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1 Introduction

The transverse momentum dependent (TMD) factorization approach has a long history
that started from the “DDT formula” [1], and Collins-Soper-Sterman resummation [2, 3].
Nowadays, the TMD factorization approach is a well-developed framework that consis-
tently describes various processes in terms of TMD distribution functions (for a review of
the present status and latest development, see [4–6]). Even though the recent achievements,
the TMD factorization theorem still lacks the systematicness of collinear factorization the-
orems. The main reason is that in its heart, the collinear factorization is based on the
method of the operator product expansion [7], which allows the first-principles treatment,
independently of any hadronic model. The absence of a similar systematic approach for
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the TMD factorization raises a series of problems, especially when extending the formalism
beyond the leading power approximation. In this work, we propose a formal derivation of
the TMD operator expansion, overcoming the present status quo. Structurally, it is similar
to the light-cone operator product expansion [8, 9] for some specific (and broadly known)
cross-sections.

The TMD factorization describes inelastic processes with two-detected states (initial
or final). The main examples are the Drell-Yan (DY) process, semi-inclusive deep-inelastic
scattering (SIDIS), and semi-inclusive annihilation (SIA). The information about the non-
perturbative structure is stored in the TMD distribution functions (it could be TMD parton
distributions, TMD fragmentation function, TMD jet-function, etc.). The order parame-
ter of the TMD factorization is qT /Q, where Q is the momentum of the hard probe and
qT is its transverse component. The latest global analyses [10–12] demonstrate that the
TMD factorization is valid for qT /Q . 0.25. Beyond that limit, the TMD factorization
curve quickly deviates from the experimental measurements. To extend the region of TMD
factorization, one needs to incorporate power corrections.

In the past years, computations of power correction for TMD factorized cross-sections
have been made by several groups, see [13–19]. These computations required an update of
existing methods. In this work, we go further and present a different approach, which is a
natural extension of techniques used for studies of power corrections in the collinear factor-
ization, and which has not been discussed in the framework of TMD factorization yet (as
far as we know). Namely, we use the background field method and derive the factorization
directly in the space of field functionals (operators). For that reason, we call the tech-
nique — TMD operator expansion. Starting from the definition of the QCD Lagrangian,
we re-derive some known results such as the leading power (LP) TMD factorization, and
we proceed extending it to the next-to-leading power (NLP). Since the computation is
made at the level of operators, the results can be applied to other cases (partly extending
the present discussion), such as processes with jets or factorization with generalized TMD
distributions (GTMDs). Many solutions and more minor results derived in this paper are
already known or discussed in the literature, but the operational framework presented here
is totally new.

There are several sources of power corrections to the factorization theorem. We classify
them as follows:

• power suppressed contributions to the cross-section due to convolution between
hadronic and leptonic tensors or phase-space factors. Usually, these corrections can
be accounted exactly, and in any case, should not be mixed with QCD corrections. We
solely concentrate on the hadronic tensor, and we do not consider these corrections
in the present work;

• corrections in the values of kinematic parameters that flow with the change of the
ratio qT /Q. For example, the values of effective momentum fractions in DY process
are x1,2 = q±/P±1,2 = xBj1,2

√
1 + q2

T /Q
2. Often, one expands these variables into series,

generating a tail of power suppressed contributions. Such expansions are unnecessary
and even harmful since the values of kinematic variables are unique for all powers,
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and their exact accounting supports the frame-independence of the final expression.
We make the computation in position space, which allows us to identify values of
kinematic parameters unambiguously from the definition of the hadronic tensor;

• kinematic power corrections. These are contributions of a higher power with the op-
erator content of lower power terms. The Wandzura-Wilczek relations [20] provide a
famous example, which can also be generalized to the TMD case [21]. These correc-
tions inherit the structure of lower power terms. They are essential for the restoration
of global properties violated by the factorization theorems, such as electromagnetic
(EM) gauge invariance, translation and frame independence, etc. We demonstrate
that NLP kinematic corrections restore the EM gauge invariance of hadronic tensor
up to q2

T /Q
2, as expected;

• genuine power corrections incorporate new operators, and hence new TMD distribu-
tions.

In our work, we study only QCD specific power corrections, i.e., kinematic and genuine.
The separation of kinematic and genuine power corrections is an important and non-trivial
task [22]. The most efficient way to solve it consists of ordering the operators with respect
to their evolution properties. For the collinear distributions, it implies the separation of
operators with respect to the geometrical twist. For TMD distributions, we introduce the
notion of TMD-twist, such that TMD distributions with different TMD-twist have separate
evolution, and thus their matrix elements are independent observables.

The essential feature of the TMD factorization is the appearance of infinite light-like
gauge links [23, 24]. They are responsible for all distinctive features of TMD distributions,
such as rapidity divergences, nonperturbative evolution, T-odd distributions, and process
dependence. The reverse of the medal is that one cannot derive TMD factorization from
a local operator expansion. This fact leads to the absence of such an important ordering
criterium as the twist of the TMD operator. So far, that has not been a problem, since
the leading term of the TMD factorization can be derived with the analysis of Feynman
diagrams [25], or using the soft-collinear effective theory (SCET) approach [26], and it does
not need the systematization of TMD operators. However, dealing with power corrections
requires the definition of some ordering for the operator basis. In this work, we intro-
duce the twist of the TMD operator (or TMD-twist) given by a pair of numbers, which
are geometrical twists of collinear substructures of the TMD operator. This definition of
TMD-twist allows for a certain separation of kinematic and genuine contributions of power
corrections.

The main aim of this work is the development of a theoretical basis for TMD fac-
torization beyond the leading power. To keep the discussion as general as possible, we
perform all computations at the level of operators without specifying a process or refer-
ring to cross-sections. The operator representation allows us to keep expressions relatively
compact and avoid long algebraic structures that appear at the TMD distributions level.
The expressions for NLP cross-sections will be made in subsequent publication.
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The background field method is particularly suitable for the computation of power cor-
rections. For applications of this method to the collinear factorization see e.g. [22, 27–29].
This method computes the operator expansion directly from the function integral, avoiding
any matching procedure typical for many approaches. It allows keeping track of the internal
structure and the operators’ relations at each evaluation step. The computation is natu-
rally performed in position space (although it can easily be turned to momentum space),
simplifying the NLP computations. In the case of TMD factorization, the background field
Lagrangian [30, 31] must be updated to the case of two independent background fields (we
call it a composite background field), which is done in appendix A.

The paper is split into two logical parts. The first part includes sections 2, 3, 4, and
it provides a review of the factorization method in general terms. In particular, section 2
introduces the main definitions, such as the definition of hadronic tensors, the composite
background field, counting rules, and the notion of effective field operators. Section 3 is
devoted to the problem of boundary conditions and gauge fixation for background field.
We demonstrate that the choice of boundary conditions and an adequate gauge fixing are
related to the analytical properties of generating functions, which in turn are tied to the
underlying process. Accounting for these properties leads to the famous process dependence
at the level of TMD operators. Section 4 is devoted to the general discussion about the
structure of power and perturbative expansion. In this section, we introduce the concept
of TMD-twist and TMD operator expansion. The second part consists of sections 5, 6, 7, 8
and 9, and it is devoted to the computation of TMD factorization at NLP and NLO. For
pedagogical reasons, the computation is presented with many details. The tree order and
definition of all operators is given in section 5. Section 6 presents the NLO computation
of the hard coefficient function. The problem of soft overlap and subtraction of overlap
region is discussed in section 7. Section 8 considers the properties of TMD operators and it
is split into subsections 8.1, 8.2, 8.3 that treat respectively rapidity divergences, ultraviolet
(UV) divergences and the renormalization of TMD operators. Finally, in section 9, we
demonstrate the cancellation of divergences among elements of TMD factorization, fix the
scheme dependence and derive the evolution equations for NLP TMD operators.

The text is supplemented by appendices, which contain additional technical details.
Appendix A presents the expression for the QCD Lagrangian in the composite background
field. Appendix B demonstrates the technique of computation in the composite background
field. Appendix C contains the expressions for evolution kernels in momentum space.

One of the difficulties in writing about power corrections comes from the notation. On
the one hand, the topic is complicated and requires accurate and exhaustive formulation.
On the other hand, all-inclusive writing conceals the general structure of the expression,
which is often simple. For that reason, we accept the following convention: we drop the
parts of notation that are not important in the present context, such as, color and spinor
indices, arguments, etc. However, we keep all essential elements, and a cautious reader
should be able to restore all missed components if needed.
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2 General structure of TMD factorization

In this section we provide the notation and the basic definitions that are used in this work.

General setup. We study the hadronic tensors for Drell-Yan, h1 + h2 → γ∗ +X, semi-
inclusive deep inelastic scattering (SIDIS), h1+γ∗ → h2+X and semi-inclusive annihilation
(SIA), γ∗ → h1 + h2 +X,

Wµν
DY =

∫
d4y

(2π)4 e
−i(yq)∑

X

〈p1, p2|Jµ†(y)|X〉〈X|Jν(0)|p1, p2〉, (2.1)

Wµν
SIDIS =

∫
d4y

(2π)4 e
i(yq)∑

X

〈p1|Jµ†(y)|p2, X〉〈p2, X|Jν(0)|p1〉, (2.2)

Wµν
SIA =

∫
d4y

(2π)4 e
i(yq)∑

X

〈0|Jµ†(y)|p1, p2, X〉〈p1, p2, X|Jν(0)|0〉. (2.3)

where Jµ(y) is the electro-magnetic (EM) current (for brevity we omit the electric charge)

Jµ(y) = q̄γµq(y), (2.4)

and q(y) is a quark field. At sufficiently high energies, the current should be replaced by
the electro-weak (EW) current. The difference between EM and EW currents is only in
the tensor structure and does not impact the factorization procedure, so that we stick to
the EM case.

The factorization for all three processes is almost identical, since (in our approach) it
is derived at operator level. The main differences appear in the boundary conditions for
the fields and the sign of the Fourier exponent (section 3). For concreteness we center our
discussion on the factorization of the DY reaction, commenting necessary modifications for
SIDIS and SIA cases.

The kinematics of the process is defined by the photon momentum qµ, and the hadrons
momenta pµ1 and pµ2 . To avoid complications related to the target mass corrections we
assume that hadrons are massless,

p2
1 = p2

2 = 0. (2.5)

Hadrons momenta define two light-cone directions, which we traditionally denote as nµ
and n̄µ with (nn̄) = 1,

pµ1 = n̄µp+
1 , pµ2 = nµp−2 . (2.6)

We also introduce the usual notation for components of the light-cone decomposition of a
vector,

vµ = n̄µv+ + nµv− + vµT , (2.7)

and vµT is a component orthogonal to nµ and n̄µ. The invariant mass of the virtual photon is

Q2 = q2 = 2q+q− − q2
T , (2.8)
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where q2
T = −qµT qTµ > 0. In the case, of SIDIS Q2 = −q2. The TMD factorization is

derived (as it is demonstrated later) in the limit

Q2 � Λ2, Q2 � q2
T = fixed, (2.9)

where Λ is a typical low-energy QCD scale. It implies that the light-cone components of qµ
are large q+ ∼ q− ∼ Q. Additionally, we suppose that q+/p+

1 and q−/p−2 are fixed, which
corresponds to a non-small-x regime.

Often the limit in eq. (2.9) is quoted as q2
T /Q

2 � 1, which can lead to some misun-
derstanding, because q2

T /Q
2 � 1 can be also interpreted as q2

T → 0 at fixed Q2. In this
case, the corrections Λ/Q would be present even at qT = 0.

The hadronic tensor in eq. (2.1) is symmetric Wµν = W ∗νµ and transverse to qµ

qµW
µν = 0, (2.10)

as a consequence of EM gauge invariance. The transversality relation (2.10) is not ho-
mogeneous in power counting, because it involves simultaneously large q± and small qµT
components of photon’s momentum and therefore, any truncated power expansion consis-
tent with eq. (2.9) unavoidably violates the condition eq. (2.10) up to higher power terms.

Field modes. In order to apply the background-field method we need to write down the
hadronic tensor in eq. (2.1) as a functional integral and to identify the field modes relevant
for the task.

The hadronic tensors that we consider have two causally-independent sectors which
exchange real emissions. In this case, the functional integral can be written using Keldysh’s
method [32]. We introduce two copies of QCD fields, which we address as causal and anti-
causal fields (indicated by superscripts (+) and (−) respectively). These fields obey the
usual quantization rules with (anti-)time-ordered evolution operator for (anti-)causal fields.
The values of fields coincide at the future boundary limt→∞ q

(+)(t, x) = limt→∞ q
(−)(t, x)

and limt→∞A
(+)
µ (t, x) = limt→∞A

(−)
µ (t, x). On the perturbative level, it leads to the real-

particle propagator connecting (+) and (−) fields, which is equivalent to usual Feynman
rules for cut diagrams. More information on this method can be found, f.i. in [9, 33–35]. In
the present context, the method is necessary because it allows to write a non-time ordered
operator as a functional integral. The hadronic tensor reads

Wµν
DY =

∫
d4y

(2π)4 e
−i(yq)

∫
[Dq̄(+)Dq(+)DA(+)]

∫
[Dq̄(−)Dq(−)DA(−)] (2.11)

×Ψ∗(−)
p1 Ψ∗(−)

p2 eiS
(+)
QCD−iS

(−)
QCD J†(−)

µ (y)J (+)
ν (0) Ψ(+)

p1 Ψ(+)
p2 ,

where Ψp is the hadron’s wave function (formed at the distant past), and SQCD is the
QCD’s action. The superscript (±) indicates that the element is composed only from
causal/anti-causal fields. The functional integration measure incorporates all necessary
normalization factors.

In the case of SIDIS or SIA the only change in eq. (2.11) is in the hadron wave-
functions, that should be replaced by the wave-functions of produced hadrons according to
the process.

– 6 –



J
H
E
P
0
1
(
2
0
2
2
)
1
1
0

The next step is to identify the relevant field modes and the ones that are to be
integrated, or kept. We suppose that a fast-moving hadron is composed only of fields with
momenta along the hadron’s one. So, for a hadron with the momentum along n, the fields
which constitute it obey the counting (same for (+) and (−) components)

{∂+, ∂−, ∂T } qn̄ . Q{1, λ2, λ} qn̄,
{∂+, ∂−, ∂T }Aµn̄ . Q{1, λ2, λ}Aµn̄, (2.12)

where λ is a generic small scale, λ ∼ Λ/Q. Similarly, a hadron with the momentum along
n direction is composed out of fields with the counting

{∂+, ∂−, ∂T } qn . Q{λ2, 1, λ} qn,
{∂+, ∂−, ∂T }Aµn . Q{λ2, 1, λ}Aµn. (2.13)

In the literature these fields are identified as n and n̄-collinear or collinear and anti-collinear
fields (f.i. [36, 37]), or target and projectile fields (f.i. [35]). The background fields, in its
own kinematic sector, are ordinary QCD fields and thus satisfy the QCD equation of motion
(EOMs). Let us emphasize the “.”-sign which is used in these formulas. It indicates that
the fields incorporate all possible momenta with the corresponding boundary. This is a
principal difference of the background approach from SCET, where the field modes are
defined in “boxes” of momentum space, alike {∂+, ∂−, ∂T } qn̄ ∼ Q{1, λ2, λ} qn̄, i.e. their
momentum is localized around a given scale (that labels the fields). Another difference is
that modes scaling as {∂+, ∂−, ∂T } q ∼ Q{λ, λ, λ} q (called “soft” in SCET nomenclature)
are not present in our construction.

It is convenient to distinguish “good” and “bad” spinor components of the quark field

qn̄/n(x) = ξn̄/n(x) + ηn̄/n(x). (2.14)

They are defined as (same for (+) and (−) components)

ξn̄(x) = γ−γ+

2 qn̄(x), ηn̄(x) = γ+γ−

2 qn̄(x), (2.15)

ξn(x) = γ+γ−

2 qn(x), ηn(x) = γ−γ+

2 qn(x). (2.16)

The (massless) quark EOMs /Dq(x) = 0, in the terms of these components are

γ+D−[An̄]ξn̄ = − /DT [An̄]ηn̄, γ−D+[An̄]ηn̄ = − /DT [An̄]ξn̄, (2.17)
γ−D+[An]ξn = − /DT [An]ηn, γ+D−[An]ηn = − /DT [An]ξn, (2.18)

where

Dµ[A] = ∂µ − igAµ, (2.19)

is the covariant derivative. The EOMs in eq. (2.17), (2.18) imply that “good” and “bad”
components have different effective counting,

ηn̄/n ∼ λ ξn̄/n. (2.20)
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Using tree-level computations (see section 5) one finds the power counting for individual
components,

ξn̄/n ∼ λ, ηn̄/n ∼ λ2. (2.21)

The counting rules for components of the gluon field also follows from eq. (2.17), (2.18),

A+
n̄ ∼ 1, AµTn̄ ∼ λ, A−n̄ ∼ λ2,

A+
n ∼ λ2, AµTn ∼ λ, A−n ∼ 1. (2.22)

Effective operators. In essence, the background-field method consists in splitting QCD
fields into dynamical and background components with the subsequent (functional) in-
tegration of the former. In many aspect, the procedure resembles the Wilsonian renor-
malization group formulation and it is the simplest way to obtain the operator product
expansion (OPE) with any given power counting. It is also a very explicit method to study
the power corrections to any OPE (see e.g. power corrections to DIS [9, 27], DVCS [22],
quasi-distributions [38], small-b matching for TMD distributions [29]).

The distinctive feature of the TMD factorization from cited cases is that the back-
ground field has two independent components, collinear and anti-collinear. Thus the
causal/anti-causal fields in the functional integral in eq. (2.11) split as

q(±)(x) = ψ(±)(x) + q(±)
n (x) + q

(±)
n̄ (x),

A(±)
µ (x) = B(±)

µ (x) +A(±)
nµ (x) +A

(±)
n̄ µ (x), (2.23)

where ψ and B are the dynamical components which cover the remaining part of the
Hilbert space, see figure 1. Since the fields represent independent Fourier components,1
the integration measure can be split as

[Dq̄(±)Dq(±)DA(±)] = [Dψ̄(±)Dψ(±)DB(±)][Dq̄(±)
n̄ Dq

(±)
n̄ DA

(±)
n̄ ][Dq̄(±)

n Dq(±)
n DA(±)

n ].
(2.24)

The separation of the field modes is done respecting gauge-invariance. The Lagrangian
is invariant only under the gauge-transformation of all fields by the same transformation
parameter (irrespective of any power counting). Nonetheless, the gauge-transformation for
the background field and the dynamical field can be decoupled, if one uses the so-called
background gauge [30, 31]. In this case the (covariant-gauge-like) gauge fixation condition
for the dynamical field takes the form

[∂µδAC + gfABC(A(±)B
n̄µ +A(±)B

nµ )]B(±)µC = Dµ[A(±)
n̄ +A(±)

n ]B(±)µ = 0, (2.25)
1This statements refers to the fact that the loop-momentum is cut following the counting rules in

eq. (2.12), (2.13). However, practically one uses the dimensional regularization and each field span the
whole momentum-space, but each field sector is renormalized at a scale consistent with its counting. Such
a mismatch between counting rules and integration regions manifests itself in ultraviolet power divergences
(which are omitted in the dimensional regularization) and renormalon divergences of the perturbative
series [39].
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Figure 1. Domains of fields in the plane of light-cone momenta components according to
eq. (2.12), (2.13).

where Dµ is the covariant derivative (2.19). This gauge fixation modifies vertices of
background-to-gluon (ghost) interaction. The advantage of such a choice is that the back-
ground fields transform independently from the rest and their gauge can be fixed in any
convenient way. This is one of the most profitable features of the background field method,
which essentially simplifies the analysis.

Formally, the collinear and anti-collinear background fields transform with the same
gauge parameter. In the region where the momenta of the fields do not overlap (i.e. for
∂µ > λ2Q) we treat them as totally independent fields, and thus their gauge transformations
are also independent. The problems arise where sectors overlap (see barred part of figure 1).
To avoid this region, we momentarily restrict our discussion to the non-small-x domain with
pparton & λQ. We will return to the discussion of the mode overlap in section 7.

After implementing these definitions in the functional integral in eq. (2.11), the hadronic
tensor reads

Wµν
DY(unsub.) =

∫
d4y

(2π)4 e
−i(yq) (2.26)

×
∫

[Dq̄(+)
n̄ Dq

(+)
n̄ DA

(+)
n̄ ][Dq̄(−)

n̄ Dq
(−)
n̄ DA

(−)
n̄ ]eiS

(+)
QCD[q̄n̄,qn̄,An̄]−iS(−)

QCD[q̄n̄,qn̄,An̄]

×
∫

[Dq̄(+)
n Dq(+)

n DA(+)
n ][Dq̄(−)

n Dq(−)
n DA(−)

n ]eiS
(+)
QCD[q̄n,qn,An]−iS(−)

QCD[q̄n,qn,An]

×
∫

[Dψ̄(+)Dψ(+)DB(+)][Dψ̄(−)Dψ(−)DB(−)]eiS
(+)
QCD[ψ̄,ψ,B]−iS(−)

QCD[ψ̄,ψ,B]

×Ψ∗(−)
p1 Ψ∗(−)

p2 J†(−)
µ [ψ̄ + q̄n̄ + q̄n, . . .](y) J (+)

ν [ψ̄ + q̄n̄ + q̄n, . . .](0)Ψ(+)
p1 Ψ(+)

p2 eiS
(+)
int −iS

(−)
int ,

where in the square brackets we indicate the field content of each term (for brevity we omit
superscripts (±) on these arguments and indicate similar arguments for currents by dots).
The label “unsub.” states that this expression has an unsubtracted overlapped region that
is discussed in section 7. The gauge fixing terms are included in the SQCD exponents. The
cross-modes-interaction term is

Sint = SQCD[ψ̄ + q̄n̄ + q̄n, . . .]− SQCD[q̄n̄, qn̄, An̄]− SQCD[q̄n, qn, An]− SQCD[ψ̄, ψ,B].
(2.27)
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Its explicit form in the background field-gauge is derived in appendix A, eq. (A.9). The
derivation takes into account the equations of motion (EOMs) for collinear and anti-
collinear fields. The cross-modes-interaction term can be split into four terms: Snh
(Sn̄h) (A.10) describing the interaction of (anti-)collinear fields with hard fields; Snn̄ de-
scribing the direct interaction of collinear and anti-collinear fields (A.11); and Snn̄h (A.11)
describing the interaction of all fields simultaneously. Each action Snh and Sn̄h is equal to
the usual QCD action with background field [31], while Snn̄h and Snn̄ are specific for the
composite background case. Let us mention that Snn̄ = O(λ3) due to the power-counting
in eq. (2.21), (2.22).

Before integrating over the hard modes we specify the content of the hadronic wave
functions. The main assumption of the parton model is that the hadron is composed of
fields collinear with respect to its momentum,

Ψp1 = Ψp1 [q̄n̄, qn̄, An̄], Ψp2 = Ψp2 [q̄n, qn, An]. (2.28)

Once the wave functions are independent of hard mode, we integrate over it and deduce
the expression

Wµν
DY(unsub.) =

∫
d4y

(2π)4 e
−i(yq) (2.29)

×
∫

[Dq̄(+)
n̄ Dq

(+)
n̄ DA

(+)
n̄ ][Dq̄(−)

n̄ Dq
(−)
n̄ DA

(−)
n̄ ]eiS

(+)
QCD[q̄n̄,qn̄,An̄]−iS(−)

QCD[q̄n̄,qn̄,An̄]

×
∫

[Dq̄(+)
n Dq(+)

n DA(+)
n ][Dq̄(−)

n Dq(−)
n DA(−)

n ]eiS
(+)
QCD[q̄n,qn,An]−iS(−)

QCD[q̄n,qn,An]

×Ψ∗(−)
p1 [q̄n̄, qn̄, An̄]Ψ∗(−)

p2 [q̄n, qn, An]J µνeff [q̄n̄, q̄n, . . .](y) Ψ(+)
p1 [q̄n̄, qn̄, An̄]Ψ(+)

p2 [q̄n, qn, An],

where J µνeff [q̄n̄, q̄n, q̄s, . . .] depends on all background (causal and anti-causal, collinear and
anti-collinear) modes and is defined as

J µνeff [q̄n̄, q̄n, . . .](y) =
∫

[Dψ̄(+)Dψ(+)DB(+)][Dψ̄(−)Dψ(−)DB(−)] (2.30)

× J†(−)
µ [ψ̄ + q̄n̄ + q̄n, . . .](y)J (+)

ν [ψ̄ + q̄n̄ + q̄n, . . .](0)eiS
(+)
QCD[ψ̄,ψ,B]−iS(−)

QCD[ψ̄,ψ,B]eiS
(+)
int −iS

(−)
int .

The effective operator satisfies

J µν(y) = J †νµ(−y), (2.31)
∂

∂yµ
J µν(y) = 0, (2.32)

which are consequences of symmetry and transversality of the hadronic tensor.
In the end of the section let us sketch the further steps of the factorization procedure,

which are discussed in detail in section 4. The effective operator is an infinite series of
individually gauge-invariant terms. This sum can be ordered with respect to λ,

J µνeff [q̄n̄, q̄n, . . .](y) =
∞∑
N=0

∑
k

J µνN,k[q̄n̄, q̄n, . . .](y), (2.33)
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where N represents power order (J µνN,k ∼ λN+4), and k enumerates the operators with the
same power counting. Generally, each J µνN,k is a convolution of background fields, and it
can be written in the schematic form

J µνN,(a,b)[q̄n̄, q̄n, . . .](y) = CµνN,(a,b)(y)⊗Oa[q̄n̄, qn̄, An̄]⊗Ob[q̄n, qn, An], (2.34)

where CµνN,(a,b) is a coefficient function, Oa are some operators (the possible multi-index
and multi-position structure is encoded in the single label a) that also depend on y, and
⊗ represents a convolution in variables and indices.

Let us note, that ordering of operators J µνN,k by power counting implies the expansion
of components along “slow”-direction, f.i. qn̄(x + nx0) = qn̄(x) + O(λ2) (for non-extreme
x0). The resulting derivatives contribute to the operators at higher powers. Expansions
that involve yµ need special care. The counting rules for the components of yµ are (yq) ∼ 1,
that gives

{y+, y−, yT } ∼ Q−1{1, 1, λ−1}. (2.35)

Therefore, the transverse derivatives which involve y have the compensating factor yT ∼
λ−1. The combination yµT∂µ ∼ 1 is not suppressed, in contrast to other transverse deriva-
tives. Due to it, all dynamics in the transverse plane in the final expression is tied to y.

Changing the (functional) integration and summation order in eq. (2.29) we get

Wµν
DY (unsub.) =

∞∑
N=0

∑
(a,b)

∫
d4y

(2π)4 e
−i(yq)CµνN,(a,b)(y)⊗ Φunsub

a (y, p1)⊗ Φunsub
b (y, p2), (2.36)

where

Φunsub
a (y, p) = 〈p|Oa|p〉 =

∫
[Dq̄(+)Dq(+)DA(+)][Dq̄(−)Dq(−)DA(−)] (2.37)

×eiS
(+)
QCD[q̄,q,A]−iS(−)

QCD[q̄,q,A]Ψ∗(−)
p [q̄, q, A]Oa[q̄, q, A]Ψ(+)

p [q̄, q, A],

and the fields in definition of Φ’s are just collinear or anti-collinear. In these expressions
the functions Φunsub (that are unsubtracted TMD distributions) are nonperturbative in the
sense that they contain unknown information on the hadronic structure and low-energy
QCD interactions.

The sketched derivation remains the same for the cases of SIDIS and SIA. The only
difference among effective operators in different processes is due to different boundary
conditions prescribed to collinear fields for initial and final state hadrons (see the next
section). In the rest of the paper, the effective operator is the same for all cases.

3 Process dependence and gauge fixation

The effective operator is gauge invariant term-by-term in the series in eq. (2.33), as a
consequence of the gauge invariant definition in eq. (2.30). Fixing the gauges for collinear
and anti-collinear fields in a convenient way, we can simplify calculations in the intermediate
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steps restoring gauge invariant expressions at the end of the computations. We use the
light-cone gauges for background fields,

nµA
(±)
n̄,µ(z) = 0, n̄µA(±)

n,µ(z) = 0. (3.1)

This choice removes O(1) gluon components in eq. (2.22). Therefore, the power counting
for operators increases with the number of fields in the operator, which essentially simplifies
the computation. In any other gauge, there would be an infinite set of operators of the
same order in power counting but with different numbers of A+

n̄ or A−n , which eventually
sums into Wilson lines but makes the computation cumbersome.

The light-cone gauge conditions in eq. (3.1) alone do not remove all gauge freedom,
leaving possible z∓-independent transformations (for A± = 0 gauge). The detailed discus-
sion of this can be found in ref. [23]. To fix the redundant gauge freedom, one imposes
specific boundary conditions on the components of the gluon field. The final expression is
independent of the choice of boundary conditions. However, an inappropriate choice can
lead to unnecessary complications during the computation, and to avoid them we specify
convenient boundary conditions for each process.

To deduce the proper boundary conditions, we study a generic expression (for regular
graphs) contributing to an effective operator,

I =
∫ ∞
−∞

dz+dz−
fn̄(z−)fn(z+)

[−2z+z− + i0]α , (3.2)

where fn̄(n) is a combination of (anti-)collinear fields and their derivatives that are (even-
tually) integrated along the light-cone positions with some weights. The only important
property is that fn̄(n) depends only on z−(+). The dependence of fn̄(n) on z+(−) would
violate the counting (there is also dependence on yT , but it is external and does not mod-
ify analytical properties). The power α is non-integer in the dimensional regularization.
Examples of such expressions can be found in eq. (6.3), (6.4), (6.5), (6.9). The +i0 prescrip-
tion is the appropriate one for the causal-sector of interactions. For the anti-causal sector
it is replaced by −i0, but simultaneously all analytical properties are reverted, leaving the
final result unchanged.

The denominator of eq. (3.2) possesses a branch cut (for definiteness we place the
branch cut of xα along the line (−∞, 0)) along the line

z∓ =
{

(+i0,+∞+ i0) for z± > 0,
(−∞− i0,−i0) for z± < 0. (3.3)

This is illustrated in figure 2. The field combinations f in eq. (3.2) give raise to parton
distributions and thus we must assume some analytical properties for them to guarantee the
existence of Fourier integrals. For the case of incoming partons (i.e. PDFs) f is analytical in
the lower half-plane, whereas for the case of outgoing partons (i.e. FFs) f is analytical in the
upper half plane. Therefore, depending on the process we deal with different combination
of analytical properties, summarized in the following table

for DY for SIDIS for SIA
fn̄(z−) is analytical in lower lower upper half-plane.
fn(z+) is analytical in lower upper upper half-plane.

(3.4)
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z
+>0

z
+<0

z
-

Figure 2. Analytical structure of the integral (3.2) in the complex plane of z− for the case of DY
reaction. The solid red line is the original integration contour. The dashed red line is the modified
integration contour.

Given these properties we can deform the integration contour placing it on the sides of the
branch cut as it is shown in figure 2. Finally, the integral splits into several contributions.
The contribution at infinity is troublesome, since it produces ill-defined operators with
gluons concentrated at infinity. A properly selected boundary condition nullifies it.

We illustrate this discussion for the case of DY reaction. In this case, we can close the
integration in the lower half-plane, and deform the contour as shown in figure 2. We get

I =
∫ 0

−∞
dz+ fn(z+)

(−2z+)α (I0 + I1 + I2 + I∞) , (3.5)

where Ik are integrals of fn̄(z−)/(z−)α along elements of the contour. I1 and I2 are integrals
along sides for the branch cut, I0 is a semi-circle at z− = −i0 and I∞ is a semi-circle at
z− = −∞ − i0. The dimensional regularization regularizes a possible ultraviolet pole
at z → 0 (demanding α < 1), and thus I0 vanishes. However, it also implies that I∞
contributes to the integral, unless the fields f vanishes at z− → −∞. We can use the
freedom to fix the redundant gauge condition such that I∞ vanishes.2 The same analysis
can be done for z+ variable. So, we conclude that for the DY reaction the convenient set
of boundary conditions is such that fields fn̄(n) vanish at z−(+) → −∞.

Repeating the same analysis for the cases of SIDIS and SIA, we arrive to the following
set of appropriate boundary conditions

for DY: lim
z−→−∞

Aµn̄(z) = 0, lim
z+→−∞

Aµn(z) = 0,

for SIDIS: lim
z−→+∞

Aµn̄(z) = 0, lim
z+→−∞

Aµn(z) = 0, (3.6)

for SIA: lim
z−→+∞

Aµn̄(z) = 0, lim
z+→+∞

Aµn(z) = 0.

This set guarantees the absence of an I∞ contribution in the loop integrals. For future
convenience, we introduce the variables L and L̄ which can take the values ±∞, and
summarize boundary conditions as

lim
z−→L

Aµn̄(z) = 0, lim
z+→L̄

Aµn(z) = 0, (3.7)

2If we use the improper boundary condition the contribution I∞ remains. It is singular and independent
on z−, and to be cancelled by the interactions with the transverse gauge links located at the light-cone
infinity [23, 40]. The interaction with transverse links automatically vanishes with the proper boundary
condition.
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with

(L, L̄) =


(−∞,−∞), for DY,
(+∞,−∞), for SIDIS,
(+∞,+∞), for SIA.

(3.8)

The value of (L, L̄) is the only difference between processes at the operator level.
Notice that for DY and SIA cases the integrals in eq. (3.2) can be written in the

factorized form

IDY = −iπ21−α

Γ(α)Γ(1− α)

∫ 0

−∞
dz+ fn(z+)

(−z+)α
∫ 0

−∞
dz−

fn̄(z−)
(−z−)α , (3.9)

ISIA = −iπ21−α

Γ(α)Γ(1− α)

∫ ∞
0

dz+ fn(z+)
(z+)α

∫ ∞
0

dz−
fn̄(z−)
(z−)α , (3.10)

whereas for SIDIS case both integral representations IDY and ISIA are valid.
Once the boundary conditions are specified, the gauge-fixing condition in eq. (3.1) can

be inverted. It gives

Aµn̄(z) = −g
∫ 0

L
dσFµ+

n̄ (z + nσ), Aµn(z) = −g
∫ 0

L̄
dσFµ−n (z + n̄σ), (3.11)

where Fµν is the gluon field-strength tensor.
After the computation is complete, and the result is written in terms of Fµν ’s, one can

restore the explicit form of the gauge-invariant operator by multiplying fields with gauge
links. The rules are

qn̄(z) → [Ln+∞T , Ln+ z][Ln+ z, z]qn̄(z),
q̄n̄(z) → q̄n̄(z)[z, Ln+ z][Ln+ z, Ln+∞T ], (3.12)

Fµνn̄ (z) → [Ln+∞T , Ln+ z][Ln+ z, z]Fµνn̄ (z)[z, Ln+ z][Ln+ z, Ln+∞T ],

where ∞T in an infinitely distant point in the transverse plane, and [a, b] is a straight
Wilson line

[a, b] = P exp
(
− ig

∫ b

a
dzµA

µ
n̄(z)

)
. (3.13)

For the anti-collinear fields the expressions are analogous.
Finally, we mention that in SCET one often uses the operator Aµ⊥ that (for a collinear

field) is defined as [36, 41, 42]

Aµ⊥(z) = i [Ln+ z, z]−→Dµ[z, Ln+ z]− i [Ln+ z, z]←−Dµ[z, Ln+ z]. (3.14)

In the explicit form this operator reads

Aµ⊥(z) = −g
∫ 0

−∞
dσ[Ln+ z, z + σn]Fµ+

n̄ (z + σn)[z + σn, Ln+ z]). (3.15)

Comparing with eq. (3.11), (3.12) we find that Aµ⊥ = Aµ in light-cone gauge, which gives
a map between our expressions and the ones written in the terms of Aµ⊥.
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4 General structure of the TMD operator expansion

The computation of the effective operator in the composite background follows the common
pattern of computation in a single background field, see, e.g., refs. [22, 29, 38]. The logical
steps following in the computation are:

1. Expansion of eq. (2.30) into monomials of collinear and anti-collinear fields.

2. Multipole expansion of collinear and anti-collinear fields according to
eq. (2.12), (2.13), (2.35).

3. Rewriting of fields in terms of “good” and “bad” components.

4. Evaluation of necessary (loop-)integrals.

5. Reduction of operators to a given basis, using algebra and EOMs.

6. Renormalization/Recombination of divergences.

7. Fiertz transformation into TMD operators.

During the evaluation, one should keep in mind that in the very end, the operators are
inserted into matrix elements, and some of them vanish (e.g., due to non-zero fermion
number or due to non-singlet color representation). Such operators can be eliminated
without full consideration. At each step, we find a series of terms with increasing power,
and the ordering of power counting is preserved. Thus only terms with the desired power
counting are finally kept.

General structure of operators. The starting point for the effective operator ex-
pansion is the product of two EM currents separated by a distance y. The fact that
yT ∼ (λQ)−1 spoils the usual intuition about the computation of the effective operator be-
cause it is not allowed to expand over yT , since (yµT∂µ) ∼ 1, and the effective operator splits
into two parts separated by yT . These parts are independent in the sense that they have
separate anomalous dimensions and can be separately expanded in powers (this, however,
does not mean that the coefficient function is a product of coefficient functions).

After step 2, a contribution to the effective operator has a general form

Cµν({z±}, y)⊗
[
V

(−)
n̄ ({z−1 }, yT ) · V (−)

n ({z+
1 }, yT ) · V (+)

n̄ ({z−2 }, 0T ) · V (+)
n ({z+

2 }, 0T )
]
, (4.1)

where {z±i } indicate a set of coordinates, and {z±} = {z±1 } ∪ {z
±
2 }. In eq. (4.1)

V
(+)
n̄ ({z−}, yT ) is a light-cone operator composed from causal collinear fields, that are

positioned at the light-ray with transverse coordinate yT with coordinates {z−}, and sim-
ilar for other V ’s. Cµν is the differential operator that possibly contains a (loop-)integral
to be evaluated at step 4. The symbol ⊗ indicates the integral convolution in positions z±
and contraction in Lorentz and color indices between coefficient function and operators.
The illustration for spatial configuration of fields in eq. (4.1) is given in figure 3.

Each operator Vn̄({z−}, rT ) in eq. (4.1) consists of some number of fields located on the
light-ray pointing from rT to Ln̄ (and analogously for Vn({z+}, rT )). The positions {z−}
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Figure 3. Spatial configuration of the operators contributing to an effective operator (4.1) in the
case of DY kinematics. The dots represent insertion of collinear (green) and anti-collinear (red)
fields. The thick colored lines are light-rays along which the operators are localized.

are distributed along this light-ray. Each field within Vn is accompanied by a semi-infinite
Wilson line in eq. (3.12). These Wilson lines recombine with each other and partially
cancel. However, in general, a Wilson line does not vanish beyond the position max{z−}
and continues till Ln̄. In this sense, the operator V is semi-compact. It also means that
the operator V is not entirely gauge-invariant because, under the gauge-transformation, it
receives a gauge-rotation factor at (Ln̄ +∞T ). These properties are in contrast to usual
DIS-like OPE, where resulting operators are compact (i.e., localized in the finite volume)
and entirely gauge-invariant. On the other hand, the semi-compact operator basis is the
only difference between DIS-like and TMD operator expansions. Therefore, we can apply
the powerful machinery of OPE, correcting it only for semi-compact operators.

Step 3 decomposes operators with respect to power counting of the components of the
fields in eq. (2.21), (2.22). The resulting operators have the same form as in eq. (4.1), with
the difference that operators V have a “pure” power counting and can not be decomposed
further.

Twist-decomposition. The aim of step 5 is to decompose each operator V with respect
to a convenient basis. The most convenient and physically motivated decomposition is the
decomposition with respect to geometrical twist, which is the “dimension-minus-spin” of
the operator. One has

Vn̄({z−}, rT ) =
∑
N

cN ⊗ Un̄,N ({z−}, rT ), (4.2)

where U is an operator with a definite twist (for simplicity, we set it equal N , although there
can be several terms with the same twist in the decomposition), cN is an integral-differential
operator, and ⊗ is the integral and matrix convolution. An operator UN with a definite
geometrical twist belongs to an irreducible Lorentz group and thus does not mix with
operators of other geometrical twists. This important property is preserved by perturbation
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theory, and thus operators with definite geometrical twists have an independent evolution,
and their matrix elements are separate physical observables.

The twist-decomposition in eq. (4.2) is an algebraic procedure (consisting of sym-
metrization and anti-symmetrization of indices) originally defined for local operators. It
can be also generalized for non-local operators by means of generating functionals of local
operators (see e.g. [43]), or by implication of differential operators (see e.g. [27]), or by con-
sidering the conformal transformation properties (see e.g. [44]). All these methods cannot
be applied directly to semi-compact operators V and should be revised. In particular, the
method of reconstruction of non-local form of operators via generating functions has been
applied to semi-compact operators in ref. [45]. The main idea used in ref. [45] is to set
the parameter L finite. It allows to write down a formal local expansion for semi-compact
operators, make the twist-decomposition and resum the result into a generating functional.
Lastly, the limit L → ∞ is taken. This method correctly reproduces known lower-power
properties of semi-compact operators, and it can be applied to operators of any power.
In ref. [45], the twist-decomposition for several cases of semi-compact operators has been
made, including P-odd operators, which are specific for the semi-compact case.

The lowest twist for semi-compact operators is twist-1. The twist-1 operator is just
a single “good” component of quark ξ or gluon field Fµ+ (with µ being transverse index)
with attached semi-infinite Wilson line. Although such numbering looks unusual, it also
follows from the formal counting of geometrical twist by adding up conformal spins [46].

Recombination of divergences. At this stage a contribution to the effective operator
has the form

C̃µν
NM,N̄M̄

({z±}, y±)⊗
[
U

(−)
n̄,N ({z−1 }, yT )· U (−)

n,N̄
({z+

1 }, yT )· U (+)
n̄,M ({z−2 }, 0T )· U (+)

n,M̄
({z+

2 }, 0T )
]
,

(4.3)

where C̃ is a combination of C from eq. (4.1) and c’s from eq. (4.2). The coefficient function
C̃ has divergences in ε (in the dimensional regularization) that are IR. These divergences
match the UV divergences of operators U . Let ZN be the renormalization factor for the
operator UN , UN = ZN (µ)⊗UN , where the convolution is in the position of operators, and
µ is the renormalization scale. Then inserting unit factors 1 = Z−1

N ⊗ZN into eq. (4.3) we
obtain an expression of the form

Cµν
NM,N̄M̄

({z±}, y±;µ)⊗
[
U

(−)
n̄,N ({z−1 }, yT )·U (−)

n,N̄
({z+

1 }, yT )·U (+)
n̄,M ({z−2 }, 0T )·U (+)

n,M̄
({z+

2 }, 0T )
]
,

(4.4)

where operators U are renormalized at the scale µ, and

Cµν
NM,N̄M̄

({z±}, y±;µ) = C̃µν
NM,N̄M̄

({z±}, y±;µ)⊗[Z−1
N (µ) ·Z−1

N̄
(µ) ·Z−1

M (µ) ·Z−1
M̄

(µ)], (4.5)

is finite. To demonstrate that eq. (4.5) is finite is a non-trivial task and the object of the
factorization theorem.

Let us note that the rapidity divergences do not appear in the effective operator and
have no traces in the coefficient function. The origin and the factorization of rapidity
divergences are discussed in the section 7.
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TMD operators. The Fierz transformation at step 7 recouples the color indices and
groups operators U into color-neutral TMD operators

U
A(−)
n̄,N ({z−1 }, yT )UB(+)

n̄,M ({z−2 }, 0T ) = δAB

dim(RAB)On̄,NM ({z−}, yT ), (4.6)

where we explicitly indicate the color indices A and B (that belong to representation RAB
of SU(Nc)), and dim(RAB) is the dimension of their representation. After this operation a
contribution to the effective operator has a general form

C̃µν
NM,N̄M̄

({z±}, y±, µ)⊗
[
On̄,NM ({z−}, yT ) · On,N̄M̄ ({z+}, yT )

]
(4.7)

where C̃ contains also derivatives that act on O’s. This is the final form, see also eq. (2.34),
of the effective operator.

TMD-twist. Each term of the effective operators in eq. (4.4) is labeled by four numbers
(NM, N̄M̄), which indicate the geometrical twists of its internal components. Therefore,
the terms with different labels (NM, N̄M̄) do not mix, and their matrix elements are unique
combinations of independent nonperturbative functions (TMD distributions). Each TMD
operator O (and consequently each TMD distribution) is labeled by a pair of numbers
(NM). This pair labels the TMD-twist of the operator.

For convenience, we define the TMD-twist of the operator ONM equal to (N+M) (“N-
plus-M”). Such notation matches the usual jargon. In particular, the leading power TMD
distributions that are often referred to as twist-2 TMD distributions (without specification
of the meaning of twist for TMD operator) are twist-(1+1) TMD distributions within our
formalism. The sub-leading power TMD distributions are referred to as twist-3 and have
TMD-twist-(1+2) or TMD-twist-(2+1). In principle, the operators with twist-(1+2) or
twist-(2+1) are different and define two separate TMD distributions with different evolution
equations, although the C-conjugation relates them. The real profit from this notation
comes from the higher powers. So, the twist-4 TMD distributions (in usual terminology)
can be twist-(3+1), twist-(2+2) and twist-(1+3). The properties of twist-(2+2) TMD
distributions are very different from twist-(3+1) distributions, and they do not relate to
each other by any means.

In the limit of small transverse separation yT → 0, TMD operators turn to collinear
operators. Consistently, this limit is computed by the light-cone OPE, see e.g. [29, 45].
The leading term is equal to the product of U ’s at yT = 0,

On̄,NM ({z−}, yT ) = U
(−)
n̄,N ({z−1 }, 0)U (+)

n̄,M ({z−2 }, 0) +O(αs) +O(yT ). (4.8)

The smallest possible geometrical twist for the operator on r.h.s. is (N + M), since it is
a product of spin N and M tensors. Therefore, at high-qT , where ∼ yT contributions are
small, and TMD factorization turns into the resummation approach, TMD distributions
of twist-(N+M) match collinear distributions of twist (N + M) or higher. In this way,
computing contributions of only TMD-twist-(1+1) operators (at all powers of TMD op-
erator expansion), one should be able to reconstruct all leading twist terms of collinear
factorization, including the fixed order computations, such as in ref. [47].
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5 Effective operator at NLP/LO

Using the scheme depicted in the previous section, we compute the effective operator to
leading and next-to-leading power (LP and NLP, respectively) and up NLO in perturbation
theory. In this section, we derive the tree order of NLP effective operator and introduce
necessary definitions. Although this result is (partially) known, see e.g. [19, 24, 48], our
derivation is novel in many aspects because it is made at the operator level and with no
explicit reference to a specific process. For this reason, we give a detailed explanation for
each step of the computation. The NLO computation is given in the next section.

Tree order for LP. We start with the decomposition of the EM current

Jµ[ψ̄ + q̄n̄ + q̄n, . . .] = q̄n̄γ
µqn + q̄nγ

µqn̄ (5.1)
+ψ̄γµψ + q̄n̄γ

µψ + q̄nγ
µψ + ψ̄γµqn̄ + ψ̄γµqn

+q̄n̄γµqn̄ + q̄nγ
µqn

Here, the first line provides the leading tree-order contribution. The second line contains
fields ψ that are to be contracted with ψ from SQCD/int. These terms contribute to NLP
and NLO, and they are considered in the next section. The terms in the third line have two
fields from the same collinear sector, and thus they produce disconnected contributions to
matrix elements, unless extra fields are taken from Sint. The first possible non-vanishing
contributions of the terms in the third line happen only at N4LP.

To get the LP term, we consider the first line of eq. (5.1), and perform the multipole
expansion. We get

q̄n̄γ
µqn(y) + q̄nγ

µqn̄(y) (5.2)
= q̄n̄(y−n+ yT )γµqn(y+n̄+ yT ) + q̄n(y+n̄+ yT )γµqn̄(y−n+ yT ) +O(λ4).

The terms in O(λ4) contains derivatives, such as y+q̄n̄
←−
∂−γ

µqn. Decomposing the field q

into “good” and “bad” components as in eq. (2.14) we obtain

q̄n̄γ
µqn + q̄nγ

µqn̄ = ξ̄n̄γ
µ
T ξn + ξ̄nγ

µ
T ξn̄ (5.3)

+n̄µξ̄n̄γ+ηn + nµξ̄nγ
−ηn̄ + nµη̄n̄γ

−ξn + n̄µη̄nγ
+ξn̄

+η̄n̄γµT ηn + η̄nγ
µ
T ηn̄,

where we omit the arguments understanding implicitly that each collinear field depends
on (y−n+ yT ) and each anti-collinear field depends on (y+n̄+ yT ). The first, second, and
third lines in eq. (5.3) are O(λ2), O(λ3), and O(λ4), respectively. Eq. (5.3) has the form
of eq. (4.1), with operators having pure counting, in the sense that no further expansion is
needed. This term represents the LP term of EM current. The second and the third lines
of eq. (5.3) have indefinite twist. They are discussed in the following subsection. Thus, the
LP term is a composition of twist-1 and twist-1 operators

JµLP(y) = ξ̄n̄(y−n+ yT )γµT ξn(y+n̄+ yT ) + ξ̄n(y+n̄+ yT )γµT ξn̄(y−n+ yT ). (5.4)
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Let us note that the LP current in eq. (5.4) violates the EM charge conservation. Indeed,

∂µJ
µ
LP = ξ̄n̄(

←−
/∂T +

−→
/∂T )ξn + ξ̄n(

←−
/∂T +

−→
/∂T )ξn̄ 6= 0. (5.5)

However, the expression in r.h.s. of eq. (5.5) is O(λ3), and thus formally the charge is
conserved at LP.

Combining together the LP currents, eq. (5.4), we get the LP expression for the effective
operator

J µνLP(y) = [ξ̄(−)
n̄ (y−n+ yT )γµT ξ

(−)
n (y+n̄+ yT ) + ξ̄(−)

n (y+n̄+ yT )γµT ξ
(−)
n̄ (y−n+ yT )] (5.6)

×[ξ̄(+)
n̄ (0)γνT ξ(+)

n (0) + ξ̄(+)
n (0)γνT ξ

(+)
n̄ (0)].

The quark fields ξ are operators of twist-1, and thus J µνLP(y) is of (1 + 1)× (1 + 1)-twist in
our nomenclature. Combining the fields into TMD operators, eq. (4.6), we get

J µνLP(y) =
γµT,ijγ

ν
T,kl

Nc

(
Oli11,n̄O

jk
11,n +Ojk11,n̄Oli11,n

)
(5.7)

where (i, j, k, l) are spinor indices, and the TMD twist-(1+1) operators have the argument
({y−, 0}, yT ). They are defined as

Oji11,n̄({y−, 0}, yT ) = ξ̄
(−)
n̄,i (y−n+ yT ) ξ(+)

n̄,j (0), (5.8)

Oji11,n̄({y−, 0}, yT ) = ξ
(−)
n̄,j (y−n+ yT ) ξ̄(+)

n̄,i (0). (5.9)

The operator O11,n and O11,n are obtained by replacing n ← n̄ everywhere, including the
subscripts of the fields. This expression is well known and the basis for the LP TMD
factorization, see e.g. [24, 48, 49]. The matrix elements of operators O11,n̄ and O11,n̄ give
rise to the quark and anti-quark TMD distributions, respectively.

Tree order for NLP. The NLP part of the effective operator can appear only via the
combination of a LP current, eq. (5.4), with NLP part of another EM current. The NLP
contribution of order ∼ λ3 to Jµ can be composed in two ways. The first one is combining
a “good” and a “bad” component of the quark fields from the second line of eq. (5.3). The
second possibility is to have three “good” components of fields, e.g. ξ̄AT ξ. To get such a
term, one needs to pull down an interaction term from eiSint and couple it to the first line
of eq. (5.4). The diagrams representing the NLP contributions are shown in figure 4. The
diagrams A and B correspond to the second line of (eq. (5.3)). The remaining diagrams
represent the interaction contribution.

The diagrams C, D, E and F are specific for the computation in the composite back-
ground field, and would be absent for the case of ordinary background field. The reason is
that an ordinary background field does not couple to the dynamical fields via 1PI vertex.
In other words, there are no vertices with a single dynamical field and background field(s).
Such diagrams (in the sum) compose EOM for the background field, and therefore, vanish
(e.g. a diagram C with An̄ replaced by An is not present). This fact is already taken
into account in the construction of the effective background action [30], and thus the corre-
sponding vertices are not present in Sint. In the case of the composite background, a vertex
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η̄n̄

ξn A

ξ̄n̄

ηn B

ξ̄n̄

ξn

An̄

C

ξ̄n̄

ξn

An

D

An̄

ξn

ξ̄n

E

ξ̄n̄

An̄

ξn

F

Figure 4. The diagrams contributing to the tree order of vector current at NLP. The diagrams
with n ↔ n̄ should be added. The blobs indicate the type of background field. The blue lines are
the dynamical fields.

with a single dynamical field and different background fields is not forbidden, and actually
it is provided by Sn̄nh in the effective action, eq. (A.11). These vertices do not contribute
to the EOM.3 As a result the diagrammatic expansion is not (explicitly) symmetric with
respect to nµ ↔ n̄µ. This symmetry is restored once the operators are rewritten in a unique
basis. As an example, we present in detail the evaluation of diagrams A and C, which form
a symmetric pair.

Diagram C reads (we set the global position of the current to 0 for brevity)

diagC = g
Γ(2− ε)

2πd/2
∫
ddz ξ̄n̄(0) γµ/zγν

[−z2 + i0]2−εA
ν
n̄(z)ξn(z), (5.10)

where we used the propagators in dimensional regularization, eq. (B.2) with d = 4 − 2ε.
The multipole expansion sets Aνn̄(z)ξn(z)→ Aνn(z−n)ξn(z+n̄), and the integral over (d−2)
transverse components can be evaluated, eq. (B.11). The result is

diagC = gn̄µ
∫
dz+dz−

π

z+

[−2z+z− + i0] ξ̄n̄(0) /An̄,T (z−n)ξn(z+n̄), (5.11)

where we take into account that only the transverse components of the gluon field contribute
to LP term. Note that in this expression one cannot cancel z+ between the denominator
and the numerator, because it would spoil the analytical properties of the integrand. To
evaluate eq. (5.11), we recall the analytical properties of An̄ summarized in eq. (3.4), then
we close the contour of the z−-integration in the lower (DY and SIDIS cases) or upper
(SIA case) half-plane, shrink it to the pole at z− = i0/(2z+), and evaluate the residue. We
obtain the expression

diagC = ign̄µ
∫ 0

L̄
dz+ξ̄n̄(0) /An̄,T (0)ξn(z+n̄). (5.12)

In this expression the anti-collinear fields ξ̄n̄ /An̄,T form an operator of twist-2.
3The subtraction of EOMs from the effective action is straightforward for the dynamical-to-background

part of the interaction. However, this procedure is ambiguous for the contact part of the effective action
S12, eq. (A.12), where the EOM terms can be subtracted in different proportions. The contact terms that
represent background-to-background interaction are specific for the composite background case, and have
effective counting of O(λ3). The ambiguity in the definition of these terms disappears once matrix elements
are taken.
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The diagram A is given by a simple expression

diagA = nµη̄n̄(0)γ−ξn(0). (5.13)

Here, the field η̄n̄ has indefinite geometrical twist, which can be checked e.g. by conformal
transformation [28]. Practically, it implies that the field η mixes with a quark-gluon pair
during the evolution. To rewrite η in the terms of definite twist operators, we apply EOMs,
eq. (2.17). In the present case, we need the EOM for η̄n̄, eq. (2.17). In the light-cone gauge
it can be rewritten

η̄n̄(0)γ− = −
∫ 0

L
dz−

(
∂µξ̄n̄(z−n)γµT + igξ̄n̄(z−n) /An̄,T (z−n)

)
. (5.14)

Here, the first term on r.h.s. is the total derivative of twist-1 operator, and the second term
is the twist-2 operator. The twist-counting can be confirmed by expanding the operators
in a series of local operators (setting L finite), and computing the twist of each term in the
series. Inserting EOM into eq. (5.13) we get

diagA = −nµ
∫ 0

L
dz−ξ̄n̄(z−n)

←−
/∂T ξn(0)− ignµ

∫ 0

L
dz−ξ̄n̄(z−n) /An̄,T (z−n)ξn(0). (5.15)

The second term is complementary to diagram C, eq. (5.12). Together they from a trans-
verse expression. To make it explicit we rewrite diagram A in the form of eq. (5.11) and
sum the diagrams together. We obtain

diagA+C = −nµ
∫ 0

L
dz−ξ̄n̄(z−n)

←−
/∂T ξn(0) (5.16)

+g
∫
dz+dz−

π

n̄µz+ − nµz−

[−2z+z− + i0] ξ̄n̄(z−n) /An̄,T (z−n)ξn(z+n̄).

Evaluating the rest of the diagrams in the same manner we obtain the expression for
the EM current at NLP. We split the result into the following parts

JµNLP(0) = Jµ1′1(0) + Jµ11′(0) + Jµ21(0) + Jµ12(0) + Jµ21;8(0) + Jµ12;8(0). (5.17)

The first term contains the derivatives of twist-1 operators

Jµ1′1(0) = −nµ
∫ 0

L
dz−

[
ξ̄n̄(z−n)

←−
/∂T ξn(0) + ξ̄n(0)

−→
/∂T ξn̄(z−n)

]
. (5.18)

The terms Jµ21 and Jµ21,8 contain operators of twist-2 and twist-1

Jµ21(0) = ign̄µ
∫ 0

L̄
dz+

[
ξ̄n̄(0) /An̄,T (0)ξn(z+n̄)− ξ̄n(z+n̄) /An̄,T (0)ξn̄(0)

]
(5.19)

−ignµ
∫ 0

L
dz−

[
ξ̄n̄(z−n) /An̄,T (z−n)ξn(0)− ξ̄n(0) /An̄,T (z−n)ξn̄(z−n)

]
,

Jµ21,8(0) = ig

2

∫ 0

L
dz−

[
ξ̄n̄(z−n)γ+γνTγ

µ
T t
Aξn̄(0)− ξ̄n̄(0)γ+γµTγ

ν
T t
Aξn̄(z−n)

]
AAn,ν(0),(5.20)

where A is the color index in the adjoint representation and tA is the generator of SU(Nc).
The expression for Jµ11′ , J

µ
12 and Jµ12,8 are obtained from Jµ1′1, J

µ
21 and Jµ21,8 by exchanging
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n ↔ n̄ (also in the subscripts of fields). The contributions to Jµ21,8 and Jµ12,8 arise from
the diagrams of E and F (plus n↔ n̄ diagrams). The collinear and anti-collinear parts of
Jµ21,8 are in the adjoint representation of the color group. These parts of the EM current
do not contribute at NLP, because to form a color neutral TMD operator, eq. (4.6), an
another operator in the adjoint representation is required. The first non-zero contribution
from Jµ21,8 and Jµ12,8 into effective operator takes place at N2LP.

Let us define the inverse derivative operator, as

1
∂+
f(x) =

∫ 0

L
dz−f(x+ z−n), 1

∂−
f(x) =

∫ 0

L̄
dz+f(x+ z+n̄). (5.21)

With this operator the expressions in eq. (5.18), (5.19) have a simpler form

Jµ1′1 = −nµξ̄n̄
←−
/∂T
←−
∂+
ξn − nµξ̄n

−→
/∂T
−→
∂+
ξn̄, (5.22)

Jµ21 = igξ̄n̄ /An̄,T

(
n̄µ

−→
∂−
− nµ

←−
∂+

)
ξn − igξ̄n

(
n̄µ

←−
∂−
− nµ

−→
∂+

)
/An̄,T ξn̄, (5.23)

where the positions of fields on r.h.s. and l.h.s. are formally the same. Note that the inverse
derivatives in the last line acts on the quark and gluon fields together.

The operators Jµ1′1 and Jµ11′ combine with the LP current eq. (5.4) and form

Jµ11 = JLP + Jµ1′1 + Jµ11′ (5.24)

= ξ̄n̄γ
µ
T ξn + ξ̄nγ

µ
T ξn̄ − n

µξ̄n̄

←−
/∂T
←−
∂+
ξn − nµξ̄n

−→
/∂T
−→
∂+
ξn̄ − n̄µξ̄n

←−
/∂T
←−
∂−
ξn̄ − n̄µξ̄n̄

−→
/∂T
−→
∂−
ξn.

The terms Jµ1′1 and Jµ11′ restore the electric charge-conservation at ∼ λ3 and ∼ λ4 orders.
Indeed,

∂µJ
µ
11 = −ξ̄n̄

←−/∂T←−
∂+

−→
∂+ +←−∂−

−→
/∂T
−→
∂−

 ξn − ξ̄n
←−/∂T←−
∂−

−→
∂− +←−∂+

−→
/∂T
−→
∂+

 ξn̄ = O(λ5). (5.25)

Similarly, for Jµ21 terms

∂µJ
µ
21 = igξ̄n̄ /An̄,T

(←−
∂−
−→
∂−
−
−→
∂+
←−
∂+

)
ξn − igξ̄n

(−→
∂−
←−
∂−
−
←−
∂+
−→
∂+

)
/An̄,T ξn̄ = O(λ5). (5.26)

Clearly, the operators with a particular twist combinations form series where each next
term restores the charge conservation to a higher power. These series are known as series
of kinematic power corrections. So, the operators Jµ1′1 and Jµ11′ are the kinematic power
corrections to the LP current. Due to the that fact the kinematic power corrections restore
the global properties of current (and hadronic tensor), all operators in the series must have
the same coefficient function. We demonstrate it explicitly at NLO in the next section.
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The effective operator at NLP is obtained by composing LP and NLP terms of EM
currents. We obtain

J µνNLP = −
nµγρT,ijγ

ν
T,kl + nνγµT,ijγ

ρ
T,kl

Nc

(
∂ρ
∂+
Oli11,n̄O

jk
11,n + ∂ρ

∂+
Ojk11,n̄Oli11,n

)
(5.27)

−
n̄µγρT,ijγ

ν
T,kl + n̄νγµT,ijγ

ρ
T,kl

Nc

(
Oli11,n̄

∂ρ
∂−
Ojk11,n +Ojk11,n̄

∂ρ
∂−
Oli11,n

)

+ig
δijγ

ν
T,kl

Nc

{
Oli

21,n̄

(
n̄µ

−→
∂−
− nµ

←−
∂+

)
Ojk11,n −Ojk

21,n̄

(
n̄µ

−→
∂−
− nµ

←−
∂+

)
Oli11,n

+Oli11,n̄

(
n̄µ

−→
∂−
− nµ

←−
∂+

)
Ojk

21,n −O
jk
11,n̄

(
n̄µ

−→
∂−
− nµ

←−
∂+

)
Oli

21,n

}

+ig
γµT,ijδkl

Nc

{
Oli

12,n̄

(
n̄ν

−→
∂−
− nν

←−
∂+

)
Ojk11,n −Ojk

12,n̄

(
n̄ν

−→
∂−
− nν

←−
∂+

)
Oli11,n

+Oli11,n̄

(
n̄ν

−→
∂−
− nν

←−
∂+

)
Ojk

12,n −O
jk
11,n̄

(
n̄ν

−→
∂−
− nν

←−
∂+

)
Oli

12,n

}
,

where δij is the Kronecker delta for spinor indices. All derivatives are with respect to the
coordinate y, and act only on the subsequent operator. To derive this expression we have
used the identity

ξ̄n̄,j(y−n+ yT )
←−
∂ρ
←−
∂+
ξn̄,i(0) = ξ̄n̄,j(y−n+ yT )

−→
∂ρ
−→
∂+
ξn̄,i(0) = ∂ρ

∂+
Oij11,n̄({y−, 0}, yT ), (5.28)

and similar for anti-collinear fields. To derive this identity we assume that the to-
tal derivatives of TMD operators can be eliminated, since they do not contribute to
the forward matrix elements. Here, TMD operators of twist-(1+1) have the arguments
({y−, 0}, yT ). All TMD operators of twist-(1+2) and (2+1) have argument ({y−, y−, 0}, yT )
and ({y−, 0, 0}, yT ) respectively. The TMD operators of twist-(1+2) and twist-(2+1) are

Oji
21,n̄({y−, y−, 0}, yT ) = [ξ̄(−)

n̄ /A
(−)
n̄,T (y−n+ yT )]iξ(+)

n̄,j (0), (5.29)

Oji
12,n̄({y−, 0 , 0}, yT ) = ξ̄

(−)
n̄,i (y−n+ yT )[ /A(+)

n̄,T ξ
(+)
n̄ (0)]j , (5.30)

Oji
21,n̄({y−, y−, 0}, yT ) = [ /A(−)

n̄,T ξ
(−)
n̄ (y−n+ yT )]j ξ̄(+)

n̄,i (0), (5.31)

Oji
12,n̄({y−, 0 , 0}, yT ) = ξ

(−)
n̄,j (y−n+ yT )[ξ̄(+)

n̄ /A
(+)
n̄,T (0)]i. (5.32)

Gauge invariant expressions for TMD operators.
The definitions in eq. (5.29)–(5.32) are given in light-cone gauge. They can be written in
gauge invariant form using the relations in eq. (3.11), (3.14). There are two usual ways
to write the twist-(2+1) operators, the one typical for the SCET literature e.g. [18, 42],
and the one typical for direct QCD computations e.g. [19, 24]. Both have advantages and
disadvantages. In particular, the SCET-like notation is convenient for the computation of
hard coefficient function, whereas the traditional-like is convenient for computation of the
evolution properties. Nicely, they are related by a simple transformation. In the present
work we use both kinds of notations, designating them by different fonts.
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The elementary building blocks are the semi-compact operators of twist-1 and twist-2.
They are

U1,n̄(z, b) = [Ln+ b, zn+ b]ξn̄(zn+ b), (5.33)
Uµ2,n̄({z1, z2}, b) = g[Ln+ b, z1n+ b]Fµ+

n̄ [z1n+ b, z2n+ b]ξn̄(z2n+ b), (5.34)

where index µ is transverse and we omit the transverse links. Both operators have an open
spinor and color indices. The operator Uµ2,n̄ has open spinor and vector indices, and is more
general than the operator appearing at NLP. The latter reads

U2,n̄({z1, z2}, b) = γTµU
µ
2,n̄({z1, z2}, b), (5.35)

where both sides are spinors. The semi-compact operator built from anti-collinear fields
are obtained from Un̄ with replacement n↔ n̄. In addition, we define the operators

U1,n̄(z, b) = ξ̄n̄(zn+ b)[zn+ b, Ln+ b], (5.36)
U
µ
2,n̄({z1, z2}, b) = g ξ̄n̄(z1n+ b)[z1n+ b, z2n+ b]Fµ+

n̄ [z2n+ b, Ln+ b]. (5.37)

Analogously, the reduced twist-2 operator U2 is

U2,n̄({z1, z2}, b) = U
µ
2,n̄({z1, z2}, b)γTµ. (5.38)

The TMD operators are products of semi-compact operators. So, the twist-(1+1)
operators in eq. (5.8), (5.9) are simply

O11,n̄({z1, z2}, b) = U
(−)
1,n̄ (z1, b)U (+)

1,n̄ (z2, 0), (5.39)

O11,n̄({z1, z2}, b) = U
(−)
1,n̄ (z1, b)U

(+)
1,n̄ (z2, 0). (5.40)

The twist-(2+1) and twist-(1+2) operators are

O21,n̄({z1, z2, z3}, b) = U
(−)
2,n̄ ({z1, z2}, b)U (+)

1,n̄ (z3, 0), (5.41)

O12,n̄({z1, z2, z3}, b) = U
(−)
1,n̄ (z1, b)U (+)

1,n̄ ({z2, z3}, 0), (5.42)

O21,n̄({z1, z2, z3}, b) = U
(−)
2,n̄ ({z2, z1}, b)U

(+)
1,n̄ (z3, 0), (5.43)

O12,n̄({z1, z2, z3}, b) = U
(−)
1,n̄ (z1, b)U

(+)
2,n̄ ({z3, z2}, 0). (5.44)

The superscripts (±) indicate that semi-compact operators are made out of corresponding
causal or anti-causal fields. Notice the enumeration of positions in operators O21,n̄ and
O12,n̄. It is adjusted such that the gluon field has uniformly coordinate z2. All these
operators are matrices in spinor space, and singlets in color space. The operators O are
related to O by the charge-conjugation. The matrix elements of these pairs define quark
and anti-quark TMD distributions, such as in ref. [48].

The definitions of eq. (5.33)–(5.37) are given in the traditional QCD basis. In the
SCET literature instead, one would use

Uµ2,n̄({z1, z2}, b) = −i[Ln+ b, z1n+ b]←−Dµ
n̄[z1n+ b, z2n+ b]ξn̄(z2n+ b), (5.45)

Uµ2,n̄({z1, z2}, b) = i ξ̄n̄(z1n+ b)[z2n+ b, z2n+ b]−→Dµ
n̄[z2n+ b, Ln+ b], (5.46)
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where D is the covariant derivative. The operators O in eq. (5.29)–(5.32) are defined with
replacement of U → U, e.g.

O21,n̄({z1, z2, z3}, b) = U(−)
2,n̄ ({z1, z2}, b)U (+)

1,n̄ (z3, 0). (5.47)

The relations between the operators O and O is

ONM,n̄({z1, z2, z3}, b) = − ∂

∂z2
ONM,n̄({z1, z2, z3}, b), (5.48)

where N and M are 1 or 2. The relation (5.48) can be inverted

ONM,n̄({z1, z2, z3}, b) = −
∫ z2

L
ONM,n̄({z1, σ, z3}, b). (5.49)

Similar expressions hold for O-type operators.

TMD operators in momentum space. Ordinary, the TMD distributions are defined
in the mixed momentum-coordinate representation. Namely, they are Fourier-transformed
just in light-cone coordinates. Such a transformation provides a similarity with the parton
densities (which are defined in terms of fractions of momentum) and it preserves a simple
structure of the TMD evolution (which is diagonal in transverse-position space). We also
follow this practice and define

U1,n̄(z, b) = p+

∫
dxeixzp+U1,n̄(x, b), (5.50)

U2,n̄({z1, z2}, b) = p2
+

∫
dx1dx2e

i(x1z1+x2z2)p+U2,n̄(x1,2, b), (5.51)

where x1,2 is a shorthand notation for (x1, x2), which can be interpreted as the fraction
parton’s momentum, and p+ is the hadron’s momentum. The U1,n̄(x, b) and U2,n̄(x1,2, b)
have similar definitions.

The TMD distributions are defined by forward matrix elements and they are insensitive
to the global positioning of the operator,

〈p|O(z)|p〉 = 〈p|O(z + a)|p〉. (5.52)

Taking into account the translation invariance, we define

O11,n̄({z, 0}, b) = p+

∫
dx eizxp+O11,n̄(x, b), (5.53)

O11,n̄({z, 0}, b) = p+

∫
dx eizxp+O11,n̄(x, b), (5.54)

OMN,n̄({z1, z2, z3}, b) = p2
+

∫
[dx] ei(z1x1+z2x2+z3x3)p+OMN,n̄(x1,2,3, b), (5.55)

OMN,n̄({z1, z2, z3}, b) = p2
+

∫
[dx] ei(z1x1+z2x2+z3x3)p+OMN,n̄(x1,2,3, b), (5.56)

where M +N = 3, and ∫
[dx] =

∫
dx1dx2dx3 δ(x1 + x2 + x3). (5.57)
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At this point, we cannot not specify the domain of integration over x. However, once the
matrix elements are taken, the values of x are restricted x ∈ [−1, 1] for parton distributions,
and x ∈ (−∞,−1]∪ [1,∞) for fragmentation functions. The integral measure in eq. (5.57)
takes into account the translation invariance of the TMD operator defined in eq. (5.52).4
In principle, our computation (since it is done in position space) does not imply any
simplification that comes from the translation invariance. Nonetheless, we use it to make
notation somewhat lighter.

The relation between the operators O and O is simplified in momentum space. Ac-
cording to eq. (5.48), we have

OMN,n̄({z1, z2, z3}, b) = p2
+

∫
[dx] ei(z1x1+z2x2+z3x3)p+ i

x2p+
OMN,n̄(x1,2,3, b). (5.58)

EM current in momentum space. Using the definitions in eq. (5.50), (5.51) we present
the EM current eq. (5.24), (5.17) in the form

Jµ(y) = p+
1 p
−
2

∫
dxdx̃ eixp

+
1 y
−+ix̃p−2 y

+
Jµ11(x, x̃, yT ) (5.59)

+(p+
1 )2p−2

∫
dx1dx2dx̃ e

i(x1+x2)p+
1 y
−+ix̃p−y+

Jµ21(x1,2, x̃, yT )

+p+
1 (p−2 )2

∫
dxdx̃1dx̃2 e

ixp+
1 y
−+i(x̃1+x̃2)p−2 y

+
Jµ12(x, x̃1,2, yT ) + . . . ,

where all partons momenta are incoming. Performing the transformation for
eq. (5.4), (5.17) we get

Jµ11(x, x̃) = U1,n̄(x)γµTU1,n(x̃) + U1,n(x̃)γµTU1,n̄(x) (5.60)

+ inµ

xp+
1

(
U1,n̄(x)

←−
/∂TU1,n(x̃) + U1,n(x̃)/∂TU1,n̄(x)

)
+ in̄µ

x̃p−2

(
U1,n(x̃)

←−
/∂TU1,n̄(x) + U1,n̄(x)/∂TU1,n(x̃)

)
,

Jµ21(x1,2, x̃) = i

x2p
+
1

(
n̄µ

x̃p−2
− nµ

(x1 + x2)p+
1

)(
U2,n̄(x1,2)U1,n(x̃)− U1,n(x̃)U2,n̄(x2,1)

)
, (5.61)

Jµ12(x, x̃1,2) = i

x̃2p
−
2

(
nµ

xp+
1
− n̄µ

(x̃1 + x̃2)p−2

)(
U2,n(x̃1,2)U1,n̄(x)− U1,n̄(x)U2,n(x̃2,1)

)
, (5.62)

where x2,1 = (x2, x1) and the repeating argument yT is suppressed for brevity. Note that
the arguments x1 and x2 are adjusted such that x1 is the momentum fraction of quark or
anti-quark, and x2 is the momentum fraction of the gluon.

Effective operator in momentum space. Similar expressions can be written for the
effective currents eq. (5.7), (5.27). In this case, it is convenient to take into account the

4The twist-(1+1) operator can be defined in translation invariant way as well,

O11,n̄({z1, z2}, b) = p+

∫
dx1dx2 δ(x1 + x2) ei(z1x1+z2x2)p+O11,n̄(x1,2, b).
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Fourier integral that is present in the hadronic tensor, eq. (2.1). Defining

J µνeff (q) =
∫

d4y

(2π)4 e
−i(qy)J µνeff (y), (5.63)

we derive

J µνeff (q) =
∫

d2b

(2π)2 e
−i(qb)

{∫
dxdx̃δ

(
x− q+

p+
1

)
δ

(
x̃− q−

p−2

)
J µν1111(x, x̃, b) (5.64)

+
∫

[dx]dx̃δ
(
x̃− q−

p−2

)(
δ

(
x1 −

q+
1
p+

1

)
J µν1211(x, x̃, b) + δ

(
x3 + q+

1
p+

1

)
J µν2111(x, x̃, b)

)

+
∫
dx[dx̃]δ

(
x− q+

p+
1

)(
δ

(
x̃1 −

q−

p−2

)
J µν1112(x, x̃, b) + δ

(
x̃3 + q−

p−2

)
J µν1121(x, x̃, b)

)

+ . . .

}
,

where

J µν1111(x, x̃, b) =
γµT,ijγ

ν
T,kl

Nc

(
Oli11,n̄(x, b)Ojk11,n(x̃, b) +Ojk11,n̄(x, b)Oli11,n(x̃, b)

)
(5.65)

+i
nµγρT,ijγ

ν
T,kl + nνγµT,ijγ

ρ
T,kl

q+Nc

(
∂ρOli11,n̄(x, b)Ojk11,n(x̃, b) + ∂ρO

jk
11,n̄(x, b)Oli11,n(x̃, b)

)
+i
n̄µγρT,ijγ

ν
T,kl + n̄νγµT,ijγ

ρ
T,kl

q−Nc

(
Oli11,n̄(x, b)∂ρO

jk
11,n(x̃, b) +Ojk11,n̄(x, b)∂ρOli11,n(x̃, b)

)
,

J µν1211(x, x̃, b) = (5.66)
ig

x2

(
n̄ν

q−
− nν

q+

) γµT,ijδkl
Nc

(
Oli12,n̄(x, b)Ojk11,n(x̃, b)−Ojk12,n̄(x, b)Oli11,n(x̃, b)

)
,

J µν2111(x, x̃, b) = (5.67)
ig

x2

(
n̄µ

q−
− nµ

q+

) δijγνT,kl
Nc

(
Oli21,n̄(x, b)Ojk11,n(x̃, b)−Ojk21,n̄(x, b)Oli11,n(x̃, b)

)
,

J µν1112(x, x̃, b) = (5.68)
ig

x̃2

(
n̄ν

q−
− nν

q+

) γµT,ijδkl
Nc

(
Oli11,n̄(x, b)Ojk12,n(x̃, b)−Ojk11,n̄(x, b)Oli12,n(x̃, b)

)
,

J µν1121(x, x̃, b) = (5.69)
ig

x̃2

(
n̄µ

q−
− nµ

q+

) δijγνT,kl
Nc

(
Oli11,n̄(x, b)Ojk21,n(x̃, b)−Ojk11,n̄(x, b)Oli21,n(x̃, b)

)
.

In the twist-(1+2) and twist-(2+1) operators the argument is x = (x1, x2, x3). Note that
the operators J µν1211 and J µν2111 are J µν1112 and J µν1121 with n↔ n̄.

In the case of twist-(1+2) TMD operators, the values of x1,2,3 are not sign definite.
The momentum conservation delta-function fixes the value (and the sign) of only one of
them. The other two variables are integrated and can be positive or negative.

To derive these expressions we took into account that the global position of the cur-
rents is irrelevant for DY, SIDIS and SIA processes. Also note, that the definition of the
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Fourier transform in eq. (5.63) is taken similar to the DY case in eq. (2.1). According to
eq. (2.2), (2.3) the sign of q is the opposite for SIDIS and SIA.

The expressions for the currents (5.65)–(5.69) are simple to generalize to the case of
electro-weak interaction. In this case, one needs to replace γµT → γµT (gV ± gAγ

5), and
δ → gV ± gAγ5 (the sign of gA depends on the term). The general structure and other
factors is the same.

6 NLO perturbative correction to NLP operator

The computation of perturbative corrections to effective operators follows the same path
as in section 4. Here we find another difference between TMD factorization and collinear
factorization. Namely, the loop integrals can produce extra suppressing factors. That hap-
pens due to the unhomogeneous counting rule for the vector y in eq. (2.35). In particular,
the diagrams with the interaction of causal and anti-causal fields are suppressed by a factor
λ2. So, the twist-(1+1)×(1+1) contribution of the exchange configuration is N2LP (see
refs. [15, 18] for a discussion about these contributions). Therefore, at NLP we can consider
only the interactions within a single causal sector, i.e. for each EM current independently.

At NLO and NLP we have only two-point and three-point relevant diagrams, that are
shown in figure 5 and figure 6, respectively. The two-point diagrams couple operators of
twist-1 and operators of twist-1 or 2, while the three point diagrams couple only operators
of twist-1 and twist-2.

The computation of the diagrams with the background field is slightly different from
the ordinary computation of amplitudes because a part of the loop-variables are also ar-
guments of the background fields. Therefore, the integration over these arguments cannot
be computed and we obtain the integral convolution in eq. (4.1). To compute the inte-
grals over the rest of the loop variables we used a technique, which has been developed in
ref. [29]. This technique is based on a series of shifts for integration variables and leads
to the usual Lorentz-invariant loop-integrals. The technique works equally well for any
type of power-suppressed diagrams. For pedagogical purposes in appendix B we present a
detailed computation of the three-point diagram 5 in figure 6.

Alternatively, one can present the background field as a Fourier image and perform
the computation in momentum space, using standard methods. However, the loop-integral
in momentum space becomes complicated once a large number of background fields partic-
ipate. For example, three-point diagrams in momentum space can contain polylogarithms
already at one-loop level, whereas one-loop expressions in position space are polynomial
for any number of external fields.

Another complication of a momentum space computation is the necessity to specify
the direction of the parton’s momentum, which is crucial for the computation of Feynman
variable integrals. This is not a problem for two-point diagrams, where one has a unique
choice (however, different for DY, SIDIS and SIA cases), but for the three-point diagrams
one has already three possible combinations of momenta directions. This is because the
individual momenta of the quark-gluon pair can have different sign, and the momentum
conservation fixes only the sign of their sum, see second and third lines of eq. (5.64).
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The computation presented here has been done in position space. It is the first com-
putation of the Sudakov form factor at NLP and the first one made in position space.
As a cross-check, we have performed also the NLO computation in momentum (for DY
kinematics), and checked that the results coincide with each other. Also we have checked
that the LP coefficient coincides with the known one, and NLP coincides with the recent
computation5 in refs. [50, 51].

Two point diagrams. The two-point diagrams, shown in figure 5, contribute to LP and
NLP effective operator. Note, that in figure 5 we have already split the quark field into
ξ and η components for convenience. The diagram 1 is the only diagram that has a LP
contribution. Explicitly, the diagram 1 reads

diag1 = g2CF
Γ2(2− ε)Γ(1− ε)

16π3d/2

∫
ddxddz

ξ̄n̄(x)γν/xγµ/zγνξn(z)
[−x2 + i0]2−ε[−z2 + i0]2−ε[−(x− z)2 + i0]1−ε ,

(6.1)

where CF = (N2
c − 1)/2Nc is the eigenvalue of the quadratic Casimir operator for the

fundamental representation of SU(Nc).
The background fields in eq. (6.1) are expanded along the light-cone, as

ξ̄n̄(x) = ξ̄n̄(nx−) + xµT∂µξ̄n̄(nx−) + xµTx
ν
T

2 ∂µ∂ν ξ̄n̄(nx−) + x+∂−ξ̄n̄(nx−) + . . . , (6.2)

and similar for other fields. The expansion eq. (6.2) can be safely done under the sign of
the loop integration. Each next term increases the counting of the operator. At NLP only
the operators with one transverse derivative contributes.

Substituting the decomposition (6.2) into eq. (6.1) we obtain a 2d-dimensional integral.
Two variables x− and z+ are arguments of background fields and thus the integral with
respect to them cannot be computed. The integration over the rest (2d− 2) loop-variables
is done by the method explained in appendix B. We get

diag1 = 2iasCF
Γ(−ε)Γ(1− ε)Γ(2− ε)

Γ(3− 2ε)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε

{
(6.3)

(2− ε+ 2ε2)ξ̄n̄(z−n)γµT ξn(z+n̄)

+ξ̄n̄(z−n)
←−
/∂T ξn(z+n̄)

[
z−nµ

2 + ε2

ε
− z+n̄µ(1− ε)

]

+ξ̄n̄(z−n)
−→
/∂T ξn(z+n̄)

[
z+n̄µ

2 + ε2

ε
− z−nµ(1− ε)

]
+ . . .

}
,

where

as = g2

(4π)d/2
,

5We thank M.Beneke for sharing the results of their computation with us.
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ξ̄n̄

ξn 1

η̄n̄

ξn 2

ξ̄n̄

ηn 3

Figure 5. The two-points diagrams contributing to the NLO of the effective operator. The
diagram 1 contributes to LP, and the diagrams 2 & 3 to NLP. The diagrams with n↔ n̄ should be
added. The blobs indicate the type of background field. The blue lines are the dynamical fields.

and dots denote the higher-power terms. Similarly we compute the diagrams 2 and 3,

diag2 = 2iasCF
Γ(−ε)Γ(1− ε)Γ(2− ε)

Γ(3− 2ε)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε

{
(6.4)

η̄n̄(z−n)γ−ξn(z+n̄)
[
−ε(1− ε)nµ − (1− ε)2n̄µ

z+

z−

]
+ . . .

}
,

diag3 = 2iasCF
Γ(−ε)Γ(1− ε)Γ(2− ε)

Γ(3− 2ε)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε

{
(6.5)

ξ̄n̄(z−n)γ+ηn(z+n̄)
[
−ε(1− ε)n̄µ − (1− ε)2nµ

z−

z+

]
+ . . .

}
.

Eq. (6.3), (6.4), (6.5) are structured as in eq. (3.2), and thus they can be rewritten in
factorized form as in eq. (3.9) or eq. (3.10). For example, the LP part of the diagram 1 in
the case of DY process reads

diagLP;DY1 = 2asCF
2ε (2− ε+ 2ε2)Γ(−ε)Γ(2− ε)

Γ(ε)Γ(3− 2ε)

∫ 0

−∞
dz−

ξ̄n̄(z−n)
(−z−)1−ε γ

µ
T

∫ 0

−∞
dz+ ξn(z+n̄)

(−z+)1−ε .

(6.6)

The prefactor of eq. (6.6) is finite for ε → 0. However, both integrals are UV divergent
at z± → 0, and regularized by ε > 0. As it is shown below, these poles exactly reproduce
the Sudakov double pole. At z± → ∞ the loop integrals are regularized by the natural
field decay. Other diagrams also can be written in this process-dependent form. However,
it is more convenient to keep expression as in eq. (3.2), which makes many properties
transparent.

The diagrams 2 and 3 are to be rewritten using EOMs eq. (2.17), (2.18). To do so, one
should rewrite EOMs in the integral form eq. (5.14), substitute it into the diagrams written
as in eq. (6.6), exchange the order of integration, and integrate the remaining integrals.
This computation can be simplified using the inverse derivative operators eq. (5.21), and
the relations∫ ∞

−∞
dz+dz−

fn(z+)∂−1
+ fn̄(z−)

[−2z+z− + i0]1−ε =
∫ ∞
−∞

dz+dz−
−z−

ε

fn(z+)fn̄(z−)
[−2z+z− + i0]1−ε , (6.7)∫ ∞

−∞
dz+dz−

z+

z−
fn(z+)∂−1

+ fn̄(z−)
[−2z+z− + i0]1−ε =

∫ ∞
−∞

dz+dz−
z+

1− ε
fn(z+)fn̄(z−)

[−2z+z− + i0]1−ε .
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ξ̄n̄

ξn

An̄

4

ξ̄n̄

ξn An̄ 5

ξ̄n̄

ξn

An̄

6

ξ̄n̄

ξn

An̄

7

ξ̄n̄

ξn

An̄

8

ξ̄n̄

ξn

An̄

9

ξ̄n̄

ξn

An̄

10

Figure 6. The three-point diagrams contributing to the NLO of the effective operator. The
diagrams with An̄ → An and then with n ↔ n̄ should be added. The blobs indicate the type of
background field. The blue lines are the dynamical fields.

As a result, the sum of the two-point diagrams is

diag1+2+3 = 2iasCF
Γ(−ε)Γ(1− ε)Γ(2− ε)

Γ(3− 2ε)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε

{
(6.8)

(2− ε+ 2ε2)
[
ξ̄n̄(z−n)γµT ξn(z+n̄)− nµξ̄n̄(z−n)

←−
/∂T
←−
∂+
ξn(z+n̄)− n̄µξ̄n̄(z−n)

−→
/∂T
−→
∂−
ξn(z+n̄)

]
−ig(1− ε)

(
z−nµ − z+n̄µ

)
ξ̄n̄(z−n) /An̄,T (z−n)ξn(z+n̄)

+ig(1− ε)
(
z+n̄µ − z−nµ

)
ξ̄n̄(z−n) /An,T (z+n̄)ξn(z+n̄) + . . .

}
.

The expression for mirror diagrams is equal to eq. (6.8) with n ↔ n̄. Note, that the last
two lines can be rewritten with inverse derivatives, reproducing the operator Jµ21 eq. (5.23).

The operator in the second line of eq. (6.8) is the Jµ11 current of eq. (5.24). As expected,
the coefficient functions for all terms of Jµ11 are the same, such that the current conservation
eq. (5.25) is preserved. Since the contribution to NLP part is the result of the combination
of several diagrams, it gives a strong check of our computation.

Three-point diagrams. The three-point diagrams are shown in figure 6. The diagrams
7-10 are specific for the composite background field and would be absent in the usual
background field computation. Note, that the three-gluon vertex that appears in diagrams
6 and 9 is not equal to three-gluon vertex in QCD but has a modification that comes from
the background-gauge gauge-fixing condition.

The computation of these diagrams is straightforward and described in details in ap-
pendix B. Here we present the final expression for the sum of three-point diagrams. For
convenience we add the ξ̄Aξ-part of the two-point diagrams, such that the result is the full
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expression for the coefficient function of Jµ21 operator. It reads

diag4 + . . .+ diag10 + diagξ̄Aξ−part2 = gas
Γ(−ε)Γ(1− ε)Γ(2− ε)

Γ(2− 2ε) (6.9)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε
∫ 1

0
ds

{
(z+n̄µ − z−nµ)CF

2− ε
ε
K(1, 1)

−
(
CF

ε(1 + ε)
(1− ε)2 + CA

1− ε− ε2
(1− ε)2

)[
(εz−nµ + (1− ε)z+n̄µ)K(s, 1)− z+n̄µK(0, 1)

]

+
(
CF −

CA
2

) 2(1− ε− ε2)
ε(1− ε)2

[
(εz−nµ + (1− ε)z+n̄µ)K(1, s)− z+n̄µK(1, 0)

]}
,

where CA = Nc and

K(s, t) = ξ̄n̄(sz−n) /An̄,T (tz−n)ξn(z+n̄). (6.10)

The terms in eq. (6.9) are grouped such that each line forms a transverse combination.

NLO expressions in momentum space. The passage to momentum space is straight-
forward. The expression for EM current in eq. (5.59) takes the form

J̃µ(y) = p+
1 p
−
2

∫
dxdx̃ eixp

+
1 y
−+ix̃p−2 y

+
C̃1J

µ
11(x, x̃, yT ) (6.11)

+(p+
1 )2p−2

∫
dx1dx2dx̃ e

i(x1+x2)p+
1 y
−+ix̃p−2 y

+
C̃2(x1,2)Jµ21(x1,2, x̃, yT )

+p+
1 (p−2 )2

∫
dxdx̃1dx̃2 e

ixp+
1 y
−+i(x̃1+x̃2)p−2 y

+
C̃2(x̃1,2)Jµ12(x, x̃2,1, yT ) + . . . ,

where C’s are the coefficient functions. Their expression up to NLO are

C̃1 = 1 + 2asCF
2− ε+ 2ε2

[−2q+q− − i0]ε
Γ(ε)Γ(−ε)Γ(2− ε)

Γ(3− 2ε) , (6.12)

C̃2(x1,2) = 1 + 2gas
Γ(ε)Γ(−ε)Γ(1− ε)

Γ(3− 2ε)
1

[−2q+q− − i0]ε (6.13)

×
{
CF (1− ε)2(2− ε)− 2

(
CF −

CA
2

)
(1− ε− ε2)x1 + x2

x2

[
1−

(
x1 + x2
x1

)ε]

+
[
CF ε

2(1 + ε) + CAε(1− ε− ε2)
] x1 + x2

x1

[
1−

(
x1 + x2
x2

)ε]}
,

In these expressions the momenta q± are set in accordance to eq. (5.64). I.e. for the Jµ11
current q+q− = x1x2p

+
1 p
−
2 , for J

µ
21 current q+q− = (x1 + x2)x3p

+
1 p
−
2 and for Jµ12 current

q+q− = x1(x2 + x3)p+
1 p
−
2 .

Eqs. (6.12), (6.13) are the bare form of the coefficient functions, that contains the IR
poles. These poles are removed by the operation in eq. (4.5). In the present case, this
operation can be made for EM currents individually before recombining them into the
effective operator. The renormalization constants Z1 and Z2 are derived in section 8, and
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they exactly remove the pole part of C̃’s (see eqs. (9.24), (9.26) and discussion there). So,
we obtain in the MS-scheme6

C1 = 1 + asCF

(
−L2

Q + 3LQ − 8 + π2

6

)
+O(as), (6.14)

C2(x1,2) = 1 + as

[
CF

(
−L2

Q + LQ − 3 + π2

6

)
+ CA

x1 + x2
x1

ln
(
x1 + x2
x2

)
(6.15)

+
(
CF −

CA
2

)
x1 + x2
x2

ln
(
x1 + x2
x1

)(
2LQ − ln

(
x1 + x2
x1

)
− 4

)]
+O(a2

s),

where

LQ = ln
(
−2q+q− − i0

µ2

)
. (6.16)

Here and in eqs. (6.12), (6.13), the notation is adopted such that x2 is the momentum
fraction of the gluon field. The expression for C1 coincides with earlier computations, see
e.g. refs. [25, 26, 37, 52, 53]. Nowadays, the coefficient C1 is known up N3LO order [54].
The coefficient functions for the anti-causal sector are obtained from the causal ones with
complex conjugation.

The expression for J µν in eq. (5.64) became decorated by the coefficient functions,

J µνeff (q) =
∫

d2b

(2π)2 e
−i(qb)

{∫
dxdx̃δ

(
x− q+

p+
1

)
δ

(
x̃− q−

p−2

)
|C1|2J µν1111(x, x̃, b) (6.17)

+
∫

[dx]dx̃δ
(
x̃− q−

p−2

)

×
(
δ

(
x1 −

q+
1
p+

1

)
C∗1C2(x3,2)J µν1211(x, x̃, b) + δ

(
x3 + q+

1
p+

1

)
C∗2 (x1,2)C1J µν2111(x, x̃, b)

)

+
∫
dx[dx̃]δ

(
x− q+

p+
1

)

×
(
C∗1C2(x̃3,2)δ

(
x̃1 −

q−

p−2

)
J µν1112(x, x̃, b) + C∗2 (x̃1,2)C1δ

(
x̃3 + q−

p−2

)
J µν1121(x, x̃, b)

)

+ . . .

}

where asterisks denote the complex conjugation, which, in fact, applies only to LQ.

7 Mode overlap and the soft factor

So far, we have assumed that the collinear and anti-collinear fields are entirely independent.
It allows us to impose individual gauge-fixing conditions and separate fields into indepen-
dent gauge-invariant TMD operators. However, it should be kept in mind that there is

6MS-scheme is defined with an extra factor µ2εeεγE for each as. Here, γE is the Euler–Mascheroni
constant.
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a part of functional integration phase space where collinear and anti-collinear fields are a
single background field. In figure 1, this region is covered by diagonal shading. This is the
so-called soft region (or glauber region in the SCET nomenclature). Fields in this region
(marked by s) satisfy the counting

{∂+, ∂−, ∂T }qs . Q{λ2, λ2, λ}qs, (7.1)
{∂+, ∂−, ∂T }Aµs . Q{λ2, λ2, λ}Aµs . (7.2)

The soft region is double-counted in the functional integral with the measure of eq. (2.24).
Let us stress that the double-counting of the soft region does not effect the TMD

factorization procedure described in previous sections. Instead, each TMD operator has
an uncompensated rapidity divergence. In fact, the rapidity divergences should cancel
between collinear and anti-collinear TMD operators, but they cannot due to the double
counting of the soft region. There are several solutions of this problem. Let us list some
of them:

• The definition of collinear and anti-collinear fields can be modified in the soft region,
such that there is no overlap. For example, by introducing a cut in rapidity for each
field as it is shown by the red-dashed line in figure 1. Then each TMD operator depend
on the cut parameter, such that this dependence is compensated in the product.
See e.g. discussion in ref. [49]. The same idea is used in the rapidity factorization
approach [13, 55].

• The product nature of the functional integral allows to remove double-counting simply
dividing by the (functional) integral over soft modes. It is possible if the hadron
states do not contain soft fields, which is valid in a non-small-x regime. The resulting
factor is known as the soft factor [25, 26] or zero-bin subtraction [56]. It is the most
popular procedure nowadays. However, there is no general approach to determine the
soft factor operators at higher powers. Most plausible, such a simple multiplicative
structure does not hold for higher power operators.

• One can ignore problems of overlapping modes entirely, and reconstruct necessary
parts (such as rapidity renormalization constants) by demanding that the effective
operator is well-defined. This logic is used in the collinear anomaly approach, see [37,
57].

In the present NLP computation, we use the second way, because it leads to the correct
result at NLP without additional computation. However, we expect that this approach
does not hold at higher powers.

Let us stress, that all approaches should result into the same final expression, up to
some finite terms. The fixation of finite terms is equivalent to the fixation of the scheme,
and the definition of the parton distribution. The closest example is the difference between
MS and DIS schemes, see e.g. [58]. The only difference of the TMD case from the collinear
is, that the coefficient of rapidity divergence is nonperturbative, and thus the finite terms
added/subtracted from the physical distribution are also nonperturbative. Consequently,
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the scheme must be defined by a certain nonperturbative statement. At LP one fixes the
scheme defining that cross-section for DY and SIDIS do not have extra nonperturbative
functions except TMD distributions. The same definition can be applied to NLP, see
section 9.

Determining the soft factors. To determine soft factors for our operators, we use the
following procedure. We split soft parts of collinear and anti-collinear fields

qn̄(x)→ qn̄(x) + qs(x), qn(x)→ qn(x) + qs(x), Aµn̄(x)→ Aµn̄(x) +Aµs (x), (7.3)

and similar for other components. Then we isolate the soft fields into a single factor
dropping power suppressed contributions. For example, for the first term of the LP effective
operator eq. (5.7)

ξ̄
(−)
n̄ γµT ξ

(−)
n ξ̄(+)

n γνT ξ
(+)
n̄ → (7.4)

(ξ̄(−)
n̄ + q(−)

s )[y−n+ yT , Ln+ yT ](−)
s γµT [L̄n̄+ yT ,−y+n̄+ yT ](−)

s (ξ(−)
n + q(−)

s )
×(ξ̄(+)

n + q(+)
s )[0, L̄n̄](+)

s γνT [Ln, 0](+)
s (ξ(+)

n̄ + q(+)
s )

= ξ̄
(−)
n̄ γµT ξ

(−)
n ξ̄(+)

n γνT ξ
(+)
n̄ × S̃LP(yT ) +O(λ4),

where [a, b]s is the Wilson line with the soft gluon field, and we omit transverse links for
brevity. The operator for the LP soft factor is

S̃LP(yT ) = Tr
Nc

[L̄n̄+ yT , yT ](−)[yT , Ln+ yT ](−)[Ln, 0](+)[0, L̄n̄](+), (7.5)

where the trace is taken with respect to color indices. The trace and the factor 1/Nc

appears due to the fact that only gauge-invariant operators have non-zero matrix elements.
To derive eq. (7.5) we have used the counting rules for soft fields eq. (7.1), (7.2).

The operator S̃ represents the soft part of LP effective operator. Therefore, the soft
part to the functional integral eq. (2.11) at LP is given by the vacuum (assuming that the
hadrons do not carry soft partons) matrix element of eq. (7.5)

SLP(yT ) = Tr
Nc

∑
X

〈0|[L̄n̄+ yT , yT ][yT , Ln+ yT ]|X〉〈X|[Ln, 0][0, L̄n̄]|0〉, (7.6)

which is called the soft factor. To remove the double counting from the LP term, eq. (5.4),
we divide TMD operators by the soft factor

Oli11,n̄O
jk
11,n →

Oli11,n̄O
jk
11,n

SLP(yT ) . (7.7)

The same structure follows from the region-separation method [59]. In SCET literature,
this procedure is known as a zero-bin subtraction [56]. We remark that the problem
of overlapping modes does not impact TMD factorization, and thus the replacement in
eq. (7.7) is valid to all orders in perturbation theory.

A similar computation can be done for operators contributing to J µνNLP. We have two
principal cases: the operators with derivatives (the first and the second line in eq. (5.27)),
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and operators with extra field AµT (other lines in eq. (5.27)). In both cases, we obtain that
the soft overlap contribution is equal to the LP soft factor eq. (7.6), since a derivative of a
soft Wilson line, or an extra factor Aµs necessarily increase the power counting. Therefore,
the subtraction of the soft region for NLP operators has the same form as for LP operator
eq. (7.7). Namely,

∂ρOli11,n̄O
jk
11,n →

∂ρOli11,n̄O
jk
11,n

SLP(yT ) , Oli12,n̄O
jk
11,n →

Oli11,n̄O
jk
12,n

SLP(yT ) , (7.8)

and similarly for other terms of effective operator eq. (5.27). The LP soft factor is inde-
pendent on y± and thus does modify convolutions in J µνeff at NLP.

Having the same soft factors for LP and NLP operators leads to the following conse-
quences:

• LP and NLP operators must have the same rapidity divergence and, as the result,
the same rapidity anomalous dimension.

• LP and NLP operators must have the same collinear divergent part of the UV renor-
malization.

Indeed, these divergences arise in the interaction of soft modes, and (in the present ap-
proach) they are canceled by the soft factor. In section 8, we independently derive both
statements, and we explicitly verify them at NLO.

A simple procedure described here allows to determine soft factors for LP and NLP
terms. For higher power correction a more systematic procedure should be developed.

δ-regularization. The soft factor has a complicated combination of divergences.
Namely, it has UV divergence, rapidity divergences, and mass divergences (see refs. [60, 61]
for detailed analysis). The mass divergences cancel in the sum of all diagrams [61], whereas
rapidity and UV divergences remain.

An essential feature of rapidity divergences is that they are not regularized by dimen-
sional regularization [62]. Therefore, an additional regularization must be implemented.
There are many regularizations of rapidity divergences used in the literature, such as —
tilting of Wilson lines [25], analytic regularization [57, 63], exponential regulator [64] and
δ-regularization [26, 65]. Each of these regularizations has been used in plenty of compu-
tations and has advantages and disadvantages. The final result after the recombination
of divergences is independent on the rapidity regularizator. In this work we use the δ-
regularization, for the only simple reason that we are experienced in it.

The rapidity divergences arise due to the interaction with the far end of the half-
infinite light-like Wilson line [61]. In the δ-regularization these interactions are regularized
by insertion of dumping factor into Wilson line,

[zn, Ln] = P exp
(
−ig

∫ z

L
dσA+(σn)e−sδ+σ

)
, (7.9)

where δ+ > 0 and s = sign(L). Similarly for the Wilson line in the direction n̄

[zn̄, L̄n̄] = P exp
(
−ig

∫ z

L̄
dσA−(σn̄)e−s̄δ−σ

)
, (7.10)
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with δ− > 0 and s̄ = sign(L̄). Thus, there are two regulator parameters δ+ and δ−, which
regularize divergences associated with different light-like directions.

Soft factor at NLO. The calculation of the LP TMD soft factor has been performed
in many papers, see e.g. NLO calculations [25, 26, 66, 67]. The expressions used here with
δ-regularization are taken from ref. [68]. The bare soft factor at NLO reads

SLP(b) = 1− 4asCFΓ(−ε)
(
−b2

4

)ε(
ln
(
−b2(2δ+δ−)

4e−2γE

)
− ψ(−ε)− γE

)
+O(a2

s). (7.11)

Here, b is a transverse vector, so −b2 > 0. This expression contains a product of rapidity
divergences associated with different Wilson lines in the form of ln δ+ and ln δ−. Note,
that some 1/ε poles of eq. (7.11) are not the UV divergence, but a part of rapidity diver-
gence. The UV part of the soft factor should be computed separately. In MS-scheme (see
footnote 6), it is [65]

ZS(2δ+δ−) = 1 + 4asCF
(
− 1
ε2

+ 1
ε

ln
(

2δ+δ−

µ2

))
+O(a2

s). (7.12)

It contains ln(δ+δ−) which, in this case, is a remnant of the mass divergence.
In ref. [61], it is proven that the rapidity divergences of the LP soft factor can be written

as a product of factors. The proof is made using the method of conformal transformation
and it is valid to all orders in perturbation theory. Using it we present the LP soft factor
in the form

SLP (b) = ZS(2δ+δ−)R
(
b2,

δ+

ν+

)
S0(b2, ν2)R

(
b2,

δ−

ν−

)
, (7.13)

where ν± are some scales, and ν2 = 2ν+ν−, and S0 is free of UV and rapidity divergences.
The NLO expression for R can be deduced from eq. (7.11). In MS-scheme it reads

R

(
b2,

δ+

ν+

)
= 1− 4asCF

[
Γ(−ε)

(
− b2µ2

4e−γE

)ε
+ 1
ε

]
ln
(
δ+

ν+

)
+O(a2

s). (7.14)

For future convenience, we introduce UV renormalization factor ZR for R̃, and write

R̃

(
b2,

δ+

ν+

)
= ZR

(
δ+

ν+

)
R

(
b2,

δ+

ν+

)
, (7.15)

where

R̃

(
b2,

δ+

ν+

)
= 1− 4asCFΓ(−ε)

(
− b2µ2

4e−γE

)ε
ln
(
δ+

ν+

)
+O(a2

s), (7.16)

ZR

(
δ+

ν+

)
= 1 + 4asCF

ε
ln
(
δ+

ν+

)
+O(a2

s). (7.17)

Note, that the identity

ZS(2δ+δ−) = ZS(ν2)ZR
(
δ+

ν+

)
ZR

(
δ−

ν−

)
(7.18)

is valid to all orders in perturbation theory.
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8 Divergences of TMD operators

The TMD operators are composed of two semi-compact light-cone operators, eq. (4.6),
separated by a transverse distance,

ONM,n̄({z−}, b) = U
(−)
N,n̄({z−1 }, b)U

(+)
M,n̄({z−2 }, 0). (8.1)

The hadronic matrix element of the TMD operators in eq. (8.1) defines the TMD distri-
butions. It can be a TMD PDF(s)

FNM ({z−}, b) =
∑
X

〈p|UN,n̄({z−}, b)|X〉〈X|UM,n̄({z−}, 0)|p〉, (8.2)

or TMD FF(s)

DNM ({z−}, b) =
∑
X

〈0|UN,n̄({z−}, b)|p,X〉〈p,X|UM,n̄({z−}, 0)|0〉. (8.3)

The TMD distributions FNM and DNM can be decomposed over independent Lorentz
components and reveal a plethora of TMD distributions. It is widely known that there are
eight quark TMD PDFs defined by the LP operator O11 in eq. (5.53), see e.g. [48, 69]. All
these distributions (TMDPDF and TMDFF) obey the same evolution equations, because
they are matrix elements of the same TMD operator. In this way, all these distributions
are alike from the perspective of TMD operator expansion, despite the fact that they have
very different partonic interpretation and are measured with different experimental set-ups.

In this work, we concentrate on the global properties of TMD factorization, and thus
we do not systematize NLP TMD distribution (see [24, 48]). This systematization as well
as, the derivation of cross-section is the object of a subsequent publication. Instead, we
study the global properties of LP and NLP TMD operators, and write down the evolution
equations for LP and NLP TMD distributions.

The operators U1 and U2 in eq. (5.33), (5.35) together with their C-conjugated versions
U1 and U2, eq. (5.36), (5.38), set up all TMD operators at NLP eq. (5.39)–(5.44). As we
show in the following subsection the singularity and evolution properties of a TMD operator
follow from the properties of each U that composes it. Therefore, we concentrate on the
studies of U1 and U2 rather then on studies of O. In addition, we consider a more general
operator Uµ2 eq. (5.34), since it does not complicate the computation but allows us a simpler
comparison with known expressions.

8.1 Rapidity divergences

Rapidity divergences are specific of TMD operators, eq. (8.1). They arise in the interac-
tion of fields with the distant segments of light-like Wilson lines (accurate definition and
properties rapidity divergences can be found in ref. [61]).

Renormalization of rapidity divergences. Rapidity divergences are multiplicatively
renormalizable. In ref. [61] this statement is proven for the multi-parton scattering soft
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factors. The proof can be easily generalized to TMD operators ONM,n̄ that appear at LP
and NLP.7

Using the multiplicativity of the rapidity divergence we write the LP operators in
eq. (5.8), (5.9) as

Oij11,n̄(b) = R

(
b2,

δ+

ν+

)
Oij11,n̄(b; ν+), Oij11,n̄(b) = R

(
b2,

δ+

ν+

)
Oij11,n̄(b; ν+), (8.4)

where we omit the argument {y−, 0} of the TMD operators. The variable ν+ is a scale
of rapidity divergences renormalization. The operators on the r.h.s. of eq. (8.4) are free
from rapidity divergences. We distinguish such operators by explicit indication of rapidity
renormalization scale ν+. The rapidity-divergence renormalization factor R is independent
on y−, and thus the Fourier transformed TMD operator eq. (5.53), (5.54) is renormalized
in the same way. The same renormalization factor absorbs rapidity divergences of NLP
operators eq. (5.41)–(5.44),

Oij21,n̄(b) = R

(
b2,

δ+

ν+

)
Oij21,n̄(b; ν+), Oij21,n̄(b) = R

(
b2,

δ+

ν+

)
Oij21,n̄(b; ν+), (8.5)

Oij12,n̄(b) = R

(
b2,

δ+

ν+

)
Oij12,n̄(b; ν+), Oij12,n̄(b) = R

(
b2,

δ+

ν+

)
Oij12,n̄(b; ν+),

and similar for the Fourier-transformed operators eq. (5.53)–(5.56).
For the TMD-operators oriented along n̄, rapidity divergences have the same structure

but with n→ n̄. Thus, one should replace δ+ → δ− and ν+ → ν− in formulas (8.4)–(8.5),

OijNM,n(b) = R

(
b2,

δ−

ν−

)
OijNM,n(b; ν−), OijNM,n(b) = R

(
b2,

δ−

ν−

)
OijNM,n(b; ν−), (8.6)

where N +M is 2 or 3.
7One needs to apply the conformal transformation Cn̄ (defined in eq. (5.1) of [61]) to the TMD operator

ONM,n̄. The resulting operator Cn̄ONM,n̄ is spatially-compact. It has the form of a Wilson line with
two light-like segments that are joined at the origin of the light-cone. The partonic fields are positioned
along the Wilson line. The Wilson line has a light-like cusp, whose UV divergence corresponds to the
rapidity divergence of the TMD operator before transformation. Using the fact that an UV divergence
is multiplicatively renormalizable, and that the conformal invariance of QCD is restored in the Wilson-
Fisher critical point [70], one derives that rapidity divergence is multiplicatively renormalizable as well.
The derivation is made by iterations order-by-order in perturbative expansion, starting from the LO which
respects conformal invariance. Practically, this derivation repeats the one given in section 5.2 of ref. [61]
for multi-parton soft factors.

The light-like cusp anomalous dimension associated with the cusp of Cn̄ONM,n̄ (called the soft anoma-
lous dimension, [71, 72]) corresponds to the rapidity anomalous dimension of the TMD operator. This
correspondence is a simple equality at LO, but receives modifications beyond the LO due to the break-
ing of the conformal invariance in QCD. The modification terms can be derived using the same iterative
method, which has been done in ref. [73] up to N2LO. The result coincides with the three-loop brute force
computation [74], which non-trivially validate of the method of conformal transformation used to prove the
renormalizability of rapidity divergences.

One of the important consequences of the derivation is that the rapidity divergence of LP operators
and NLP operators are the same. It follows from the fact, that cusp divergences of Cn̄O11,n̄ and Cn̄O21,n̄

coincide. It independently confirms the same observation pointed out in section 7 after eq. (7.8).
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ξn̄

ÛN

r1 ξn̄ An̄

ÛN

r2 ξn̄ An̄

ÛN

r3

Figure 7. The rapidity divergent diagrams for operator U1 (r1), and operator U2 (r2,r3) that
interacts with any other semi-compact operator UN . The dynamical fields are shown in blue.
Wilson lines are indicated as dashed. The black dots are insertions of Fµ+.

Rapidity divergence at NLO. The factor R that renormalizes the rapidity divergences
of TMD operators is the same as for the soft factor eq. (7.13), (7.14) and here we check it
at one-loop. For this purpose, we consider a TMD operator composed from U1,n̄ or Uµ2,n̄
eq. (5.33), (5.34) and any other semi-compact operator UN,n̄. We denote such operators as
ON1,n̄ = UN,n̄U1,n̄ andON2,n̄ = UN,n̄U

µ
2,n̄. These operators are more general than operators

appearing at NLP, however, as we demonstrate below, their possibly complicated nature
does not impact the rapidity divergences structure.

TMD operators ON1,n̄ and ON2,n̄ are color-neutral. Thus, the operator UN,n̄ has a
Wilson line in the anti-fundamental representation pointing to Ln. We split a far segment
of this Wilson line from the rest of the operator,

UN,n̄({z−}, b) = U
′
N,n̄({z−}, b; z0)[z0n+ b, Ln+ b], (8.7)

where z0 is such that max{|z−|} < |z0|. The rapidity divergences arise only in the interac-
tion of the Wilson line [z0n,±∞n] with U1,2. One-loop diagrams that produce the rapidity
divergence are shown in figure 7.

To extract the rapidity divergence, we follow the method developed in ref. [29]. Let
us describe it using the diagram r1, as an example. We write the diagram r1 using the
background field method with a single background field in the A+ = 0 gauge. It reads

diagr1 = −ig2CF
Γ(1− ε)Γ(2− ε)

8πd
∫ z0

L
dσ

∫
ddy

U
′
N,n̄({z−}, b; z0)P+/yγ

+q(y)
[−y2 + i0]2−ε[−(σn+ b− y)2 + i0]1−ε ,

(8.8)

where P+ = γ−γ+/2 is the projector of the “good” component of the quark field, see
eq. (2.15). Here we have also used that the TMD operators in eq. (8.1) can be written as a
single T-ordered operator (or in terms of the functional integral, the superscripts (±) can
be omitted), since all fields in it are separated by light-like or space-like distances. Note,
that the spinor indices of UN and the rest of the diagrams are not contracted. Joining the
propagators by the Feynman parameter α and making a shift y → y+α(nσ+b), we obtain

diagr1 = −2ig2CF
Γ(3− 2ε)

8πd U
′
N,n̄({z−}, b; z0) (8.9)

×
∫ 1

0
dαα−εᾱ1−ε

∫ z0

L
dσ

∫
ddy

y+ξ(y + ασn+ αb)
[−y2 − αᾱb2 + i0]3−2ε ,
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where we used that P+/yγ
+q = 2y+ξ and b+ = 0. The integral over y can be computed in

the sense of the generating functional. For that we expand ξ in a Taylor series at y = 0,
and integrate this series term-by-term using eq. (B.6). The result reads

diagr1 = 2asCF
(
−b2

4

)ε
U
′
N,n̄({z−}, b; z0) (8.10)

×
∞∑
n=0

∫ 1

0
dα

∫ z0

L
dσ

(−1)nΓ(−ε− n)
4n n! ᾱ(−αᾱb2)n∂2n∂+ξ(ασn+ αb),

The n = 0 term is rapidity divergent at α → 0. Indeed, in this limit the field ξ is
independent on σ and the integral over σ diverges at σ → L. To reveal the divergence we
make a change of variable τ = ασ, and obtain

diagr1 = 2asCFΓ(−ε)
(
−b2

4

)ε
U
′
N,n̄({z−}, b; z0)

∫ 1

0

dα

α

∫ 0

L
dτ∂+ξ(τn) + . . . , (8.11)

where dots indicate the terms finite at α → 0, and thus rapidity-divergence-free. In this
expression the divergence is transparent. As eq. (8.11) is independent of z0, the operator
on U ′N,n̄ can be promoted to UN,n̄ by limiting z0 → L.

To regularize rapidity divergences we use the δ-regularization eq. (7.9). It gives the
factor e−Lδσ in the integral eq. (8.8), and modifies eq. (8.11) as

diagr1 = 2asCFΓ(−ε)
(
−b2

4

)ε
UN,n̄({z−}, b)

∫ 1

0

dα

α

∫ 0

L
dτe−sδ

τ
α∂+ξ(τn) + . . . , (8.12)

where s = sign(L). Now, the integrals over α and τ can be computed. The result is

diagr1 = −2asCFΓ(−ε)
(
−b2

4

)ε
ln
(
δ+

p̂+
ξ

)
UN,n̄({z−}, b)ξ(0) + . . . , (8.13)

where p̂+
ξ = −i∂+ is the momentum of field ξ. The direction of the Wilson line does not

impact the rapidity divergent part, but gives rise to a finite term ∼ isπ. The computation
of similar diagrams for the C-conjugated operator, gives the same rapidity divergent part.

The most important observation is that the rapidity divergent term in diagram r1 is
independent of the second part of the operator. In this sense, we can associate the rapidity
divergence in eq. (8.13) with the operator U1,n̄. In order to get the complete rapidity
divergence of the TMD operator ON1,n̄ = UN,n̄U1,n̄, we should consider also diagrams
where the fields of UN interact with the Wilson line of U1.

Next, we study the rapidity divergence associated with Uµ2,n̄({z1, 0}, 0T ), eq. (5.34).
For that we consider the TMD operator ON2,n̄. There are two rapidity divergent diagrams
shown in figure 7, r2 and r3. The computation is similar to eq. (8.8)–(8.13). The rapidity
divergent part of these diagrams is

diagr2 =−2as
(
CF −

CA
2

)
Γ(−ε)

(
−b2

4

)ε
ln
(
δ+

p̂−ξ

)
UN,n̄({z−}, b)Fµ+(z1)ξn̄(0) + . . . , (8.14)

diagr3 =−2as
CA
2 Γ(−ε)

(
−b2

4

)ε
ln
(
δ+

p̂+
A

)
UN,n̄({z−}, b)Fµ+(z1)ξn̄(0) + . . . , (8.15)
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where p̂A is the momentum operator acting on the gluon field. Again the r.h.s. of
eq. (8.14), (8.15) reproduces the original operator ON2,n̄. Summing together diagrams
r2 and r3 we obtain

diagr2+r3 = −2asCFΓ(−ε)
(
−b2

4

)ε
ln
(
δ+

p̂+

)
UN,n̄({z−}, b)Uµ2,n̄({z1, 0}, 0T ) + . . . , (8.16)

where p̂ is some generic momentum.
We observe that the coefficient of the rapidity divergence for LP eq. (8.13) and NLP

eq. (8.16) operators coincides, as it is predicted in previous sections. Using eq. (8.13) or
eq. (8.16) (together with their corresponding charge-conjugated parts) we deduce the NLO
expression for the (unrenormalized) factor R̃ defined in eq. (8.4)–(8.5). In MS-scheme,
we have

R̃

(
b2,

δ+

ν+

)
= 1− 4asCFΓ(−ε)

(
− b2µ2

4e−γE

)ε
ln
(
δ+

ν+

)
+O(a2

s). (8.17)

This expression coincides with eq. (7.16), which validates the factorization at one-loop.
An important feature of the rapidity divergences is that they have a nonperturbative

contribution. The computation presented in this section misses this part. It is clear that
at large transverse distances b the gluon propagator is modified by the confinement effects.
Therefore, the perturbative result in eq. (8.16) is valid only at small (but finite) values of
b2. At large values of b2 the factor R gets power corrections. In dimensional regularization,
the presence of these power corrections is indicated by renormalon divergences [75]. The
renormalization theorem for rapidity divergences guarantees that the factors R for TMD
operators of twist-(1+1) and twist-(2+1) coincides to all powers of small-b2 expansion. It
allows us to assume that rapidity divergences for LP and NLP operators also coincides
nonperturbatively.

Rapidity divergences of quasi-partonic operators. The consideration on rapidity
divergences and the soft factor presented above allows us a generalisation going far beyond
NLP. That is, the rapidity divergences and hence the rapidity anomalous dimensions for
quasi-partonic TMD operators coincides with the LP.

We define quasi-partonic TMD operators in analogy to collinear quasi-partonic oper-
ators. Namely, a quasi-partonic operator UN is the operator whose geometric twist equals
the number of fields8 (excluding Wilson lines), see e.g. [28, 46, 76]. Consequently, a quasi-
partonic TMD operator is composed from two quasi-partonic operators U . It also implies
that a quasi-partonic operator consists of “good” components of fields only. E.g. opera-
tors U1,n̄ and Uµ2,n̄ are quasi-partonic. The first non-quasi-partonic semi-compact operator
has twist-3.

The equality of rapidity divergent parts for all quasi-partonic TMD operators can be
derived in several ways. First of all, one can observe that the soft part of such an operator
coincides with a staple of Wilson lines. Indeed, since the operator already contains a

8We also assume that a quasi-partonic operator is continuously connected by Wilson line, and does not
have disconnected parts.
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maximum number of fields (and all of them are “good” fields), the replacement of any field
by its soft part as in eq. (7.3) increases the power counting. Therefore, the part of the
soft factor, responsible for the cancellation of the rapidity divergence of a quasi-partonic
operator, coincides with the LP soft factor.

Another way is to use the method of conformal transformations (see footnote 7). In
this case, we utilize that “good” components preserve the projection properties after the
conformal transformation Cn̄ [44]. Therefore, the soft anomalous dimension of the trans-
formed operator coincides with the one of LP operator. It leads to the equality of factors
R for all quasi-partonic operators. In other words,

Oquasi-p.
NM,n̄ ({z}, b) = R̃

(
b2,

δ+

ν+

)
Oquasi-p.
NM,n̄ ({z}, b; ν+), (8.18)

where R̃ is the same as in eq. (8.4) and the operator on r.h.s. is rapidity-divergence-free.
Eq. (8.18) is simple to confirm at one-loop. There are two types of diagrams contribut-

ing to the rapidity divergence of a quasi-partonic operator, the interaction with a gluon or
a quark field. These diagrams are computed in eq. (8.14), (8.15), and they have the same
expressions apart of color factors. In the quasi-partonic case, these color factors should
be replaced by [1]ta[2]ta (for interaction with quark) or [1]ifabctb[2]tc (for the interaction
with gluon), where [1] and [2] are color matrices of the fields before and after the interact-
ing field. Summing together all such structures, one obtains the original color structure
multiplied by tctc. I.e.

rap.div.[Uquasi-p.
N,n̄ ] = −2asCKΓ(−ε)

(
−b2

4

)ε
ln
(
δ+

p̂+

)
, (8.19)

where CK is the eigenvalue of the quadratic Casimir operator for color representation of
Uquasi-p.
N .

8.2 UV divergences

The UV divergence of the TMD operator ONM,n̄ = UN,n̄UM,n̄ consists of UV divergences of
UN,n̄ and UM,n̄, which are independent of each other. It is obvious since the semi-compact
operators are separated by a space-like distance b2, and any interaction between them is
UV finite.

The UV divergence of a semi-compact operator contains also a collinear divergence
from the interaction of the distant segment of the light-like Wilson line. Despite some
similarity this collinear divergence should not be confused with the rapidity divergences
discussed in the previous section. They have different properties (e.g. collinear divergence
does not receive power corrections), and they are treated differently within the factorization
theorem. On another hand, they are regularized by a common regulator (the δ-regulator
in the present computation).

UV renormalization of U1. The renormalization factor for U1,n̄ is equal to the renor-
malization factor of the “good” component of the quark field in the light-cone gauge. It
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ξn̄ u1 ξn̄ u2 ξn̄ An̄ u3 ξn̄ An̄ u4 ξn̄ An̄ u5

ξn̄ An̄ u6 ξn̄ An̄ u7 ξn̄ An̄ u8 ξn̄ An̄ u9 ξn̄An̄ u10

Figure 8. The UV divergent diagrams for the operator U1 (u1), and the operator U2 (u2–u10).
The dynamical fields are shown in blue. Wilson lines are indicated as dashed. The black dots are
insertions of Fµ+. Diagrams u1, u2, and u3 also contain collinear divergence.

has an extra collinear divergence, which is proportional to the cusp anomalous dimen-
sion [77, 78], and should be regularized by an additional regulator. In the present compu-
tation we use the δ-regulator (7.9).

To get the renormalization factor in the δ-regularization we compute the diagram u1
shown in figure 8. The expression for the diagram u1, is similar to eq. (8.8) at b = 0. Naively
the loop integral is null due to the absence of the scale in the dimensional regularization,
but it has an UV divergent part, which reads

diagu1 = 2asCF
ε

(
1 + ln

(
δ+

isp̂+
ξ

))
U1,n̄, (8.20)

with s = sign(L). In addition to the diagram u1 one should take into account the renor-
malization of the quark wave function Z1/2

2 = 1− asCF /(2ε).
Let us note, that the complex part of the diagram ∼ ln(is) is canceled by the similar

term in the charge-conjugated part of the TMD operator. Such cancellation takes place
to all orders in perturbation theory. Therefore, we can safely eliminate these phase terms
from the UV renormalization factors. The renormalization of the operator is

U1,n̄(0) = ZU1

(
δ+

p̂+
ξ

)
U1,n̄(0;µ), (8.21)

where

ZU1

(
δ+

p̂+
ξ

)
= 1 + asCF

ε

(
3
2 + 2 ln

(
δ+

p̂+
ξ

))
+O(a2

s). (8.22)

We identify the UV renormalized operators by the presence of scaling argument µ, similarly
as we identify rapidity renormalized operators with scaling argument ν+. This is not a
final expression for the renormalization of U1, since the variable δ+ is unspecified. This
ambiguity disappears once we fix the value of δ+, which should be done coordinately with
the rapidity divergent part, see section 9.
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UV renormalization of U2. The UV divergent part of Uµ2,n̄ is computed from the
diagrams u2-u10 shown in figure 8. The computation is straightforward, and in fact,
it almost coincides with the computation of the 2 → 2 evolution kernels for collinear
distributions made in refs. [46, 76]. The only difference is the collinear divergence (and
constant contributions) due to the half-infinite Wilson line.

The collinear divergences are present in the diagrams u3 and u4. Their expressions are

diagu3 = 2as
ε

(
CF −

CA
2

){(
1 + ln

(
δ+

isp̂+
ξ

))
Uµ2,n̄({z, 0}, 0T ) (8.23)

+
∫ 1

0
dα
ᾱ

α

(
Uµ2,n̄({z, 0}, 0T )− Uµ2,n̄({z, αz}, 0T )

)}
,

diagu4 = 2as
ε

CA
2

(
1 + ln

(
δ+

isp̂+
A

))
Uµ2,n̄({z, 0}, 0T ), (8.24)

where p̂ξ and p̂A are momenta of quark and gluon fields of the operator. Thus, the collinear
singularity ∼ ln δ+ is proportional to the cusp anomalous dimension (just alike the U1,n̄
case), but the regulator δ+ is weighted by a different momentum in different diagrams.
Different weighting produces a non-trivial contribution to the evolution kernel for TMD
operators.

The computation of the remaining diagrams is straightforward. Let us only mention
the diagram u2 that should be computed up to a derivative term, which after application
of EOMs produces the operator U2,n̄. It is convenient to present the sum of diagrams in
the form

diagu2 + . . .+ diagu10 = as
ε

{
γµTγ

ν
TH1U

ν
2,n̄ + γνTγ

µ
TH2U

ν
2,n̄ (8.25)

+
[
CF

(
2 + 2 ln

(
δ+

q+

))
+ 2

(
CF −

CA
2

)
ln
(
q+

isp̂+
ξ

)
+ CA ln

(
q+

isp̂+
A

)]
Uµ2,n̄

}
,

where q+ = p̂A + p̂ξ. The kernels H1,2 are quasi-partonic evolution kernels for quark-gluon
pair [79]. In the notation of refs. [46, 80], they read

H1 = CA
2 Ĥ − CAH

+ + 2
(
CF −

CA
2

)
H−, (8.26)

H2 = CA
2 Ĥ −

(
CF −

CA
2

)
P12He(1). (8.27)

Here, the H are elementary 2 → 2 kernels that are integral operators acting in position
space. In the present case, their explicit expressions are

ĤU(z1, z2) =
∫ 1

0

dα

α

(
2U(z1, z2)− ᾱ2U(zα12, z2)− ᾱU(z1, z

α
21)
)
, (8.28)

H+U(z1, z2) =
∫ 1

0
dα

∫ ᾱ

0
dβ ᾱ U(zα12, z

β
21), (8.29)

H−U(z1, z2) =
∫ 1

0
dα

∫ 1

ᾱ
dβ ᾱ U(zα12, z

β
21), (8.30)

P12He(1)U(z1, z2) =
∫ 1

0
dα ᾱ U(zα21, z1), (8.31)
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where we use the shorthand notation

zαij = zi(1− α) + zjα.

These elementary kernels are invariant under the SL(2)-conformal transformation. For
general expressions of H, see appendix A in ref. [80]. For the corresponding expressions in
momentum space, see [76].

Adding the renormalization of the quark wave function, gluon wave function and the
coupling constant (the latter two compensate each other) we get the renormalization factor

Uµ2,n̄({z, 0}, 0) = ZµνU2

(
δ+

q+

)
⊗ Uν2,n̄({z, 0}, 0;µ), (8.32)

where

ZµνU2

(
δ+

q+

)
= 1 + as

ε

{
γµTγ

ν
TH1 + γνTγ

µ
TH2 (8.33)

+gµν
[
CF

(
3
2 + 2 ln

(
δ+

q+

))
+ 2

(
CF −

CA
2

)
ln
(
q+

p̂+
ξ

)
+ CA ln

(
q+

p̂+
A

)]}
+O(a2

s).

The sign ⊗ indicates the integral convolution between kernels H1,2 and operator U . Here,
we have eliminated ∼ ln(is) terms, due to their cancellation with the charge-conjugated
part of the TMD operator. The renormalization of the operator Û i2,n̄ (defined in eq. (5.35))
is diagonal in the spinor indices

U i2,n̄({z, 0}, 0) = ZU2

(
δ+

q+

)
⊗ U i2,n̄({z, 0}, 0;µ), (8.34)

where

ZU2

(
δ+

q+

)
= 1 + as

ε

{
2H1 +

[
CF

(
3
2 + 2 ln

(
δ+

q+

))
(8.35)

+2
(
CF −

CA
2

)
ln
(
q+

p̂+
ξ

)
+ CA ln

(
q+

p̂+
A

)]}
+O(a2

s).

Note, that the kernel H2 vanishes, since γµγνTγ
µ
T = 0. The momentum space representation

for the kernel H1 is given in eq. (C.6).
A simple structure of the renormalization factor (8.33) allows us to guess the ex-

pressions for LO renormalization of many semi-compact operators, for example gluon or
di-quark twist-(2+1) operators. In these cases, one should replace H by the corresponding
parton evolution kernel, replace color coefficients in the last line, and take into account a
different wave-function renormalization.

8.3 Renormalization of unsubtracted TMD operators

Finally, we combine together the rapidity renormalization eq. (8.4), (8.5), and UV renor-
malization eq. (8.21), (8.34). For the TMD operators of twist-(1+1), eq. (5.8), (5.9) we
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obtain

Oij11,n̄ = R

(
b2,

δ+

ν+

)
Z∗U1

(
δ+

q+

)
ZU1

(
δ+

q+

)
Oij11,n̄(ν+, µ), (8.36)

Oij11,n̄ = R

(
b2,

δ+

ν+

)
ZU1

(
δ+

q+

)
Z∗U1

(
δ+

q+

)
Oij11,n̄(ν+, µ), (8.37)

where we omit the common argument ({z1, z2}, b) of all TMD operators. For the TMD
operators of twist-(1+2), eq. (5.41)–(5.44) we have

Oij21,n̄ = R

(
b2,

δ+

ν+

)
Z∗U2

(
δ+

q+

)
ZU1

(
δ+

q+

)
⊗Oij21,n̄(ν+, µ), (8.38)

Oij21,n̄ = R

(
b2,

δ+

ν+

)
ZU2

(
δ+

q+

)
Z∗U1

(
δ+

q+

)
⊗Oij21,n̄(ν+, µ),

Oij12,n̄ = R

(
b2,

δ+

ν+

)
Z∗U1

(
δ+

q+

)
ZU2

(
δ+

q+

)
⊗Oij12,n̄(ν+, µ),

Oij12,n̄ = R

(
b2,

δ+

ν+

)
ZU1

(
δ+

q+

)
Z∗U2

(
δ+

q+

)
⊗Oij12,n̄(ν+, µ),

where we omit the common argument ({z1, z2, z3}, b) of all TMD operators. The sign ⊗
indicates that the factor ZU2 is an integral operator, which acts on the positions the of
quark-gluon pair. These expressions also hold for Fourier transformed TMD operators,
with the expression for the quasi-parton evolution kernels H given in appendix C. The
expressions for the TMD operators composed from anti-collinear fields are analogous with
{δ+, ν+, q+} → {δ−, ν−, q−}.

In eq. (8.36)–(8.38), we assume the forward kinematics, and q+ being the momentum
passing through semi-compact operators. Moreover, we set this momentum equal to the
momentum passing though the EM current, since the corresponding combination (p̂+

ξ + p̂+
A

for ZU2 and p̂+
ξ for ZU1) equal to q+ in the effective operator, due to the δ-function in

eq. (6.17).
Note, that in the eq. (8.36)–(8.38) we are using the renormalized factor R, since its

UV divergence is part of the UV renormalization factor for TMD operator. Alternatively,
one can use the unrenormalized factor R̃ (7.16). In this case, eq. (8.36) takes the form

Oij11,n̄(y) = R̃

(
b2,

δ+

ν+

)
Z∗U1

(
ν+

q+

)
ZU1

(
ν+

q+

)
Oij11,n̄(y; ν+, µ), (8.39)

and similar for other operators.
In eq. (8.36)–(8.38), the asterisk denotes the complex conjugation. It affects the phase

in the term ∼ ln(iL) only. Due to this conjugation the complex parts of the factors Z cancel.
Since we already took this cancellation into account in the definitions eq. (5.33), (5.35)
where the terms ∼ ln(iL) are eliminated, the indication of conjugation is obsolete. However,
we keep this indication in formulas eq. (8.36), (8.38) to keep track of terms’ order.
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9 Recombination of divergences and scaling of TMD operators

Having computed all elements of TMD factorization (UV and rapidity renormalization
factors, hard coefficient functions and the soft factor), we can finally combine them into
a divergence-free expression. This procedure defines the scheme of the rapidity and UV
renormalization, and thus defines the physical TMD distributions.

Subtracted version of TMD operators.
The renormalized TMD operators eq. (8.36)–(8.38) have the common form

ONM,n̄(y) = R

(
b2,

δ+

ν+

)
Z∗N

(
ν+

q+

)
ZM

(
ν+

q+

)
⊗ONM,n̄(y; ν+, µ). (9.1)

Here, N and M can be 1 or 2 and the renormalization constants ZN and ZM are ZU1 or
ZU2. A similar expression is valid for the TMD operator OKL,n oriented along direction n̄,

OKL,n(y) = R

(
b2,

δ−

ν−

)
ZK

(
ν−

q−

)
ZL

(
ν−

q−

)
⊗OKL,n(y; ν−, µ). (9.2)

Combining the TMD operators with the soft factor, eq. (7.13) we obtain

ONM,n̄OKL,n
SLP

=
[
Zsub
N (ζ)Zsub

M (ζ)⊗Osub
NM,n̄(ζ, µ)

] [
Zsub
K (ζ̄)Zsub

L (ζ̄)⊗Osub
KL,n(ζ̄, µ)

]
, (9.3)

where the factors R are canceled, and

Zsub
N (ζ) =

ZN
(
ν+

q+

)
Z

1
4
S (ν2)

, Zsub
N (ζ̄) =

ZN
(
ν−

q−

)
Z

1
4
S (ν2)

, (9.4)

and

Osub
NM,n̄(ζ, µ) =

ONM,n̄(ν+, µ)√
S0(b2, ν2)

, Osub
KL,n(ζ̄, µ) =

OKL,n(ν−, µ)√
S0(b2, ν2)

. (9.5)

Here, we have introduced the notation for Lorentz invariant combinations,

ζ = 2(q+)2 ν
−

ν+ , ζ̄ = 2(q−)2 ν
+

ν−
. (9.6)

The variables ζ and ζ̄ naturally appear as the arguments of the logarithms in subtracted
renormalization constants. Explicitly, the renomalization constants are

Zsub
U1 (ζ) = 1 + asCF

ε

(
1
ε

+ 3
2 + ln

(
µ2

ζ

))
+O(a2

s), (9.7)

Zsub
U2 (ζ) = 1 + as

ε

{
2H1 +

[
CF

(
1
ε

+ 3
2 + ln

(
µ2

ζ

))
(9.8)

+2
(
CF −

CA
2

)
ln
(
q+

p̂+
ξ

)
+ CA ln

(
q+

p̂+
A

)]}
+O(a2

s).
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The factor Zsub
U1 is a half of the TMD renormalization constant and coincides with it [65].

The factor Zsub
U2 is a new one, to our best knowledge.

The rapidity divergent factor R cancels between the soft factor and TMD operators.9
The leftover of the rapidity divergences are the scaling parameters ν±. In the final definition
of the TMD operator in eq. (9.5), we replace ν± by ζ and ζ̄ using that

ν+ = q+

√
ν2

ζ
, ν− = q−

√
ν2

ζ̄
. (9.10)

The ν2 = 2ν+ν− is a low-energy parameter related to the definition of soft modes, and it
can be hidden in the definition of TMD distribution. The scaling variables ζ and ζ̄ satisfy

ζζ̄ = (2q+q−)2. (9.11)

The definition of the subtracted TMD operator incorporates the remnant of the soft
factor S0, which is a finite number that depends on b2. We recall that the function S0
is nonperturbative. The absorption of S0 into TMD distributions is a part of a scheme
definition for the rapidity renormalization. Effectively it adds finite terms to the “minimal
subtraction scheme” factor R. The equation (9.3) serves as the definition of the scheme,
i.e. the final expression for the effective operator in DY, SIDIS, and SIA does not contain
any extra factors. This statement defines the commonly used physical TMD distributions.
It also implies that the TMD factorization formula for processes, which contain a soft
factor different from SLP, would have an extra nonperturbative function composed from
the remnants of the soft factors. For example, such function occurs in the factorization
theorem for quasi-TMD distribution [81].

Evolution equations for TMD operators. The TMD operator ONM,n̄ has two scaling
parameters µ and ζ. The evolution equations with respect to these parameters follow from
the scaling invariance of bare TMD operator eq. (9.1).

The evolution equation with respect to µ is

µ2 d

dµ2O
sub
NM,n̄(ζ, µ) = (γN (µ, ζ) + γM (µ, ζ))⊗Osub

NM,n̄(ζ, µ), (9.12)

9There is an important exception — the transverse derivative acting to the twist-(1+1) operators also
acts to the rapidity renormalization factor R. E.g. for the first term in the second line for J µν1111 (5.65)
one has

∂ρO11,n̄O11,n

SLP
= ∂ρOsub

11,n̄(ζ, µ)Osub
11,n(ζ, µ) +Osub

11,n̄(ζ, µ)Osub
11,n(ζ, µ)∂ρ ln

(
R

(
b2,

δ+

ν+

)√
S0(b2, ν2)

)
, (9.9)

where we omit the factors Z (which commute with the derivative) for brevity. The second term of this
expression is divergent. This divergence is compensated by the end-point divergence of ∼ nµ part of the
operator J µν2111 (5.67) at x2 → 0, which can be easily confirmed at LO. In this way, derivatives of rapidity
renormalization factors cancels in-between terms related by EOMs.

The end-point divergence of ∼ n̄µ part of the operator J µν2111 remains uncompensated. However, this part
of the effective operator is a result of the direct interaction with background field. The limit x2 → 0 pushes
the gluon field to the overlap region and thus should be subtracted.

The same applies for other terms of the effective operator. The explicit realisation of this procedure will
be presented in a different publication.
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where

γN (µ, ζ) = −µ2dZ
sub
N (ζ)
dµ2 , (9.13)

The symbol ⊗ indicate a possible integral convolution. Each anomalous dimension acts on
corresponding arguments.

The evolution equation (9.12) is general in the sense that a TMD operator of any
twist-(N+M) satisfies it. The value of twist is preserved by the evolution, which is a part
of geometrical twist definition. However, if there are several operators UN of the same
twist and other quantum numbers they can mix with each other.

In the present case, we have deal on with twist-1 and twist-2 operators. The corre-
sponding anomalous dimensions are

γ1(µ, ζ) = asCF

(
3
2 + ln

(
µ2

ζ

))
+O(a2

s), (9.14)

γ2(µ, ζ) = as

{
2H1 +

[
CF

(
3
2 + ln

(
µ2

ζ

))
(9.15)

+2
(
CF −

CA
2

)
ln
(
q+

p̂+
ξ

)
+ CA ln

(
q+

p̂+
A

)]}
+O(a2

s).

In momentum space, the expression for H is given in appendix C and p̂+/q+ should be
replaced by corresponding momentum fractions. E.g. for γ2 ⊗O21,n̄(x1,2,3, b) one replaces

ln
(
q+

p̂+
ξ

)
→ − ln

(
x1

x1 + x2

)
, ln

(
q+

p̂+
A

)
→ − ln

(
x2

x1 + x2

)
. (9.16)

These anomalous dimensions can be written in a more general form

γ1(µ, ζ) = Γcusp
4 ln

(
µ2

ζ

)
− γV

4 , (9.17)

γ2(µ, ζ) = HAξ + Γcusp
4 ln

(
µ2

ζ

)
+ Γcusp − Γg

2 ln
(
q+

p̂+
ξ

)
+ Γg

2 ln
(
q+

p̂+
A

)
, (9.18)

where Γcusp is the (quark) light-like cusp anomalous dimension (known up to N3LO [82, 83]),
γV is the anomalous dimension of the quark vector form factor (known up to NNLO, see
e.g. [54]). The integral kernel HAξ is the evolution kernel for the quark-gluon pair. And Γg
is some constant Γg = 2asCA +O(a2

s). The sum of the last two terms in eq. (9.18) must be
Γcusp, since the sum of ln(q+) generates ln(ζ) whose coefficient is fixed by the integrability
condition eq. (9.22).

The evolution with respect to the rapidity parameter follows from the independence
of bare TMD operators eq. (8.36), (8.38) on the parameter ν+. It gives

ζ
dOsub

NM,n̄(ζ, µ)
dζ

= −2ν+dO
sub
NM,n̄(ζ, µ)
dν+ = −D(b, µ)Osub

NM,n̄(ζ, µ), (9.19)
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with

D(b, µ) = −ν
+

2
d

dν+R

(
b2,

δ+

ν+

)
. (9.20)

The function D(b, µ) is the rapidity anomalous dimension. It is also known as the Collins-
Soper kernel (K̃ = −2D), originally introduced in ref. [2]. For a relation among different
definitions of the CS-kernel, see ref. [84]. The LO expression at small b is

D(b, µ) = −2asCF
[
Γ(−ε)

(
− b2µ2

4e−γE

)ε
+ 1
ε

]
+O(a2

s) (9.21)

= 2asCF ln
(
−b2µ2

4e−2γE

)
+O(a2

s),

where in the second line the limit ε → 0 is taken. The rapidity anomalous dimension is
known up to NNLO [73, 74]. The important feature of the rapidity anomalous dimension is
its nonperturbative nature. In that respect, eq. (9.21) is valid only at small values of b and
gets power corrections once b increases. The ∼ b2 power correction has been computed in
ref. [85] from the analysis of the soft factor. Phenomenologically, the Collins-Soper kernel
can be extracted from the analysis of TMD factorization at different scales. The most
recent extraction of it can be found in refs. [11, 12] (see also [85] for comparison of different
extractions).

The TMD evolution is given by a pair of equations, eq. (9.12), (9.19). The existence of
a common solution is guaranteed by the integrability condition (known also as the Collins-
Soper equation [86]). It relates UV and rapidity anomalous dimensions

−ζ d
dζ

(γN + γM ) = µ2 d

dµ2D(b, µ) = Γcusp
2 , (9.22)

where the last equality follows from eq. (9.17), (9.18). The integrability condition guaran-
tees the path-independence of the evolution, see ref. [84] for an extended discussion.

Cancellation of divergences in the factorized expression. Finally, we should check
that the UV poles of the TMD operators cancel the IR poles of the hard coefficient function.
For the LP term (the first line of eq. (6.17)), it implies that

C1 = C̃1Z
sub
U1 (ζ)Zsub

U1 (ζ̄), (9.23)

is finite. Indeed, the pole part of C̃1, eq. (6.12) is

pole[C̃NLO
1 ] = −asCF

ε

(
2
ε

+ 3 + 2 ln
(

µ2

|2q+q−|

))
=−pole

[
Zsub;NLO
U1 (ζ)+Zsub;NLO

U1 (ζ̄)
]
,

(9.24)

where we use the relation (9.11) between ζ and ζ̄.
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The relation for NLP part (the second and the third lines of eq. (6.17)) is a bit
more complicated, because it involves a convolution. Using the definition of the opera-
tors eq. (5.61), (5.62) and the form of the convolution in eq. (6.17), one shows that the
cancellation of poles requires that∫

dx1dx2
x2

δ(x1 + x2 + x3)C2(x1,2)U(x2, x1) (9.25)

=
∫
dx1dx2
x2

δ(x1 + x2 + x3)C̃2(x1,2)⊗ Zsub
U2 (ζ)Zsub

U1 (ζ̄)⊗ U(x2, x1),

where U is a test function, and x1 is the momentum fraction associated with the gluon. In-
serting the momentum space representation for the ZU2 renormalization constant eq. (C.6)
and performing changes of variables, we confirm that

pole
[∫

dx1dx2
x2

δ(x1 + x2 + x3)C̃NLO
2 (x1,2)U(x2, x1)

]
(9.26)

= −as
ε

∫
dx1dx2
x2

δ(x1 + x2 + x3)
[
CF

(
2
ε

+ 1 + 2 ln
(

µ2

|2q+q−|

))

+2
(
CF −

CA
2

)
x1 + x2
x1

ln
(
x1 + x2
x2

)]
U(x2, x1)

= −pole
[∫

dx1dx2
x2

δ(x1 + x2 + x3)
(
Zsub;NLO
U2 (ζ) + Zsub;NLO

U1 (ζ̄)
)
⊗ U(x2, x1)

]
.

This is an independent check of the computations made in section 6. We also stress that
most part of the renormalization constants ZU2 is equal to the quasi-parton-pair evolution
kernel, and it can be cross-checked with the literature e.g. [46, 76, 79]. Altogether, these
checks strongly support the results presented in this work.

10 Conclusion

In this work, we have developed a method to derive the TMD factorization theorem.
It is based on the background field method and has similarities with the high energy
expansions [87], SCET, and operator product expansion. The method, to which we refer
to as TMD operator expansion, allows a systematic derivation of the TMD factorization
formulas at operator level and at any order of power series. As a demonstration, we compute
the TMD factorization to NLP at NLO and confirm our computation by comparison with
the well-known LP and partially-known NLP expressions. The expression for effective
operator is given in eq. (6.17), and evolution equations for NLP TMD operators are given
in eqs. (9.12), (9.19). We recover many results found in the literature in one or another
form even without reference to TMD factorization. For example, the evolution kernel
for TMD operators at NLP incorporates the standard quasi-parton evolution kernels [79],
which we successfully reproduce. To our best knowledge, the NLO perturbative correction
to the NLP TMD factorization theorem is a new result. The main goal of this work is
the formulation of a general approach to power corrections in TMD factorization. Let us
remark some of the most important lessons.
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The TMD operator expansion is derived starting from the definition of QCD in the
functional integral form. As a part the of derivation, we suppose that hadron states are
built from collinear and anti-collinear fields and perform a functional integration of the
remaining components. Due to it, the derivation of a factorized expression is automatic, as
all operators and their coefficient functions arise from a single initial definition, avoiding
any matching procedure, typical for many other derivations. The computations are done
in position space, which is the natural language for power corrections since the momen-
tum space expressions are complicated due to multiple momentum ranges. To our best
knowledge, it is the first computation of TMD factorization solely in position space.

The famous process dependence of TMD factorization [24, 88] (which consists in the
orientation of gauge links) appears due to the boundary conditions that are imposed on
the background fields. These boundary conditions follow from the request that (matrix
elements of) operators are analytic in a proper part of momentum space in accordance with
the process. The purely operator-level derivation of TMD factorization is an important step
forward for the future development of the TMD approach. With minimal modifications our
expressions can be used for a description of processes with jets, e.g. [89–91], or involving
generalized TMD distributions (GTMDs).

The TMD operators are built from two semi-compact light-ray operators OMN =
UMUN , separated by a transverse distance b. The operators UN can be sorted with respect
to geometrical twists, alike ordinary compact operators. They are subject to independent
UV renormalization. Therefore, the TMD operators can be classified with respect to TMD-
twist, which is given by a pair of numbers (M+N), where M, N are geometrical twists of
semi-compact operators U . The TMD distributions derived from operators with different
TMD-twist have independent UV scaling, and thus they are independent observables. Let
us mention that, in principle, operators of higher TMD-twists can mix with operators
of lower TMD-twist via the rapidity scale evolution. This question is to be studied in
the future.

In the small-b limit, a TMD operator of twist-(M+N) matches onto collinear operators
of twist-(M +N) or higher. This is an essential property because it ensures that the terms
of TMD factorization with TMD twist-(1+1) (that is, the LP term and its kinematic power
corrections) turn into the fixed order expression with twist-2 parton distributions in the
high-energy limit. This observation gives hope to describe the whole qT spectrum of DY,
SIDIS, and SIA processes within the TMD factorization approach.

We demonstrate in three independent ways (from the side of the soft factor, from the
side of the rapidity divergences renormalization theorem, and by the direct NLO compu-
tation) that the rapidity-scale evolution is the same for LP and NLP operators. We also
show that it is the same for a part of N2LP TMD operators (namely, for all operators of
TMD-twist-(2+2) and TMD-twist-(3+1) quasi-partonic operators). The equality of rapid-
ity evolution for different power TMD operators opens new possibilities to measure the
Collins-Soper kernel, which is one of the fundamental functions in QCD [85]. For exam-
ple, studying the ratios of sub-leading quasi-TMD distributions on the lattice, similar to
the existing cases [92–94]. The important discussion on the derivatives of rapidity renor-
malization factors, the end-point divergences and their mutual cancellation is left for the
future publication.
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The derivation allows an accurate separation of sources of power corrections, which are
listed in the introduction. In particular, we demonstrate that the twist-(1+1)×(1+1) part
of the NLP term extends the LP term and is the kinematic power correction. It restores
the EM gauge invariance up the N2LP order and has the same hard coefficient function.
Another important observation, which was overlooked or ignored in previous studies (ex-
cept [18]), is that the actual expansion parameter is τ2

T = q2
T /|2q+q−| (= q2

T /(Q2 + q2
T ) for

DY ans SIA, and (= q2
T /(Q2−q2

T ) for SIDIS) rather than q2
T /Q

2. In fact, the value Q2 does
not appear in any formula, but all kinematic variables are expressed via τ2

T . Accounting
for this simple fact can be important for phenomenology (see some studies in ref. [11]).

In the present work, we consider only the theoretical aspects of the TMD factorization
at NLP. The relevant cross-section, systematization and relations to earlier defined NLP
TMD distributions [24, 48] will be performed in future publications. It is known that many
observables are not sensitive to NLP ∼ qT /Q corrections but have the first non-vanishing
correction at N2LP ∼ q2

T /Q
2. Even so, our work will improve the present LP picture due

to kinematic corrections and helps to clear up the definitions of some observables linear in
qT , such as the Cahn effect [95].
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A QCD Lagrangian with composite background field

The rules for the interactions of dynamical QCD fields with a background QCD field have
been derived a long time ago [30, 96, 97]. They should be updated, since we operate with
two independent copies of background fields, which modifies the structure of the interaction
Lagrangian. Although we only need a single extended vertex in the present work, we revisit
the background field method for the case of composite background fields and derive the
full structure for completeness.

The starting point is the QCD Lagrangian with the ordinary background field. It is
derived with the replacement of ordinary gluon and quark fields in the QCD Lagrangian
L[q, A] by

Aµ → Aµ +Bµ, q → q + ψ, (A.1)
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where Aµ (Bµ) and q (ψ) are background (dynamical) gluon and quark fields. The La-
grangian L[q + ψ,A+B] is invariant under gauge transformations of the dynamical fields

Bµ → Bµ +Dµ[A+B]α, (A.2)

where Dµ[A] is the covariant derivative with the gauge field A. The background-gauge-
fixing condition for dynamical fields is given by

G[B] = Dµ[A]Bµ. (A.3)

After application of the Faddeev-Popov trick one arrives at the action [30, 31]

S =
∫
d4x (LQCD[q + ψ,A+B] + Lgh[A,B] + Lfix[A,B]) , (A.4)

where

LQCD[q, A] = iq̄ /Dq − 1
4
(
F aµν [A]

)2
, (A.5)

Lgh[A,B] = −η†Dµ[A+B]Dµ[A]η, Lfix[A,B] = 1
2αB

µDµ[A]Dν [A]Bν , (A.6)

and where η is the ghost field, and α is residual gauge parameter. The gluon-field strength
tensor is F aµν [A] = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . The effective action revealed after the

integration over the dynamical fields is invariant under the gauge transformation of the
background fields.

We split the background field into two non-overlapping components

Aµ → A1µ +A2µ, q → q1 + q2. (A.7)

Then the action can be presented as

S = SQCD(cov.g.)[B,ψ] + SQCD[A1, q1] + SQCD[A2, q2] + Sint, (A.8)

where Sint involves all fields, and SQCD(cov.g.) is the QCD action in the covariant gauge. In
turn, the interaction term can be conveniently split into

Sint = S1h + S2h + S12 + S12h, (A.9)

where S1(2)h contains only fields {A1(2), q1(2), B, ψ}, S12 contains only background fields,
and S12h contains combinations of both components of background field and dynamical
fields. Since the background fields are external, one can eliminate all terms in the interac-
tion Lagrangians that satisfy EOMs. These are all terms ∼ B1 in S1h and S2h, and some
terms in S12. The resulting actions are

S1h(2h) = g

∫
d4x

{
q̄ /Bψ + ψ̄ /Aψ + ψ̄ /Bq

+fabcAaµηb†(
−→
∂ µ −

←−
∂ µ)ηc − fabrf rcdηa†(Abµ +Bb

µ)Acµηd (A.10)

−fabcAaµ
[
2(∂νBb

µ)Bc
ν − (∂µBb

ν)Bc
ν −

1 + α

α
(∂νBb

ν)Bc
µ

]

−g2f
abrf rcd

[
AaµA

b
νB

c
µB

d
ν +AaµB

b
νA

c
µB

d
ν +AaµB

b
νB

c
µA

d
ν + 1

α
AaµB

b
µA

c
νB

d
ν

]}
,
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here q = q1(2) and A = A1(2),

S12h = g

∫
d4x

{
q̄1 /A2ψ + ψ̄ /A1q2 + q̄1 /Bq2 + {1↔ 2}

−fabrf rcdηa†Ab1µAc2µηd − fabc[(∂µAa1ν − ∂νAa1µ)Ab2µBc
ν +Aa1µA

b
2ν∂µB

c
ν ] + {1↔ 2}

−gfabrf rcd(Aa1µAb1νAc2µBd
ν +Aa1µB

b
νA

c
1µA

d
2ν +Ba

µA
b
1νA

c
1µA

d
2ν) + {1↔ 2} (A.11)

−gfabrf rcd(Ba
µB

b
νA

c
1µA

d
2ν +Aa1µB

b
νA

c
2µB

d
ν +Ba

µA
b
1νA

c
2µB

d
ν + 1

α
Aa1µB

b
νA

c
2µB

d
ν)
}
,

S12 = g

2

∫
d4x

{
q̄1( /A1 + /A2)q2 + q̄2( /A1 + /A2)q1 + q̄1 /A2q1 + q̄2 /A1q2

−fabc
[
(∂µAa1ν)Ab2µAc2ν + (∂µAa2ν)Ab1µAc2ν + (∂µAa2ν)Ab2µAc1ν

]
+ {1↔ 2} (A.12)

−gfabrf rcd
[
Aa1µA

b
1νA

c
2µA

d
2ν +Aa1µA

b
1νA

c
1µA

d
2ν

+Aa2µAb2νAc2µAd1ν +Aa1µA
b
2νA

c
1µA

d
2ν +Aa1µA

b
2νA

c
2µA

d
1ν

]}
.

The terms {1↔ 2} represent the previous terms in the line with the replacement q1 ↔ q2
and A1 ↔ A2. The factor 1/2 in S12 results from the symmetric elimination of EOMs
(with respect to A1 ↔ A2). The Feynman rules for S1q and S2q interaction can be found
in ref. [31].

B Computation of the hard coefficient function

In some cases, the computation in coordinate space is simpler than in momentum space.
In particular, it is known that computations for higher-twists operators are always simpler
in position space (cf. e.g. [76] and [46], section 4 and 5 of ref. [38]). This is due to the fact
that momentum fractions are not sign-definite for higher twist observables, which leads to
the necessity of a separate evaluation of loop integrals for each domain. The coordinate
space does not have this problem, which is reflected in the different relative positioning
of fields.

There are many examples of computations with the background field for collinear fac-
torization. The pedagogical introduction into such computation is given in ref. [29], and
also in refs. [27, 38]. However, the case of composite background fields seems to be com-
pletely new. The main problem here is that the presence of two (or more) directions makes
loop-integrals very asymmetric and thus cumbersome to evaluate. In this appendix, we
present a simple technique that bypasses these problems. The main structure of the com-
putation follows the one described in appendix B of ref. [29]. The technique is universal and
can be applied to NLO (and with minimal modification to higher orders) computations of
diagrams with an arbitrary number of external fields. We exemplarily show the computa-
tion of diagram 4. All other diagrams, including two-point diagrams and the computation
of UV divergence in section 8.2, are computed in the same manner.
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Diagram 4 in the dimensional regularization (with d = 4− 2ε) reads

diag4 = −
(
CF −

CA
2

)
gas

2 · 4επ3d/2 Γ(1− ε)Γ3(2− ε) (B.1)∫
ddxddyddz

ξ̄n̄(x−n)γα(/x− /y) /An̄(y−n)/yγµ/zγαξn(z+n̄)
[−(x− y)2]2−ε[−y2]2−ε[−z2]2−ε[−(x− z)2]1−ε ,

where only algebraic simplifications are made, and +i0 terms in propagators are omitted
for brevity. To write this expression we used that the Feynman propagators in coordinate
space are

∆q(x− y) = ψ(x)ψ̄(y) = iΓ(2− ε)
2πd/2

/x− /y
[−(x− y)2 + i0]2−ε , (B.2)

∆µν
g (x− y) = Aµ(x)Aν(y) = −Γ(1− ε)

4πd/2
gµν

[−(x− y)2 + i0]1−ε . (B.3)

The integration over each position in eq. (B.1) is asymmetric, in the sense that one of the
components enters a background field and can not be integrated. To resolve this issue, we
use the observation that the loop-integral with a spherically symmetric (over the integration
variable) denominator automatically symmetrizes the numerator.

Let us consider the part of the diagram which has the integral over y. It reads

Ix = Γ2(2− ε)
∫
ddy

An̄(y−n)yα(x− y)β
[−(x− y)2 + i0]2−ε[−y2 + i0]2−ε . (B.4)

Joining the propagators by the Feynman trick, and shifting y → y + αx we obtain

Ix = Γ(4− 2ε)
∫ 1

0
dα(αᾱ)1−ε

∫
ddy

An̄(y−n+ αx−n)(y + αx)α(ᾱx− y)β
[−y2 − αᾱx2 + i0]4−2ε , (B.5)

where α is the Feynman variable. The denominator is spherically symmetric over y. The
integral with such a denominator is∫

ddy
yµ1 . . . yµ2n

[−y2 −M2 + i0]λ = −iπd/2 Γ(λ− n+ ε− 2)
Γ(λ)

(−1)ngµ1...µ2n
s

2n[−M2 + i0]λ−n+ε−2 , (B.6)

where gµ1...µ2n
s is a totally symmetric combination of metric tensors. Next, we expand the

background field in a series at y = 0, and integrate this series term-by-term using eq. (B.6).
The point is that the higher order terms integrate to null, because they are contracted with
too many light-cone vectors, and only a few terms remains. We obtain

Ix = −iπd/2
∫ 1

0
dα

(
Γ(2− ε) xαxβ

[−x2 + i0]2−ε (B.7)

+Γ(1− ε)
2

gαβ + αxαn̄β∂+ − ᾱn̄αxβ∂+
[−x2 + i0]1−ε − Γ(−ε)

4
αᾱn̄αn̄β∂2

+
[−x2 + i0]−ε

)
An̄(αx−n).

Note, that the fractional powers of α cancel. This property holds for all integrals of one-
loop topology. The integration over α cannot be computed, and it is a part of integral
convolution between the operator and the coefficient function.
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Next, using the same trick, we integrate over the position x. The only difference is
that we should expand the fields ξn̄ and An̄ in series. The resulting expression has the form

diag4 =
(
CF −

CA
2

)
gas

4επd/2
Γ(−ε)Γ2(2− ε)

∫
ddz

∫ 1

0
dα dβ β ξ̄n̄(βz−n)

{
(B.8)

n̄µγν
−→
∂+

[−z2 + i0]1−2ε + 4ε(1− ε) zµzν/z

[−z2 + i0]3−2ε + . . .

}
Aνn̄(αβz−n)ξn(z+n̄),

where dots indicate a long term with different combinations of derivatives and vectors. In
this expression we can integrate over the transverse components of z, using the integral∫

dd−2zT
zµ1
T . . . zµ2n

T

[−z2 + i0]λ = π
d−2

2
Γ(λ− n+ ε− 1)

Γ(λ)
(−1)ngµ1...µ2n

T,s

2n[−2z+z− + i0]λ−n+ε−1 , (B.9)

where gT,s is the fully symmetric composition of gT -tensors, defined as

gµνT = gµν − nµn̄µ − n̄µnν . (B.10)

After algebraic simplifications we obtain

diag4 = gas

(
CF −

CA
2

) Γ(−ε)Γ(1− ε)Γ(2− ε)
Γ(2− 2ε)

∫
dz+dz−

4επ

∫ 1

0
dα dβ (B.11)

ξ̄n̄(βz−n) /An̄,T (αβz−n)ξn(z+n̄)
[−2z+z− + i0]1−ε

{
z−nµβ[2− ε+ 2z−(αβ∂A+ − β̄∂

ξ
+)]

−z+nµ
β

ε
[3ε2 + 2β̄(1− ε2)z−∂ξ+ + 2(1− ε)(ε− αβ(1 + ε))z−∂A+]

}
,

where ∂A+ (∂ξ+) is the derivative acting on An̄ (ξ̄n̄). These derivatives can be rewritten as
derivatives with respect to α and β, and then eliminated, integrating by parts. It leads to

diag4 = gas

(
CF −

CA
2

) Γ(−ε)Γ(1− ε)Γ(2− ε)
Γ(2− 2ε)

∫
dz+dz−

4επ

∫ 1

0
dα dβ (B.12)

1
[−2z+z− + i0]1−ε

{
z−nµ[2K(β, β)− β(2 + ε)K(β, αβ)]

+z+nµ
[
2(1− ε)K(β, 0) + 21− ε

ε
K(β, β)− β 4− ε2

ε
K(β, αβ)

]}
,

where

K(s, t) = ξ̄n̄(sz−n) /An̄,T (tz−n)ξn(z+n̄). (B.13)

Finally, this expression can be turned into the universal form by rescaling z− such that ξ̄
of An̄ is located at z−n. It allows to integrate over one of the Feynman variables and the
result is

diag4 = gas

(
CF −

CA
2

) Γ(−ε)Γ(1− ε)Γ(2− ε)
Γ(2− 2ε)

∫
dz+dz−

4επ
1

[−2z+z− + i0]1−ε
∫ 1

0
ds (B.14){

z−nµ
[
−2
ε
K(1, 1)− 2 + ε

1− εK(1, s)
]

+ z+nµ
[2
ε
K(1, 1) + 2K(1, 0)− 2 + ε

ε
K(1, s)

]}
.

Note, that the order of integration can be different. It leads to different intermediate
expressions, but the final representation eq. (B.14) coincides.
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Computing all other diagrams for the coefficient function of the effective operator and
summing them together, we obtain eq. (6.9). The same technique, but with one light-cone
direction, has been used to compute UV part of the TMD operators in section 8.2.

C Evolution kernels in momentum space

In this appendix, we present the evolution kernels eq. (8.28)–(8.31) in momentum space.
In the formulas below the variables x1 and x2 are Fourier conjugated to z1 and z2, as it
is defined in eq. (5.51). Namely, z1 and z2 are the positions of gluon and quark fields,
correspondingly. We obtain the following expressions

ĤU(x1, x2) =
∫
dv

{
x1

x1 + v

1
v

(
U(x1, x2)− x1

x1 + v
U(x1 + v, x2 − v)

)
× (θ(v, x1)− θ(−v,−x1)) (C.1)

+ x2
x2 + v

U(x1, x2)− U(x1 − v, x2 + v)
v

(θ(v, x2)− θ(−v,−x2))
}

+ δx1U(0, x2),

H+U(x1, x2) =
∫

dv

2(x2 + v)

{(
1−

(
x1

x1 + x2

)2)
(θ(v, x2)− θ(−v,−x2)) (C.2)

+
((

x1
x1 + x2

)2
−
(

x1
v − x1

)2)
(θ(v,−x1)− θ(−v, x1))

}
U(x1 − v, x2 + v),

H−U(x1, x2) =
∫

dv

2(x1 + v)

{ −x2
1

(x1 + x2)2 (θ(v, x1)− θ(−v,−x1)) (C.3)

+
((

x1
x1 + x2

)2
−
(

v

v − x2

)2)
(θ(v,−x2)− θ(−v, x2))

}
U(x2 − v, x1 + v),

P12He(1)U(x1, x2) =
∫
dv

x2
(x2 + v)2 (θ(v, x2)− θ(−v,−x2))U(x2 + v, x1 − v), (C.4)

where

θ(a, b) =
{

1, a > 0 and b > 0,
0, a 6 0 or b 6 0, δa =

{
1, a = 0,
0, a 6= 0. (C.5)

The evolution kernels preserve the total momentum passing though the diagrams (i.e.
x1 + x2). However, they do not preserve the sign of individual components. Summing
together these kernels we obtain the expression for the kernels H1 and H2 (8.26), (8.27),

2H1U(x1, x2) =CAδx1U(0, x2) +
∫
dv

{
CA(θ(v, x1)− θ(−v,−x1)) x1

x1 + v

[
(C.6)

U(x1, x2)− U(x1 + v, x2 − v)
v

+
(

x2
x1 + v

− x1
x1 + x2

)
U(x1 + v, x2 − v)

x1 + x2

]
+CA(θ(v, x2)− θ(−v,−x2)) x2

x2 + v

[
U(x1, x2)− U(x1 − v, x2 + v)

v
− 2x1 + x2

(x1 + x2)2U(x1 − v, x2 + v)
]

+2
(
CF −

CA
2

) 1
x1 + v

[ −x2
1

(x1 + x2)2 (θ(v, x1)− θ(−v,−x1))

+
((

x1
x1+x2

)2
−
(

v

x2−v

)2)
(θ(v,−x2)− θ(−v, x2))

]
U(x2 − v, x1 + v)

}
,
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2H2U(x1, x2) = CAδx1U(0, x2) +
∫
dv

{
CA(θ(v, x1)− θ(−v,−x1)) x1

x1 + v

[
(C.7)

U(x1, x2)− U(x1 + v, x2 − v)
v

+ U(x1 + v, x2 − v)
x1 + v

]
+CA(θ(v, x2)− θ(−v,−x2)) x2

x2 + v

U(x1, x2)− U(x1 − v, x2 + v)
v

−
(
CF −

CA
2

)
x2

(x2 + v)2 (θ(v, x2)− θ(−v,−x2))U(x2 + v, x1 − v)
}
.

In the literature, one can find a different set of variables used for the momentum
fractions. Namely, x1 = rx and x2 = rx̄. The value of r = x1 + x2 is preserved by the
evolution kernels, and drops out of the expressions. In these variables, the evolution kernels
have the form (for r > 0)

2H1Û(x) =
∫
dy

{
CA(θ(y − x, x)− θ(x− y,−x))x

y

[
Û(x)− Û(y)

y − x
+ 1− x− xy

y
Û(y)

]
+CA(θ(x− y, x̄)− θ(y − x,−x̄)) x̄

ȳ

[
Û(x)− Û(y)

x− y
− (1 + x)Û(y)

]
(C.8)

+2
(
CF −

CA
2

)[
− x2

ȳ
(θ(ȳ − x, x)− θ(x− ȳ,−x))

+ x̄(1− x− y − xy)
y2 (θ(x− ȳ, x̄)− θ(ȳ − x,−x̄))

]
Û(y)

}
+ CAδxÛ(0),

2H2Û(x) =
∫
dy

{
CA(θ(y − x, x)− θ(x− y,−x)) x

y2
yÛ(x)− xÛ(y)

y − x
(C.9)

+CA(θ(x− y, x̄)− θ(y − x,−x̄)) x̄
ȳ

Û(x)− Û(y)
x− y

−
(
CF −

CA
2

)
x̄

y2 (θ(x− ȳ, x̄)− θ(ȳ − x,−x̄)) Û(y)
}

+ CAδxÛ(0).

Here we denote

Û(x) = U(rx, rx̄). (C.10)

The expressions (C.8), (C.9) coincide with the one computed in ref. [42], cf. eq. (83). We
stress that the value of y is not restricted to [0, 1] as it is supposed in ref. [42].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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