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Abstract
Properties of the η and η′ mesons from lattice QCD

by Jakob Fabian Simeth

In this thesis we compute masses, decay constants and gluonic matrix elements of the flavour-
diagonal pseudoscalar mesons η and η′ from lattice QCD.

To control all relevant systematic errors we employ Nf = 2 + 1 flavour simulations along
two distinct quark mass trajectories leading to and including the physical point. The continuum
extrapolation is guided by four lattice spacings. The ensembles were generated within the coordi-
nated lattice simulations initiative, and we set their relative scales in this work.

We discuss noise reduction techniques for the efficient calculation of the disconnected contri-
butions that are important building blocks of the relevant correlation functions of the η and η′
system. The physical states are no flavour eigenstates, and hence sophisticated analysis methods are
required to extract them from the data. We develop a matrix generalization of the effective mass
method which we employ in conjunction with additional techniques to determinemasses andma-
trix elements.

The physical point extrapolation employs next-to-leading order large-Nc chiral perturbation
theory, and we determine all relevant low energy constants. For the first time also their renormal-
ization scale dependence is taken into account, and this provides an important check of the range of
validity of this effective field theorywith implications onmany existing phenomenological analyses.

Our physical point results for the masses are in agreement with experimental values and read
Mη = 554.7(9.2)MeV and Mη′ = 930(21)MeV. The determination of the four η and η′
decay constants is the first from first principles and we obtain F 8 = 115.0(2.8)MeV and θ8 =
−25.8(2.3)◦ in the octet channel and F 0 = 100.1(3.0)MeV and θ0 = −8.1(1.8)◦ for the
singlet in theMS scheme at 2GeV. These results are in excellent agreementwith phenomenological
determinations and at a similar level of precision.

Finally, we connect these axialvector decay constants with pseudoscalar and gluonic matrix el-
ements to test the axial Ward identities, and predict the anomalous matrix elements to be aη =
〈Ω|2ω|η〉 = 0.0170(10)GeV3 and aη′ = 〈Ω|2ω|η′〉 = 0.0381(84)GeV3 at the physical point
and µ = 2GeV.
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1 Introduction

The discovery of the kaon in 1947 initiated a small revolution in particle physics: With the ad-
vent of accelerators more and more particles were found, and the vast number did not fit the hy-
pothesis that all these are elementary. In 1961 Gell-Mann introduced his “Eightfold Way” [1] and
Ne’eman [2] independently started tomake sense of the ever-growingnumber of observedparticles.
They were able to classify hadrons in terms of representations of the SU(3) group, eventually lead-
ing to the concept of quarks. These are the constituents of the observed particles and the up, down
and strange quark flavours are represented by the fundamental representation of the group. Only
later this was completed with a colour gauge symmetry and formulated in a quantum field theory
now known as quantum chromodynamics (QCD), an important building block in the standard
model of particle physics. In that same year of the formulation of the Eightfold Way also the η
meson was discovered [3] and mostly fitted into the classification scheme. Also, theΩ− baryon [4]
was successfully predicted and in fact most of the observed hadron spectrum could be explained to
a reasonable precision.

The assigned quantum numbers could then be linked to the masses of the hadrons using the
Gell-Mann–Okubomass formula [1, 5, 6] using just a few proportionality constants. The observed
lightness of pseudoscalar hadrons in comparison to their vector counterparts could be explained as
a consequence of the spontaneous breaking of chiral symmetry. The pseudoscalar mesons then are
the pseudo-Goldstone bosons of the breaking of the SU(3)A axial component of this approximate
global symmetry. In the decomposition of SU(3) into octet particles and a singlet one, however,
only the octet ones had been observed, and there was no candidate for a sufficiently light pseu-
doscalar singlet state. A newly discovered state that would later be named η′ [7] was first considered
to be too heavy to align with the other pseudoscalar mesons and was excluded due to the observed
decay η′ → 3π0 that violates isospin symmetry [1].

This became known as the η–η′ puzzle: The large mass difference between the η′ and the octet
particles could not be explained by their flavour contents. This problem could be linked to the
breaking of theU(1)A axial symmetry by anomalous quantum corrections [8, 9] that arise through
the quantization of the theory and seemed artificial at first. Instantons—pseudo-particle solutions
to the classical field equations in Euclidean time with non-trivial topology — were suggested to
resolve this issue [10, 11]. The limit of an infinite number of colours and vanishing quark masses
was studied and gave the Witten–Veneziano relation [12–14],

M2
0 =

2Nf

F 2
τ0, (1.1)

whereM0 is the singlet mass, F is the pseudoscalar decay constant in the chiral limit, Nf is the
number of active flavours and τ0 is the topological susceptibility in pure Yang-Mills theory, i.e.,
without dynamical quarks. The relation makes it very clear that the singlet component acquires a
non-vanishing mass through the anomaly even in the chiral limit, leading to the observedmass dif-
ference of the states that have a singlet admixture relative to the pure octet states, i.e., predominantly
to the η′, but also to the η.

This means that both the η′ and the η are superpositions of flavour octet and singlet com-
binations of quark fields. This so-called mixing is closely related to SU(3) flavour breaking — if
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flavour symmetry was exact then the singlet and octet would be cleanly separated states — and so
the flavour diagonal mesons π0, η and η′ are ideal to study differences between quark masses, for
example the differencemu −md from the isospin violating decays η → 3π, see the recent results
by KLOE [15], for instance. The sensitivity to the topological structure of the vacuum through
the flavour singlet components is what makes η/η′ physics so interesting also for beyond the stan-
dard model searches. Axion-like particles a could, for example, be detected through violation of
charge conjugation via processes like η(′) → 2π0a→ 2π0l+l−, where l± are (anti-)leptons of any
flavour [16]. The transition form factorsγγ∗ → η(′) are also important input for the hadronic con-
tribution to the anomalous magnetic moment of the muon (g− 2)µ, that attracts a lot of current
interest due to the long-standing large discrepancy between the standardmodel prediction and the
BNL experiment [17] that has recently been confirmed at Fermilab [18], see, e.g. [19] for a review.1

Experimental insights for such two-photon processes could be gained from the B-meson fac-
tories at BabaR and Belle [21–23]. There have also been extensive measurements from the KLOE
and KLOE-2 [24] experiments and at BES-III [25]. Upcoming experiments at KEK, Belle II [26,
27], and Jefferson Lab, the “JLab Eta Factory” [28], will tremendously increase statistics and give
results at higher, still mostly unexplored center-of-mass energies.

From the theory side a clean assessment of the η and η′ system is complicated by the afore-
mentioned mixing of the singlet and octet flavour combinations to form the physical states and
the coupling to non-trivial topological configurations. The latter is a deeply non-perturbative phe-
nomenon that defies the typical perturbative treatment and requires methods that are applicable in
a low energy regime of QCD.Modern phenomenological analyses of η-η′ mixing are largely based
on large-Nc chiral perturbation theory (ChPT) [29–33] which allows for a unified treatment of the
η(′)-mesons together with the pseudo-Goldstone octet of the lightest pseudoscalars by simultane-
ously expanding around small quark masses and an infinite number of colours — a limit in which
the anomaly vanishes. When combined with dispersion relations, this approach provides a quan-
titative description of a large variety of η(′) decays and low energy η(′) production processes, see,
e.g., [16] and references therein. The convergence of this expansion, however, is hard to quantify,
and additional input is needed to fix the low energy constants that are in general dependent on the
energy scale of the process.

Ab initio lattice simulations are technically demanding due to the computationally expensive
evaluation of disconnected contributions and the coupling to the topological charge, which results
in large autocorrelation times and requires long time series to enable an adequate sampling of the
topological sectors. Moreover, the extraction of ground state properties from correlation functions
with a noise over signal ratio that increases rapidly in Euclidean time requires optimized methods.

Despite these challenges, steady progress has been made in computing the masses of the η and
η′ mesons, starting in the quenched approximation [34–36], and continuing withNf = 2mass-
degenerate dynamical light quarks [35, 37–44]. In the latter case only one ηmeson exists, which is a
pure singlet state, and no flavourmixing takes place. More realistic simulations of nature require an
additional strange quark (Nf = 2+1) [45–48] (see also [49] for a different attempt using correla-
tors of the topological charge density). More recently,Nf = 2+1+1 results [50–52] employing the
twisted-mass fermion formulation, using several ensembles and lattice spacings, enabled a physical
point extrapolation. In [53] the η′ mass was calculated at non-zero temperature from topological
charge density correlators. A very recent computation focused onNf = 1 + 1 + 1QCD+QED
simulations [54], investigating themass splitting of the η and theπ0 close to the unphysically heavy
Nf = 3 flavour symmetric point and computing pseudoscalar matrix elements. These were also
determined in [52]: Relating them to the four decay constants of the η/η′ systemmade the first lat-
tice determination possible, to a precision that is on par with phenomenological studies. Another
lattice computation of these matrix elements was carried out inNf = 2 + 1, in the context of a

1Recent results from the lattice, however, move the theory prediction closer to the experimental results and report a
smaller deviation [20].
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calculation of the semileptonic decay form factorsDs → η, η′, albeit only on two ensembles at a
single lattice spacing [48].

In this thesis we employ Nf = 2 + 1 lattice QCD to determine the masses of the η and η′
mesons and, for the first time, also all four decay constants, and gluonic matrix elements extrap-
olated to the physical point and without relying on model assumptions. To this end twenty-one
ensembles at various quarkmass combinations, including the physical quarkmass point and at four
different lattice spacings are analysed. A combination of noise reduction techniques are employed,
and refined analysis methods make it possible to construct the physical states reliably and lead to
reduced statistical errors. A careful assessment of the systematic errors involved leads to realistic
total error estimates and to final results that are currently the most precise theory predictions for
the η/η′ masses, decay constants and gluonic matrix elements.

The thesis is structured as follows: In ch. 2 we introduce the reader to QCD and its discretiza-
tion making it amenable to simulations. In doing so, we focus on the peculiarities of the flavour
diagonal η and η′ mesons. Ch. 3 is devoted to the generation of ensembles within the coordinated
lattice simulations (CLS) initiative that are being used in the analysis. Emphasis is put on taking
the continuum limit and the determination of the gradient flow scale at the individual values of
the lattice coupling. Using these ensembles, we elaborate onmethods for an efficient estimation of
stochastic loops contributing to the correlators of flavour diagonal mesons in ch. 4. There, we also
make the connection from correlators of interpolating operators to the physical eigenstates of the η
and η′mesons that allow us to extractmasses andmatrix elements. The continuum and chiral limit
of these is taken in ch. 5 employing large-Nc ChPT as a parametrization of the mass dependence
in the continuum. Low energy constants are determined that provide important input to other
related calculations. In ch. 6 theWard identities are tested, including the anomaly contribution to
the singlet axialvector current. We determine the gluonic matrix elements in two ways, both in-
directly through pseudoscalar matrix elements and taking the Ward identity for granted as well as
directly by evaluating the anomalymatrix elements themselves. Wefinally conclude and summarize
our findings in ch. 7.





5

2 Quantum Chromodynamics on and off the
lattice

The standardmodel of particle physics is very successful indescribing the interactions ofmatter on a
microscopic level. It is formulated in terms of a field theory with a global gauge symmetry U(1)×
SU(2) × SU(3), where U(1) × SU(2) is the subgroup of the unified electroweak interactions.
Quantum chromodynamics is the SU(3) gauge theory of quarks and gluons and describes their
strong interactions. Quarks carry colour-charge which is mediated by gluons, the gauge bosons of
the theory. The number of colour charges,Nc, is three in nature and hence the number of gluons
isN2

c − 1 = 8.
The quark fields appear in three families of quarks where each family consists of two quark

flavours. In the context of this work the lightest three quarks are the most relevant degrees of free-
dom and these are the up, down and the strange quarks, while the heavier quarks effectively decou-
ple from low-energy physics. Therefore, we usually set the number of active flavours toNf = 3.

In this chapter, we will present the QCD Lagrangian and some of the features emerging from
it in sec. 2.1. The presentation followswell-known text books, e.g. [55, 56], that should be consulted
for more details and references. After briefly discussing asymptotic freedom and confinement in
secs. 2.1.3 and 2.1.4, we focus on global symmetries of the Lagrangian, the axial anomaly and the
implications on the hadron spectrum in 2.1.5. We discuss the quark flavour model predating QCD
and its failure to describe the η and η′ mesons in sec. 2.1.6.

Many of these observations are rooted in the deeply non-perturbative nature of QCD and this
renders perturbative expansions— that proved successful in the electroweak sector of the standard
model — useless in the low energy regime of QCD. We discuss a possible discretization of QCD
on a four-dimensional space-time lattice in sec. 2.2 that allows ab initio simulations, i.e., without
resorting to perturbation theory or model assumptions. This introduces lattice QCD, the main
tool in this work, that is also well covered by a range of text books; in particular [57–59] proved
useful. The process of generating gauge configurations with three dynamical quarks is described in
sec. 2.2.4.

Sec. 2.3 is devoted to the topic of hadron spectroscopy on the lattice, going into more detail on
the technicalities involved and aiming at the construction of η and η′ physical states: We start by
defining interpolating operators and how their overlap with the ground states can be improved in
secs. 2.3.1 and 2.3.2, respectively. In the subsequent sections, we discuss the emergence and compu-
tation of disconnected contributions to propagators in sec. 2.3.3, the further analysis of two-point
functions to extract masses in sec. 2.3.4 and local matrix elements in sec. 2.3.5.

Finally, in sec. 2.4, we then remove the ultraviolet regulator of the lattice theory by renormaliza-
tion while taking the continuum limit and removing leading discretization errors by “improving”
the currents. Thereby, we focus on simple quark-antiquark currents without derivative that are
required for the calculation of the decay constants and emphasize the differences in the renormal-
ization and improvement of flavour singlet and non-singlet combinations.

Parts of the last section in this chapter, sec. 2.4, have been published in similar or, in places,
verbatim form in [60].
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2.1 TheQCDLagrangian and its properties in the continuum
The Lagrangian of quantum chromodynamics can be decomposed into

LQCD(gs, {mf}) = LYM(gs) +
∑
f

Lf (gs,mf ), (2.1)

where LYM is the pure Yang-Mills part and Lf adds fermionic degrees of freedom for each of the
Nf quark flavours f = u, d, s, . . . . In the quantized theory, additional terms are added that fix
the gauge and introduce the necessary Fadeev–Popov ghost fields that we do not discuss here.

The fermion masses {mf} and the strong coupling strength gs are the only free parameters in
this sector of the standardmodel1 and can explain themass spectrumof observed hadrons and their
strong interactions to high accuracy. Corrections to QCDpredictions from the electroweak sector
of the standard model can be treated perturbatively due to the smallness of the electromagnetic
gauge coupling.

2.1.1 Yang-Mills theory

Many of the non-perturbative features of QCD are already present in the purely gluonic (Yang-
Mills) theory without interacting quarks. Its Lagrangian is

LYM = −1

4
F a
µνF

a,µν , (2.2)

where repeated indices are summed over and greek letters usually label space-time indices and the
roman letters a, b, c, . . . are colour indices in the adjoint representation. The field strength tensor
is defined as

Fµν =
i

gs
[Dµ, Dν ] . (2.3)

We define it in terms of the covariant derivative acting on a continuous function f(x),

n̂µDµf(x) = lim
ε→0

1

ε
(f(x+ εn̂)− U(x+ εn̂, x)f(x)) , (2.4)

where n̂ is a unit vector in some direction and U(x + εn̂, x) is a gauge transporter that guaran-
tees gauge invariance by connecting the points x and x + εn̂. The defining property of the gauge
transporters is their behaviour under local gauge transformations,Ω(x),

U(y, x) → Ω(y)†U(y, x)Ω(x). (2.5)

These gauge transformations are group elements of SU(Nc) and thus can be parametrized in terms
of a continuous function θ : R4 7→ RN2

c−1 that maps a group element to every point in space-
time,

Ω(x) = exp (iθa(x)ta) , (2.6)

where ta = λa/2 with a = 1, . . . , N2
c − 1 are the generators of SU(Nc) and in QCDNc = 3.

In this case, λa are the eight Gell-Mannmatrices. The generators are traceless andHermitian 3×3
matrices and satisfy the commutation algebra[

ta, tb
]
= ifabctc, (2.7)

where fabc are the anti-symmetric structure constants of the group and the normalization corre-
sponds to tr tatb = δab/2, see app. A.3.

1There is the theoretical possibility of a so-called theta term that will be briefly discussed in the next section.
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The gauge transporter, eq. (2.5), can be defined as

U(y, x) = P exp

(
igs

∫
Cx,y

dsµAµ(s)

)
, (2.8)

where P is a path ordering operator acting on paths Cx,y that connect x and y. The gauge is
mediated by the gauge bosons, and thus here gluon fields appear that transform according to the
adjoint representation of the group,Aµ(x) = Aa

µt
a. Trivially, for y = x, we obtainU(x, x) = 1

and for the limiting case of very small distances εwe can equally write

U(x+ εn̂, x) = 1+ igsεn̂µAµ(x) +O(ε2). (2.9)

This allows us to write down an explicit form for the covariant derivative, eq. (2.4),

Dµ = ∂µ − igsAµ(x), (2.10)

and we can compute the gluonic field strength tensor using eq. (2.3),

F a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gsf

abcAb
µ(x)A

c
ν(x). (2.11)

From this and the gauge invariance of the Lagrangian, the transformation properties of the gluon
field under gauge transformations immediately follow,

Aµ(x) → Ω(x)Aµ(x)Ω
†(x) + i(∂µΩ(x))Ω

†(x). (2.12)

The last term in eq. (2.11) arises from the commutator and is entirely due to the non-abelian na-
ture of the gauge group. This is different to quantum electrodynamics where the gauge group is
U(1) and thus abelian. Self-interaction of photons only takes place through virtual fermion loops
and therefore is strongly suppressed. In QCD, however, gluons couple to another already at tree
level. This gives rise to many of the non-perturbative phenomena and also to asymptotic freedom
discussed in 2.1.3.

Gauge and Lorentz invariance allow for an additional topological contribution to eq. (2.2),

−θ0Nf
g2s

16π2
F a
µνF̃

a
µν , (2.13)

where F̃µν = εµνρσF
ρσ is the dual field strength tensor and εµνρσ is the totally anti-symmetric

tensor with the convention ε0123 = 1. If the coupling parameter θ0 was non-zero, then this term
would give rise to a violation of charge and parity (CP) symmetry that would manifest itself in a
non-vanishing electric dipole moment of the neutron which has been ruled out experimentally to
very high precision [61]. This gives rise to the strongCPproblem, since inQCDthere is no inherent
reason why θ0 should vanish.

2.1.2 Fermions

In nature we find six flavours of quarks with increasing masses. The up and down quarks are the
lightest of all quarks. They have masses defined in the modified minimal subtraction (MS) scheme
of about 2MeV and 5MeV, respectively [19]. The strange quark has a mass of 92.9(7)MeV, al-
ready about 27 times as heavy as the average mass of the up and down quarks. The charm quark
mass is 1.280(13)GeV and heavier than most light hadrons. Therefore, its dynamical contribu-
tion is small [62]. At scales below the respective thresholds, effects from even heavier quarks can
safely be neglected and the masses of these heavy quarks can effectively be set to infinite. This mass
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hierarchy also allows for another approximation and treat some of the lightest quarks as massless.
This enables expansions around small quarkmasses in the framework of chiral perturbation theory.

The fermionic part of the Lagrangian, eq. (2.1) is just theDirac equation for every quark flavour
f = u, d, s, . . . with massmf ,

Lf = ψf (i /D −mf )ψf . (2.14)

The fermion spinors, ψf , carry spin and colour degrees of freedom and the gauge fields enter the
Dirac operator through the covariant derivative, eq. (2.10). Here, we use the Feynman-Slash nota-
tion /D = γµDµ. The Dirac matrices γµ are 4× 4matrices and fulfil the anticommutator relation

{γµ, γν} = 2gµν , (2.15)

where gµν is the metric tensor. Therefore, from counting the degrees of freedom we see that the
particular choice of the representation is not unique and also it is different in Minkowskian or
Euclidean metric, see also app. A.2 for their relations and definitions used in this work. Again,
from gauge invariance we can immediately deduce that fermions transform trivially under gauge
transformations,

ψ(x) → Ω(x)ψ(x), ψ(x) → ψ(x)Ω†(x). (2.16)

2.1.3 Asymptotic freedom

Apart from the quarkmasses (and θ0), the only free parameter ofQCD is the gauge coupling gs. As
in other renormalizable field theories the definition of the coupling depends on the regularization
and on the energy scale of the process under consideration. Therefore, values for the coupling are
given at specific energies µ, e.g. at the mass of the Z-bosonmZ ≈ 91GeV. A recent lattice QCD
determined the coupling at that scale to be as(µ2 = m2

Z) = 0.0375(32) [63]. The running of
this value with the energy scale is determined by the β-function, which itself is parameter free and
can be derived directly from the theory. It describes the change of the coupling with the energy
scale and is defined as

β(µ) = µ2
das(µ)
dµ2

, (2.17)

where as = αs/π = g2s/(4π
2). It can be expressed as a perturbative series in the coupling itself,

β(µ) =
∑
i≥0

βias(µ)
i+2. (2.18)

The first two coefficients are “universal” and independent of the regularization employed,

β0 = −1

4

(
11

3
CA − 2

3
Nf

)
, (2.19)

β1 = − 1

16

[
34

3
C2
A −

(
10

3
CA + 2CF

)
Nf

]
, (2.20)

where in QCDCA = 3 andCF = 4/3.
The sign of the first coefficient of the β-function, β0 < 0 forNf ≤ 16, gives rise to the most

prominentproperty ofQCD, asymptotic freedom[64, 65], i.e., that the coupling strengthdecreases
with increasing scale and eventually vanishes as the scale approaches infinity. For hard processes,
corresponding to small distances, where µ > 100GeV, as . 0.1 and a perturbative treatment is
possible. At low scales µ < 2GeV non-perturbative effects dominate, the coupling becomes large
and at a scaleΛQCD the coupling eventually diverges. In the MS scheme and forNf = 3 flavours,
ΛQCD = 332(14)MeV was determined from lattice QCD simulations [63] and corresponds to
the value of as given above. In this low-energy regime of QCD close to µ & ΛQCD, perturbation
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theory breaks down. Thus, non-perturbative methods are required, e.g. lattice QCD that will be
introduced in sec. 2.2.

Asymptotic freedom is a direct consequence of the self-interaction of the gluons, i.e., that the
gluon vertex receives gluonic loop corrections and these carry the colour charge themselves, leading
to an anti-screening effect that is opposite to the charge screening of, e.g., QED. In fact, it can be
shown that only non-Abelian gauge theories show this property of self-interaction of the gauge
bosons and thus asymptotic freedom [66, 67]

2.1.4 Confinement

One of the prime examples of non-perturbative effects is string breaking. The force between two
static quarks rises linearly with their distance, and is mediated by gluons. This phenomenon has
beendescribed in terms of (colour) flux tubes [68]. When the static energy is large enough the string
“breaks” and a new quark-antiquark pair is created, forming another string that again is “colour-
less” — the anti-quark compensates the colour of the quark — and no free colour charges can be
observed. This feature has been confirmed numerically, for example in [69].

From this example another feature of QCD becomes evident: No free quarks are observed in
nature below the deconfinement temperature Tc. Since quarks carry colour charge, this follows
from the postulate that no coloured (non-singlet) states exist and all hadrons are colourless:

|qq〉 (mesons): 3⊗ 3 = 1⊕ 8,
|qqq〉 (baryons): 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10,

(2.21)

where the numbers on the right-hand side are the dimensions of the irreducible representations of
the SU(3) product groups on the left-hand side. Some combinations of quarks and antiquarks like
|qq〉, |qqqq〉, etc. do not possess singlet representations and have not been found experimentally,
whereas for example tetra- (|qqqq〉) and pentaquarks (|qqqqq〉) (that are close tomeson-meson and
meson-baryon states) have recently been confirmed experimentally [70, 71].

It is also possible to form colourless states purely from gluons through their self-interaction.
Such bound states are called glueballs and predicted by the standardmodel [72–74], although their
experimental detection is difficult [75]. Only very recently, a three-gluon state has been observed
with more than 5 σ confidence [76].

2.1.5 Chiral symmetry and axial anomaly

The low energy regime of QCD can be effectively described by neglecting the heavier quarks, keep-
ing only the lightest degrees of freedom that determine the vacuum structure of QCD. To this end
it is helpful to study the massless (classical) Lagrangian of QCD that shows an extended global
(space-time independent) symmetry of

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (2.22)

where the subscripts denote the conserved currents, namely left, right, vector and axialvector cur-
rents that are described in the following.

To discuss the chiral properties of the classical Lagrangian, it is useful to define projectors

PL =
1− γ5

2
, PR =

1 + γ5
2

, (2.23)

that have the expected properties P2
L/R = PL/R and PLPR = PRPL = 0. Their action on

spinors define the left and right-handed fermion fields

ψL := PLψ, ψR := PRψ. (2.24)
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Using ψ = ψL + ψR, the Dirac equation (2.14) can be written as

Lf = iψf,L /Dψf,L + iψf,R /Dψf,R −mf (ψf,Lψf,R + ψf,Rψf,L), (2.25)

which shows that formf = 0 the left- and right-handed components decouple, while formf 6= 0
there exist terms that mix the two components of the spinors.

In this limit of vanishing quarkmasses, the SU(3)L×SU(3)R part of the symmetry, eq. (2.22),
describes the invariance of the Lagrangian under flavour rotations

ψ → exp
(
iθaL/Rt

a
)
PL/Rψ, (2.26)

where again ta(a = 1, . . . , N2
f − 1) are the generators of SU(Nf ). The conserved currents are

La
µ =

1

2
ψγµt

aPLψ =
1

2
ψLγµt

aψL, Ra
µ =

1

2
ψγµt

aPRψ =
1

2
ψRγµt

aψR. (2.27)

Their linear combinations are the non-singlet vector and axialvector currents,

V a
µ = La

µ +Ra
µ = ψγµt

aψ, Aa
µ = Ra

µ − La
µ = ψγµγ5t

aψ. (2.28)

On the classical level, all these four currents are conserved and thus their divergences vanish.
In the QCD vacuum, however, only the vector component seems to be conserved and the symme-
try is spontaneously broken down to SU(Nf )V , giving rise to a non-vanishing chiral condensate
〈ψψ〉 = 〈ψLψR+ψRψL〉 6= 0 at low temperatures whichmay be used as an order parameter for
the spontaneous symmetry breaking. While ∂µVµ = 0, the divergence of the axialvector current
reads

∂µA
a
µ = ψγ5{M, ta}ψ, (2.29)

whereM = diag(mu,md,ms, . . . ) is the quark mass matrix. The pseudo-Goldstone bosons of
this broken continuous symmetry are the eight light pseudoscalar mesons, i.e., the pions and kaons
and the theoretical η8. Implications of this on the quarkmodelwill be discussed in the next section.
The fact that the divergences of the axialvector currents do not vanish also gives rise to pseudoscalar
decays, i.e., a pseudoscalarmesonMwith the corresponding quantumnumbers can be annihilated
by the axialvector current and has a non-vanishing matrix element

〈Ω|Aa
µ|M(p)〉 = ipµF

a
M, (2.30)

which defines its decay constant F a
M. We denote the QCD vacuum state as |Ω〉.

Similarly to the SU(Nf )L × SU(Nf )R subgroup of eq. (2.22), one can study the U(1) sub-
groups: Its vector part describes simple phase rotations of the form

ψ → exp (iαV )ψ, (2.31)

and its corresponding Noether current is the vector current, V 0
µ = ψγµψ, which reflects baryon

number conservation. Since the group is abelian, it commutes with themass terms of eq. (2.14) and
holds exactly even at finite quark masses.

The axialvector transformations rotate the two chiralities in opposite directions

ψ → exp (iαAγ5)ψ = exp (−iαA)ψL + exp (iαA)ψR, (2.32)

leading to a conservation at the classical level of only the derivative terms of equal chirality in
eq. (2.25). The related current is the singlet axialvector current

A0
µ = ψγµγ5ψ. (2.33)
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M

γ

γ

Figure 2.1: Feynman diagram relevant for the decay of a singlet pseudoscalar mesonM (dashed line)
into two photons (curly lines), M → 2γ via a quark “triangle” (solid lines). The dot represents the
axialvector current while the normal vertices are associated with vector currents. This so-called triangle
diagram gives rise to the axial anomaly, since naively tr γ5γµγνγρ = 0 and the non-vanishing result is
due to the regularization prescription. To obtain the full result also the corresponding diagram with
the external photons interchanged must be considered. Note that this diagram is only possible when
the quarks within the meson interpolating function are of the same flavour, i.e., for a flavour diagonal

mesonM ∈ {π0, η, η′}.

This symmetry is broken in twoways: First, at non-vanishingmasses it is broken explicitly. Second,
it is destroyed by the famous chiral anomaly [77] that is often referred to as triangle or Adler-Bell-
Jackiw anomaly [8, 9, 78]. The term “anomaly” means that it is a symmetry of the Lagrangian
that is broken by quantization. As a result of the explicit and anomalous breaking of the U(1)A
symmetry, the divergence of the respective Noether current is not zero and becomes

∂µA
0
µ =

1√
2Nf

ψγ5Mψ +
√

2Nfω, (2.34)

where the first term is due to the explicit breaking by the masses, analogously to eq. (2.29). The
second term arises from the anomaly and contains the topological susceptibility

ω(x) =
g2s

32π2
F a
µν(x)F̃

a
µν(x). (2.35)

This can be derived from evaluating the so-called triangle diagram, cf. fig. 2.1 and paying attention
to surface terms when shifting integration variables or, more elegantly, by Schwinger’s point-split
method, separating the fermion fields of the axialvector bilinear by an asymptotically small distance
to regulate the divergence and ensuring gauge invariance, see [56, 79] and references therein for
pedagogical derivations. Eq. (2.34)makes the connection to topologyobvious: The contribution to
eq. (2.34) in the chiral limit coming from the left- and right-handed fermion fields can be computed
separately,

∂µA
0
µ|M=0 = ∂µRµ|M=0 − ∂µLµ|M=0 =

√
2Nf (ωR − ωL), (2.36)

and correspond to the number of left- or right-handed zero modes of the Dirac operator at a given
field configuration,

nL/R =

∫
d4xωL/R(x). (2.37)

The total topological charge is given by the integral over the anomaly equation (2.36),

Qtop = nR − nL, (2.38)

which is integer valued when the domain of integration is such that the integrand vanishes at the
boundaries. The value of the topological charge labels the different topological sectors of theQCD
vacuum, i.e., each has the same ground state energy.
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Figure 2.2: Light pseudoscalarmesons (JPC = 0−(+)), consisting of only light and strange quarks as
predicted by the “Eightfold Way” and the quark model. Strangeness increases from bottom (s = −1)
to top (s = 1) while the electric charge is constant along diagonal lines from top-left to bottom-right
and increases from bottom-left (q = −1) to top-right (q = 1). The π3, η8 and the η0 are (predicted)
flavourdiagonalmesons and thequarkbilinears consist of aquark and an anti-quarkof the sameflavour.
Consequently, these carry neither strangeness nor electric charge. Theη0 is the singlet and obtains parts

of its mass from the axial anomaly.

By defining t0 = 1√
2Nf

1, the axial Ward identities (AWIs) eqs. (2.34) and (2.29) can be com-
bined and written in a compact way,

∂µA
a
µ = ψγ5{M, ta}ψ +

√
2Nfδ

a0ω, a = 0, . . . , N2
f − 1, (2.39)

and we will refer to this equation also by the name of the partially conserved axial current (PCAC)
relation.

2.1.6 Quark model and the η/η′

Before the Lagrangian ofQCD itself and in particular the idea of colour gauge symmetrywas estab-
lished, the “zoo” of hadrons was classified in terms of effective quantum numbers, describing the
degrees of freedom of the theory that are consequences of the symmetries discussed in the previous
section. A successful approach and important milestone was the development of the “Eightfold
Way” by Gell-Mann [80]. Hadronic bound states can be classified in terms of flavour quantum
numbers like isospin (I), strangeness (S), etc. for the heavier quarks and quantum numbers that
label total spin (J ), parity (P ) and charge conjugation (C), usually written as JPC .

For the pseudoscalar mesons considered in this work we have JPC = 0−+. Flavour symmetry
predicts eight non-singlet and one singlet particle, since for mesons that consist of a light (q ∈
{u, d, s}) quark and anti-quark, 3 ⊗ 3 = 8 ⊕ 1. These eight non-singlet pseudoscalar mesons
are the three pions π0, π+, π−, four kaons,K0,K

0
,K+ andK− and one predicted octet particle

that is called η8. These can be organized in terms of their “leading” flavour content by pseudoscalar
operators whose hermitian conjugate can create such states from the vacuum,

P a = ψγ5t
aψ, (2.40)
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using t0 = 1√
2Nf

1, a = 0, . . . , 8 and ψ = (ū, d̄, s̄). The naming convention is

π+ ∼ (P 1 + iP 2)† = uγ5d̄, π− ∼ (P 1 − iP 2)† = dγ5ū,

π3 ∼ P 3† = 1
2

(
uγ5ū− dγ5d̄

)
,

K+ ∼ (P 4 + iP 5)† = uγ5s̄, K− ∼ (P 4 − iP 5)† = sγ5ū,

K0 ∼ (P 6 + iP 7)† = dγ5s̄, K
0 ∼ (P 6 − iP 7)† = sγ5d̄,

η8 ∼ P 8† = 1√
12

(
uγ5ū+ dγ5d̄− 2sγ5s̄

)
,

η0 ∼ P 0† = 1√
6

(
uγ5ū+ dγ5d̄+ sγ5s̄

)
.

(2.41)

These nine mesons are listed and arranged by their quantum numbers in fig. 2.2. The eight non-
singlet mesons are the Goldstone-bosons of the breaking of SU(3)L × SU(3)R → SU(3)V dis-
cussed in the previous section and are indeed relatively light compared to other (non-pseudoscalar)
mesons with the same quark content. The unflavoured vector mesons, called the ρ mesons, have
masses around Mρ ≈ 770MeV which is large compared to the pseudoscalar pions, Mπ± ≈
139MeV. In the limit of vanishing quark masses eq. (2.30) implies that all non-singlet mesons
(a = 1 . . . 8) become massless:

pµ〈Ω|Aa
µ|M(p)〉 = ip2(p)F a

M
mf→0
−−−−→ 0, (2.42)

due to ∂µAa
µ = 0 in that case. Since F a

M 6= 0, it follows that p2 = 0 and the mass in the chiral
limitMM = 0 as is expected for the Goldstone bosons. We denote the state of a pseudoscalar
mesonM with four-momentum p as |M(p)〉 and imply that the current is chosen such that the
matrix element does not vanish at finite quark masses (e.g., a = 3 forM = π0, etc.).

The situation is different for the (hypothetical) singlet that arises from the breaking of the axial
U(1)A symmetry and for which a quarkmass independent contribution persists in the chiral limit,
cf. eq. (2.39),

pµ〈Ω|A0
µ|η0〉 = ip2F 0

η0

mf→0
−−−−→

√
6〈Ω|ω|η0〉, (2.43)

where we identify the rest mass of the singletM2
0 = p20 in the chiral limit. For this reason, the

chiral anomaly increases the mass of the singlet η0 compared to the other non-singlet pseudoscalar
mesons.

Therefore, in the Nf = 3 chiral limit — or the symmetric limit, where all quark masses are
equal andM = m1 commutes with any other matrix — the π0 is generated solely by the a = 3

pseudoscalar current, |π0〉 = P 3†|Ω〉 = ψγ5t
3ψ|Ω〉, the |η〉 = |η8〉 = P 8†|Ω〉 is a pure octet

and the |η′〉 = |η0〉 = P 0†|Ω〉 is a pure singlet state. Elsewhere in the quark mass plane, the re-
maining SU(3) flavour symmetry is explicitly broken, since the strange quark is much heavier than
the light (up and down) quarks and the following complication arises: The π3, η8 and η0 all have
the same flavour quantum numbers and are linear combinations of the quark model predictionsπ0η

η′

 =

(
R(θπ) 0

0 1

)(
1 0
0 R(θP )

)π3η8
η0

 , (2.44)

where θπ = O(m2
d−m2

u) and θP = O(2m2
s −m2

u−m2
d) are the angles in the 2×2 orthogonal

transformation
R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
. (2.45)

Since the isospin breaking effects O(m2
d − m2

u) are small relative to the strange quark mass, the
neutral pion receives almost no contributions from the octet and singlet currents which involve
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strange quarks and π0 ≈ π3 to a very high precision. For the η and η′, however, SU(3) breaking
is more significant and this has the consequence that the physical (mass eigen-) states observed in
nature are far away from the expected flavour states. Hence, the simple quarkmodel fails to predict
their masses, i.e., θP 6= 0.

Historically, this became known as “mixing” of the η and η′ but it should not be confused
with state mixing as, for example takes place between theK0 and theK0 which both are physical
states (with different flavour quantumnumbers) and can oscillate between these by physical (weak)
processes. In contrast, the physical particles here are distinct η and η′ states and both contain singlet
(η0) and octet (η8) contributions, ifms 6= m`. In this thesis, we frequently adopt this jargon of
mixing, but it should be understood as described here.

There is a further limitation of the quark model: It does not predict gluonic and exotic (tetra-
and pentaquark) states and contributions from heavier quarks. Glueballs — gluonic bound states
— can have the same quantum numbers and, again, contribute to the physical states. Also, heavier
quarks contribute to the physical η and η′ states, but their effect is small. The argument is the same
as why the neutral pion does not “see” the strange quark: the mass of the charm is much heavier
than the valence light quarks.

2.2 Discretization
Asdiscussed in sec. 2.1.3, the physics in a low energy regime ofQCDcannot be studied using pertur-
bation theory, i.e., by expanding in the coupling constant. This prevents the study of, e.g., vacuum
effects and hadron spectroscopy. Among the non-perturbative approaches toQCD, the lattice for-
mulation, based on early ideas by Kenneth Wilson [81], is the most popular as it enables ab initio
calculations of QCD observables starting from the Lagrangian. To this end, the fields are put on a
lattice— fermion fields on the sites and the gluonic link fields on the connections between the sites
— with finite lattice spacing and extent. This serves as a UV-regulator of the theory and enables
computations by using only a finite number of space-time points. The regulator must be removed
in the end by taking the continuum limit and renormalization. This topic will be discussed in
sec. 2.4.

In this section themain concepts of latticeQCDare introduced, starting from the path integral
formulation and possible discretizations of the gauge fields and fermions. Although the focus is
put on the actions used for the generation of the ensembles in this work, we mainly discuss the
bare fundamentals that can also be found in text books, e.g. [57–59]. The discussion of the unique
features of the simulation efforts undertaken in the coordinated lattice simulation (CLS) initiative
and a presentation of the ensembles is deferred to ch. 3.

2.2.1 Path integral formulation of QCD

The path integral formalism [82, 83] provides a prescription to quantize a classical Lagrangian L,
and allows the calculationof expectationvalues 〈O〉of arbitrary (usually non-local), gauge invariant
operatorsO that dependongeneral fieldsφ, . . . (for themomentwe ignore complications that arise
from fermion and non-abelian gauge fields),

〈O〉 = 1

Z

∫
Dφ . . . O(φ, . . . ) exp (−S[φ, . . . ]) , (2.46)

with the partition function

Z =

∫
Dφ . . . exp (−S[φ, . . . ]) , (2.47)
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P
(1)
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Figure 2.3: Gauge loops in the µ̂ − ν̂-plane that contribute to the Wilson (P (0)
µ,ν ) and Lüscher-Weisz

(P (0)
µ,ν and P (1)

µ,ν ) gauge actions. The two rectangular loops with different arrow shapes on the right-
hand side are summed over and both contribute to P (1)

µ,ν , see eq. (2.57).

where we have already performed the Wick rotation to imaginary times x0 7→ −ix0 to render the
integrand real and finite2. Integration over group valued fields is according to the corresponding
Haarmeasure and over all possible field configurations, weighted by the corresponding Boltzmann
factor exp(−S[φ, . . . ]). The direct evaluation of this integral is impossible and can only be esti-
mated stochastically by using Monte-Carlo methods, which will be discussed below.

The action S is a suitable discretization of the QCD action in Euclidean space-time so that all
coordinates have been replaced by integer multiples of the lattice spacing a,

xµ = anµ, 0 ≤ nµ < Nµ = Lµ/a, nµ ∈ Z, (2.48)

whereLµ is the lattice extent in direction µ̂ andNµ the respective number of sites. We frequently
refer to the time direction with t = x0. In order to work with a finite number of lattice points,
boundary conditions on the fields are put in place. In this work, we will freely replace anµ by xµ,
even when the discretized space-time coordinates are meant.

The computation of the lattice action then amounts to summing over the lattice and recovers
the (Euclidean) continuum action Scont in the continuum limit, a→ 0,

S[φ(n), . . . ] = a−4
∑
n

L[φ(a, n), . . . ] → Scont =

∫
d4xLcont[φ(x), . . . ]. (2.49)

Just like the Lagrangian, eq. (2.1), the action can be split into a gluonic and fermionic parts for each
flavour,

S[U, {ψf}] = SG[U ] +
∑
f

Sf [U,ψf ]. (2.50)

The choices for SG and Sf are not unique and different choices may differ by their discretization
and how they approach the continuum limit. In the following suitable choices for each of the terms
will be discussed.
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2.2.2 Gauge invariance, link fields and gauge action

We now turn to the concrete form of lattice actions, starting with the gauge part. Clearly, any
action must obey gauge invariance and the straight-forward way is to discretize the (continuum)
gauge transporters, eq. (2.8),

G(x, y) = P exp

(
i

∫
C(x,y)

Aµdsµ

)
, (2.51)

where P is the path ordering operator, the (bare) coupling g0 has now been absorbed into the
definition of the gluon field,Aµ 7→ 1

g0
Aµ, and C(x, y) are paths connecting space-time points x

and y. Any closed loop is invariant under gauge transformations Ω due to the unitarity and the
behaviour of the gauge transporters under gauge transformations, eq. (2.5).

On the lattice, this can be achieved by introducing oriented variables, linking two sites x and
x+ aµ̂,

Uµ(x) = exp(iaAµ(x+ aµ̂/2)) ∈ SU(3), (2.52)

where the path ordering is irrelevant for a → 0 andAµ(x+ aµ̂/2) is the discretized and rescaled
version of the gluon field. Just as its continuum counterpart, eq. (2.8), the gauge field Uµ(x) is
SU(3) group-valued and it “lives” on the links between every lattice point, i.e., the link field consists
ofNd ×N2

c ×
∏
Nµ complex numbers, whereNd = 4 is the dimension of space-time.

The simplest closed loop— going one hop forward and then back— is

Uµ(x)U−µ(x+ aµ̂) = = 1 (2.53)

and thus
U−µ(x+ aµ̂) = U−1

µ (x) = U †
µ(x). (2.54)

The first non-trivially closed path is the plaquette

P (0)
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)U †

µ(x+ aν̂)U †
ν (x), (2.55)

depicted in the left panel of fig. 2.3.
This enables us to write down the simplest discretization of the Yang-Mills action (assuming

periodic boundary conditions), the Wilson gauge action

SG,W [U ] =
β

6

∑
x

∑
µ<ν

Re tr
(
1− P (0)

µν (x)
)
, (2.56)

where β = 6/g20 .
It can be shown that this definition is already free of O(a) effects and only higher order de-

viations need to be removed when taking the continuum limit. Discretization effects can be re-
duced [84] by including planar loops that extend over two lattice spacings

P (1)
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)Uν(x+ aν̂ + aµ̂)U †

µ(x+ 2aν̂)U †
ν (x+ aν̂)U †

ν (x)

+ Uµ(x)Uµ(x+ aµ̂)Uν(x+ 2aµ̂)U †
µ(x+ aµ̂+ aν̂)U †

µ(x+ aν̂)U †
ν (x). (2.57)

2When studying physics at, e.g., non-zero chemical potential or theta term, the action after Wick rotation to Eu-
clidean times acquires an imaginary contribution and gives rise to the sign problem, making it hard to integrate numer-
ically using Monte-Carlo methods due to the oscillatory integrand. We will not be concerned with these simulations in
this thesis.
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The inclusion of these rectangles in the action is known as Lüscher-Weisz action

SG,LW [U ] =
β

6

∑
x

∑
µ<ν

[
c0 tr

(
1− P (0)

µν (x)
)
+ c1 tr

(
1− P (1)

µν (x)
)]
, (2.58)

where ci are improvement parameters that need to be normalized such that c0 + 8c1 = 1 and
c0 > 0. The case c0 = 1 and c1 = 0 corresponds to the Wilson plaquette action SG,W . The
perturbatively determined tree-level values are c0 = 5

3 and c1 = − 1
12 [85]. This removes the

bulk of O(a2) effects but for further improvement a non-perturbative determination is needed.
There exists a choice based on a renormalization group analysis [86]. However, any modification
of the gluonic actionwill also change the renormalization of fermionic observables as it changes the
gluon propagator and, hence, to avoid this dependency, we stick with themore generally applicable
tree-level coefficients.

2.2.3 Fermion discretization

The action for a fermion of flavour f within eq. (2.50) reads

Sf [U,ψ] = a4
∑
x

ψf (x)Dfψf (x), (2.59)

with a suitable discretizationof themassiveDirac operatorDf that acts on fermionfieldsψf . Other
than the gauge links, fermion spinors are positioned on the sites of the lattice and have colour and
Dirac components. Their field on a finite lattice consists ofNc × 4 ×

∏
Nµ complex numbers.

They are Grassmann valued to ensure Fermi-Dirac statistics, i.e., they anticommute{
ψ,ψ′} =

{
ψ, ψ

′}
=
{
ψ,ψ′} = 0, (2.60)

where ψ and ψ′ are arbitrary fermion spinors.
One possible discretization of the Dirac operator and a particularly popular choice is given

by the Wilson formulation[81] with an additional Sheikholeslami-Wohlert term [87] forO(a) im-
provement,

Df =
1

2
γµ(∇∗

µ +∇µ)−
a

2
∇∗

µ∇µ +
a

4
cSWσµνF̂µν +m0,f , (2.61)

where σµν = i
2 [γµ, γν ]. The forward and backward linear approximations ∇µ and ∇∗

µ of the
covariant derivative, eq. (2.10), are defined in terms of their actions on fermion spinors

∇µψ(x) =
1

a
(Uµ(x)ψ(x+ aµ̂)− ψ(x)) ,

∇∗
µψ(x) =

1

a

(
ψ(x)− U †

µ(x− µ̂)ψ(x− aµ̂)
)
. (2.62)

The first sum in eq. (2.61) and the mass term corresponds to the straight-forward discretization of
the continuum Dirac operator. This naive discretization alone would, however, generate fifteen
fermion doublers as can be shown by looking at the degeneracy of the zero modes. To cure this
problem the first term in the second sum is introduced that shifts the doublers away — making
them infinitely heavy — when approaching the continuum limit. This, however, breaks chiral
symmetry explicitly and results in an additive renormalization of the quark masses. At the same
time, this introducesO(a) discretization artefacts that can be removed by tuning the improvement
coefficient cSW that multiplies the last term of eq. (2.61). To leading order in perturbation theory
we have cSW = 1, but higher orders depend on the gauge action and coupling. A non-perturbative
determination for the tree-level improved Lüscher-Weisz gauge action is available in [88].
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ν̂

µ̂

x

Figure 2.4: “Clover leaf” products that add as individual terms toQµν . Sites are not drawn, and each
link extends one lattice unit.

The construction of the cSW term follows the Symanzik improvement description and is ob-
tained by including the lowest contributingO(a) terms. This amounts to a symmetrized “clover-
leaf” shaped sum of gauge loops,

F̂µν(x) =
−i
8a2

(Qµν(x)−Qνµ(x)) , (2.63)

where the leafs are symbolized by the loops in fig. 2.4 and can bewritten in terms of plaquette sums,
see eq. (2.55),

Qµν(x) = P (0)
µ,ν(x) + P

(0)
−µ,ν(x) + P

(0)
−µ,−ν + P

(0)
µ,−ν . (2.64)

It should be noted that the Dirac operator depends on the flavour only through themass term.
TheDirac operator (setting cSW = 0 for themoment) can be rewritten using a flavour independent
hopping term

H(x)ψ(x) =
∑
µ

[
(1− γµ)Uµ(x)ψ(x+ aµ̂) + (1+ γµ)U

†
µ(x− aµ̂)ψ(x− aµ̂)

]
, (2.65)

that collects all terms of the Dirac operator that are one “hop” away from x. Themass dependence
can then be absorbed in constants αf = m0,f + 4/a and κf = (2am0,f + 8)−1. With these
abbreviations the massive Dirac operator of flavour f reads

Df = αf (1− κfH). (2.66)

The global prefactor αf can be absorbed in the definition of the fermion fields of that particular
flavour f . Then the hopping parameter κf is the onlymass-dependent parameter and used to tune
the quark mass. The form of the Dirac operator in eq. (2.66) can be used to expand around small
hopping parameters (corresponding to large quark masses) and will be of use later on.

Due to the explicit breaking of chiral symmetry, the quarkmasses defined, for example, through
the PCAC relation, eq. (2.39), do not vanish whenm0,f = 0 but at the critical quarkmassm0,f =
mcr,f . The value of the critical mass is a priori unknown and depends on the lattice spacing. It has
been determined for our action and range of lattice spacings in [89, 90].

These complications would be absent in fermion discretizations that preserve chiral symme-
try. However, it has been shown by Nielsen and Ninomiya [91] that there is in fact no fermion
discretization in four dimensions that preserves chiral symmetry and is free of doublers, i.e., there
is no discretized Dirac operator that obeys γ5D +Dγ5 = 0 exactly at a finite lattice spacing. This
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turned out to be the lattice equivalent to the Adler–Bell–Jackiw anomaly, i.e., a fermion discretiza-
tion that has these desired properties would not reproduce the anomaly in the continuum; the
anomaly would exactly be cancelled by the doublers [92]. However, there exist other fermion for-
mulations that are chiral in the sense that they obey the Ginsparg-Wilson equation [93],

Dfγ5 + γ5Df = aDfγ5Df (2.67)

and thus allow to assess chiral properties even at finite lattice spacing. This is particularly important
when studying, e.g., spontaneous chiral symmetry breaking. Prominent discretizations are those
by Neuberger [94] and domain wall fermions[95].

All of these discretizations, including the Wilson one discussed above, exhibit another impor-
tant symmetry that can easily be shown from, e.g., eq. (2.61), and that is γ5-hermiticity,

D†
f = γ5Dfγ5. (2.68)

In consequence, the Dirac operator has only complex conjugate pairs of eigenvalues and the quark
determinant is real, which is an important property for the simulation of dynamical QCD. Fur-
thermore, this property allows for the cheap and efficient computation of point-to-all quark prop-
agators, inverting the Dirac operator on an (extended) source as will be discussed in sec. 2.3.

2.2.4 Dynamical simulations with three quarks

Having suitable discretized actions at hand the actual simulations need to be performed. In this
section we briefly sketch the main complications that arise from dynamical simulations with three
quarks (that is, two degenerate light quarks and one typically heavier strange quark) and the meth-
ods that are used to solve these issues. Many of the technical details can be found in [96], but
important detail is also given in [97].

The numerical task is to evaluate the integral in eq. (2.46) and the partition function to com-
pute expectation values of observables in the end. This is done by importance sampling, generating
gauge configurations according to the Boltzmann weight. In the case of pure gauge theories corre-
sponding to no dynamical— infinitely heavy— quarks, this is relatively simple, because the gauge
action is local and updates can be performed more easily, e.g. using the heatbath algorithm [98].
The matter becomes more complicated with fermions. Since these are Grassmann valued objects
they cannot be simulated directly but need to be integrated out [99, 100]

Z =

∫
D[U ]

∏
f

D [ψf ]D
[
ψf

]
exp (−S[U, {ψf}]) =

∫
D [U ]

∏
f

det (Df ) exp (−SG) ,

(2.69)
where for the moment we assume that all Dirac operators have only eigenvalues with positive real
parts and the fermionic parts have become fermion determinants so that only the gauge action
remains in the exponent. Naturally, the determinants involve all entries of the Dirac matrices and
thus are intrinsically non-local.

Because det(Df ) is real, the quantity

p[U ] =
1

Z
exp(−S[U, {ψf}]), where S[U ] = SG −

∑
f

ln det (Df [U ]) (2.70)

can be interpreted as a probability density that can be integrated out to obtain expectation values
of observables

〈O〉 =
∫
D[U ]p[U ]O[U ]. (2.71)
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In practice this integral is approximated by averaging over a large-enough number of representative
gauge configurations. The accuracy of this approximation can be estimated by computing statis-
tical errors, where the autocorrelation in Monte-Carlo time among measurements must be taken
into account, cf. app. B.

The evaluation of the fermion determinants can be done cost-efficiently by stochastic estima-
tion, resorting to pseudo-fermions φi that are no longer Grassmann numbers, but Gaussian dis-
tributed random variables. The combined fermion determinant for two mass-degenerate quarks
can be evaluated using

| detDf [U ]|2 ∝
∫
D[φ] exp

[
−φ†(D†

f [U ]Df [U ])−1φ
]
, (2.72)

whereD[φ] =
∏

x,a,α dφα,a(x)dφ
†
α,a(x) and thus it can be approximated by random sampling.

This form can also be used to derive fermion forces that are needed in hybridMonte-Carlo (HMC)
simulations [101], where one integrates themolecular-dynamics equations, following the trajectory
given by the canonical momentum and field coordinates over somemolecular dynamics time τ . At
the end of each such trajectory, the proposed field update is accepted or rejected by a Metropolis
step, evaluating the true change in action.

Still, the force originating from the fermionic sector requires inversions of the Dirac operator
and is more expensive to compute than that from the gauge sector while giving only comparably
small corrections; therefore, it is advantageous to simulate the different parts of the action with
different time step resolutions [102]. One can go further and split the same flavour into two deter-
minants evaluated with separate pseudofermions [103]

∣∣ detDf

∣∣2 = det(D†
fDf + µ2) det

D†
fDf

D†
fDf + µ2

, (2.73)

with an artificial “twisted” mass µ. The same relation can be used recursively to factorize the first
determinant further, allowing arbitrarily many frequency splittings that need to be evaluated with
separate pseudofermions but with decreasing frequency in the trajectory. If chosen appropriately,
the first determinant is almost insensitive to the true quark mass, its force dominates in the HMC
trajectories and suppresses eigenvalue fluctuations towards very small values [104], thereby avoiding
so-called exceptional configurations and stabilizing the simulations. In practice, a slightly different
factorization turned out to have improved properties which we do not quote here but refer to the
literature [104]. Since the fluctuations of the second determinant are small, it is also possible to eval-
uate it after the simulation, reweighting the generated ensembles with this factor during analysis,
cf. app. B. Using the above factorization in a multiple timestep setup in conjunction with efficient
solvers for theDirac equation thatmake use of the local coherence [105] of lowmodes like algebraic
multigrid [106, 107] or domain decomposition [108, 109] allow for an efficient sampling of the field
space.

The integration of a third non-degenerate flavour raises additional difficulties: Both for the
probabilistic interpretation and for the rewriting intopseudofermions it is essential that the fermion
determinant is positive. This is not ensured forWilson fermions at least at small quarkmasses. The
inclusion of the strange quark is built upon the assumption that the spectral gap of the hermitian
operator Qs = γ5Ds (with real eigenvalues) is large and positive and the physical strange quark
mass is large enough to prevent the eigenvalues from “tunnelling” through the spectral gap to neg-
ative eigenvalues.

In the evaluation of the fermion determinant, |Qs| =
√
Q2

s =

√
D†

sDs is used, and an ap-
proximation is needed for its inversion, i.e., a functionR(Q2

s) that approximates the inverse square
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root and |Qs|R(Q2
s) ≈ 1 within some known range and precision. The Zolotarev rational ap-

proximation is a popular choice, since it allows splitting up the individual terms,

R(X) = A

n∏
i=1

X + a2i−1

X + a2i
, (2.74)

where n is the degree of the polynomials in numerator and denominator and ai and A are fixed
(analytically known) parameters with ai+1 < ai. Eq. (2.74) can be reexpanded in a seriesR(X) =
A
(
1 +

∑n
i=1 ri(X + a2i)

−1
)
and thusR(Q2

s) can be computed by solving the set of equations(
Q2

s + µ2k
)
ψk = φ for k = 1, . . . , n, (2.75)

where µk and the exact form and normalization of the source ψk depend on the parameters of the
approximation. Since the right-hand side is constant, a multishift-solver can be used to solve for all
k at once. The strange quark determinant then can be computed using two pseudo-fermions,

det |Qs| ∝
∫

D[φ1]D[φ2] exp
(
−φ†1

(
|Qs|R(Q2

s)
)−1

φ1 + φ†2R(Q
2
s)φ2

)
, (2.76)

where within the trajectory only the second (φ2) term needs to be evaluated and the first corrects
only for the approximation error. This can be done in an accept-reject step or again by means of
reweighting the simulated action to the true action. The strange reweighting factor corresponding
to the first term is given by

ws = det
(
QsR(Q

2
s)
)

(2.77)

and requires stochastic evaluation, see [97] for details. The evaluation in practice assumes a positive
spectrumdue to the large strange quarkmass for efficiency reasons but the reweighting factor is not
protected against negative eigenvalue fluctuations ofQs. In actual simulations configurationswith
negative reweighting factors have been observed and in this case the reweighting factor needs to be
corrected by flipping the sign accordingly [110].

Adding the additional non-degenerate quark in theHMCby using the rational approximation
is called RHMC and allows to simulate also single (heavy) quark flavours instead of only mass de-
generate pairs of quarks. This enables the efficient simulation of Nf = 2 + 1 flavour QCD to
generate gauge configurations that can be analysed in many contexts.

2.3 Hadron spectroscopy on the lattice
In this section, we describe the steps necessary to compute hadronmasses and localmatrix elements
on the individual configurations that were generated in the Monte-Carlo process. We emphasize
peculiarities of flavour diagonal mesons like the η and η′: First, suitable interpolating operators are
introduced that can excite (both the) η and η′ states, a fact that is often referred to as “mixing” of
the η and η′. AfterWick contractions, propagators are built that can be used to extract masses and
amplitudes. Subsequently, we set up our conventions and definitions for the four independent de-
cay constants of the η/η′ system anddiscuss how these are related to localmatrix elements extracted
from the propagators.

2.3.1 Interpolating operators

We consider interpolators Ô~p that destroy hadron states with the desired quantum numbers and
spatial momentum ~p. Their hermitian conjugates create such states from the vacuum,

Ô†
~p|Ω〉 = |Φ〉, (2.78)
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where |Φ〉 are field configurations that generally do not correspond to a particular mass eigenstate
but rather to a linear combination of states with the same quantum numbers.

We excite pseudoscalar states with JPC = 0−+ using the corresponding pseudoscalar interpo-
lators,

Pa
~p (t) = a3

∑
~x

exp(−i~p · ~x)Pa(t, ~x), where Pa(x) =
√
2ψ̃(x)taγ5ψ̃(x) (2.79)

where we keep a notation similar to the continuum eq. (2.40) and ψ̃(x) is a usually spatially-
extended functional of the local fermion fields, organized in a vector ψ = (u, d, s)> and centered
around x = (t, ~x). The construction of extended operators will be described in the subsequent
section.

The quark flavour structure is determined by U(3) flavour irreducible representations, see
eq. (2.41) for the flavour structures corresponding to individual pseudoscalar meson states. The
flavour diagonal combinations are

P3 =
1√
2

(
Pu − Pd

)
, (2.80)

P8 =
1√
6

(
Pu + Pd − 2Ps

)
, (2.81)

P0 =
1√
3

(
Pu + Pd + Ps

)
. (2.82)

where Pq = q̃γ5q̃ and q̃ ∈ {ũ, d̃, s̃}. Within our simulations, the up and down quarks are set to
equal massesmu = md and we refer to them as “light” quarks (compared to the strange quark)
and writeP` =

1√
2

(
Pu + Pd

)
. As a result of this approximation of exact isospin symmetry, any

correlators that emerge fromWick contractions with the triplet interpolator P3 will immediately
cancel out.

2.3.2 Quark smearing

To increase the overlap of the fermion sources and sinks with the physical states, spatially extended
operators are employed, denoted by calligraphic letters, e.g., Pa. These are related to local cur-
rents by replacing the local fermion fields ψ with smeared quark fields, ψ̃ = φsψ, where φ is the
Wuppertal smearing kernel [111]

φ(x, y) =
1

1 + 6δ

δ(x, y) + δ

±3∑
j=±1

Ũj(x)δ(x+ â, y)

 . (2.83)

The width of the smearing is determined by the parameter δ and a common choice is to keep it
fixed at δ = 0.25. The smearing radius is then controlled by the number s of applications of the
smearing kernel to the fermion vector. An optimal smearing radius ensures dominance of the states
of interest and thus the optimal choice of s depends on the lattice spacing, the quark masses and
the particle state that should be extracted.

In eq. (2.83), Ũµ(x) is a spatially APE smeared [112] version of the gauge field

Ũµ(x) = argmaxU ′
µ
Re
(
U ′
µV

†
µ (x)

)
, (2.84)

which projects a smoothed gauge link Vµ(x) back onto SU(3). This is necessary since Vµ(x) is
no longer in the group manifold because it is defined in terms of a sum over neighbouring link
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Figure 2.5: Graphical representation of connected and disconnected contributions to meson two-
point functions, cf. eq. (2.88).

variables,
Vµ(x) = (1− α)Uµ(x) +

α

6

∑
ν 6=µ

Cµν(x), (2.85)

where α is a weight parameter andCµν(x) is a sum over staples,

Cµν(x) = Uν(x)Uµ(x+ aν̂)U †
ν (x+ aµ̂)

+ U †
ν (x− aν̂)Uµ(x− aν̂)Uν(x− aν̂ + aµ̂) (2.86)

= + .

The smeared gauge fields are only used in the construction of extended quark sources and sinks
but not in the Dirac operator, since this would change the details of the fermion action and imply
a different set of (unknown) improvement parameters.

2.3.3 Propagators and disconnected contributions

Having suitable operators at hand, propagators can be constructed by evaluating the fermionic
expectation value

〈Bi(t+ tin)B†
j(tin)〉, (2.87)

creating states at some initial time tin and then destroying them at a later time t + tin. For the
discussion in this section, we drop spatial coordinates and momentum projection and focus on
the Euclidean times. The interpolators Bi may be any combination of suitable operators, e.g., the
pseudoscalar interpolatorsPa orPq . Wewill also compute local matrix elements and in these cases
local axialvector currents are chosen at the sink time t+ tin.

Using Wick’s theorem, two-point functions as eq. (2.87) can be related to traces over inverses
of the Dirac operators, making use of the Grassmannian nature of the fermion fields. If the inter-
polating operators Bi are single biquark fields, the following simple relation is obtained:

〈Bi(t+ tin)B†
j(tin)〉 = 〈qfi(t+ tin)Γiq̄f ′

i
(t+ tin)q̄f ′

j
(tin)Γjqfj (tin)〉

= qfi(t+ tin)Γiq̄
f ′
i (t+ tin)q̄

f ′
j (tin)Γjq

fj (tin)

= δfi,f ′
j
δf ′
i ,fj

C̃
Γi,Γj
fi,f ′

i
(t+ tin, tin)−δfi,f ′

i
δfj ,f ′

j
D̃

Γi,Γj
fi,fj

(t+ tin, tin), (2.88)

where we refer to the quark flavours of interpolator Bi with f
(′)
i ∈ {u, d, s}. Likewise, we label

the respective Dirac structures with Γi ∈ {γ5, γµγ5}.
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If the interpolators are flavour diagonal, fi = f ′i and fj = f ′j , disconnected contributions D̃
arise that are built by correlating two disconnected loops (one-point functions),

D̃
Γi,Γj
si,sj
fi,fj

(t+ tin, tin) = LΓi,fi
si (t+ tin)L

Γj ,fj
sj (tin), (2.89)

where si label the smearing applied to the sources and sinks. Each of these loops contains a trace
over space, spin and colour degrees of freedom, so that the quark line closes at the same space-time
point,

LΓ,f
s (t, ~x) = a3

∑
~x,~y,~z

trΓφs(x, y)D−1
f (y, z)φs(z, x), (2.90)

where φ is the smearing kernel defined in eq. (2.83). The large size of the Dirac matrix,Df , makes
an explicit inversion in actual simulations prohibitively expensive and practically impossible and so
the above trace is estimated stochastically. This and additional noise reduction techniques are the
subject of sec. 4.1.

The expression (2.88) also contains the connected correlation function C̃ . This part can be
computed very efficiently by exploiting the γ5-Hermiticity of the Dirac operator, eq. (2.68), and
inverting on a smeared point source∆s

xin,αin,ain(x) = φs(x, x∈)δ(α, αin)δ(a, ain). The point-to-
all propagatorM s

f (x) = D−1
f (x, y)∆s(y) is a matrix in Dirac and colour space but only a vector

in coordinate space and can be used to construct connected correlation functions, starting at a fixed
source position xin:

C̃
Γi,Γj
fi,fj
si,sj

(t, ~p) = a3V3
∑
~x

e−i~p·(~x−~xin)
〈
Γiγ5φ

siM si
fi
(x)γ5Γjφ

sjM
sj
fj
(x)
〉
, (2.91)

where a3V3 = a3N1N2N3 is the spatial volume of the lattice. We suppress the dependence of C̃
on the source coordinates xin and in general the signal can be improved by averaging over several
source positions to take better advantage of large lattice volumes.

We simulateNf = 2+ 1 flavours, and so we make use of isospin symmetry by setting C̃i,j
`,` :=

C̃i,j
u,u = C̃i,j

u,d = C̃i,j
d,u = C̃i,j

d,d (combining the irrelevant smearing and Dirac indices at the source
and sink to multi-indices i, j), and analogously for the disconnected contributions D̃. For generic
interpolators J q

i , for example J = P for the pseudoscalar interpolators that are frequently used
in this work and in the flavour basis, we obtain

〈J `
i J `

j 〉 = C̃i,j
`,` − 2D̃i,j

`,`, (2.92a)

〈J `
i J s

j 〉 = − 2√
2
D̃i,j

`,s, (2.92b)

〈J s
i J s

j 〉 = C̃i,j
s,s − D̃i,j

s,s, (2.92c)

where the flavour combinations are those defined after eqs. (2.80) to (2.82). It is straight-forward
to apply eq. (2.88) to sums of biquark fields, for example to the octet and singlet combinationsJ 8

andJ 0,

〈J 8
i J 8

j 〉 =
1

3

(
C̃i,j
`,` + 2C̃i,j

s,s − 2D̃i,j
`,` + 2D̃i,j

`,s + 2D̃i,j
s,` − 2D̃i,j

s,s

)
, (2.93a)

〈J 8
i J 0

j 〉 =
√
2

3

(
C̃i,j
`,` + C̃i,j

s,s − 2D̃i,j
`,` + 2D̃i,j

`,s − D̃i,j
s,` + D̃i,j

s,s

)
, (2.93b)

〈J 0
i J 0

j 〉 =
1

3

(
2C̃i,j

`,` + C̃i,j
s,s − 4D̃i,j

`,` − 2D̃i,j
`,s − 2D̃i,j

s,` − D̃i,j
s,s

)
. (2.93c)
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Itwill turnout tobeuseful to build correlatorsmixing the octet/singlet and the flavourbases. These
reduce to

〈J 8
i J `

j 〉 =
√
3

3

(
C̃i,j
`,` − 2D̃i,j

`,` + 2D̃i,j
`,s

)
, (2.94a)

〈J 0
i J `

j 〉 =
√

2

3

(
C̃i,j
`,` − 2D̃i,j

`,` − D̃i,j
`,s

)
, (2.94b)

〈J 8
i J s

j 〉 =
1√
3

(
C̃i,j
s,s − D̃i,j

s,s − 2D̃i,j
s,`

)
, (2.94c)

〈J 0
i J s

j 〉 = −
√

2

3

(
C̃i,j
s,s − D̃i,j

s,s + D̃i,j
s,`

)
. (2.94d)

2.3.4 Analysis of two-point functions

The explicit forms in the previous section allow to evaluate correlators on the lattice, employing
connected and disconnected contributions of light and strange flavours to the correlation func-
tions. In this section the connection to physical eigenstates and their analysis is made. To this end
correlators can be written in terms of the transfer operator T which shifts all field operators by one
lattice unit in the positive time direction [113]. It is related to the Hamiltonian by T = exp(−aH)
with eigenvalues exp(−aEn) and has eigenstates denoted by |n〉 for n ∈ Z+. We choose the
following normalization

〈m, ~p ′|n, ~p 〉 = 2En(~p)V3δ~p,~p ′δm,n, (2.95)

where ~p and ~p ′ are the spatial momenta of the states.
Using the multiple applications of the transfer operator, correlators like eq. (2.87) can be spec-

trally decomposed into

〈Bi(t)B†
j(0)〉 = 〈B̂iT

t/aB̂†
j〉 =

∞∑
n=1

〈Φi|n〉 exp(−tEn)〈n|Φj〉, (2.96)

where we implicitly made use of translational invariance to average over all available initial times
tin and the hat indicates that the operators are time independent and defined in the Heisenberg
picture. Hence, all time dependence is contained in the exponential factors, the eigenvalues of the
transfer operator. Since the currents considered in this work do not possess a vacuum expectation
value, i.e. 〈Φi|Ω〉 = 0, we do not consider the vacuum state in the counting and identify the lowest
energy eigenstatewith the ground state energy of the physical state that possesses the corresponding
quantum numbers, for example |0〉 = |η〉, |1〉 = |η′〉, etc.

To extract energies of states, the left-hand side of eq. (2.96) is evaluated on the lattice and then
fitted to effective parametrizations using the right-hand side, necessarily truncating the sum at some
finite stateN . A precise extraction of the ground state (and also higher lying states) is challenging
if there exist near-by excitations and the achievable precision depends crucially on both the energy
differences and the relativemagnitudes of the time-independent amplitudes 〈Φ|n〉. These describe
the overlap of the created interpolating function with the n-th state and depend on the details of
the lattice calculation, i.e., on the exact choice of the interpolator and particularly also on the quark
smearing employed. This allows for some tuning, enhancing some states over others that would
otherwise disturb the extraction of the states of interest. Such improvements can be achieved by
finding an optimal smearing radius and by combining several interpolating functions Bi. In that
case eq. (2.96) is amatrix equation and extracting physical states |n〉 and their energiesEn amounts
to a diagonalization of this matrix. In actual computations, the infinite sum must be truncated at
some finite highest resolvable stateN leading to truncation errors ofO (exp(−(EN+1 − EN )t)).
The optimal truncationN is crucial for a reliable extraction of the lowest states: On the one hand,
if N is too small, higher states spoil the lower states. On the other hand, if N is too large the
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multi-exponential cannot be reliably resolved from the finite statistics of the data. Wewill focus on
techniques for precise extractions of physical states in sec. 4.2.3.

2.3.5 Local matrix elements and decay constants

Physical states can also be destroyed by local currents and their matrix elements describe the cou-
pling to the corresponding downstream decay processes. For example, in the case of charged pseu-
doscalar meson states, a flavour changing vector bosonW±

µ can be emitted that may further decay
into a lepton-neutrino pair. Flavour diagonal pseudoscalar mesons can decay strongly, i.e., through
annihiliation into gluons, and contain a singlet component opening the door to anomalous decays,
see fig. 2.1.

We recall the definition eq. (2.30) of decay constants F a
M of a pseudoscalarM(p) with four-

momentum p,
〈Ω|Aa

µ|M(p)〉 = ipµF
a
M, (2.97)

where forM = η andM = η′ in the isospin limit singlet (a = 0) and octet (a = 8) currents
contribute and the axialvector currents are defined in the continuum in eq. (2.28). We will discuss
the corresponding renormalized and improved current definitions for the lattice discretization in
sec. 2.4.2.

Eq. (2.97)means that theη/η′ system is described by in total four independent decay constants,
a singlet and an octet one for each of the particles. The singlet and octet flavour combinations of
currents are given by

J8 =
1√
12

(
Ju + Jd − 2Js

)
=

1√
6
J ` − 1√

3
Js, (2.98)

J0 =
1√
6

(
Ju + Jd + Js

)
=

1√
3
J ` +

1√
6
Js, (2.99)

where J ∈ {Aµ, P} and J ` = 1√
2

(
Ju + Jd

)
. Note that these differ from the extended quark

interpolators eqs. (2.80) to (2.82) by 1/
√
2.

This normalization corresponds to Fπ0 ≈ 92MeV at the physical point and the definition is
related to fπ byFπ0 = fπ/

√
2which is typically more popular in the lattice literature. Since there

is practically no strong mixing to the neutral pion, Fπ0 ≈ F 3
π0 . For the charged pions,M = π±,

Fπ+ =
√
2F 1

π+ = −
√
2iF 2

π+ = −
√
2F 1

π− =
√
2iF 2

π− , cf. eq. (2.41), and similarly for the kaons.
Along the symmetric line of exact SU(3) flavour symmetry, where also the strange quark is mass
degenerate,mu = md = ms, this also implies Fπ0 = F 8

η = Fη8 , whereas the singlet decouples
due to the axial U(1)A anomaly, F 0

η′ = Fη0 and F 0
η = F 8

η′ = 0.
In general the four decay constants can also be reparameterized in terms of two decay constants

F 8, F 0 and two mixing angles θ8 and θ0 for each flavour combination,(
F 8
η F 0

η

F 8
η′ F 0

η′

)
=

(
F 8 cos θ8 −F 0 sin θ0
F 8 sin θ8 F 0 cos θ0

)
, (2.100)

where in the exact SU(3) flavour limit, θ8 = θ0 = 0.
As will be discussed in detail in sec. 2.4, the octet and singlet axialvector currents differ in their

anomalous dimensions and renormalize differently. For this reason this definition is the more nat-
ural, whereas from a flavour symmetry perspective another popular choice is〈

Ω
∣∣Aq

µ

∣∣M(p)
〉
= i

√
2F q

Mpµ, (2.101)
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where q ∈ {`, s} labels the flavour. An analogous parametrization to eq. (2.100) can also be intro-
duced in this so-called flavour basis(

F `
η F s

η

F `
η′ F s

η′

)
=

(
F ` cosφ` −F s sinφs
F ` sinφ` F s cosφs

)
. (2.102)

The flavour basis is more suitable when the renormalization scale is a priori unknown, e.g. in phe-
nomenological studies and chiral pertubation theorypredictions fitting to experiments. The reason
is that the difference between φ` and φs is formally an 1/Nc effect and can be neglected for most
phenomenological extractions [114, 115]. The two definitions of the decay constants are related by
an orthogonal transformation(

F 8
M
F 0
M

)
=

1√
3

(
1 −

√
2√

2 1

)(
F `
M
F s
M

)
. (2.103)

2.4 Renormalization and improvement
Since the lattice spacing acts as an ultraviolet regulator for the quantized theory, bare results J(a)
usually diverge when approaching the continuum limit, a→ 0. As in continuum calculations,
the regulator must be removed by renormalizing the respective quantities and matching to a con-
tinuum scheme as, for example, the popular MS scheme. Then, the renormalized combination
Ĵ = ZJ(a)J(a) remains finite in the continuum.

In many cases, results in the continuum still depend on the renormalization scale µ of the pro-
cess under consideration. This dependence is described by the — renormalization scheme depen-
dent— anomalous dimension of the current J ,

γJ(as) = µ2
dZJ

dµ2
= −

∑
n≥0

γ
(n)
J an+1

s . (2.104)

On the lattice renormalization factors ZJ depend not only on the value of the lattice spacing
(through the lattice coupling), but also on the details of the discretization, i.e., on the exact gauge
and fermion actions and on the exact renormalization prescription. Properly renormalized, phys-
ical and measurable results are finite and must agree in the continuum limit but at any non-zero
value of the lattice spacing, differences between renormalization schemes can be expected. The
renormalization of lattice results and the removal of O(a) lattice spacing effects determines how
the continuum limit is approached and how reliable that limit can be taken. The numerical values
of the renormalization factors and improvement coefficients presented in this section are specific
to the action used in the simulations that are presented in ch. 3, but the general discussion is of
broader use and the discussion of linear improvement coefficients is universal for all simulations
with Wilson Clover fermions independent of the gauge action used (which induces only higher
O(a2) lattice spacing effects).

In this section we present the renormalization and O(a) improvement of the quantities that
we focus on in this work, that is local axialvector matrix elements required for the computation of
decay constants. We stress the different renormalization and improvement of singlet (a = 0) and
non-singlet (a 6= 0) currents. The determination of the relevant matrix elements of the η and η′,
see sec. 2.3.5, will be described in sec. 4.3. Later in this work we will also determine meson masses
and gluonic matrix elements. The former are renormalization group invariant and do not require
renormalizationwhereas the renormalizationof the latter ismore complicated anddeferred to ch. 6.
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2.4.1 Improvement of the coupling and taking the continuum limit

The lattice spacing in simulations ofQCDis tunedvia the lattice coupling. Typically, dimensionless
combinations of observables with the lattice spacing are determined, renormalized and converted
to physical units by dividing out the known lattice spacing for that coupling a∗(β). Then, using
these combinations the continuum limit is taken,

Ĵ(a, {mf} = ZJ(a
∗) [anJ(a, {mf})] [a∗(β)]−n a→0−−−→ Ĵ(µ, {mf}), (2.105)

where {mf} represents the (valence and sea) quark mass dependence of the observable, and we
assume a multiplicative renormalization of the observable.

However, there are mass-dependent corrections to the lattice coupling [116, 117],

g̃2 = g̃2(g2, am) = g2
[
1 + bg(g

2)am
]
+O(a2), (2.106)

where am =
∑
mf/Nf . Therefore, the point in the quarkmass plane where the lattice spacing is

defined matters, when we want to keep the lattice spacing fixed over a series of ensembles that vary
in their sea quark masses, see also sec. 3.4.1. In the above equation, bg(g2) is an as yet unknown
improvement coefficient function. However, the one-loop coefficient is known [117],

bg(g
2) = 0.012000(2)Nfg

2 +O(g4). (2.107)

In order to work at a fixed lattice spacing, we would need to increase β when approaching the
physical point. Without a more precise knowledge of bg(g2) and possible higher order effects, this
seems impractical and instead, we write down anO(a)-“improved” lattice spacing,

a(g2, am) = a
(
g2 (1 + bgam)

)
= a(g2, 0) (1 + baam) := a0 (1 + baam) . (2.108)

The relation between the improvement coefficient ba and bg can be derived by integrating out the
lattice β-function for our action [90], and yields inNf = 3 inNf = 3 to leading order,

b(1)a (g2) = − 2π2

β0g2
b(1)g = 0.31583(5) +O(g2), (2.109)

where β0 is the first coefficient of the β-function as defined in sec. 2.1.3.
When taking the continuum limit, it is thus beneficial to extrapolate dimensionless combina-

tions of two observablesO and P instead of combinations with the lattice spacing, eq. (2.105):

ZJ(a)a
nJ(a, {mf})

ZK(a)anK(a, {mf})
a→0−−−→

Ĵ(µ, {mf})
K̂(µ, {mf})

, (2.110)

where it is assumed that J andK have the same mass dimension n or that the auxiliary observable
K has been transformed accordingly. The linear corrections, eq. (2.108), cancel from these ratios
and if the lattice measurements anK and anJ both have no other linear cut-off effects, then the
combination on the left-hand side is also free of linear discretization effects. In this work we are
interested in masses that are automatically free of O(a) effects and decay constants of which the
complete linear improvement will be discussed in the following sections. As auxiliary observable,
we will use the (renormalization group invariant) Wilson flow scale, anK = (a2/t0)

n/2, that
will be discussed further in sec. 3.4. We then extrapolate dimensionless combinations of the Wil-
son flow scale with hadron masses

√
t0MM or decay constants

√
t0F

a
M. Both the observable and

t0/a
2 have beenmeasured on the same ensemble and thus at the same lattice spacing a(g2, am) of

eq. (2.108). Due to the cancellations mentioned above, we then obtain results that are free ofO(a)
effects that stem from the coupling and only need to parametrize the remaining cut-off effectswhen
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taking the continuum limit.

2.4.2 Improvement of η and η′ decay constants

We define unrenormalized pseudoscalar and axialvector local fermion bilinear operators on the lat-
tice,

P̃ a = ψγ5t
aψ, P̃ 0 = ψγ5t

0ψ + agP trFµνF̃µν , (2.111)

Ãa
µ = ψγµγ5t

aψ + acA∂µψγ5t
aψ, Ã0

µ = ψγµγ5t
0ψ + acsA∂µψγ5ψ, (2.112)

where in this case a = 1, . . . , 8 and cA, csA and gP are the mass independent improvement co-
efficients for our action [118]. While the non-singlet improvement coefficient cA has been deter-
mined non-perturbatively [119], its singlet equivalent csA is unknown, and we parametrize it as
csA = cA + δcA, where δcA is of order g4. Also a value of gP is not known for our action. We
denote the singlet current where we set δcA = 0 by Ǎ0

µ and the singlet pseudoscalar current setting
gP = 0 by P̌ 0.

Using the above currents, we first determine unrenormalized and only partially improved decay
constants

F̃ 8
nEn(p) = 〈Ω|Ã8

µ|n(p)〉, (2.113)

F̌ 0
nEn(p) = 〈Ω|Ǎ0

µ|n(p)〉, (2.114)

see eq. (2.97) and the energiesEn(p) of the states |n(p)〉 are defined as the corresponding eigenval-
ues of the transfer operator, eq. (2.96). The technical details of the extraction of physical states |η〉
and |η′〉will be given in ch. 4 and in particular sec. 4.3 for the construction of suchmatrix elements.
It is also useful to define the pseudoscalar matrix elements,

H̃8
n = 〈Ω|P̃ 8|n〉, (2.115)

Ȟ0
n = 〈Ω|P̌ 0|n〉. (2.116)

While H̃8
n is fullyO(a) improved in the chiral limit, Ȟ0

n is still incomplete, cf. eq. (2.111):

H̃0
n = Ȟ0

n + acsP
〈
Ω
∣∣∂µA0

µ

∣∣n〉 , (2.117)

where we have replaced agP trFµνF̃µν 7→ acsP
〈
Ω
∣∣∂µA0

µ

∣∣n〉 by virtue of the singlet axial Ward
identity in the chiral limit, eq. (2.39). Note that this substitution changes mass dependent linear
improvement terms of the pseudoscalar matrix elements.

The derivative acting on the pseudoscalar matrix elements in eqs. (2.112) and (2.117) can be car-
ried out in time direction and this yields, when acting on a correlation function of that state as
discussed in sec. 2.3.4,

〈Ω |∂tJa(t)Bi(0)|Ω〉 =
1

2a
〈Ω |(J(t+ a)− J(t− a))Bi(0)|Ω〉

= − sinh(aEn)

a
〈Ω |Ja(t)Bi(0)|Ω〉

≈ −En 〈Ω |Ja(t)Bi(0)|Ω〉 , (2.118)

where J is one of currents in eqs. (2.111) and (2.112). In this sense, we can substitute 〈Ω|∂tP a|n〉
for−EnH

a
n, up toO(a2) corrections.

Using these abbreviations, we can write the singlet decay constants as

F̃ 0
n = F̌ 0

n + a δcAȞ
0
n, , (2.119)
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leaving the parameter δcA as a free parameter that will enter our continuum limit fit. The use of
the incompletely improved Ȟ0

n instead of, e.g., H̃0
n leads to differentO(a2) terms but is irrelevant

for the removal of linear lattice spacing effects.
Regarding themass dependent improvement of the octet current, we use eq. (15) of [118], where

fullO(a) improvement has been worked out for generic bilinear quark operators employing Wil-
son fermions. For the corresponding decay constants this translates into

F 8
η(′) = ZA

[
(1 + 3ab̃Am)F̃ 8

η(′) +
a√
3
bA

(
m`F̌

`
η(′) −

√
2msF̌

s
η(′)

)
−

√
2afAδmF̌

0
η(′)

]
+O(a2), (2.120)

where ZA is the renormalization factor for non-singlet currents on which we give more details in
the following section. Themass dependent improvement terms are parametrized by b̃A, bA and fA,
while the mass independent improvement coefficient cA is already included in F̃ 8

η(′)
. It turns out

(see again eq. (15) of [118]) that even for the improvement of the octet axialvector current, singlet
currents are required. Note that within the O(a) improvement terms we can replace any unim-
proved lattice decay constant by either F̃ or F̌ since the difference will only have anO(a2) effect
on the result. These replacements are convenient for performing the continuum extrapolation, as
will be discussed in sec. 5.2. Subsequently, F̌ `

η(′)
and F̌ s

η(′)
are obtained from F̌ 0

η(′)
and F̌ 8

η(′)
via the

rotation (2.103). The quarkmasses, their averages and differences that appear in eq. (2.120) are given
by

am0,f =
1

2

(
1

κf
− 1

κcr

)
, am =

a

3
(2m` +ms) , aδm = ams − am`. (2.121)

The critical hopping parameter κcr(β) was determined for our action and lattice spacings in [89,
90].

The improvement coefficients bA and b̃A have been determined non-perturbatively in [120,
121]. The sea quark coefficient multiplying am slightly differs from the definition of b̄A in [118],
where the lattice spacing is assumed to be fixed. As discussed in sec. 2.4.1 we work at a fixed value of
the coupling and correspondingly absorb the effect of bg into b̃A, see the definition and discussion
in [120]. The corresponding coefficients for our β values from [121] read

b̃A(β = 3.4) = −0.11(13), b̃A(β = 3.46) = 0.10(11),

b̃A(β = 3.55) = −0.04(12), b̃A(β = 3.70) = −0.05(8). (2.122)

For the valence quark coefficient bA we use the parametrization [121]

bA(g
2) = 1 + 0.0881CF g

2 + b g4, where b = 0.0113(44) (2.123)

and g2 = 6/β and CF = 4/3. The improvement term in eq. (2.120) that is proportional to
the difference of the quark masses is only present in flavour diagonal currents. Its coefficient, fA,
is unknown, and formally it is of O(g6) [118, 122]. This is the only unknown parameter needed
to achieve full O(a) improvement of the octet decay constants, and we incorporate it into the
functional form of the continuum extrapolation, see sec. 5.2.

Regarding the improvement of the singlet decay constants, utilizing eq. (23) of [118], we obtain

F 0
η(′) = Zs

A

[(
1 + 3ad̃Am

)
F̃ 0
η(′) +

1√
3
adA

(√
2mlF̌

`
η(′) +msF̌

s
η(′)

)]
. (2.124)

Again, we replaced the lattice decay constants within the O(a) terms by partially improved ones
and replace d̄A 7→ d̃A. The renormalization factor Zs

A 6= ZA is discussed in the next subsection.
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a) + + O(g4)

b) + + + +

Figure 2.6: Contributions to the full operator in lattice perturbation theory. The cross represents
the current insertion. The upper row (a) is truncated at O(g2) and the second row (b) lists all two-
loop contributions (O(g4)) that appear exclusively in the singlet case [125] and that are the leading
contributions to the difference Zs

A − ZA. These arise solely through “disconnected” quark loops —
only connected via gluon propagators— that are only possible for flavour diagonal currents. Note that
the “tadpole”-like graphs that involve a two-quark-two-gluon vertex (the first three) have no continuum

analogue.

Unfortunately, both improvement coefficients dA = bA + O(g4) and d̃A = O(g4) are only
known toO(g2) in perturbation theory. In analogy to fA, we will include these parameters in the
continuum extrapolation formulae (along with δcA, see eq. (2.119)) in ch. 5.2.

2.4.3 Renormalization of the singlet and non-singlet axialvector currents

We now turn to the renormalization factors ZA and Zs
A in eqs. (2.120) and (2.124). In the con-

tinuum theory vector and non-singlet axialvector currents are both conserved in massless QCD
(see eq. (2.29)) and so they do not acquire an anomalous dimension, i.e., they do not depend on
the renormalization scale µ. The breaking of chiral symmetry via the Wilson term leads to non-
trivial renormalization factors on the lattice, and for the non-singlet axialvector currents we use the
non-perturbatively determined values ofZA = Z8

A for our action that can be found in theZ l
A,sub

column of tab. 6 of [123].
In the continuumMSscheme, the singlet axialvector current acquires an anomalous dimension

through the axial anomaly [77, 124],

µ2
d

dµ2
〈Ω|Â0

µ(µ)|M〉 = −
Nf

2

α2
s

π2
〈Ω|Â0

µ(µ)|M〉+O(α3
s). (2.125)

The scale dependence only enters as a two-loop effect and this can be understood by looking at the
Feynman diagrams that contribute exclusively to the singlet renormalization, cf. fig. 2.6: Since the
current is diagonal in flavour space, the current insertion can also take place in a fermionic loop
that is connected through gluons to the external legs. The additional contributions are thus a pure
sea-quark effect.

Correspondingly, to one loop γ(0)Aaµ
= γ

(0)
A0
µ

= 0, and the first three coefficients of the γ-
function eq. (2.104) for the singlet axialvector current are [77, 124]3

γ
(0)
A0
µ
= 0, (2.126)

γ
(1)
A0
µ
=

3

8
CFNf , (2.127)

γ
(2)
A0
µ
=

1

64

[(
142

3
CFCA − 18C2

F

)
Nf − 4

3
CFN

2
f

]
, (2.128)

3Recently, γ(3)

A0
µ
has been computed, too [126].
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where in QCDCA = 3 andCF = 4/3.
From the β- and γ-functions, eqs. (2.17) and (2.104), one can easily derive the scale evolution

of local currents:

ZJ (as(µ1), µ1) = ZJ (as(µ0), µ0) exp

(∫ as(µ1)

as(µ0)
da

γJ(a)

β(a)

)
. (2.129)

Normally, to leading non-trivial order, the evolution factor is given by (as(µ1)/as(µ0))γ
(0)
J /β0 ,

which diverges if one of the scales is sent to infinity. In our case, however, γ(0)
A0
µ
= 0, leading to a

finite renormalization group evolution

Zs
A (as(µ1), µ1)

Zs
A (as(µ0), µ0)

= exp

γ
(1)
A0
µ

β0
[(as(µ1)− as(µ0))

+
1

2

γ(2)A0
µ

γ
(1)
A0
µ

− β1
β0

(a2s(µ1)− a2s(µ0)
)
+ . . .

 . (2.130)

This suggests a modified scheme (see, e.g., [127]), where the renormalization group running is ab-
sorbed into the renormalization constant:

Â0′
µ = [Zs

A(∞)/Zs
A(µ)] Â

0
µ = Zs′

AA
0
µ, (2.131)

and

Zs′
A = Zs

A(µ = ∞) =

1− γ
(1)
A0
µ

β0
as(µ) +

γ
(1)
A0
µ

2β0

γ(1)A0
µ

β0
+
β1
β0

−
γ
(2)
A0
µ

γ
(1)
A0
µ

 a2s(µ) + · · ·

Zs
A(µ).

(2.132)
Similar to the renormalization group invariant (RGI) scheme, in the aboveMS′ scheme the current
is scale independent and the corresponding γ-function is trivial: γ′A0

µ
= 0. Renormalizing the

singlet axialvector current in this way corresponds to the usual MS scheme but setting µ = ∞.
At present, the differenceZs′

A−ZA has only been computed in perturbation theory, cf. fig. 2.6.
Setting cSW to its leading order value cSW = 1within eq. (32) of [125], we obtain for our action

Zs
A(µ) = ZA − a2s(a

−1)
[
γ
(1)
A0
µ
ln(µ2a2) + 2.834(11)

]
, (2.133)

where again we use the non-perturbative ZA values of [123]. Note that we have replaced g2 7→
4π2as(a

−1), which is valid to this order in perturbation theory. Within the above conversion to
theMS schemewe vary the scaleµ ∈ [12a

−1, 2a−1] in order to estimate the systematics of omitting
higher perturbative orders and take µ = a−1 for our central values. The results are then run via
eq. (2.130) (not eq. (2.132)) to µ = ∞ to obtain the scale independent MS′ result. This is carried
out using the three-loop γA0

µ
-function and, for the running ofas(µ), starting from the value deter-

mined in [128], the five-loop β-function [129] (as implemented in version 3 of the RunDec package
for Mathematica [130, 131]). For convenience, we also quote results in the more commonly used
scale dependent prescription at the scales µ = 10GeV, µ = 2GeV and µ = 1GeV in QCDwith
Nf = 3 active quark flavours. The corresponding conversion factors are listed in tab. 2.1.
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µ Zs
A(µ)/Z

s′
A

RG running 2-loop 2-loop 3-loop 3-loop
β-function 2-loop 5-loop 3-loop 5-loop

1 GeV 1.0881(2827) 1.0913(2928) 1.1387(6863) 1.1383(7064)
2 GeV 1.0565(1010) 1.0590(1010) 1.0754(1616) 1.0752(1616)
10 GeV 1.0329(33) 1.0341(33) 1.0390(44) 1.0389(44)

Table 2.1: Conversion factorsZs
A(µ)/Z

s′
A = Zs

A(µ)/Z
s
A(∞), computed according to eq. (2.130) for

Nf = 3, combining different orders of the renormalization group running with different orders of the
running of the coupling. The errors reflect the uncertainty in theΛ-parameter ofNf = 3QCD [63].
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3 Generation ofNf = 2 + 1 gauge ensembles
withO(a) improved Wilson quarks

Since the precision of lattice calculations can always be improved by increasing statistics and sim-
ulating at finer lattice spacings or quark masses that are closer to the physical ones, simulations are
always limited by the available compute power. A large fraction of the total computing time goes
into the generation of the ensembles that can then be reused for a variety of observables in different
contexts. For this reason it is common to jointly generate and share configurations that are then
analyzed in smaller groups.

The ensembles that were analyzed in the course of this work are a subset of the ensembles that
have beenproducedwithin the coordinated lattice simulations (CLS) initiative. The focus is put on
large volume ensembles withNf = 2+1 flavours of non-perturbatively improvedWilson-Clover
fermions on a tree level improved Lüscher-Weisz gauge background. The general algorithmic ideas
have already been discussed in sec. 2.2.4 and are described in detail in [132]. Many of the ensembles
and the algorithmic setup used to generate themwere introduced in [89, 133, 134], and here we give
some details on the quark mass tuning to facilitate extrapolations to the physical point in sec. 3.1,
before an overview over available ensembles in terms of their position in the quark mass plane and
the lattice spacings is given in sec. 3.2. Some of the simulations employ very fine lattice spacings
down to a ≈ 0.039 fm for which open boundary conditions are necessary to prevent the freezing
of the topology. We revisit autocorrelations in the simulations and introduce open boundary con-
ditions in sec. 3.3. The scale has been set first in [135] via the intermediateWilson flow scale and here
we present an update and a global parametrization of the values of t∗0/a2 over all available lattice
couplings in sec. 3.4 which will appear in [90]. There, also other important parameters like the
critical hopping parameters are determined that we refer to at various places.

Sections 3.1 to 3.3 follow roughly the ideas of publications [89, 133, 134] that the author was
involved in. The remainder on scale setting, sec. 3.4, will be part of a forthcoming publication [90]
in similar or verbatim form.

3.1 Quark mass tuning at finite lattice spacing
Because withWilson fermions chiral symmetry is broken explicitly by the doubler term, cf. the dis-
cussion in sec. 2.2.3, approaching the chiral limit or the point of physical quark masses is possible
only with prior knowledge from previous simulations. In other words, the position of the physi-
cal point in terms of the physical input parameters of the simulation (β, κ`, κs) is unknown and
related non-trivially through renormalization and lattice spacing effects.

Also, since large volume simulations at fine lattice spacings are computationally only feasible
at quark masses larger than physical, it is necessary and more cost-effective to simulate a number
of ensembles on trajectories that extrapolate to the physical point in a straight-forward manner.
In practice, however, such extrapolations of physical observables cannot be carried out as simple
linear fits: Possible mass mistuning needs to be taken into account, and higher orders of chiral
perturbation theory are required to incorporate all data. üWell-defined quarkmass trajectories that
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lead to the physical point are still desirable for practical reasons and here we motivate the choices
made for the CLS ensembles.

We start with defining the physical quarkmass point ofNf = 2+1 flavour QCD as the point
where the (charged) pion and kaon masses take their experimental values after subtracting electro-
magnetic and isospin breaking effects. Since we simulate pure QCD—neglecting electromagnetic
corrections—with two degenerate light quarks, we are insensitive to such effects. This is described
in detail in [136]1 and the following values are obtained:

M
ph
π = 134.8(3)MeV, M

ph
K = 494.2(3)MeV. (3.1)

In the following we will use the superscript “ph” to refer to quantities at the physical quark mass
point and in the continuum limit.

We can define the squared average and difference of the light pseudoscalar masses as

M2 :=
2M2

K +M2
π

3
, δM2 := 2

(
M2

K −M2
π

)
. (3.2)

At the above defined physical point, their values are

Mph = 410.9(5)MeV, δMph = 672.4(9)MeV. (3.3)

To leading order these are related to the quarkmasses by theGell-Mann–Oakes–Renner (GMOR)
relations,

M2 ≈ 2B0m̂ = 2B0 (2m̂` + m̂s) /3, δM2 ≈ 2B0δm̂ = 2B0 (m̂s − m̂`) , (3.4)

where B0 = −〈uu〉/F 2 is the ratio of the chiral condensate 〈uu〉 < 0 over the (squared) pion
decay constant in the SU(3) chiral limit, F . and corrections to the above relations are O(m̂2).
Masses with a hat refer to the renormalized andO(a) improved quantities [118],

m̂j =
ZA

ZP

{
1 + a

[
3
(
b̃A − b̃P

)
m+ (bA − bP )mj

]}
m̃j , (3.5)

where ZA and ZP (µ) are renormalization factors of which the latter depends on the renormal-
ization scale, bA, b̃A, bP and b̃P are improvement coefficients, see sec. 2.4.2, and m̃ refers to the
masses defined through the non-singlet partially conserved axialvector current (PCAC) relation of
the corresponding flavour structures, e.g.,

2m̃` =
∂0〈Ω|Ã1

0|P1〉
〈Ω|P̃ 1|P1〉

, m̃` + m̃s =
∂0〈Ω|Ã4

0|P4〉
〈Ω|P̃ 4|P4〉

, (3.6)

where the notation follows that of eqs. (2.79), (2.111) and (2.112). Since we employWilson fermions,
we use these relations to define the chiral point where both the renormalized and the bare quark
masses vanish, i.e., at this point κ = κcr as defined in eq. (2.121).

One of our trajectories is defined along a line of constant average (bare) quark mass,

a trM = 3am = const, (3.7)

which is equivalent to keeping the sum of inverse hopping parameters constant at each value of
β. In this particular setting, eq. (2.108) is constant along the complete trajectory since the lattice
effects to the coupling depend only on the average unrenormalized mass and so all O(a) effects
are constant along this trajectory [137]. Also the lattice spacing effects to the renormalized masses

1Note that in the more recent editions of the FLAG report no such numbers are given.
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Figure 3.1: Simulated ensembles at several lattice spacings and along the simulated quark mass trajec-
tories. Left panel: The horizontal axis is proportional to the light quark mass while the vertical axis
corresponds to the average quark mass. The line of constant average quark mass (blue) meets with the
line of physical strange quark mass (green) in the physical point (black cross) and with the Nf = 3
line at the flavour symmetric point that corresponds roughly toM ph. Right panel: The subset of
ensembles analysed in the following chapters for the η and η′ results. In this case the axes correspond
to combinations of pion and kaon masses that are approximately proportional to the light and strange
quark masses via eq. (3.4). Again, the two trajectories lead to approximately the physical point (black
dot) and the colour shades correspond to similar average quark masses upon which ensembles will be

excluded when quantifying cut-off effects of the chiral expansion, cf. sec. 5.3.

m̂ simplify and only the presumably small singlet contributions play a role [118]. This means that
continuum and chiral extrapolations along this line can be performedmore easily, because the lead-
ing lattice spacing effects do hardly depend on the sea quark masses. Using this choice, only one
parameter requires tuning, namely trM so that it corresponds to the physical point up to constant
(but unknown) lattice spacing effects. As a consequence of this choice of the trajectory, the kaon
mass is lighter than its physical value wheneverMπ > M

ph
π .

Another popular choice is to keep the renormalized strange quark mass close to its physical
value, m̂s ≈ m̂

ph
s . This leads to the aforementioned O(am) effects to both the coupling (or

equivalently to the lattice spacing, see sec. 2.4.1) and the renormalized quark masses when varying
the light quark mass. For this reason it is more difficult to hit the physical point and consider-
able mistuning can be observed in the literature, see, for example, the scatter of points in fig. 17
of [138]. In [89] we analysed the CLS ensembles that already existed along the trM = const line
and additional ensembles alongms = m` to parametrize the relation between the renormalized
quark masses and the hopping parameters. This allowed us to predict bare quark masses and the
corresponding hopping parameters for the simulation, leading to a parametrization of κs(β, κ`)
that leads to an almost constant renormalized strange quark mass. The right panel of fig. 3.1 shows
this for the pseudoscalar mass combination that, according to eq. (3.4), corresponds to the strange
quark masses of the ensembles analysed in the subsequent chapters. Ideally, this trajectory goes to
the physical point and there meets with the trM = const line.

In principle, there is also another interesting trajectory, both for determining renormalization
factors andotherquantities that are defined in the chiral limit and to studySU(3)flavour symmetry,
namely that where the strange quark mass is set to the light quark mass,ms = m` (which trivially
also implies m̂s = m̂`) and, hence, δM2 = 0. This quark mass configuration is also interesting
for the analysis of η and η′ physics, since there the η and η′ states are pure octet and singlet states,
respectively, see the discussion in secs. 2.1.6 and 2.3.5. ThisNf = 3 trajectory, however, does not
lead to the physical point. The line is fully parametrized byM2 and intersects with the trM =
const trajectory at the pointM ≈ Mph. Such simulations are only possible at comparably large
quark masses and thus far away from the physical point, since the odd number of quarks requires
to take the root of the quark determinant as discussed in sec. 2.2.4. Towards lighter quark masses
the spectral gap cannot be guaranteed.
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If there was no quark mass mistuning on the trM = const or the m̂s = m̂
ph
s lines, extrapo-

lations to the physical point on just one of the two are relatively straight-forward and require only
one argument that parametrizes the “distance” to the physical point (for example δM along the
trM = const andMπ along the m̂s = m̂

ph
s trajectory). The continuum limit requires a pa-

rametrization of lattice spacing effects with additional terms. In the case of the trM = const
trajectory, these are relatively simple toO(a), but along the m̂s = m̂

ph
s line additional am terms

are required, see also sec. 2.4. Since the a posteriori determination of the physical point is likely to
be more precise than the a priori estimate when choosing the simulation parameters, the physical
point is usually not reached very precisely and possible quark mass mistuning must be compen-
sated. One possibility is to shift observables slightly by expanding around their masses [135] or by
quark mass reweighting [139, 140]. To incorporate more than one trajectory, the use of functional
forms inspired by SU(3)ChPT is the obvious choice and takes care of possible quarkmistuning au-
tomatically. Such continuumparametrizations forNf = 2+1 flavours depend on two arguments
that describe the complete quark mass plane, without making assumptions on the precision of the
quark mass tuning, although higher order terms may be necessary to maintain good accuracy over
the full range. For this reason the requirement that trajectories should lead to the physical point can
be relaxed but the statistical and systematic errors can be reduced by simulating ensembles close to
the physical point. This is the approach that we will pursue in ch. 5.

3.2 Ensemble overview
Along these three mass trajectories many ensembles have been generated to date, cf. fig. 3.2. Cur-
rently, these cover six lattice couplings β ∈ {3.34, 3.4, 3.46, 3.55, 3.7, 3.85} that correspond to
lattice spacings from a ≈ 0.098 fm at β = 3.34 to a ≈ 0.039 fm at β = 3.85, see tab. 3.3 for the
individual values and sec. 3.4 for their determination. If all linear cut-off effects are under control,
e.g., when using fullyO(a) improved operators, the extrapolation can be performed in a2. In this
case the range of the extrapolation covers a factor of a2(β = 3.34)/a2(β = 3.85) ≈ 6.3 and
allows for precise continuum limit extrapolations, see the right panel of fig. 3.7 for an illustrative
example. The smallest lattice constants are only possible to simulate with open boundary condi-
tions that are introduced in the subsequent section, while for some other lattices at coarser lattice
spacing (anti-)periodic boundary conditions were used.

The heaviest simulated pion masses on the two main quark mass trajectories, trM = const
and m̂s ≈ m̂

ph
s , are aroundMπ ≈ Mph ≈ 411MeV. The trajectory with constant average

quark mass at this point meets with the m̂s = m̂` line and correspondingly at this point also
MK = Mπ = M , see fig. 3.1. At β = 3.4 and β = 3.55, there exist simulation points that are
very close to the physical point, but many more light ensembles in the range 200MeV < Mπ <
300MeV are available that are particularly important to perform the chiral extrapolation of results
in a controlled way.

The simulation volumes are chosen such that typically LsMπ > 4 and Ls > 2 fm to ensure
that finite volume effects are small [141]. For most quark mass points at the trM = const line
at β = 3.4, additional smaller volumes have been simulated to enable the study of these volume
effects. The requirement of simulating at large LsMπ limits approaching the physical mass point
at small lattice spacings: At the physical point at β = 3.55, E250, already a volume of Lt × L3

s =
96 a4 is needed which is at the boundary of what can be achieved with present high performance
computing systems, see [134] for some of the difficulties that arise with such simulations.

While the many available ensembles map out the physically relevant parameter space very well,
the combination of very small lattice spacings and small pionmasses is still very expensive to achieve
and further algorithmic and hardware developments are needed. Nevertheless, the many available
data points allow for an unprecedented accuracy in controlling the systematic errors.
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For the analysis of the η and η′ mesons in this work, we mainly analyse 20 large volume en-
sembles at three different values of the lattice coupling, β ∈ {3.4, 3.46, 3.55}, complemented by
a finer Nf = 3 ensemble at β = 3.7. We list all these ensembles, their pion and kaon masses,
the Wilson flow scale and combinations thereof in tab. 3.1. Both the trM = const as well as the
m̃s ≈ m̃

ph
s trajectories are employed to improve the control over systematic errors that arise in the

chiral extrapolation. At β = 3.4 we include the ensemble D150 which is very close to the physical
point.

3.3 Autocorrelations and open boundary conditions
In (hybrid) Monte-Carlo simulations, each accepted trajectory is the starting point for the next.
The result is that measurements are not independent of another and configurations are correlated
in Monte-Carlo time. This needs to be taken into account when analyzing lattice data, cf. app. B.
With finer and finer lattice spacings, however, autocorrelation times become increasingly long. For
the RHMC algorithm, these autocorrelation times grow approximately with the inverse of the
squared lattice spacing. With periodic boundary conditions, it has been observed that the topolog-
ical charge eventually even freezes and theMonte-Carlo history is no longer ergodic, see, e.g. [142].
This phenomenon became known as “critical slowing down” and prevents the simulation of fine
lattice spacings a . 0.05 fm.

It has been found that open boundary conditions in time [143] improve the situation by letting
topological charge flow in and out through the temporal direction. Spatial directions remain peri-
odic to allow for volume averaging and leaving the Fourier transform in these directions intact. In
time direction, however, the boundaries are fixed and the temporal component of the field strength
tensor is set to zero at the boundaries,

F̂0k(0, ~x) = F̂0k(T, ~x) = 0, k = 1, 2, 3, (3.8)

where T = a(Nt − 1) is the lattice extent in time direction and F̂µν is defined in eq. (2.63). Open
boundaries can also be imposed by fixing the gauge fields pointing outside of the lattice at the last
time slice to zero, while keeping the periodicity

U0(T, ~x) = U †
0(0, ~x) = 0, (3.9)

which automatically also leads to the correct boundary conditions of the fermion fields in theDirac
operator,

(1 + γ0)ψ(0, ~x) = (1− γ0)ψ(T, ~x) = 0, (3.10)

see, for example, the hopping term, eq. (2.65).
When computing observables, a distance to the boundary must be kept since the topological

effects extend over a range of typically b . 2 fm [90, 133] in the vicinity of the boundaries. This
effectively decreases the available volume and increases the computational cost to achieve the same
error by a small linear factor compared to periodic boundaries. At small values of the lattice spac-
ing, however, the simulation remains ergodic and this additional cost is compensated by decreased
autocorrelation times.

Fig. 3.3 shows the action density computed on the central time slices of the gauge fields after
applying the gradient flow [144] discussed in the next section,

a4E(t) =
1

(N0 − 2b/a)N3
s

N0−b/a−1∑
x0=b/a

∑
~x

1

4
F̂ a
µν(x)F̂

a
µν(x), (3.11)
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where in this case t is the gradient flow time andx0 the time coordinate. The temporal sumexcludes
the b/a timeslices closest to the boundaries so that aN0 − 2b ≈ 1 fm. The components of the
lattice field strength tensor are given by

F̂ a
µν(x) = 2i tr

[
F̂µν(x)t

a
]
. (3.12)

The action densityE(t = t0) fluctuates slowly in Monte-Carlo time and shows long autocorrela-
tion times for all simulated values of the lattice coupling. In fig. 3.3 all except the coarsest ensemble
employ open boundary conditions and although the autocorrelation times clearly increase towards
fine lattice spacings, the simulation is not stuck and clearly proceeds normally even at the finest lat-
tice spacing. In fig. 3.4 the computed integrated autocorrelation times of [90] are plotted for the
symmetric point ensembles and show the expected scaling.

3.4 Setting the scale using the Wilson flow time t0
Thegradient flow time t0 is defined as thepointwhere thedimensionless combinationof the flowed
action density, eq. (3.11), assumes the value

t2E(t)|t=t0 = 0.3, (3.13)

see [144] for details of the flow time definition of gauge fields. A value for the ratio t0/a2 can
be obtained on every ensemble by computing t2E(t) for a set of t/a2 values and interpolating
to the point defined in eq. (3.13). The advantage of the gradient flow scale t0 is that it is free
from renormalization [144], depends only mildly on sea quark masses [145] and can be computed
with only moderate computational cost to a very high precision. These properties allow its use
in scale setting, i.e., comparing the lattice spacings between several lattice simulations. The con-
nection to experiment and the physical world requires additional input to determine a value for
t
ph
0 = t0(M

ph, δMph, a = 0). Values for tph0 withNf = 2 + 1 flavours have been determined
in [135, 146–149]. These determinations are in rough agreement, although the newer determina-
tion on CLS ensembles [149] has shifted downwards by about one standard error in comparison
to [135] where only a subset of ensembles was analysed. Both use the non-singlet light pseudoscalar
decay constants in the isospin symmetric limit as physical inputs, subtracting electromagnetic ef-
fects similarly as for eq. (3.1). Systematic errors from these inputs and from the chiral extrapolation
dominate over the statistical errors. When we need to convert our results to physical units in this
work we use the value of [135]√

8t
ph
0 = 0.415(4) fm, corresponding to (8t

ph
0 )−1/2 = 475(6)MeV, (3.14)

but give results also in dimensionless combinations with tph0 /a2 so that results can be converted
once a value with increased input precision from, e.g., the octet cascade baryonmass becomes avail-
able [90].

Thequarkmass dependence of t0 has been computed inChPT tonext-to-next-to leading order
(NNLO) in [145]. While at NNLO the continuum expression depends also on the difference of
quark masses and the energy scale of the effective field theory, the NLO quark dependence is very
simple,

t0(M, δM) = tχ0

(
1 + k1

3M2

(4πF )2

)
+O(M4). (3.15)

This expression depends only on two constants, the flow scale in the chiral limit tχ0 = t0(M =
0, δM = 0) and the slope parameter 3k1/(4πF )2, whereF is the non-singlet pseudoscalar decay
constant in the chiral limit. We redefine the slope parameter to k̃1 = 3k1/(8t0(4πF )

2) and get
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Figure 3.3: History of theWilson flow action density, multiplied by t20 [144], after a flow time close to
t0, inside a central sub-volume of approximately 1 fm · (aNs)

3, along a line ofMπ ≈ 340MeV (for
trM = const) from coarse to fine lattice spacings. The amplitude of the fluctuation varies, e.g., due
to somewhat different physical volumes. Autocorrelations increase from top left to bottom right, with
the exception of A654 at β = 3.34where we observe larger autocorrelation times than at β = 3.4. For

the cases where more than oneMonte-Carlo chain exists, only one replica is shown.
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Figure 3.4: Integrated autocorrelation times τint of t0/a2 as a function of a2/t0 for the ensembles at
the symmetric point. Data is taken from [90]. With the exception of N300, the autocorrelation times
follow the expected quadratic scaling behaviour. The line represents a simple linear fit in a2/t0 to all

points except N300. All except B450 and A643 employ open boundary conditions.
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the NLO expression

t0(M, δM) = tχ0

(
1 + k̃1

2

3
φ4

)
, (3.16)

which differs from eq. (3.15) only at NNLO. Here and in the following we conveniently use the
dimensionless mass combinations

φ4 = 8t0

(
M2

K +
1

2
M2

π

)
= 12t0M

2, (3.17)

φ2 = 8t0M
2
π = 8t0

(
M2 − 1

3
δM2

)
. (3.18)

Since in eq. (3.15) t0 depends only weakly on δM2, an interesting limit is that ofNf = 3mass
degenerate flavours along whichM2

K = M2
π and hence δM2 = 0. Along this line and in the

continuum limit we define

φ∗4 = 8t∗0

(
M2

K +
M2

π

2

)
= 12t∗0(M

ph)2 := 1.110, (3.19)

which is a choice motivated by the previous determination [146] of tph0 ≈ 0.413 and the value of
Mph as given in eq. (3.3): If δM2 contributions to φ4 are small in the continuum, then φ∗4 ≈ φ

ph
4 .

The values of φ4 and t0 in our symmetric point simulations at finite lattice spacings are close to
the continuum φ∗4 but are typically larger than that value due to lattice spacing effects and mass
mistuning and we refer to them as φsymm

4 and tsymm
0 , respectively.

In the following,we explore the quarkmass and lattice spacingdependence of t0/a2 on the sim-
ulated ensembles and extrapolate to the interesting continuum limit points tph0 = t0(M

ph, δMph),
t∗0 = t0(M

ph, 0) and tχ0 = t0(0, 0). This allows us to assign a value of t∗0/a2 for each lattice cou-
pling that we simulate and we can use this value to convert to physical units using external input
for t∗0 (or t

ph
0 ).

3.4.1 Strategy for continuum limit extrapolations

As described in sec. 2.4.1, the lattice spacing itself is subject to linear cut-off effectswhen keeping the
coupling fixed. This induces linear cut-off effects on dimensionless combinations with the lattice
spacing even if the observables themselves are otherwise subject to only quadratic lattice spacing
effects. Here, we once again summarize the strategy for taking the continuum limit employing the
Wilson flow scale as the auxilliary variable, cf. (2.110). When determining hadron masses, e.g., we
expect to see cut-off effects

aM(M, δM, a2) = a0 (1 + baam) M(M, δM, 0) +O(a2), (3.20)

see eq. (2.108) for the definitions of a0 and ba. Extrapolations of such combinations to the contin-
uum limit would thus have to take this into account and parameterize these linear cut-off effects.
The same is true for the determination of the gradient flow scale,[

t0
a2

]
(M, δM, a2) =

t0(M, δM, 0)

a20
(1− 2baam) +O(a2), (3.21)

which we will extrapolate to the continuum limit taking care of am terms in sec. 3.4.3.



3.4. Setting the scale using theWilson flow time t0 45

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ϕ∗
40 0.5 1 1.5 2 2.5 3

a
m
/
(8
t 0
M

2
)

ϕ4

β = 3.34
β = 3.4
β = 3.46
β = 3.55
β = 3.7
β = 3.85

Figure 3.5: The ratio of the average lattice quark mass in lattice units over the square of the average
pseudoscalar mass as fitted in eq. (3.23). The ratio varies only by 20%. This makes it impractical to

discriminate between terms proportional to am and terms∝ 8 t0M
2.

In general, however, it is advantageous to take dimensionless combinations of the quantities of
interest, for example masses or decay constants, with the gradient flow scale and extrapolate

[
aM(M, δM, a2)

]√
t0a2(M, δM, a2)/a2 =M(M, δM, a2)

√
t0(M, δM, a2) +O(a2),

(3.22)
instead, since the linear am contribution cancels from such combinations. It is thus beneficial to
use theWilson flow scale t0/a2 from the same ensemble— at the same lattice spacing and the same
quarkmasses— as the observable itself instead of using the interpolated values t∗0/a2 or a value for
a in physical units. In this case the result would contain linear cut-off effects that are proportional
to the difference of the average quark masses, am − am∗. Typically the chiral extrapolation is
performed at the same time and in this case the chiral expansion of t0, eq. (3.15) must be taken into
account. Once the physical quarkmass point in the continuum is reached, the scale can then be set
using a value for tph0 in physical units, eq. (3.14).

3.4.2 The symmetric point parameters φsymm
4 , κsymm, κ∗

The dimensionless combination φ∗4 at the flavour symmetric line is defined in the continuum and
such that it corresponds to the physical average quark mass. At any finite lattice spacing, however,
cut-off effects contribute. The knowledge of these effects is important for the quark mass tuning
of the trM = const trajectories, since in order to cross the physical point, the trajectory should
be started at φsymm

4 > φ∗4. Here we determine values of φsymm
4 and the corresponding hopping

parameter κsymm such that in the continuum they lead toφ4 = φ∗4 := 1.11, see eq. (3.19). At every
value of β we parametrize the dependence of φ4 on the hopping parameter along thems = m`

line using the κcrit values of [90] as inputs

am(κ) = am(κ) = p1φ4 + p2φ
2
4, (3.23)

see eq. (2.121) for the relation of the hopping parameter to the bare quark masses. At the point
φ4 = φ∗4 we obtain a value for am∗, defining κ∗. The data and the fits are displayed in fig. 3.5,
and results are collected in table 3.2, where we also quote the critical hopping parameter values
determined in [90].
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Figure 3.6: Left panel: fit to eq. (3.24) of the deviation of the ratio φ4(0)/φ4(δM) from one, along
the trM = const trajectories. Right panel: optimal starting values of φsymm

4 at the symmetric point
that should be selected in order to obtain φ4ph = 1.11 at the physical point, along with the actually

simulated values of φ4.

Starting from the symmetric point and approaching the physical point, the quark mass differ-
ence proportional to δM grows and there are associated lattice spacing effects that complicate the
mass tuning. To resolve such δM dependent lattice spacing artifacts, we now take ratios of the sym-
metric point ensembles where δM = 0 and large volume ensembles along the trM = const lines,
whereM2 = const and thus all quarkmass dependent lattice spacing effects must be proportional
to δM . To this orderO(M2) in ChPT, there are no such δM2 terms in the continuum [145] and
so we perform a simple linear fit to

φ4(0, a)

φ4(δM, a)
= 1 + δcφ

a2

t∗0
8t0δM

2. (3.24)

All twelve ratios φ4(0, a)/φ4(δM, a) that we have at our disposal for the large volume ensembles
are roughly described by the parameter

δcφ = 0.065(13), χ2/NDF = 28/12. (3.25)

This fit is shown in the left panel of fig. 3.6. While the fit describes the overall trend of the points
as a function of δM2 well, the poor value of χ2 may be due to missing parametrizations of signif-
icant continuum limit terms that are proportional to δM2 but of higher order. To NNLO, for
example,M2δM2 contributes (next to other mass combinations and chiral logarithms). Within
the trM = const data, however,M2 is constant and the term can hardly be distinguished from
a2δM2. These terms would be separable along the m̂s = m̂

ph
s trajectory; however, there, the ratio

gives no advantage and discretization terms like a2M2 need to be included in the parametrization.
Given these complications, we here stick to this very simple one-parameter fit and keep in mind
that the results will likely be only indicative of possible mistuning rather than precise predictions
of necessary shifts in φsymm

4 − φ4 for every lattice spacing.
Using eq. (3.24) and the physical point estimatesφ4(δMph) = φ

ph
4 = 1.110 and8t0δMph2 =

1.981, cf. eq. (3.1), we obtain predictions for φsymm
4 = φ4(δM = 0) at finite lattice spacing

φ
symm
4 (t∗0/a

2) = 1.11

(
1 + δcφ

a2

t∗0
1.981

)
, (3.26)

where a value for t∗0/a2(β) is required that we obtain in the following subsections. Using these
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β κcrit [90] κ∗ am∗ φ4,symm κsymm

3.34 0.1366953(51) 0.1365791(60) 0.00311(8) 1.175(8) 0.1365716(14)
3.4 0.1369160(12) 0.1367645(12) 0.00405(4) 1.159(6) 0.1367578(10)
3.46 0.1370616(10) 0.1368947(13) 0.00445(3) 1.149(5) 0.1368872(4)
3.55 0.1371714(19) 0.1370012(21) 0.00453(4) 1.138(3) 0.1369968(3)
3.7 0.1371530(9) 0.1370081(18) 0.00385(4) 1.127(2) 0.1370058(3)
3.85 0.1369771(26) 0.1368518(39) 0.00334(8) 1.120(1) 0.1368507(3)

Table 3.2: Results for the critical hopping parameter κcrit and for the hopping parameter at theNf =
3 symmetric point, where φ4 = φ∗4 = 1.11, κ∗, together with the bare quark mass at this point,
am∗ = (κ∗−1 − κ−1

crit )/2 and the corresponding AWI quark mass am̃∗. At the physical quark mass
pointφ4,ph = 1.110, however, lattice spacing effects shift this valuewhen reducing δM . φsymm

4 denotes
thems = m` starting point of the trM = const trajectory that will go through the physical point and
κsymm the corresponding value of the κ parameter. The actual simulations were performed at slightly

different values, see the right panel of fig. 3.6 and [90, 133, 150].

values and its effective parametrization, eq. (3.35), the above equation can be converted into a func-
tion of β and we compare these postdicted values to the actually simulated symmetric ensembles
in the right panel of fig. 3.6. Interpreting our fit with some caution as discussed above, at β = 3.55
we should ideally have started at a smaller κsymm value while at β = 3.7 a larger value would have
shifted our trajectory closer to the physical line. Since we employ two independent quark mass
plane trajectories, we need to use a parametrization of the mass dependence over the full quark
mass plane, and precision of the quark mass tuning is not too important and can be compensated
in the extrapolation.

Combining the interpolating formula (3.23) for am with the above result, we can also predict
the hopping parameter value that corresponds to this optimal symmetric point, κsymm:

κsymm =

[
2
(
p1φ

symm
4 (t∗0/a

2) + p2
[
φ
symm
4 (t∗0/a

2)
]2)

+
1

κcrit

]−1

. (3.27)

The values of φ4,symm and of κsymm are shown in table 3.2.

3.4.3 Lattice spacing dependence of t0/a2

We start to explore the lattice spacing dependence of the scale parameter along thems = m` line
(including ensembles away fromM = (Mph)), keeping δM = 0 fixed. In this case we expect
both linear lattice spacing effects from keeping the coupling fixed, parametrized by ba as described
in secs. 2.4.1 and 3.4.1, as well as quadratic and higher effects that will alter both the slope parameter
of eq. (3.16) as well as the chiral limit,

t0
a2

∼ tχ0
a20

[
1 + k̃(a) 8t0(M, 0)M2

]
, (3.28)

with a different set of parameters tχ0/a20 and k̃(a) for each value of the coupling. The lattice spac-
ing in the chiral limit is denoted by a0 = a(g2, am = 0), cf. eq. (2.108). We first perform these
two-parameter fits to each value ofβ separately and they effectively describe our datawell as demon-
strated in fig. 3.7 (local fit). We can then use this parametrization and set 8t0M2 = 2

3φ
∗
4 ≈ 0.74

to obtain a value for t∗0/a2 which we list in the first line of table 3.3.
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Figure 3.7: Left panel: Linear interpolation of t0/a2 for each value of the coupling, from β = 3.34
(bottom) to β = 3.85 (top), cf. eq. (3.28) (local fit). Also shown is the result of the global fit eqs. (3.35),
(3.36), (3.39) and (3.40). The vertical line marks the value of the φ∗4 reference point and horizontal lines
the resulting values of t∗0/a2. Right panel: The slope k̃, as a function of a2/(8t∗0), together with a

quadratic continuum limit extrapolation.

β 3.34 3.4 3.46 3.55 3.7 3.85

t∗0/a
2, local fit 2.204(5) 2.872(10) 3.682(12) 5.162(16) 8.613(25) 14.011(39)

t∗0/a
2, global fit 2.204(4)(4) 2.888(4)(7) 3.686(4)(10) 5.157(5)(14) 8.617(7)(21) 13.988(19)(28)

t∗0/a
2 [63, 135] — 2.862(5) 3.662(12) 5.166(15) 8.596(27) 13.880(220)

tχ0 /a
2
0, local fit 2.703(20) 3.465(23) 4.253(20) 5.721(48) 9.348(53) 15.151(123)

tχ0 /a
2
0, global fit 2.695(13)(2) 3.402(11)(1) 4.228(10)(5) 5.749(12)(1) 9.329(27)(4) 14.885(57)(14)

a/fm 0.09836(13) 0.08592(12) 0.07605(11) 0.06430(10) 0.04974(6) 0.03904(5)

Table 3.3: Results for t∗0 in lattice units from this work (lines 1 and 2), in comparison to the respective
results obtained from reweighting [135] (updated in ref. [63], line 3). We consider the global fit result of
the second line as the most reliable one. Also shown is the value of t0 in the chiral limit, tχ0 . The first
errors are statistical, the second errors reflect the uncertainty of the improvement coefficient ba (that
is related to bg). In the last line we also list the lattice spacing that results from the second line, t∗0/a2

using the physical value tph0 from eq. (3.14) [135].

Along this trajectory only relatively few data points are available and some are at large values of
M2, potentially inducing both large higher order lattice spacing effects and sizable NNLOChPT
corrections. Hence, to minimize such possible biases we exclude the heaviest points from the fit
where more than three well-separated data points were available, i.e., at β = 3.4, 3.46 and 3.55. Nat-
urally, this fit is most trustworthy in the vicinity of the available data and can be used to interpolate
to t∗0 where the close-by symmetric point at tsymm

0 dominates the interpolation. The results com-
pare well with the previous determination [135], updated in [63], that we show in the third row of
table 3.3. At the same time, these fits are often constrained by data points at large quark masses and
thus the validity of this extrapolation towards the chiral limit is questionable. Both the resulting
values for tχ0/a20 and the slopes k̃(a) are listed in tab. 3.3 and we plot the latter in the right panel of
fig. 3.7.

We then explore the lattice spacing effects to the continuum limit slope k̃1 of eq. (3.16) and
relate our fit results to the expectation making the linear cut-off effects of eq. (2.108) explicit,

k̃(a) = k̃1 −
2baam

8t0M2
+O(a2). (3.29)
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However, from our data shown in the right panel of fig. 3.7 we are unable to detect any linear con-
tribution. Instead, a clearly quadratic dependence on a2 is visible. Adding any higher power of
a to the quadratic continuum limit extrapolation results in a coefficient that is compatible with
zero. It should be noted that our failure to detect any linear dependence on a does not mean that
the ba coefficient itself is negligible but is due to the fact that within our range of lattice spacings
the combination am remains almost constant when keeping the average renormalized quark mass
m̂ = rmZmm ∝ M2 fixed because the factor rm decreases rapidly with β, see [90]. Therefore,
within our errors, we cannot resolve any linear lattice spacing effect to t0/a2 and we will assume
that ba coincides with its one-loop value within a 100% error band: ba = 0.32(32). The naive
quadratic continuum limit extrapolation gives

k̃ = k̃(a = 0) = −0.0600(85). (3.30)

To improve the extrapolation to the chiral limit and improve the data situation we now aim to
incorporate data away from the symmetricm` = ms line and combining all lattice couplings. To
achieve this, we require an effective parametrization of lattice spacing effects also including terms
O(a2δM2) and a function

[
tχ0/a

2
0

]
(g2) that describes the Wilson flow in the continuum and

chiral limit as a function of the bare lattice coupling.

Interpolating formula for t∗0/a
2

To build confidence in a combined global fit across several values of β, we start with parametrizing
our existing (“local”) results for t∗0/a2(β).

For very small values of the coupling g2 the dependence of t∗0/a2 on g2 is controlled by the per-
turbativeβ function. Its three-loop coefficientβ2 is at present not known for our action. However,
the ratio ofΛ parameters,

ΛL

ΛMS
= 0.2887542, (3.31)

was calculated in ref. [151]. Combining this with the recent determination [128]

ΛMS
√
8t∗0 = 0.712(24), (3.32)

we obtain for three quark flavours

t∗0Λ
2
L = 0.00528(36). (3.33)

Integrating the β-function, we obtain for the running

h(g2) := a(g2)ΛL = exp
[
2π2

β0g2
+

2β1
β20

ln
β0g

2

4π2

]
, (3.34)

where the coefficients are given in sec. 2.1.3. Combining eqs. (3.33) and (3.34) and addingparametriza-
tions of the leading lattice spacing corrections, we arrive at

t∗0
a2(g2)

=
t∗0

a20(g
2)

[
1− 2ba(g

2)am∗] = [f(g2) + ct0 + dt0f
−1/2(g2)

] [
1− 2ba(g

2)am∗] ,
(3.35)

where

f(g2) =
t∗0Λ

2
L

h2(g2)
= 0.00528(36) exp

(
− 4π2

β0g2
− β1
β20

ln
−β0g2

4π2
+ bt0g

2 + · · ·
)
. (3.36)
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The coefficient bt0 ≈ (β21 − β0β2)/(4π
2β30) effectively parameterizes higher order perturbative

contributions, ct0 describes the leadingO(a2) lattice correction to eq. (3.32) and dt0 a subleading
O(a3) correction. The resulting fit parameters read

ct0 = 0.18(12), dt0 = −1.43(16), bt0 = −0.9293(46), χ2/NDF = 2.1/3. (3.37)

Global interpolation of t0/a2

In a next step, we use the interpolating parametrization together with the continuum limit expecta-
tion, eq. (3.15), to incorporate all available ensembles in a global fit and obtain predictions of t0/a2
for the full range of couplings and quark masses that are available to us. This parametrization can
then be used to predict values for t∗0/a2(β) and its inverse can be used to predict lattice couplings
for new simulations. We start from the continuum limit expectation eq. (3.16) and add effective
parametrizations of the quark mass effects that are proportional to a2M2 and a2δM2,

t0
a2

∼ tχ0
a20

(g2)
(
1 + k̃ 8t0M

2
)
+ c̄ 8t0M

2 + δc 8t0δM
2. (3.38)

Shifting the chiral expansion around the symmetric point where we can use eq. (3.36) by substitut-
ing t∗0/a2 for t

χ
0/a

2
0 and k̃1 for k̃ (eq. (3.29)), we obtain the following fit expression

t0
a2

(M2, δM2, a) ∼ t∗0
a2

(g2)
[
1 + k̃1A− 2ba (am− am∗)

]
︸ ︷︷ ︸

≈(1+k̃A)

+c̄A+ δc 8t0δM
2

=
[
f(g2) + ct0 + dt0f

−1/2(g2)
] (

1 + k̃1A− 2baam
)
+ c̄A+ δc 8t0δM

2, (3.39)

where
A = 8t0M

2 − 2

3
φ∗4, (3.40)

and we used eqs. (3.35) and (3.36) to parameterize t∗0/a2(g2). The difference of the average quark
mass, am, and the quark mass at the symmetric point of physical average pseudoscalar mass, am∗,
is small. The parameters bt0 , ct0 and dt0 are similar to those of eq. (3.35), and the total number of
parameters for this combined fit across different values of g2 is 6. Note that when inserting this
parametrization the term that is proportional to 2baam∗ cancels from the above equation but it
resurfaces within the relation eq. (3.35) between t∗0/a2 and f(g2).

Again, the effect of ba cannot be isolated within our range of lattice spacings (see the right
panel of fig. 3.7) as am is approximately proportional to t0M2 and does not vary sufficiently across
our data. This is shown in fig. 3.5, where the ratio as a function of φ4 is plotted. The trM =
const ensembles can be found in the vicinity of the vertical φ4 = φ∗4 line. There is no detectable
dependence of this ratio on δM . The slopes with respect toM2 ∝ φ4 decrease with the lattice
spacing, indicating that the dominant violations of the GMOR relationm/M2 = const are due
to lattice artefacts. However, as already discussed above, the ratio itself does not decrease linearly
with a. Instead, it first increases from β = 3.34 up to β = 3.46 and only then it slowly starts to
decrease again.

Since the am dependence is hard to distinguish from theM2 dependence, within the global fit
we fix ba to its one-loop value eq. (2.109), ba = b

(1)
a ≈ 0.3158. The relation (3.29) between k̃1 and

k̃ will enable a cross-check with the previous fit result eq. (3.30) that was obtained by extrapolating
the individual slopes k̃(a) of eq. (3.28) to the continuum limit. In addition to this central fit, we
carry out a second fit, setting ba = 0 and interpret the difference between the resulting parameters
as a systematic uncertainty. This second fit also allows for a comparison not only with eq. (3.30) but
also with the earlier results shown in eq. (3.37). We remark that we expect the actual t∗0/a2 values
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1

10

3.34 3.4 3.46 3.55 3.7 3.85

t 0
/a

2

β

t∗0/a
2, global fit

t∗0/a
2, linear fit

t0,ch/a
2
0, global fit

Figure 3.8: Global fit results (cf. eq. (3.39)) for t∗0/a2 and t
χ
0 /a

2
0, together with results for t∗0/a2 taken

from separate linear fits (cf. eq. (3.28)) to thems = m` data.

to differ by even less between the two fits than the parameters bt0 , ct0 and dt0 since a part of the
difference can be accommodated for by the difference of the ba values in eq. (3.35).
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Figure 3.9: Deviations∆t0/a2 = t0/a
2(g2,M2, δM2) − t0/a

2 between the values postdicted by
the fit eq. (3.39) and the data are typically below one per cent (left) or of the order of the statistical error
(right), with only a few exceptions. The ensembles are sorted from left to right in terms of decreasing
lattice spacing and increasing values of the averageM2. Boldface ensemble names correspond to the

“symmetric” points, closest to the position of φ∗4.

In fig. 3.9 it is shown that the data are well described by the fit with ba = b
(1)
a and remark that

the picture looks very similar for ba = 0. The fit curve itself is shown for thems = m` points in
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fig. 3.7. The respective fit parameters read

k̃1(ba = b(1)a ) = −0.0466(62), k̃1(ba = 0) = k̃ = −0.0506(63),

c(ba = b(1)a ) = −0.560(27), c(ba = 0) = −0.560(27),

δc(ba = b(1)a ) = 0.0213(28), δc(ba = 0) = 0.0210(28),

bt0(ba = b(1)a ) = −0.9336(26), bt0(ba = 0) = −0.9340(26),

ct0(ba = b(1)a ) = 0.286(63), ct0(ba = 0) = 0.254(63),

dt0(ba = b(1)a ) = −1.567(84), dt0(ba = 0) = −1.515(84),

χ2/NDF(ba = b(1)a ) = 59.4/38, χ2/NDF(ba = 0) = 58.7/38, (3.41)

where the errors have been obtained from the bootstrap distributions of the parameters and scaled
with

√
χ2/NDF. In fig. 3.8 we compare the global fit to the t∗0/a2 values obtained from the local

interpolations above. In addition, we show the chiral limit of this ratio.
The differences between the central values of the two columns of eq. (3.41) constitute the sys-

tematic errors from varying ba from zero to twice its one-loop value. As expected, the slope param-
eter k̃1 is subject to the largest relative systematic uncertainty. The ba = 0 result is in agreement
with our previous estimate eq. (3.30). Moreover, the difference between the two values is indeed
consistent with eq. (3.29). Combining the ba = 0 result with the typical value am∗ = 0.004 (see
fig. 3.5 and tab. 3.2), we obtain k̃1 ≈ k̃+3baam

∗/φ∗4 ≈ −0.0472(63), which indeed is very close
to the result of the ba = b

(1)
a fit k̃1 = −0.0466(62). Moreover, the parameters bt0 , ct0 and dt0

agree within the errors with the determination eq. (3.37), based on the local fit results.
We used the central valueΛMS

√
8t∗0 = 0.712 of the determination [128] eq. (3.32) as an input.

Instead, we could have included the normalization as a free fit parameter. Carrying out such a fit
out of curiosity, we findΛMS

√
8t∗0 = 0.68(17), in agreementwith themore precise result thatwas

obtained employing the step scaling function within the Schrödinger functional framework [128].

Results

Using this global fit, we compute values for t∗0/a2 for each value of the lattice coupling β and col-
lect the results in the second line of tab. 3.3, where the first error is statistical and the second one
reflects the impact of the uncertainty of ba. Similarly, in the fourth line of the table we list tχ0/a20,
where naturally the statistical uncertainty is larger while the uncertainty of the ba value has less of
an impact. In general, the t∗0/a2 results from the global fit are in very good agreement with our
local determination. In comparison to the (local) fit results of [63, 135], our values at the coarser
lattice spacings β = 3.4 and β = 3.46 are significantly larger. This may be due to our ability
to parametrize lattice spacing effects better by incorporating more data at varying quark masses as
well as improved statistical accuracy by incorporatingmore data. This also increases the accuracy at
the finest lattice spacing where only few data points are available. Therefore, we regard the results
from the global interpolationwhere statistical fluctuations of individual ensembles to a large degree
average out as more robust.

The influence of these determinations on actual results, however, is small since we extrapolate
combinations of t0/a2 with the observables to the physical point and only then set the scale using
eq. (3.14) as described in sec. 3.4. In some instances, however, a value of t∗0/a2 still is required, e.g.,
when matching the scale of the renormalization factors, µ = a−1, or for the parametrization of
some lattice spacing effects, cf. 5.2.

Some of our results are defined in the chiral limit and therefore a relation of the value of tph0 at
the physical point to the value in the chiral limit, tχ0 is desirable. To this end, we compute the slope
parameter [145] of eq. (3.15), where we use the globally fitted k̃1 with the systematic error due to the
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uncertainty of ba included, reads

k̃1 = −0.0466(62), k1 =
8tχ0 (4πF0)

2

3
k̃1 ≈ −0.084(11), (3.42)

assuming theNf = 2 + 1 FLAG [152] values Fπ/F0 = 1.062(7) and Fπ = Fπ+ = 92.2MeV
basedon thedeterminations in [153–157]. Fromthe valueof k̃1 in the continuum limit and eq. (3.16),
we can deduce the continuum limit ratio

tχ0
t∗0

=

(
1 +

2

3
k̃1φ

∗
4

)−1

= 1.036(4). (3.43)

This difference of about 4 % is larger than the typical statistical errors that we achieve and should
be taken into account, when extracting, e.g., low energy constants in the chiral limit as we will do
in sec. 5.4.1.

For convenience, we refit our predictions for the t∗0/a2 values, setting bt0 = 0 but keeping the
g−2 and ln(g2) coefficients fixed, and find that they are well described by the interpolating formula

t∗0
a2

(g2) = feff(g
2) + 0.285− 1.566f

−1/2
eff (g2), where

feff(g
2) = exp

(
17.54596 g−2 − 7.507 + 0.790123 ln(g2)− 0.9334g2

)
. (3.44)

The relative errors are below 0.3%over the entire fitted range 3.34 ≤ β ≤ 3.85. Within the errors
of the Λ parameter of ref. [128], this interpolation converges towards the two-loop running of the
scale at small values of g2, making this formula particularly useful for predictions of new simulation
parameters. For values at already existing simulation points the second line of table 3.3 should be
consulted.
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4 Extraction of η and η′ mass eigenstates

As discussed in sec. 2.1.6 the η and η′ physical states are no flavour eigenstates, but related to the
interpolating functions by flavour rotations. These depend on the combination and precise defini-
tion of the interpolators, including the smearing and other details of the lattice computation and
need to be determined from the data.

In this chapter we give details on the measurements of the necessary correlation functions on
the individual configurations and how we extract physical mass eigenstates from the ensembles of
such measurements.

To this end we start in sec. 4.1 by introducing the stochastic methods necessary to calculate the
disconnected contributions on each individual gauge field configuration. Thereby, we employ two
noise reduction techniques: Time dilution, described in sec. 4.1.1 and the hopping parameter ex-
pansion, sec. 4.1.2. We explore the efficiency of these techniques for pseudoscalar and axialvector
loops, and comment on the choice of parameters in sec. 4.1.3. In sec. 4.2.1 the determined loops are
then used to construct matrices of correlators that we then take ensemble averages of and diagonal-
ize in the remainder of sec. 4.2. This requires a careful assessment of excited states and statistical
noise. This window problem is highlighted in sec. 4.2.2 and motivates our fit ansatz detailed in
sec. 4.2.3: The matrix analogue of effective masses is introduced, and the statistical precision is im-
proved by incorporating data at non-vanishing momentum. Details of the mass determination are
given, and the results are compared to those obtained by employing the GEVP. Finally, in sec. 4.3,
we discuss how the decay constants of the η and η′mesons are obtained from combined fits includ-
ing correlation functions constructed with local currents at the sink.

Parts of this chapter have already been published in a similar form in [60]. This applies in
particular to secs. 4.1.1, 4.1.2, 4.2.1, 4.2.3 and 4.3.

4.1 Stochastic measurements of disconnected loops
The basic building blocks of disconnected correlation functions, eq. (2.89), are quark loops of a
particular flavour f ∈ {`, s}

LΓ,f
s (~p, t) = a3

∑
~x,~y,~z

tr
(
e−i~p·~xφs(x, y)ΓD−1

f (y, z)φs(z, x)
)
, (4.1)

where Γ determines the pseudoscalar (Γ = γ5) or axialvector (Γ = γµγ5) Dirac structure. The
trace is taken over the spin and colour components and the space-time positions x, y and z share
the same time t, i.e. x = (t, ~x), y = (t, ~y) and z = (t, ~z). The quark smearing functional φs
is defined in sec. 2.3.2, where s is the number of smearing iterations. We implement three levels
of smearing, s ∈ S = {0, s1, s2}, which allows us to analyse local matrix elements as well as to
extend our basis of interpolators. The ratio s2/s1 is kept approximately constant on all ensembles
and the number of smearing iterations is increased with decreasing pion mass and lattice spacing.
We list the number of smearing iterations along with other parameters that will be discussed below
in tab. 4.1.
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Since D−1
f is a very large matrix, only its matrix product with a source |ρ〉 can be computed

with reasonable cost to obtain the solution vector

|σf 〉 = D−1
f |ρ〉. (4.2)

Hence, the full trace in eq. (4.1) cannot practically be computed exactly but must be estimated
stochastically [158]. In this section, we will first introduce the basic concept of stochastic estima-
tors for loops. In fact a number of algorithms have been suggested that take the structure of the
Dirac operator into account and converge faster than the naive probing of the trace. These algo-
rithms are typically based on partitioning, i.e., improved sources for the stochastic probing [159–
162], low-modedeflationof thematrix [105, 161, 163–165] or inexact andhence cheapermatrix-vector
products [166–169]. For our purposes it sufficed to concentrate on the hopping parameter expan-
sion [170] and partitioning of the sources in time.

4.1.1 Time-partitioned sources and open boundary conditions

To suppress short-distance (near-diagonal) noise in the trace estimation, it is beneficial to construct
sparse — diluted— sources [159]. It is possible to do this for spin and colour indices or space-time
blocks. Here, we choose to set specific time slices to zero,

ρτ,i(x, α, a) =

{
ri(x,α,a)√

2
mod(t/a,∆t/a) = τ and b ≤ t < Lt − b,

0 otherwise
, (4.3)

whereLt = aN0 is the temporal lattice extent and ri(x, α, a) ∈ Z2 × iZ2 are random numbers
drawn independently for every site x, spin α and colour component a. ∆t is the distance between
timeslices on which the source has support. On lattices with open boundary conditions in time,
we set b > 0 in order to suppress boundary effects. We comment on our parameter choices in
sec. 4.1.3. These random sources span a space in the bulk of the lattice,

∆t/a−1∑
τ=0

Nstoch−1∑
i=0

|ρτ,i〉〈ρτ,i| =Nstoch diag(0, . . . , 0︸ ︷︷ ︸
b/a

, 1, . . . , 1︸ ︷︷ ︸
Lt/a−2b/a

, 0, . . . , 0︸ ︷︷ ︸
b/a

)⊗ 112V3/a3

+O(1/
√
Nstoch), (4.4)

a4〈ρτ,i|ρτ ′,j〉 =(Lt − 2b)V3 δi,jδτ,τ ′ , (4.5)

whereV3 = L3
s andNstoch such sources are created for every dilution index τ = 0, . . . ,∆t/a−1.

The lattice Dirac equation
Dfσ

f
τ,i = ρτ,i (4.6)

is solved for each fermion flavour f and source ρτ,i, labelled by a stochastic index i and time parti-
tion τ , to obtain the solution σfτ,i.

By summing over the dilution index τ we probe the loop computed on the i-th stochastic
source,

LΓ,f
i,s (~p, t) = a3

∑
~x

∆t/a−1∑
τ=0

tr
(
e−i~p·~x(ρτ,iφ

s)(x)Γ(σfτ,iφ
s)(x)

)
. (4.7)

After averaging over these stochastic probes, we obtain an estimate of axialvector and pseudoscalar
loops of a particular flavour and for a given gauge field configuration and smearing,

LΓ,f
s (~p, t) =

1

Nstoch

Nstoch−1∑
i=0

LΓ,f
i,s (~p, t) +O

(
1√
Nstoch

)
. (4.8)
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This requiresNstoch ×∆t/a inversions for each flavour. To extend our basis of interpolators, we
compute loops with different levels of smearing, i.e. s ∈ {0, s1, s2}. Unlike in the connected case,
this does not require any additional inversions: due to its hermiticity the smearing operator can be
applied to the stochastic sources and solutions after the inversion, as indicated by the parentheses
in eq. (4.7).

4.1.2 Hopping parameter expansion

The inverse of the Wilson Dirac operator1 Df = 1
2κf

(1 − κfH) within the trace of eq. (4.1) can
be expanded for small values of the hopping parameter κf . This yields a geometric series in terms
of the nearest-neighbour hopping termH [69, 166, 170],

tr
(
ΓD−1

f

)
= 2κf

∞∑
i=0

κif tr
(
ΓH i

)
= 2κf

n−1∑
i=0

κif tr(ΓH
i) + κnf tr

(
ΓHnD−1

f

)
. (4.9)

Abovewe restricted ourselves to the case without smearing. On the right-hand side of the equation
we have split the series into the first n terms for which trΓH i = 0 and a remainder. Note that
the value of n depends on Γ and the exact fermion action employed and can easily be determined
numerically by applying the corresponding power n(Γ) of the (Clover-improved) Dirac operator
to a point source, multiplying with theDirac structure and then contracting again with the source,

ε =
∑
s

∑
c

〈δs,c,x | Γ(κD)n | δs,c,x〉.

This can be done for example on a small lattice and using a random gauge field. If ε is zero, then
there is no contribution to that order. In our case, in the absence of smearing, n(γ5) = 2 for
pseudoscalar and n(γµγ5) = 4 for axialvector loops.

In the stochastic estimation the first sum in eq. (4.9) only contributes to the noise coming from
short-distance hops. Hence, we can obtain an improved estimate of the trace, by applying theDirac
operator n times to the solution, replacing

Γσfτ,i 7→ Γ(1− 2κfDf )
n(Γ)σfτ,i (4.10)

in eq. (4.7) and thus cancelling out nearest-neighbour contributions that do not improve the signal.

4.1.3 Computational cost and choice of parameters

Anynoise reduction technique comes at a computational cost that needs to be smaller than the time
that would be required to simply increase the number of stochastic estimates. It is thus important
to choose an efficient combination of such improvements, ensuring a good signal-to-cost ratio.

When increasing the stochastic estimates on each configuration, the error will slowly approach
the gauge noise. The latter can only be reduced by prolonging the Monte-Carlo chain and gener-
ating more independent measurements. Due to the coupling of the pseudoscalar current to the
topology of the vacuum, these loops vary only slowly and the gauge noise quickly dominates over
the stochastic error from the estimation of the loops, see fig. 4.1 where the total error of the aver-
age loop is shown as a function of the number of stochastic estimates. For that reason, we found
that the axialvector current needed for the computation of decay constants benefits the most from
both a large number of stochastic sources and the employed noise reduction techniques whereas
the error of the pseudoscalar loops quickly saturates to the gauge noise. This situation is greatly im-
proved by including data at a non-vanishing momentum in the fits, see the bottom row of fig. 4.1
and the discussion in sec. 4.2.3.

1See eq. (2.65) for a definition of the hopping term neglecting the cSW term.
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Figure 4.1: Errors of the light loop averaged over all Nt sourced time slices for the pseudoscalar
(J = P , red) and axialvector (J = Aµ, blue) local currents. The left panel shows H101, aNf = 3
symmetric point ensemble; the quarkmasses of D150 displayed on the right are tuned to approximately
their physical values. Colour shades in the top panel correspond to the zero (dark) and a2~k2 = 1 case
(bright) and in the bottom panel to the number of applications of the hopping parameter expansionn,
withoutHPE (dark) and using themaximumnumber of applications (bright). Finitemomentumdata
has been averaged over all six realizations with a2~k2 = 1. Due to time dilution one stochastic source
corresponds to solving the Dirac equation four times. The displayed error is computed over the full
ensemble and approaches the gauge noise of the respective currents and ensembles. As demonstrated
in the top panel momentum averaging yields a reduction in the error of the loop of almost an order of
magnitude for both currents. The hopping parameter expansion is less effective but comes at almost

no cost relative to the costs of solving the Dirac equation.
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The hopping parameter expansion is — except for the maximum admissible value for its ap-
plication n— parameter free and involves n application of the Dirac operator but no additional
inversions. It thus is very cheap and cost-effective and can be applied to all unsmeared loops. Due
to the smallness of the expansion parameterκ it ismore effective at large quarkmasses andwe found
it to work better for the axialvector current where n = 4 and more stochastic probes are required
to approach the gauge error.

Also time partitioning eliminates noise from neighbouring time slices, however at the expense
of additional inversions, requiring a factor∆t/amore inversions. Based on initial experiments, we
chose a time separation of∆t = 4a in the stochastic dilution, except for the finest lattice spacing
where we used ∆t = 6a. These correspond to roughly ∆t ≈ 0.3 fm. These choices are listed
in tab. 4.1, as well as the number of configurations analysed and the distance between consecutive
measurements in Hybrid Monte-Carlo molecular dynamics time units. We also list the smallest
distance to the boundary b to control boundary effects. This parameter has been fixed from expe-
rience from the pion [90]: At a distance b boundary effects are smaller than the statistical error of
the pion correlation function. This condition results in b & 1.9 fm and is a conservative choice,
given the comparably large errors of the disconnected contributions.

We remark that due to the use of a highly efficient multigrid solver [171–173], we do not benefit
from additional noise reduction techniques like, e.g., the truncated solver method (TSM) [166]
within our setup. This is due to the fact that TSM reduces the average time needed for one solve by
performing inversions only approximately and only correcting for the bias with exact solves. This
requires in total more inversions but at a smaller total cost for all inversions. The computer time
spent for contracting and smearing the source and solution vectors according to eq. (4.7), however,
increases linearly with the number of estimates and soon dominates the total cost even though the
implementation of the smearing kernel is highly optimized for the hardware available to us. In our
implementation, where we only use exact solves, the computational cost for the smearing and the
contractions still accounts for roughly a third of the total computing time.

Also low-mode averaging (LMA) [105, 161, 163, 164], even when reusing orthogonalized multi-
grid test vectors as studied in [165], is not expected to improve the signal-to-cost ratio due to a sig-
nificant higher setup cost for the solver that scales approximately quadratically with the spatial vol-
ume. Also projecting out the high mode contribution and additional contractions become more
expensive in particular at small pion masses and large spatial volumes.

In summary, we stick to a relatively simple setup employing only time partitioning and the hop-
ping parameter expansion. The use of efficient solvers and hardware allows to compute the loops
to a high precision at a modest cost. These parameters have to be chosen before actually carrying
out the measurements and parameter tuning can only be done at relatively cheap ensembles and
then conservative projections need to be made. In hindsight possibly a slightly smaller total num-
ber of stochastic estimates would have been sufficient even for the lighter ensembles, cf. fig. 4.1.
The precision of the pseudoscalar loops in our case is mostly limited by the limited statistics of the
Monte-Carlo chains.

4.2 Analysis of matrices of correlation functions
Having stochastic estimates of pseudoscalar and axialvector loops available at various smearing lev-
els, we may now proceed to construct matrices of correlators from them. Using several smearings
and interpolating functions using light, strange, octet and singlet combinations of loops together
allows us to increase the overlapwith the η and η′ ground states. The basic idea and how thismatrix
is related to the physical eigenstates has already been discussed in sec. 2.3.4 and here we concentrate
on the numerical task of constructing and diagonalizing these matrices, identifying the eigenstates
with the physical states.
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id Nconf ∆MDU ∆bin S b/a ∆t/a Nstoch Nsolves/10
3

H101 963 8 4 {0, 55, 92} 30 4 96 370
H102a 490 8 4 {0, 63, 104} 30 4 96 376
H102b 491 8 4 {0, 63, 104} 30 4 96 377
H105 899 8 4 {0, 75, 125} 30 4 96 690
C101 504 8 4 {0, 88, 146} 30 4 96 387
D150 502 4 8 {0, 125, 208} 0 4 96 386
H107 778 8 4 {0, 63, 107} 30 4 96 598
H106 754 8 4 {0, 63, 104} 30 4 96 579
C102 729 8 4 {0, 88, 146} 30 4 96 560
B450 794 8 4 {0, 68, 113} 0 4 96 305
S400 796 8 4 {0, 78, 129} 30 4 96 611
N401 500 8 4 {0, 94, 156} 34 4 96 384
B451 1000 8 4 {0, 68, 113} 0 4 96 768
B452 962 8 4 {0, 83, 129} 0 4 96 739
N202 440 8 6 {0, 98, 163} 30 4 96 169
N203 563 8 6 {0, 111, 185} 30 4 96 432
N200 853 8 6 {0, 135, 225} 30 4 96 655
D200 582 8 8 {0, 165, 275} 30 4 96 447
N204 745 8 6 {0, 111, 185} 30 4 96 572
N201 757 8 6 {0, 135, 225} 30 4 96 581
D201 535 8 8 {0, 165, 275} 34 4 96 411
N300 754 8 10 {0, 165, 275} 49 6 96 434

Table4.1: Parameters related to themeasurement of the correlation functions: thenumber of analysed
configurationsNconf, their separation inmolecular dynamics units∆MDU, the choice of binning∆bin
to account for autocorrelation effects in the statistical analysis, the numbers of smearing iterations s ∈
S, the distance from the temporal boundaries b (in the case of open boundary conditions) and the
time partitioning separation∆t. In the last column we display the total number of individual Dirac
vector solves carried out on each ensemble to compute the disconnected correlation functions. The
number of solves needed for the connected part is much smaller (72: 2 quarkmasses× 3 smearing levels
× source spin-colour). Ensembles H102a and H102b were generated with the same quark masses and

lattice coupling but different simulation parameters and are therefore analysed separately.
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4.2.1 Construction of correlators

We define matrices of correlation functions using suitable momentum projected interpolators as
those in eqs. (2.79),

Cij(~p, t) =
1

Ntin

∑
tin

〈
Ω
∣∣∣Bi(~p, t+ tin)B†

j(−~p, tin)
∣∣∣Ω〉 , (4.11)

whereNtin denotes the number of source time slices that we average over. The Wick contractions
are given in eqs. (2.93) to (2.94) and give both connected, C̃ , and disconnected, D̃ correlation func-
tions.

In order to estimate the disconnected two-point function, we correlate and average two of the
loops, defined in eq. (4.7):

D̃Γ1Γ2
f1,f2
s1,s2

(~p, t) =
1

Nstoch(Nstoch − 1)

a

Lt

Nstoch−1∑
i,j=0
i 6=j

Lt−a∑
tin=0

〈
LΓ1,f1
i,s1

(~p, tin + t)LΓ2,f2
j,s2

(−~p, tin)
〉
.

(4.12)
Note that we are only allowed to sum over products of loops that have been obtained on different
random sources, hence i 6= j. Equation (4.12) applies to periodic lattices, where b = 0 and the cor-
relation functionswrap around the lattice (the periodicity of the loop is implicit,LΓ,f

i,s (~p, t+Lt) =

LΓ,f
i,s (~p, t)). It is straightforward to adapt the above equation to lattices with open boundaries by

restricting the sum over tin such that both tin and tin + t remain in the bulk of the lattice (defined
to be a distance b away from the boundaries).

We implement forward-backward averaging for the disconnected two-point functions by sim-
ply symmetrizing with respect to the ordering of the source and sink operators:

D
Γ1Γ2
f1,f2
s1,s2

(~p, t) =
1

2

(
D̃Γ1Γ2

f1,f2
s1,s2

(~p, t) + sgn(Γ1,Γ2)D̃
Γ2Γ1
f2,f1
s2,s1

(~p, t)

)
, (4.13)

where sgn(γ5, γ5) = sgn(γµγ5, γµγ5) = 1 and sgn(γµγ5, γ5) = −1. We use the same ran-
dom sources for light and strange quark inversions, preserving the correlations between light-light,
strange-strange as well as light-strange disconnected correlation functions. This is beneficial when
computing differences of disconnected correlation functions which appear after theWick contrac-
tion of some of the basis states.

The connected contributions are cheaply computed by exploiting γ5-hermiticity, cf. eq. (2.91).
Due to the reduced error compared to the disconnected correlation functions, it is sufficient to
employ only a single source position per configuration at xin = (b,~0), leaving (Ls − 2b)/a times-
lices for the extraction of the physical states. Unlike on lattices with periodic boundary conditions,
in the case of open boundary conditions, in this case we do not carry out the forward-backward
averaging of eq. (4.13).

4.2.2 Excited states and signal-to-noise problem

After combining connected and disconnected correlators to matrices of correlators, eq. (4.11), we
will now focus on the extraction of the η and η′ eigenstates from these. In this sectionwe first focus
on the difficulties that are involved in the extraction of these flavour diagonal states, in particular
the large contribution from excited states at small times and the early onset of noise dominance
over the signal.

Todemonstrate these difficultieswefirst investigate the situationof theη′ onH101, an ensemble
where all three quarks are mass degenerate. In this case there is no mixing between the octet and
the singlet currents and so all physical states are either pure octet or pure singlet states andC(t) can
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Figure 4.2: Left panel: Absolute values of the smeared-smeared, singlet-singlet pseudoscalar corre-
lators (Bi = Bj = P0

~p in eq. (4.11)) and their derivatives for theNf = 3 symmetric point ensemble
H101. There, the η′ is a pure singlet and so no diagonalization is necessary. Right panel: The same

data but after subtraction of the fitted η′ ground state.

be chosen to be diagonal, e.g. by using Bi ∈ {P8,P0}. The singlet interpolator will only create
the η′ and higher excitations, and we plot the singlet-singlet correlators at zero and the smallest
available three-momentum a2~k2 = 1 on the left-hand side of fig. 4.2. The error of the a2k2 = 0
data increases rapidly with t/a and the signal is lost at t/a ' 9, while the finite momentum data
shows a signal over a fewmore timeslices and generally exhibits a better signal-to-noise ratio. Inboth
cases the error is approximately constant over the range of t/awhile the signal decays exponentially
and eventually is lost in the noise, leaving only a few points for the extraction of the states. In
addition these points are highly correlated and this effectively reduces the available information
further. These correlations and potential shifts of the correlators away from zero at large times
can be drastically reduced by extracting the states from the temporal derivative of the correlation
functions [174, 175]. In deed, we observe reduced errors and an extended range suitable for the
extraction of the states in this case, see fig. 4.2.

At small Euclidean times the correlators are more precise, but the correlator cannot be de-
scribed as a single exponential since excited states contribute significantly. Innature, there are amul-
titude of resonances with the same quantum numbers lying just above the η′(958): the η(1295),
η(1405) and η(1475) are all close-by and will, in general, contribute as excited states to C(t). In
the right panel of fig. 4.2 we plot the correlators after subtracting the lowest fitted η′ state. In this
case, the first excitation of the η′ is easily detectable up to t/a ≈ 5. It is therefore important to
include at least a third state in our analysis to provide an effective parametrization of the contri-
butions of these higher states. In principle, also strong decays of the η and η′ should be taken into
account. For the η′, the dominant decay is η′ → ηπ+π− (branching ratio 42.5 % [19]). This is kine-
matically only possible on ensemble D150, for our lightest quark mass. Its decay width, however,
is about 80 keV, which would be very difficult to resolve considering the statistical precision we
achieve. Other channels have even smaller decay rates and many, such as η → 3π0, are forbidden
in the isospin limit of QCD that we simulate.

To summarize, our fitting procedure must address the following issues: At small Euclidean
times, the correlators are affected by sizable excited states contributions. These need to be included
in our parametrization. At the same time, high noise levels at large times set an upper limit for the
usable time slices. In many cases fit ranges can only extend over about 0.5 fm to yield acceptable
results in terms of theirχ2/Ndf. These remaining time slices usable for the extraction are in general
correlated and the range of time slices that is usable does not only depend on the quark mass and
lattice spacing but also on the particular interpolators, i.e. the smearing and flavour combination
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used and the signal for the octet combinations is better than that for the singlet ones. Therefore, it
is necessary to choose fit ranges independently for the individual entries of the matrixCij .

4.2.3 Fits to matrices of correlation functions

Away from the flavour symmetric point, the matrix of correlators C(t), eq. (4.11) is not diagonal
and themasses of the η and η′ are extracted from diagonalizing the full matrix. Usually, this is done
by solving a generalized eigenvalue problem (GEVP) and fitting to the resulting eigenvalues [176,
177]. Here, we follow a different route and directly fit to the elements ofC(t) or its time-derivative,
∂tC(t). The latter reduces correlations in the Euclidean time t. This also allows us to adjust the fit
ranges for the entriesCij(t) individually as motivated in the previous section.

Fit forms

In the limit of infinite statistics,C (eq. (4.11)) is a real symmetric, positive-definiteM ×M matrix,
cf. eq. (2.96). The spectral decomposition gives

Cij(t) =

∞∑
n=0

1

2EnV3

〈
Ω
∣∣∣Bi(t)

∣∣∣n〉〈n ∣∣∣B†
j(0)

∣∣∣Ω〉 , (4.14)

=

∞∑
n=0

1

2EnV3
exp(−Ent)

〈
Ω
∣∣∣Bi(0)

∣∣∣n〉〈n ∣∣∣B†
j(0)

∣∣∣Ω〉 , (4.15)

where we suppress the momentum argument and only consider a single source at tin = 0. The
lowest energy states correspond to the ground states of the η/η′ system, |n = 0〉 = |η〉 and
|n = 1〉 = |η′〉. Equation (4.14) can be written as

C(t) = ẐD̂(t)Ẑᵀ, (4.16)

where D̂(t) = diag(exp(−Ent)) for n = 0, . . . is time dependent, while

Ẑin =
1√

2EnV3
〈Ω|Bi(0)|n〉 (4.17)

are time independent amplitudes (that depend on the smearing and momentum). In practice, we
truncate the infinite sum to determine only the lowestN states, hence,

C(t) = ZD(t)Zᵀ +O(exp(−EN t)), (4.18)

whereD ∈ RN×N and we assume phase conventions such that Z ∈ RM×N has positive entries
on the diagonal.

Equation. (4.18) allows to perform a combined fit to C(t), restricting the fit range to times
large enough so that any contributions from higher excited states n ≥ N fall below the statistical
precision. The M × N amplitudes Zin and N masses are fitted simultaneously to the (M +
1) ×M/2 independent components of Cij . The bases of interpolating operators used for each
ensemble are detailed in tab. 4.2. We find fits to be most stable forN = M = 3. These involve
12 free parameters. We deviate from this choice for thems = m` ensembles, for which there is
no mixing between the singlet and octet sectors. In this case, the matrix of correlation functions
is block diagonal, and we choose N = M = 4, such that the problem decomposes into two
independent singlet and octetN =M = 2 fits.

On the ensembleswithopenboundary conditions,we takeboundary effects into accountwhen
computing the loops and connected correlation functions, using sources and sinks that only have
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support in the bulk of the lattice, see sec. 4.2.1. This allows the simple ansatz

D(t) = diag(exp(−Ent)) (4.19)

for the time dependentmatrix in eq. (4.18). On latticeswith (anti-)periodic boundary conditions in
time, states canpropagate across theboundary, andwemodifyD to take thebackwards-propagating
states into account:

D(t) = diag
[
2 exp

(
−En

Lt

2

)
cosh

(
−En

(
t− Lt

2

))]
. (4.20)

As motivated in sec. 4.2.2 and suggested in [174, 175], it is advantageous to reduce the correla-
tions between time slices by fitting to the temporal derivative of the correlation functions. The fit
form, eq. (4.16), is modified to

∂tC(t) ∼ Z (∂tD(t))Zᵀ, (4.21)

where ∂tC(t) = (C(t+ a)− C(t− a)) /(2a) is the symmetric discretized derivative and

∂tD(t) = − diag [En exp (−Ent)] (open boundaries),

(4.22)

∂tD(t) = −2 diag
[
En exp

(
−En

Lt

2

)
sinh

(
−En

(
t− Lt

2

))]
(periodic boundaries).

(4.23)

We find that thismodification enables fits to discriminate between the η and η′ contributionsmore
easily, as long as higher excited states are either sufficiently well parameterized (by including them
in the fit) or suppressed by the choice of the fit window. In addition, potential constant shifts in
the correlation functions (arising from finite volume effects related to incomplete sampling of the
topological sectors, see, e.g., [48, 52]) are automatically removed. Although we do not encounter
any significant shifts within our data, we observe that utilizing eq. (4.21) leads to decreased correla-
tions and more stable fit results, see also fig. 4.2 for an example.

Inclusion of data at finite momentum

Wealso include datawith non-vanishingmomentum in the fit, assuming the continuumdispersion
relation

aEn(~p) =
√
a2M2

n + a2~p2, (4.24)

whereMn = En(~0) is the mass of then-th eigenstate. On the lattice themomentum components
are quantized: pj = 2πakj/Ls where kj are integer multiples of a−1. We average over the six
smallest non-trivial lattice momenta (a2~k2 = 1) and carry out a combined fit with the ~k = ~0
data, assuming the same massesMn. The error reduction on the level of the individual loops is
demonstrated in fig. 4.1 and in fig. 4.3we showexamples of these fits to the full correlation functions
(see also fig. 3 of [178] for the inclusion of higher momenta). In addition, we plot the naive lattice
dispersion relation for a free scalar particle,

aEn(~p) = arccosh

cosh(aMn) +
∑
j

2 sin2(apj/2)

 . (4.25)

Sincewithin the relevantmomentum range the differences between the two curves (4.24) and (4.25)
are much smaller than the errors of the data, we conclude that assuming eq. (4.24) will not bias
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our results. Moreover, we find all data to be well described by this ansatz. The combined anal-
ysis of zero and non-zero momentum data indeed reduces the statistical error, in particular, for
the η′ mass. This is in part due to the fact that the zero momentum data couple to the slowly
fluctuating topological charge density and exhibit longer autocorrelations, see [48]. In total, we
fit to l × M(M + 1)/2 correlation functions and the number of fit parameters is increased to
(l ×M + 1) × N , where l is the number of momenta. Specifically, forM = N = 3, by set-
ting l = 2, we increase the number of correlation functions from 6 to 12 and the number of fit
parameters from 12 to 21.
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Figure 4.3: Energies of the η (left panels) and η′ (right panels) mesons determined on ensemblesH101
(top) andH105 (bottom). The red squares display the energies with a2~k2 = 0 and a2~k2 = 1 extracted
from individual fits, while the blue filled symbols show the masses determined from a combined fit
assuming the continuum dispersion relation (dark blue). The lattice dispersion relation (light blue)
obtained using themasses extracted from the combined fit is also displayed. The data points at a2~k2 =
0 have been shifted slightly for better visibility. Note that Eη = Eπ on the symmetric (ms = m`)

ensemble H101.

Generalized effective masses

The fit form involves a sum overN exponentials for each of theM(M + 1)/2 independent en-
tries of C(t). As the number of states (N ) included increases, the fits become more unstable and
sensitive to the choice of the initial guesses. This motivates us to define a matrix analogue of the
effective mass (forN =M ),

∂t logC(t) =(∂tC(t))C
−1(t) (4.26)

=
(
Ẑ∂tD̂(t)Ẑᵀ

)(
ẐD̂(t)Ẑᵀ

)−1
(4.27)

=− Z diagN−1
n=0 (En)Z

−1 +O [exp (− (EN − EN−1) t)] , (4.28)
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which is constant in time (up to excited states corrections and statistical noise).2 SinceC(t) is non-
singular, (∂tC)C−1 is an unambiguous expression and can readily be computed. One can easily
repeat this procedure and take the second derivative, leading to

(∂2tC)(∂tC)
−1 = −Z diag(En)Z

−1 +O [exp (− (EN − EN−1) t)] . (4.29)

This allows the use of the derivatives in the inverse and hence again reduces correlations. The con-
tributions from higher excited states are somewhat altered by this but the large-time behaviour
remains unaffected.

Note that (∂tC)C−1 and (∂2tC)(∂tC) are not symmetric and theirM2 elements converge
to constant values at large times. In order to resolve N different states, N(M + 1) parameters
(Zin andEn) need to be determined. TheM2 asymptotic values are not sufficient for this, unless
N ≤ M2/(M + 1), which excludes the quadratic caseN = M .3 In this case, simultaneous fits
are performed to eqs. (4.21) and (4.29), where the latter enables the fit to unambiguously resolve
the spectrum of states. We plot an example for such a combined fit in fig. 4.4.

Results for the masses at finite lattice spacing and non-physical quark masses

For the individual ensembles we obtain results in the following way, summarizing our fitting strat-
egy described in the previous paragraphs: we simultaneously fit the correlation functions with two
momenta a2~k2 = 0 and a2~k2 = 1 to eqs. (4.21) and (4.29). Correlations between all entries of
(∂tC)C

−1 and ∂2tC(∂tC)−1 at each time slice are taken into account, whereas correlations be-
tween time slices can be neglected due to fitting to derivatives of C (we have checked that this is
indeed the case). A typical fit is shown in fig. 4.4. The resulting η and η′ masses for all the en-
sembles are collected in tab. 4.2, along with the χ2/Ndf of the fits, where in most cases we achieve
χ2/Ndf ≈ 1.

2We remark that this construction is easily generalizable to the caseN 6= M , employing a singular value decompo-
sition of ZD(t)Zᵀ. It should be noted, however, that the leading truncation errors then depend on the min(N,M)
non-singular values.

3SettingM = N +1 = 4 allows to determine all the parameters, however, this choice was found to result in larger
errors than a combined fit to eqs. (4.21) and (4.29).
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id basis aMη
√
8t0Mη aMη′

√
8t0Mη′ χ2/Ndf

H101 {83, 82, 03, 02} 0.1814(6) 0.867(3) 0.404(16) 1.931(74) 1.09, 0.86
H102a {`3, s3, 82} 0.1996(44) 0.958(21) 0.413(22) 1.981(107) 0.71
H102b {`3, s3, 82} 0.1989(26) 0.955(13) 0.395(21) 1.896(99) 0.99
H105 {`3, s3, 82} 0.2249(38) 1.082(18) 0.392(14) 1.886(69) 1.21
C101 {`3, s3, 82} 0.2253(52) 1.089(25) 0.422(19) 2.038(92) 0.71
D150 {`3, s3, 82} 0.2280(183) 1.107(89) 0.382(31) 1.854(150) 1.04
H107 {`3, s3, 82} 0.2509(46) 1.170(21) 0.433(16) 2.019(73) 0.82
H106 {`3, s3, 82} 0.2511(49) 1.193(23) 0.391(14) 1.860(67) 0.85
C102 {`3, s3, 82} 0.2396(91) 1.148(44) 0.389(20) 1.864(97) 0.88
B450 {83, 82, 03, 02} 0.1611(17) 0.872(9) 0.357(12) 1.930(67) 1.84, 1.00
S400 {`3, s3, 82} 0.1837(28) 0.998(15) 0.335(10) 1.821(52) 1.46
N401 {`3, s3, 82} 0.1858(141) 1.009(77) 0.361(25) 1.959(134) 1.14
B451 {`3, s3, 82} 0.2386(29) 1.249(15) 0.370(11) 1.937(56) 1.19
B452 {`3, s3, 82} 0.2233(29) 1.186(15) 0.355(8) 1.887(42) 1.07
N202 {83, 82, 03, 02} 0.1313(17) 0.844(11) 0.331(20) 2.126(129) 0.87, 2.07
N203 {`3, s3, 82} 0.1567(29) 1.005(19) 0.282(22) 1.808(144) 0.68
N200 {`3, s3, 82} 0.1711(25) 1.099(16) 0.303(18) 1.948(117) 1.45
D200 {`3, s3, 82} 0.1768(22) 1.138(14) 0.330(13) 2.125(85) 1.43
N204 {`3, s3, s2} 0.1970(35) 1.239(22) 0.315(16) 1.983(103) 1.07
N201 {`3, s3, 82} 0.1818(67) 1.154(43) 0.306(9) 1.944(57) 1.80
D201 {`3, s3, 82} 0.1874(90) 1.201(58) 0.327(21) 2.097(133) 1.03
N300 {83, 82, 03, 02} 0.1061(11) 0.878(9) 0.247(16) 2.046(130) 1.21, 1.87

Table 4.2: Masses of the η and η′ mesons obtained from fits to eqs. (4.21) and (4.29) in lattice units
and in units of the gradient flow scale,

√
8t0 (determined on the same ensemble). See tab. 3.1 for the

corresponding pion and kaonmasses and tab. 3.3 for the lattice spacings. We also give the smearing bases
used in the construction of the matrix of correlation functions, eq. (4.14), where `, s, 8, 0 refer to the
light, strange, octet and singlet combinations of the pseudoscalar interpolating operators, respectively,
and the superscript labels the smearing applied (element of S), see tab. 4.1. The resulting χ2/Ndf of
the partially correlated fits are also given. For the ensembles withms = m`, where we carry out two
independent fits, we give both χ2/Ndf values for the octet (first) and singlet (second) cases. Ensem-
bles H102a and H102b were generated with the same quark masses and lattice coupling but different

simulation parameters and are therefore analysed separately.
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Figure 4.5: Left panel: The η and η′ eigenvalue functions for twomomenta, a2~k2 = 0 and a2~k2 =
1 determined on ensemble H105, obtained by solving the GEVP, with the reference time slice t0 = 5a.
For better visibility, some points are shifted slightly and the data for the η′ are omitted for (t−t0)/a ≥
10 due to the large errors. Right panel: Results for the masses determined by fitting to the lowest
two eigenvalues of the GEVP and from direct fits (eqs. (4.21) and (4.29)) as functions of the starting
point of the fit, tmin. The analysis is similar in both cases, employing the same basis of interpolators and
incorporating data at twomomenta. The horizontal lines and grey error bands indicate the final results.
These have been obtained from a slightly different fit, employing different tmin for different elements

of the correlation matrix. For the GEVP results, t0/a = tmin/a− 1.

Comparison to the GEVP method

A standard way to extract the masses of the η and η′ from the matrix of correlation functions is to
solve the GEVP [176, 177],

C(t)V (t, t0) = C(t0)V (t, t0)Λ(t, t0), (4.30)

where Λ = diag(λ0, . . . , λM−1) is the diagonal matrix of the eigenvalues and V is the matrix of
eigenvectors. One then fits to the eigenvalues λn ∝ e−Ent to extract the energies.

The reference timeslice t0 needs to be chosen large enough [179] so that contributions from
states with n ≥ M are sufficiently suppressed. In our setup, we found it hard to disentangle the
excited state contributions from the lowest two eigenvalues, having only a limited number of times-
lices t > t0 available before the signal of the heavier η′ vanishes in the statistical noise. In particular
at larger times, it also becomes increasingly difficult to assign the correct physical states to the eigen-
vectors. We compare the GEVP with the results obtained from the fit strategy described in the
previous section in fig. 4.5. While the two methods generally agree, the plateau regions start ear-
lier when using the generalized effective mass fit method. This enables us to extract results with
an increased statistical precision compared to using the GEVP.We remark that our fit method also
allows us to extract amplitudes directly, in a straightforward manner, as is discussed below.

4.3 Local matrix elements and determination of decay con-
stants

Having determined mass eigenstates of the η and η′ in the previous section, given by the fitted
amplitudesZin depending on the set of interpolating operators employed, we can now proceed to
compute local matrix elements with a local current J that are needed to extract decay constants.
We start from a vector ofM correlation functions (i = 1, . . . ,M ):

CJ
i (t) =

〈
Ω
∣∣∣J(t)B†

i (0)
∣∣∣Ω〉 , (4.31)
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whereBi(0) is an interpolatorwith themomentum ~p inserted at the time tin = 0 and is taken to be
the same as that used to fit the eigenstates in the previous sections. For the local currents we employ
those defined in eqs. (2.112) and (2.111), where we set the unknownmass-independent improvement
coefficients to zero (i.e. we use P̌ 0 and Ǎ0

µ instead of P̃ 0 and Ã0
µ, respectively).

For the connected contribution we utilize the translational invariance of the expectation value
to move the momentum projection from the smeared point source to the local sink, as is common
in this kind of calculation. For the disconnected two-point function, in order to increase the statis-
tics, we replace J(t,~0) 7→ (a3/V3)

∑
~x e

−i~p·~xJ(t, ~x), again exploiting translational invariance.
The two-point function is then constructed in analogy to eqs. (4.7) and (4.12), however, without
smearing at the sink and with the additional normalization factor 1/V3.

We carry out a spectral decomposition similar to that of eq. (4.14):

CJ
i (t) ≈

N−1∑
n=0

1

2EnV3
exp(−Ent)

〈
Ω
∣∣∣J(0)∣∣∣n〉〈n ∣∣∣B†

i (0)
∣∣∣Ω〉

=

N−1∑
n=0

ZinDnn(t)jn, (4.32)

where
jn =

1√
2EnV3

〈Ω|J |n〉, (4.33)

and Z is the truncated overlap matrix, defined in eq. (4.17). One can also write this in terms of
matrixmultiplications,CJ(t) ≈ ZD(t)j, whereCJ(t) and j areM - andN -dimensional vectors,
respectively. Using the bootstrap samples of the previously obtained elements of Z and energies
En, we carry out a fit to the above functional form, determining the matrix elements 〈Ω|J |n〉 =√
2EnV3 jn.
Once the axialvector and pseudoscalar matrix elements are obtained, we can construct the par-

tially improved, unrenormalized decay constants F̃ 8
n and F̌ 0

n for n ∈ {η, η′} as well as the corre-
spondingpseudoscalarmatrix elements H̃8

n and Ȟ0
n, defined in eqs. (2.113) and (2.115). The improve-

ment of these has beendiscussed in sec. 2.4.2 and the remainingunknown improvement parameters
fJ , dJ , d̃J , δcJ and csJ forJ ∈ {A,P}will be included in the corresponding continuum limit fits.
We list these partially improved decay constants multiplied by the corresponding renormalization
factor (see sec. 2.4.3) in tab. 4.3.
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id
√
8t0ZAF̃

8
η

√
8t0ZAF̃

8
η′

√
8t0Z

s′
A F̌

0
η

√
8t0Z

s′
A F̌

0
η′

H101 0.2164(30) 0 0 0.1790(97)
H102a 0.2206(58) −0.0263(104) 0.0142(100) 0.1701(314)
H102b 0.2138(32) −0.0303(54) 0.0102(37) 0.1816(97)
H105 0.2155(27) −0.0610(78) 0.0215(66) 0.1890(54)
C101 0.2098(55) −0.0744(155) 0.0299(87) 0.2046(126)
D150 0.1954(193) −0.1030(374) 0.0198(194) 0.1472(277)
H107 0.2230(42) −0.0730(84) 0.0306(79) 0.1921(47)
H106 0.2159(46) −0.0741(115) 0.0252(91) 0.1780(48)
C102 0.2092(83) −0.0928(170) 0.0502(176) 0.1906(136)
B450 0.2184(30) 0 0 0.1947(68)
S400 0.2184(32) −0.0384(46) 0.0178(80) 0.1923(74)
N401 0.2187(76) −0.0643(151) 0.0177(158) 0.1686(197)
B451 0.2317(30) −0.0668(64) 0.0298(82) 0.2132(134)
B452 0.2210(26) −0.0870(57) 0.0438(51) 0.1960(37)
N202 0.2180(37) 0 0 0.1793(60)
N203 0.2236(32) −0.0361(92) 0.0190(71) 0.2130(226)
N200 0.2238(29) −0.0457(98) 0.0189(89) 0.1961(68)
D200 0.2243(30) −0.0684(69) 0.0161(60) 0.1981(90)
N204 0.2297(53) −0.0671(114) 0.0172(110) 0.2069(149)
N201 0.2198(34) −0.0854(108) 0.0372(120) 0.1872(55)
D201 0.2299(102) −0.0753(268) 0.0184(131) 0.1753(238)
N300 0.2124(32) 0 0 0.1781(171)

Table 4.3: Renormalized and partially improved octet and singlet decay constants of the η and η′
mesons obtained from fits to eq. (4.32) in units of the gradient flow scale,

√
8t0 (determined on the

same ensemble). Ensembles H102a and H102b were generated with the same quark masses and lattice
coupling but different simulation parameters and are therefore analysed separately.
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5 Masses and decay constants of the η and η′

mesons

The results at the individual ensembles determined in the previous chapter are determined at both
a non-vanishing lattice spacing and mostly unphysical quark masses. In this chapter we combine
our results of the masses and decay constants and extrapolate them to the continuum and to the
physical quark mass point. The renormalization and linear improvement of our observables has
been presented in sec. 2.4.

First, in sec. 5.1, we summarize literature results of large-Nc ChPT that will be used to parame-
trize the quark mass dependence of the η and η′ masses and decay constants when performing the
extrapolation to the physical point. We first present the general framework, before giving explicit
expressions to LO and NLO in the following subsections 5.1.1 and 5.1.2, respectively. We then add
parametrizations of lattice spacing effects in sec. 5.2, including the unknown linear improvement
coefficients and higher quadratic terms. The choice of free parameters in that fit, as well as trunca-
tion of the ChPT fit forms and renormalization comprise the systematic errors that we attempt to
quantify by doing a number of different fits in sec. 5.3. Of these fits we then single out one partic-
ular that we use to quote our central values and present results for the masses and decay constants
in sec. 5.4, including results for the low energy constants (LECs) that parametrize our results in the
continuum in sec. 5.4.1. Finally, we compare our results to the phenomenological and lattice litera-
ture available in sec. 5.5 and give an exemplary application for the asymptotic values of the transition
form factors η(′) → γ∗γ in sec. 5.5.4.

This chapter has already been published in similar or verbatim form in [60].

5.1 Large-Nc chiral perturbation theory
Conventional SU(3) ChPT entails expansions in the masses of the octet mesons (the pions, the
kaons and the octet η8) — the Goldstone bosons of the spontaneous breaking of SU(3)A in the
QCD vacuum, see sec. 2.1.6 for a more detailed discussion. To include the singlet η0, one extends
the symmetry group to U(3) and expands simultaneously around the limitNc → ∞ In this limit
the axial anomaly vanishes but at finiteNc, the singlet state acquires its anomalousmass. Therefore,
in U(3) large-Nc ChPT, the expansion is organized in powers of δ [180, 181], where the power
counting is as follows:

p = O(
√
δ), m = O(δ), 1/Nc = O(δ) (5.1)

with p being the momentum andm a quarkmass, see tab. I of [181] for a complete list of the power
counting rules.

The chiral Lagrangian at O(δ0) corresponds to massless QCD with an infinite number of
colours. At LO, i.e.O(δ1), without the anomaly, the squared pseudoscalar masses µ2a are related
to the quark mass matrix in the adjoint representation via the GMOR relations, cf. eq. (3.4),

µ2ab = 2B0 tr[ta diag(m`,m`,ms)t
b] = δabµ2a. (5.2)
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However, at this order in δ one also has to add the O(1/Nc) Witten–Veneziano contribu-
tion [12, 14] to the singlet mass,M2

0 = 2Nfτ0/F
2, where τ0 denotes the quenched topological

susceptibility. The mixing of the singlet (a = 0) and octet (a = 8) into physical states is in align-
ment with the discussion in sec. 2.1.6 and the corresponding non-diagonal part of the pseudoscalar
mass matrix reads, see, e.g., [180, 181]:

µ2 =

(
µ28 µ280
µ280 µ20

)
. (5.3)

Its eigenvalues correspond to the (squared) η and η′ masses:

R(θ)µ2Rᵀ(θ) =

(
M2

η 0

0 M2
η′

)
. (5.4)

R(θ) is an orthogonal transformation as defined in eq. (2.45) which defines the so-calledmass mix-
ing angle θ. One can easily read off the relations

µ28 =M
2
η cos

2 θ +M2
η′ sin

2 θ, (5.5)

µ20 =M
2
η sin

2 θ +M2
η′ cos

2 θ, (5.6)

µ280 =(M2
η′ −M2

η ) sin θ cos θ, (5.7)

θ =
1

2
arcsin

(
2µ280√

(µ28 − µ20)
2 + 4µ480

)
=

1

2
arcsin

(
2µ280
M2

−

)
, (5.8)

where

M2
− =M2

η′ −M2
η =

√
(µ28 − µ20)

2 + 4µ480, (5.9)

M2
+ =M2

η′ +M2
η = µ28 + µ20. (5.10)

The above relations apply to all orders in ChPT, however, the dependencies of the mass matrix
parameters µ8, µ0 and µ80 on the masses of the η and η′ mesons and the chiral anomaly vary with
the order of the expansion. Also, the GMOR relations between these parameters and the quark
masses are subject to NLO corrections. We will utilize the combinations

Mη =

√
1

2

(
M2

+ −M2
−
)

and Mη′ =

√
1

2

(
M2

+ +M2
−
)

(5.11)

when performing the extrapolation of the η and η′ masses to the physical point.
The functions µ8, µ0 and µ80 depend on low energy parameters and quark masses, with the

latter typically being replaced by combinations of the pion and kaon masses via the GMOR rela-
tions. Along one of the two trajectories that we consider here, the average quark mass is constant
and therefore, a more convenient parametrization is in terms of the average and difference of the
squared pion and kaon masses,M2 and δM2, cf. eqs. (3.2) and (3.4).

The computation of the decay constants is more involved. A common parametrization is that
of the two-angle mixing scheme, where the four physical decay constants are expressed in terms of
two angles θ0 and θ8 and two constants F 0 and F 8 [115, 181] (recalling eq. (2.100)),(

F 8
η F 0

η

F 8
η′ F 0

η′

)
=

(
F 8 cos θ8 −F 0 sin θ0
F 8 sin θ8 F 0 cos θ0

)
, (5.12)
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leading to

F 8 =
√

(F 8
η )

2 + (F 8
η′)

2, F 0 =
√
(F 0

η )
2 + (F 0

η′)
2, (5.13)

tan θ8 =
F 8
η′

F 8
η

, tan θ0 =−
F 0
η

F 0
η′
. (5.14)

The decay constants in the flavour basis can be expressed in the same way,

F s =
√
(F s

η )
2 + (F s

η′)
2, F ` =

√
(F `

η)
2 + (F `

η′)
2, (5.15)

tanφs =−
F s
η′

F s
η

, tanφ` =
F `
η

F `
η′
. (5.16)

The latter is a popular choice in phenomenological studies due to the fact that φ` ≈ φs at the
physical point, which allows one to express all four decay constants in terms of only three parame-
ters [115].

5.1.1 Fit forms for LO

As explained above, at leading order the elements of the pseudoscalar mass matrix are linear in the
quarkmasses and can be related to combinations of the non-singlet pseudoscalar mesonmasses via
the LOGMOR relations

(µLO8 )2 =
2

3
B0 (m` + 2ms) =M2 +

1

3
δM2, (5.17)

(µLO0 )2 =
2

3
B0 (2m` +ms) +M2

0 =M2 +M2
0 , (5.18)

(µLO80 )
2 =− 2

√
2

3
B0 (ms −m`) = −

√
2

3
δM2, (5.19)

where the anomalous contributionM2
0 = 6τ0/F

2 is proportional to the quenched topological
susceptibility τ0 [12, 14] and contributes at O(N−1

c ) to µ20, whileM2 is the O(m) value of the
squared singlet mass.

To this order, all singlet and octet decay constants can be expressed in terms of the pion decay
constant F (in the chiral limit) and the angle θ, defined in eq. (5.8):

F 8
η = F 0

η′ = F cos θ, −F 0
η = F 8

η′ = F sin θ, (5.20)

i.e. F 8 = F 0 = F and θ8 = θ0 = θ. Note that to this order θ only depends onM2
0 and

δM2. A single mixing angle in the octet/singlet basis is not consistent with phenomenological
investigations [115, 181] and also the results of the present study clearly show F 8

η 6= F 0
η′ and F

0
η 6=

−F 0
η′ .

5.1.2 Fit forms for NLO

The large-Nc ChPT expansion for the masses and decay constants has been worked out to NNLO
in [182]. Here, we use the results of [181] and truncate these at NLO. To this order, only four
additional LECs, L5, L8, Λ1(µ) and Λ2(µ) appear. The elements of the squared mass matrix
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are given by

(µNLO
8 )2 =(µLO8 )2 +

8

3F 2
(2L8 − L5) δM

4, (5.21)

(µNLO
0 )2 =(µLO0 )2 +

4

3F 2
(2L8 − L5) δM

4 − 8

F 2
L5M

2M2
0 − Λ̃M2 − Λ1M

2
0 , (5.22)

(µNLO
80 )2 =(µLO80 )

2 − 4
√
2

3F 2
(2L8 − L5) δM

4 +
4
√
2

3F 2
L5M

2
0 δM

2 +

√
2

6
Λ̃δM2, (5.23)

where we substituted Λ̃ = Λ1 − 2Λ2. To NLO of the chiral expansion the latter combination
does not depend on the QCD renormalization scale µ [181]. In general the LECs can depend both
on the QCD scale, due to the anomalous dimension of the singlet decay constants, and the ChPT
renormalization scale, due to loop corrections. However, in large-Nc ChPT loop corrections are
suppressed by a factor of δ2 and, hence, the LECs are independent of the ChPT scale at NLO.

Substituting the leading order pseudoscalar masses and decay constant by the NLO expres-
sions [181] and expressing everything in terms ofM and δM , the decay constants are given by

F 8
η = F

[
cos θ +

4L5

3F 2

(
3 cos θM2 + (

√
2 sin θ + cos θ)δM2

)]
, (5.24)

F 8
η′ = F

[
sin θ +

4L5

3F 2

(
3 sin θM2 + (sin θ −

√
2 cos θ)δM2

)]
, (5.25)

F 0
η = −F

[
sin θ

(
1 +

Λ1

2

)
+

4L5

3F 2

(
3 sin θM2 +

√
2 cos θδM2

)]
, (5.26)

F 0
η′ = F

[
cos θ

(
1 +

Λ1

2

)
+

4L5

3F 2

(
3 cos θM2 −

√
2 sin θδM2

)]
, (5.27)

where θ is the mass mixing angle defined in eq. (5.8), evaluated with the entries of the NLO mass
matrix, eqs. (5.21)–(5.23). Note that in the standard MS scheme Λ1 as well as F 0

η and F 0
η′ depend

on µ. In general, θ8 6= θ0 6= θ to this order.
In sec. 3.4.1 we motivate our general strategy for continuum limit extrapolation, taking di-

mensionless combination with the gradient flow scale 8t0/a2. Accordingly, we multiply the en-
tries of the mass matrix eqs. (5.21) to (5.23) by 8t0 and the decay constants eqs. (5.24) to (5.27)
by 8

√
t0. The values of 8t0/a2 were determined on the same ensemble, see tab. 3.1 for their val-

ues. To NLO in the continuum the gradient flow scale also depends slightly on the average pseu-
doscalar mass M , see eq. (3.16), and to be consistent we need to take these corrections into ac-
count. The dimensionful LECs are then defined directly in the chiral limit, 8tχ0M2

0 and
√
8tχ0F ,

and we relate the expression to that point by replacing 8tχ0M2
0 = 8t0M

2
0 (1 − k̃1 8t0M

2), and√
8tχ0F =

√
8t0F (1− k̃1

2 8t0M
2), respectively. Therefore,wehave to add a term−k̃1M2

0M
28t0

to eq. (5.22). Regarding the decay constants, the term−(k/2)F cos θM28t0 needs to be added to
eqs. (5.24) and (5.27) while the term−(k/2)F sin θM28t0 has to be added to eq. (5.25) and sub-
tracted from eq. (5.26).

In eq. (3.42) we determined k̃1 = −0.0466(62), and therefore the effect of including the
expansion of tχ0 is a small effect. Regarding the LECs, the biggest effect is on F ,L5 andL8, which
decrease by 2.9(4)MeV, by 7.7(1.0) ·10−5 and by 6.2(8) ·10−5, respectively, which is well below
the total errors that we find for these parameters: 4.8MeV, 2.1 · 10−4 and 1.4 · 10−4.

5.2 Continuum limit parametrization
The lattice data do not only depend on the quark masses but also on the lattice spacing. Here we
outline our continuum limit extrapolation procedure. We shall label the ChPT functional forms
given above as f contO (M2, δM2| . . .) where the ellipses represent the fit parameters (i.e. the LECs)
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andO can be either of the two masses or four decay constants. We remind the reader that for the
decay constants not all theO(a) improvement coefficients are known, see sec. 2.4.2. Therefore, we
start from the following ansatz

fO(a,M
2, δM2) = f contO (M2, δM2| . . .)h(1)O (a, am`, ams| . . .)h(2)O (a2, a2M2, a2δM2| . . .),

(5.28)

where h(1)O contains the linear lattice spacing effects with known or unknown coefficients and h(2)O

is a quadratic function of a. The input data for the fits to the decay constants are the partially
improved combinations F̃ 8

n and F̌ 0
n (see eqs. (2.113) and (2.112)) with n = η, η′. In terms of the

linear lattice spacing effects, for O = Mη,Mη′ , h
(1)
O = 1, while for the octet decay constants

the linear improvement has been discussed in sec. 2.4.2. We recall that the functions h(1)
F 8
n
contain

the known parameters bA, b̃A and the free parameter fA while in the singlet case within h(1)
F 0
n
the

unknown parameters dA, d̃A and δcA appear (see eqs. (2.124) and (2.119)). For h(2)O we make a
generic quadratic ansatz. Explicit formulae will be given below.

Our input data are transformed into dimensionless units:Mn 7→
√
8t0Mn, F̌ 0

n 7→
√
8t0F̌

0
n

and F̃ 8
n 7→

√
8t0F̃

8
n , where the scale t0 is obtainedon the same ensemble. Moreover, theparametriza-

tions for the unrenormalized decay constants need to be divided by ZA and Zs
A, respectively. The

lattice spacing is given in units of t∗0: a 7→ a/
√
8t∗0 (see sec. 3.4 and tab. 3.3). The six parametriza-

tions share the LECs and some of the improvement coefficients. Hence, we carry out simultaneous
fits to all these data. Results at the physical point can be obtained by evaluating the continuum
limit functions at that point, eq. (3.1). For the linear lattice effects on the octet and singlet decay
constants, we combine the results of eqs. (2.120), (2.124) and (2.119), to obtain the functions

h
(1)
F 8
n
(a|f lA) = 1− 3ab̃Am− abA

ZA√
3

m`F̌
`
n −

√
2msF̌

s
n

f cont
F 8
n
(M2, δM2)

+
√
2afAZA

δmF̌ 0
n

f cont
F 8
n
(M2, δM2)

,

(5.29)

h
(1)
F 0
n
(a|dlA, d̃lA, δclA) = 1− 3ad̃Am− adA

Zs
A√
3

√
2m`F̌

`
n +msF̌

s
n

f cont
F 0
n
(M2, δM2)

− aδcAZ
s
A

Ȟ0
n

f cont
F 0
n
(M2, δM2)

,

(5.30)

wheren = η, η′ and the flavour decay constants are constructed from the singlet and octet ones via
the rotation eq. (2.103). Wehave substituted the data on the decay constants F̃ 8

n and F̌ 0
n by the fitted

continuum limit parametrizationsf contFan
(M2, δM2), which enables us to includedata pointswhere

the denominator is small and hence carries a large relative error. This replacement is admissible
since the difference is ofO(a2). Note that in ansatz (5.28) h(1)O is multiplied by f contFan

(M2, δM2).
Above, we suppressed the dependence of the improvement coefficients on g2. The only unknown
functions are fA(g2), dA(g2), d̃A(g2) and δcA(g2) and we parametrize these as follows

fA(g
2) = f lAg

6, dA(g
2) = bA(g

2) + dlAg
4, d̃A(g

2) = d̃lAg
4, δcA(g

2) = δclAg
4,
(5.31)

such that only f lA, d
l
A, d̃

l
A and clA appear as free parameters on the left hand sides of eqs. (5.29)

and (5.30). The above powers of g2 correspond to the first non-trivial orders of the perturbative
expansions, see the discussion in sec 2.4.2.
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Turning to the quadratic lattice effects and the functions h(2)O , we allow for three more fit pa-
rameters per observableO:

h
(2)
O (a2, t0M

2, t0δM
2|lO,mO, nO) = 1 + a2

(
lO +mOM

2 + nOδM
2
)
. (5.32)

The termsmultiplied by lO,mO andnO correspond to lattice spacing effects proportional toa2Λ2,
a2Λ(2m` +ms) and a2Λ(ms −m`), respectively, whereΛ � ms ≥ m` is the QCD scale. Due
to this hierarchy of scales, other quadratic lattice spacing effects depending solely on the quark
masses like, for example, a2m2

` ≈ a2M4
π/(4B

2
0), are neglected. We remark that for the non-

singlet pseudoscalar decay constants significantO(a2) effects have been reported in lattice results
determined using our action [135].

In summary, in the simultaneous fits of the twomasses and four decay constants a total of four
parameters are needed to account for the linear cut-off effects and 6 × 3 = 18 more coefficients
to parametrize the a2-effects. These are in addition to the LECsM0, F0, L5, L8, Λ1 and Λ̃ that
appear in the continuumexpressions. Aswill be discussed in the next subsection,most of the lattice
spacing terms cannot be resolved in our data and the corresponding coefficients will be set to zero
in the fits that we use to determine the final results.

5.3 Estimation of systematic errors
Wenowuse the rather complicated fit forms (5.28) to carry out a series of fits, identifying and fixing
irrelevant parameters to zero. We now describe this procedure, determining which fit parameters
are most relevant and how we estimate the systematic uncertainty associated with the chosen set
of fit forms. We also repeat fits varying the included ensembles to quantify ChPT cut-off effects
and for varying the scale where we match the renormalization scale of the singlet to perturbation
theory.

Each fit is performed simultaneously to the six observables determined on ensembles which lie
on two trajectories in the quark mass plane and span four lattice spacings. Correlations between
the η and η′ masses and the decay constants as well as the arguments of the fit function (8t0M2,
8t0δM

2) on each ensemble are taken into account, see app. B.3. The fits are performed on the
ensemble averages of the data and the statistical uncertainties in the fit parameters are obtained by
repeating the fit on 500 bootstrap samples. The statistical uncertainty is taken to be the interval
that contains the central 68.3 % of the 500 bootstrap values of each parameter.

Since the simulations are performed in a finite box, there is the possibility of finite volume ef-
fects. Such correction toMη have been computed in ChPT [141] and are suppressed with respect
toMπ byM2

π/M
2
η . Thismeans that at the symmetric points where very large volumes are available

we expect the same size of volume effects as for the pion while towards the physical point this de-
creases to only about 7 % of that of the pion. Since for the latter on all the analyzed ensembles only
very moderate finite size effects were observed even for the physical point ensemble D150 [90] and
spatial extents of LsMπ & 4 are realized for most of the analyzed ensembles, finite volume effects
can safely be neglected within our statistical precision.

In terms of the lattice spacing effects, in a first step we establish which terms in the fit forms
presented in the previous subsection can be resolved. We start with fits to all data employing the
NLO large-Nc ChPT continuum limit parametrization and only include O(a) terms with non-
perturbatively determined coefficients, i.e. those involving bA, b̃A and cA. All O(a2) coefficients
are omitted. For this reference fit we obtain χ2/Ndf ≈ 220/126 ≈ 1.75. Additional discretiza-
tion terms are subsequently included and those fits for which the coefficients can be resolved with
reasonable precision are given in tab. 5.1. The reference fit has the id “1” in the table. The LECs
extracted from these fits are collected in tab. 5.2 and the results for the masses and decay constants
at the physical point are detailed in tab. 5.3. The coefficients of the discretization terms are provided
in app. C.



5.3. Estimation of systematic errors 77

id f lA dlA d̃A δlcA lF 8
η

nF 8
η

lF 8
η′

mF 8
η′
nF 8

η′
lF 0

η
mF 0

η
nF 0

η
lF 0

η′
mF 0

η′
nF 0

η′

1 — — — — — — — — — — — — — — —
2 × × × × — — — — — — — — — — —
3 × × × — — — — — — — — — — — —
4 × × — — — — — — — — — — — — —
5 × × — — × — × — — — — — — — —
6 × × — — — — — × — — — — — — —
7 × × — — — × — — × — — — — — —
8 × × — — × × — — — — — — — — —
9 × × — — — — × — × — — — — — —
10 × × — — — — — — — × × — — — —
11 × × — — — — — — — — — × — × ×
12 × × — — — — — — — — — — × — —
13 × × — — × × — — × — — — — — —
14 × × — — × × — — × — — — — — ×
15 × × — — × — — — × — — — — — ×
16 × × — — — × — — × — — — — — ×
17 × × — — × — — — × — — — — — —

Table 5.1: Fit forms employed to estimate the systematic uncertainty associated with performing the
continuum limit extrapolation. A cross indicates the corresponding term is included in the fit form (see
sec. 5.2) and the coefficient is reasonably well determined. fA, dA, d̃A and δcA are the unknown O
improvement coefficients and the coefficients of O(a2) corrections lO , mO and nO are defined in
eq. (5.32). The values of these coefficients can be found in app. C. In all the cases, the NLO large-Nc

expressions are used for the continuum part of the fit function.

id
√
8tχ0F 8tχ0M

2
0 L5 · 103 L8 · 103 Λ1 Λ̃

1 0.1909 (1413) 2.52 (69) 1.426 (2532) 1.047 (2337) −0.28 (12) −0.16 (35)
2 0.1913 (2025) 2.81 (1018) 1.362 (8754) 0.797 (13350 ) −0.23 (55) −0.01 ( 5

14)
3 0.1918 (2523) 2.72 (1221) 1.345 (7348) 0.798 (13752 ) −0.27 ( 3

11) 0.03 ( 5
11)

4 0.1922 (1725) 2.80 ( 5
17) 1.336 (8049) 0.826 (12252 ) −0.22 (14) −0.01 ( 5

11)
5 0.1936 (3239) 2.74 ( 4

18) 1.461 (10779 ) 0.884 (11055 ) −0.25 (15) −0.06 (1015)
6 0.1898 (2730) 2.77 ( 6

19) 1.462 (117115) 0.900 (13367 ) −0.22 (14) −0.14 (1014)
7 0.1890 (2331) 2.79 ( 6

17) 1.576 (13959 ) 0.955 (12746 ) −0.22 (14) −0.20 ( 4
13)

8 0.1961 (3230) 2.73 ( 6
17) 1.436 (11483 ) 0.845 (10964 ) −0.26 (24) 0.00 ( 6

11)
9 0.1884 (1435) 2.80 ( 5

17) 1.531 (13458 ) 0.947 (13642 ) −0.21 (14) −0.19 ( 5
14)

10 0.1914 (1926) 2.77 ( 6
16) 1.358 (8351) 0.802 (12457 ) −0.24 (14) 0.00 ( 5

10)
11 0.1918 (3127) 2.85 ( 5

20) 1.353 (7257) 0.812 (12752 ) −0.21 (37) −0.02 ( 9
12)

12 0.1922 (2724) 2.92 ( 8
28) 1.337 (7547) 0.825 (12051 ) −0.17 (39) −0.05 ( 9

10)
13 0.1920 (2744) 2.74 ( 9

17) 1.548 (14768 ) 0.943 (12357 ) −0.24 (14) −0.13 ( 5
16)

14 0.1919 (3145) 2.73 ( 8
17) 1.548 (14871 ) 0.942 (12354 ) −0.24 (25) −0.13 ( 5

17)
15 0.1925 (2947) 2.72 (1016) 1.523 (11170 ) 0.935 (11553 ) −0.25 (14) −0.11 ( 6

17)
16 0.1890 (1932) 2.77 ( 8

16) 1.574 (14451 ) 0.954 (12733 ) −0.22 (14) −0.19 ( 4
14)

17 0.1927 (2752) 2.73 (1017) 1.523 (11571 ) 0.936 (13357 ) −0.24 (14) −0.11 ( 6
17)

Table 5.2: Results for the LECs obtained when employing the fit forms detailed in tab. 5.1. The di-
mensionful LECs are given in units of the gradient flow scale in the chiral limit.
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id χ2/Ndf

√
8t

ph
0 Mη

√
8t

ph
0 Mη′

√
8t

ph
0 F

8
η

√
8t

ph
0 F

8
η′

√
8t

ph
0 F

0
η

√
8t

ph
0 F

0
η′

1 1.75 1.162 ( 8
10) 1.982 (1713) 0.2149 (1014) −0.1015 (2525) 0.0337 (2218) 0.1884 ( 7

20)
2 1.63 1.169 ( 8

12) 1.950 (2111) 0.2202 (1227) −0.0847 (3886) 0.0230 (6233) 0.1943 (4453)
3 1.64 1.170 (1713) 1.952 (5311) 0.2200 (1728) −0.0849 (5793) 0.0231 (6445) 0.1907 (2493)
4 1.64 1.169 ( 8

12) 1.958 (2211) 0.2195 ( 9
25) −0.0864 (3484) 0.0260 (4424) 0.1949 ( 7

42)
5 1.52 1.167 ( 7

11) 1.956 (2112) 0.2234 (2143) −0.0901 (3180) 0.0242 (4916) 0.1960 ( 9
42)

6 1.58 1.164 ( 9
10) 1.959 (2113) 0.2196 ( 8

28) −0.0918 (4182) 0.0252 (4716) 0.1957 ( 6
44)

7 1.47 1.168 ( 7
12) 1.958 (2210) 0.2219 (1531) −0.0939 (2383) 0.0224 (4425) 0.1974 (1240)

8 1.56 1.168 ( 6
12) 1.952 (2112) 0.2256 (1642) −0.0877 (2976) 0.0233 (4626) 0.1962 (1337)

9 1.49 1.168 (99) 1.960 (239 ) 0.2201 ( 7
28) −0.0935 (2190) 0.0238 (4217) 0.1968 (1239)

10 1.63 1.169 ( 6
12) 1.952 (2112) 0.2201 (1027) −0.0851 (4284) 0.0232 (5338) 0.1930 (1237)

11 1.65 1.169 ( 9
11) 1.955 (2313) 0.2200 (1325) −0.0855 (3478) 0.0247 (6236) 0.1965 (2458)

12 1.64 1.168 ( 9
10) 1.957 (2317) 0.2194 (1625) −0.0866 (3182) 0.0274 (4132) 0.1998 (2286)

13 1.47 1.168 ( 9
10) 1.957 (2310) 0.2237 (1736) −0.0931 (2487) 0.0232 (4529) 0.1969 (1238)

14 1.48 1.168 (89) 1.957 (2310) 0.2237 (1835) −0.0930 (2188) 0.0230 (4726) 0.1966 (1542)
15 1.47 1.169 (1110) 1.957 (239 ) 0.2235 (1735) −0.0927 (2085) 0.0237 (4732) 0.1961 (1438)
16 1.48 1.168 (119 ) 1.958 (229 ) 0.2219 (1328) −0.0938 (2384) 0.0222 (4124) 0.1968 (1742)
17 1.46 1.169 (1010) 1.958 (239 ) 0.2236 (1738) −0.0927 (2286) 0.0240 (4229) 0.1965 (1039)

Table 5.3: Results for the masses and decay constants of the η and η′ at the physical point in units of
the gradient flow scale obtained when employing the fit forms detailed in tab. 5.1.

Among the linear improvement terms (see eqs. (5.29) and (5.30)) those involving f lA and dlA
have the largest effect, shifting both the singlet and octet decay constants considerably when they
are included. We find the difference between the octet and the singlet quark mass independent im-
provement coefficients, δclA, is zero within errors and d̃

l
A is very small and only weakly constrained

by the data. We were unable to resolve discretization effects on the masses. All fits require the f lA
and the dlA terms. The fits with the ids 7, 9 and 13–17 in tab. 5.1 have the lowest and very similar χ2

values, see tab. 5.3. All these fits have in common that an O(a2) effect proportional to δM2 was
added to the octet decay constant of the η′ meson (nF 8

η′
6= 0 in eq. (5.32)). In what follows we

take fit 7 with χ2/Ndf ≈ 179/122 ≈ 1.47 as our main fit. This was selected from the fits with
1.46 ≤ χ2/Ndf ≤ 1.49 since the resulting parameter values are in the centre of the scatter between
the different fit forms, see tabs. 5.4–5.6. We remark again that all correlations between observables
determined on the same ensemble are taken into account in the fits. Performing an uncorrelated fit
with fit form 7 leads to χ2/Ndf ≈ 155/122 ≈ 1.27. The systematic uncertainty associated with
the continuum extrapolation is assigned to be the 68.3 % interval of the scatter of the central values
of the continuum limit fits performed with fit forms 2 to 17. Fit 1 is excluded as important O(a)
terms in the parametrization of the octet and singlet decay constants were omitted in this case.

The χ2/Ndf for our best fits are somewhat larger than one: either have we underestimated
the errors of our masses and decay constants by about 20% on average or the functional forms
employed do not describe the data sufficiently well. Since the lattice spacing effects seem to be rel-
atively mild, this suggests that NLO large-Nc ChPT does not perfectly describe the data over the
range of quark masses available and higher order contributions in the chiral expansion have to be
taken into account. Themain parameter that determines the convergence of the chiral expansion is
the average pseudoscalar mesonmass. To investigate the systematics of the chiral extrapolation, we
restrict the mass ranges of the data entering the fit, introducing the cut-offs 12t0M2 < c, where
c = 1.6, 1.4, 1.2. These values correspond toM ≈ 493MeV, 462MeV and 427MeV, respec-
tively. Note that 12t0M2 = 1.11 corresponds to the physical point and our data cover the range
1.07 . 12t0M

2 . 1.68, see tab. 3.1 and the right panel of fig. 3.1 indicating the cuts graphically.
Applying the cuts (successively decreasing c) leads to data points being removed along the trajec-
tory where the strange quarkmass is kept constant. For c = 1.2 only one ensemble (D201) remains
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id
√

8t
ph
0 Mη

√
8t

ph
0 Mη′

1

1.121.131.141.151.161.171.181.19

1.162 ( 8
10)

1.9 1.921.941.961.98 2 2.022.04

1.982 (1713)
2 1.169 ( 8

12) 1.950 (2111)
3 1.170 (1713) 1.952 (5311)
4 1.169 ( 8

12) 1.958 (2211)
5 1.167 ( 7

11) 1.956 (2112)
6 1.164 ( 9

10) 1.959 (2113)
7 1.168 ( 7

12) 1.958 (2210)
8 1.168 ( 6

12) 1.952 (2112)
9 1.168 (99) 1.960 (239 )
10 1.169 ( 6

12) 1.952 (2112)
11 1.169 ( 9

11) 1.955 (2313)
12 1.168 ( 9

10) 1.957 (2317)
13 1.168 ( 9

10) 1.957 (2310)
14 1.168 (89) 1.957 (2310)
15 1.169 (1110) 1.957 (239 )
16 1.168 (119 ) 1.958 (229 )
17 1.169 (1010) 1.958 (239 )

Table 5.4: Results for the masses of the η and η′ at the physical point in units of the gradient flow
scale. The black line marks the experimental result converted using (8tph0 )−1/2 = 475(6)MeV [135]
and the grey shaded region marks the uncertainty due to the error on tph0 . The red line indicates the
central values predicted by fit 7 (see tab. 5.1). The red shaded region represents the total uncertainty of
our final results where all errors are added in quadrature (see sec. 5.5). The first fit does not sufficiently
parametrize the lattice spacing effects and is not included in the determination of the associated system-

atic error.

id
√

8t
ph
0 F 8

η

√
8t

ph
0 F 8

η′

1

0.215 0.22 0.225

0.2149 (1014)

−0.12−0.11 −0.1 −0.09−0.08−0.07

−0.1015 (2525)
2 0.2202 (1227) −0.0847 (3886)
3 0.2200 (1728) −0.0849 (5793)
4 0.2195 ( 9

25) −0.0864 (3484)
5 0.2234 (2143) −0.0901 (3180)
6 0.2196 ( 8

28) −0.0918 (4182)
7 0.2219 (1531) −0.0939 (2383)
8 0.2256 (1642) −0.0877 (2976)
9 0.2201 ( 7

28) −0.0935 (2190)
10 0.2201 (1027) −0.0851 (4284)
11 0.2200 (1325) −0.0855 (3478)
12 0.2194 (1625) −0.0866 (3182)
13 0.2237 (1736) −0.0931 (2487)
14 0.2237 (1835) −0.0930 (2188)
15 0.2235 (1735) −0.0927 (2085)
16 0.2219 (1328) −0.0938 (2384)
17 0.2236 (1738) −0.0927 (2286)

Table 5.5: Octet decay constants of the η and η′ at the physical point in units of the gradient flow scale,
displayed as in tab. 5.4.
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id
√

8t
ph
0 F 0

η

√
8t

ph
0 F 0

η′

1

0.02 0.03 0.03 0.04

0.0337 (2218)

0.18 0.185 0.19 0.195 0.2

0.1884 ( 7
20)

2 0.0230 (6233) 0.1943 (4453)
3 0.0231 (6445) 0.1907 (2493)
4 0.0260 (4424) 0.1949 ( 7

42)
5 0.0242 (4916) 0.1960 ( 9

42)
6 0.0252 (4716) 0.1957 ( 6

44)
7 0.0224 (4425) 0.1974 (1240)
8 0.0233 (4626) 0.1962 (1337)
9 0.0238 (4217) 0.1968 (1239)
10 0.0232 (5338) 0.1930 (1237)
11 0.0247 (6236) 0.1965 (2458)
12 0.0274 (4132) 0.1998 (2286)
13 0.0232 (4529) 0.1969 (1238)
14 0.0230 (4726) 0.1966 (1542)
15 0.0237 (4732) 0.1961 (1438)
16 0.0222 (4124) 0.1968 (1742)
17 0.0240 (4229) 0.1965 (1039)

Table 5.6: Singlet decay constants of the η and η′ at the physical point in units of the gradient flow
scale, displayed as in tab. 5.4.

c χ2/Ndf

√
8t

ph
0 Mη

√
8t

ph
0 Mη′

√
8t

ph
0 F

8
η

√
8t

ph
0 F

8
η′

√
8t

ph
0 F

0
η

√
8t

ph
0 F

0
η′

— 1.47 1.168 ( 7
12) 1.958 (2210) 0.2219 (1531) −0.0939 (2383) 0.0224 (

44
25) 0.1974 (1240)

1.6 1.49 1.163 ( 7
11) 1.954 (2011) 0.2217 (1531) −0.0937 (1882) 0.0229 (

42
21) 0.1967 (1038)

1.4 1.38 1.173 ( 8
12) 1.961 (2514) 0.2230 (1930) −0.0881 (3682) 0.0206 (

41
31) 0.1947 (1134)

1.2 1.25 1.162 (1012) 2.006 (2320) 0.2225 (2435) −0.1021 (7599) 0.0203 (
42
37) 0.1978 (1831)

Table 5.7: Results for masses and decay constants of the η and η′ at the physical point in units of the
gradient flow scale obtained when employing fit 7 of tab. 5.1 and imposing cut-offs 12t0M2 < c, as

well as including all the data (first row).

on this trajectory. We perform a fit for each cut using fit form 7. The results are listed in tabs. 5.7
and 5.8. Theχ2/Ndf of these fits decrease down to a value of1.25 as the data are restricted to smaller
values ofM2. This trend suggests that higher order effects should be considered. However, the re-
sults are all fairly independent of the cut-off. Only the central value ofMη′ moves upwards and Λ̃
downwards by two statistical standard deviations.

Inprinciple, large-NcChPTexpressions for themasses anddecay constants toNNLOare avail-
able [181, 182], however, the large number of additional LECs cannot be resolved when fitting our
data. Instead, we perform a partial NNLO fit, only including the loop terms which appear at this
order. These do not involve any additional LECs, see app. D for details on the parametrization and
the resulting LECs. However, fits to this functional form did not improve the description of the

c
√
8tχ0F 8tχ0M

2
0 L5 · 103 L8 · 103 Λ1 Λ̃

— 0.1890 (2331) 2.79 ( 6
17) 1.576 (13959 ) 0.955 (12746 ) −0.22 (14) −0.20 ( 4

13)
1.6 0.1894 (2033) 2.75 ( 5

16) 1.559 (13162 ) 0.930 (12635 ) −0.23 (14) −0.19 ( 4
14)

1.4 0.1911 (2032) 2.78 ( 6
15) 1.487 (13074 ) 0.882 (12567 ) −0.25 (23) −0.08 ( 6

16)
1.2 0.1852 (3745) 2.79 ( 8

13) 1.777 (132150) 1.111 (141131) −0.23 (23) −0.49 (1724)

Table 5.8: LECs obtained for the fits detailed in tab 5.7. The dimensionful LECs are given in units of
the gradient flow scale.
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data and our best fit gives a χ2/Ndf = 2.56, indicating that a consistent full NNLO parametriza-
tion is required.

Utilizing the available data we cannot resolve additional NNLO LECs. The impact on our
results from imposing different cut-offs onM2 was marginal and hence, we take as our central
values the results of fit 7 to all our ensembles, where χ2/Ndf ≈ 179/122 ≈ 1.47. To account for
the somewhat inferior quality of this fit, we inflate our statistical errors by the factor

√
χ2/Ndf =

1.21. We also add the NLO truncation error of large-Nc ChPT as a further systematic error (with
subscript χ). This corresponds to the range of central values resulting from the fits with different
cut-offs.

5.4 Results at the physical point and discussion
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Figure 5.1: LO parametrization of the masses of the η and the η′ mesons for our two trajectories in
the quark mass plane. The data are corrected for lattice spacing effects according to the fit.

LO For completeness, we perform a fit to the η and η′ masses employing the LO large-Nc ChPT
expressions (see sec. 5.1.1). The decay constants are not included in the analysis as our data clearly
contradict the LO ChPT expectation that, e.g., F 0

η = −F 8
η′ . The parametrization of the lattice

spacing effects was explored in a similar way to the procedure described in the previous subsection.
Our best fit givesχ2/Ndf ≈ 91/41 ≈ 2.35 and includes the two quarkmass dependent discretiza-
tion terms nMη and nMη′ that are proportional to the difference of the quarkmasses, cf. eq. (5.32).
This fit is displayed in fig. 5.1 and the points are shifted to compensate for the parametrized lattice
spacing effects. Since in our NLO fits described below no lattice spacing dependent terms had to
be added for the masses, we suspect that in the LO case the a2δM2 terms mostly compensate for a
shortcoming of the continuum parametrization.

The masses extracted at the physical point read: Mη = 1.024(8t
ph
0 )−1/2 = 487MeV and

Mη′ = 1.970(8t
ph
0 )−1/2 = 936MeV, where we do not quote any errors since the fit does not

describe the data sufficiently well. The above numbers, in particular the one for the η meson, are
significantly lower than the corresponding experimental masses, Mη ≈ 548MeV and Mη′ ≈
958MeV. To this order, the continuum parametrization depends only on one LEC, the (squared)
anomalous mass contribution in the chiral limit: we findM2

0 = 2.787(8tχ0 )
−1 = (785MeV)2.
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µ0 χ2/Ndf 8tχ0M
2
0 Λ1 Λ̃

√
8t

ph
0 F

0
η

√
8t

ph
0 F

0
η′

a−1/2 1.51 2.68 ( 6
15) −0.27 (13) −0.15 ( 3

14) 0.0204 (4324) 0.1922 (1335)
a−1 1.47 2.79 ( 6

17) −0.22 (14) −0.20 ( 4
13) 0.0224 (4425) 0.1974 (1240)

2 a−1 1.46 2.84 ( 6
18) −0.19 (14) −0.22 ( 4

18) 0.0232 (4424) 0.2000 (1043)

Table 5.9: Results that depend onZs
A, varying the scale at which we match to perturbation theory.

Since the LO fit does not describe our data well, this value ofM0 should also be treated with cau-
tion.

NLO Ourfinal results are obtained employing theNLOcontinuumlimit parametrizationwithin
simultaneous fits to all data on the two masses and four decay constants. This involves a total of
six LECs. Lattice spacing effects are also accounted for as discussed in sec. 5.3. The central values
are taken from the results of fit 7, which gave χ2/Ndf ≈ 179/122 ≈ 1.47. This fit is displayed in
fig. 5.2. We obtain for the masses at the physical point, in the continuum limit√

8t
ph
0 Mη = 1.168 ( 8

14)stat (
1
0)a (

5
6)χ and

√
8t

ph
0 Mη′ = 1.958 (2713)stat (

0
6)a (

48
3 )χ , (5.33)

where the first error is statistical (inflated by
√
1.47), and the rest are systematic errors: the second

error is taken from the spread of results when varying the parametrization of lattice spacing effects
and the third represents the uncertainty due to the (continuum)quarkmass dependence, see sec. 5.3
for details. The results are converted tophysical units in sec. 5.5. In this sectionwekeep all the results
in units of 8tph0 .

The final results for the octet and singlet decay constants read√
8t

ph
0 F

8
η = 0.2219 (1837)stat (

17
24)a (

10
2 )χ ,√

8t
ph
0 F

8
η′ = −0.0939 ( 28

100)stat (
84
0 )a (

58
82)χ ,√

8t
ph
0 F

0
η (µ = ∞) = 0.0224 (5330)stat (

28
0 )a (

5
21)χ (

20
8 )renorm ,√

8t
ph
0 F

0
η′(µ = ∞) = 0.1974 (1448)stat (

0
31)a (

4
27)χ (

52
26)renorm . (5.34)

The singlet decay constants depend on the QCD scale. As detailed in sec. 2.4.3, prior to the fits
we run our results from a scale µ0 = a−1 up to µ = ∞. To quantify the systematic error from
the matching to the MS scheme, we repeat the fits, setting µ0 = a−1/2 and µ0 = 2a−1, and add
the range of results (see tab. 5.9) as an additional systematic error.1 As one may expect, this error is
dominated by the fit where we set µ = a−1/2, see tab. 5.9. The results for the decay constants can
also be converted to the strange/light flavour basis (eq. (2.103)) and/or given in terms of two angles
and two dimensionful decay constants, see eqs. (2.100) and (2.102). All the results in the different
conventions and for the additional QCD scales µ ∈ {1GeV, 2GeV, 10GeV} are collected in
tab. E.1 in app. E. We discuss the results and their scale dependence in detail in sec. 5.5.2.

1We remark that slightly different results are also obtained for the scale independent quantities. However, the differ-
ences are well below any other systematic error, with the exception of those for Λ̃.
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Figure 5.2: Simultaneous fit to the masses (top) and four decay constants (bottom) of the η and η′.
The fit form incorporates the NLO large-Nc ChPT expressions and the discretization terms corre-
sponding to fit 7 in tab. 5.1. The points have been shifted to compensate for lattice spacing effects and
lie along two trajectories leading to the physical point. The continuum fit functions are indicated by
the lines and shaded regions (statistical errors only), where the darker and lighter colours correspond
to the trajectories where the flavour average quark mass is held constant, and the strange quark mass is
kept constant, respectively. The grey and black error bars (shifted to the left of the physical pion mass
for better visibility) are our final results, without priors (grey) and including the experimental η and η′

masses (black stars) as priors (black, see sec. 5.4.1). All errors are added in quadrature.
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5.4.1 Results for the large-Nc low energy constants

Our results from the fits detailed above for the large-Nc LECs read

L5 = 1.58 (177 )stat (
0
22)a (

20
9 )χ · 10−3,

L8 = 0.96 (156 )stat (
0
14)a (

16
7 )χ · 10−3,

M0(µ = ∞) = 1.67 (26)stat (
1
2)a (

0
1)χ (

3
2)renorm (8tχ0 )

−1/2
,

F = 0.1890 (2737)stat (
36
0 )a (

21
38)χ (8t

χ
0 )

−1/2
,

Λ1(µ = ∞) = −0.22 (15)stat (
0
3)a (

0
3)χ (

6
3)renorm ,

Λ̃ = −0.20 ( 5
16)stat (

19
0 )a (

12
29)χ (

3
5)renorm . (5.35)

The combination Λ̃ = Λ1 − 2Λ2 is scale invariant to this order in ChPT [33, 181], however, since
its central value varies when changing µ0, see tab. 5.9, we also assign a renormalization error in this
case. The above results give

Λ2(µ = ∞) = −0.1 (84)stat (
0
10)a (

14
8 )χ (

5
3)renorm . (5.36)

The fits on which these results are based give η and η′ masses that are compatible, within er-
rors, with experiment, see above and sec. 5.5.1. Nevertheless, incorporating prior knowledge of the
experimental masses helps to constrain the fit and reduces the errors on the LECs. To this end, we
modify our χ2 function to penalize fits that give masses, that are incompatible with experiment:

χ2
priors = χ2+


√
8t

ph
0 M

ph
η − fMη(a = 0, 12t0M

2, 8t0δM
2)

σ

(√
8t

ph
0 M

ph
η

)

2

+


√
8t

ph
0 M

ph
η′ − fMη′ (a = 0, 12t0M

2, 8t0δM
2)

σ

(√
8t

ph
0 M

ph
η′

)

2

, (5.37)

where we use the physical values from the Particle Data Group (PDG) [19] forMη andMη′ , see
eq. (5.41). These are converted to dimensionless numbers, using (8tph0 )−1/2 = 475(6)MeV [135].
Note that the errors are dominated by the scale and are thus highly correlated. This is taken into ac-
count by sampling Gaussian distributed values for (8tph0 )1/2, rather than independently sampling
the two dimensionless combinations (8tph0 )1/2M

ph
η and (8t

ph
0 )1/2M

ph
η′ . If a more precise deter-

mination of tph0 became available, the priors could be further constrained and the uncertainties
reduced.
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Repeating the whole fitting analysis, now including the priors, we obtain results that are very
similar to those of eqs. (5.35) and (5.36):

L5 = 1.66 (129 )stat (
0
26)a (

13
8 )χ · 10−3,

L8 = 1.08 (116 )stat (
0
12)a (

3
10)χ · 10−3,

M0(µ = ∞) = 1.62 (24)stat (
3
1)a (

3
0)χ (

2
1)renorm (8tχ0 )

−1/2
,

F = 0.1866 (2629)stat (
54
0 )a (

19
16)χ (8t

χ
0 )

−1/2
,

Λ1(µ = ∞) = −0.25 (14)stat (
3
1)a (

1
1)χ (

5
2)renorm ,

Λ̃ = −0.46 ( 8
10)stat (

21
0 )a (

9
10)χ (

1
2)renorm ,

Λ2(µ = ∞) = 0.11 (55)stat (
0
9)a (

6
5)χ (

3
2)renorm . (5.38)

In sec. 5.5.3 we will convert the above results into physical units and discuss them.
In general, the large-Nc LECs will differ from their SU(3) ChPT equivalents, see also the dis-

cussion in [181] and in sec. 5.5.3. In particular, the above LECs do not depend on the ChPT scale
since chiral logarithms only appear starting at NNLO in large-Nc ChPT. As mentioned above, we
checked whether such contributions improved the description of the data by adding the NNLO
loop terms to the NLO parametrization. However, this decreased the quality of the fits, with the
best fit giving χ2/Ndf ≈ 312/122 ≈ 2.56. The functional form and the resulting LECs are
detailed in app. D.

5.5 Discussion of results and comparison with literature
In this section we summarize our results on the masses, decay constants and the low energy con-
stants parametrizing them in the continuum. These are compared to other determinations from
lattice or phenomenological studies. In addition, we study the implications of our findings on the
photoproduction transition form factors of the η and η′ mesons.

The results are converted into physical units using (8tph0 )−1/2 = 475(6)MeV [135]. The di-
mensionful low energy constants are defined in the chiral limit and so for thesewe convert this value
of tph0 to tχ0 using eq. (3.43) and obtain (8tχ0 )−1/2 = 470(7)MeV. For some of our results the un-
certainty of this scale significantly contributes to the total error. Since improved determinations
may become available in the future, we quote this uncertainty separately to the statistical and other
systematic errors.

5.5.1 The η and η′ mesonmasses

Our final results for the masses of the η and η′ mesons are (see eq. (5.33))

Mη = 554.7 (4.06.6)stat (
2.4
2.7)syst (7.0)t0 , MeV and (5.39)

Mη′ = 929.9 (12.96.0 )stat (
22.9
3.3 )syst (11.7)t0 MeV, (5.40)

wherewe added the systematic errors associatedwith the continuumandphysical quarkmass point
extrapolations in quadrature. We find reasonably good agreement when comparing these results of
Nf = 2 + 1QCDwith the known experimental masses,

PDG [19] : M
ph
η = 547.862(17)MeV and M

ph
η′ = 957.78(6)MeV. (5.41)

The masses are 0.7 standard errors above and one standard error below the experimental values for
the η and η′, respectively. ForMη , the combined relative error is 1.7 % with the statistical and scale
setting uncertainties forming the biggest contributions. Our value forMη′ has a total uncertainty
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Figure 5.3: Recent Nf = 2 + 1(+1) lattice results for the masses of the η and η′ mesons. Most
points have been simulated at approximately physical strange quark masses (open symbols), whereas
in this work we also include an additional trajectory along which the average of the quark masses is
kept constant (filled symbols). The three sets of points in the shaded regions left of the physical point
(dashed line) correspond to the continuum and chirally extrapolated results of JLQCD [49] (who do

not give an estimate ofMη), ETMC [52] and this work.

of 2.3 %, where in this case the statistical error and the uncertainty from the quark mass extrapola-
tion dominate. In both cases, lattice spacing effects are less significant. This reflects the fact that we
are not able to resolve any such effects in the masses, see sec. 5.3. ForMη′ this is not so surprising
considering the relatively large statistical error obtained on the individual ensembles. We remark
that the precision of the final results was achieved by utilizing NLO large-Nc ChPT to simultane-
ously fit the twomasses and four decay constants (summarized in the next subsection) determined
on twenty-one ensembles lying along two trajectories in the quark mass plane and comprising four
lattice spacings.

Our results at unphysical quark masses as well as in the physical limit are displayed in fig. 5.3,
together withNf = 2 + 1(+1) results of other groups that we are aware of. The η mass is sen-
sitive to the masses of the light and strange quarks and the data points clearly fall along two lines
which converge at the physical point, reflecting the two sets of ensembles employed: for one set the
physical strange quark mass is kept approximately constant while for the other the flavour average
of the strange and light quark masses is held fixed. The singlet contribution to the mass of the η′ is
significant and no clear quark mass dependence is observed.

Overall, the results for the η′ are consistent across different collaborations and actions (also at
larger quarkmasses), whereas for the η some scatter is visible. The lattermay be due tomistuning of
the strange quark mass and/or lattice spacing effects. In particular, a previous exploratory study of
our group [48] is affected by mistuning. The ETMC [52] and JLQCD [49] collaborations employ
pion masses reaching down to approximately 220MeV. In this work, we obtain results close to
the physical point for the first time. While the errors are relatively large for ourMπ ≈ 126MeV
ensemble, the results are in good agreement with the quark mass extrapolation.

To our knowledge the only other studies which attempt a physical limit extrapolation are those
of ETMC [50–52] and JLQCD [49]. The latter Nf = 2 + 1 work utilizes gluonic correlation



5.5. Discussion of results and comparison with literature 87

functions to determine the η′ mass. A simple linear extrapolation is performed which is justified in
view of the large statistical errors. ETMC [52] employ the twisted mass fermion formulation and
simulate Nf = 2 + 1 + 1 QCD. The physical point is approached keeping the strange quark
mass approximately equal to its physical value, although somemistuning is visible in the results for
Mη . This is compensated for by including terms proportional toms in the quark mass extrapola-
tion, in addition to terms proportional tom` and a2. This leading order ansatz yields an effective
parametrization of the data, however, the η and η′ masses are assumed to be independent of each
other and are fitted separately, ignoring potential correlations in the data. The final errors forMη

andMη′ at the physical point are larger than ours, in particular for the latter, although the uncer-
tainties on the individual ensembles are similar and at the percent and few-percent level, for the η
and η′, respectively. We achieve smaller final errors by simultaneously fitting the quark mass and
lattice spacing dependence of six observables (two masses and four decay constants), which have
been determined on ensembles following two trajectories to the physical point. This, together with
including ensembles with small quark masses, enables the quark mass extrapolation to be tightly
constrained. The results from ETMC at the physical point are in agreement with our estimates
and the experimental values within the quoted errors.

5.5.2 Decay constants

We carry out two sets of fits to extract the four decay constants, one where we simultaneously fit
to our lattice results for the masses and decay constants from which the values of the masses at the
physical point (presented in the previous subsection) are taken and another set where we constrain
themasses to reproduce the physical values by adding prior terms to theχ2 function. The latter fits
enable the LECs to be better constrained, see sec. 5.4.1. The two sets of results, detailed in tabs. E.1
and E.2 in app E, are consistent within errors. In the following, we will only discuss the second
set of results. Since the singlet axialvector current has an anomalous dimension in theMS scheme,
some of the results depend on the QCD scale, see sec. 2.4.3. Although the fits were performed
setting µ = ∞ inNf = 3QCD, in this section we will mostly quote results at µ = 2GeV. This
simplifies a comparison to literature values, as discussed below. The results obtained for a range of
scales are also listed in tabs. E.1 and E.2.

Summary of the results. The decay constants, converted to the angle representation of the
octet/singlet basis, read at µ = 2GeV inNf = 3QCD

F 8 = 115.0 (1.11.2)stat (
1.6
2.4)syst (1.5)t0 MeV, (5.42)

θ8 = −25.8 (1.22.1)stat (
2.2
0.3)

◦
syst , (5.43)

F 0(µ = 2GeV) = 100.1 ( 7
1.9)stat (

2.0
2.7)syst (1.3)t0 MeV, (5.44)

θ0 = −8.1 (1.01.1)stat (
1.5
1.5)

◦
syst , (5.45)

wherewe added the systematic errors arising fromthe continuumandchiral extrapolation inquadra-
ture. This representation has the advantage that only F 0 depends on the scale, however, often the
flavour basis in the angle representation is employed in the literature. We find

F `(µ = 2GeV) = 88.28 (1.202.02)stat (
3.00
1.74)syst (1.12)t0 MeV, (5.46)

φ`(µ = 2GeV) = 36.2 (1.12.0)stat (
1.3
0.4)

◦
syst , (5.47)

F s(µ = 2GeV) = 124.3 (1.71.6)stat (
2.7
4.3)syst (1.6)t0 MeV, (5.48)

φs(µ = 2GeV) = 37.9 (1.01.3)stat (
1.4
0.8)

◦
syst , (5.49)
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Figure 5.4: Scale dependence of the decay constants and their mixing angles in the flavour basis. The
approximationφ` ≈ φs ≈ φ is only valid forµ inbetween about 1GeV and 2GeV. In the same region
the decay constants vary considerablywith the scale. The (asymmetric) errors indicated by the coloured

bands are statistical only.

where all quantities depend non-trivially on the scale. The popularity of the flavour representation
is due to the similarity of the two angleswhich suggests that the four (independent) decay constants
canbedescribedbyonly three parameters, settingφ` = φs = φ. This approximation ismade in the
Feldmann-Kroll-Stech (FKS) scheme [115, 183, 184] and to NLO in large-Nc ChPT it is equivalent
to neglecting Okubo-Zweig-Iizuka (OZI) rule violating terms, specifically those involving Λ1. At
NLO the latter parameter is related to the angles and decay constants via [32, 115]

√
2

3
F 2
πΛ1 = F `F s sin(φ` − φs). (5.50)

Thus, ifΛ1 is set to zero, then within this approximation φ` = φs.

Dependence on the QCD scale. In effect, the assumption Λ1 = 0 renders the singlet decay
constant independent of the scale since [32, 185]

µ
d
dµ

F0(µ)√
1 + Λ1(µ)

= 0. (5.51)

The results in eqs. (5.46)–(5.49) show that at µ = 2GeV the angles almost agree within errors.
However, our estimate for Λ1 = −0.25(5) (see sec. 5.4.1) determined at µ = ∞, suggests that
this approximation cannot hold at high scales. We display the scale dependent decay constants and
angles as a function ofµ in fig. 5.4. The two angles are significantly different at large scaleswhere the
combination 2(φs − φ`)/(φs + φ`) approaches 16 %. However, this difference decreases towards
lowerµ and in the range 0.9GeV . µ . 2GeV thenφ` ≈ φs. This is due toΛ1(µ) crossing zero
around 1GeV as shown in fig. 5.5, where we display both OZI violating LECs [186],

Λ1(µ) =

(
Zs
A(µ)

Zs′
A

)2

(1+Λ1(µ = ∞))−1, Λ2(µ) =
Zs
A(µ)

Zs′
A

(1+Λ2(µ = ∞))−1. (5.52)

The LEC Λ2, which mostly impacts on the masses, becomes small at high scales but should not
be neglected at µ < 4GeV. This provides an explanation for the observation of some ChPT
studies thatΛ2 plays a more important role thanΛ1 in terms of reproducing the physical η and η′
masses [182, 187].

The scale dependence of some observables complicates direct comparisons to phenomenology
inmany studies employing ChPT, where the relevant QCD scale depends on the processes that are
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Figure 5.5: Scale dependence of the large-Nc ChPT LECsΛ1 andΛ2.

considered to fix the LECs and on the order of ChPT. Typically, the LECs are determined using
experimental input from, e.g., the η and η′ masses and the widths of radiative decays. This implies
a low QCD renormalization scale. Λ1 varies rapidly in this region which means that if this LEC
is determined using physical processes dominated by different physical scales, the predictions for,
e.g., F 0 will be affected. Clearly, results obtained using the FKS scheme should be compared at
the scale where Λ1 vanishes. One possibility to mitigate this problem is to compare results in the
octet/singlet basis (where only F 0 depends on µ) and form the scale independent combination
F 0/

√
1 + Λ1 [32]. Our result for the latter reads

F 0/
√
1 + Λ1 = 107.3 (1.57 )stat (

1.3
1.3)syst (1.4)t0 MeV. (5.53)

Comparison with phenomenological results. A comparison with a variety of results for the
decay constants in the light/strange flavour and octet/singlet bases is shown in tabs. 5.10 and 5.11,
respectively. Most of the results rely on large-Nc ChPT using experimental input to fix the LECs.
One of the first such computations was undertaken at NLO by Leutwyler [32], using predomi-
nantly pseudoscalar meson masses and non-singlet decay constants to fix the LECs. Only scale
independent combinations are quoted and a result for the singlet decay constant is not given. Feld-
mann [184] then employed the FKS scheme discussed above to give values also for the scale depen-
dent decay constants and the single flavourmixing angle (in this scheme). This approximate scheme
is also used on the lattice by ETMC [51, 52] to relate the pseudoscalar matrix elements to the (axial)
decay constants, which will be discussed further below. In the first NNLO large-Nc ChPT cal-
culation, Guo et al. [182] take lattice input forMη,Mη′ and the non-singlet pseudoscalar masses
and decay constants at unphysical quark masses from the literature. This allows them to constrain
the LECs to NLO, but further assumptions are needed for the many NNLO coefficients. Sub-
sequently, Gu et al. [194] extended the analysis by also utilizing the decay constant results from
ETMC [52]. However, additional constraints on the parameters still seem to be necessary in order
to obtain stable NNLO results. Bickert et al. [181] also perform an NNLO analysis, in this case
combining LECs obtained from the literature and derived from experimental input for the masses
and non-singlet decay constants. Again only QCD scale independent combinations are given.

There exist a number of other studies, some of which are based onmodels, for instance, Benay-
oun [188, 195] employs vector meson dominance, while others involve more phenomenologically
driven extractions, for example, Escribano et al. [185, 189, 190, 192], use experimental data on, e.g.,
the transition form factors γγ∗ → η and γγ∗ → η′. However, a connection to NLO large-Nc
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ref F `/MeV F s/MeV

Benayoun et al. [188]

85 90 95 100 105 110

—

110 120 130 140 150 160

—
Escribano and Frere [189] 100.4(2.8) 152.8(5.5)
Escribano et al. [190] 97.6(1.0) 144(20)
Chen et al. [191] 105.9(3.7) 143.6(5.5)
Escribano et al. [192] 98.7(9) 128(13)
Escribano et al. [185] 94.9(3.7) 125.3(3.7)

Leutwyler [32] — —
Feldmann [184] 98.5(1.8) 123.4(5.5)
Guo et al. [182] NLO-A 94.1(2.5) 122.3(5.2)
Guo et al. [182] NNLO-B 92.7(1.4) 139(15)
Bickert et al. [181] NLO-I — —
[181] NNLOw/o Ci (µEFT = 1GeV) — —
[181] NNLOw/ Ci (µEFT = 1GeV) — —
Ding et al. [193] 101 138

ETMC [52] 88.4(5.4) 125.6(2.6)
Gu et al. [194] NNLO-A9p(Fπ ) 89.8(4.7) 126.3(2.9)

this work (µ = 1GeV) 91.7(3.3) 126.7(4.3)
this work (µ = 2GeV) 88.3(3.2) 124.3(4.2)
this work (µ = ∞) 84.4(3.0) 121.5(4.1)

ref φ` φs

Benayoun et al. [188]

32 34 36 38 40 42 44 46

—

32 34 36 38 40 42 44

—
Escribano and Frere [189] 39.9(1.3)◦ 41.4(1.4)◦

Escribano et al. [190] 40.3(1.8)◦ 40.3(1.8)◦

Chen et al. [191] 34.5(1.8)◦ 36.0(1.4)◦

Escribano et al. [192] 39.3(1.2)◦ 39.2(1.2)◦

Escribano et al. [185] 39.6(2.3)◦ 40.8(1.8)◦

Leutwyler [32] — —
Feldmann [184] 39.3(1.0)◦ 39.3(1.0)◦

Guo et al. [182] NLO-A 40.4(4.8)◦ 39.9(2.8)◦

Guo et al. [182] NNLO-B 35.8(1.2)◦ 37.1(1.4)◦

Bickert et al. [181] NLO-I — —
[181] NNLOw/o Ci (µEFT = 1GeV) — —
[181] NNLOw/ Ci (µEFT = 1GeV) — —
Ding et al. [193] 42.8◦ 42.8◦

ETMC [52] 38.8(3.3)◦ 38.8(3.3)◦

Gu et al. [194] NNLO-A9p(Fπ ) 39.6(2.6)◦ 36.7(2.3)◦

this work (µ = 1GeV) 38.3(1.8)◦ 36.8(1.6)◦

this work (µ = 2GeV) 36.2(1.9)◦ 37.9(1.6)◦

this work (µ = ∞) 33.3(2.0)◦ 39.3(1.7)◦

Table 5.10: Comparisonof recent phenomenological and lattice results for the (scale dependent) decay
constants in the angle representation for the light/strange flavour basis. The results from this work are

presented at three different scales.
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ref F 8/MeV F 0/MeV

Benayoun et al. [188]

110 120 130 140

125.2(9)

90 100 110 120

121.5(2.8)
Escribano and Frere [189] 139.0(4.6) 118.8(3.7)
Escribano et al. [190] −−− —
Chen et al. [191] 133.5(3.7) 117.8(5.5)
Escribano et al. [192] 112.4(9.2) 105.9(5.5)
Escribano et al. [185] 117.0(1.8) 105.0(4.6)

Leutwyler [32] 118 —
Feldmann [184] 116.0(3.7) 107.8(2.8)
Guo et al. [182] NLO-A 113.2(4.4) 104.9(2.9)
Guo et al. [182] NNLO-B 126(12) 109.1(6.0)
Bickert et al. [181] NLO-I 116.0(9) —
[181] NNLOw/o Ci (µEFT = 1GeV) 117.9(1.8) —
[181] NNLOw/ Ci (µEFT = 1GeV) 109(7) —
Ding et al. [193] 123.4 116.0

ETMC [52] — —
Gu et al. [194] NNLO-A9p(Fπ ) 113.1(2.1) 106.0(4.4)

eq. (5.54) 115.2(1.2) —
this work (µ = 1GeV) 115.0(2.8) 106.0(3.2)
this work (µ = 2GeV) 115.0(2.8) 100.1(3.0)
this work (µ = ∞) 115.0(2.8) 93.1(2.7)

ref θ8 θ0

Benayoun et al. [188]

−30 −20 −10

−20.4(1.0)◦

−30 −20 −10 0

−0.1(1.0)◦

Escribano and Frere [189] −23.8(1.4)◦ −2.4(1.9)◦

Escribano et al. [190] — —
Chen et al. [191] −26.7(1.8)◦ −11.0(1.0)◦

Escribano et al. [192] −21.3(3.5)◦ −11.3(3.9)◦

Escribano et al. [185] −21.2(1.9)◦ −6.9(2.4)◦

Leutwyler [32] −20◦ −4◦

Feldmann [184] −21.2(1.9)◦ −9.2(1.7)◦

Guo et al. [182] NLO-A −21.5(4.5)◦ −7.2(2.5)◦

Guo et al. [182] NNLO-B −27.9(1.7)◦ −6.8(3.8)◦

Bickert et al. [181] NLO-I −21.7(7)◦ −0.5(7)◦

[181] NNLOw/o Ci (µEFT = 1GeV) −12.6(6.1)◦ −6.3(6.5)◦

[181] NNLOw/ Ci (µEFT = 1GeV) −34(22)◦ −33(24)◦

Ding et al. [193] −21◦ −2.8◦

ETMC [52] — —
Gu et al. [194] NNLO-A9p(Fπ ) −26.1(2.5)◦ −7.0(2.1)◦

eq. (5.54) — —
this work (µ = 1GeV) −25.8(2.3)◦ −8.1(1.8)◦

this work (µ = 2GeV) −25.8(2.3)◦ −8.1(1.8)◦

this work (µ = ∞) −25.8(2.3)◦ −8.1(1.8)◦

Table 5.11: Comparison of recent phenomenological and lattice results for the decay constants in the
angle representation for the octet/singlet basis, where only F 0 depends on the scale. We use Fπ+ =
92.1MeV [19] to convert decay constants given as a multiple of Fπ and eq. (5.54) refers to the NLO
result from literature pion and kaon decay constants. The results from this work are presented at three

different scales.
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ref Λ1 F 0/
√
1 + Λ1/MeV

Benayoun et al. [188]

−0.2 0 0.2 0.4 0.6

0.20(4)

80 90 100 110 120

110.9(4.8)
Escribano and Frere [189] 0.34(10) 102.6(8.2)
Escribano et al. [190] 0 —
Chen et al. [191] — —
Escribano et al. [192] 0 —
Escribano et al. [185] 0.01(13) 105(11)
Leutwyler [32] — 101
Feldmann [184] 0.0(3) 107.8(2.8)
Guo et al. [182] NLO-A 0.02(8) 102.8(7.0)
Guo et al. [182] NNLO-B −0.04(14) 111(14)
Bickert et al. [181] NLO-I — 104.1(0)
[181] NNLOw/o Ci (µEFT = 1GeV) 0 79.2(9)
[181] NNLOw/ Ci (µEFT = 1GeV) 0 76.4(9)

Ding et al. [193] — —
ETMC [52] 0 —
Gu et al. [194] NNLO-A9p(Fπ ) 0.24(21) 95(20)
eq. (5.54) — 104.3(1.1)

this work (µ = 1GeV) −0.03(5) 107.3(2.2)
this work (µ = 2GeV) −0.13(5) 107.3(2.2)
this work (µ = ∞) −0.25(5) 107.3(2.2)

Table 5.12: Comparison of determinations of the (scale dependent) large-Nc ChPT LECΛ1 and the
scale independent combination ofΛ1 andF 0, where eq. (5.54) refers to theNLO result from literature
pion and kaon decay constants. The values indicated in Italics have been computed by us fromF0 and
Λ1 with naive error propagation. The results from this work are presented at three different scales.

ChPT is made and allows to predict some of the LECs. Chen et al. [191] couple large-Nc ChPT
at NLO to vector resonances and extract the LECs, including these additional couplings, by si-
multaneously analysing in this framework radiative decay form factors of light vector mesons and
charmonia into pseudoscalar final states. Finally, in their calculation Ding et al. [193] employ cou-
pled gap and Bethe-Salpeter equations.

We also include the values F 8 = 115.2(1.3)MeV and F 0/
√
1 + Λ1 = 104.3(1.1)MeV in

tabs. 5.11 and 5.12 (labelled as “eq. (5.54)”). These are obtained from the identities

(F 8)2 =
4F 2

K − F 2
π

3
and (F 0)2 =

2F 2
K + F 2

π

3
(1 + Λ1) , (5.54)

which hold at NLO in large-Nc ChPT [32], using the values FK+/Fπ+ = 1.193(2) [152] and
Fπ+ = 92.1(8)MeV [19, 152] as input, neglecting electromagnetic and isospin breaking effects.
The perfect agreement with our lattice QCD determination ofF 8 and the agreement on the 1.3σ
level forF 0/

√
1 + Λ1 indicates thatNLO large-NcChPT is a good approximation for these quan-

tities, at least near the physical quark mass point.
Overall, we find reasonable agreement between our results and NLO large-Nc ChPT determi-

nations relying on experimental input. However, in the latter case the errors are often not easily
quantifiable. For quantities that depend on the scale, the comparison should be made with our
values determined at low scales (for which Λ1 vanishes). Note that the mixing angles and fun-
damental decay constants F q in the flavour basis all depend on the QCD scale, unless the FKS
approximation is used. The other determinations, which rely on more complicated experimental
analyses (incorporating processes at various scales), differ more significantly, in particular, for the
scale independent octet decay constant and the octet mixing angle. The theoretical effort involved
in working out the higher orders not withstanding, in general, it seems that the data available (lat-
tice or experimental) are not sufficient to constrain themanyparameters ofNNLO large-NcChPT.
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Hence, these studies tend to have larger errors while still relying on assumptions, such as setting in-
dividual parameters to zero [181, 182]. The lattice can help, for example, by determining the (QCD
renormalization scale dependent) OZI violating parametersΛ1 andΛ2.

Relation to other lattice results. Matrix elements of the η and η′ have previously been com-
puted on the lattice in the context of an exploratory study ofDs → η, η′ semileptonic decays [48].
However, only two ensembles were utilized, with pion masses far away from the physical point.
ETMC calculated the decay constants utilizing an indirect approach in [51]. This study was up-
dated in [52] to include a continuum extrapolation, employing seventeenNf = 2 + 1 + 1 gauge
ensembles at three different lattice spacings. Their results for the masses were discussed in sec. 5.5.1.
Due to the level of noise in the axialvector channels, they utilize the FKS scheme to access the decay
constants via the pseudoscalar matrix elements of the η and η′ states [184]. Before summarizing
their results, we will discuss the assumptions they make.

The FKS approximation neglects all OZI violating terms. This amounts to setting Λ1 = 0.
Rotating eq. (5.54) into the flavour basis results in

(F `)2 = F 2
π +

2

3
Λ1(2F

2
K + F 2

π ) and (F s)2 = 2F 2
K − F 2

π − 1

3
Λ1(2F

2
K + F 2

π ). (5.55)

Setting Λ1 = 0 and plugging the experimental ratio FK+/Fπ+ = 1.193(2) [152] into eq. (5.55)
gives

F `/Fπ = 1 and F s/FK =

√
2−

F 2
π+

F 2
K+

= 1.139(2). (5.56)

In the FKS model the flavour basis AWIs (6.5) factorize into anomalous and non-anomalous con-
tributions and one obtains the relations [183, 184]

2m`H
` =M2

πF
` and 2msH

s = (2M2
K −M2

π)F
s, (5.57)

whereHq =
√
(Hq

η)2 + (Hq
η′)

2 for q = `, s and theHq

η(′)
are defined in eq. (2.115). Therefore, in

this approximation, in the flavour basis the mass mixing angle φSU(3), the mixing angles φ` and φs
and the mixing angles for pseudoscalar matrix elements are all equal: φSU(3) = φ = φs = φ` =
φPS, where [196]

φSU(3) = arcsin

√√√√(M2
η′ − (2M2

K −M2
π)
)
(M2

η −Mπ)

(M2
η′ −M2

η )(2M
2
K − 2M2

π)
= 42.4◦. (5.58)

ETMC [52] compute the mixing angle from the averaged ratios of their pseudoscalar matrix
elements:

tanφPS =
√

tanφ`PS tanφsPS with tanφ`PS =
H`

η′

H`
η

and tanφsPS = −
Hs

η

Hs
η′
. (5.59)

The decay constants are obtained, using eq. (5.57). Subsequently, the ratios F `/Fπ , F s/FK and
the angleφ are extrapolated, using a fit that is linear in the quarkmasses and quadratic in the lattice
spacing. At the physical point ETMC obtain

ETMC [52]: F `/Fπ = 0.960(59), F s/FK = 1.143(24) and φ = 38.8(3.3)◦,
(5.60)

which within errors agrees with the values computed within the FKSmodel in eqs. (5.56) and (5.58)
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from the experimental kaon and pion decay constants and the experimental meson masses, respec-
tively. The ETMC results also agree well with our results, that are obtained directly from the axi-
alvector matrix elements, at the scale µ = 1GeV (see tab. 5.10), where we findΛ1 ≈ 0, whereas at
higher scales the two sets of results differ somewhat.

Test of the FKS approximation, away from the physical point. The results in tabs. 5.10, 5.11
and 5.12 (see also eqs. (5.56) and (5.58)) show that our ab-initio values determined at µ = 1GeV
agree well with those derived by employing the FKS scheme. We can go further and directly check
the relations (5.57), (5.59) and (5.55), also away from the physical point. Figure 5.6 displays the two
decay constants and two angles in the flavour basis determined from the pseudoscalar matrix ele-
ments against the direct results for a range of ensembles at µ = 1GeV. The values for F ` and
F s obtained from the pion and kaon decay constants are also shown. Modulo the large errors
for some ensembles, there is reasonable agreement between the direct results for the angles and
the FKS expectation, with φSU(3) ≈ φPS. Qualitative agreement is also found for the decay con-
stants, however, some scatter in the results is visible, which may be due to discretization effects
and/or the limitations of the FKS approximation. This is less significant for F s and it is strik-
ing how well this quantity is reproduced by the combination

√
2F 2

K − F 2
π . However, at higher

scales, whereΛ1 can no longer be neglected, scale dependent quantities cannot be reliably extracted
with any precision using the FKS method, as indicated in the comparison tables. In particular,
for the singlet decay constant we observe the difference between the results at high and low scales
2(F 0(1GeV) − F 0(∞))/(F 0(1GeV) + F 0(∞)) = 12.9%. We remark that previously it was
unclear at what scale the FKS approximation holds and this led to an additional unquantifiable
uncertainty in phenomenological analyses.

Our directQCD results can be used as input to theory calculations andwe consider one impor-
tant example in sec. 5.5.4, namely the light-cone sum rule computationof theγγ∗ → η(′) transition
form factors.

5.5.3 Large-Nc low energy constants

As part of our analysis we are able to extract the large-NcChPTLECs up toNLO.The singletmass
in the chiral limitM0 and the twoOZI-rule violating parametersΛ1 andΛ2 are allO(1/Nc) in the
power counting. Besides these large-Nc specific LECs,L5,L8 and the decay constant in the chiral
limit, F , also appear. These are present in ordinary SU(3) ChPT, although, their values can differ.
In particular,L5 andL8 depend on the ChPT renormalization scale in the SU(3) theory, however,
such scale dependence only arises at NNLO in large-Nc ChPT.

TheO(1/Nc) LECs extracted from our NLO fits at µ = ∞ forNf = 3 read:

M0 = 761 (1321)stat (
18
11)syst (11)t0 MeV, (5.61)

Λ1 = −0.25 (14)stat (
6
2)syst , (5.62)

Λ2 = 0.11 (55)stat (
7
10)syst , (5.63)

where theChPT and lattice spacing errors have been combined into a single systematic uncertainty.
The dependence of these quantities on the QCD renormalization scale is discussed in sec. 5.5.2. To
aid comparison with literature values we consider the scale independent combinations [32]:

M0/
√
1 + Λ1 = 877 (1210)stat (

21
8 )syst (13)t0 MeV and Λ̃ = Λ1 − 2Λ2 = −0.46(19).

(5.64)
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Figure 5.6: Light and strange decay constants (top) and angles (bottom)determinedon each ensemble
at the QCD scale µ = 1GeV. The central values and errors in the x-direction indicate the results
obtained directly from the axialvector matrix elements, while the position and error in the y-direction
indicates the values constructed from the pseudoscalar matrix elements (red, eqs. (5.57) and (5.59)). For
the decay constants, the expectations derived fromcombinations of the pion andkaonmasses anddecay
constants (blue, eq. (5.55)) are also displayed, while for the angles φSU(3) (eq. (5.58)) is also shown. The

blue points have been shifted slightly to the right for better visibility.
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Previous determinations of these quantities include:

Leutwyler [32]: M0/
√

1 + Λ1 ≈ 899MeV and Λ̃ = −0.31, (5.65)

Benayoun et al. [188]: Λ̃ = −0.42(6), (5.66)

Guo et al. [182]: M0/
√

1 + Λ1 = 804(80)MeV and Λ̃ = −0.37(17), (5.67)

Bickert et al. [181]: M0/
√

1 + Λ1 = 950(7)MeV and Λ̃ = −0.34(5), (5.68)

where except for [181], we have constructed these scale independent quantities from the individual
results quoted in the publications. Our central value forM0/

√
1 + Λ1 is larger than the result

of [182], which utilizes lattice data, however, considering the large uncertainty quoted in this refer-
ence, there is no significant disagreement. The determination from [181] lies roughly two standard
deviations higher, where the LECs in this study are determined from experimental input which
includes the singlet and non-singlet meson masses and non-singlet decay constants. We also find
some disagreement with [181] when comparing predictions for the decay constants and angles, cf.
tab. 5.11. Interestingly, our value for the combinationofOZI-violatingLECs Λ̃ is in good agreement
with the above determinations.

For the decay constant in the chiral limit, we obtain

F = 87.71 (1.441.57)stat (
2.69
81 )syst (1.31)t0 MeV. (5.69)

This result agrees within errors with the NLO values presented in [182] and [181]:

Guo et al. [182]: F = 92.1(6)MeV, Bickert et al. [181]: F = 90.73(11)MeV. (5.70)

However, the corresponding NNLO analyses give somewhat lower values of F ,

Guo et al. [182]: F = 80.8(6.3)MeV, Bickert et al. [181]: F = 79.46(6.59)MeV, (5.71)

which within errors still agree with our result (5.69). In the simulations of [197] withNf = 4 sea
quarks, the number of coloursNc ∈ {2, 3, 4, 5, 6} is varied. The pion decay constant and its mass
are then fitted to the NNLO large-Nc U(4) ChPT prediction. From the expected dependence on
Nf/Nc and 1/N2

c (neglectingN2
f /N

2
c terms), the even lower value

Hernandez et al. [197]: F (Nf = 3, Nc = 3) = 68(7)MeV (5.72)

is inferred forNf = Nc = 3 at the lattice spacing a ≈ 0.075 fm.
The additional terms appearing at NNLO comprise chiral logs and expressions which include

theLECsL4,L6,L7,L18 andL25. In particular, in [198], it is argued thatL4 is anti-correlatedwith
the decay constant in the chiral limit as seen, e.g., in fits to experimental data in [199]. Thus, neglect-
ingNNLOcontributions includingL4-termsmay lead to larger values ofF . However, also our fits
in app. D, including only theNNLO loop contributions (see the discussion of sec. 5.3 as well as be-
low), gives F = 79.0(3.8)MeV. In conclusion, both these effects may account for the reduction
of the value of F within NNLO analyses, in comparison to results fromNLO parametrizations.

For the LECsL5 andL8, we find

L5 = 1.66 (11)stat (20)syst · 10
−3 and L8 = 1.08 (9)stat (9)syst · 10

−3. (5.73)
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These values agree reasonably well with those obtained from other NLO large-Nc ChPT studies,
e.g.,

Leutwyler [32]: L5 = 2.2 · 10−3 and L8 = 1.0 · 10−3, (5.74)
Guo et al. [182]: L5 = 1.47(29) · 10−3 and L8 = 1.08(6) · 10−3, (5.75)
Bickert et al. [181]: L5 = 1.86(6) · 10−3 and L8 = 0.78(5) · 10−3. (5.76)

Acomparison can alsobemadewith theLECsobtainedusing SU(3)ChPT.TheLECs in the SU(3)
and large-Nc theories are related via [33, 181, 200]

L5(µEFT) = L
SU(3)
5 (µSU(3)) +

3

8

1

16π2
ln
(
µSU(3)

µEFT

)
(5.77)

L8(µEFT) = L
SU(3)
8 (µSU(3)) +

5

48

1

16π2
ln
(
µSU(3)

µEFT

)
+

1

12

1

16π2
ln
(
µmatch
µEFT

)
, (5.78)

where µSU(3) is the SU(3) ChPT scale, µEFT is the scale of large-Nc ChPT (which is ill-defined at
NLO) and µmatch is the scale at which the two theories are matched. We set µEFT = µSU(3) =

µmatch = 0.770GeV such that L5,8(µEFT) = L
SU(3)
5,8 (µSU(3)). A direct comparison can then be

made with the SU(3) values obtained in [201] from a Nf = 2 + 1 lattice study of the pion and
kaon masses and decay constants. Here, we quote the values presented in the FLAG review [152]
for µSU(3) = 0.770GeV

MILC [201]: L
SU(3)
5 = 0.98(38) · 10−3 and L

SU(3)
8 = 0.42(27) · 10−3. (5.79)

For µEFT < 0.770GeV and µmatch > 0.770GeV the agreement with our (scale independent) re-
sults improves.

Overall, our results for the large-Nc ChPT LECs are reasonably consistent with literature val-
ues. A direct comparison ofNLOandNNLO results is difficult due to the scale dependencewhich
arises at NNLO. Results from our fits including the NNLO loop contributions can be found in
app. D. The inferiorχ2/Ndf = 2.56 indicates that this parametrization does not describe our data
well and additional NNLO terms are required for a consistent description of the data. Note that
this analysis gives values for the LECs L5 and L8 (see eq. (D.9)) that are slightly smaller and larger
than our NLO values quoted in eq. (5.73), respectively. As also observed in our analysis, it appears
difficult to reliably pin down themanyNNLOLECs, and usually priors or assumptions are needed
to carry out such fits, giving rise to additional uncertainties, see for example the scatter of NNLO
results in [181, 182].

5.5.4 Transition form factors Fγγ∗→η(Q
2) and Fγγ∗→η′(Q

2)

Finally we present an application of our decay constant results to compute the photoproduction
transition form factor (TFF). Photoproduction is the simplest hard process involving η(′) mesons.
The corresponding TFFs Fγγ∗→η(Q

2) and Fγγ∗→η′(Q
2) at large photon virtualitiesQ2 = |q2|

have been studied, e.g., in [193, 202, 203] and assessed phenomenologically for instance in [185,
192]. On the lattice the pion TFF has been studied [204] and work on the η and η′ TFFs have
started [205]. This ismotivatedby theTFF contributions to the theoretical estimate of the hadronic
light-by-light contribution to the anomalous magnetic moment of the muon.

The special role of the transition form factors as “gold plated” observables for the study of me-
son light-cone distribution amplitudes (LCDAs) is widely recognized. The corresponding theory
is similar to that for the more easily accessible pion transition form factor Fγγ∗→π0(Q2) but the
non-perturbative input encoded in the LCDAs is more complicated. The two outstanding issues
are, first, whether the η and η′ LCDAs follow the same mixing pattern as the decay constants at a
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Figure 5.7: Predictions for the transition form factor Fγγ∗→η(Q
2) (left) and Fγγ∗→η′(Q2) (right)

following the approach in [203], using the decay constants determined in ourwork as input parameters.

low scale, and, second, whether η′ contains a significant two-gluon component, see, e.g., [202, 203]
for a discussion.

Infig. 5.7we show theQCDprediction for the form factors, employing the light-cone sumrules
calculation presented in [203]. The results are compared to the experimental data for the space-like
form factors by the CLEO [206] and BaBar [22] collaborations, and we also include BaBar’s time-
like data points at q2 = 112GeV2 [21] as stars.

The difference with respect to the original calculation is that in fig. 5.7 the lattice values of the
decay constants determined in this work are used as an input, whereas in [203] the decay constants
were taken from [183] under the (ad hoc) assumption that they correspond to the scale 1GeV.
Using our lattice results removes this scale uncertainty. The overall difference is small, due to the
good agreement with these results at 1GeV with [183], cf. sec. 5.5.2 and tab. 5.11.

In view of the experimentally available range of Q2, employing Nf = 4 appears reasonable.
Therefore, we run ourNf = 3 values for F 0

η(′)
(see tab. E.2) down to µ0 = 1.51GeV [207] (see

sec. 2.4.3), where we match to the Nf = 4 theory. This value is then taken as an input for the
LCSR calculation.

The LCSR technique involves a certain model dependence in the calculation of the power-
suppressed contributions to the form factors. This is indicated by the dark blue shaded regions
in fig. 5.7 and can be regarded as an (at present) irreducible uncertainty of such calculations. The
total uncertainty including that of the lattice values for the decay constants is shown in light blue
(added in quadrature). Starting aroundQ2 ∼ 10GeV2 this uncertainty dominates over themodel
dependence.

The calculation is carried out assuming that the shapes of the LCDAs of the η and the η′ at
low scales are the same as that of the pion. In our calculation, following [203], the corresponding
parameters are chosen from the fit to the pion transition form factor in the same approach [208].
Moreover, the two-gluonLCDAat the low scale is set to zero. Under these assumptions the only ad-
ditional non-perturbative input at the leading-twist level are the decay constants that we computed
here. The comparison of fig. 5.7 between the predictions for Fγγ∗→η(Q

2) and Fγγ∗→η′(Q
2) and

experimental data shows that the above approximation appears to work relatively well, although
there is some tension with the available data. In the asymptotic limitQ2 → ∞ the dependence on
the shape of the LCDAs is removed, and the decay constants provide the only necessary input:

lim
Q2→∞

Q2Fγγ∗→η(′) =
2√
3

(
F 8
η(′) + 2

√
2F 0

η(′)(µ = ∞, Nf = 4)
)
. (5.80)
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We obtain forNf = 4:

lim
Q2→∞

Q2Fγγ∗→η(Q
2) = 160.5(10.0)MeV,

lim
Q2→∞

Q2Fγγ∗→η′(Q
2) = 230.5(10.1)MeV. (5.81)

These asymptotic values are shown as dashed lines in fig. 5.7. Regarding the latter form factor, it
is particularly important to take the scale dependence of the singlet decay constant into account.
This explains the relatively large values obtained for Q2Fγγ∗→η′(Q

2) when neglecting the scale
evolution, see, e.g., the predictions in [52]. Also the matching to the Nf = 4 theory somewhat
reduces the value. As already emphasized in [203], the effect due to the scale dependence is enhanced
for the η′ form factor because in this case the two terms in eq. (5.80) have opposite signs.

The current experimental accuracy is not yet sufficient to draw definite conclusions. In the
future, due to an increase of the statistics by a large factor and improved particle identification, the
Belle II collaboration will be able to measure the pseudoscalar meson transition form factors with
much higher precision [27]. A disagreement with QCD calculations using lattice input for the
decay constants would either indicate qualitative differences between the shapes of the LCDAs for
different pseudoscalar mesons or the presence of a large two-gluon contribution. Both would have
important consequences for other hard processes involvingη andη′mesons, e.g., inweakB-decays.
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6 GluonicmatrixelementsandaxialWard iden-
tities

In this final chapter we return to one of the fundamental features of the non-perturbative QCD
vacuum, laid out in sec. 2.1.5, which is the anomalous breaking of the U(1)A symmetry and the
non-conservation of the axialvector current resulting from it, see eq. (2.34). The singlet axial Ward
identity has received a lot of attention, also in different settings, e.g., regarding the spin structure
of the nucleon [209]. The AWIs are operator identities and in this chapter we confront them with
the physical η and η′ states and test the validity on the level of matrix elements.

We start by discussing the axial Ward identity both in the octet/singlet as well as in the flavour
basis on the lattice in sec. 6.1 and comment on the renormalization of the operators that appear.
There, we also check the simpler octet case that relates just the pseudoscalar and axialvector matrix
elements but does not contain the gluonic anomaly contribution 〈Ω|ω|η(′)〉. Motivated by the
success of this comparison in the octet case, we then first compute the anomaly contribution in
the singlet channel indirectly from the fermionic matrix elements in sec. 6.2. In sec. 6.3 the NLO
large-Nc ChPT formulae for the extrapolation to the physical point is derived and the continuum
and chiral limit is taken. We then return to the complicated renormalization of the singlet AWI
in sec. 6.4 to finally test the Ward identity. To this end we determine the gluonic matrix elements
directly from correlators of the topological susceptibilitywith the η and η′ states. For the renormal-
ization of the susceptibility and to disentangle the mixing with the axialvector current we analyse
the topological susceptibility. Equippedwith the renormalization factors we can proceed and com-
pare both sides of the singlet AWI in sec. 6.5. Finally, we summarize our results on pseudoscalar
and anomalous matrix elements in sec. 6.6 and compare to literature values.

This chapter has already been published in similar or verbatim form in [60].

6.1 The axial Ward identities
The AWIs between renormalized operators (indicated by a hat) read

∂µÂ
a
µ = ̂(

ψγ5{M, ta}ψ
)
+
√
2Nfδ

a0ω̂, (6.1)

whereM = diag(m`,m`,ms) is the quark mass matrix, a ∈ {0, 1, . . . , 8}, and the topological
charge density is defined as

ω(x) = − 1

16π2
tr
[
Fµν(x)F̃µν(x)

]
= − 1

32π2
F a
µν(x)F̃

a
µν(x) = − 1

64π2
εµνρσF

a
µν(x)F

a
ρσ(x).

(6.2)
Since different conventions are used in the literature, for clarity we have written the right-hand side
in three different ways. Regarding the octet and singlet AWIs, eq. (6.1) corresponds to

∂µÂ
8
µ =

2

3
(m̂` + 2m̂s) P̂

8 − 2
√
2

3
δm̂P̂ 0, (6.3)
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and

∂µÂ
0
µ =

2

3
(2m̂` + m̂s) P̂

0 − 2
√
2

3
δm̂P̂ 8 +

√
6 ω̂, (6.4)

respectively. In theoctet/singlet basis only the singletAWI receives a contribution fromthe anomaly.
Note, however, that the octet AWI receives pseudoscalar singlet contributions through the mass
term and vice versa. Using eq. (2.103), the corresponding AWIs in the flavour basis can be written
as

∂µÂ
s
µ = 2m̂sP̂

s + 2 ω̂, ∂µÂ
`
µ = 2m̂`P̂

` + 2
√
2 ω̂. (6.5)

From a flavour perspective these are simpler because the quark flavours decouple, however, the
anomaly contribution now enters both AWIs and the renormalization is more complicated.

We determine our quarkmasses, using the non-singlet AWIs for the light pseudoscalarmesons,
eq. (3.6). We carry out the completeO(a) improvement of the currents, so that the above relations
holdup toO(a2) corrections. For this the (combinations of) improvement coefficients cA, bA−bP
and b̃A − b̃P are required, all of which are known non-perturbatively [119–121], see also sec. 2.4.2.
The lattice AWI quark masses are related to the continuummasses via

m̂q(µ) =
ZA

ZP (µ)
m̃q. (6.6)

AgainZA/ZP is known non-perturbatively in the RGI scheme [210] and can be related to theMS
scheme at a scale µ perturbatively at the five-loop level [129] whenever this is needed.

The octet AWI between lattice matrix elements reads

∂µ
〈
Ω
∣∣A8

µ

∣∣M〉
=

2

3
(m̃` + 2m̃s)

〈
Ω
∣∣P 8
∣∣M〉

− 2
√
2

3
δm̃ rP

〈
Ω
∣∣P 0
∣∣M〉

, (6.7)

where δm̃ = m̃s − m̃` denotes the difference between the lattice AWI quark masses. This expres-
sion is only non-trivial for η and η′ states. The (scale independent) ratio rP = Zs

P /ZP appears
since the renormalization of the singlet relative to that of the non-singlet pseudoscalar current can
differ atO(g6) for Wilson fermions. In addition to the known improvement coefficients, also csP
(which toO(a) is equivalent to gP , see eq. (2.117)), dP and d̃P contribute, while forms 6= m`, fA
and fP appear too. Forms = m`, theWard identity is trivial if applied to the η′ = η0 state. Note
that the left-hand side of eq. (6.7) can be replaced with

∂µ
〈
Ω
∣∣A8

µ

∣∣M〉
= Z−1

A ∂µ

〈
Ω
∣∣∣Â8

µ

∣∣∣M〉
= Z−1

A M2
MF 8

M, (6.8)

as discussed around eq. 2.118. Hence, the combination on the right-hand side of eq. (6.7) does not
depend on the momentum of the mesonM.

In fig. 6.1 we check the octet AWI (6.7) at zero momentum directly against our data, utilizing
the quark masses computed according to eq. 3.6. Note that the equality should hold without any
renormalization, up to the ratio rP . For the comparison, we set rP = 1, csP = dP = d̃P =
fP = 0 and fA = −0.689 g6. The value of the latter coefficient is taken from the central fit of
sec. 5.3 (fit 7). Throughout, we find reasonable agreement between the left and right-hand sides
of the Ward identity, as shown in fig. 6.1. Only the pseudoscalar combination for the η′ tends to
result in slightly smaller values than those of the derivative of the axialvector current. Within our
precision, we conclude that indeed rP = 1 to a good approximation and that the effect of the three
(forms = m`) or four (forms 6= m`) unknown improvement terms is moderate, even for our
coarsest lattice spacing.
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Figure 6.1: Check of the octet AWI (6.7) for the η and η′ states. Light points correspond to the case
when the singlet contribution to the octet AWI is neglected.
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In the singlet case, due to the anomaly contribution to eq. (6.4), we would expect that

∂µ
〈
Ω
∣∣A0

µ

∣∣M〉
6= 2m̃ rP

〈
Ω
∣∣P 0
∣∣M〉

− 2
√
2

3
δm̃
〈
Ω
∣∣P 8
∣∣M〉

, (6.9)

where m̃ denotes the average lattice AWI quark mass. Again we set rP = 1 and ignore any un-
known improvement terms. The comparison at zero momentum is shown in fig. 6.2. The differ-
ence is large for both states and does not significantly depend on the lattice spacing but mostly on
the quarkmasses. This rules out the incomplete singletO(a) improvement as amajor cause for the
disagreement. Interestingly, in the case of the η, the singlet pseudoscalar contribution coincides
with the left-hand side of eq. (6.4): the (in this case) large octet pseudoscalar matrix element ap-
proximately cancels against the anomaly term. For the η′ the octet contribution is much smaller
and no such effect can be seen. In both cases, contributions from the anomalous matrix elements
〈Ω|ω|η(′)〉 are large in comparison to the terms involving pseudoscalar matrix elements, and it is
clear that the anomalous term must be included. The gluonic matrix element can be determined
simply from the difference observed in these plots, a procedure that does not involve any additional
renormalization. We follow this strategy in the next section.

6.2 Fermionic determination of 〈Ω|2ω|η〉 and 〈Ω|2ω|η′〉
Rather than determining the renormalized matrix elements

aM = 2〈Ω|ω̂|M〉 (6.10)

directly using gluonic correlators, we first compute them via the renormalized singlet AWI (6.4):

aM(µ) =

√
2

3
Zs
A(µ)∂µ

〈
Ω
∣∣A0

µ

∣∣M〉
+

2
√
2√
3
ZA

[√
2

3
δm̃
〈
Ω
∣∣P 8
∣∣M〉

− rP m̃
〈
Ω
∣∣P 0
∣∣M〉]

=

√
2

3
M2

MF 0
M(µ) +

4

3
√
3

ZA

ZP
δm̃H8

M − 2
√
2√
3
rP
ZA

ZP
m̃H0

M, (6.11)

where Ha
M are the renormalized and O(a) improved pseudoscalar matrix elements, in analogy

to eqs. (2.120) and (2.124). This fermionic definition has the advantage that no knowledge of the
renormalization factors ZωA and Zω is needed (see sec. 6.4 below) and we only assume rP = 1 as
has been shown to hold to good accuracy in the previous section. Note that aM depends on the
renormalization scaleµ and only in themodified scheme, discussed in sec. 2.4.3 (which corresponds
to µ→ ∞), do the gluonic matrix elements become scale independent.

6.3 Continuum limit and extrapolation to the physical point
To extrapolate these results to the physical point a continuumparametrization of theirmass depen-
dence is needed. To our knowledge no such large-Nc ChPT result exists, yet, and so we employed
the expressions for the masses, eq. (5.11), and decay constants, eqs. (5.24) to (5.27), to solve the octet
AWI, eq. (6.7), both in theNf = 3 where the singlet and octet decouple and in the more generic
Nf = 2 + 1 case for the pseudoscalar matrix elements times the quark masses,mqH

a
q . We sub-

stitute these into the singlet AWI to obtain expressions for aη′ order by order. We describe the
calculation in more detail and give the expressions in app. F. Similar to sec. 5.2 we label the contin-
uum limit expressions as aη′(M, δM | · · · ), where the ellipsis represents the low energy constants
and the masses are the arguments of the functions.
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To include theO(a) improvement coefficients we proceed similarly as in sec. 2.4.2. We start by
defining partially improved matrix elements at µ = ∞:

ǎη(′) =

√
2

3
M2

η(′)F
0
η(′)(µ) +

4

3
√
3
ZAδm̃Ȟ

8
η(′) −

2
√
2√
3
rPZAm̃Ȟ

0
η(′) , (6.12)

where Ȟa
η(′)

= 〈Ω|P a|η(′)〉 are unimproved pseudoscalar lattice matrix elements and we assume
rP = 1.

The unknown axialvector coefficients that enter the computation of the singlet decay constants
are taken from sec. 5.3, and we set dA = bA + 1.84 g4, fA = −0.689 g6 and d̃A = δcA = 0
(as determined using fit 7). Six improvement coefficients are needed for the pseudoscalar currents:
bP , b̃P , dP , d̃P , fP and csP . The latter was defined in eq. (2.117) and persists in the chiral limit. We
remark again that by replacing agP trFµνF̃µν 7→ acsP∂µA

0
µ, the definition of the coefficients dP

and d̄P (and therefore of d̃P ) with respect to [118] is altered.
We then carry out a fit according to

ǎη(′)(a,M
2, δM2) = aη(′)(M

2, δM2| · · · ) (6.13)

− 2
√
2ZA√
3

m̃

[
3ad̃PmȞ

0
η(′) + adP

1√
3

(√
2m`Ȟ

`
η(′) +msȞ

s
η(′)

)
+ acsPM

2
η(′)F

0
η(′)

]
+

4ZA

3
√
3
δm̃

[
3ab̃PmȞ

8
η(′) + abP

1√
3

(
m`Ȟ

`
η(′) −

√
2msȞ

s
η(′)

)
+
√
2afP δmȞ

0
η(′)

]
,

In keeping with the rest of our analysis, all dimensionful quantities appearing within this fit are
multiplied by the appropriate powers of

√
8t0. We parametrize the coefficients dP , d̃P , fP and

csP (that are functions of g2) similarly to eq. (5.31) with one parameter each, while bP and b̃P are
known non-perturbatively [121]:

bP (β = 3.4) = 1.622(74), bP (β = 3.46) = 1.592(213),

bP (β = 3.55) = 1.560(165), bP (β = 3.7) = 1.696(78), (6.14)

b̃P (β = 3.4) = 0.39(27), b̃P (β = 3.46) = 0.32(20),

b̃P (β = 3.55) = 0.40(23), b̃P (β = 3.7) = 0.16(13). (6.15)

The resulting 10-parameter fit is only weakly constrained, however, at NLO in large-Nc ChPT
theLECs should be identical to those thatwe already determined in sec. 5.4.1. Therefore, in analogy
to eq. (5.37), we add these results, given in eq. (5.38), as priors to the χ2 function. The widths σ are
set to the statistical and systematic errors, added in quadrature. In analogy to d̃A it turns out that
we are still unable to resolve d̃P and fix d̃P = b̃P instead.

The fit, shown in fig. 6.3, gives a valid description of the data, with a fully correlatedχ2/Ndf ≈
34/31 ≈ 1.09. We obtain

dP (g
2) = bP (g

2) + 6.6(6)g4, csP (g
2) = −2.4(3)g4 and fP (g

2) = −26(6)g6 (6.16)

for the additional improvement coefficients, setting d̃P = b̃P . The corresponding LECs read

L5 = 1.95 (73)stat · 10
−3, L8 = 0.97 (46)stat · 10

−3,

M0 = 1.59 (16)stat (8t
χ
0 )

−1/2
, F = 0.1881 ( 9

24)stat (8t
χ
0 )

−1/2

Λ1 = −0.10 (11)stat , Λ̃ = −0.21 (34)stat , (6.17)

where the errors given are purely statistical and generally small, due to the priors. In particular,Λ1

is by 2.8 standard deviations larger than its input value (5.38), obtained from the fit to the masses
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Figure 6.3: The anomalous gluonicmatrix element aη (left) and aη′ (right) determined via the singlet
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spacing effects, while the grey points indicate the unshifted data. The two curves correspond to the
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point including statistical and systematic errors.

and decay constants, and Λ̃moves up accordingly. AlsoL5 is larger by about 1.3σ. This indicates
some tension between the data and the NLO expressions.

At the physical point and µ = ∞, the fit gives

(8t
ph
0 )3/2aη = 0.1564 (3763) and (8t

ph
0 )3/2aη′ = 0.308 (1617) . (6.18)

The NLO prediction eqs. (F.9) and (F.10), using the LECs of eq. (5.38), reads

(8t
ph
0 )3/2aη = 0.1609 (1727) and (8t

ph
0 )3/2aη′ = 0.383 (1117) . (6.19)

Note that the latter values are based exclusively on themesonmasses and their decay constants, with
no input from the data on aη(′) . The predictions and fit results are close to each other. However,
within the relatively small errors stated, the two results on aη′ differ by several standard deviations,
which indicates the limitations of theNLO continuumparametrization within our range of quark
masses. Therefore, we assign the difference between eqs. (6.18) and (6.19) as the systematic error
associated with taking the physical limit. We discuss the results and quote values in physical units
in sec. 6.6.

6.4 Renormalization of the anomaly term and the topologi-
cal susceptibility

After the indirect determination of the gluonic matrix elements via pseudoscalar and axialvector
matrix elements, we now determine them directly, destroying η(′) states by the topological charge
density operator. This allows us to validate the singlet AWI in our lattice study, also in view of
confirming a consistent continuum limit extrapolation of the lattice data. However, this requires
an analysis of the renormalization of the anomaly term and its mixing with the derivative of the
axialvector current.

We compute the topological charge density according to eq. (6.2), using the field theoretical
definition of the field strength tensor, eq. (2.63), after flowing the gauge fields to a Wilson flow
time [144] of approximately t/a2 = t∗0/a

2 at each lattice spacing, cf. also sec. 3.4. This removes
possible mixing with operators like a−1P 0 and regularizes contributions from contact terms like
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〈ω(0)ω(0)〉. From this flowed charge density we can compute correlators just as with ordinary
loops, cf. sec. 4.2.1 and the matrix elements can be computed according to eqs. (4.31) and (4.32),
setting J = ω. Again for ensembles with open boundary conditions we keep the same distance
b & 1.9 fm to the boundaries as we did in the computation of the fermion loops, cf. sec. 4.1 and
tab. 4.1.

To investigate the renormalization of ω, we start from the singlet AWI in the massless case

∂µÂ
0
µ =

√
2Nf ω̂. (6.20)

Since ω(x) can be written as the divergence of a topological current, the associated Pontryagin
index

Q =

∫
d4xω(x) (6.21)

is integer-valued onR4 in the continuum limit and scale independent such thatω(x) itself will not
acquire an anomalous dimension. ∂µA0

µ can and will mix into ω:

ω̂ = Zωω + ZωA∂µA
0
µ, (6.22)

up to gradient flow time dependentO(a) corrections. We remark that the anomalous dimensions
ofA0

µ andofω differ fromeachother in lattice regularization aswell as in naive dimensional regular-
ization. The singlet AWI holds exactly when defining the topological charge density using overlap
fermions [211], without any factor Zω and the term containing ZωA cancels when computing the
topological susceptibility τ , defined in eq. (6.23), with periodic boundary conditions. Since the
topological susceptibility obtained from employing the overlap definition and the field theoretical
definition after cooling (which is equivalent to the gradient flow) appear to agree in the continuum
limit [212], it is likely that actuallyZω = 1.

Note that the running of ZωA with the scale is the same as that of Zs
A, which is consistent

with eq. (6.20).1 An alternative scheme of renormalizing the singlet axialvector current is discussed
in sec. 2.4.3. In that case, both Zs

A and ZωA have no anomalous dimension. We remark that the
ZωA∂µA

0
µ term will not affect the topological susceptibility

τ̂ =
∑
x

〈ω̂(0)ω̂(x)〉 = 1

V

∑
x,y

〈ω̂(x)ω̂(y)〉 = 〈Q̂2〉
V

(6.23)

since this term does not contribute to the volume sum, due to translational invariance. In the bulk
of the lattice this also holds for open boundary conditions in time, providedLt−2b is much larger
than the relevant correlation lengths:

Lt/2−b∑
x0=−Lt/2+b

∑
~x

∂µA
0
µ(x) =

1

2a

∑
~x

[
A0

0(Lt/2− b)−A0
0(−Lt/2 + b)

] Lt→∞−−−−→ 0. (6.24)

As a first sanity check, we plot the topological susceptibility in fig. 6.4, where we include most
of the CLS ensembles analysed in [90], which adds additional points at finer and coarser lattice

1In [124] somewhat different conventions are used that correspond to 4π2asGG̃ = F aµνF
a
µν , whereas = αs/π =

g2s/(4π
2). Therefore, in that case theγ-function forGG̃ reads−β(as)/as, while ourZω does not carry any anomalous

dimension. Likewise, in that article the anomalous dimension of the off-diagonal element is proportional to γsA/as,
while here γωA = γsA.
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Figure 6.4: Topological susceptibility for many of the CLS ensembles described in [90]. Filled sym-
bolsmark ensembles that are simulatedwith a constant sumof quarkmasses (solid lines), open symbols
correspond to ensembles with the strange quarkmass fixed to approximately the physical value (dashed
lines). Lines and shaded regions are the result of a fit to eq. (6.26). The continuum limit result (black
lines) is very close to both the fit result at β = 3.85 as well as the leading order expectation (grey lines),

when using
√
8t0F = 0.1866, see eq. (5.38), and settingZω = 1.
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spacings. We find large cut-off effects with our definition of the susceptibility, shifting points con-
siderably away from theNf = 3 continuum expectation [29, 213],

τ̂ =
F 2

2

(
1

2M2
K −M2

π

+
2

M2
π

)−1

. (6.25)

Indeed, large cut-off effects have been reported in unquenched simulations previously [214–220].
To confirmZω = 1 numerically, we attempt a simple fit to

(8t0)
2τ =

(8t0)
2F 2

2Z2
ω

(
1

2M2
K −M2

π

+
2

M2
π

)−1

+ l(2)τ

a2

t∗0
+ l(3)τ

a3

(t∗0)
3/2

+ l(4)τ

a4

(t∗0)
2
. (6.26)

From this four parameter fit with χ2/Ndf ≈ 35.3/33 ≈ 1.07, we obtain in the continuum limit√
8tχ0F

Zω
= 0.190(13). (6.27)

When assuming Zω = 1, this value agrees with our previous result
√
8tχ0F = 0.1866(48) (see

eq. (5.38) of sec. 5.4.1). The coefficients of the terms parameterizing the lattice spacing dependence
are

l(2)τ = −0.072(10), l(3)τ = 0.355(34) and l(4)τ = −0.324(30), (6.28)

resulting in the non-monotonous behaviour observed in fig. 6.4. The alternating sign also explains
how the susceptibilities at our finest lattice spacing a ≈ 0.039 fm (β = 3.85) can agree with the
continuum limit expectation. We also tried to add mass-dependent terms to our parametrization
of lattice artefacts, however, the resulting coefficients turned out to be small and the quality of the
fit did not improve. Equation (6.26) with four parameters turned out to be theminimal ansatz that
resulted in a valid description of all our 37 data points. Interestingly, the leading order continuum
limit expectation for the dependence of τ̂ on the pion and kaonmasses already gives a very adequate
description of the data.

6.5 Direct determination of the gluonic matrix elements
Wewish to check if the fermionic results that were obtained in sec. 6.2 from employing the singlet
AWI are consistent with a direct determination of the gluonic matrix elements. The renormalized
matrix elements are given as

aM(µ) = 2Zω〈Ω|ω|M〉+ 2
ZωA

Zs
A

M2
MF 0

M(µ), (6.29)

see eq. (6.22). In the previous section, we have foundZω = 1 from a fit to the topological suscep-
tibility. As an additional cross check, we also simultaneously solve the above equation forM = η
andM = η′ to obtainZωA andZω . We plot the resulting values forZω in the left panel of fig. 6.5.
Qualitatively these are in agreement with Zω = 1 and we suspect that the two outliers are due to
lattice artefacts.

Based on the evidence presented above, we assume Zω = 1, however, ZωA is not known and
therefore comparing the direct determination (6.29) of the anomaly terms with the corresponding
predictions from the singlet AWI eq. (6.11) cannot be entirely independent. Fortunately, the ratio
ZωA/Z

s
A only depends on the inverse lattice coupling, β, but not on the pion and kaon masses.

Moreover, the renormalization is independent of themeson. Rearranging eq. (6.29), we can isolate
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the renormalization scale independent ratio

ZωA

Zs
A

=
aM − 2Zω〈Ω|ω|M〉

2M2
MF 0

M
. (6.30)

Since F 0
η in the denominator is close to zero and has large relative errors, we only use the η′ matrix

elements for whichF 0
η′ � 0 on all our ensembles. We plot this ratio forZω = 1 in the right panel

of fig. 6.5. Indeed, the data for each β-value are compatible with a constant. Taking a weighted
average over all points at each of our four lattice spacing, we obtain

(ZωA/Z
s
A) (β = 3.4) = −0.036(13), (ZωA/Z

s
A) (β = 3.46) = −0.065(14),

(ZωA/Z
s
A) (β = 3.55) = −0.043(16), (ZωA/Z

s
A) (β = 3.7) = −0.10(18). (6.31)

Using these values (andZω = 1), we evaluate eq. (6.29) with the anomalous matrix elements com-
puted at the gradient flow time t ≈ t∗0 on the individual ensembles. We compare our results on
every ensemble with the fermionic determination of sec. 6.2 in the scatter plot fig. 6.6. Our glu-
onic results agree qualitatively with the fermionic determination. The mixing with the axialvector
current is non-negligible, i.e. ZωA 6= 0. Had we ignored this mixing, the gluonic determinations
would have undershot the fermionic ones by roughly 30 % both for the η and the η′. We stress
that agreement can only be expected in the continuum limit since both definitions are subject to
different discretization effects. We have observed considerable lattice spacing effects both for the
topological susceptibility in sec. 6.4 and the singlet pseudoscalar matrix elements in sec. 6.2. The
qualitative agreement suggests that some of the discretization effects may be similar for both defi-
nitions.

6.6 Pseudoscalar gluonic and fermionic matrix elements
We determined the anomaly matrix elements aη and aη′ in sec. 6.2 from a fit to combinations of
axialvector and pseudoscalar matrix elements, eq. (6.11). The fit is performed for data at the QCD
renormalization scaleµ = ∞, andwecarry out the conversion to lower scales, using the fact that the
combinationsmfH

f
n are scale independent. We first determine these combinations by plugging
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aη aη′

µ = 1GeV 0.01720 (4069)stat (48)syst (67)t0 GeV3 0.0424 (1917)stat (80)syst (19)t0 GeV3

µ = 2GeV 0.01700 (4069)stat (48)syst (66)t0 GeV3 0.0381 (1817)stat (80)syst (17)t0 GeV3

µ = 10GeV 0.01688 (4069)stat (48)syst (66)t0 GeV3 0.0356 (1817)stat (80)syst (17)t0 GeV3

µ = ∞ 0.01676 (4067)stat (48)syst (65)t0 GeV3 0.0330 (1817)stat (80)syst (16)t0 GeV3

θy a2η′/a
2
η

µ = 1GeV −22.1 (35)stat (2.8)
◦
syst 6.09 (2753)stat (2.05)syst

µ = 2GeV −24.0 ( 4
1.0)stat (3.2)

◦
syst 5.03 (1945)stat (1.94)syst

µ = 10GeV −25.3 ( 4
1.1)stat (3.6)

◦
syst 4.46 (1641)stat (1.86)syst

µ = ∞ −26.9 ( 4
1.2)stat (4.1)

◦
syst 3.88 (1438)stat (1.78)syst

Table 6.1: Gluonic matrix elements of the η and η′ and combinations thereof at various scales.
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our physical point results on the masses, decay constants and the gluonic matrix elements into the
AWIs in the flavour basis, eq. (6.5). Following this, we reconstruct aη(′) at different scales using the
known running of the singlet axialvector current. WithNf = 3 active quark flavours, at 2GeVwe
obtain:

aη(µ = 2GeV) = 0.01700 (4069)stat (48)syst (66)t0 GeV3, (6.32)

aη′(µ = 2GeV) = 0.0381 (1817)stat (80)syst (17)t0 GeV3. (6.33)

The systematic error is computed as the difference between our results from a directNLOfit to the
aη(′) data (see eq. (6.18)), that included lattice correction terms, and the continuumNLO large-Nc

ChPTprediction (see eq. (6.19)), based on the set of LECs that we obtained fromour simultaneous
fits to themasses and decay constants. We list our results at various scales in tab. 6.1 and compare to
literature values in tab. 6.2, where the scale is not specified. These analyses are based on, e.g., QCD
sum rule calculations [221, 222], large-Nc ChPT [184, 223] and related state mixing models that
include a pseudoscalar glueball [224, 225]. We find agreement with the references that give error
estimates, with the exception of [223].

Combining our physical point results on aη(′) , the η(′) masses and their decay constants with
eq. (6.5) gives the following predictions

m`H
`
η = 0.0021 (32)stat (13)syst(0)t0 GeV

3,

msH
s
η = −0.0173 (32)stat (17)syst(7)t0 GeV

3,

m`H
`
η′ = 0.0045 (108 )stat (40)syst(0)t0 GeV

3,

msH
s
η′ = 0.0309 (155 )stat (50)syst(10)t0 GeV

3 (6.34)

for the pseudoscalar fermionic matrix elements, where again the systematic error is the difference
with respect to theNLOChPT predictions eqs. (F.5)–(F.8), obtained using our set of LECs. Since
the values of the above combinations are smaller in the light quark sector than for strange quarks,
and the absolute error on aη(′) is the major contribution to their uncertainty, the relative precision
that we can achieve is limited for the light quark combinations. Note that this is a statement about
the physical mass continuum limit; on individual ensembles also the light quark matrix elements
can be quite precise. While there is some tension for the combinationmsH

s
η , most of our results

agree with the estimate in the FKS approximation, where the pseudoscalar matrix element is taken
in the SU(2) isospin limit,

Feldmann [183]: m`H
`
η = 0.0010GeV3, msH

s
η = −0.026GeV3,

m`H
`
η′ = 0.0008GeV3, msH

s
η′ = 0.032GeV3, (6.35)

and the very similar numbers of a QCD sum rule calculation,

Singh [222]: m`H
`
η = 0.00105(14)GeV3, msH

s
η = −0.0284(55)GeV3,

m`H
`
η′ = 0.000782(250)GeV3, msH

s
η′ = 0.0379(71)GeV3. (6.36)

We again emphasize that the above combinations are renormalization group invariants.
It is particularly interesting to inspect the ratio of the gluonic matrix elements that can be used

to define a mixing angle in the gluonic sector [184],

θy(µ = 2GeV) = − arctan
(
aη(2GeV)
aη′(2GeV)

)
= −24.0 ( 4

1.0)stat (3.2)
◦
syst . (6.37)
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ref aη/GeV3 aη′/GeV3

Novikov et al. [221]

0.00 0.01 0.02 0.03

0.021

0.00 0.02 0.04 0.06 0.08

0.035
Feldmann [184] 0.023 0.058
Beneke and Neubert [223] 0.022(2) 0.057(2)
Cheng et al. [224] 0.026(28) 0.054(57)
Singh [222] 0.0220(50) 0.037(10)
Qin et al. [225] 0.016 0.051
Ding et al. [193] 0.024 0.051

this work at µ = 1GeV 0.0172(10) 0.0424(84)
this work at µ = 2GeV 0.0170(10) 0.0381(84)
this work at µ = ∞ 0.0168(10) 0.0330(83)

Table 6.2: Literature values for the anomalymatrix elements in comparisonwith our results at various
scales. Note that the error bars of [224] are cut off at both ends.

The squared ratio (aη′/aη)2 = (cot θy)2 is closely related to the ratio of decay widths of J/ψ →
η(′)γ when assuming that the anomaly dominates [221, 226],

R(J/ψ) =
Γ[J/ψ → η′γ]

Γ[J/ψ → ηγ]
=
a2η′

a2η

(
kη′

kη

)3

, (6.38)

where kM = 1
2

M2
J/ψ

−M2
M

2MJ/ψ
is themomentumof themesonM in the rest frame of theJ/ψ. Using

the experimental masses of [19], we obtain (kη′/kη)3 ≈ 0.8137. Our result for the ratio a2η′/a
2
η ,

listed in tab. 6.1, gives at µ = 2GeV

R(J/ψ, µ = 2GeV) = 5.03 (1945)stat (1.94)syst . (6.39)

Note that aη′ depends strongly on the scale, see. tab. 6.1, and the most relevant scale for this de-
cay is probably below 2GeV, which would somewhat increase the prediction. The most recent
PDG averages for the partial widths Γ(J/ψ → ηγ)/Γtotal = 1.108(27) · 10−3 and Γ(J/ψ →
η′γ)/Γtotal = 5.25(7) · 10−3 result in

PDG [19]: R(J/ψ) = 4.74(13), (6.40)

which is very close to our value withNf = 3 at µ = 2GeV. Clearly, a more precise comparison
should takeO(αs) corrections into account.
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7 Conclusions

In this thesis we determined important properties of the η and η′mesons, in particular theirmasses,
decay constants and anomalous matrix elements. The latter two determinations are the first from
lattice QCD and also the first without making model assumptions. This demonstrates the unique
position of lattice QCD as the principal tool to study the deeply non-perturbative regime ofQCD,
dynamically reproducing aspects such as the axial anomaly that gives the η′ a large fraction of its
mass. In our calculation the total precision that was achieved for all these observables is in many
cases higher than in previous— lattice and phenomenological — studies.

The reason for this is two-fold: First, we applied efficient noise reduction techniques and de-
veloped improved analysis methods that rely on fitting the data simultaneously, fully taking into
account the correlations and the different noise levels of the entries of the matrix of correlation
functions. A new matrix generalization of the effective mass method improves the stability of the
fits.

Second, we take advantage of a large subset of the plethora of CLS ensembles that were gen-
erated during the course of this thesis and for which we set the relative scale in sec. 3.4. These
ensembles employNf = 2 + 1 flavours of non-perturbatively Sheikholeslami-Wohlert improved
Wilson fermions and are generated with a tree-level improved gauge action. The four lattice spac-
ings analysed here cover the range 0.050 fm . a . 0.086fm. Quark masses are tuned to follow
two distinct mass trajectories that start atMπ ≈ 422MeV and both lead to the physical point.
Five of the analysed ensembles are at particularly small pion massesMπ < 250MeV of which one
is very close to the physical mass point.

These features put us in a position to reduce and reliably quantify systematic errors: The ef-
fect of the finite lattice spacing can be extrapolated away including known linear improvement co-
efficients and parametrizing unknown and higher order effects in a simultaneous fit to the decay
constants and masses employing four different lattice spacings. By varying the parametrizations of
these, the uncertainty related to the discretization could be estimated with good confidence.

The chiral extrapolation, connecting the ensembles at unphysical quark masses to the physical
point, employs next-to-leading order large-Nc ChPT parametrizations that allow us to combine
the two η and η′ masses and four decay constants along both mass trajectories in a single simulta-
neous fit that in the continuum is parametrized by just six low energy constants. This fit is tightly
constrained, and the precision of the inherently noisy mass of the η′, for example, benefits from
this global fit approach. The deviations from this fit— the value ofχ2/Ndf — indicate only slight
truncation effects of the continuum parametrization and we quantified the systematic error associ-
ated to this by successively removing points at large average quarkmasses. This reduces theχ2/Ndf;
however, central values have changed only slightly, and the partial inclusion of NNLO contribu-
tions did not improve the fit.

The immediate result of the fits is a set of the six low energy constants of large-NcChPT,F ,L5,
L8,M0, Λ1 and Λ2. We list their values in eq. (5.38) and discuss them in more detail in sec. 5.5.3.
For some of these only very rough estimates existed previously, and for the first time the QCD
renormalization scale dependence ofΛ1,Λ2 andM0 could be taken into account. This allowed us
to testmodel assumptions as that of the FKS schemewhich could be verified to hold at low energies.
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These fit results for the low energy constants in the continuum yield our physical point values
for the masses,

Mη = 554.7(9.2)MeV and Mη′ = 930(21)MeV, (7.1)

where the errors were added in quadrature. These values determined withNf = 2 + 1 flavours
are in agreement with experiment within about one standard error and in line with previous lattice
results that have larger uncertainties, see sec. 5.5.1 and fig. 5.3.

Our results for the octet/singlet basis decay constants in the MS scheme at µ = 2GeV and in
the angle representation read

F 8 = 115.0(2.8)MeV, θ8 = −25.8(2.3)◦,

F 0(µ = 2GeV) = 100.1(3.0)MeV, θ0 = −8.1(1.8)◦. (7.2)

The same results in various other representations are given in tab. E.2. These are the first deter-
minations of these couplings directly from the axialvector matrix elements and without resorting
to model assumptions. Using a modified renormalization scheme we take the scale dependence of
the singlet axialvector current in the MS scheme fully into account and can compare to previous
phenomenological determinations that had to assume a scale to connect to physical processes, see
sec. 5.5.2. These results are important input for further theory predictions and future experiments
like Belle II [26, 27] and we demonstrated their use in the calculation of the transition form factor
γγ∗ → η(′) in sec. 5.5.4.

Finally, in ch. 6 we computed the anomalous matrix elements that contribute to the singlet
axial Ward identity from first principles,

aη(µ = 2GeV) = 0.0170(10)GeV3 and aη′(µ = 2GeV) = 0.0381(84)GeV3, (7.3)

where the gluonic mixing angle is given by

θy(µ = 2GeV) = − arctan
(
aη
aη′

)
= −24.0(3.3)◦. (7.4)

At the scale µ = 2GeV the latter is in good agreement with the octet angle, see eq. (7.2), again
confirming the validity of the FKS state mixing model [183, 196]. The matrix elements aη(′) are the
main couplings parametrizing the anomalous strong decayJ/ψ → η(′) andwe see agreementwith
experimental decay rates, see sec. 6.6.

Our determinations of the masses and decay constants benefit from the comparably simple
parametrization by NLO ChPT, however, some tension with the data is indicated by the χ2/Ndf
of the fits that reduces when removing heavy points for which truncation errors may be significant.
Also, the prediction of the anomalous matrix elements using the LECs from the fit to masses and
decay constants gives results that are numerically relatively close to the fit to the gluonic matrix
elements themselves, but disagree given their errors. Both these observations are indications that
higher orders inChPTmay have to be included. AddingNNLOmesonic loop terms did, however,
not improve the situation and a full NNLO fit would introduce many more LECs that with the
currently available data we are unable to fix. The inclusion of decay constants and masses of the
full meson-nonet may help in that respect and provide enough information to determine all LECs
of NNLO large-Nc ChPT. Also, more points along the ms = m` line may help to pin down
some parameters — and in particular those that exclusively appear in the singlet channels —more
reliably since there the singlet and the octet channels decouple. Naturally, the inclusion of even
more ensembles at the other trajectories and at smaller lattice spacings and light quarkmasseswould
also be beneficial in that respect. Given the good precision already at NLO that we observe, this
may provide important input to existingNNLO large-Nc calculations [181, 182, 194, 227] to enable
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predictions with high precision.
For some of our results, the overall scale uncertainty amounts for a large fraction of the total

error. This uncertainty will likely reduce in the future when new determinations of tph0 in physical
units become available. In case of the determined values for themasses, eq. (7.1), itwill be interesting
to see if the central values move closer to the η (when the value of tph0 is reduced) or closer to the η′.
In both cases the disagreement with one of the results will likely increase. We simulateNf = 2+1
QCD and while electromagnetic contributions presumably do not play a role for the neutral η
and η′, it is possible that the inclusion of a charm quark and isospin breaking effects may become
significant. The contribution of the charm quark has been shown to be small [50] but in the future
this may need to be reassessed in view of the reduced errors.
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A Conventions

Here we briefly lay out the conventions that we use throughout the text. In general repeated in-
dices are summed over. Greek letters usually label space-time indices, roman letters a, b, c, . . . are
used for colour (both in fundamental and adjoint representation) and i, j, k, . . . are used for more
general, ordinal (multi-) indices.

A.1 Natural units
As usual in this field of physics, natural units are used, i.e., we set the speed of light and the reduced
Planck constant to one,

c =h̄ = 1. (A.1)

We can relate energies and lengths by

ch̄ = 197.3MeV fm = 1. (A.2)

A.2 Dirac gammamatrices
We use the following four dimensional chiral basis in Euclidean time that is used in the software
packages QDP++ and chroma [228]:

γt =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γx =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 ,

γy =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γz =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 . (A.3)

These obey the usual anti-commutation relations in Euclidean time,

{γµ, γν} = 2δµν1. (A.4)

TheMinkowski metric can be recovered by multiplying the spatial matrices with−i = 1/i,

γx 7→ γMx = −iγx, γy 7→ γMy = −iγy, γz 7→ γMz = −iγz, (A.5)

which leads to
{γMµ , γMν } = 2gµν1, (A.6)
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where gµν is the metric tensor with signature (1,−1,−1,−1). The fifth matrix is defined as the
product of the other four,

γ5 = γxγyγzγt =

(
12 0
0 −12

)
. (A.7)

InMinkowski time the definition is slightly different, but leads to the same matrix

γM5 = iγtγ
M
x γMy γMz = γ5. (A.8)

With this, the chiral projectors of eq. (2.23) are given as

PL =
1

2
(1− γ5) =

(
0 0
0 12

)
, (A.9)

PR =
1

2
(1+ γ5) =

(
12 0
0 0

)
. (A.10)

A.3 Gell-Mannmatrices
We use the following set of hermitian, traceless 3× 3matrices that span the su(3) algebra,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (A.11)

These Gell-Mann matrices obey the commutation relation[
λa, λb

]
= 2ifabcλc, (A.12)

where the antisymmetric structure constants are given by

fabc = −1

4
i tr
(
λa[λb, λc]

)
. (A.13)

We typically use ta = λa/2 as generators of SU(3) so that the normalization is tr tatb = δab/2.
We also define t0 = 1/

√
6 to complete the set of generators for U(3).
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B Statistical analysis and fitting

On one ensemble ewe obtain a sequence of nmeasurements for a set of observables {y}i (correla-
tors, for example) for every configuration i separated inMonte-Carlo time,

e = (e0, en−1), ei = ({y}i, w`,i, ws,i) = ({y}i, wi), (B.1)

with associated light and strange reweighting factorsw`,i andws,i, respectively. The latter we com-
bine immediately to a joint reweighting factor for that configuration,wi = w`,iws,i. See sec. 2.2.4
for the origin of and the reason for the reweighting factors.

Averages of a particular observable y over a set of indices I can be computed by taking the
weighted mean,

〈y〉I =

∑
i∈I wiyi∑
i∈I wi

. (B.2)

We denote the mean over the full set [0, n− 1] of configurations as y = 〈y〉[0,n−1].
An estimate for the sample variance is given by

var(y) =
1

n− 1

n−1∑
i=0

(
wiyi∑n−1
j=0 wj

− y

)2

. (B.3)

B.1 Binning
Due to the Monte-Carlo process ei is not independent of ei−j for j > 0 and the naive error
underestimates the true error.

Therefore, we bin the data into nbin bins that each contains averages over∆bin = n/nbin of
the original measurements (the measurements may be truncated, if n is not divisible by nbin),

ei 7→

{〈y〉Bi} ,
∑
j∈Bi

wj

 , (B.4)

where Bi is the set of indices in the i-th bin, Bi = (i ·∆bin, . . . , (i+ 1) ·∆bin − 1).
With increasing values of ∆bin, the error increases and the variance of the binned data ap-

proaches var∆biny → 2τintvar0y, where τint is the integrated autocorrelation length, var0 is vari-
ance using the unbinned data, eq. (B.3) and var∆bin the same but after binning with binsize∆bin.
In this way∆bin is determined as the smallest value that gives the asymptotic value of the error. See
tab. 4.1 for the values of∆bin for the ensembles analysed in this thesis.

B.2 Resampling
To estimate errors of derived quantities correctly, we also resample the data into nboot bootstrap
samples. As a rule of thumb, typically nboot & 2n and it is useful (see below) if all ensembles
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employ the same number of bootstrap samples. Within our analysis, we use nboot = 500 after
binning.

We label the set of usually n random indices in sample i as Si. The elements are drawn uni-
formly from [0, n− 1]with replacement.

To compute central values, we also keep track of the means of the observables on the ensemble
and compute the individual samples in the usual way, see eq. (B.2),

e 7→ ({y} , {ẽi}) , ẽi =

{〈y〉Si} ,
∑
j∈Si

wj

 =: ({ỹ}i, w̃i), (B.5)

where typically but not necessarily resampling is performed on the binned ensembles. We stress
that each of these samples is assigned a new reweighting factor to account for the unequal sum
of reweighting factors within each sample. Note, however, that var w̃i ≤ varwi and for typical
ensemble sizes n � 1, var w̃i � varwi. This is not the case for eq. (B.4) where∆bin = O(10).
For resampling, however, the reweighting has mostly been absorbed into the bootstrap samples
and the effect of further reweighting of the samples is in practice negligible. In the following we
therefore set w̃i =

∑
j∈Si = 1 to combine results from several ensembles. In any case the effect of

the reweighting of these bootstrap samples will only affect the errors but not the central values, see
below.

B.2.1 Combining results

Wecan compute secondary observables by combining existing results on themean and each sample,

{y′} = φ({y}), {y′} = φ({ỹ}i), (B.6)

where φ is a suitable function, e.g., it may be a fitting function that determines masses and ampli-
tudes from correlators.

The bootstrap method allows us also to combine multiple ensembles using some other func-
tion ψ that takes the observables {y}e of ensemble e and {y}f determined on another ensemble
f , etc. as inputs and let’s us compute a new bootstrap data set g one-by-one,

g =
(
ψ({y}e, {y}f , . . .), {gi}

)
, gi = (ψ({y}ei , {y}

f
i , . . .)), (B.7)

where we have omitted the reweighting now with the above argument. The function ψ may, for
instance, be a fitting function that estimates joint parameters based on the ensembles e, f, . . ., and
it is applied to both the means of the ensembles to return the combined central value as well as to
the individual samples to facilitate the computation of the errors. Note that in general the mean
over the derived samples is not equal to the function applied to the means, ψ({y}e, {y}f , . . .) 6=
ψ({y}ei , {y}

f
i , . . .), but both are estimators for the expectation value, and working on the central

values has the advantage of increased stability and being a better estimator, whereas for the errors
the bootstrap method is used.

B.2.2 Determination of errors

Error estimates can be computed using eq. (B.3), σ(y) =
√var y. Assuming a Gaussian distri-

bution of the samples, these estimate the central 1-σ confidence band, i.e., 68.3 % of all values are
expected to lie within a distance of one σ to the mean.

In this thesis we usually give asymmetric confidence intervals, and we compute them in the
following way: We sort the bootstrap samples by the magnitude of the observable y we are inter-
ested in. We then determine the index corresponding to the lower confidence bound as ilow =
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floor(0.1587 · nboot + 0.5); the upper is defined as iup = floor(0.8413 · nboot + 0.5), where
the numerical constants correspond to the cumulative distribution function of a Gaussian normal
distribution at 1σ below and above the mean, respectively, i.e., 15.87 % of all points lie outside of
below and above the confidence band, each. We quote central values and their asymmetric errors
as

y
(
yiup−y

y−yilow

)
, (B.8)

i.e, we do not give a negative sign for the lower bound. Note that yiup − yilow ≈ 2σ(y).

B.3 Fitting multi-variate functions with correlations
Wefitbyminimizing thequadratic differences of a fit functionφ({x}|{θ}) that depends onn argu-
ments {x} = [x0, . . . , xn−1] that are given by our data andm parameters {θ} = [θ0, . . . , θm−1]
that we wish to determine from our available data y({x}). As an illustrative example, we may con-
sider a simple correlatorC(t) that we fit in terms of an amplitude and an energy, {θ} = {A,E}:
f(t|A,E) = A exp(−Et) to a simple correlator y(t).

The solution is given by the minimum of

{θ} = argminθχ
2 = argminθ

∑
{x}

(y({x})− φ({x}|{θ}))2

var( y({x}))
, (B.9)

and we find this minimum numerically using Minuit [229]. We call this a simple uncorrelated fit,
and its validity can be evaluated by computingχ2/Ndf at the optimal values of θ and the number of
degrees of freedom is the difference of the number of data points and the number of parameters that
are fitted,Ndf = |{y}| − |{θ}|. For uncorrelated data we expect χ2/Ndf ≈ 1. For simultaneous
fits to a set of functions that share some of the parameters we simply sum the corresponding χ2

functions within the minimization.
To impose priors on the fit parameters, we add penalty terms similar to eq. (5.37) to the χ2

function that increase the value of χ2 when the parameters move away from their priors.
In practice, there are several problems with this simple approach:

• The data itself may be correlated, both within a data set and across simultaneous fits, i.e.,
y({x}) is not independent of y({x′}) and cov {y} 6= diag(var {y}).

• Often the arguments themselves may be inflicted with errors, var {x} 6= 0.

• Furthermore, if there is more than one argument, then the arguments are usually even cor-
related, cov({x}) 6= 0. This is of practical relevance in our case, since we extrapolate in a
plane of quarkmasses that is parametrized by twomasses, e.g., the average and the difference
of non-singlet pseudoscalarmesonmasses, cf. eq. (3.2), and both are determined on the same
configurations.

We address the first problem by replacing the uncorrelated χ2 function with

χ2 = δᵀcov−1{y}δ, (B.10)

where cov({y}) is the estimated sample covariance matrix among all appearing data in the same
ordering as the difference vector δ = y({x}) − φ({x}|{θ}). If simultaneous fits are performed
and the individual fits are uncorrelated (e.g., because they are determined on independent ensem-
bles), then the corresponding blocks in the covariance matrix can be set to zero, and we refer to this
situation as blockdiagonal fitting.
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The remaining two issues can be addressed by a variant of Orear’s method [230], taking the
additional uncertainties into account,

χ2 = δᵀ
[
cov({y}) +

(
∂φ

∂x

)
cov {x}

(
∂φ

∂x

)ᵀ]−1

δ, (B.11)

where the derivative terms are understood as a matrix where the derivative of the functions with
respect to the arguments is in the columns for each argument,[(

∂φ

∂x

)
cov {x}

(
∂φ

∂x

)ᵀ]
ij

=
∑
ab

∂φi
∂xa

∂φj
∂xb

cov(xa, xb). (B.12)

This is computationally more expensive since now also the denominator of the function depends
on the parameters {θ} and needs to be reevaluated in every iteration of the optimization. The case
cov {x} = diag (var {x}) is included as a special case.
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C Continuum limit fit parameters

The parametrizations of lattice artefacts within our simultaneous fits to the masses and decay con-
stants are defined in sec. 5.2. In sec. 5.3 we explain how 17 different parametrizations were selected.
These are enumerated and defined in tab. 5.1. The six continuum limit fit parameters (LECs) for
each of these fits are given in tab. 5.2. Here, in tab. C.1 we list the results for the unknownO(a) im-
provement coefficients within eqs. (5.29) and (5.30). Their parametrizations are given in eq. (5.31).
In tabs. C.2 and C.3 we list the O(a2) coefficients, defined in eq. (5.32) for both octet and both
singlet decay constants, respectively.

id χ2/Ndf dlA d̃lA δclA f lA

1 1.75 — — — —
2 1.63 1.2 ( 7

1.0) −0.33 (7754) 0.047 (4631) −0.511 (24199 )
3 1.64 1.68 (2294) −0.65 ( 45

1.25) — −0.498 (48368 )
4 1.64 1.30 (2957) — — −0.456 (21778 )
5 1.52 1.58 (1660) — — −0.833 (36660 )
6 1.58 1.49 (1556) — — −0.714 (39748 )
7 1.47 1.84 (2751) — — −0.689 (22963 )
8 1.56 1.66 (4052) — — −0.429 (20287 )
9 1.49 1.66 (1757) — — −0.782 (33635 )
10 1.63 0.82 (3052) — — −0.500 (23995 )
11 1.65 1.11 (3057) — — −0.478 (25989 )
12 1.64 1.13 (3749) — — −0.452 (22781 )
13 1.47 1.72 (3257) — — −0.696 (20860 )
14 1.48 1.76 (2757) — — −0.702 (22051 )
15 1.47 1.67 (1657) — — −0.734 (24243 )
16 1.48 1.88 (2555) — — −0.698 (22345 )
17 1.46 1.62 (1952) — — −0.728 (22447 )

TableC.1: Fit results for the unknownO(a) improvement coefficients, see eqs. (5.29), (5.30) and (5.31).
The fit ids are defined in tab. 5.1.
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id χ2/Ndf lF8
η

mF8
η

nF8
η

lF8
η′

mF8
η′

nF8
η′

1 1.75 — — — — — —
2 1.63 — — — — — —
3 1.64 — — — — — —
4 1.64 — — — — — —
5 1.52 −0.051 (4937) — — −0.58 (2915) — —
6 1.58 — — — — −0.54 (5414) —
7 1.47 — — −0.029 (1717) — — −0.367 (9993)
8 1.56 −0.057 (3642) — −0.038 (2022) — — —
9 1.49 — — — −0.039 (557192) — −0.40 (1225)
10 1.63 — — — — — —
11 1.65 — — — — — —
12 1.64 — — — — — —
13 1.47 −0.047 (3243) — −0.015 (2019) — — −0.360 (10095 )
14 1.48 −0.046 (3344) — −0.015 (2121) — — −0.363 (10898 )
15 1.47 −0.059 (2837) — — — — −0.382 (11090 )
16 1.48 — — −0.028 (1617) — — −0.371 (10482 )
17 1.46 −0.061 (2433) — — — — −0.379 (9896)

Table C.2: Fit parameters, accompanying quadratic lattice effects for the octet decay constants, see
eq. (5.32). The fit ids are defined in tab. 5.1.

id χ2/Ndf lF0
η

mF0
η

nF0
η

lF0
η′

mF0
η′

nF0
η′

1 1.75 — — — — — —
2 1.63 — — — — — —
3 1.64 — — — — — —
4 1.64 — — — — — —
5 1.52 — — — — — —
6 1.58 — — — — — —
7 1.47 — — — — — —
8 1.56 — — — — — —
9 1.49 — — — — — —
10 1.63 0.062 (1.304983 ) 0.90 (1.111.12) — — — —
11 1.65 — — 0.25 (2625) — −0.14 (1812) 0.065 (4452)
12 1.64 — — — −0.106 (10641 ) — —
13 1.47 — — — — — —
14 1.48 — — — — — 0.0085 (219355)
15 1.47 — — — — — 0.011 (2137)
16 1.48 — — — — — 0.013 (2136)
17 1.46 — — — — — —

Table C.3: Fit parameters, accompanying quadratic lattice effects for the singlet decay constants, see
eq. (5.32). The fit ids are defined in tab. 5.1.
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D NNLO loopcorrections: parametrizationand
fit results

Unlike in SU(3) ChPT, in large-Nc U(3) ChPT meson loops only enter at NNLO in the power
counting because formally these contributions are ofO(δ2). Therefore, the expressions in sec. 5.1.2
donot contain chiral logarithmsor adependenceon theEFTrenormalization scaleµEFT. Wedefine
the loop functions

A0(M
2) = −M2 log

(
M2

µ2EFT

)
. (D.1)

The octet and singlet decay constants of eqs. (5.24)–(5.27) receive the additional contributions [181,
182]

F 8
η
NLO+loops

= F 8
η
NLO

+
3

32π2F
cos(θ)A0(M

2
K), (D.2)

F 8
η′
NLO+loops

= F 8
η′
NLO

+
3

32π2F
sin(θ)A0(M

2
K), (D.3)

F 0
η
NLO+loops

= F 0
η
NLO − 1

32π2F
sin(θ)A0(M

2
π), (D.4)

F 0
η′
NLO+loops

= F 0
η′
NLO

+
1

32π2F
cos(θ)A0(M

2
π). (D.5)

Moreover, the quark mass dependence of the mass mixing angle θ, defined in eq. (5.8), changes as
the entries of the square mass matrix eq. (5.3) also receive additional contributions. Specifically, we
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have to add to eqs. (5.21)–(5.23) [181]:1

(µ
NLO+loops
8 )2 = (µNLO

8 )2 +
1

48π2F 2

[(
3

2
M

2 − 1

2
δM2

)
A0(M

2
π)

−
(
4M

2
+

2

3
δM2

)
A0(M

2
K)

+

(
5

4
M

2
+

7

12
δM2

)(
A0(M̃

2
η ) +A0(M̃

2
η′)
)

+
2
√
2 sin(2θLO) + cos(2θLO)

4

(
M

2
+ δM2

)(
A0(M̃

2
η )−A0(M̃

2
η′)
)]

,

(D.6)

(µ
NLO+loops
0 )2 = (µNLO

0 )2 +
1

48π2F 2

[(
3M

2 − δM2
)
A0(M

2
π)

+

(
4M

2
+

2

3
δM2

)
A0(M

2
K)

+

(
M

2
+

1

6
δM2

)(
A0(M̃

2
η ) +A0(M̃

2
η′)
)

+
2
√
2 sin(2θLO) + cos(2θLO)

6
δM2

(
A0(M̃

2
η )−A0(M̃

2
η′)
)]

, (D.7)

(µ
NLO+loops
80 )2 =(µNLO

80 )2 +

√
2

48π2F 2

[(
3

2
M

2 − 1

2
δM2

)
A0(M

2
π)

−
(
M

2
+

1

6
δM2

)
A0(M

2
K)

−
(
1

4
M

2
+

5

12
δM2

)(
A0(M̃

2
η ) +A0(M̃

2
η′)
)

− 2
√
2 sin(2θLO) + cos(2θLO)

4

(
M

2
+

1

3
δM2

)(
A0(M̃

2
η )−A0(M̃

2
η′)
)]

.

(D.8)

θLO corresponds to themassmixing angle eq. (5.8), evaluated at LO, eqs. (5.17)–(5.19). M̃η and M̃η′

denote the η and η′ masses, computed at LO via eqs. (5.9)–(5.11) and (5.17)–(5.19).
1Note that there are misprints within the normalizations of eqs. (C11)–(C13) in [181].
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Carrying out the analysis of our masses and decay constants, including the NNLO loops, we
obtain for the LECs at µEFT = 0.770GeV in theNf = 3MS scheme at µ = ∞:

L5 = 1.97 (1611)stat (
0
19)a (

0
23)χ × 10−3,

L8 = 0.848 (126109)stat (
0

124)a (
0

113)χ × 10−3,

M0 = 1.78 (35)stat (
2
2)a (

0
0)χ (

1
1)renorm (8tχ0 )

−1/2

= 837 (1323)stat (
11
11)syst (12)t0 MeV,

F = 0.1680 (3866)stat (
69
0 )a (

39
0 )χ (

4
1)renorm (8tχ0 )

−1/2

= 78.97 (1.783.10)stat (
3.71
17 )syst (1.18)t0 MeV,

Λ1 = −0.10 (24)stat (
5
4)a (

0
2)χ (

4
2)renorm ,

Λ̃ = −1.0 (23)stat (
4
0)a (

2
0)χ (

0
1)renorm ,

Λ2 = 0.45 (1612)stat (
1
19)a (

0
12)χ (

6
3)renorm (D.9)

with χ2/Ndf ≈ 312/122 ≈ 2.56. Note that onlyM0,Λ1 andΛ2 depend on the QCD scale µ.
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E Continuum limit results for decay constants
in various representations

We list the four decay constants, in units of (8tph0 )−1/2 and inMeV. In tab. E.1 we collect the results
of our simultaneous fits to the masses and decay constants, including the statistical and systematic
errors, while in tab. E.2 the corresponding results are shown, using the experimental masses of the
η and the η′ mesons as an additional input (priors).

In each table we list the decay constants in both the octet/singlet and the light/strange flavour
bases. The conversion is given in eq. (2.103). In addition, we give the parameters of the correspond-
ing two-angle representations eqs. (2.100) and (2.102). All these results are given at four distinct
renormalization scales: µ = 1GeV, µ = 2GeV, µ = 10GeV and µ = ∞, where all the values
refer to the MS scheme for Nf = 3 active flavours. Only the octet decay constants F 8

η , F 8
η′ and

F 8 as well as the angles θ8 and θ0 are scale independent. We remark that in the latter case the scale
dependence cancels since tan(θ0) = −F 0

η /F
0
η′ .

Table E.1: Decay constants in various representations and at several renormalization scales.

octet/singlet basis, state representation
F 8
η 0.2219

(
18
37

)
stat

(
17
24

)
a

(
10
2

)
χ
(8t

ph
0 )−1/2 105.4

(
9
1.8

)
stat

(
9
1.1

)
syst (1.3)t0 MeV

F 8
η′ −0.0939

(
28
100

)
stat

(
84
0

)
a

(
58
82

)
χ
(8t

ph
0 )−1/2 −44.6

(
1.3
4.8

)
stat

(
4.9
3.9

)
syst (6)t0 MeV

F 0
η µ = ∞ 0.0224

(
53
30

)
stat

(
28
0

)
a

(
5
21

)
χ

(
20
8

)
renorm (8t

ph
0 )−1/2 10.6

(
2.5
1.4

)
stat

(
1.4
1.4

)
syst (1)t0 MeV

1GeV 0.0255
(
60
35

)
stat

(
32
0

)
a

(
5
24

)
χ

(
23
9

)
renorm (8t

ph
0 )−1/2 12.1

(
2.9
1.6

)
stat

(
1.6
1.6

)
syst (2)t0 MeV

2GeV 0.0241
(
57
33

)
stat

(
30
0

)
a

(
5
23

)
χ

(
22
9

)
renorm (8t

ph
0 )−1/2 11.4

(
2.7
1.5

)
stat

(
1.5
1.5

)
syst (1)t0 MeV

10GeV 0.0233
(
55
32

)
stat

(
29
0

)
a

(
5
22

)
χ

(
21
8

)
renorm (8t

ph
0 )−1/2 11.1

(
2.6
1.5

)
stat

(
1.5
1.5

)
syst (1)t0 MeV

F 0
η′ µ = ∞ 0.1974

(
14
48

)
stat

(
0
31

)
a

(
4
27

)
χ

(
52
26

)
renorm (8t

ph
0 )−1/2 93.77

(
67
2.29

)
stat

(
1.24
3.18

)
syst (1.18)t0 MeV

1GeV 0.2247
(
16
55

)
stat

(
0
36

)
a

(
5
31

)
χ

(
60
29

)
renorm (8t

ph
0 )−1/2 106.7

(
8
2.6

)
stat

(
1.4
3.6

)
syst (1.3)t0 MeV

2GeV 0.2122
(
15
52

)
stat

(
0
34

)
a

(
5
29

)
χ

(
56
28

)
renorm (8t

ph
0 )−1/2 100.8

(
7
2.5

)
stat

(
1.3
3.4

)
syst (1.3)t0 MeV

10GeV 0.2051
(
15
50

)
stat

(
0
33

)
a

(
5
28

)
χ

(
54
27

)
renorm (8t

ph
0 )−1/2 97.41

(
69
2.38

)
stat

(
1.29
3.30

)
syst (1.23)t0 MeV

octet/singlet basis, angle representation
F 8 0.2410

(
23
16

)
stat

(
11
50

)
a

(
38
12

)
χ
(8t

ph
0 )−1/2 114.5

(
1.1
8

)
stat

(
1.9
2.5

)
syst (1.4)t0 MeV

θ8 −0.400
(
9
45

)
stat

(
30
0

)
a

(
24
30

)
χ

−22.9
(

5
2.6

)
stat

(
2.2
1.7

)◦
syst

F 0 µ = ∞ 0.1987
(
12
42

)
stat

(
0
31

)
a

(
2
29

)
χ

(
54
27

)
renorm (8t

ph
0 )−1/2 94.37

(
57
2.01

)
stat

(
1.26
3.26

)
syst (1.19)t0 MeV

1GeV 0.2262
(
14
48

)
stat

(
0
35

)
a

(
2
33

)
χ

(
62
30

)
renorm (8t

ph
0 )−1/2 107.4

(
6
2.3

)
stat

(
1.4
3.7

)
syst (1.4)t0 MeV

2GeV 0.2136
(
13
46

)
stat

(
0
33

)
a

(
2
31

)
χ

(
58
29

)
renorm (8t

ph
0 )−1/2 101.5

(
6
2.2

)
stat

(
1.4
3.5

)
syst (1.3)t0 MeV

10GeV 0.2064
(
12
44

)
stat

(
0
32

)
a

(
2
30

)
χ

(
56
28

)
renorm (8t

ph
0 )−1/2 98.04

(
59
2.09

)
stat

(
1.31
3.39

)
syst (1.24)t0 MeV

θ0 −0.113
(
15
29

)
stat

(
0
15

)
a

(
11
3

)
χ

−6.5
(

9
1.7

)
stat

(
6
9

)◦
syst

Continued on next page
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Table E.1 (continued): Decay constants at various scales.

light/strange basis, state representation
F `η µ = ∞ 0.1464

(
27
21

)
stat

(
23
2

)
a

(
3
14

)
χ

(
17
7

)
renorm (8t

ph
0 )−1/2 69.56

(
1.28
1.01

)
stat

(
1.13
1.05

)
syst (88)t0 MeV

1GeV 0.1490
(
34
23

)
stat

(
25
2

)
a

(
3
17

)
χ

(
19
8

)
renorm (8t

ph
0 )−1/2 70.76

(
1.60
1.10

)
stat

(
1.24
1.21

)
syst (89)t0 MeV

2GeV 0.1478
(
31
23

)
stat

(
24
2

)
a

(
3
16

)
χ

(
18
7

)
renorm (8t

ph
0 )−1/2 70.21

(
1.46
1.10

)
stat

(
1.19
1.13

)
syst (89)t0 MeV

10GeV 0.1471
(
29
22

)
stat

(
23
2

)
a

(
3
15

)
χ

(
17
7

)
renorm (8t

ph
0 )−1/2 69.89

(
1.37
1.05

)
stat

(
1.16
1.09

)
syst (88)t0 MeV

F `
η′ µ = ∞ 0.1070

(
24
88

)
stat

(
26
3

)
a

(
11
44

)
χ

(
37
20

)
renorm (8t

ph
0 )−1/2 50.82

(
1.16
4.18

)
stat

(
1.65
2.75

)
syst (64)t0 MeV

1GeV 0.1293
(
24
92

)
stat

(
23
5

)
a

(
8
43

)
χ

(
43
22

)
renorm (8t

ph
0 )−1/2 61.41

(
1.15
4.36

)
stat

(
1.59
2.93

)
syst (78)t0 MeV

2GeV 0.1191
(
24
89

)
stat

(
25
4

)
a

(
10
44

)
χ

(
41
21

)
renorm (8t

ph
0 )−1/2 56.57

(
1.16
4.23

)
stat

(
1.62
2.84

)
syst (71)t0 MeV

10GeV 0.1132
(
24
88

)
stat

(
26
4

)
a

(
10
44

)
χ

(
39
20

)
renorm (8t

ph
0 )−1/2 53.79

(
1.16
4.16

)
stat

(
1.64
2.80

)
syst (68)t0 MeV

F sη µ = ∞ (−0.1683
(
59
30

)
stat

(
36
5

)
a

(
4
19

)
χ

(
12
4

)
renorm 8t

ph
0 )−1/2 −79.93

(
2.78
1.43

)
stat

(
1.72
1.09

)
syst (1.01)t0 MeV

1GeV −0.1665
(
63
32

)
stat

(
38
4

)
a

(
5
20

)
χ

(
13
5

)
renorm (8t

ph
0 )−1/2 −79.08

(
3.01
1.50

)
stat

(
1.83
1.17

)
syst (100)t0 MeV

2GeV −0.1673
(
61
31

)
stat

(
37
5

)
a

(
5
20

)
χ

(
13
5

)
renorm (8t

ph
0 )−1/2 −79.46

(
2.91
1.47

)
stat

(
1.78
1.13

)
syst (1.00)t0 MeV

10GeV −0.1678
(
60
30

)
stat

(
36
5

)
a

(
4
19

)
χ

(
12
4

)
renorm (8t

ph
0 )−1/2 −79.69

(
2.85
1.45

)
stat

(
1.75
1.11

)
syst (1.01)t0 MeV

F s
η′ µ = ∞ 0.1906

(
71
31

)
stat

(
0
75

)
a

(
70
63

)
χ

(
38
17

)
renorm (8t

ph
0 )−1/2 90.55

(
3.37
1.48

)
stat

(
3.41
5.00

)
syst (1.14)t0 MeV

1GeV 0.2064
(
68
32

)
stat

(
0
77

)
a

(
70
65

)
χ

(
42
19

)
renorm (8t

ph
0 )−1/2 98.04

(
3.21
1.53

)
stat

(
3.45
5.20

)
syst (1.24)t0 MeV

2GeV 0.1992
(
70
33

)
stat

(
0
76

)
a

(
70
64

)
χ

(
40
18

)
renorm (8t

ph
0 )−1/2 94.62

(
3.30
1.58

)
stat

(
3.43
5.11

)
syst (1.20)t0 MeV

10GeV 0.1951
(
70
33

)
stat

(
0
76

)
a

(
70
64

)
χ

(
39
18

)
renorm (8t

ph
0 )−1/2 92.65

(
3.34
1.55

)
stat

(
3.42
5.05

)
syst (1.17)t0 MeV

light/strange basis, angle representation
F ` µ = ∞ 0.1814

(
12
49

)
stat

(
25
1

)
a

(
0
37

)
χ

(
35
17

)
renorm (8t

ph
0 )−1/2 86.14

(
59
2.32

)
stat

(
1.45
2.45

)
syst (1.09)t0 MeV

1GeV 0.1972
(
12
56

)
stat

(
27
0

)
a

(
0
41

)
χ

(
43
21

)
renorm (8t

ph
0 )−1/2 93.69

(
59
2.67

)
stat

(
1.62
2.81

)
syst (1.18)t0 MeV

2GeV 0.1898
(
13
53

)
stat

(
27
1

)
a

(
0
39

)
χ

(
39
19

)
renorm (8t

ph
0 )−1/2 90.16

(
62
2.52

)
stat

(
1.55
2.65

)
syst (1.14)t0 MeV

10GeV 0.1857
(
13
51

)
stat

(
26
1

)
a

(
0
38

)
χ

(
37
18

)
renorm (8t

ph
0 )−1/2 88.20

(
61
2.42

)
stat

(
1.50
2.55

)
syst (1.11)t0 MeV

φ` µ = ∞ 0.631
(
12
44

)
stat

(
8
6

)
a

(
8
15

)
χ

(
11
6

)
renorm 36.2

(
7
2.5

)
stat

(
9
1.0

)◦
syst

1GeV 0.715
(
12
42

)
stat

(
5
6

)
a

(
7
11

)
χ

(
11
6

)
renorm 41.0

(
7
2.4

)
stat

(
8
8

)◦
syst

2GeV 0.678
(
12
43

)
stat

(
6
6

)
a

(
7
13

)
χ

(
11
6

)
renorm 38.8

(
7
2.5

)
stat

(
8
9

)◦
syst

10GeV 0.656
(
12
44

)
stat

(
7
6

)
a

(
7
14

)
χ

(
11
6

)
renorm 37.6

(
7
2.5

)
stat

(
8
9

)◦
syst

F s µ = ∞ 0.2543
(
40
28

)
stat

(
0
81

)
a

(
64
34

)
χ

(
20
10

)
renorm (8t

ph
0 )−1/2 120.8

(
1.9
1.3

)
stat

(
3.1
4.3

)
syst (1.5)t0 MeV

1GeV 0.2652
(
40
30

)
stat

(
0
85

)
a

(
66
38

)
χ

(
24
12

)
renorm (8t

ph
0 )−1/2 126.0

(
1.9
1.4

)
stat

(
3.2
4.6

)
syst (1.6)t0 MeV

2GeV 0.2601
(
40
29

)
stat

(
0
83

)
a

(
65
36

)
χ

(
22
11

)
renorm (8t

ph
0 )−1/2 123.6

(
1.9
1.4

)
stat

(
3.1
4.4

)
syst (1.6)t0 MeV

10GeV 0.2573
(
40
29

)
stat

(
0
82

)
a

(
64
35

)
χ

(
21
11

)
renorm (8t

ph
0 )−1/2 122.2

(
1.9
1.4

)
stat

(
3.1
4.4

)
syst (1.5)t0 MeV

φs µ = ∞ 0.723
(
13
30

)
stat

(
20
3

)
a

(
22
13

)
χ

(
6
13

)
renorm 41.4

(
7
1.7

)
stat

(
1.7
1.1

)◦
syst

1GeV 0.679
(
12
29

)
stat

(
18
4

)
a

(
22
11

)
χ

(
6
14

)
renorm 38.9

(
7
1.7

)
stat

(
1.7
1.0

)◦
syst

2GeV 0.699
(
12
29

)
stat

(
19
4

)
a

(
22
12

)
χ

(
6
14

)
renorm 40.0

(
7
1.7

)
stat

(
1.7
1.1

)◦
syst

10GeV 0.710
(
12
30

)
stat

(
19
3

)
a

(
22
12

)
χ

(
6
14

)
renorm 40.7

(
7
1.7

)
stat

(
1.7
1.1

)◦
syst
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TableE.2: Decay constants, using the experimental η and η′masses as additional input (priors, see sec. 5.4.1)
in various representations and at several renormalization scales.

octet/singlet basis, state representation
F 8
η 0.2180

(
25
32

)
stat

(
15
22

)
a

(
33
0

)
χ
(8t

ph
0 )−1/2 103.5

(
1.2
1.5

)
stat

(
1.7
1.1

)
syst (1.3)t0 MeV

F 8
η′ −0.105

(
5
9

)
stat

(
7
0

)
a

(
7
0

)
χ
(8t

ph
0 )−1/2 −50.0

(
2.2
4.2

)
stat

(
4.8
3

)
syst (6)t0 MeV

F 0
η µ = ∞ 0.0276

(
34
36

)
stat

(
52
0

)
a

(
0
50

)
χ

(
26
11

)
renorm (8t

ph
0 )−1/2 13.1

(
1.6
1.7

)
stat

(
2.5
2.7

)
syst (2)t0 MeV

1GeV 0.0314
(
39
41

)
stat

(
60
0

)
a

(
0
56

)
χ

(
30
12

)
renorm (8t

ph
0 )−1/2 14.9

(
1.9
2.0

)
stat

(
2.9
3.0

)
syst (2)t0 MeV

2GeV 0.0297
(
37
39

)
stat

(
56
0

)
a

(
0
53

)
χ

(
28
11

)
renorm (8t

ph
0 )−1/2 14.1

(
1.7
1.8

)
stat

(
2.7
2.9

)
syst (2)t0 MeV

10GeV 0.0287
(
36
38

)
stat

(
54
0

)
a

(
0
51

)
χ

(
27
11

)
renorm (8t

ph
0 )−1/2 13.6

(
1.7
1.8

)
stat

(
2.6
2.8

)
syst (2)t0 MeV

F 0
η′ µ = ∞ 0.1941

(
15
39

)
stat

(
4
10

)
a

(
34
4

)
χ

(
44
23

)
renorm (8t

ph
0 )−1/2 92.21

(
69
1.85

)
stat

(
1.96
2.14

)
syst (1.16)t0 MeV

1GeV 0.2210
(
17
44

)
stat

(
5
34

)
a

(
39
4

)
χ

(
50
26

)
renorm (8t

ph
0 )−1/2 105.0

(
8
2.1

)
stat

(
2.2
2.9

)
syst (1.3)t0 MeV

2GeV 0.2087
(
16
42

)
stat

(
4
32

)
a

(
37
4

)
χ

(
47
24

)
renorm (8t

ph
0 )−1/2 99.14

(
74
1.99

)
stat

(
2.11
2.70

)
syst (1.25)t0 MeV

10GeV 0.2017
(
15
40

)
stat

(
4
31

)
a

(
36
4

)
χ

(
45
24

)
renorm (8t

ph
0 )−1/2 95.79

(
72
1.92

)
stat

(
2.04
2.61

)
syst (1.21)t0 MeV

octet/singlet basis, angle representation
F 8 0.2421

(
22
26

)
stat

(
8
50

)
a

(
32
12

)
χ
(8t

ph
0 )−1/2 115.0

(
1.1
1.2

)
stat

(
1.6
2.4

)
syst (1.5)t0 MeV

θ8 −0.450
(
21
36

)
stat

(
24
0

)
a

(
29
0

)
χ

(
1
5

)
renorm −25.8

(
1.2
2.1

)
stat

(
2.2
0.3

)◦
syst

F 0 µ = ∞ 0.1961
(
13
37

)
stat

(
12
6

)
a

(
28
7

)
χ

(
47
24

)
renorm (8t

ph
0 )−1/2 93.14

(
62
1.75

)
stat

(
1.83
2.27

)
syst (1.18)t0 MeV

1GeV 0.2232
(
15
42

)
stat

(
13
26

)
a

(
32
8

)
χ

(
53
27

)
renorm (8t

ph
0 )−1/2 106.0

(
7
2.0

)
stat

(
2.1
2.9

)
syst (1.3)t0 MeV

2GeV 0.2108
(
14
40

)
stat

(
12
25

)
a

(
30
8

)
χ

(
50
26

)
renorm (8t

ph
0 )−1/2 100.1

(
7
1.9

)
stat

(
2.0
2.7

)
syst (1.3)t0 MeV

10GeV 0.2037
(
14
38

)
stat

(
12
24

)
a

(
29
7

)
χ

(
49
25

)
renorm (8t

ph
0 )−1/2 96.76

(
65
1.82

)
stat

(
1.90
2.60

)
syst (1.22)t0 MeV

θ0 −0.141
(
18
20

)
stat

(
0
27

)
a

(
27
0

)
χ

−8.1
(
1.0
1.1

)
stat

(
1.5
1.5

)◦
syst

light/strange basis, state representation
F `η µ = ∞ 0.1484

(
20
21

)
stat

(
31
0

)
a

(
0
21

)
χ

(
21
9

)
renorm (8t

ph
0 )−1/2 70.48

(
93
99

)
stat

(
1.53
1.42

)
syst (89)t0 MeV

1GeV 0.1515
(
23
26

)
stat

(
37
0

)
a

(
0
27

)
χ

(
24
10

)
renorm (8t

ph
0 )−1/2 71.96

(
1.11
1.22

)
stat

(
1.81
1.71

)
syst (91)t0 MeV

2GeV 0.1501
(
22
23

)
stat

(
34
0

)
a

(
0
24

)
χ

(
22
9

)
renorm (8t

ph
0 )−1/2 71.29

(
1.03
1.10

)
stat

(
1.68
1.58

)
syst (90)t0 MeV

10GeV 0.1493
(
21
22

)
stat

(
33
0

)
a

(
0
23

)
χ

(
22
9

)
renorm (8t

ph
0 )−1/2 70.90

(
98
1.04

)
stat

(
1.61
1.50

)
syst (90)t0 MeV

F `
η′ µ = ∞ 0.09773

(
362
686

)
stat

(
441
12

)
a

(
364
0

)
χ

(
285
164

)
renorm (8t

ph
0 )−1/2 46.42

(
1.72
3.26

)
stat

(
2.83
1.35

)
syst (59)t0 MeV

1GeV 0.1197
(
40
71

)
stat

(
44
2

)
a

(
36
0

)
χ

(
33
19

)
renorm (8t

ph
0 )−1/2 56.84
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Continued on next page
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Table E.2 (continued): Decay constants at various scales.

light/strange basis, angle representation
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F NLO expressions for pseudoscalar and glu-
onic matrix elements

In this appendix we derive the large-Nc ChPT expressions of the products of the pseudoscalar ma-
trix elements with the quark massesmfH

f

η(′)
and the anomalous matrix elements aη(′) to NLO.

This appendix has already been published in similar or verbatim form in [60].

We start from the octet and singlet AWIs eqs. (6.3) and (6.4). We apply these to states |n〉 ∈
{|η〉, |η′〉} (see eq. (6.7) for the octet case) and replace 〈Ω|∂µAa

µ|n〉 =M2
nF

a
n , where a ∈ {8, 0}.

This gives

F 8
nM

2
n =

2√
3
m`H

`
n − 2

√
2

3
msH

s
n, (F.1)

F 0
nM

2
n = 2

√
2

3
m`H

`
n +

2√
3
msH

s
n +

√
2

3
an, (F.2)

whereHq
n = 〈Ω|P q|n〉 are the pseudoscalar matrix elements andH`

n = (Hu
n + Hd

n)/
√
2. The

anomaly terms an = 2〈Ω|ω|n〉 are the matrix elements of the topological charge density ω. The
left-hand sides of the above equations are functions ofM2 and δM2 and can be parameterized in
terms of the six LECs F ,M2

0 ,L5,L8,Λ1 andΛ2.
In terms of the large-Nc ChPT power counting, one finds {L5, L8} ∼ δ−1, F ∼ δ−1/2,

{sin θ, cos θ,B0} ∼ δ0 and {mq,M
2,M2

0 ,Λ1,Λ2} ∼ δ1. This counting is consistent with
the LO GMOR relation M2

π = 2B0m`, where 〈S〉 = 〈q̄q〉 ∼ Nc = O(δ−1) and B0 =
−〈q̄q〉/F 2 = O(δ0). Using the AWIs, P ∼ δ−1 implies that Aµ ∼ δ−1/2 and ω ∼ δ0. The
latter is consistent with the topological susceptibility τ ∼ δ0 as onewould expect from theWitten-
Veneziano relationM2

0 = 6τ0/F
2, whereM2

0 ∼ δ1 and F 2 ∼ δ−1. Finally, the parametrization
of the axial matrix elements 〈Ω|Aa

µ|n〉 = ipµF
a
n ∼ δ0 means that |n〉 ∼ δ1/2. Note that for the

mesonmasses and the matrix elements the above counting applies to the LO expressions and there
will be higher order corrections in δ.

Using these counting rules, eqs. (F.1) and (F.2) start atO(δ1/2) and should be expanded up to
O(δ3/2) to obtain predictions at NLO.We carried out thematching, first at LO and then atNLO.
The NLO results are presented below. The decay constants can be expressed in terms of the LECs
and meson masses atO(δ−1/2) andO(δ1/2) (LO and NLO) via eqs. (5.24)–(5.27) whileM2

η and
M2

η′ can be parameterized in terms of the squaredmass matrix (with elements eqs. (5.21)–(5.23)) via
the rotation (5.4) with the angle defined in eq. (5.8) atO(δ1) andO(δ2). We truncate the product
atO(δ3/2). Accordingly, we replace the quark masses on the right-hand sides by combinations of
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M
2 and δM2 via the NLO large-Nc GMOR relations

2m`B0 =M2
π

(
1− 8

2L8 − L5

F 2
M2

π

)
, (F.3)

(m` +ms)B0 =M2
K

(
1− 8

2L8 − L5

F 2
M2

K

)
. (F.4)

Then both sides are polynomials in δM2 andM2 of degree one and two at LO and at NLO, re-
spectively. The pion masses also enter through sin θ and cos θ. Since we carry out the matching in
terms of powers of δ, we keep the sine and the cosine (that are ofO(δ0)) in the coefficient functions.
Note that at LO θ only depends on δM2 (as well as on the LECM2

0 ).
Equations (F.1)–(F.2) amount to four identities (n ∈ {η, η′} and a ∈ {8, 0}) but we have six

unknown functions on the right-hand sides (four Hq
n and two an). Nevertheless, we are able to

determine these unambiguously since the relations should hold for any combination of δM2 and
M2 > 3δM2. It is instructive first to inspect the special case δM = 0, where sin θ = 0. Then
the substitution of the mesonmasses simplifies:M2

η = µ28 =M2 + δM2/3+ . . .,M2
η′ = µ20 =

M
2
+ M2

0 + . . .. Moreover, in this limit there exist only two non-trivial relations (for F 8
η and

F 0
η′) since H

s
η +

√
2H`

η = 0, H`
η′ −

√
2Hs

η = 0 and aη = 0. These three equalities are also
obvious from the respective Wick contractions. In the vicinity of this limit, to leading order, these
combinations must be proportional to sin θ or to δM2, where sin θ ∝ δM2 for small θ. One can
easily see that in the limit δM = 0, to leading order alsoHs

η = −(
√
2/3)B0F = −

√
2Hs

η′ holds
and therefore, aη′ =

√
2/3FM2

η′ =
√
2/3F (M2

0 +M
2
). Starting from these identifications

and sorting all terms accordingly, where in the end we substitute back the GMOR relations and
eliminateB0, gives the following expressions for the pseudoscalar combinations:
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η = cos θF
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(F.8)

The NLO expressions containM4 terms because the left-hand sides are already proportional
to quark masses. One remark is in order: the η′ matrix elements all start with sin θ. This does not
mean that they vanish in the limit δM = 0 (where sin θ = 0). For small δM2 one can expand
sin θ = −

√
2δM2/(3M2

0 ) + . . ., which cancels against a term∝M2M2
0 /δM

2, resulting in the
limiting case discussed above.
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Finally, the gluonic matrix elements can be obtained via the singlet AWI:
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(F.10)

Note that aη vanishes for θ = 0, as it should.
The LO results can easily be obtained, settingL5 = L8 = Λ1 = Λ2 = 0. These only depend

on the LECs F andM0. The mass mixing angle θ at LO is given in eqs. (5.8) and (5.17)–(5.19) as a
function of the δM2 andM2

0 . Above, we use theNLO expression for θ, eqs. (5.8) and (5.21)–(5.23).
The parametrizations of the anomalous matrix elements eqs. (F.9) and (F.10) contain leading

order terms ∝ FM2
0 , ∝ FM

2 and ∝ FδM2. When taking the continuum limit using dimen-
sionless combinations with 8t0 as discussed at the end of sec. 5.1.2, we need to add corresponding
terms∝ −(3k/2)FM2

0M
28t0,∝ −(k/2)FM48t0 and∝ −(k/2)FδM2M28t0 which we do

in our analysis of sec 6.2.
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