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We compute the second moments of pion and rho parton distribution functions in lattice QCD with
Nf ¼ 2þ 1 flavors of improved Wilson fermions. We determine both singlet and nonsinglet flavor
combinations and, for the first time, take disconnected contributions fully into account. In the case of the
rho, we also calculate the additional contribution arising from the b1 structure function. The numerical
analysis includes 26 ensembles, mainly generated by the CLS effort, with pion masses ranging from 420
down to 214 MeVand with 5 different lattice spacings in the range of 0.1 to 0.05 fm. This enables us to take
the continuum limit, as well as to resolve the quark mass dependencies reliably. Additionally we discuss the
contaminations of rho correlation functions by two-pion states.
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I. INTRODUCTION

The pion is routinely investigated on the lattice,
although, to the best of our knowledge, disconnected quark
contributions, e.g., to quark momentum fractions, were not
included so far. Since the pion is the pseudo-Goldstone
boson of dynamical chiral symmetry breaking its quark
structure could differ substantially from that of other
mesons and if so, the flavor singlet sea quark contribution
is a natural place for such a difference to show up. In
contrast to the pion, the quark structure of the ρ is only
rarely analyzed on the lattice, primarily due to the com-
plications caused by its resonance nature.
For the pion experimental data exists primarily from two

classes of experiments, namely Drell-Yan reactions with
(secondary) pion beams, e.g., π þ N → μþ þ μ− þ X,
which are sensitive to the pion parton distribution function
(PDF) at large x≳ 0.15, and semi-inclusive (tagged) deep
inelastic scattering (DIS), e.g., eþ N → e0 þ N þ X,
which is sensitive to small x and exploits the fact that
the electron can scatter off the nucleon pion cloud via the
Sullivan process [1]. Experiments of the first type were
performed by NA10 [2], E326 [3], E615 [4], and more

recently, by COMPASS [5]. This will be continued by
AMBER at CERN [6,7]. Experiments of the second type
were performed at HERA [8,9] (see also Refs. [10–12]) and
are currently pursued at JLab Hall A [13] (cf. the condi-
tionally approved proposal [14]). They are also under
consideration for the physics program at the EIC [15].
In contrast to the pion case, there exists very little

relevant experimental data for the ρ quark PDFs. The
rho meson is the lightest strongly decaying particle with a
branching fraction of >99.9% into two pions [16]. It is
spin-1 which implies the existence of novel polarization-
dependent structure functions [17]. The unstable nature of
the ρ complicates the analysis of its structure, both, on the
lattice (we will discuss some of the implications in this
article) and in experiment. However, as the goal of hadron
physics must be to also determine the quark-gluon structure
of resonances rather than only ground states, the ρ is one of
the most attractive light mesons to explore. To the best of
our knowledge, no existing or planned experiment will
investigate the spin structure of the ρ, and so lattice
calculations may offer the best, if not only, chance to
determine it. In Ref. [18] it was speculated whether one
could analyze the spin structure of the ρ in the meson cloud
of a nucleon in a (polarized) Sullivan process (see also
Ref. [10]), but the interpretation of such measurements
would be very nontrivial in view of the required analytic
continuation from the t to the s channel [19]. However, the
b1 structure function of the deuteron was measured by
HERMES [20] (using DIS on tensor-polarized deuteron gas
with negligible vector polarization) and turned out to be
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surprisingly large for such a loosely bound system. Also,
while the data for a limited x range cannot really test the
Close-Kumano sum rule for the first moment of b1ðxÞ [21],
an unexpected behavior outside of the measured x range is
needed to fulfill it. Overall the results differ from the
expectation that the deuteron is in an S wave with only a
smallD-wave admixture (cf. e.g., Ref. [22]). Also, there are
efforts to measure the deuteron b1 via the proton-deuteron
Drell-Yan process (conditionally approved proposal at JLab
Hall C [23] and feasibility studies for Fermilab [22,24]), as
well as discussions of a measurement via DIS at the
EIC [25].
The study of mesonic structure using lattice QCD has, by

now, a history of over three decades. Traditionally, such
calculations focused on moments on PDFs and distribution
amplitudes (DAs). While earlier simulations [18,26–31]
used quenched fermion representations, more recent sim-
ulations [32–37] use, for example, (clover-improved)
dynamical Wilson fermions, where the fermion determi-
nant, and thus the quark sea, is taken into account.
However, what all these studies have in common is that
they neglect disconnected contributions, because the latter
are notoriously difficult to calculate and usually come with
a large statistical error. During our analysis we found that
the noise on the light and strange quark disconnected loops
is highly correlated. We can use this to our advantage by
looking at the nonsinglet (ūuþ d̄d − 2s̄s) and singlet
(ūuþ d̄dþ s̄s) flavor combinations instead of the light
and strange loops themselves. While the large statistical
errors persist for the singlet flavor combination, they are
reduced by over an order of magnitude for the nonsinglet
operator, which allows us to obtain quite precise results in
this case even though we take the disconnected contribu-
tions fully into account.
The reach of such calculations of moments of PDFs and

DAs is limited, primarily because for higher moments the
problems caused by operator mixing become untraceable.
Therefore, in recent years ever more attention has focused
on coordinate space methods [38–42] which allow to
calculate the full functional forms of DAs and PDFs. As
far as we know, no lattice results for b1ðx;Q2Þ of the ρ have
been published so far using these methods, but some work
exists for DAs of vector mesons [43], for which there also
exist results for some Mellin moments [44], and other
mesons [45]. DAs and PDFs probe independent aspects of
the meson quark structure, and thus provide valuable
complementary information.
In this article we directly calculate the second moments

of the pion and rho PDFs by evaluating operators that
contain a covariant derivative. The same method would not
be directly applicable to higher moments, since one would
face the problem of mixing with lower-dimensional oper-
ators. Sparked by the presentation in Ref. [39], position
space methods have recently fueled a lot of excitement,
since they, in principle, allow for a resolution of the

complete PDF. There are recent studies on the pion PDF
exploring possible methods, such as the current-current
method [46,47], large momentum effective theory [48,49]
(using quasi-PDFs), or Ioffe time distributions [50] (using
pseudo-PDFs). Similar to experiment and in contrast to the
pion, the rho meson structure has only been studied once to
our knowledge, in the work presented in Ref. [18] (also
discussed in Refs. [28,29]) based on a quenched simulation
at large quark masses. The use of large quark masses is
probably due to the additional difficulty raised by the
instability of the rho meson at physical quark masses.
Actually, due to the finite volume, there is no continuum
of two-pion final states in a lattice simulation, and therefore
the rho meson cannot decay dynamically into two pions.
Nevertheless, the discretized set of two-pion (or, at higher
energies, even multipion) finite volume states is present and
might overshadow the contribution from the rho in the
correlation function. We discuss this issue in some detail in
Sec. III D.
This article is structured as follows. We set the stage with

a general discussion of PDF properties and their connection
to DIS structure functions in Sec. II. Next, in Sec. III, we
present the details of the lattice calculation, including
simulation parameters, the analysis of correlation functions,
and possible two-pion contributions. We describe the
extrapolation strategy and our final results in Sec. IV,
and summarize in Sec. V.

II. GENERAL PROPERTIES OF PDFs

The cross section of deep inelastic scattering can be
written as a product of a leptonic and a hadronic part. The
hadronic tensor is given by

Wμνðp; λÞ ¼
Z

d4z
4π

eiq·zhp; λj½jμðzÞ; jνð0Þ�jp; λi; ð1Þ

where p is the three-momentum and λ labels the spin of the
target hadron along a quantization direction [17,51]. Using
parity and time-reversal invariance it is straightforward to
show that the most general hadronic tensor for polarized
DIS from targets with spin-1 or less can be decomposed
into eight structure functions

Wμν ¼ −F1gμν þ F2

pμpν

p · q
þ i

g1
p · q

ϵμνλσqλsσ

þ i
g2

ðp · qÞ2 ϵμνλσq
λðp · qsσ − s · qpσÞ

− b1rμν þ
1

6
b2ðsμν þ tμν þ uμνÞ

þ 1

2
b3ðsμν − uμνÞ þ

1

2
b4ðsμν − tμνÞ; ð2Þ

with the kinematic factors rμν, sμν, tμν, and uμν, which
depend on the momentum transfer q, the target momentum
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p and the target polarization vector ϵ (cf. Appendix A for
our conventions). The quantities rμν, sμν, tμν, and uμν are
constructed such that they vanish upon averaging over the
target spin; see Ref. [17]. For spin-1

2
targets sμ corresponds

to the spin four-vector. For spin-1 targets it corresponds to
sμ ¼ −iϵμνρσe�νeρpσ . Note that, due to current conservation
any term proportional to qμ or qν in Eq. (2) would vanish.
Which of the structure functions can contribute depends
on the target spin: in the case of spin-0 only F1 and F2 do.
For spin-1

2
targets one has F1, F2, g1, and g2, where the

measurement of g1 and g2 requires a polarized beam. In the
case of spin-1 targets the full set of eight structure functions
can contribute. Notably, as argued in Ref. [17], the addi-
tional structure functions b1−4 can be measured using an
unpolarized electron beam.
The hadronic tensor can be factorized into a hard

scattering kernel, which can be calculated perturbatively,
and in PDFs containing the nonperturbative information.
The PDFs related to the structure functions in Eq. (2) are
defined as1

qλH ¼
Z

∞

−∞

dz−

4π
e−ixp

þz−hp; λjq̄ðzÞγþqð0Þjp; λi; ð3Þ

ΔqλH ¼
Z

∞

−∞

dz−

4π
e−ixp

þz−hp; λjq̄ðzÞγþγ5qð0Þjp; λi; ð4Þ

where z is a lightlike vector with vanishing plus compo-
nent, zμ ¼ z−nμ−, where nμ− is dimensionless and can be
used to project vectors onto their plus component, e.g.,
n− · p ¼ pþ. PDF evolution with respect to the factoriza-
tion scale, which delineates long- from short-distance
physics, is governed by the well-known DGLAP equations
[53–55]. To assure gauge invariance the fields in the
nonlocal operators are connected by Wilson lines which
we do not write out explicitly. The PDF in Eq. (3)
corresponds to the sum q ¼ q↑ þ q↓, while the PDF in
Eq. (4) corresponds to the difference Δq ¼ q↑ − q↓ of the
densities for quarks with opposite helicity. For spin-1
hadrons symmetry implies that distributions for different
polarizations, λ ¼ þ; 0;−, are related [17,18]

qþ ¼ q−; Δqþ ¼ −Δq−; Δq0 ¼ 0; ð5Þ

such that only three independent quark PDFs remain. The
quark PDFs defined above support −1 < x < 1, where the
values at negative x have to be interpreted as momentum
fractions of antiquarks

qλðxÞ¼−q̄λð−xÞ; ΔqλðxÞ¼Δq̄λð−xÞ; for x< 0: ð6Þ

In order to see the connection between PDFs and
structure functions let us consider the operator product
expansion

OaðzÞObð0Þ ¼
X
k

cabkðzÞOkð0Þ; ð7Þ

which allows us to rewrite the product of two operators as a
sum over local operators assuming that the momentum
components of the external states under consideration are
small compared to the inverse separation 1=z. Using this
concept allows us to expand the product of the electro-
magnetic currents in Eq. (1) into a series of local operators
multiplied by coefficient functions depending solely on the
momentum transfer q. However, this is only valid for target
matrix elements provided that the momentum transfer q is
much larger than the typical hadronic mass scale ΛQCD.
For any general operatorOμ1…μn

d;n of dimension d and spin
n one can show that the terms in the expansion have the
structure

cμ1…μnO
μ1…μn
d;n → ωn

�
Q
M

�
2−t

; ð8Þ

where M is the target hadron mass, ω ¼ ð2p · qÞ=ð−q2Þ,
and the twist t ¼ d − n. Taking into account that QCD
operators contain at least two quark fields (t ¼ 1 each) and
an arbitrary number of covariant, symmetrized derivatives

D
↔μ ¼ D⃗μ − D⃖μ (t ¼ 0 each) a conventional basis for lowest
twist t ¼ 2 quark operators can be written in terms of
two towers of operators2

Oμ1…μn ¼ 1

2n−1
Sq̄γμ1iD

↔μ
2…iD

↔μnq; ð9Þ

Oμ1…μn
5 ¼ 1

2n−1
Sq̄γμ1γ5iD

↔μ
2…iD

↔μnq; ð10Þ

where S projects out the completely symmetrized and
traceless components of the rhs tensor. It is straightforward
to confirm that the matrix elements of these operators
correspond to Mellin moments of the PDFs [56],3 e.g.,

Z
1

−1
dx xn−1qðxÞ ¼ hxn−1iq þ ð−1Þnhxn−1iq̄

¼ 1

2pnþ
n−μ1 � � � n−μnhpjOμ1…μn jpi; ð11Þ

1In general one finds three quark and three gluon PDFs
analogous to Eqs. (3) and (4); see, e.g., Ref. [52].

2In general one finds six towers of twist t ¼ 2 operators; see,
e.g., Ref. [52].

3See Eq. (33) in Ref. [56] and note that the forward matrix
elements in Eqs. (3) and (4) are invariant under translation.
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Z
1

−1
dx xn−1ΔqðxÞ ¼ hxn−1iΔq − ð−1Þnhxn−1iΔq̄

¼ 1

2pnþ
n−μ1 � � � n−μnhpjOμ1…μn

5 jpi; ð12Þ

where we define the nth moment of a function as

MnðfÞ ¼
Z

1

0

dx xn−1fðxÞ ¼ hxn−1if: ð13Þ

In perturbation theory and to leading twist accuracy the
structure functions are directly related to the PDFs (see,
e.g., Refs. [17,18]), where a generic structure function F is
always obtained as the sum over the contributions from
quarks and antiquarks for the individual quark flavors
weighted by the square of their electric charge eq:

F ¼
X
q

e2qðFq þ Fq̄Þ: ð14Þ

In the following we will only write down the quark
contribution. The antiquark contribution is obtained by
simply substituting q → q̄. For spin-0 targets one obtains

Fq
1ðxÞ ¼

1

2
qðxÞ þOðαsÞ; ð15Þ

Fq
2ðxÞ ¼ xqðxÞ þOðαsÞ; ð16Þ

satisfying the Callan-Gross relation [57], Fq
2 ¼ 2xFq

1 þ
OðαsÞ. The gluon PDF does not appear at leading order,
since the gluons do not carry electric charge, and thus can
only couple through a quark loop. For spin-1 targets the
hadronic tensor depends on the hadron spin. Taking an
average over the target spins one finds

Fq
1ðxÞ ¼

1

6
ðqþðxÞ þ q0ðxÞ þ q−ðxÞÞ þOðαsÞ; ð17Þ

Fq
2ðxÞ ¼

x
3
ðqþðxÞ þ q0ðxÞ þ q−ðxÞÞ þOðαsÞ: ð18Þ

Considering the difference between targets with polariza-
tion λ ¼ � and λ ¼ 0 one finds

gq1ðxÞ ¼
1

2
ΔqþðxÞ þOðαsÞ; ð19Þ

bq1ðxÞ ¼
1

2
ðq0ðxÞ − qþðxÞÞ þOðαsÞ; ð20Þ

bq2ðxÞ ¼ xðq0ðxÞ − qþðxÞÞ þOðαsÞ; ð21Þ

which means that b1 and b2 are sensitive to a possible
dependence of the quark densities on the hadron

polarization. The structure functions g2, b3, and b4 do
not contribute at leading twist.
Next, we perform a Lorentz decomposition for the

forward matrix elements of the operators (9) and (10).
For a spin-0 particle this yields

hpjOμ1…μn jpi ¼ 2S½vqnpμ1 � � �pμn �; ð22Þ

with the so-called reduced matrix element vn. Operators
containing γ5 do not contribute because of symmetry
relations. For a spin-1 particle we find three independent
structures

hp; λjOμ1…μn jp; λi

¼ 2S
�
aqnpμ1 � � �pμn þ dqn

�
m2ϵ�μ1ðp; λÞϵμ2ðp; λÞ

−
1

3
pμ1pμ2

�
pμ3 � � �pμn

�
; ð23Þ

hp; λjOμ1…μn
5 jp; λi

¼ 2iS½rqnϵρστμ1ϵ�ρðp; λÞϵσðp; λÞpτpμ2 � � �pμn �; ð24Þ

where we use the convention that ε0123 ¼ −1. Here, an is
related to the polarization averaged contribution and dn to
the polarized contribution of the quark PDF q. The reduced
matrix element rn in Eq. (24) is related to the (quark-)spin-
dependent PDF Δq.
In the structure functions the sum of quark and antiquark

contributions Fqþq̄ ¼ Fq þ Fq̄ is always relevant; see
Eq. (14). Comparing this to Eqs. (11) and (12) one notices
that the matrix elements given above yield information
about either the even or (exclusive) the odd moments of a
given structure function. For spin-0 targets one finds

2MnðFqþq̄
1 Þ ¼ Cð1Þ

n vqn; n even;

Mn−1ðFqþq̄
2 Þ ¼ Cð2Þ

n vqn; n even; ð25Þ

while, for spin-1 targets,

2MnðFqþq̄
1 Þ ¼ Cð1Þ

n aqn; n even;

Mn−1ðFqþq̄
2 Þ ¼ Cð2Þ

n aqn; n even;

2Mnðbqþq̄
1 Þ ¼ Cð1Þ

n dqn; n even;

Mn−1ðbqþq̄
2 Þ ¼ Cð2Þ

n dqn; n even;

2Mnðgqþq̄
1 Þ ¼ Cð3Þ

n rqn; n odd: ð26Þ

The CðkÞ
n ¼ 1þOðαsÞ are the Wilson coefficients of the

operator product expansion.
We can also relate the moments of the PDFs to the

reduced matrix elements. By substituting Eq. (22) into
Eq. (11), we find for spin-0
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vqn ¼ hxn−1iqþq̄; n even;

vqn ¼ hxn−1iq−q̄; n odd: ð27Þ

For spin-1 hadrons we find [by substituting Eq. (23) into
Eq. (11)] that

aqn ¼ 1

3

X
λ¼�;0

hxn−1iqλþq̄λ ; n even;

aqn ¼ 1

3

X
λ¼�;0

hxn−1iqλ−q̄λ ; n odd;

dqn ¼ hxn−1iq0þq̄0 − hxn−1iqþþq̄þ ; n even;

dqn ¼ hxn−1iq0−q̄0 − hxn−1iqþ−q̄þ ; n odd; ð28Þ

i.e., aqn yields the polarization average, while dqn corre-
sponds to the difference between hadrons with polarization
λ ¼ � and λ ¼ 0. In the following we will be particularly
interested in the second moments, since the corresponding
operator [cf. Eq. (9) with n ¼ 2] is equivalent to the quark
part of the energy-momentum tensor [58], and describes
the distribution of the momentum within the hadron. For
instance, in the spin-1 case a nonzero value of dq2 would
indicate that the portion of the momentum carried by
quarks of flavor q depends on the polarization direction
of the hadron.
In analogy to the relations in Eqs. (27) and (28) the

reduced matrix element rn in Eq. (24) can be related to the
moments of Δq defined in Eq. (12). We will, however,
restrict ourselves to the computation of the second
moments of the vector PDF (3) for the rest of this work.

III. COMPUTATION ON THE LATTICE

A. Lattice setup and numerical methods

To calculate the second moment of the structure func-
tions introduced in the last section we analyzed a subset
of the lattice gauge ensembles generated within the
Coordinated Lattice Simulations (CLS) effort [59]. The
ensembles have been generated using a tree-level Symanzik
improved gauge action with Nf ¼ 2þ 1 flavors of non-
perturbatively order a improved Wilson (clover) fermions.
Stable Monte Carlo sampling is achieved by applying
twisted-mass determinant reweighting [60] to avoid near
zero modes of the Wilson-Dirac operator.
To avoid freezing of the topological charge and large

autocorrelation times for the very fine lattices we use open
boundary conditions for most of our simulations [60,61].
Only some of the coarser lattices are simulated using
periodic boundaries. The CLS gauge ensembles are gen-
erated along three different trajectories in the renormalized
quark mass plane:
(1) TrM ¼ const: The trace of the quark mass matrix is

kept constant near its physical value [59].

(2) ms ¼ const: The strange quark mass is kept constant
close to its physical value [62].

(3) ml ¼ ms: The symmetric line.
This strategy is explained in Ref. [62] while an additional
graphical illustration can be found in Ref. [63]. A complete
list of the gauge ensembles used in this work is shown in
Table I. We use five different lattice spacings from 0.0497
up to 0.0984 fm and mπ covers a range from ∼420 MeV
down to ∼220 MeV with volumes Lmπ between 3.8 and
6.4; see Table I.
The two- and three-point functions introduced in

Sec. III C are computed on the lattice using the gauge
configurations in Table I. While we get the two-point
functions by an inversion of the lattice Dirac operator using
common numerical solvers (in particular we use a modified
version of the Wuppertal adaptive algebraic multigrid code
DD-αAMG [64,65] on SIMD architectures [66–69] and the
IDFLS solver [70,71] on other architectures) the compu-
tation of the three-point functions is more involved. The
three-point function connected parts of all ensembles are
computed using stochastic estimators as described in
Appendix C 1. The computation of the three-point function
disconnected contributions is described in Appendix C 2.
To improve the overlap of the interpolating currents at the
source and the sink time slice we use Wuppertal smeared
[72] quarks in the source and sink interpolators employing
APE-smoothed gauge links [73]. All the computations are
performed using the Chroma software package [74] and
additional libraries implemented by our group.

B. Renormalization

In order to obtain physically meaningful results, the bare
operators introduced in Eqs. (9) and (10) have to be
renormalized. In this context, one faces the additional
difficulty that the isosinglet quark operators will mix under
renormalization with the gluonic operators; schematically,

Oren ¼ ZqqOþ ZqgOg; ð29Þ

where we have suppressed the Lorentz indices for better
readability. For the opposite direction (i.e., admixture of
quark operators into gluon operators) it has been shown in
Ref. [75], using one-loop perturbative renormalization, that
this admixture is a few-percent effect (see also the dis-
cussion in Ref. [76]). We will assume that the same is true
for the admixture of gluonic operators into quark operators,
and that, as a consequence, its effect is negligible within the
statistical accuracy of this work. Still, this caveat has to be
kept in mind and needs to be addressed in future work.
Note, however, that operators without an isosinglet part
(e.g., with flavor structure ūuþ d̄d − 2s̄s) are not affected.
Furthermore, we will approximate the isosinglet renorm-
alization factor by the (nonperturbatively calculated)
renormalization factor for isovector currents. This is exact
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to next-to-leading-order accuracy (within a perturbative
renormalization procedure).
On the lattice, the continuous Euclidean O(4) symmetry

is reduced to that of its finite hypercubic subgroup H(4).
Therefore, symmetry imposes much weaker constraints
on the mixing of operators under renormalization. In order
to avoid mixing as far as possible, in particular mixing
with lower-dimensional operators, we use operators from
suitably chosen multiplets that possess a definite C parity
and transform according to irreducible representations of
H(4), cf. Refs. [18,77]. To be specific, we will use the
operators Ov2a ¼ O0i and Ov2b ¼ 4

3
O00, cf. Appendix B,

where also an explicit definition of the operators is
provided.
Our final results will be given in the MS scheme at a

scale of 2 GeV. To this end, we adopt a two-step
procedure. First, we calculate the renormalization factors
nonperturbatively in the RI0=SMOM scheme. These are
then converted to the MS scheme using perturbative QCD.

The whole procedure is described in great detail in
Ref. [78], including subtleties due to the use of open
boundaries in the time direction and details of the
perturbative subtraction of lattice artifacts. To be specific,
we use the values for Zv2a and Zv2b based on RI0=SMOM
as an intermediate scheme, with the perturbative sub-
traction of lattice artifacts (without the use of the so-called
fixed-scale method). The explicit values of Zqq for the
operator combinationsOv2a andOv2b used in this work are
given in Table II.

TABLE I. CLS gauge ensembles analyzed in this work labeled by their identifier and sorted by the inverse coupling β andmπ . We also
label lattice volume in spatial and temporal directions, the boundary condition in time, open (o) or periodic (p), the lattice spacing, the
pion mass, the volume in terms of Lmπ , and the rho meson mass mρ computed in Sec. IVA. The list of source-sink distances analyzed
for the connected three-point function of the ensemble is labeled by t and if more than one measurement for a set of source-sink
separations was performed we denote the corresponding number of measurements in parentheses. In physical units these distances
roughly correspond to [0.7,0.9,1.0,1.2] fm. The number of configurations analyzed for the ensemble is denoted as ncnfgs and traj.
specifies the trajectory in the quark mass plane of the ensemble [62]. An in-depth description of the ensemble generation can be found in
Ref. [59].

Ens. β Ns × Nt bc a (fm) mπ (MeV) Lmπ mρ (MeV) t=a ncnfgs traj.

A653 3.34 24 × 48 p 0.0984 426 5.1 870 [7, 9, 11, 13] 2525 sym
A650 3.34 24 × 48 p 0.0984 368 4.4 813 [7, 9, 11, 13] 2216 sym
H101 3.4 32 × 96 o 0.0859 420 5.9 860 [8, 10, 12, 14] 2016 trm=sym
H102r001 3.4 32 × 96 o 0.0859 352 4.9 828 [8, 10, 12, 14] (2) 1992 trm
H102r002 3.4 32 × 96 o 0.0859 356 5.0 820 [8, 10, 12, 14] (2) 2016 trm
H105 3.4 32 × 96 o 0.0859 279 3.9 793 [8, 10, 12, 14] 2052 trm
H106 3.4 32 × 96 o 0.0859 272 3.8 805 [8, 10, 12, 14] 1543 ms
H107 3.4 32 × 96 o 0.0859 366 5.1 860 [8, 10, 12, 14] 1564 ms
C101 3.4 48 × 96 o 0.0859 220 4.6 753 [8, 10, 12, 14] 1997 trm
C102 3.4 48 × 96 o 0.0859 222 4.6 756 [8, 10, 12, 14] 1465 ms
B450 3.46 32 × 64 p 0.0760 418 5.2 869 [9, 11, 14, 16] 1612 trm=sym
B452 3.46 32 × 64 p 0.0760 350 4.3 856 [9, 11, 14, 16] 1944 ms
D450 3.46 64 × 128 p 0.0760 214 5.3 741 [9, 11, 14, 16] 617 trm
N450 3.46 48 × 128 p 0.0760 285 5.3 812 [9, 11, 14, 16] 1131 ms
S400 3.46 32 × 128 o 0.0760 352 4.3 839 [9, 11, 14, 16] 2001 ms
X450 3.46 48 × 64 p 0.0760 263 4.9 737 [9, 11, 14, 16] 400 sym
rqcd030 3.46 32 × 64 p 0.0760 317 3.9 795 [9, 11, 14, 16] 1222 sym
N201 3.55 48 × 128 o 0.0643 285 4.5 822 [11, 14, 16, 19] 1522 ms
N202 3.55 48 × 128 o 0.0643 411 6.4 860 [11, 14, 16, 19] 899 trm=sym
N203 3.55 48 × 128 o 0.0643 345 5.4 833 [11, 14, 16, 19] (2) 3086 trm
N204 3.55 48 × 128 o 0.0643 351 5.5 859 [11, 14, 16, 19] 1500 ms
N200 3.55 48 × 128 o 0.0643 284 4.4 804 [11, 14, 16, 19] (2) 3424 trm
X250 3.55 48 × 64 p 0.0643 348 5.4 816 [11, 14, 16, 19] 345 sym
X251 3.55 48 × 64 p 0.0643 267 4.2 757 [11, 14, 16, 19] 434 sym
J303 3.7 64 × 192 o 0.0497 257 4.2 802 [14, 17, 21, 24] 1068 trm
N300 3.7 48 × 128 o 0.0497 422 5.1 891 [14, 17, 21, 24] 1539 trm=sym
N304 3.7 48 × 128 o 0.0497 351 4.3 884 [14, 17, 21, 24] 1726 ms

TABLE II. Renormalization factors Zqq for the operator com-
binations Ov2a and Ov2b used in this work. All values taken from
Table XIII in Ref. [78].

β 3.34 3.4 3.46 3.55 3.7

Zqq
v2a 1.0731 1.1010 1.1251 1.1578 1.2053

Zqq
v2b 1.0672 1.0938 1.1170 1.1485 1.1949
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C. Correlation functions

In order to calculate the DIS structure functions on the
lattice one has to compute two- and three-point correlation
functions in the forward limit:

CðμνÞ
2;p;t ¼ a3

X
x

e−ip·xhOðμÞ
M ðx; tÞŌðνÞ

M ð0; 0Þi; ð30Þ

CðμνÞ
3;p;t;τ ¼ a6

X
x;y

e−ip·xhOðμÞ
M ðx; tÞOðy; τÞŌðνÞ

M ð0; 0Þi: ð31Þ

We will consider pion (M ¼ π) and rho mesons (M ¼ ρ),
where the Lorentz indices are only necessary in the latter

case. The interpolating current ŌðμÞ
M creates a meson state

with matching quantum numbers at the source time slice tsrc
while OðνÞ

M annihilates the meson at the sink time slice tsnk.
They read

Oπ ¼ q̄fγ5qg; Oi
ρ ¼ q̄fγiqg; ð32Þ

with appropriately chosen quark flavors f and g and i ¼ 1,
2, 3. The quark fields in the interpolating currents are
spatially smeared (see Sec. III A) to enhance the ground-
state overlap. In addition to the two interpolating currents
the three-point function contains an insertion current O at
time slice τ with 0 < τ < t. The extraction of the ground-
state matrix element of O is the key task in the subsequent
calculations. In this work we set t ¼ tsnk − tsrc, τ ¼ tins −
tsrc and hence tsrc ¼ 0 without loss of generality.

1. The pion

For the pion case we first define the matrix elements

h0jOπjpi ¼
ffiffiffiffiffiffi
Zπ
p

p
; ð33Þ

where Zπ
p is smearing dependent and encodes the overlap of

the ground state with the interpolating currents at the source
and the sink. Inserting a complete set of states into Eq. (30)
allows us to expand the two-point correlation function in
terms of hadronic matrix elements. At large Euclidian times
the correlation function can be approximated by the
ground-state contribution

C2;p;t ¼ Zπ
p
e−E

π
p t

2Eπ
p
þ � � � ; ð34Þ

where we assume that the same smearing setup is used at
the source and the sink. For the ground-state energiesEπ

p we

impose the continuum dispersion relation Eπ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
p

.
Similarly, one can show that the spectral decomposition

of the three-point function in Eq. (31) for large Euclidean
times reads

C3;p;t;τ ¼ Zπ
p
e−E

π
pt

ð2Eπ
pÞ2

hpjOjpi þ � � � ð35Þ

In practice it turns out that especially for the three-point
functions the signal-to-noise ratio at large Euclidean time
distances t and τ does not only contain the ground-state
contribution. How to exclude further excited-state contri-
butions is explained in Sec. III C 3.

2. The rho meson

For the rho mesons we define, in analogy to the
pseudoscalar case (33),

h0jOμ
ρjp; λi ¼

ffiffiffiffiffi
Zρ
p

q
ϵμðp; λÞ; ð36Þ

where the polarization vector ϵμ obeys the general trans-
versality condition (A3). Therefore, the insertion of a
complete set of states into Eq. (30) (including a sum over
all possible polarizations), yields

Cμν
2;p;t ¼ −Zρ

p
e−E

ρ
pt

2Eρ
p

�
gμν −

pμpν

m2
ρ

�
þ � � � ; ð37Þ

where we have only written out the contribution from the
rho meson, which is the leading one-particle state at large
Euclidean times. Note, however, that in this case two-pion
states can also occur, which, depending on the simulation
parameters, can have smaller energies than the rho meson.
This problem will be discussed in Sec. III D.
Inserting two complete sets of states into the three-point

function (31) we find

Cμν
3;p;t;τ ¼Zρ

p
e−E

ρ
pt

ð2Eρ
pÞ2

X
λ0;λ

ϵμðp;λ0Þϵν�ðp;λÞhp;λ0jOjp;λi: ð38Þ

Excited-state contributions will be treated in Sec. III C 3.

3. Excited states analysis

In the three-point functions (34) and (37) the signal-to-
noise ratio decreases exponentially with the source-sink
separation in time. At small time distances between the
operators, however, there are still noticeable excited-state
effects. We take these into account by allowing for a
generic excited-state contribution in the spectral decom-
position of the correlation functions. For the pseudoscalar
correlation functions (34) and (35) our ansatz reads

C2;p;t ¼ Zπ
p
e−E

π
p t

2Eπ
p
ð1þ Ae−ΔEptÞ; ð39Þ

C3;p;t;τ ¼Zπ
p
e−E

π
p t

ð2Eπ
pÞ2

hpjOjpi

× ð1þB10e−ΔEpðt−τÞ þB01e−ΔEpτþB11e−ΔEptÞ;
ð40Þ
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whereΔEp denotes the energy difference to the first excited
state. The excited-state amplitude in the two-point function,
A, depends on the interpolating currents at the source and
the sink, their smearing, and the momentum p, while the
amplitudes in the three-point function, B10, B01, and B11,
also depend on the operator insertion O.
For the rho meson case we perform the analysis

analogously. However, in particular for ensembles with
small quark masses and large volumes, one would in this
situation expect a contribution from (possibly multiple)
two-pion states, which can have even smaller energy than
the “ground-state” rho meson itself. Despite the fact that we
do not find any trace of these two-pion states in our
numerical analysis, we cannot claim to have this problem
fully under control; cf. the discussion of this delicate issue
in Sec. III D.

4. Ratios

Instead of performing a fit to three-point functions, one
can equivalently fit to ratios of two- and three-point
functions. As discussed in Ref. [63], this can be advanta-
geous due to a cancellation of unwanted correlations
between two- and three-point functions. Furthermore, the
ratio can be chosen in such a way that contributions from
the ground state directly correspond to the matrix element
we are interested in. For the pseudoscalar correlation
functions we define

Rp ¼
C3;p;t;τ

C2;p;t
⟶
t≫τ≫0 hpjOjpi

2Eπ
p

; ð41Þ

which holds for any operator insertion O in the three-
point function. For the vector meson case we will
consider the diagonal case with the same Lorentz
indices at the sink and at the source [i.e., μ ¼ ν ¼ i in
Eqs. (30) and (31)]. Defining Jpλ0λ ≡ hp; λ0jOjp; λi=ð2Eρ

pÞ,
one obtains

Ri
p ¼

Cii
3;p;t;τ

Cii
2;p;t

⟶
t≫τ≫0 m2

ρ

ðEρ
pÞ2

X
λ;λ0

ϵiðp; λ0Þϵi�ðp; λÞJpλ0λ; ð42Þ

where i is fixed (no summation). On the right-hand
side a sum over multiple matrix elements occurs, which
can be evaluated explicitly for the chosen three-momentum.
For on-axis momenta p̂ ¼ �ei one finds the simple for-
mulas

Jp00 ¼ Ri
p; Jpþþ þ Jp−− ¼

X
j≠i

Rj
p ð43Þ

for the extraction of the polarization-conserving matrix
elements.

D. Two-pion state contribution in the vector-meson case

In an infinite volume, above the particle creation thresh-
old, a continuum of states would contribute to the spectral
decomposition of the rho meson. In particular in Eq. (37), a
continuum of two-pion states would contribute above the
2mπ threshold. In the noninteracting case, their center-of-
mass energies are given by

Ecm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

; ð44Þ

where k and −k are the momenta of the two pions in the
center-of-mass frame. In a finite volume momenta are
quantized such that one gets a sum over a discrete set of
states that contribute.
For particles of integer spin and at zero momentum (i.e.,

in the center-of-mass frame), the full symmetry group on
the lattice is the octahedral group Oh ¼ O ⊗ I defined as
the direct product of the cubic group O (consisting of 24
rotations) and the group of space inversions I.4 In a moving
frame, however, the symmetry is reduced to the so-called
little groups (for details see, e.g., Refs. [79–81]) shown in
Table III together with the decomposition into irreducible
representations. The four-momenta in the laboratory frame
are related to those in the center-of-mass frame by a Lorentz
boost, such that the states that obey the quantization
condition on the lattice in the different moving frames
will in general correspond to different center-of-mass
energies.
The connection between the finite volume energy spec-

trum of two-pion states and infinite volume scattering phase
shifts has been established by Lüscher in his seminal
articles [82,83]. Recent discussions of this topic are also
found in Refs. [79–81]. Being interested in the rho
resonance in the vector channel, we may restrict ourselves
to the P-wave (l ¼ 1) contribution, since it is usually found
that nonzero phase shifts in higher odd partial waves are not
required to describe the two-pion spectrum [84,85]. In this
simplified situation the P-wave phase shift δ1 is directly

TABLE III. Little groups and decomposition of angular mo-
mentum 1 in irreducible representations for all momentum
sectors d2 ≤ 4, where p ¼ 2π

L d. The groups are isomorphic for
each representative of a sector. Table taken from Ref. [79].

d2 LGðpÞ Γ

0 Oh T1u
1 C4v A1 ⊕ E
2 C2v A1 ⊕ B1 ⊕ B2
3 C3v A1 ⊕ E
4 C4v A1 ⊕ E

4For half-integer spin one would have to consider the corre-
sponding double covers of O and Oh.
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related to the quantized two-pion energy levels in a finite
volume. The latter appear when the condition

cot δ1¼! cotϕd
Γ ð45Þ

is satisfied (see Fig. 1), which will be discussed in more
detail below. The scattering phase shifts ϕd

Γ can be taken
from Table IV, using

wlm ¼ Zd
lmð1; q2Þ

π3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
γqlþ1

; q ¼ Lk
2π

; ð46Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
cm

4
−m2

π

r
: ð47Þ

For the numeric evaluation of the generalized zeta function
Zd
lmð1; q2Þ we use the representation derived in Ref. [80].
Using Eq. (45) we obtain the energy levels in the

interactive case via equating the phase shifts given in
Table IV with a phenomenological parametrization, where,
for any given parametrization, we define the rho mass and
width as [86]

cot δ1js¼m2
ρ
¼ 0; mρΓρ ¼

�
dδ1
ds

�
−1

s¼m2
ρ

; ð48Þ

using the Mandelstam variable s ¼ E2
cm. For instance one

can use a relativistic Breit-Wigner (BW) ansatz

k3ffiffiffi
s

p cot δBW1 ¼ 6πðm2
ρ − sÞ

g2ρππ
¼ k3ρðm2

ρ − sÞ
Γρm2

ρ
; ð49Þ

with

Γρ ¼
g2ρππk3ρ
6πm2

ρ
; ð50Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

π

p
, as defined in Eq. (47), and

kρ ¼ kjs¼m2
ρ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ=4 −m2
π

q
: ð51Þ

Alternatively, one can use a Gounaris-Sakurai (GS) para-
metrization [86], where

FIG. 1. Scattering phase shifts ϕd
Γ for different total momenta p ¼ 2π

L d and irreducible representations Γ calculated based on the
relations given in Table IV. As input we have used the pion mass, the rho mass and the volume of the ensemble D200. The dashed
vertical line indicates the rho mass we have measured on this ensemble. The poles occur at the positions of the noninteracting center-of-
mass energies. The red and blue curves correspond to the Breit-Wigner ansatz (49) and to the Gounaris-Sakurai ansatz (52), respectively;
see also Fig. 2. The energy levels are at the intersections of the curves.

TABLE IV. Scattering phase shifts (assuming that only the P
wave contributes) for momentum sectors d2 and irreducible
representations Γ. See Refs. [79,80] for more details.

d2 Γ ϕd
Γ

0 T1u w0;0 − w2;0 −
ffiffiffi
6

p
w2;2

1 A1 w0;0 þ 2w2;0

1 E w0;0 − w2;0

� � � � � � � � �
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k3ffiffiffi
s

p cot δGS1 ¼ k2ðhðsÞ − hðm2
ρÞÞ þ ðk2ρ − k2Þc; ð52Þ

with

hðsÞ ¼ 2

π

kffiffiffi
s

p ln

� ffiffiffi
s

p þ 2k
2mπ

�
; ð53Þ

c ¼ 4k3ρ
m2

ρΓρ
þ 4k2ρh0ðm2

ρÞ: ð54Þ

If one chooses to apply the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin relation [87,88], m2

ρ ¼ 2g2ρππF2
π ,

(which, as argued in Ref. [89], is a consequence of chiral
symmetry and the requirement of consistency of the
effective field theory with respect to renormalizability),
both the BW and GS parametrizations are determined
solely by the rho mass [given that the pion decay constant
Fπ is well known and the width of the rho is linked to the
rho-pi-pi coupling constant gρππ via Eq. (50)].
In Fig. 2 we plot the P-wave phase shifts for both, the

BW (red) and the GS (blue) parametrization, using the
properties of our ensemble D200 (Ns × Nt ¼ 64 × 128,
mπ ¼ 201 MeV, mρ ¼ 746 MeV) as input. As one can
see, the two parametrizations yield quite similar results. In
Fig. 1, we illustrate the quantization condition (45): the
energy levels are situated at the intersections between
the phase shift parametrizations and the curves for
cotϕd

Γ. The pole positions correspond to the center-of-mass
energies of the noninteracting system.
As pointed out in Ref. [86], the phase shifts are linked to

the pion form factor via

FπðsÞ ¼
fð0Þ
fðsÞ ; with fðsÞ ¼ k3ffiffiffi

s
p ðcot δ1 − iÞ: ð55Þ

Note that this formula only works for the GS ansatz, which
we will use in the following, and not for the BW ansatz,
because in the latter case fðsÞ diverges at s ¼ 0. Using the
GS parametrization one finds

FπðsÞ ¼
m2

πhðm2
ρÞ þ c

4
m2

ρ − 1
πm

2
π

k3ffiffi
s

p ðcot δGS1 − iÞ : ð56Þ

As shown in Ref. [90] (which is a generalization of the
original derivation given in Ref. [91] for moving frames),
the form factor can be determined from the overlap factor of
the two-pion states with a local (unsmeared) vector current.
By inverting this relation (and adapting it to our conven-
tions) we obtain the overlap factors

Zππ
p ðsÞ ¼

�
q
∂ϕd

Γ
∂q þ k

∂δ1ðkÞ
∂k

�
−1 k5

6π
ffiffiffi
s

p jFπðsÞj2; ð57Þ

from a given form factor, which, in turn, can be determined
from the phase shift.
In Fig. 3 we show the form factor and the corresponding

estimate for the overlap factor of local (i.e., unsmeared)
vector currents at the source and the sink with the two-pion
states at a given center-of-mass energy. The first thing to
notice is, that two-pion states whose center-of-mass energy
is much smaller (or larger) than the rho mass are strongly
suppressed. In the example shown here the overlap of these
states is (roughly) smaller by a factor of 100 compared to
our estimate for the overlap of the rho meson itself
(horizontal red line). This means that these states will
not yield large contributions to the correlation functions at
the intermediate time distances available in our simulation,
despite being energetically favored, which may explain
why we do not see these states in our numerical analysis.
More problematic is the possible contribution of states that
have a center-of-mass energy close to the rho mass. As one
can see in Fig. 3, the overlap of these states is strongly
enhanced, and can be of the same size or even larger than
the overlap of the rho meson. This is particularly concern-
ing, because we would not be able to distinguish such a
state in the spectral decomposition within our numerical
analysis. It is important to keep this caveat in mind when
interpreting our results.
That being said, we want to stress that the analysis

provided above is actually only valid for unsmeared
currents. Obviously, the situation might be less critical
for the smeared currents that we use in our simulation.
A posteriori, the trustworthiness of the numerical
results presented in the following could be enhanced
significantly, if future studies (e.g., by using the generalized
eigenvalue method with two-pion interpolating currents,
cf. Refs. [81,92–95]) can show that the overlap of smeared

FIG. 2. Comparison of the Breit-Wigner (red) and Gounaris-
Sakurai (blue) parametrizations of the phase shift. Here we use
the pion mass and (naively measured) rho mass from D200 as
input. The rho-pi-pi coupling constant is set to the phenomeno-
logical value gρππ ¼ 5.96.
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vector interpolating currents with the two-pion states is
much smaller than for the local currents.

IV. ANALYSIS AND RESULTS

A. Pion and rho mass

To compute the reduced matrix elements introduced,
e.g., in Eq. (23), we need the mass (energy) of the meson in
the rest (boosted) frame. While the values for mπ are taken
from Ref. [96] the values for mρ are obtained by a direct fit
to the correlation function using the spectral decomposition
presented in Eq. (39). Beside the mass (energy) itself two
additional amplitudes (Z and A) and also the energy gap to
the first excited state ΔE enter the fit as free parameters.
However, using the ratio method introduced in Sec. III C 4
the additional amplitudes and also ΔE will not enter the
results presented in this work.

The fits are performed using a constant fit window of
∼2 fm for all ensembles with open boundary conditions
and we start 1 or 2 time slices (∼ 0.1 fm) away from the
source for the coarser or finer lattices. Due to the structure
of Eq. (39) the values obtained by the fit for the ground-
state and excited-state energy can be interchanged. To
overcome this technical issue we have introduced a cutoff
for the double exponential fit at tcut ≈ 0.65 fm and fit only
the single exponential Zρ

pð2Eρ
pÞ−1e−Eρ

pt for larger times. In
the case of periodic boundary conditions we choose a
symmetric ansatz of the form Zρ

pð2Eρ
pÞ−1ðe−Eρ

pt þ e−E
ρ
pðT−tÞÞ

with tcut ≤ t ≤ T − tcut where we only fit the amplitude and
the ground-state energy. The final results of these fits are
shown in Fig. 4. We depict the rest frame results by
triangles and the boosted frame results by circles. Note that

the continuum dispersion relation Eρ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ p2
q

is used

to project the energies onto their corresponding mass
values and to check that the dispersion relation is well
satisfied for the momenta in use.

FIG. 3. The pion form factor obtained using Eq. (56) and the
corresponding overlap factors Zππ

Γ (again using D200 input
parameters) for the local currents from Eq. (57). The red line
in the lower panel is plotted for comparison and corresponds to
the estimated Zρ ¼ 2f2ρm2

ρ for the local currents using the
phenomenological value fρ ¼ 222 MeV as input.

FIG. 4. Rho masses for all ensembles analyzed from a double
exponential fit (open boundaries) or a single exponential fit
(periodic boundaries) to the two-point function correlator. The
triangles depict the results in the rest frame (p2 ¼ 0) while the
circles correspond to fits in the boosted frame (p2 ¼ 4π2

L2 ) projected
to the rest frame using the continuum dispersion relation.
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B. Extraction of ground-state matrix elements

The observables studied in this article are affected by
disconnected quark loops. Often one can circumvent this
problem by considering isovector current insertions, where
the up and down quark disconnected loops cancel each
other identically in the limit of exact isospin symmetry.
This is not a viable solution in this case, since the connected
part also vanishes for the isovector currents. Unfortunately,
the disconnected contributions are notorious for having a
large statistical error. However, as will be discussed later in
this section, this is not true in general.
In cases where the disconnected contributions are zero

within the error one might be tempted to simply drop them.
However, in situations where the statistical error is large
(for instance the flavor singlet operators), their inclusion
can shift the mean and, even more important, can increase
the error for the final result substantially. I.e., they have to
be included, if one wants to provide reliable error estimates
for phenomenological applications. Nevertheless, we per-
form a second analysis in these cases, where we solely use
the connected part, which allows us to compare to other
lattice results for connected contributions.
In principle, one would like to add the connected and

disconnected contributions already at the correlation func-
tion level. However, this is not feasible since the connected
and disconnected parts are calculated in different ways. The
connected part is calculated with the stochastic propagator
estimation presented in Appendix C 1 using a setup with a
fixed sink time slice to obtain the result for all possible
insertion times. The disconnected loops are calculated on
fixed time slices also using stochastic propagators (see
Appendix C 2 for details). For any computed two-point
function we can therefore obtain the disconnected three-
point function at a fixed insertion time but for arbitrary final
times. In order to sum up the contributions at the correlation
function level, we would have to throw away a large part of
our data, since we could only use the insertion and final
times where we have data for both. This would be
prohibitively wasteful. Therefore, we will perform the
extraction of the ground-state matrix elements separately
for the connected and disconnected contributions.
Next, we extract the ground-state contribution from the

ratios defined in Sec. III C 4. We use kinematic prefactors
and, in the case of the rho, take appropriate linear combi-
nations such that the ground-state contributions directly
correspond to the reduced matrix elements vq2 (for the pion)
as well as aq2 and d

q
2 for the rhomeson. For on-axis momenta

p̂ ¼ �ei we obtain [using Eqs. (B2) and (B4)]

v2 ¼
1

pi RpðOi
v2aÞ; ð58Þ

a2 ¼
1

3pi

X
j

Rj
pðOi

v2aÞ; ð59Þ

d2 ¼
3

4pi

�
2Ri

pðOi
v2aÞ −

X
j≠i

Rj
pðOi

v2aÞ
�
; ð60Þ

with the operatorOi
v2a as inserted current. ForOv2b we find

v2 ¼
3E

4E2 −m2
RpðOv2bÞ; ð61Þ

a2 ¼
E

4E2 −m2

X
j

Rj
pðOv2bÞ; ð62Þ

d2 ¼
3E

8ðE2 −m2Þ
�
2Ri

pðOv2bÞ −
X
j≠i

Rj
pðOv2bÞ

�
: ð63Þ

Herewe hide the superscripts π, ρ, and the subscript p for the
mass and energy. Measurements using Oi

v2a always require
nonzero momentum in direction i. If one uses Ov2b the
reduced matrix elements v2 and a2 can be measured for
vanishing three-momentum. The extraction of d2, however,
always requires nonzero momentum. The reason for this is
that d2 corresponds to the difference of the PDF moment
between longitudinally and transversally polarized rho
mesons, which is not a useful concept for mesons in their
rest frame. Explicit operator definitions can be found in
Appendix B.
In Figs. 5 and 6, we show examples of the ratio fits for

the ensemble N204. For the statistical analysis we generate
500 bootstrap samples per ensemble using a bin size of
40 molecular dynamics units to eliminate autocorrelations.
To visualize the fits and corresponding data points we only
present plots for n2 ¼ 1, where n is defined by p ¼ 2π

L n,
using the operator combinations (58)–(63). However, the
results for the reduced matrix elements v2, a2, and d2 in the
left column are obtained by combined fits to all ratios using
an ansatz similar to Eq. (40) with the definitions (41) and
(42). In the case of pseudoscalar mesons this reads

RðO; p2; t; τÞ ¼ B0 þ B1ðO; p2Þe−ΔEp2 ðt−τÞ

þ B1ðO; p2Þe−ΔEp2 τ; ð64Þ

where the ratio R explicitly depends on p2, the operator
O ∈ fOv2a;Ov2bg, the sink time slice t, and the insertion
time slice τ. For the operator combinationOi

v2a, with i ¼ 1,
2, 3, we average the three spatial directions and fit to the
data using the parameters B0, B1ðOv2a; n2 ¼ 1Þ and the
excited-state energy is given by ΔEn2¼1, independent
of the operator combination. Note that we require nonzero
momentum in direction i for Ov2a. Additionally the
operator combination Ov2b gives rise to the further
excited-state amplitudes B1ðOv2b; n2Þ and the excited-state
energy ΔEn2¼0. All in all this yields a simultaneous fit to
three operator combinations for each source sink separa-
tion, to resolve the individual parameters. The actual fit is
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performed simultaneously to all source sink separations,
cf. Table I. A summary of the individual contributions is
given in Table V. One can easily deduce that the ground-
state contribution B0 is present in all operator combinations
while the excited-state amplitudes and energies depend on
the operator combination and n2 respectively. A similar
approach holds for the extraction of a2 and d2. However,
for d2 the statistical error is much larger and we are not able
to resolve reliable excited-state energies from the ratios.
Therefore we fix the excited-state energies ΔEn2¼1 by an
additional, simultaneous fit to the two-point function (39)
in the case of the reduced matrix element d2.
In summary this implies that the fits not only take

into account the data points shown in Figs. 5 and 6,
but are actually based on a larger data set stemming from
various operator and momentum configurations. However,
the prefactors in Eqs. (58)–(63) are solely determined
by the meson masses and corresponding momentum
contributions.

As discussed above, we perform the extraction of the
ground-state matrix elements separately for the connected
(left column) and disconnected (middle and right column)
contributions. While analyzing the disconnected contribu-
tion we found that the considerable noise on the light and
strange quark loops is highly correlated for all included
ensembles, cf. Table I. We can use this to our advantage by
looking at the nonsinglet (ūuþ d̄d − 2s̄s) and singlet
(ūuþ d̄dþ s̄s) flavor combinations instead of the light
and strange loops themselves. As depicted impressively in
the middle and right column of Figs. 5 and 6 (note the
difference in scale), the statistical error is smaller by more
than 1 order ofmagnitude for the nonsinglet operator. For the
disconnected contributions we do not see an indication for a
significant excited-state contribution and, consequently,
content ourselves with a constant fit to extract the ground-
state signal employing the fit strategy described above.
For the disconnected contribution we have data points

for a large number of combinations of final times t and

FIG. 5. Extraction of renormalized values for v2, a2, and d2 from the ratios obtained in Eqs. (58)–(60) using the operator combination
Ov2a. For illustrative purposes we only show the data points and individual fits (solid blue lines in the first column) for all momentum
combinations with n2 ¼ 1; however, the ground-state results (orange lines) are obtained by a simultaneous fit to the operator
combinations Ov2a and Ov2b using all possible momenta for the corresponding matrix element with n2 ≤ 1 for the connected,
disconnected nonsinglet, and disconnected singlet contributions respectively. The analysis shown in this plot has been performed on the
ensemble N204. The solid blue lines in the first column correspond to a simultaneous fit to the four source-sink separations of the
ensemble, cf. Table I, for the insertion current (ūuþ d̄d) needed to construct the flavor (non)singlet operator contributions. In the case of
v2 and a2, the fits allow for a generic excited state on top of the ground state, while in the case of d2 the excited-state energy ΔE is fixed
by the two-point function; see Eq. (39). The orange line depicts the extracted ground-state contribution and directly correspond to the
values of the reduced matrix elements. In the second and third columns we show the disconnected contributions for the nonsinglet
(ūuþ d̄d − 2s̄s) and singlet (ūuþ d̄dþ s̄s) operators as functions of the final time slice t. In addition to the original data points (grayed
out) we also show an average over all insertion times for every final time slice t (black triangle markers).
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insertion times τ. If one plots the data for various insertions
times in one plot (cf. the grayed out points in Figs. 5 and 6),
the statistical scattering of these data points alone can lead
to the misconception that the statistical error of the
extracted ground state (yellow band) is underestimated.
In order to convince the viewer of the plots that this is not
the case we also plot the black points, which are obtained
by taking the average over data at all insertion times τ for
the given final time t.

C. Quark mass dependence and continuum
extrapolation

As described in Sec. III A, the ensembles we analyze
have been generated along multiple trajectories in the quark
mass plane and at different lattice spacings a. We obtain the
final results by extrapolating to the continuum limit (at
a ¼ 0) and to physical masses. To this end we employ the
parametrization

fða;m2
π; m2

KÞ ¼ c0 þ c1aþ c2m2
π þ c3m2

K: ð65Þ

Note that we have to use a linear term in the lattice spacing
as the leading contribution despite the fact that our lattice
action is order a improved, because we lack the order a
improvement for the inserted currents.
In Figs. 7 and 8, the yellow bands show the extrapola-

tions for the flavor nonsinglet and flavor singlet operators
as a function of a and m2

π , respectively. As discussed in
Sec. IV B, the statistical error of the flavor singlet operator
combinations is much larger than in the flavor nonsinglet
case, which makes it hard to draw any convincing con-
clusions. Nevertheless, the results for the flavor singlet
combinations will allow us to give at least an upper bound
for the reduced matrix elements v2, a2, and d2. However,

FIG. 6. Extraction of renormalized values for v2, a2, and d2 from the ratios obtained in Eqs. (61)–(63) using the operator combination
Ov2b. The data is visualized in the same way as in Fig. 5, i.e., we only plot the data points and individual fits for n2 ¼ 1. Also here we
want to stress, that the ground-state results (orange line) are obtained by a simultaneous fit to the operator combinations Ov2a and Ov2b

using all possible momenta for the corresponding matrix element with n2 ≤ 1 for the connected, disconnected nonsinglet, and
disconnected singlet contributions respectively.

TABLE V. Summary of the occurrence of the individual fit
parameters in the ansatz (64) for the extraction of v2 (pion) and a2
(rho). A check mark indicates that the fit parameter is present in
the corresponding operator combination, whereas the crosses
indicate that the fit parameter is not present.

Fit Parameter Ov2aðn2 ¼ 1Þ Ov2bðn2 ¼ 1Þ Ov2bðn2 ¼ 0Þ
B0 ✓ ✓ ✓

B1ðOv2a;n2 ¼ 1Þ ✓ ✗ ✗

B1ðOv2b;n2 ¼ 1Þ ✗ ✓ ✗

B1ðOv2b;n2 ¼ 0Þ ✗ ✗ ✓

ΔEn2¼1 ✓ ✓ ✗
ΔEn2¼0 ✗ ✗ ✓
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for the flavor nonsinglet combinations, the situation is
much better and we get meaningful results and errors.
Figure 8 shows the extrapolations for the quark mass
dependence along the TrM ¼ const, ms ¼ const, and ml ¼
ms trajectories, from left to right. The data points are
corrected for lattice spacing effects and are shifted to the
corresponding trajectories. For, e.g., the TrM ¼ const
trajectory this keeps the average quark mass fixed (again
using the fitted model shown above) and thus allows us to
see the effect of flavor symmetry breaking. The lattice
spacing dependence is depicted in Fig. 7. To visualize
solely the discretization effects, the data points in Fig. 7 are
corrected for mass effects (using the fitted model), i.e., they
are translated to physical masses along the fitted curve, and
finally averaged for all ensembles with the same values of β
using the weighted average

Āi ¼
XNβ

i

wiAi; with wi ¼
1=σ2iPNβ

i 1=σ2i
; ð66Þ

where Nβ is the number of data points Ai (ground-state
matrix elements) per β with corresponding errors σi. Note
that this procedure is only applied to the points in these
plots for illustrative purposes, while the bands are obtained
from the actual fit performed using the original data points,
cf. Appendix D.
The final results for the reduced matrix elements are

given in Table VI. In addition to the statistical error ðÞs we
provide estimates for the systematic uncertainties due to the

quark mass extrapolation ðÞm and the continuum extrapo-
lation ðÞa. To this end, we have performed additional fits
with cuts in the mass range m̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

K þm2
πÞ=3

p
<

450 MeV and a < 0.09 fm, respectively. We then take
the difference between the results from these fits and our
main result as an estimate of the corresponding systematic
uncertainties.

D. Discussion

Using Eq. (14) in combination with Eqs. (25) and (26),
one can write the ratio of the moments of the structure
functions (at leading twist accuracy) with the correspond-

ing Wilson coefficient CðkÞ
n ¼ 1þOðαsÞ as a sum over the

related reduced matrix element

2M2ðF1Þπ
Cð1Þ
2

¼M1ðF2Þπ
Cð2Þ
2

¼
X
q

e2qv
q
2 ¼

2

9

�
vfs2 þ

1

4
vfns2

�
; ð67Þ

2M2ðF1Þρ
Cð1Þ
2

¼M1ðF2Þρ
Cð2Þ
2

¼
X
q

e2qa
q
2 ¼

2

9

�
afs2 þ

1

4
afns2

�
; ð68Þ

2M2ðb1Þρ
Cð1Þ
2

¼M1ðb2Þρ
Cð2Þ
2

¼
X
q

e2qd
q
2 ¼

2

9

�
dfs2 þ

1

4
dfns2

�
; ð69Þ

where we assume exact isospin symmetry and fs≡ uþ
dþ s is the flavor singlet while fns≡ uþ d − 2s is the
flavor nonsinglet combination. If we only consider the

FIG. 7. Lattice spacing dependence of the extrapolations for the flavor singlet (ūuþ d̄dþ s̄s) and flavor nonsinglet (ūuþ d̄d − 2s̄s)
operator combinations using the fits shown in, e.g., Figs. 5 and 6. The reduced matrix elements v2 (pion), a2, and d2 (both rho) have been
obtained by a translation to physical quark masses and averaging measurements with the same values of β using the weighted average
given in Eq. (66). From coarsest to finest lattice spacing, this corresponds to averaging the data of two, eight, seven, seven, and three
independent ensembles, cf. Table I. The nonaveraged plots for the individual trajectories can be found in appendix D.
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FIG. 8. Extrapolation for the flavor singlet (ūuþ d̄dþ s̄s) and flavor nonsinglet operator combinations (ūuþ d̄d − 2s̄s) using the fits
shown in, e.g., Fig. 5. From left to right we show the m2

π dependence of the reduced matrix elements v2 (pion), a2, and d2 (both rho) for
the three different trajectories we use in our analysis. Note that the symmetric trajectory ml ¼ ms with exact SU(3) flavor symmetry
approaches the chiral limit in the quark mass plane and not the physical point.
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connected part, the strange quark contribution drops out
entirely. The result can be written in terms of the light quark
connected contribution as

2M2ðF1Þconnπ

Cð1Þ
2

¼ M1ðF2Þconnπ

Cð2Þ
2

¼ 5

9
vl;conn2 ; ð70Þ

2M2ðF1Þconnρ

Cð1Þ
2

¼ M1ðF2Þconnρ

Cð2Þ
2

¼ 5

9
al;conn2 ; ð71Þ

2M2ðb1Þconnρ

Cð1Þ
2

¼ M1ðb2Þconnρ

Cð2Þ
2

¼ 5

9
dl;conn2 : ð72Þ

In Table VII we give our final results for these linear
combinations. As shown in the last section the flavor
singlet contributions contain relatively large errors which
affect Eqs. (67)–(69). However, treating the connected part
only5 reduces the errors significantly. The reader should be
aware of the fact that we use (in both cases) the flavor
nonsinglet renormalization constants, which is only an
approximation, cf. the discussion in Sec. III B.
For the flavor nonsinglet contributions given in Table VI

we obtain very precise results, despite the fact that all
disconnected quark loops are fully taken into account. The
nonsinglet operators do not mix with gluonic operators
under renormalization, and the necessary renormalization
factors have been calculated nonperturbatively, cf. Sec. III B.
As a first step one can compare the connected results in

Table VII to the connected-only and flavor nonsinglet
results in Table VI. Multiplying the latter two by the
prefactors given in Eqs. (70)–(72) one finds that both the
first moments of the unpolarized structure functions Fπ

1 and
Fρ
1 and the first moment of the structure function b1 are in

very good agreement with the flavor nonsinglet results in
Table VI and of course also reflect the connected-only result
in Table VI. As shown in Sec. IV B the flavor nonsinglet
contributions of the quark line disconnected diagrams in the
extraction of the ground-state matrix elements are small
compared to the connected contributions. At leading order
the structure function Fq

1ðxÞ corresponds to one half of the
probability to find a quark of flavor q with momentum
fraction x. If we assume exact SU(3) flavor symmetry for the
quark sea, the results in Tables VI and VII imply that in
the pion the valence quarks carry about 35% of the total
momentum, while in the rho they carry about 40% of the
total momentum. It is remarkable that these values justify
the assumption F1ðxÞπ ∼ F1ðxÞρ, which is often used in
phenomenological estimates. The structure functions b1ðxÞ
and b2ðxÞ are sensitive to a possible dependence of the quark
densities on the hadron polarization, i.e., they measure the
difference in quark distributions of a spin-projected λ ¼ 0
and λ ¼ þ=− rho meson. If the quarks were in a relative
S-wave state, cf. the discussion in Sec. III D, one would
expect b1 ¼ b2 ¼ 0. However, our results show a large
contribution (compared to the scale of a2) to the approxi-
mated valence quark contribution d2 with a relative error of
only∼10%. This confirms the conclusion inRef. [18] that the
quarks carry substantial angular momentum and also reflects
the results of the various phenomenological studies cited
in Sec. I.

V. SUMMARY AND OUTLOOK

In this article we have presented the computation of the
first moments for the structure functions Fπ

1 , F
ρ
1, and b1

including quark line disconnected contributions. Despite
the fact that our final results are tainted with large statistical
errors due to the flavor singlet disconnected contributions

TABLE VI. Results obtained from the extrapolations in Figs. 7
and 8 and the corresponding connected-only contributions for the
flavor combination (uþ d), all at μ ¼ 2 GeV. The final statistical
error is given by ðÞs and estimates of the systematic uncertainties
due to the quark mass by ðÞm, and due to the continuum
extrapolation by ðÞa. The values of χ2 per degrees of freedom
are obtained from the corresponding extrapolations.

Matrix element Final result χ2=d:o:f:

vðuþdþsÞ
2

0.220 ð95Þsð98Þmð155Þa 1.71

aðuþdþsÞ
2

0.285 ð90Þsð76Þmð271Þa 1.78

dðuþdþsÞ
2

0.226 ð112Þsð6Þmð54Þa 0.72

vðuþd−2sÞ
2

0.344 ð20Þsð3Þmð19Þa 1.72

aðuþd−2sÞ
2

0.384 ð29Þsð11Þmð42Þa 1.33

dðuþd−2sÞ
2

0.163 ð38Þsð5Þmð7Þa 0.58

vðuþdÞ;conn:
2

0.357 ð16Þsð2Þmð15Þa 1.74

aðuþdÞ;conn:
2

0.393 ð29Þsð10Þmð35Þa 1.47

dðuþdÞ;conn:
2

0.180 ð38Þsð5Þmð7Þa 0.59

TABLE VII. Estimated results for the first moments of the
structure functions F1 and b1 exploiting Eqs. (67)–(72) and
performing the extrapolations as discussed in Sec. IV C. Further

we use the abbreviation C≡ 2=Cð1Þ
2 .

Structure function Final result χ2=d:o:f:

CM2ðF1Þπ 0.132 ð33Þsð32Þmð57Þa 1.75
CM2ðF1Þρ 0.156 ð33Þsð23Þmð102Þa 1.84

CM2ðb1Þρ 0.108 ð41Þsð1Þmð13Þa 0.72

CM2ðF1Þconn:π 0.099 ð5Þsð0Þmð4Þa 1.74
CM2ðF1Þconn:ρ 0.109 ð8Þsð2Þmð9Þa 1.47

CM2ðb1Þconn:ρ 0.050 ð10Þsð1Þmð2Þa 0.59

5The connected-only results are presented as a comparison
option for other studies neglecting disconnected contributions.
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we were able to provide very accurate results for the flavor
nonsinglet combination uþ d − 2s. As an additional
subtlety we had a closer look at possible two-pion con-
tributions which might occur in our analysis. We did not
find any evidence for the contribution of two-pion states.
However, as discussed at the end of Sec. III D, using our
analysis technique we cannot fully exclude them either.
This is particularly true for two-pion states close to the
resonance energy. To this end, the trustworthiness of our
numerical results could be enhanced a posteriori, if future
studies (e.g., by using the generalized eigenvalue method
with two-pion interpolating currents, cf. Refs. [81,92–95])
can show that the overlap of smeared vector interpolating
currents with the two-pion states is much smaller than for
the local currents.
Despite the fact that we for the first time presented

comprehensive results including disconnected contribu-
tions we have reduced the statistical error considerably.
This can be seen by comparing the error of the connected
contribution alone with earlier studies. However, to deter-
mine the phenomenologically important moments of the
structure functions (at leading twist), one needs the flavor
singlet combination, where the statistical error is still large.
Future studies will have to aim at a further reduction of
these statistical errors. Once this is achieved, a nonpertur-
bative calculation of the singlet renormalization factors and
the inclusion of mixing with gluonic operators might also
be worthwhile.

ACKNOWLEDGMENTS

Support of this project was granted by the German DFG
(SFB/TRR 55). In addition this project has received
funding from the European Unions Horizon 2020 research
and innovation program under the Marie Skłodowska-
Curie grant agreement No. 813942. We are grateful to
Gunnar S. Bali, Lorenzo Barca, Sara Collins, Vladimir
Braun, Meinulf Göckeler, and Christoph Lehner for the
various fruitful discussions and to Wolfgang Söldner for
providing parts of the intermediate results to be published
in Ref. [96]. In addition we thank Benjamin Gläßle and
Simon Heybrock for codeveloping some of the software
used here and Daniel Richtmann, Peter Georg and Jakob
Simeth for software development and software support and
Enno E. Scholz for the support in data management. We
gratefully acknowledge computing time granted by the
John von Neumann Institute for Computing (NIC), pro-
vided on the Booster partition of the supercomputer
JURECA [97] and use of computing time and services
on the HDF Cloud [98], funded as part of the Helmholtz
Data Federation (HDF) strategic initiative, at Jülich
Supercomputing Centre (JSC). Additional simulations
were carried out at the QPACE2 and QPACE 3 Xeon
Phi cluster of SFB/TRR 55 and the Regensburg computing
cluster QPACE B and the Regensburg HPC cluster
Athene2. We owe special thanks to Randy Rückner for

the software and runtime support concerning the
Athene2 compute cluster. The authors also gratefully
acknowledge the Gauss Centre for Supercomputing
(GCS) for providing computing time for GCS Large-
Scale Projects on SuperMUC and SuperMUC NG at
Leibniz Supercomputing Centre (LRZ). GCS is the alliance
of the three national supercomputing centres HLRS
(Universität Stuttgart), JSC (Forschungszentrum Jülich),
and LRZ (BayerischeAkademie der Wissenschaften),
funded by the German Federal Ministry of Education
and Research (BMBF) and the German State Ministries
for Research of Baden-Württemberg (MWK), Bayern
(StMWFK) and Nordrhein-Westfalen (MIWF). We thank
all our CLS colleagues for the joint generation of the gauge
ensembles. The ensembles were generated using the
OpenQCD [60] software package.

APPENDIX A: LIGHT-CONE COORDINATES
AND POLARIZATION VECTORS

We define the light-cone coordinates used in Sec. II in
such a way that the perpendicular (or transverse) part of the
momentum always vanishes, i.e., pT ¼ 0 and pþ is its large
component. To achieve this let v be any four-vector and p̂
the direction of the three-momentum. Then,

vμ ¼ vþnμþþv−nμ−þvμT; with nμ� ¼ 1ffiffiffi
2

p
�

1

�p̂

�
μ

; ðA1Þ

where v� ¼ n∓ · v and

vμT ¼
�

0

vT

�
μ

; with vT ¼ v − ðp̂ · vÞp̂; ðA2Þ

such that vT⊥p̂. For the momentum we then have p� ¼
E� jpj and pT ¼ 0.
For the polarization vectors we use a dimensionless

definition. They obey the general transversality condition

X
λ

ϵμðp; λÞϵ�νðp; λÞ ¼ −
�
gμν −

pμpν

m2

�
; ðA3Þ

wherem is the hadron mass. For momenta in the x direction
the polarization vectors in the rest frame are given by ð0; eλÞ
with

ex0¼ e0jp̂¼ê1 ¼

0
B@
1

0

0

1
CA; ex�¼ e�jp̂¼ê1 ¼

1ffiffiffi
2

p

0
B@

0

∓1

−i

1
CA; ðA4Þ

where ex0 corresponds to the longitudinal polarization, while
ex� corresponds to the circular polarizations. For momenta
in an arbitrary direction, we have to rotate these vectors to
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e0 ¼ p̂; e� ¼ ex� −
p̂ · ex�

1þ p̂ · ex0
ðex0 þ p̂Þ; ðA5Þ

to obtain the longitudinal polarization vector e0 and the
polarization vectors for the circular polarizations e�. Last
but not least, we have to perform a boost to the laboratory
frame. This only affects e0 (e� are invariant because they
are perpendicular to p), and we obtain

ϵμðp; 0Þ ¼
� jpj

m
E
m p̂

�μ

; ϵμðp;�Þ ¼
�

0

e�

�
μ

: ðA6Þ

In terms of the light-cone coordinates introduced above this
yields

ϵ�ðp; 0Þ ¼ �p�=m; ϵμTðp; 0Þ ¼ 0; ðA7Þ

ϵ�ðp;þÞ ¼ 0; ϵμTðp;þÞ ¼ ϵμðp;þÞ; ðA8Þ

ϵ�ðp;−Þ ¼ 0; ϵμTðp;−Þ ¼ ϵμðp;−Þ: ðA9Þ

APPENDIX B: OPERATORS AND MATRIX
ELEMENT DECOMPOSITION

To avoid mixing as far as possible we use operators from
suitably chosen multiplets that possess a definite C parity
and transform according to irreducible representations
of H(4), cf. Refs. [18,77]. To be specific, we will use
the operatorsOi

v2a ¼ O0i andOv2b ¼ 4
3
O00. For the special

case of two indices the action of the symmetrizing and
trace-subtracting operator S is defined by

SOμν ¼ Sμν
ρσOρσ ¼ 1

2

�
gμρgνσ þ gμσgνρ −

2

d
gμνgρσ

�
Oρσ: ðB1Þ

Plugging this into the Lorentz decomposition (22) for the
pion one finds

hpjOi
v2ajpi ¼ 2vq2Ep

i; ðB2Þ

hpjOv2bjpi ¼ 2vq2
4E2 −m2

3
: ðB3Þ

Using Eq. (23), we can show for the rho that

hp; λjOi
v2ajp; λi ¼ 2Epi

�
aq2 þ 2

3
dq2 for λ ¼ 0;

aq2 −
1
3
dq2 for λ ¼ �;

ðB4Þ

hp; λjOv2bjp; λi ¼ 2

�
aq2 −

dq2
3

�
4E2 −m2

3

þ 2
dq2
3

�
4E2 − 3m2 for λ ¼ 0;

m2 for λ ¼ �:
ðB5Þ

In the actual computations we use the explicit operators

Oi
v2a ¼ Of0ig; with i ¼ 1; 2; 3; ðB6Þ

Ov2b ¼ O00 þ 1

3
ðO11 þO22 þO33Þ; ðB7Þ

where Oμν is defined as

Oμν ¼
i
2
q̄γμD

↔ν
q: ðB8Þ

The conversion between Minkowski and Euclidean con-
vention is finally given by

OðEÞ;i
v2a ¼ −iOi

v2a; OðEÞ
v2b ¼ −Ov2b ðB9Þ

(see Ref. [18]).

APPENDIX C: NUMERICAL METHODS

1. Stochastic propagator

Using the common sequential source method [99] the
computational cost of evaluating three-point functions is
high because a new inversion is necessary for each sink
setup (time slice, momentum and interpolating current). To
reduce the computational cost and maximize synergies in
calculating matrix elements we implemented a stochastic
algorithm [100,101] which circumvents this limitation. The
implementation we propose parallelizes the computations
in such a way that those for multiple source positions and
multiple insertion positions can be done simultaneously.
A similar approach was already used in Refs. [102–105];
however, by storing the uncontracted data, with all spin
indices open, on disk, our implementation enables the user
to analyze any channel of interest at a later stage.
First of all we factorize the three-point correlation

function into two largely independent parts denoted as
the spectator S and insertion I parts which can be computed
separately. The generic expression of our factorized meson
three-point function with open spin indices (greek letters)
as well as color, stochastic and flavor indices reads

C3ptðp0;q;x04;y4Þα
0β0α̃ β̃ βα

f1;f2;f3

¼Γα0β0
snk Γ

α̃ β̃
insΓ

βα
src

1

Nsto

XNsto

i¼1

Si;f1ðp0;x04Þβ
0α0α

a Ii;f2;f3ðq;y4Þα̃ β̃ βa :

ðC1Þ
Γsrc=snk corresponds to the interpolating currents of the
(smeared) meson source or sink and Γins corresponds to the
local operator insertion which can contain additional
derivatives (at the moment only first derivatives are
implemented). We define the spectator Si;f1ðp0; x04Þβ

0α0α
a

and the insertion Ii;f2;f3ðq; y4Þα̃ β̃ βa parts as
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Si;f1ðp0; x04Þβ
0α0α

a

¼
X
x0
δa0b0 ½ηiðx0Þγ5�β

0
b0 ½γ5G†

f1
ðx0; rÞγ5�α0αa0ae

−ip0·x0 ; ðC2Þ

Ii;f2;f3ðq; y4Þα̃ β̃ βa

¼
X
y

δabδã b̃½γ5si;f2ðyÞ��α̃ã Gf3ðy; rÞβ̃βb̃beiq·y; ðC3Þ

where we assume that the spatial source is located at the
origin without loss of generality. In Fig. 9 we show a sketch
of a generic meson three-point function to further illustrate
the factorization. We have two quark propagators Gfi in
Eqs. (C2) and (C3) depicted as solid lines connecting the
source position r with all other points of the lattice. These
point-to-all propagators are computed using the solver
methods introduced in Sec. III A. The third propagator
connecting the sink time slice with the insertion current is
plotted as a wiggly line and estimated by

Gf2ðy; x0Þα̃β
0

ãb0 ≈
1

N

XNsto

i¼1

si;f2ðyÞα̃ãη�i ðx0Þβ
0

b0 ; ðC4Þ

where the sum runs over Nsto realizations of the noise
vector ηiðx0Þ, with the properties

1

N

XN
i¼1

ηiðxÞαa ¼ 0þO
�

1ffiffiffiffi
N

p
�
; ðC5Þ

1

N

XN
i¼1

ηiðxÞαaη�i ðx0Þα0a0 ¼ δxx0δαα0δaa0 þO
�

1ffiffiffiffi
N

p
�
: ðC6Þ

In the implementation presented in this work we use time-
partitioned Z2 [106] noise vectors ηiðxÞ which are set to
zero unless x4 ¼ x004 or x4 ¼ x04. Seeding the noise vectors
in the forward and backward temporal directions enables
us to increase statistics by a factor of 2 with only little
computational overhead. Moreover, the insertion part of

our factorization is constructed such that it can be reused
in the calculation of baryon three-point functions by
contracting an appropriate spectator part. The results in
Ref. [107] for the baryon computation look very promising.
In this work we show that this holds for the meson
computations as well and that the stochastic approach is
a serious alternative to the sequential source method. For
more details about the implementation the interested reader
is referred to Ref. [100].

2. Disconnected contributions

In addition to connected contributions to the three-point
function, which we treat in Appendix C 1, we also compute
the disconnected contributions illustrated in Fig. 10. To get
the disconnected contribution we multiply the two-point
function by a disconnected loop LðτÞ [108] which reads

Cdiscon
3pt ðp0; q; x04; y4Þ
¼ hCc

2ptðx04; r4ÞLcðy4Þic − hCc
2ptðx04; r4ÞichLcðy4Þic;

ðC7Þ

where hic makes the configuration average explicit. The
loop is given by

Lcðy4Þ ¼
X
y

Tr½Gfðy; yÞΓins�; ðC8Þ

where Gf denotes a quark propagator of flavor f with
y ¼ ðy4; yÞ. Note that we set r4 ¼ 0 without loss of
generality. To compute the propagator in Eq. (C8) we
use stochastic estimators similar to the approach presented
in the last section and the corresponding solvers introduced
in Sec. III A. More details on our approach of the
computation of disconnected loops are given in Ref. [109].

FIG. 9. Sketch of a generic meson three-point function in the
forward and backward directions. The source time slice is r4, the
backward/forward sink time slice is x04=x

00
4 and the current is

located at time slice y4. While the solid lines represent point-to-all
propagators the wiggly line illustrates the stochastic time slice-to-
all propagator connecting the sink and the operator insertion.

FIG. 10. Sketch of a generic meson disconnected three-point
function. The source time slice is r4, the sink time slice is x04
and the current (loop) is located at time slice y4. While the solid
lines represent point-to-all propagators the solid circle represents
a quark loop.

MARIUS LÖFFLER et al. PHYS. REV. D 105, 014505 (2022)

014505-20



FIG. 11. Extrapolation for the flavor singlet operator (ūuþ d̄dþ s̄s) and the flavor nonsinglet operator (ūuþ d̄d − 2s̄s) using the fits
shown in, e.g., Fig. 5. The three different columns show the extrapolation for the lattice spacing dependence along the TrM ¼ const,
ms ¼ const, and the ml ¼ ms trajectories for the reduced matrix elements v2, a2, and d2.
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APPENDIX D: ADDITIONAL PLOTS

In Fig. 11 we explicitly show the a dependence of the
global extrapolation plots for the reduced matrix elements

v2, a2, and d2. We still use physical masses but in contrast
to the main text we do not average over equal lattice
spacings at this point.
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