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Abstract: A unified view on macroscopic thermodynamics and quantum transport is presented.
Thermodynamic processes with an exchange of energy between two systems necessarily involve
the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion
model, which includes the thermoelectric effects, and connects the various transport coefficients to
certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper,
the connection between macroscopic thermodynamics and quantum statistics is discussed. It is
proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building
blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy
can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive
conductors. In particular, the quantum interference of entropy flow is in close correspondence to that
of electric current.
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1. Introduction

The transport of physical quantities such as energy, momentum, angular momen-
tum, electrical charge (E, ~P,~L, Q) can be described in terms of the flow of suitably chosen
particles or quasiparticles, which carry the other physical quantities in the sense that
with each particle a certain amount of E, ~P,~L, Q is associated, which flows along with the
particles. Although this statement seems very intuitive, it breaks down in the context of
thermal transport or ’heat’ conduction. One reason is that ’heat’ is not a state quantity, and
thus cannot be associated as ’heat content’ with a volume element, or a certain number
of particles.

During the development of thermodynamics, it had become apparent that the tra-
ditional concept of heat had to be split into two more abstract concepts [1]: one, entropy,
which is specific for thermal phenomena, and a second one, energy, which is relevant in
all branches of physics. The terms ’heat’ and ’heat current’ survived in modern physics as
a concept characteristic for processes, namely the amount of energy transferred from one
system into another together with a given amount of entropy. This notion of heat, however,
is problematic: even though heat cannot be balanced [2], nor linked to quantum states [3] it
often competes with the much more powerful concept of entropy. Even today, entropy is
less popular than heat [4], possibly because of persistent tradition, and its incompatibility
with classical mechanics [5].

On the other hand, entropy can be handled very easily at the macroscopic level, as it
behaves as an analogue of electric charge (except for the property of conservation). In this
review, we take the notion of entropy as the starting point for thermodynamics—in the same
way as one takes the notion of electric charge as the starting point for electricity. We do not
ask what electric charge or entropy actually ’are’, but take them as fundamental concepts,
which prove useful in the quantitative description of electric or thermal phenomena,
respectively. An intuition for both charge and entropy can be developed only via the many
examples, where we see them at work. To avoid the conceptional difficulties of ’heat’, one
often speaks of energy transport when heat transport is meant. Such language, however,
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obscures that there are usually also other—non-thermal, but often equally important—
contributions to the energy transport. This is most obvious in the context of thermoelectric
phenomena, which are a central topic of this review. It is semantically and conceptually
more appropriate to ascribe the thermal transport to the simultaneous flow of energy
and entropy. A description of transport in terms of the motion of particles can be very
easily visualized. However, it is hard to avoid the traps of classical physics in doing so.
The reason is that quantum properties, in particular the indistinguishability of identical
particles, have no counterpart in the classical world, although they clearly show up in the
thermodynamic and transport properties of matter at the macroscopic level.

Our goal is a self-contained description of transport processes in systems of indis-
tinguishable particles, which does not contain elements incompatible with the statistical
concepts of quantum physics. We will elucidate the relation between the flows of particles
and entropy. We will see that as opposed to many other quantities, the entropy cannot be
viewed as ’carried by particles’. In contrast, energy, particles and entropy (other quantities
involved) are carried in an identical way by different entities that we propose to label ele-
mentary Fermi- or Bose-systems. The terms Bose- and Fermi- refer to the indistinguishability
of (quasi)-particles, and reflect the fact that entropy is always of a quantum nature, and can
never fully be understood in classical terms.

The review is organized as follows: in Section 2 we first formulate thermodynamics
in a compact way that is appropriate for the investigation of transport processes. In
Section 3 we present the simplest of all transport theories, the drift-diffusion model, which
has the great advantage of providing a simple intuitive picture of diffusive transport.
In this approach particles and entropy are treated on the same footing. In Section 4 we
introduce elementary Fermi-and Bose-systems as the elementary building blocks of quantum
gases, and derive their thermodynamic equations of state (EoS). In Sections 6 and 7 we
exploit these EoS to formulate ballistic transport in one-dimensional quantum wires in
the Landauer-Büttiker approach. In Section 9 we show that the very same equations of
state can be applied to generalize the drift-diffusion model in a way, which is equivalent to
the Boltzmann equation in relaxation-time approximation. From this perspective, there is
no fundamental difference between classical and quantum transport. In Section 10 some
implications of our approach are discussed—in particular, it is shown that also quantum
interference can be included into the discussion of thermal transport phenomena.

2. Thermodynamics

Thermodynamics can be based on the postulate that the static properties of any
physical system with r independent variables can be compressed into certain functions
of these variables, which are called thermodynamic potentials [6–8]. The most familiar
thermodynamic potential is the energy E when expressed as a function of the independent
extensive variables of the system. In the case of simple fluid or gas, the independent
extensive variables are the entropy S, the volume V and the particle number N. Assigning
numerical values for a set of independent variables, e.g., for {S, V, N}, specifies a certain
state of the system. The total differential of the function E(S, V, N) takes the form

dE = T dS− p dV + µ dN , (1)

where the intensive quantities absolute temperature T, (negative) pressure p, and chemical
potential µ are defined as the partial derivatives of E(S, V, N) with respect to S, V, and N.

Depending on the specific problem under consideration, it is often convenient to use
the method of Legendre transform to exchange any of the extensive variables {S, V, N}
with its intensive partner. If, e.g., {T, V, N} are chosen as set of independent variables the
corresponding thermodynamic potential is the free energy F(T, V, N) = E(T, V, N)− T ·
S(T, V, N). As we will see below, the grand-canonical, or Landau-potential

K(T, V, µ) = E− TS− µN (2)
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is best adapted for the transport processes (in particular in solids), as it refers to {T, V, µ}
as set of independent variables.

The final element of thermodynamics needed for the present work is the homogeneity
postulate. Homogeneity of E(S, V, N) means [9] that E can be written as

E(S, V, N) = V · e(s, n) , (3)

where we define e = E/V as the energy density, s = S/V as the entropy density, and as
n = N/V the particle density. Equation (3) also implies the Euler or homogeneity relation

E = TS− pV + µN . (4)

The physical meaning of the homogeneity is quite fundamental: it means that systems
obey a scaling relation, which allows one to formulate the relations between their state
variables in a way that is independent of the ’size’ of the system. Long-ranged interactions
can be included into thermodynamics via the gravitational or electrostatic potential (see
Equation (13) below [10]). It follows that all properties of a system can be expressed by
relations between the local densities e, s and, n, as well as the intensive quantities T, p, and
µ. The function e(s, n) represents a reduced thermodynamic potential, which still contains
all thermodynamic information about the system, except its volume, and constitutes a
local formulation of thermodynamics, which is well suited for the description of spatially
inhomogeneous situations, in which transport phenomena can occur. The reduced Gibbs
fundamental form corresponding to e(s, n) reads

de = T ds + µ dn . (5)

If we choose e(s, n) as reduced thermodynamic potential, we can still apply the
formalism of Legendre transforms to exchange the independent variables, i.e., s with T
and n with µ. If we do so, we find using Equation (4)

− p(T, µ) = e(T, µ)− T · s(T, µ)− µ · n(T, µ) (6)

as the corresponding reduced thermodynamic potential. The differential of p(T, µ) repre-
sents a reduced fundamental form, which is also known as the Gibbs–Duhem relation

dp = s dT + n dµ , (7)

with the two equations of state

s(T, µ) =
∂p(T, µ)

∂T
and n(T, µ) =

∂p(T, µ)

∂µ
. (8)

If the pressure of a function of T and µ is well behaved (i.e., twice continuously
differentiable), mathematics tells us that

∂s(T, µ)

∂µ
=

∂2 p(T, µ)

∂µ ∂T
=

∂2 p(T, µ)

∂T ∂µ
=

∂n(T, µ)

∂T
. (9)

Relations of this type are called Maxwell’s relations [11] and we will exploit them
below for an elementary derivation of Onsager reciprocity.

Using Equation (4), we see that pressure p(T, µ) is equivalent to the Landau-potential

K(T, V, µ) = −V p(T, µ) . (10)

It is appealing that also conservative force fields such as the gravitational field or the
electrostatic field can be built into the local thermodynamics. In a system with electrically
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charged particles we have one more extensive variable, i.e., the electric charge Q, which
provides an extra term in the Gibbs fundamental form (see Equation (1)):

dE = T dS− p dV + µ dN + φ dQ . (11)

The to Q thermodynamically conjugate variable is the electrostatic potential φ, which
determines the electrostatic contribution to the energy required for a local increase of the
charge density.

In many important examples charge and particle number are connected by a charac-
teristic constant of the system, i.e., the charge per particle q̂ [12]. In these cases, charge and
particle number are not independent, but proportional: Q = q̂N, implying that we can
combine the last two terms in Equation (11) into one:

dE = T dS− p dV + µ̄ dN (12)

where
µ̄ := µ + q̂φ (13)

is called the electrochemical potential. For charged particles it is µ̄ and not µ, which quantifies
the energy changes required for adding or removing particles. Hence µ̄ and not just µ
enters all thermodynamic relations for systems of charged particles [13].

Importantly, only those physical quantities can be transported for which a balance is
possible, which tells us which amount of this quantity has left at time t1 a certain volume
element V1 in space and has arrived at a time t2 in another volume element V2 in space.
The prototype of such balances are those of amounts of a substance. It is suggested to call
the physical quantities allowing analogous operations balancable or substance-like.

Please note that balancable quantities are not necessarily conserved: important exam-
ples are entropy, particle number, or spin. Total angular momentum is of course conserved,
but the spin of the moving particles under consideration may be transferred to other
systems, i.e., by spin-dependent scattering processes. Entropy can be generated, without
extracting it from another system. Particles such as photons, phonons or excitons can be
created or annihilated, provided that the canonic conservation laws for energy, electric
charge, momentum, and angular momentum are obeyed.

So far we have not exploited any of the conservation laws. In general, a balancable
quantity X must obey a continuity equation

∂x(t,~r)
∂t

+∇~jX(t,~r) = ΣX(t,~r) , (14)

where x is the local X-density,~jX the X-current density and ΣX the X-generation rate per
volume. For conserved quantities ΣX vanishes.

Using the reduced GFF (Equation (5)), we can write the time derivative of
energy density

∂e
[
s(t,~r), n(t,~r)

]
∂t

= T
∂s
∂t

+ µ̄
∂n
∂t

. (15)

Assuming that N is conserved, the time derivatives of e, s, and n can be replaced by the
negative divergences of the current densities, −∇~jE and −∇~jN , and ΣS −∇~jS, respectively,

∇~jE = T (∇~jS − ΣS) + µ̄∇~jN . (16)

Applying Gauss’ theorem to a slice-shaped volume element with small thickness d
and volume ∆V (see Figure 1a), we obtain

− T1 + T2

2
· ΣS · ∆V = T1 IS,1 − T2 IS,2 = IE − ∆µ̄ · IN . (17)



Entropy 2021, 23, 1573 5 of 32

Although IE and IN are constant within the slice, the entropy current increases from
one surface of the slice to the other by ΣS · ∆V. If the thickness of the slice (and thus ∆V)
goes to zero, the entropy production rate ΣS · ∆V becomes negligible against the average
IS = (IS,1 + IS,2)/2. On a surface of constant T and µ̄ we thus obtain:

IE = TIS + µ̄ IN . (18)

This expression tells the total strength of the energy current that is ‘carried’ by the
entropy and particle currents, namely T IS, and µ̄ IN , respectively [14]. The term T IS in
this relation is usually called the ‘heat current’. However, as we have stressed already,
‘heat’ is not a state variable, to which one can assign a value in a specific state of a system.
This has led to the peculiar notion of heat as “energy in transit”, i.e., heat being the strange
thing that is flowing only, but disappears upon arrival in any system.

{

d

IN

IE

IS1
IS2

T2 μ2

T1 μ1(a) (b)

Figure 1. (a) An energy current IE carried by and entropy current IS and a particle current IN current
flows through two isothermal surface elements with constant temperatures T1 and T2 . T1 and
electrochemical potentials µ̄1 and µ̄2 . µ̄1. Although IE and IN are constant, IS is not. The rate of
entropy production between the two surfaces becomes negligible compared to the entropy currents
through the surface elements, as the distance d and the differences T1 − T2 and µ̄1 − µ̄2 go to zero.
(b) A container with a gas of (quasi)-particles can be decomposed into small subvolumina with almost
arbitrary size. Each subvolume represents another realization of the system ’gas’, which continuously
exchanges energy, entropy and particles with its neighbors. In the presence of a gradient of T or µ a
subvolume can be considered to be in local equilibrium, provided that its size is about Λ3.

3. Drift-Diffusion Model

From the point of view of macroscopic thermodynamics, it is natural to describe
non-equilibrium situations by spatially varying thermodynamic variables, i.e., the local
values of the densities and the intensive variables. To do so, we decompose a gas of a
fluid into small subvolumina, which can still be considered to be in local equilibrium, as
illustrated in Figure 1b. An obvious question is, what is the length scale, below which the
concepts of a local temperature and a local chemical potential are no longer applicable? It
is natural to identify this length scale with the mean free path Λ of the scattering processes,
which are responsible for establishing local equilibrium. For smaller distances it is not
possible to assign a T- or µ-difference. In the simplest case, the mean free path is given by

Λ =
1

nscatt σc
, (19)

where nscatt is the density of scatterers, and σc is the cross section of the relevant scattering
process [15]. If the mobile particles in the system move with average velocity 〈|~v|〉 between
the scattering events [16]. Λ can be translated into a scattering time τ via the relation
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Λ = 〈|~v|〉 · τ. The elementary consideration illustrated in Figure 2 shows that the current
density~jX associated with a balancable quantity X can be written in linear approximation as

~jX = −D · ∇x(t,~r) , (20)

where
D =

1
3
〈|~v|〉Λ (21)

is the diffusion constant [17,18].

X

X

X

X

Figure 2. Elementary derivation of the diffusion constant in three dimensions: summing up the four
contributions jXz = ± 1

6 x(z) · 〈|~v|〉 to the z-component jXz of the X-current density through the top
and bottom surface of a cube of dimension Λ, one arrives in linear approximation at Equation (20), if
the z-direction is chosen parallel to the gradient ∇x(t,~r) of the X-density.

At face value this derivation appears to be based very much on classical physics.
Looking more closely, however, the only thing really exploited it the condition that the
quantity X is balancable, i.e., that it is possible to say what is the net amount of X transported
in the direction of the gradient ∇x(t,~r) of the X-density. For this reason, the model
is extremely robust and holds in both classical and quantum physics. Moreover, on
thermodynamics, it relies on only two additional concepts, i.e., the mean transport velocity
〈|~v|〉 and the mean free path Λ between scattering events. In quantum physics,

~v(~k) =
∂ε(~k)
h̄∂~k

is the group velocity resulting from the dispersion relation ε(~k) of the matter waves with
wave vector~k, while Λ is derived from the quantum-mechanical scattering cross section σc
(see Equation (19)).

To deal with particle currents, we set X = N, and obtain from Equation (20)

~jN = −D · ∇n(t,~r) , (22)

which is known as Fick’s 1. law.
Applying Equation (20) to the electric charge, we must choose T and µ̄ (Equation (13))

as independent variables. In addition, we must take into account that even for∇n(t,~r) = 0,
a so-called drift current can be present, which is driven by the electric field. Adding this
term to the diffusion current (Equation (22)), we obtain for the electric current

~jQ = −q̂D · ∇n(t,~r)− σ∇φ(t,~r) (23)

= −q̂D
∂n(T, µ)

∂µ
∇µ− σ∇φ− q̂D

∂n(T, µ)

∂T
∇T ,
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where σ is the electric conductivity. In global equilibrium T and µ̄ = µ(~r) + q̂φ(~r) are
spatially constant. In this case, the charge current must vanish and one obtains the Einstein
relation between D and σ:

σ = q̂2 ∂n(T, µ)

∂µ
· D . (24)

Please note that in equilibrium the gradient of µ̄ must vanish, but not those of µ
and φ separately, a phenomenon, which occurs, e.g., in the vicinity of a pn-junction in
inhomogeneous semiconductors.

The thermodynamic susceptibility

ν =
∂n(T, µ)

∂µ
= n2κT (25)

is closely related to the isothermal compressibility κT = −(1/v̂) · ∂v̂(T, p)/∂p. Here, we
propose to call ν the particle capacity, as it tells us how many particles can be added to the
system, if the (electro)-chemical potential is raised by a certain amount [19].

In systems of charged particles, particle capacity is related to the electric capacitance.
In low-dimensional conductors ∂n(T, µ)/∂µ can be very small and then provides a con-
tribution to the total inverse capacitance, which cannot be neglected against that of the
geometrical (electrostatic) capacitance. The sum of both contributions determines the ratio
between the electric charge on a capacitor and the electrochemical potential difference
between its electrodes. In the context of low-dimensional conductors ν is also called ’quan-
tum capacitance’. This term was introduced in the context of two-dimensional electron
systems [20]. Graphene is a another fashionable example, where ∂n(T, µ)/∂µ approaches
zero at the Dirac-point [21].

With the Einstein relation we can rewrite Equation (23) in the more compact form

~jQ = −σ

q̂
· ∇µ̄(t,~r)− q̂D

∂n(T, µ)

∂T
∇T . (26)

We see that a charge current can not only be driven by a gradient of the electrochemical
potential, but also by a temperature gradient. The second term in Equation (26) describes
thermoelectricity, i.e., the Seebeck effect. To identify the prefactor in front of ∇T we employ
Equation (9) and find:

∂n(T, µ)

∂T
=

∂s(T, µ)

∂µ
=

∂s(T, n)
∂n

· ∂n(T, µ)

∂µ
. (27)

Thus, we arrive at

~jQ = − σ ·
{
∇µ̄(t,~r)

q̂
+ S · ∇T(t,~r)

}
,

where

S =
1
q̂

∂s(T, n)
∂n

(28)

is called Seebeck coefficient, or thermopower. The Seebeck coefficient is closely related
to, but not precisely identical with the entropy per particle ŝ. This close correspondence
has been experimentally verified for a broad range of metals with heavy electron-like and
hole-like quasiparticles and is illustrated in Figure 3, where the molar entropy (which in this
case is identical to the molar heat capacity; see Equation (49) below) and the thermopower
at the lowest temperatures vary over three orders of magnitude, while their ratio remains
close to q̂ [22].
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/ T

Figure 3. Thermopower over temperature S/T versus molar entropy over temperature ŝ(T)/T in
the limit T → 0 for many different metallic compounds. For electron-like (q̂ < 0) conduction S is
negative (lower panel), while for hole-like (q̂ > 0) conduction S is positive (upper panel); Solid circles
(squares) represent Ce (Yb) heavy-fermion systems. Uranium-based compounds are represented by
open circles, metallic oxides by solid triangles, organic conductors by open diamonds, and common
metals by open squares. For some data points, due to the lack of space, the name of the compound is
not explicitly mentioned. The two solid lines represent ŝ/(q̂T) and are motivated by the discussion
leading to Equation (87) below (adapted from [22]).

Next, let us consider the transport of entropy. If we choose T and n as independent
variables, we can apply Equation (20) to entropy (i.e., we set X = S), and obtain the entropy
current density, and the thermal contribution to the energy current density again as the
sum of a diffusion and a drift term:

T ·~jS = −T · D∇s(T, n) − Πσ∇φ (29)

= −T · D
{

∂s(T, n)
∂T

∇T +
∂s(T, n)

∂n
∇n
}
−Πσ∇φ

= −Dcv∇T + T · ∂s(T, n)
∂n

~jN (30)

where cv = T∂s(T, n)/∂T = ∂e(T, n)/∂T is the heat capacity per volume at constant density
n = N/V. The first term in Equation (29) represents Fourier’s law, i.e., the conductive
thermal contribution to the energy current density defines the thermal conductivity

λ = Dcv =
1
3

nĉv〈|~v|〉2τ . (31)

The second term in Equation (29) represents the drift contribution to the Peltier effect.
At constant T, the entropy content of moving particles results in a convective thermal
contribution to the energy current. The Peltier coefficient connects the convective part of
the thermal current density T~jS and the electric current density~jQ = q̂~jN . If we request
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that the diffusion and drift contributions to~jN contribute in the same way to~jS, the Peltier
coefficient must read:

Π =
T
q̂

∂s(T, n)
∂n

. (32)

From Equation (27), and the assumption that the diffusion coefficient D in
Equation (20) characterizes both the entropy and the particle current density, it follows that
S and Π obey the Kelvin-Onsager relation [23]

Π = T · S . (33)

Applying the general transport equation Equation (20) to the energy density e(T, µ)
one can easily verify that the generalized drift-diffusion model is consistent with
Equation (16), if one uses the homogeneity relation (Equations (4) and (8)).

The main advantage of the drift-diffusion model is its extreme simplicity and gen-
erality. It does not depend on the nature of the diffusing (quasi)-particles, and works
equally well for classical particles, fermions, or bosons. It is also independent of the dis-
persion relation of the particles under consideration, e.g., electrons, phonons or photons.
This means, it can be used for almost all phenomena related to the diffusive transport of
quasiparticles occurring in condensed matter physics. Introducing a single phenomeno-
logical parameter, the diffusion constant D, it relates all transport coefficients to certain
thermodynamic susceptibilities.

That single parameter D is also its main deficiency, because D usually depends on
the energy of the diffusing particles. As we will see in Section 9, this deficiency can be
quite easily cured, if particles with different kinetic energy ε are associated with different
subsystems of the gas, with an energy-dependent diffusion constant D(ε). This additional
dependence on energy produces, in many cases, only a prefactor of order unity. Hence, the
drift-diffusion model works quite well for the qualitative consideration of electric, thermal,
and thermoelectric transport phenomena.

The drift-diffusion model is easily extended to two species of particles, e.g., electrons
and holes in semiconductors. Another topical example is the transport of spin-up and
spin-down electrons in the context of spintronics [24,25] and spin-caloritronics [26–29].

4. Elementary Fermi- and Bose-Systems

An essential issue of statistical physics is the decomposition of many-body systems into
simpler thermodynamic subsystems, allowing for the calculation of the Landau-potential

K(T, V, µ̄) = −kBT lnZ(T, V, µ̄) . (34)

via the grand partition function

Z(T, V, µ̄) = ∑
i

exp
(
−Ei(V)− µ̄Ni

kBT

)
. (35)

For non-interacting quantum particles in a rectangular potential box, the volume
enters the energy eigenvalues Ei(V) via boundary conditions for the allowed~k-vectors.

If we restrict ourselves to this simplest case, the corresponding Hamiltonian reads in
the language of 2nd quantization

H = ∑
k

ε(k) a†
k ak , (36)

where the index k represents a wave vector, and h̄k is the momentum of a particle. The
function ε(k) is the dispersion relation of these particles and a†

k , ak their creation and
annihilation operators, respectively. The number operator is simply Nk = a†

k ak. When spin
is of interest, its quantum number σ can be simply added to the index k; otherwise, it gives
rise to an additional factor of 2 in front of the sum.
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This Ansatz is very general, because many interacting systems can be transformed, at
least approximately, into a Hamiltonian given by Equation (36). In many cases, residual
interactions between the particles can be taken into account as a renormalization of the
function ε(k), and a finite lifetime of the quasiparticle states resulting from scattering
processes. Hence, the Hamiltonian in Equation (36) is relevant for a very broad class
of systems, i.e., all systems with wave-like excitations. Not only conventional gases,
but also complex many-body systems such as the lattice excitations of solids, Fermi-
and Luttinger liquids, as well as elementary excitations in superfluids, superconductors,
and (anti-)ferromagnets. Most of the quasiparticles of condensed matter physics can be
described by the Hamiltonian in Equation (36).

The structure of Equation (36) suggest decomposing an ideal gas of particles or
quasiparticles into simpler subsystems. Each subsystem is represented by a single term of
the sum in Equation (36), i.e.,

Hk = ε(k) a†
k ak .

We propose to call these subsystems elementary Fermi- or Bose-systems [8], as they
cannot be further decomposed into simpler subsystems. In a rectangular potential well [30]
the elementary Fermi- or Bose-systems share the same volume V that also determines the
allowed k(V) and have the following properties:

(a) Elementary Fermi-systems have only two eigenstates ofH and N with the eigenvalues
Ei ∈ {0, ε}, and, respectively, Ni ∈ {0, 1}.
The grand partition function of this system reads according to Equation (35)

ZF(T, µ̄) = 1 + exp
(
− ε(k)− µ̄

kBT

)
. (37)

(b) Elementary Bose-systems have an infinite, but countable number of eigenstates of H
and N with the eigenvalues Ei ∈ {0, ε, 2ε, 3ε, . . .}, and Ni ∈ {0, 1, 2, 3, . . .}.
The grand partition function is a geometric series in this case and reads:

ZB(T, µ̄) =
1

1− exp
(
− ε(k)−µ̄

kBT

) . (38)

From the partition functions we obtain the average particle numbers by differentiating
Zk(T, V, µ̄) with respect to µ̄:

Nk(T, µ̄) =
1

exp
(

ε(k)−µ̄
kBT

)
± 1

. (39)

The Nk are the well-known Fermi- (upper sign) and Bose-functions (lower sign),
respectively. In Fermi-systems Nk varies continuously between 0 and 1, while in Bose-
systems Nk varies continuously between 0 and ∞. For Bose-systems µ̄ must be always
smaller than ε(k)—otherwise the particle number of the system diverges. This divergence
of Nk at εk = µ̄ is the origin of Bose–Einstein condensation. It is important to note that
the Nk are average values, around which the particle number of the system labeled {k}
statistically fluctuates, as opposed to the occupation probability of a single-particle state |k〉
used in Boltzmann theory [31]. The average particle numbers Nk are often called distribution
functions, since they tell how the total number of particles is distributed over the different
elementary subsystems.

Using Equation (34), the Landau-potential of an elementary Fermi- and
Bose-systems reads

Kk(T, µ̄) = ∓ kBT ln
{

1 ± exp
(
− ε(k)− µ̄

kBT

)}
, (40)
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where the upper sign holds for Fermi-, and the lower sign for Bose-systems, respec-
tively. Next we compute the entropy of the elementary Fermi- and Bose-systems. Using
Equations (2) and (34) one finds

Sk(T, µ̄) = −
Kk −

(
ε(k)− µ̄

)
Nk

T
(41)

= ± kB

{
ln
(
1± exp(−Yk)

)
± Yk

exp(Yk)± 1

}
,

with the abbreviation Yk =
(
ε(k)− µ̄

)
/kBT. The upper sign refers to Fermi- and the lower

sign to Bose-systems, respectively. For high energies ε� µ̄ the second term in Equation (41)
dominates, and the entropy per particle approaches

ŝk =
ε(k)− µ̄

T
. (42)

(see Figure 4). The same results are obtained from the thermodynamic derivative
Sk(T, µ̄) = −∂Kk(T, µ̄)/∂T.
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Figure 4. Entropy Sk (solid lines) and entropy per particle ŝk (dashed lines) of elementary Fermi- and
Bose-systems with characteristic energy ε(k).

To conclude this section, elementary Fermi- and Bose-systems are characterized by
two equations of state, one for the particle number Nε(T, µ̄) (usually termed the distribution
function), the other for the entropy Sk(T, µ̄). The first is ubiquitous in modern physics,
while the latter is so far not much discussed in the present literature. Sk describes in
a concise form the caloric properties of these systems, which are the central building
blocks of systems with indistinguishable particles. The reason for the lower prominence
of Sk is that the caloric properties of quantum gases are usually derived from the energy
Ek(T, µ̄) = ε(k) · Nk(T, µ̄). Since ε(k) is not a variable, but a characteristic constant of the
elementary subsystem labeled ‘k’, Ek appears to be simply proportional to Nk, and hence
not as an independent equation of state. This is different for the entropy Sk(T, µ̄).

In usual terminology the elementary Fermi- and Bose-systems are called ‘single-
particle states’, as they are related to the solutions of the one-particle Schödinger equation.
The Hilbert space of the many-particle system is represented by the tensor product of the
spaces of the single-particle systems. However, the requirement of exchange symmetry
resulting from the indistinguishability of identical particles eventually prevents the use of
single-particle systems (whose Hilbert space is spanned by the solutions of the one-particle
Schrödinger equation) as independent building blocks of the many-body system. The
exchange symmetry leads to quantum (Fermi- or Bose-like) correlations between the single-
particle systems, destroying their statistical independence. These correlations are much
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more conveniently taken into account within the framework of second quantization used
in Equation (36). The Schrödinger physics still enters in shape of the spatial distribution
of the wave functions, which describe the spatial distribution of elementary Fermi- and
Bose-systems. In other words, elementary Fermi- and Bose-systems are the excitation
modes of the quantized matter field. These are statistically independent, and hence, the
thermodynamic potential of the gas is just the sum of the thermodynamic potentials over
all elementary subsystems. The particle numbers {Nk} and the entropies {Sk} of the
elementary subsystems are independent random variables in the sense of thermodynamics,
while the momenta of different particles are not independent, but subject to quantum
correlations enforced by indistinguishability.

In the next step, we must assemble the elementary Fermi- and Bose-systems to quan-
tum gases. To do this, we assume that the k-vectors compatible with the boundary condi-
tions lie dense enough in k-space, and convert the sum over all elementary systems in into
an integral over the energies [32]:

∑
~k

=
Ld

(2π)d

∫
ddk = Ld

∫
dε g(ε) , (43)

where g(ε) depends on the form of ε(k) and the systems’ dimensionality d; L being the
spatial extension of the system in each direction. For spin 1/2 fermions, another factor of 2
must be added or spin has taken into account explicitly. In standard terminology g(ε) is
called the density of (single-particle) states (DoS), from our point of view, it is the density
of elementary Fermi- and Bose-systems on the energy axis.

Besides the Fermi- or Bose character, the dispersion relation ε(k) constitutes the main
characteristic of the composite system, i.e., the specific quasiparticle gas under investigation.
It is the only feature of our description that has a counterpart in classical physics [i.e., the
Hamilton function E(~P)]. The difference between the classical and the quantum point
of view is the following: rather than saying that the same (classically distinguishable)
particle is accelerated by external forces or a scattering process with another particle, the
quantum point of view is that particles are annihilated in lower energy elementary Fermi- or
Bose-systems, while a (possibly different) number of particles is generated in higher energy
elementary systems (of course under the constraint of the conservation laws applicable to
these transitions). The dynamical variables are not anymore the positions and momenta of
individual particles (which are not relevant because of indistinguishability), but solely the
particle number Nk(T, µ̄), the entropy Sk(T, µ̄), and the energy Ek(T, µ̄) = ε(k)Nk(T, µ̄) of
the elementary Fermi- and Bose-systems.

5. Application to Degenerate Quantum Gases

The explanation of the thermodynamic and transport properties of matter is the
central goal of statistical physics. In particular, the thermodynamic derivatives entering
the transport coefficients in the previous section, can be calculated using the methods of
statistical thermodynamics. In the following we first derive the EoS for quantum gases
and use the results as input to the drift-diffusion model to describe diffusive transport in
metals and semiconductors.

Using the Fermi- and Bose distribution functions,

Nε(T, µ̄) =
1

exp
(

ε− µ̄

kBT
± 1
) (44)

it is straightforward to compute the thermal

n(T, µ̄) =
∫ ∞

0
dε g(ε) · Nε(T, µ̄) , (45)
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and the caloric
e(T, µ̄) =

∫ ∞

0
dε g(ε) · Nε(T, µ̄) · ε (46)

equation of state. The function g(ε) is called the density of states, and uniquely determined
by the dispersion relation ε(k). From the above equations of state all the thermodynamic
susceptibilities entering the transport coefficients of the drift-diffusion model (see Section 3)
can be computed in equilibrium.

For degenerate electrons, e.g., in three dimensions, one obtains in effective mass
approximation the DoS

g(εF) =
3
2

n
εF(n)

∝ n1/3 ,

with the Fermi energy

εF(n) = µ(T = 0, n) =
h̄2(3π2n)2/3

2m̂
, (47)

where m̂ is the mass per particle. One arrives at the well-known
thermodynamic susceptibilities:

ν =
∂n(T, µ)

∂µ
= g(εF) (48)

cv(T, n) =
∂e(T, n)

∂T
= T

∂s(T, n)
∂T

=
π2

2
nk2

BT
εF(n)

= s(T, n) (49)

∂s(T, n)
∂n

=
π2

6
nk2

BT
εF(n)

=
ŝ(T, n)

3
, (50)

where κT the isothermal compressibility, and cv the thermal capacitance per volume at
constant particle density.

On the other hand, for dilute gases, e.g., the electrons and holes in semiconductors,
one obtains

ν =
∂n(T, µ)

∂µ
=

n
kBT

(51)

cv =
∂e(T, n)

∂T
= T

∂s(T, n)
∂T

=
3
2

nkB (52)

s(T, n) = nkB

{
ln

(
jT3/2

n

)
+

5
2

}
, (53)

∂s(T, n)
∂n

= ŝ− kB = kB

{
ln

(
jT3/2

n

)
+

3
2

}
, (54)

where j = 2 · (m̂kB/2πh̄2)3/2 may be called the chemical constant of the electron gas because
it determines the absolute values of ŝ and µ = ê− Tŝ + pv̂ (Equation (4)). Equation (53) is
also known as the Sackur-Tetrode equation. Equation (54) provides a reasonable estimate
for the thermopower of a doped (non-degenerate) semiconductor in the T-regime, where
most dopants are ionized [33]. Because of the small factor kBT/εF in Equation (50) the
thermopower of metals is usually much smaller than that of semiconductors.

The fact that the state of macroscopic system with ' 1023 internal degrees of freedom
can be specified by only three independent variables (here T, V, and µ) is a consequence of
the thermal and chemical equilibrium between the elementary subsystems. The composite
character of macroscopic systems becomes visible, if the equilibrium between the subsys-
tems is disturbed, e.g., by a laser, which selectively increases the population of elementary
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subsystems at higher energy at the expense of those at lower energies. The equilibrium is
restored by inelastic recombination processes.

Are the elementary Fermi- and Bose-systems are fundamentally relevant as separate
entities, or are just a technicality, which allows an easy computation of the EoS? This
question is equivalent to the question of why the grand-canonical approach to statisti-
cal thermodynamics should be preferred to the micro-canonical and canonical ones. In
equilibrium and in the thermodynamic limit, where the k-space can be considered to be a
three-dimensional continuum, also the micro-canonical and the canonical approaches to
thermodynamics work reasonably well. This changes when going beyond these restrictions
as discussed in the next two sections. Historically, the characteristic statistical fluctuations
of energy and particles numbers in these ensembles strongly biased the common view.
Before the advent of quantum mechanics, fluctuations were considered possible only for
open systems. Statistical fluctuations were a nuisance within classical physics, and their
appearance within the canonical and grand-canonical ensemble was viewed as an artifact,
which ought to be removed by the thermodynamic limit, i.e., the limit V, N → ∞ at constant
particle density n. From this perspective, the micro-canonical approach is often considered
to be the most fundamental one, leading to the perception that thermodynamics as a
whole works only within this limit. In quantum physics, however, statistical fluctuations
constitute an unavoidable element of physics (see Section 10 for further discussion).

6. Ballistic Quantum Transport of Particles

In this section, it is shown that the elementary Fermi- and Bose-systems (which may
look artificial at first sight) are very useful to understand transport properties in reduced
dimensions, where the drift-diffusion model is entirely inapplicable. This is the regime
of mesoscopic transport [34], where the size of the conducting object is smaller than the
mean free path Λ. More precisely, it is even sufficient, if the inelastic mean free path Λin(T),
corresponding to those scattering processes that result in the dissipation of energy, is larger
than the sample size.

Elastic scattering, i.e., scattering at constant energy, cannot create entropy because any
increase ∆S of entropy requires the amount ∆E = T ∆S of energy, which by definition of the
term ’elastic’ is not available. Instead, the elastic scattering modifies the underlying wave
pattern, i.e., it changes the shape of the elementary Fermi- or Bose-systems in real space.
The plane wave functions of ideal gases, or Bloch-wave functions of crystals, respectively,
are then replaced by complex speckle patterns. Such speckle patterns are also known from
diffraction of a laser beam by the dust on a dirty glass plate.

At low temperatures T . 1 K the inelastic mean free path Λin(T) is typically in the
micron regime, while in high mobility semiconductor also the elastic mean free path easily
exceeds the micron range, and enables the study of truly ballistic transport. In this regime it
is possible to experimentally realize some simple textbook quantum systems, where plane
waves are scattered off tunable potential barriers.

The simplest case to consider is that of a quantum wire. To list a few examples, a
quantum wire can be realized for photons (wave guides or optical fibers comparable with
the wavelength of electromagnetic waves), for phonons (narrow suspended beams with a
diameter comparable to the wavelength of thermally excited phonons), and for electrons
(semiconductor heterostructures or carbon nanotubes with a diameter comparable to the
Fermi wavelength). The case of an electronic quantum wire, of wave guide, is depicted in
Figure 5. Such a wire essentially constitutes a narrow constriction between two particle
reservoirs. Currents of particles, energy and entropy are driven by electrochemical potential
and/or temperature differences between the reservoirs.

The common element in these examples of quantum wires is the fact that the set of
allowed k-vectors does not form a three-dimensional continuum anymore, but consists
of one, or a few one-dimensional sub-continua, which propagate particles, entropy, and
energy along the wire (say, in x-direction), while the transverse part of the wave function is
discrete, resulting from the strong confinement of the system in that direction. The one-
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dimensional sub-continua of elementary Fermi- or Bose-systems are also called transport
channels. For simplicity, let us first assume that we have only one transport channel,
as sketched in Figure 5. Initially, we also assume that the quantum wire is perfectly
transmitting (T (ε) = 1); smaller transmission coefficients T (ε) < 1 are easy to take into
account in the next step.

TL

μL

TR

μR

Figure 5. Schematic of single channel quantum wire connected to two reservoirs for energy, entropy,
and particles. The quasi-one-dimensional character of the transport is ensured, once the transverse
width of the wire is comparable to the Fermi wavelength. It can also be realized in wider strips via the
formation of edge states in a quantizing magnetic field, i.e., in the quantum Hall regime. In this case,
the magnetic field also provides a spatial separation between left- and right-movers. The elementary
Fermi-or Bose-systems are charged with energy, entropy, and particles via the left (red) and the right
(green) reservoir, respectively. They are in thermodynamic equilibrium with their source reservoirs,
but not with each other.

The transport of photons, phonons or electrons can then be viewed as a scattering
problem: a beam of particles, emanating from two particle reservoirs connected to the left
and right end of the wire, is either transmitted or reflected back. The elementary Fermi- or
Bose-systems in the wire break up in two subsystems: right-movers and left-movers, which
propagate particles, entropy, and energy with the dynamical velocity

~v(k) =
∂ε(k)
h̄ ∂k

, (55)

and are populated according to the temperature and the electrochemical potential of the
left and right reservoir, respectively [35]:

Nε; L,R = Nε(TL,R, µ̄L,R) .

In this approach, the elementary Fermi- and Bose-systems can be visualized as conveyor
belts for energy, entropy, particles, momentum, and spin, which transport these quantities
ballistically, until an elastic, or inelastic scattering event occurs.

If the two reservoirs differ in temperature or in (electro)chemical potential net cur-
rents of E, S, and N will flow. Despite being in a non-equilibrium state as a whole, the
currents flowing through the wire of length L are perfectly described by the thermody-
namic properties of the two (left- and right-moving) subsystems. Following Landauer and
Büttiker [36–39] we can write for the particle current

IN =
1
L

{
∑
k>0

Nk,L v(k) + ∑
k<0

Nk,R v(k)

}
(56)

=

∞∫
−∞

dε g(ε) v(ε)
(

Nε(TL, µ̄L)− Nε(TR, µ̄R)
)

,

where v
(
k
)
= −v

(
− k
)
. In the second step we have evaluated the sum in a continuum

approximation using the one-dimensional DoS g(ε) = (1/π) · dkx(ε)/dε for propagating
modes in one dimension.
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If we plug g(ε) into Equation (56) the energy dependence of the DoS and the velocity
cancel, and we obtain the surprisingly universal result

IN =
1

πh̄

∞∫
−∞

dε
(

Nε(TL, µ̄L)− Nε(TR, µ̄R)
)

, (57)

which is valid for both Fermi- and Bose-systems and independent of the functional form
of the dispersion relation ε(k). In solid state nanostructures, phonon and photon currents
are usually not detected by measuring electric current or counting particles, but as a
thermal (i.e., ‘heat’) current. We leave the treatment of thermal currents to the next section
and specialize now to charged systems, to compute the electric conductance and the
thermopower of quantum wires.

If the wire hosts several transport channels with ε-dependent transparencies Tn(ε),
we must sum over all channels and the charge current IQ = q̂ IN assumes the (with respect
to Equation (56)) more general form

IQ =
q̂

πh̄ ∑
n

∞∫
−∞

dε Tn(ε)
(

Nε(TL, µ̄L)− Nε(TR, µ̄R)
)

. (58)

To begin, we limit ourselves to the linear response regime and assume that the wire is
symmetrically biased, i.e.,

Nε; L,R = Nε(T ± ∆T/2, µ± q̂U/2) , (59)

where ∆T and U = (µ̄L − µ̄R)/q̂ are the applied temperature and voltage bias, and the
upper and lower sign refer to the left and right reservoir, respectively. Then we can Taylor-
expand Nε; L,R of the reservoirs around the averages (TL + TR)/2 and (µ̄L + µ̄R)/2 of T
and µ̄, respectively. We obtain in linear approximation (kB∆T, q̂U � kBT):

Nε(TL, µ̄L) − Nε(TR, µ̄R) =
∂N(Y)

∂Y
∆Y (60)

=
∂N(Y)

∂Y
1

kBT

(
q̂U − ε− µ

T
∆T
)

︸ ︷︷ ︸
∆Y

where Y = (ε− µ)/kBT, and

∂N(Y)
∂Y

=
exp(Y)(

exp(Y)± 1
)2 . (61)

The charge current then reads

IQ =
q̂

πh̄ ∑
n

∞∫
0

dε Tn(ε)
∂N(ε)

∂ε

(
q̂U − ε− µ

T
∆T
)

. (62)

In the case of fermions, a Sommerfeld expansion of the integral in Equation (62) leads
to the relation

IQ = G ·
{

U + S · ∆T
}

,

where in linear approximation

G = G0 · 2 ∑
n
Tn(µ) , and G0 =

q̂2

h
' 38.74 µS ' 1

25.8 kΩ
. (63)
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The factor 2 takes into account spin degeneracy and G0 denotes the universal conduc-
tance quantum. This is a seminal result of mesoscopic physics found experimentally first in
gate-defined quantum point contacts [40,41]. This result holds in the linear regime, where
an effect of the bias voltage on the set {T (ε)} can be neglected.

The thermoelectric counterpart of the conductance quantization, i.e., the Seebeck
coefficient of a quantum wire, or quantum point contact is in first order given by

S =
π2

3
k2

B
q̂h
· 2 ∑

n

d
(

ln Tn(ε)
)

dε

∣∣∣∣∣
ε=µ

. (64)

Additionally, this result has been experimentally confirmed first in quantum point
contacts [42]. The energy current is computed analogously as

IE =
1

πh̄

∞∫
−∞

dε ε
[
Nε(TL, µ̄L)− Nε(TR, µ̄R)

]
. (65)

7. Ballistic Quantum Transport of Entropy

The first efforts to transfer the ideas of ballistic electron transport to thermal transport
originate from Imry and Sivan [43] and Butcher [44]. To describe the thermal transport
through quantum wires, as illustrated in Figure 5, we can write down an expression for
the entropy current that is the thermal analogue of Equation (39), but contains the entropy
Sk; L,R (Equation (41)) of the elementary Fermi- or Bose-systems rather than their particle
numbers Nε;L,R. Assuming that the entropy propagates in each elementary Fermi-, or
Bose-system at the same velocity ~v(k) as the particles, the entropy current reads:

IS =
1

πh̄

∞∫
−∞

dε
(
Sε(TL, µ̄L)− Sε(TR, µ̄R)

)
. (66)

For the same symmetric bias (see Equation (59)) one finds in linear approximation

Sε(TL, µ̄L) − Sε(TR, µ̄R) =
∂S(Y)

∂Y
∆Y (67)

=
∂S(Y)

∂Y
1

kBT

(
q̂U − ε− µ

T
∆T
)

,

where again Y = (ε− µ)/kBT, and

∂S(Y)
∂Y

= kBY · exp(Y)(
exp(Y)± 1

)2 . (68)

The upper sign holds for fermions, and the lower for bosons. Interestingly, this result
differs from Equation (61) only by the extra factor kBY. For the entropy current we then
find in linear response

IS =
1

πh̄ ∑
n

∞∫
0

dε Tn(ε)
ε− µ

T
∂N(ε)

∂ε

(
q̂U − ε− µ

T
∆T
)

. (69)

The first term (∝ ∆µ̄) in this equation is driven by the voltage bias, and constitutes the
ballistic analogue to the Peltier current in Equation (29). The second term (∝ ∆T) describes
the entropy current driven by the T-difference.
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The same result is obtained, if one extends the derivation of IN to IE and computes IS
via Equation (16):

IS =
1
T

(
IE − µ̄IN

)
=

1
T

{
Π · U + L · ∆T

}
(70)

where Π is the Peltier coefficient, and L being the thermal conductance. Please note that
the identification of IS with (IE − µ̄IN)/T holds only in the linear response regime [45].

For fermions, we can again evaluate the integrals in Equation (69) within the Sommer-
feld approximation, and obtain for the Peltier coefficient

Π = T · 2L0

q̂ ∑
n

d
(

ln Tn(ε)
)

dε

∣∣∣∣∣
ε=µ

,

and for the thermal conductance

L = T · 2L0 ∑
n
Tn(µ) ,

where the prefactors 2 accounts again for spin-degeneracy. The constant L0 is the entropy
conductance quantum corresponding to

L0 =
π2

3
k2

B
h

= 0.9456 pW/K2 , (71)

implying that in ballistic quantum wires the entropy conductance L = L/T is quantized in units
of L0. Compared to the quantum of electric conductance, q̂2 is replaced by (πkB)

2/3. The
rather universal ratio

L0 =
L0

G0
=

π2

3

(
kB
q̂

)2
= 24.4 nWΩ/K2 (72)

of the two conductance quanta is called the Lorentz number, which governs the Wiede-
mann–Franz law: L/G = T · L0.

As discussed in the context of the drift-diffusion model in Section 3 the Seebeck- and
Peltier-coefficients are connected by the Kelvin-Onsager relation

Π = T · S . (73)

In the present context, the Kelvin-relation results from the Maxwell-relation

∂Nε(T, µ̄)

∂T
=

∂Sε(T, µ̄)

∂µ̄
= − exp(Y)

T
(

exp(Y)± 1
)2 , (74)

between the derivatives of the two EoS (Equations (39) and (41)), and the fact that the
transmission coefficients T (ε) determine all transport quantities [46].

These results are again very general, as they depend only on the energy depen-
dence of the transmission coefficients, but neither on the dispersion relation nor on the
particle statistics. After some more qualitative experiments [47] a quantitative experi-
mental investigation of the thermal conductance of quantum point contacts has been
performed only recently, exploiting the thermopower of quantum point contacts for local
thermometry [48]. Very recently, also chiral thermal transport in the integer quantum Hall
regime has been demonstrated [49].

In solid state physics, the most relevant cases for bosons deal with phonons and
photons. In this case, we can set µ = 0. The evaluation of the corresponding Bose-integral
results in a quantized thermal conductance with the very same entropy conductance quan-
tum L0 as in the case of fermions [50–52]. The case of the quantized entropy conductance
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by phonons was first addressed by the beautiful experiments by Schwab et al. [53]. A few
years later, Meschke et al. considered the case of microwave photons [54]. The latter case
is of particular importance for instrumentation in mesoscopic physics. First, it explains
why a careful filtering of the measurement leads at low temperatures is required: in a
cryogenic setup the wires bring down energy and entropy not only via electronic and
phononic thermal conduction, but also via thermal photons. These photons may not carry
enough energy to heat up macroscopic objects such as the thermometer, but they can
still induce jumps of charge carriers in electronic traps, or release single electrons from a
quantum dot. Second, the photon case is interesting, because the techniques of microwave
engineering provide possibilities to manipulate quantum photon thermal transport down
to the mesoscopic scale [55].

8. Dissipation and Non-Linear Transport

So far, we have analyzed the transport Equations (57) and (66) in the linear response
regime. In that regime, Equation (18) is well established [56] and is often used to compute
the thermal current TIS. Next, we ask, what happens to this relation at large bias in the
non-linear regime, where entropy generation becomes important.

Let us first exploit the conservation laws for N and E: these allow us to connect the
currents IN and IE with the temporal change of the enthalpy-like quantity

M(S, V, µ̄) := E− µ̄N . (75)

To our knowledge, M has no generally accepted name; thus, we propose to call it
the grand-canonical enthalpy, in analogy to the conventional enthalpy H = E + pV. The
justification for such terminology is the fact that changes of M at constant V and µ̄ describe
the energy transfer T∆S via the thermal channel:

dM(S, V, µ̄) := dE− µ̄dN =
∂M(S, V, µ̄)

∂S
dS = T dS , (76)

in precisely the same way, as changes of H(S, p, N) at constant p and N quantify the transfer
of ‘heat’ in physical chemistry. If we apply this rule to our ballistic channel connecting a
left and right reservoir, we find that the combined current IE − µ̄L,R IN is related to the rate
of change of ML,R of the left and right reservoir. Thus, we arrive at the relations:

ṀL,R = ∓
[

IE − µ̄L,R IN

]
, (77)

where the upper sign refers to the left reservoir. In other words, the entropy content of the
two reservoirs changes with the rate:

ṠL,R = ∓ 1
TL,R

[
IE − µ̄L,R IN

]
. (78)

According to the continuity of entropy current IS (Equation (14) with X = S), the rates
of entropy change in the reservoirs (with volumes VL and VR)

ṠL,R ± IS = VL,RΣS; L,R (79)

and the entropy current IS are not identical, but differ by the total entropy production rate
VL,RΣS; L,R. Please note that the transport through the elementary Fermi- and Bose-systems
is reversible, provided that there is no inelastic scattering within the quantum wire—then
all entropy production occurs exclusively in the reservoirs. Figure 6a illustrates the Fermi-
functions in the reservoirs for the case that both T and µ̄ differ in the left and right reservoir.
Transfer of a particle from left to right is accompanied by a corresponding entropy transfer
given by Equation (41). The transfer leaves the reservoirs in a non-equilibrium state
with an excess-electron in the right reservoir and an excess hole (equivalent to a missing
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electron) in one of the elementary Fermi-systems in the left reservoir. Restoring equilibrium
Fermi-functions by electron–phonon scattering dissipates excess energy in both reservoirs.
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Figure 6. (a) Schematic of irreversible relaxation processes in the reservoirs following the transmis-
sion of a particle. Each transmission event causes inelastic scattering processes (wiggly lines) in both
reservoirs that change the particle numbers of the elementary Fermi-systems until the reservoirs
are in equilibrium again. (b) Colored dashed and dash-dotted lines: rates SL,R of entropy change in
the left and right reservoir together with the entropy current IS (black solid lines) leaving the left
and entering the right reservoir. The T-difference ∆T is varied, while the electrochemical potentials
are kept equal. At very low ∆T the transport of entropy dominates over its production, while at
larger ∆T, entropy production by the irreversible relaxation processes in the reservoirs governs their
entropy change.

For a perfectly transmitted channel (T = 1), we can quantify these considerations,
because the integrals in Equations (57), (65) and (66) can be performed in a closed form
resulting in:

IN =
kB

πh̄

[
TLφ0

(
−µ̄L
kBTL

)
− TRφ0

(
−µ̄R
kBTR

)]
,

IE =
kB

πh̄

{
kB

[
T2

Lφ1

(
−µ̄L
kBTL

)
− T2

Rφ1

(
−µ̄R
kBTR

)]
+

[
TLµ̄Lφ0

(
−µ̄L
kBTL

)
− TRµ̄Rφ0

(
−µ̄R
kBTR

)]}
,

IS =
k2

B
πh̄

{
TL

[
φ2

(
−µ̄L
kBTL

)
+ φ1

(
−µ̄R
kBTR

)]
− TR

[
φ2

(
−µ̄L
kBTL

)
+ φ1

(
−µ̄R
kBTR

)]}
,


(80)

where

φ0(x) = −x + ln(ex + 1) ,

φ1(x) = Li2(−ex) +
1
6

(
− 3x2 + 6x ln(ex + 1) + π2

)
,

φ2(x) = Li2(−ex) +
1
6

(
− 3x2 − 6x ln(e−x + 1) + 6x ln(ex + 1) + π2

)
,

and Li2(z) being Spence’s function (dilogarithm). The entropy currents IS and the corre-
sponding rates

ṠL,R = ∓IS + VL,RΣL,R =
ṀL,R

TL,R
= ∓ IE − µ̄L,R IN

TL,R

of entropy change in the left and right reservoir are shown in Figure 6b for three different
bath temperatures. The quantum point contact was subjected to a purely thermal bias
(symmetrically around the average temperature), while the electrochemical potential was
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kept constant and equal in both reservoirs. Moreover, we assumed the reservoirs to consist
of a two-dimensional electron gas in a GaAs quantum well with a fixed electrochemical
potential of µ̄L,R = 6 meV. One sees that the ballistic entropy current varies nearly linear
with temperature difference, while entropy production raises the rate of entropy change in
both reservoirs in a non-linear fashion at higher ∆T. Analog consideration holds for the
transmission of thermal phonons through suspended beams and thermal photons through
optical wave guides and microwave transmission lines.

Experimentally, entropy flow cannot be detected directly. Only the reservoir observ-
ables, such as T, S, µ̄ and N, can be measured. Hence, at least in the non-linear regime, it is
the ’heat flow’ IE − µ̄IN and not IS that is experimentally accessible.

9. Connection to Diffusive Transport

The concept of elementary Fermi- and Bose-systems can also be used to analyze the
case of diffusive transport more accurately than in the simple drift-diffusion model. To
do so, we consider similar to Section 3 two adjacent volume elements of linear dimension
Λ = |~v| · τ, which are illustrated in Figure 7, and assume that an inelastic scattering mecha-
nism exists, which establishes local thermal and electrochemical equilibrium on the scale of
Λ. Volume elements of this size represent the smallest possible units, which can be assumed
to be in local equilibrium. For a given T- or µ̄-gradient, two adjacent cubes of volume Λ3

define the minimal distance, over which T- or µ̄-difference are physically sensible.
Between collisions, the elementary Fermi- and Bose-systems propagate energy, en-

tropy and particles ballistically, as they do in the one-dimensional ballistic quantum wires
discussed in the preceding sections. To account for the three spatial dimensions, we must
average over the different k-directions, to determine the current density of any balancable
quantity X in a given direction.

k

Figure 7. The left- (right-) propagating elementary Fermi- or Bose-systems labeled ‘~k’ emanating
from the right (left) volume element of size Λk contribute an amount vkxk(TL,R, µ̄L,R) to the total
X-current density~jX .

Similar to Section 3, we write the X-current density through the interface between the
two cubes as the difference

~jX = ∑
k
~v(k) ·

(
xk(TL, µ̄L)− xk(TR, µ̄R)

)
(81)

of left and right propagating currents, where xk is the contribution of each elementary
subsystem to the total x-density depending on the values of TL,R and µ̄L,R within two
adjacent cubes of size λ3

k (see Figure 7). The similarity of this expression to those used in
ballistic transport is not accidental, but results from the fact that the propagation of any
balancable quantity X is ballistic over distances smaller than the mean free path Λk. In
the examples considered here xk is identified with the contribution nk = Nk(T, µ̄)/V or
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sk = Sk(T, µ̄)/V of an elementary Fermi- or Bose-system with the wave vector k to the
particle density, or the entropy density, respectively.

In contrast to the more elementary treatment of the diffusive limit in Section 3 we
now take into account that ~Λk = ~v(~k) · τk depends on~k via both τk and the velocity ~v(~k)
of propagation between collisions. It is still a rather crude approximation, as it assumes
that the scattering time is independent of the particle numbers in the other elementary
Fermi- or Bose-systems. In linear approximation, the difference ∆xk reads in analogy to the
preceding Sections 6 and 7

xk,L − xk,R =
∂xk(Y)

∂Y
∆Y , (82)

where again Y = (ε− µ)/kBT, and ∆Y is the variation of Y over the distance Λk of ballistic
propagation between scattering events. Similar to Equation (60) ∆Y is given by

∆Yk =
1

kBT

(
∇µ̄− ε− µ

T
∇T
)
·~v(k)τ(k)︸ ︷︷ ︸

~Λk

. (83)

Here, |~Λk| is the mean free path associated with the scattering of quasiparticles in the
elementary subsystem with wave vector k.

Plugging ∆Yk into Equation (82) we obtain in the continuum limit

~jX =

∞∫
0

dε g(ε)D(ε)
∂x(ε)

∂ε

(
∇µ̄− ε− µ

T
∇T
)

, (84)

where the diffusivity tensor

D(ε) =
∫∫ dϕ

2π
dθ sin θ ~v(ε, θ, ϕ)⊗~v(ε, θ, ϕ) · τ(ε, θ, ϕ) (85)

is the energy-dependent tensorial equivalent of the diffusion constant (averaged over the
angles θ and ϕ on a sheet of constant ε(k)), which takes into account the shape and angle
anisotropy of the dispersion relation ε(k) and the scattering time τ(k). For an isotropic ε(k)
and τ(k) Equation (85) reduces to Equation (21).

Equation (84) constitutes the linearized transport equation for any balancable quantity
X, and is in perfect agreement with the result from solutions of the Boltzmann equation
in relaxation-time approximation in textbooks [56]. However, it is remarkable that its
derivation here is based not on the classical concept of trajectories, but on the sole assump-
tion of the existence of a scattering mechanism ensuring that the elementary Fermi- and
Bose-systems propagate (on average) ballistically from opposite faces through a cube of
size Λ3

k have values of xk(T, µ̄) according to the local values of T(~r), µ̄(~r), and T(~r + ~Λk),
µ̄(~r + ~Λk), respectively.

The evaluation of Equation (84) for the particle and the entropy current reproduces
the Drude formulas for the electric (Equation (24)) and the thermal (Equation (31)) con-
ductivity, as well as the Wiedemann–Franz law. The evaluation of the thermopower and
the Peltier coefficient within the Sommerfeld expansion leads to a slightly modified result,
when comparing to the drift-diffusion model (see Equation (28)). Although the thermody-
namic derivative ∂n(T, µ)/∂T entering Equation (28) involves only the derivative dg(ε)/dε
(because the diffusion constant D is assumed to be independent of ε), the evaluation of
Equation (84) contains the derivative d

(
g(ε)D(ε)

)
/dε. The thermopower is then given by

the Mott-formula

Smott =
π2

3
k2

BT
q̂
·

d
(

ln[g(ε)D(ε)]
)

dε

∣∣∣∣∣
ε=µ

, (86)
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which is the diffusive analog of Equation (64). If both g(ε) ∝ εα and D(ε) ∝ εβ obey a
power law, the logarithmic derivative in Equation (86) assumes the value

d
(

ln g(ε)D(ε)
)

dε

∣∣∣∣∣
ε=µ

=
α + β

εF
,

as opposed to the result α/εF obtained within the drift-diffusion model. For free electrons
in three dimensions, we have α = β = 1/2, if we assume the mean free path Λ to be
independent of ε. In this simplest approximation, the result of Equation (86) is a factor of
three larger than Equation (50), and we have the accidental relation

Smott =
ŝ(T, n)

q̂
. (87)

This relation explains the observation that the low temperature molar entropy of
charged Fermi-systems is so strongly correlated with the thermopower [22,57,58]. Of
course, one should be aware that Equation (87) relies on the sometimes too simplistic
relation α + β ' 1. On the other hand, its experimental confirmation in Figure 3 works out
pretty nicely, and can be considered to be a triumph of the quasiparticle picture in strongly
correlated electron systems.

So far we have restricted our consideration to an isolated degenerate Fermi gas. A
more accurate modelling must take into account that a solid usually contains several
different Fermi- or Bose-gases. Besides the electrons, there are phonons, and (in magnetic
solids) also magnons, or localized magnetic moments. The interaction between the different
quasiparticle systems provides usually scattering mechanisms with an energy-dependent
scattering time τ(ε), which may deviate from a power law, or at least, affect the value of β.
In addition, there can be drag phenomena, such as electron–phonon, and electron–magnon
drag, which can substantially complicate the behavior of S [59].

The mean free path Λk (given by Equation (19)) can be calculated from the solution of
the quantum-mechanical scattering problem of the relevant particles. It is quite intrigu-
ing that the model describes the irreversible process of conduction, without the need to
explain how entropy is actually generated in the scattering process. As we will discuss in
Section 10.4, the scattering cross section is calculated within standard Hamiltonian quan-
tum theory, in which the time evolution is always reversible. Nevertheless, as long as
the scattering enters only via a scattering probability (and not via a probability amplitude) in
Equation (84), it is assumed that the phase memory in the scattering process is erased. This
looks like a rather arbitrary truncation of the Hamiltonian time evolution that has some
resemblance with the quantum-mechanical measurement process. It is this (here manually
imposed) erasure of the phase memory, which gives rise to the ‘classical’ character of the
Boltzmann-like transport theory. In the next section it is discussed, how phase coherence
affects the transport. It turns out experimentally that it is the inelastic scattering processes,
which account phenomenologically for the loss of phase coherence.

10. Discussion
10.1. Applicability of Thermodynamics

It is a widely spread opinion that the concepts of thermodynamics are applicable
only in equilibrium, and for large systems with many microscopic degrees of freedom.
The limit of large systems is also called the thermodynamic limit, where N, V → ∞, and
n = N/V = const. These restrictions result from the custom to define entropy via Planck’s
famous formula

S = kB ln Ω(E, V, N) , (88)

where Ω is the number of microstates accessible to N particles in a volume V with a given
value of the total energy E. This strategy (when properly combined with the principle
of indistinguishability) indeed allows the calculation of the function S(E, V, N), which is
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equivalent to E(S, V, N), and hence constitutes a starting point for equilibrium thermody-
namics in entropy representation. However, in so-called open systems, which exchange
energy and particles with the environment, the number Ω of microstates cannot be defined
anymore, and hence it seems that thermodynamics is inapplicable to transport situations.

On the other hand, the presentation of the preceding sections shows that thermody-
namics can well be applied to a wide variety of non-equilibrium and transport situations,
provided that a proper decomposition into simpler subsystems is chosen. To be more specific, in
a ballistic quantum wire such as the one-dimensional subbands formed in high mobility
two-dimensional electron systems (see Figure 5), the set of right- (left-)moving elementary
Fermi, or Bose-systems are in equilibrium with each other and the left (right) reservoir, but
the equilibrium between left and right-movers is disturbed by the applied bias voltage, or
the temperature difference, respectively. The same holds locally in a macroscopic piece of
matter subjected to a T- or µ̄-gradient: also here left- and right moving elementary Fermi-
and Bose-systems are out of equilibrium, but the amount of entropy and particles stored in
the elementary Fermi- or Bose-systems propagating in the same direction from a certain point
in space is to a very good approximation given by the local values of the temperature and
(electro)-chemical potential.

This explains, why the current densities of entropy and particles are determined by
the diffusion coefficient and the local (equilibrium) values of the derivatives of particle and
entropy [nk(T, µ̄) and sk(T, µ̄)] density, respectively.

In this sense the thermodynamic concepts retain their relevance, irrespective of a
reduced dimensionality or the absence of global equilibrium. The robustness against global
non-equilibrium is also intuitively clear, as we do not question the validity of the concept of
water temperature based on the undisputable absence of thermal equilibrium between the
Mediterranean and the Polar Sea. That the same concepts remain valid in quantum wires
with perfect transmission down to the atomic scale, e.g., in highly transparent atomic point
contacts, appears more surprising, but has been demonstrated in a variety of beautiful
experiments [60–62].

It must be pointed out that a large body of literature considers the Hamiltonian dynam-
ics of small quantum systems coupled to reservoirs, striving for a modelling of nanoscale
thermodynamic processes (see, e.g., Ref. [63] and the references therein), including the
transfer of work and heat between nanosystems and the reservoirs. In contrast the present
review is focused on simple transport phenomena, and tries to elucidate the conceptual
foundation, on which the standard approach to both ballistic and diffusive transport is
so successful.

10.2. Breakdown of Local Equilibrium

The Landauer-Büttiker approach to transport restricts itself to the particular case of a
nanoscale constriction between macroscopic reservoirs, in which the thermodynamics of the
elementary Fermi- or Bose-systems in the constriction is governed by the reservoirs, and
can be separated from the transmission properties of the constriction expressed by the set
{Tn(ε)} of transmission coefficients [64]. This separation holds best in the linear regime,
and as long as energy and particle number of the elementary subsystems differing in the
characteristic energy ε are statistically independent, because no inelastic scattering induces
an exchange of energy, entropy and particles between them. In this way, the population of
the reservoirs, which are by definition in internal equilibrium, is transferred to the elemen-
tary subsystems of the quantum wire. These can be considered to be in thermodynamic
equilibrium with their respective source reservoir, while there is no equilibrium between
elementary subsystems charged by different reservoirs, such as the left- and right-movers in
Figures 5 and 8.

Under these conditions, the propagation of energy, entropy and quasiparticles within
the constriction is governed by reversible Hamiltonian dynamics, while the conceptionally
difficult irreversible equilibration of the injected quasiparticles within the reservoirs is
irrelevant for the transport properties of the constriction! This explains the success of the Hamil-
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tonian dynamics in the description of this category of transport processes. It is interesting
that this success can (within the semi-classical approximation) also be transferred to the
macroscopic case, where reservoirs are absent, and a sufficiently strong inelastic scattering
ensures local thermodynamic equilibrium, if one averages over volumes larger than the
mean free path (see Section 9).

If elastic scattering occurs within the phase coherent region, the elementary subsys-
tems labeled {k} in the absence of scattering must be replaced by more complicated ones,
which in usual terminology are called scattering states, and consist of the incoming and the
two (or more) outgoing waves. Such a complex wave pattern still forms one elementary
Fermi- or Bose-system that cannot be decomposed further. In particular, it is impossible
to provide a local thermodynamic description of the quantum wires left and right of the
quantum point contact in Figure 8. The quantum point contact partitions the flux of energy,
entropy and quasiparticles emanating from each reservoir according to the transmission
coefficient T (ε) into the two corresponding outgoing fluxes. As the particles emanating
from different reservoirs are incoherent, and thus statistically independent, their average
particle numbers in the elementary Fermi-and Bose-systems flowing into the right reservoir
simply add up according to

Nneq
k = T (ε) · Neq

k (TL, µ̄L) + (1− T (ε)) · Neq
−k(TR, µ̄R) , (89)

while we have for particles entering the left reservoir

Nneq
−k = (1− T (ε)) · Neq

k (TL, µ̄L) + T (ε) · N
eq
−k(TR, µ̄R) . (90)

Here Neq
k denotes the equilibrium particle numbers in the reservoirs. According to

Equation (57), the non-equilibrium particle numbers Nneq
k determine the current. Analo-

gous expressions hold for Sk, Ek, and all other balancable quantities of the system.

TL

μL

TR

μR

Figure 8. The same quantum wire as in Figure 5, but interrupted by a quantum point contact (QPC)
with transmission coefficient T (ε). The scattering states of the particles emanating from the left
(red) and the right (green) reservoir, respectively, must be considered to be one elementary Fermi- or
Bose-systems, which cannot be further decomposed into subsystems.

As it is a superposition of equilibrium particle numbers, and entropies with different
{T, µ̄}, the particle numbers Nk in the outgoing branches do not satisfy Equation (39)
anymore. This signals the breakdown of local equilibrium. Similarly, the entropies T (ε)Sk
and

(
1− T (ε)

)
Sk propagated by the outgoing partial waves after the scatterer are lower

than the entropy of an equilibrium mode with the same temperature of the left reservoir (see
Equation (41)) and particle numbers T (ε)Nk(T, µ̄) and

(
1− T (ε)

)
Nk(T, µ̄), respectively.

One may be tempted to consider a single quantum wire between the scattering region
and one reservoir as a ‘system’ on its own, and ask for its thermodynamic quantities,
e.g., its particle number or entropy. The wire segment leading to the QPC, however, is
certainly not an independent subsystem in the sense of thermodynamics, because its
particle numbers and other physical quantities are correlated with those of the other
quantum wires connected to the constriction. The correlation of the particle numbers can
be experimentally accessed, e.g., as an anti-correlation between the particle currents in the
two reservoirs [65]. Thus, it must be kept in mind that the transport modes, i.e., the set
of elementary Fermi- and Bose-systems hosted by the scattering region and the quantum
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wires cannot be decomposed in smaller subsystems as long as their phase coherence is not
destroyed by inelastic processes.

A particularly nice experimental demonstration of such out-of-equilibrium physics
was recently obtained using the one-dimensional edge channels in the quantum Hall
regime [66,67]. There it was possible to measure the ε-dependence of the particle num-
bers Nε at different distances (0.8–30 µm) from a quantum point contact. Close to the
quantum point contact a double step shape of Nε was observed, which resulted from the
superposition of the transmitted and reflected electrons emanating from of reservoirs at
different electrochemical potential (see Equations (89) and (90). At larger distances inelastic
scattering processes restored the local thermal and chemical equilibrium, and Nε behaved
Fermi-like. The measured local temperature was higher than that in the reservoirs, but
lower than expected from energy conservation arguments. One possibility to explain the
apparent loss of energy are additional neutral modes, which are predicted to exist, when
two (spin-degenerated) edge channels are present [68].

A breakdown of local equilibrium can also happen in the diffusive regime. As shown
in a series of experiments on diffusive wires of length L in the µm-regime this is possible at
low temperatures, if the average diffusion time τD = L2/D through the wire is shorter than
the time required for energy relaxation in the wire [69]. This means the energy relaxation
occurs predominantly by inelastic scattering in the two macroscopic reservoirs serving as
contacts for the wire. If the energy relaxation in the wire is entirely negligible, no particle
exchange occurs between elementary Fermi-systems of different characteristic energy ε—
i.e., elastic scattering processes by static impurities dominate in the wire. The effect of the
elastic scattering is an efficient randomization [70] of the momentum distribution in the
wire, which corresponds to intense exchange of particles (and entropy) between elementary
Fermi-systems with the same ε, but differing in k-direction [71]. In absence of inelastic
scattering the elementary Fermi-systems with the same ε are not in local equilibrium,
because Nε and Sε at any point in the wire have contributions from both reservoirs.

To quantify these considerations, it is simplest to consider the diffusion equation for
the particle density nε(r) in elementary Fermi-systems with the same ε (r is the position
along the wire) with a source term ΣNε describing the exchange of particles with elementary
Fermi-systems with other ε. The diffusion equation results from the combination of the
continuity equation Equation (14) with Fick’s law (Equation (22)) for the particle densities
nε(r) in the composite subsystem containing all elementary Fermi-systems with the same
characteristic energy ε:

∂nε(~r, t)
∂t

+ D(ε) divgrad nε(~r, t) = ΣNε . (91)

The source term ΣNε is called the scattering integral, and consists of a sum over all pos-
sible transitions between one elementary Fermi-system and the others with the quantum-
mechanical transition probabilities Wε,ε′ [69]. For isotropic scattering only the energy
dependence of the Wε,ε′ is relevant, and ΣNε reads

ΣNε =
∫

dε′ g(ε)g(ε′) ×
{

Wε,ε′nε(1− nε′)−Wε′ ,εnε′(1− nε)
}

. (92)

In this case, a relaxation-time approximation is not sufficient to describe the ex-
perimental data, which are accurate enough to extract the energy dependence of the
scattering probabilities Wε,ε′ .

If inelastic scattering occurs only in the reservoirs, but is negligible in the wire, the
particle generation and annihilation term ΣNε can be neglected in Equation (91) and the
resulting nε is a two-step function composed of the two Fermi-functions of the reservoirs
with weight factors r/L and 1 − r/L and that vary with the position r along the wire
between 0 and 1 (L is the length of the wire). If the inelastic scattering among the electrons
is very strong, but negligible between electrons and phonons (relevant for short wires),
local thermal equilibrium is re-established and nε is a Fermi function with a spatially
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varying electron temperature Tel(r). The resulting temperature profile can be determined
by solving the thermal diffusion equation with a source term resulting from the local
energy dissipation [69]. For very long, narrow wires the profile of Tel(r) at sufficiently low
temperatures becomes flat, but remains elevated with respect to the phonon temperature,
since the electron–phonon coupling becomes very weak in this limit [72].

10.3. Interference of Elementary Fermi- and Bose-Systems

So far, we have not taken into account quantum interference between the different
modes, or elementary Fermi- and Bose-systems. The effect of interference is simply that
two or more modes are not independent anymore, but form new modes, i.e., the coherent
superpositions of the interfering modes. These new elementary subsystems can be charged
with energy, entropy and particles only as one entity, with a transmission coefficient T (ε)
telling us how constructive or destructive the interference is. The simplest example for
such a coherent superposition is the standing waves, which are formed in a quantum well,
or a finite quantum wire, by multiple reflection at the confining potential walls. In this case,
the new systems cannot support a stationary current. Finite currents can be carried only by
propagating waves, i.e., scattering ’states’, provided that the phases of the interfering waves
are adjusted such that the transmission probability is finite. For a completely destructive
interference again a standing wave is formed, which suppresses the transport of entropy
and particles, and the transport currents impinging on the interferometer are reflected
completely. If the source that charges the propagating modes is at a finite temperature, the
local current densities of energy, entropy and particles are invariably connected.

The elastic scattering does not produce entropy, but results in a coherent branching of
the flows of energy, entropy and particle currents by the scatterer. This statement remains
valid for arbitrary complex scattering regions and any number of terminals. The phase
coherence can be made visible, if the partial waves are brought to interference, e.g., by
adding a second scatterer or semi-transparent mirror, resulting in an electronic or photonic
interferometer of the Fabry-Perot [73], Michelson- or Mach-Zehnder type [74–76].

For these reasons, the possibility of phase-tuning of the transmission coefficients Tk,
and a corresponding phase-dependent thermal conductance [77,78] not very surprising.
The close correspondence between the transport of particles and entropy resulting from the
present approach renders entropy- or ‘heat’-interferometer [79] as natural as a quasiparticle-
interferometer, even though the entropy stored within one elementary Fermi- or Bose-
system results from an incoherent superposition of states with different particle numbers.
The stored entropy leaves coherent superposition of the elementary Fermi- or Bose-system
with others unaffected, as the superposition affects only the transmission coefficients, but
not the Nk(T, µ̄) and Sk(T, µ̄) responsible for their thermodynamic properties.

Quantum interference of particles [80,81] and entropy [82] also occurs in diffusive
systems. In this case, the modes of the system cannot be chosen as plane waves anymore,
but constitute complex scattering states formed by the interference of waves on multiple
scattering centers. The dominating interference contribution to the transport comes from
pairs of time reversed diffusion paths, which return to the starting points. The pairs of time
reversed paths interfere destructively (at zero external field). The interference increases the
probability of return to a given point (Wreturn = 1/

√
4πDt for diffusion in one dimension)

by a factor of 2, and thus results in a reduction of the conductivity. Here, the diffusion
constant takes into account elastic scattering processes only. The inelastic scattering time τin
determines the typical length Lin =

√
Dτin of phase coherent diffusion paths. This effect,

known as weak localization, can be taken into account as an interference contribution to the
diffusion constant D with respect to Equation (21). Coherent backscattering of light has also
been observed. An external magnetic field tunes the character of the interference between
the different diffusion paths in a continuous way between constructive and destructive
(Aharonov-Bohm effect). The total transmission probability of a set of interfering modes
strongly depends on the wavelength (i.e., on ε) and via the Aharonov-Bohm effect on
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the magnetic field B—leading to characteristic conductance fluctuations when εF or B
are varied.

In conclusion, the concept of elementary Fermi- and Bose-systems turns out to be
extremely flexible. It can be adapted to a wide range of applications in modern physics.
Once accepted, it provides a more reliable guide for our intuition than the classical concept
of moving particles, as it incorporates the non-classical concepts of quantum interference
and indistinguishability from the start.

10.4. Irreversibility and the Loss of Phase Coherence

The most ingenious side of the Boltzmann equation is the fact that the aspect of
irreversibility, i.e., the generation of entropy is incorporated in the ad-hoc assumption of
the existence of a scattering mechanism, and the corresponding characteristic length Λin.
As noted very early, such a mechanism is inconsistent with the notion of Hamiltonian
dynamics. Any system with a discrete energy spectrum is subjected to the recurrence
objection, i.e., its time evolution must be reversible. The recurrence objection is removed by
assuming the existence of an infinite thermal bath with a continuous spectrum, in which
energy and entropy can be dumped without recurrence. Such an approach is successful
for systems with a single or a few macroscopic degree of freedom such as quantum bits,
coupled to many microscopic degrees of freedom. Irreversibility is then generated by
’tracing out’ the bath degrees of freedom.

Phenomenologically, the generation of entropy can be accounted for by damping out
the off-diagonal elements of the density matrix, which are responsible for the coherent
Hamiltonian dynamics. In the limit of long times, the decoherence becomes complete,
implying a density matrix, which is diagonal in the basis of energy eigenstates, and with
the probabilities {Wi} as eigenvalues. The joint dynamics of the system and the bath
features thermally induced temporal fluctuations of physical quantities of the system.
These fluctuations obey the recently much discussed fluctuation theorems [83].

A first principles derivation of irreversibility remains a severe problem, as the ‘first
principles’ at hand are all reversible. In the opinion of the author, it is not clear, whether
the mathematical operation of ‘tracing out the bath degrees of freedom’ has some corre-
spondence on the experimental side. Moreover, there are situations such as the collisions of
heavy ions at very high energy, where vast amount of entropy is generated on such short
time scales (1 fm/c ≈ 10−23 s) that no sufficiently strongly coupled bath may exist. An
example are events are known as ‘little bangs’, as opposed to the big bang of cosmology
(see, e.g., [84]).

11. Conclusions

The purpose of this paper is to provide a coherent and self-contained description of the
transport of particles and entropy both in the macroscopic and the mesoscopic regime. To
implement this program, the concepts of thermodynamics first must be formulated in a way
that avoids unnecessary limitations. To connect the general principles of thermodynamics
to the quantum physics of matter, the idea of ballistically moving particles or plane wave
propagation, respectively, must be stripped from all classical elements. It is proposed to
use the eigenmodes of the matter field in the language of 2nd quantization as the elementary
building blocks of such a description. Viewed as thermodynamic systems, called here
elementary Fermi- and Bose-systems, they can be taken as a basis for a unified description of
both global thermodynamic equilibrium and the ballistic and diffusive quantum transport.
In this description ’classical’ and quantum transport rely on the very same principles, while
the only demarcation line runs between regimes, where dissipation, i.e., the loss of phase
coherence, occurs locally, or remotely in macroscopic reservoirs. The notion of elementary
Fermi- and Bose-systems may prove useful not only in solid state physics, including the
presently unfolding fields of spintronics, caloritronics, and spin-caloritronics, but also in
the description of ultracold atomic and molecular gases [85].
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