Þ

hr2iC ≡ −6
Cð0Þ
M2

N
≈ ð0.54 fmÞ2; ð47Þ

and then we have

hr2is ≈ ð1.03 fmÞ2; ð48Þ

hr2im ≈ ð0.68 fmÞ2: ð49Þ

One should be aware that those results are associated with
large uncertainties resulting from the lack of precision for
the fitted value Cgð0Þ ¼ −0.84� 0.82.
The gravitational form factor C also provides a direct

access to the pressure and shear force distributions of the
nucleon [32,57–59]. Given our fit value Cgð0Þ ¼ −0.84�
0.82 and combining with the lattice data mC ¼ 0.48 GeV
in the dipole assumption (38), the gluon contribution to the

FIG. 9. Solid line shows the predicted differential cross section
at W ¼ 11.5 GeV for ϒ photoproduction near threshold.

FIG. 8. Solid line shows the predicted total cross section for ϒ
photoproduction near threshold.
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pressure distribution is shown as Fig. 10. Here, we have
neglected the C̄ contribution.
The above results serve as an example of measuring the

gravitational form factors from the photoproduction of heavy
vector mesons. Although the results rely on the input from
lattice calculations as well as themodels for the form factors,
it can be a useful tool when more data are available and
higher-order corrections are taken into account. One can also
make a full GPD-based analysis directly using Eq. (14).

VI. CROSS SECTION WITH POLARIZATION

Up to now, we have only considered the unpolarized
cross section. In this section, we study the polarization
effect. By measuring the polarization of the photon and the
vector meson, we are able to verify the specific structure
ε�V · ε of the factorization formula (13) which will serve as a
crucial test of the factorization formula itself. Since
Eq. (13) also predicts that the matrix element Gðt; ξÞ
contains all the proton polarization dependence, more
information on gravitational form factors can be extracted
by measuring the polarization of the proton. Notice that the
measurement of the polarization of the final-state proton
can be nontrivial [60,61]. In this section, we shall study the
polarized cross section from two different point of view, the
vector-meson polarization and the proton polarization.
Polarization observables allow us to separate out the

contributions from different form factors. In particular,
even though the Bq;gðtÞ is small, the polarized cross
sections can be sensitive to the BgðtÞ form factor which
is related to the gluon angular momentum [27]. If given
sufficient data with high precision, it might be possible to
shed some light on the gluon angular momentum contri-
bution to the proton spin.

A. Vector meson polarization

The total cross section is proportional to jMðεV; εÞj2,
and thus one has from Eq. (13)

dσ
dt

∝ ε�μðq; λÞενðq; λÞε�μV ðK; λ0ÞενVðK; λ0Þ: ð50Þ

In general, one could define the photon polarization
tensor and meson polarization as ρμνðqÞ and ρVμνðKÞ so
dσ
dt ∝ ρμνðqÞρμνV ðKÞ. For a physical photon or meson, the
polarization tensor is simply

ρμνðqÞ ¼ ε�μðq; λÞενðq; λÞ; ð51Þ

ρVμνðKÞ ¼ ε�V;μðK; λ0ÞεV;νðK; λ0Þ; ð52Þ

while in the case in which they are virtual particle coupled
with leptonic current, the polarization tensor can be written
with those leptonic current as

ρμνðqÞ ¼ ūðl1; S1Þγμuðl2; S2Þūðl2; S2Þγνuðl1; S1Þ; ð53Þ

with li and Si the momenta and the polarization vectors
of the lepton and antilepton pair. They satisfy Si · li ¼ 0,
S2i ¼ −1, and similarly for the vector meson. If we consider
the photoproduction process when the photon is on shell
and unpolarized, the polarization tensor can be written as

ρμνðqÞ ¼
1

2
gμigνjðδij − q̂iq̂jÞ; ð54Þ

where q̂i is the unit vector in the direction of photon three-
momentum. As for the vector meson, assuming the final
leptons are unpolarized and averaging over the lepton
polarization, we have

ρVμνðKÞ ¼ −
1

2
K2gμν þ l1;μl2;ν þ l2;μl1;ν; ð55Þ

with l1, l2 the momenta of the two leptons satisfying
l2 þ l1 ¼ K, and thus we have

dσ
dt

∝
K2

2
þ ⃗l1 · ⃗l2 − q̂ · ⃗l1q̂ · ⃗l2: ð56Þ

The last term q̂ · ⃗l1q̂ · ⃗l2 indicates that the cross section
depends on the angle between the momentum of outgoing
lepton and the momentum of initial photon and can be
examined by experiments.

B. Proton polarization

Here, we consider the polarization of the initial and final
proton. For a demonstration, let us consider the asymmetric
difference δjGðt; ξ; S0; SÞj2 as

δjGðt;ξ;S0;SÞj2≡ jGðt;ξ;S0;SÞj2− jGðt;ξ;S0;−SÞj2; ð57Þ
which measures the difference in the cross section when the
spin Sμ of the initial proton has been flipped. Notice the
polarization vector satisfies S · P ¼ 0 and S2 ¼ −1 and
similarly for S0. Then, one has

FIG. 10. The gluon contribution to the pressure distribution
inside the proton from the combined lattice calculation [59] and
our fit to GlueX data.
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δjGðt; ξ; S0; SÞj2 ¼ 1

ξ4

�
−S · S0

��
1 −

t
4M2

N

�
E2
2 − 2ðE2 þH2ÞE2 þ ð1 − ξ2ÞðE2 þH2Þ2

�

þ S0þðP0 · SÞ
P̄þ ½H2 þ E2�½ð1þ ξÞH2 þ ξE2� þ

ðP · S0ÞðP0 · SÞ
2M2

N
E2
2

þ SþðP · S0Þ
P̄þ ½H2 þ E2�½ð1 − ξÞH2 − ξE2� þ

SþS0þt
2ðP̄þÞ2 ðH2 þ E2Þ2

�
; ð58Þ

where E2 ≡ E2ðt; ξÞ and H2 ≡H2ðt; ξÞ are leading moments of GPDs defined in Eq. (23). When the initial proton is
transversely polarized, one can show that

jGðt; ξ; S0; SÞj2 ¼ 1 − S · S0

4

X
S;S0

jGðt; ξ; S; S0Þj2 þ S0þðP0 · SÞ
2ξ4P̄þ ½H2 þ E2�½ð1þ ξÞH2 þ ξE2� þ

ðP · S0ÞðP0 · SÞ
4ξ4M2

N
E2
2: ð59Þ

In particular, if both S and S0 are perpendicular the
scattering plane, then only the first term in Eq. (59)
survives, and the cross section is nonzero only when S,
S0 are parallel. For generic transverse spin S, S0, the second
term is also nonzero. By measuring the cross section at
different S, S0, one is allowed to extract all three form
factors.

VII. CONCLUSION

In this paper, we have made a heavy-quark expansion for
the vector-meson production at the threshold region in
QCD. The result shows that the cross section can be used to
measure the form factors of the gluonic EMT. Before
ending the paper, we would like to make several comments.
First, our calculation is performed only at leading order

in OðMN
MV

Þ and OðαSÞ. For application to J=ψ production,
since the J=ψ mass is not heavy enough, one expects large
mass correction and high-twist effect. A comprehensive
study of the mass correction is definitely very important but
is beyond the scope of the current paper. Beyond leading
order inOðαSÞ, there are quantum corrections both from the
emission of virtual gluon and from the internal motion of
the vector meson [29]. For production of J=ψ , the order
OðαsÞ corrections can be significant [29]. A calculation of
these effects will be left to a future work.
Second, we should emphasize again that our result

should be viewed as a generalization of the leading-order
factorization in Ref. [29]. The kinematic region considered
therein is large W and small momentum transfer t,
corresponding to the large W part of the tmin line. The
heavy-quark limit is performed after taking the large W
limit. In this work, we have extended the factorization
along the tmin line into the entire threshold region whereW
is of the same order of MV and is a single ultraviolet scale.
While the factorization seems to work in leading and next

leading orders, the validity of the factorization theorem to
all orders in perturbation theory remains to be established.
Third, although in this paper we considered only the

small Q2 ∼ 0 region, at large Q2, the factorization formula
in terms of GPD should remain valid. In fact, as Q2

increase, the incoming proton becomes faster, and the
momentum transfer becomes larger. The light-cone struc-
ture shall be more relevant. This picture differs qualitatively
from the Euclidean OPE approach in Ref. [30].
Forth, we comment on the scalar contributions. In

Eq. (13), only the FþiFþi component has been kept due
to the standard power-counting rule of collinear gluon. If
one keeps all the terms, then the Fþ−Fþ− contribution,
corresponding to the F2 contribution, is proportional to
1 − ξ2 and is suppressed in the heavy-quark limit. A
detailed study of F2 and the three-gluon contribution is
left to future work.
Finally, one should also notice that, although in the

current work only two-gluon exchange has been consid-
ered, starting from twist-3, there can be three-gluon
contributions as well. It has been argued in Ref. [18] that
in the near-threshold region the three gluon contributions
might be important. To further clarify the importance of the
three and more gluon contributions requires a thorough
power-counting analysis in the threshold region. A
thorough study of three-gluon contribution will be left to
a future work.
In conclusion, we have shown that the factorization

formula in terms of gluon GPD for the photo or elector
production of heavy vector meson in Ref. [29] remains to
be valid in the near-threshold region. At a large vector-
meson mass, the skewness ξ is close to 1, and the amplitude
is dominated by the leading moment of the gluon GPD, the
gravitational form factors of the proton. This allows us to
extract alternatively the gluonic contribution to the momen-
tum and anomalous quantum energy. It also allows us to
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extract the gluonic C form factor (or D terms) and
determine the mass radius and pressure distribution of
the proton. We have applied our formalism to the case of
unpolarized J=ψ production with GlueX data, and the
result is encouraging.

ACKNOWLEDGMENTS

We thank Y. Hatta, D. Kharzeev, J. P. Ma, A. Schäfer,
F. Yuan, and I. Zahed for useful discussions and

correspondence. We particularly thank Z.-E.Meziani for
inspiring us to study heavy-quarkonium threshold produc-
tion and polarization observables. This research is partly
supported by the U.S. Department of Energy, Office of
Nuclear Physics, under Contract No. DE-SC0020682
and by Southeastern Universities Research Association
(SURA). Y. G. is partially supported by a graduate fellow-
ship from Center for Nuclear Femtography, SURA,
Washington, D. C.

[1] S. Joosten and Z. E. Meziani, Proc. Sci., QCDEV2017
(2018) 017 [arXiv:1802.02616].

[2] D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105
(1996).

[3] D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev,
Eur. Phys. J. C 9, 459 (1999).

[4] X.-D. Ji, Phys. Rev. Lett. 74, 1071 (1995).
[5] X.-D. Ji, Phys. Rev. D 52, 271 (1995).
[6] X. Ji and Y. Liu, arXiv:2101.04483.
[7] D. E. Kharzeev, arXiv:2102.00110.
[8] M. B. Voloshin, Nucl. Phys. B154, 365 (1979).
[9] K. Gottfried, Phys. Rev. Lett. 40, 598 (1978).

[10] T. Appelquist and W. Fischler, Phys. Lett. B 77, 405
(1978).

[11] G. Bhanot and M. E. Peskin, Nucl. Phys. B156, 391 (1979).
[12] O. Gryniuk and M. Vanderhaeghen, Phys. Rev. D 94,

074001 (2016).
[13] O. Gryniuk, S. Joosten, Z.-E. Meziani, and M.

Vanderhaeghen, Phys. Rev. D 102, 014016 (2020).
[14] Y. Hatta and D.-L. Yang, Phys. Rev. D 98, 074003 (2018).
[15] Y. Hatta, A. Rajan, and D.-L. Yang, Phys. Rev. D 100,

014032 (2019).
[16] K. A. Mamo and I. Zahed, Phys. Rev. D 101, 086003

(2020).
[17] K. A. Mamo and I. Zahed, arXiv:2103.03186.
[18] S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Phys.

Lett. B 498, 23 (2001).
[19] L. Frankfurt and M. Strikman, Phys. Rev. D 66, 031502

(2002).
[20] M. G. Ryskin, Z. Phys. C 57, 89 (1993).
[21] S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and

M. Strikman, Phys. Rev. D 50, 3134 (1994).
[22] L. Frankfurt and A. Levy, J. Phys. G 22, 873 (1996).
[23] L. Frankfurt, W. Koepf, and M. Strikman, Phys. Rev. D 54,

3194 (1996).
[24] L. Frankfurt, W. Koepf, and M. Strikman, Phys. Rev. D 57,

512 (1998).
[25] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D

56, 2982 (1997).
[26] D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J.
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