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Introduction

This thesis is about Cauchy problems on Lorentzian manifolds, in particular we start

with the setup of a Lorentzian manifold with a parallel null vector field. When we

restrict this vector field to a spacelike Cauchy surface, we obtain a solution of a

constraint equation, which we will call the Riemannian constraint equation, see

Equation (1.1) for more details. In the following we can ask whether a Riemannian

manifold equipped with a nowhere vanishing vector field, which satisfies the con-

straint equation, can be extended to a Lorentzian manifold and carries a parallel

null vector.

Lorentzian manifolds with parallel null vectors are of interest to us, since they have

special holonomy. Recently a lot of work was carried out in the field of special

holonomy, for example the work of Helga Baum, Thomas Leistner and Andree Lis-

chewski, see [17], [28] or [21]. The holonomy group is an important tool in ge-

ometry, which is given by parallel transports along arbitrary loops with respect to

a connection on a vector bundle, e. g. the Levi-Civita connection on the tangent

bundle. The applications for holonomy range from Cauchy problems in Rieman-

nian geometry (see [6]) up to physics (see [10] or [15]). In string theory physicists

consider parallel null spinors and similar objects which are invariant under the spin

representation of the holonomy group and therefore such a Lorentzian manifold has

special holonomy.

In particular we care about the case of globally hyperbolic Lorentzian manifolds

which carry a parallel null vector field. We can show that these objects have a very

special local structure, i. e. they are a foliated by Riemannian submanifolds of the

form

(I ×F , g = u−2ds2 + hs),

where I is an intervall and (F , hs) a smooth family of Riemannian manifolds. More-

over, these foliation enable us to construct a broad class of special holonomies by

encoding it into a flow equation of these foliations and their families of Riemannian

metrics.

Finally, we consider the spinorial setting of Lorentzian manifolds and show that if

we restrict a parallel null spinor to a spacelike Cauchy surface we obtain an imagi-

naryW -Killing spinor, the so called spin constraints. A lot of work was done in the
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Introduction

real case, the Killing spinors, see [6], [16] for origins and [9] for recent considera-

tions. We will construct a solution for the spinorial Cauchy problem corresponding

to the spin constraint equations similar to the first case, by reducing them to the Rie-

mannian constraint equation (see Equation (1.1)) with the help of the construction

of the Dirac current and the associated screen bundle. Thomas Leistner could show

that the screen bundle of these Lorentzian manifolds carries the main part of the

Lorentzian holonomy and is given by a Riemannian holonomy group, see [21].

We now describe the structure of this thesis. In the first three chapters we yield

the proof of Theorem 1.1, i. e. the solution for the Cauchy problem corresponding

to the Riemannian constraint equation. We call this Cauchy problem the Rieman-

nian Cauchy problem. Moreover the solution metric is of the special form of Equa-

tion (1.2).

In Chapter 1 we start with the setup of a Lorentzian manifold with a spacelike

Cauchy surface and parallel null vector field and establish locally a system of evo-

lution equations for the metric, the dual of the parallel vector field and the Ricci

curvature. Such a system enables us to construct a local solution for the Riemannian

Cauchy problem.

In Chapter 2 we state a list of initial data for such equations to write down a well-

posed problem, which can be solved. In the following we rewrite the previously

obtained set of evolution equations as a symmetric hyperbolic system. The refor-

mulation has the improvement that we have a uniqueness and existence theory for

such a system. Therefore we obtain a local solution if we state the suitable initial

data. Unfortunately we end up with a bunch of data which depends on our initial

choices, e. g. a background metric.

In Chapter 3 we finish the remaining parts of the extension of the Riemannian

Cauchy problem. We show the vanishing of the correlation between the background

metric and the previously constructed Lorentzian metric. In accordance with that

we have to establish a coupled system of PDEs for a list of data which is derived

from the correlation and the vector field obtained from the local solution. More-

over we prove the existence of a parallel null vector field. The global solution is

given by a simple gluing procedure of the local solutions and we have to exploit this

construction, when we show the globally hyperbolicity.

In Chapter 4 we construct a solution for the Riemannian Cauchy problem following

(some) ideas by Piotr Chrusciel. Initially we consider a weaker version of the system

corresponding to the Riemannian constraint equation. The main idea boils down

to the fact, that we express the ambient Lorentzian metric in terms of hypersurface

data. The crucial ingredient will be the existence of a parallel null vector field,

which is a Killing vector field. The flow of this Killing vector field is an isometry
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and enforces the time independence of the metric in a special chart. Therefore we

are able to write down a solution for the Riemannian Cauchy problem with adapted

initial conditions. In Chapter 4 we show that we can deform such a solution to a

metric of the desired form in Theorem 1.1. For this purpose we construct a dif-

feomorphism of the Lorentzian manifold that fixes the hypersurface and pulls back

the solution of our adapted Cauchy problem to a Lorentzian metric of the desired

form.

One of the major goals of this thesis was to summarize the proof from [28], as

presented in Chapters 1 to 3. During the writing process, a comment by Chrusciel

indicated a proof for an adapted Cauchy problem corresponding to the Riemannian

constraint equation presented in Chapter 4. The proof of the modified Cauchy prob-

lem seems more elegant to us, as it is very short and easy to verify, and it avoids

technical analytical tools. Moreover it yields a straightforward solution for the orig-

inal problem of finding a Lorentzian manifold that extends a Riemannian manifold

equipped with a nowhere vanishing vector field which satisfies the Riemannian con-

straint equation. The advantage of the proof presented in Chapters 1 to 3 is that it

puts the Riemannian constraint equation in a context similar to other Cauchy prob-

lems, e. g. to Cauchy problems for the Einstein equation in general relativity and

thus it shows the strength of the involved analytical tools.

In Chapter 5 we provide another important ingredient for the construction of Lo-

rentzian metrics with special holonomy in the following chapter. We show that the

Riemannian manifold satisfying the constraint equation is foliated by Riemannian

submanifolds of the form ({t} × F , hs)t∈I . In order to obtain locally the foliation,

we use the Frobenius theorem. The corresponding distribution is given as the or-

thogonal complement of some nowhere vanishing vector field U . The integrability
of this distribution is a consequence of the symmetry of the (0, 2)-tensor ∇U [.

In accordance with this fact we give a characterization of special holonomy of the

ambient Lorentzian manifolds in terms of flow equations of the foliated Riemannian

submanifold and their family of Riemannian metrics in Chapter 6. The special form

of the Riemannian submanifolds coming from the foliation enables us to translate

to a condition of special holonomy in terms of flow equations for the family of

metrics hs.

Finally we consider in Chapter 7 the case of Lorentzian spin manifolds equipped with

a parallel null spinor and an analogous question as before, i. e. the spin constraint

equations obtained by a restriction of a parallel spinor to a hypersurface. We will

construct an extension for the spinorial Cauchy problem corresponding to the spin

constraint equations.
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1 The constraint equation

We start with a simple observation. Let (M, g) be a globally hyperbolic Lorentzian

manifold with a spacelike Cauchy surface (M, g) and Weingarten mapW . Moreover

there exists a parallel null vector field V onM . Let T be a time orientation, then we

can decompose V along T as uT − U , with U ∈ Γ(TM) and a function u ∈ C∞(M).
When we restrict ∇gV to the hypersurface M we obtain

0 = πTM (∇gX V︸︷︷︸
uT−U

) = πTM ((∂Xu) T︸︷︷︸
=0, on TM

+u∇gXT −∇
g
XU)

= −uW (X)−∇gXU,

for all X ∈ TM . This implies the constraint equation ∇gU + uW = 0 onM and we

can ask the reversed question if we can extend a Riemannian manifold that satisfies

this constraint to a Lorentzian manifold with parallel null vector field. We call the

constraint equation also Riemannian constraint equation, with focus on the spin

constraint equation that we will consider in Chapter 7.

Thus we want to prove the following theorem, see [28, Thm 1].

Theorem 1.1: Let (M, g) be a Riemannian manifold with a nowhere vanishing

vector field U and a g-symmetric endomorphism W solving

∇gU + uW = 0, (1.1)

where u =
√
g(U,U). Moreover, let λ ∈ C∞(M,R) be a positive function.

Then there exists a neighbourhood M of M in R×M and a Lorentzian metric

g = −λ̃2dt2 + gt, (1.2)

where gt is a smooth family of Riemannian metrics onM and λ̃ is a positive function
on M with the following conditions:

g0 = g and λ̃|M = λ, (1.3)

and the vector field U extends to a parallel null vector field on (M, g). Moreover,

the Lorentzian manifold (M, g) can be chosen globally hyperbolic with spacelike

Cauchy surface M and Weingarten map W .
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1 The constraint equation

We divide the proof in three steps.

1) We derive a list of local evolution equations in the unkowns given by the metric

g, the dual of the parallel null vector field α = V [ and the Ricci curvature Z =
Ric := Ricg and solve these equations. These evolution equations depend on a

choice of a background metric. This is done in Section 1.2 and Chapter 2.

2) In the second step, we show that the quantities E and ∇V vanish, where E
depends on the background metric and is morally speaking the correlation of the

original metric and the background metric. This is done in Sections 3.1 and 3.2.

3) In the last step, we show that the local construction globalizes and that the solu-

tion can be chosen globally hyperbolic. This is done in Section 3.3.

1.1 Symmetric hyperbolic systems

We need the solution theory for a symmetric hyperbolic systems, because the in-

volved equations in the following sections will be of this type, see [1, section 3.7,

page 141]. We call a system

A0(t, x, w)∂tw =
∑
i

Ai(t, x, w)∂iw + b(t, x, w), (1.4)

a symmetric hyperbolic system if it msatisfies the following:

• The functions Aν and b are smooth functions of type U ⊂ Rn+1×n+1 → Rn and

Ũ ⊂ Rn+1 → RN for open sets U, Ũ .

• The matrices Aν are symmetric.

• The matrix A0 is strictly positive definite, i. e. there is a constant c > 0 such

that A0 ≥ c · id holds.

We have a uniqueness and existence result for the Cauchy problem of a symmetric

hyperbolic system, see [27, page 360].

In the future part of this thesis it is convenient to state a global version of a symmet-

ric hyperbolic systems. Therefore we define a (global) symmetric hyperbolic system

in the following way.

Definition 1.2: Let N be a time-oriented Lorentzian manifold and E → N be

a vector bundle with connection ∇ and compatible metric 〈·,·〉. Then we call a

first order differential operator P : Γ(E)→ Γ(E) a (global) symmetric hyperbolic

system if we have for all x ∈ N the following statements:
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1.1 Symmetric hyperbolic systems

• The principial symbol σ(P, ξ)x is symmetric for all ξ ∈ T ∗N w. r. t. to the

induced bundle metric on π∗Ex with π : T ∗N → N .

• The bilinearform 〈σ(P, τ) · ,·〉 on π∗E is positive definite for all future-directed

timelike covectors τ ∈ T ∗
xN .

In the following we will consider an important example for a global symmetric

hyperbolic system.

Lemma 1.3: Let N be a time-oriented Lorentzian manifold with a vector bundle

E → N equipped with a connection ∇ and a compatible metric 〈·,·〉. Moreover, we

have a nowhere vanishing, future-directed causal vector field V onN . Then the first

order differential operator P : Γ(E) → Γ(E), e 7→ ∇V e is a symmetric hyperbolic

system.

Proof of Lemma 1.3.

Let ∇ : Γ(E) → Γ(T ∗N ⊗ E) be a covariant derivative on an arbitary vector bundle

E → M . This is a differential operator of order 1. Indeed, let f ∈ C∞(N,R) with

f(x) = 0, dxf = ξ ∈ T ∗
xN and e ∈ Ex with an extended vector field ẽ, s. t. ẽ(x) = e,

then we compute the principial symbol:

σ(P = ∇, ξ)xe = ∇(fẽ)x = dxf︸︷︷︸
=ξ

⊗ ẽ(x)︸︷︷︸
=e

+ f(x)︸ ︷︷ ︸
=0

∇(ẽ)x = ξ ⊗ e.

Let E be as above, then P = ∇V is a first order differential operator with principial

symbol σ(P, ξ) : π∗E → π∗E, v 7→ ξ(V )v. The symmetry of the principial symbol is

clear, since the principial symbol is the multiplication with a smooth function.

Let τ as in Definition 1.2, then we have τ(V ) > 0, because V is nowhere vanishing, future-

directed causal and τ is given by a future directed timelike vectorfield τ̃ , s. t. τ(V ) =
〈τ̃ ,V 〉 > 0. Hence

〈σ(P, τ)A,A〉 = τ(V )︸ ︷︷ ︸
>0

‖A‖2 > 0

for all A ∈ Γ(π∗E) non-zero. �

However, we will often consider the Cauchy problem for a section A ∈ Γ(E) corre-
sponding to the symmetric hyperbolic system P : Γ(E)→ Γ(E), e 7→ ∇V e, i. e.{

P (A) = 0 on N,

A = 0 on M,
(1.5)
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1 The constraint equation

where M is a spacelike Cauchy surface of the Lorentzian manifold N and V is a

nowhere vanishing, parallel null vector field1. Similar to the local case we have

an existence and uniqueness result for global symmetric hyperbolic systems, see [1,

Corollary 3.7.6] and [1, Theorem 3.7.7].

1.2 The evolution equations

In this part we want to derive local evolution equations for the unkowns (g, α, Z).
We assume that we have an extension of the Riemannian manifold (M, g, U) like in
the conclusion of the Theorem 1.1 or to be precise:

• A Lorentzian manifold (M, g) as an open neighbourhood of {0}×M in R×M
with an isometric embedding M ↪→M w. r. t. the Weingarten map W .

• A parallel null vector field V onM that extends U , i. e. V is of the form uT −
U = u(T −N), where T is a time orientation ofM , u =

√
g(U,U) andN = 1

uU .

• The Lorentzian metric g is given by −λ̃2dt2 + gt, where the lapse function is

λ̃ =
√
−g(∂t, ∂t) and gt is a family of Riemannian metrics with g0 = g.

1.2.1 Conventions

In the following sections we will use the ·̄ notation for all the data and structure

on the Lorentzian manifold M , e. g. the metric g, the connection ∇, the Rieman-

nian curvature R and the Ricci curvature Ric. However a Lorentzian metric is by

definition of signature (1, n) or in other words (−,+, . . . ,+). The greek indices

µ, ν, σ, . . . and the first latin indices a, b, c, d range over 0, . . . , n and the latin indices

i, j, k, l, . . . range over 1, . . . , n. The symbol εµ denotes −1 if µ = 0 and +1 else.

Let Tµν be a tensor on a manifold, then we write T(µν) for the symmetrization of

T , i. e. T(µν) := 1
2(Tµν + Tνµ). We denote the 0-coordinate in a Lorentzian man-

ifolds sometimes as a time variable, i. e. ∂0 = ∂t. We define the Ricci curvature

as the contractions of the Riemannian curvature w. r. t. the first and third index,

i. e. Ric =
∑
µ εµR(eµ, ·, eµ, ·) for a local orthonormal frame {eµ}µ of the tangent

bundle.

1We do not need the assumption of future-direction on V , since the vector field is nowhere vanishing

and therefore either future-directed or past-directed and therefore we consider the system P =
∇−V for past-direction.
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1.2 The evolution equations

1.2.2 The evolution equation for Z

At the beginning we have the fact that the parallel vector field V annihilates the

Riemannian curvature (i. e. R(V, ·, ·, ·) = 0) and by the definition also the Ricci

curvature, i. e.

Ric(V, ·) =
∑
µ

εµR(eµ, V, eµ, ·) = 0.

The fact that the Riemannian tensor R is annihiliated by the parallel vector field V
leads to the vanishing of ∇V Ric, because by the product rule we have

(∇V Ric)(X,Y ) =
∑
µ

εµ(∇VR)(eµ, X, eµ, Y )

second Bianchi id.= −
∑
µ

εµ
(
(∇µR)(X,V, eµ, Y ) + (∇XR)(V, eµ, eµ, Y )

)
=
∑
µ

εµ
(
−∂µ(R(X,V, eµ, Y )) +R(∇µX,V, eµ, Y ) +R(X,∇µV, eµ, Y )

+R(X,V,∇µeµ, Y ) +R(X,V, eµ,∇µY )− ∂X(R(V, eµ, eµ, Y ))
+R(∇XV, eµ, eµ, Y ) +R(V,∇Xeµ, eµ, Y ) +R(V, eµ,∇Xeµ, Y )

+ R(V, eµ, eµ,∇XY )
) (∗)= 0,

where {eµ}µ is a generalised orthonormal frame of TM and X,Y ∈ TM . We used

at (∗), that ∇V and R(V, ·, ·, ·) vanish.

In the following we will treat the Ricci curvature as a new artifical variable Z. With

the previous observation by hand and the local version of the covariant derivative

of a bilinear form2

∇∂tZµν = ∂tZµν − ZγµΓγ0ν − ZγνΓ
γ
0µ,

we write ∇V Z = 0 as an evolution equation. At first we rewrite

∇V Z = 0⇔ ∇∂tZ = λ̃∇NZ,

then we combine the two previous results to obtain:

∂tZkl = λ̃N i∂iZkl + ZjlΓjtk + ZkjΓjtl − λ̃N
i
(
ZjlΓjik + ZkjΓjil

)
(1.6)

We only state the equation above for k, l > 0, because by Z(T, ·) = Z(N, ·), the
equations for ∂tZ0µ are given in terms of ∂tZkl and Zkl, therefore redundant.

2This follows directly from the definition of the induced connection on tensor bundles, i. e. product

rule.
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1 The constraint equation

1.2.3 The evolution equation for g

If we want to apply the theory of symmetric hyperbolic systems directly to the Ricci

curvature, then we are confronted with the problem of the invariance of the Ricci

curvature under the group action of Diff(M). A diffeomorphism invariant operator

cannot be elliptic.

Let g be a Ricci-flat metric on the toy exampleM := Rn+1 and φ be a diffeomorphism

of M , s. t. φΣ = id and dφΣ = id holds, where Σ is a Cauchy surface w. l. o. g. Σ =
{x0 = t = 0}. By assumption of the metric g we have that φ∗g is also Ricci-flat,

because Ricφ∗g = φ∗(Ricg) = 0 holds. In other words, the pullback metric φ∗g will
be a solution of the Einstein vaccum equation Ricg = 0, by the assumption that

φΣ = id and dφΣ = id holds. But this is a contradiction for the uniqueness result of

symmetric hyperbolic systems. Thus we can not write the usual Ricci operator as a

symmetric hyperbolic system.

We break the gauge invariance of the diffeomorphism group on the Lorentzian man-

ifold M , by working with a background metric

h := −λ2dt2 + g. (1.7)

Moreover we define

F (X) := trg(g(∇h· ·, X)),
E(X) := − trg(g(A(·, ·), X)),

where A(X,Y ) := ∇gXY − ∇hXY . The tensor E is called the correlation between g
and the backgrounnd metric h. Additionally we use the following representation of

the Ricci curvature:

Ricµν = −1
2g

αβ∂α∂βgµν +∇(µΓν) + gαβgγδ [ΓαµγΓβνδ + ΓαµγΓβδν + ΓανγΓβδµ] .

Where Γµ = gαβΓαβµ and ∇µΓν = ∂µΓν − gαβgγδΓµναΓγδβ, see [14, Appendix D,

page 422] for more details.

Using the definition of E, we set

Ric = Z − Sym(∇E) (1.8)

as the new evolution equation for the metric g, which is locally of the form

Zµν = Ricµν +∇(µEν) = −1
2g

αβ∂µ∂νgαβ +∇(µFν)

+ gαβgγδ [ΓαµγΓβνδ + ΓαµγΓβδν + ΓανγΓβδµ] .
(1.9)
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1.2 The evolution equations

This form has the improvement, that it only depends in its leading term on the

second derivatives of the metric g, since we replaced the ∇(µΓν) part with the g

independent part∇(µFν). We will use this in the later sections for the reformulation

into a symmetric hyperbolic system.

1.2.4 The evolution equation for α

Let V be a parallel null vector field, then we want an evolution equation for the

dual 1-form α = V [ given by the dual of V . By the parallelity of V we have

(d+ δg)α = (c ◦ ∇)α =
∑
µ

c(e[µ)(∇eµV )[ = 0,

where the first equality comes from the following lemma.

Lemma 1.4: Let (M, g) be a Riemannian manifold, then we have for all forms

α ∈ Ω∗(M) the identity

(d+ δg)α = (c ◦ ∇)α, (1.10)

where c : T ∗M → End(Λ∗T ∗M) is the Clifford multiplication3 on the form bundle

Λ∗T ∗M given by c(α)ω = α ∧ ω − ιαω. Where ιαω is defined by

ια(v1 ∧ . . . ∧ vk) :=
k∑
l=1

(−1)l+1g(α], v]l )v1 ∧ . . . ∧ v̂l ∧ . . . ∧ vk,

on elementary forms and extends linear on Λ∗T ∗M .

Proof.

Let ω ∈ Γ(ΛkT ∗M). Then we can write∇w ∈ Γ(T ∗M⊗ΛkT ∗M) as
∑
l e
[
l⊗∇lω, where

{el}l is a local orthonormal frame of T ∗M . We can plug this into the operator c ◦∇ and

obtain:

c ◦ ∇ω = c

(∑
l

e[l ⊗∇lω
)

=
∑
l

e[l ∧∇lω −
∑
l

ιel
∇lω︸ ︷︷ ︸

=−δgω

.

3With respect to an identification we also write c : T ∗M ⊗ Λ∗T ∗M → Λ∗T ∗M for the Clifford

multiplication.
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1 The constraint equation

Let X1, . . . , Xk+1 ∈ Γ(TM), then we look at the remaining expression:

∑
l

(e[l ∧∇lω)(X1, . . . , Xk+1) = 1
(k + 1)!

∑
σ,l

sgn(σ)g(Xσ(1), el)(∇lω)(Xσ(2), . . . , Xσ(k+1))

= 1
(k + 1)!

∑
σ

sgn(σ)(∇Xσ(1)ω)(Xσ(2), . . . , Xσ(k+1))

= 1
(k + 1)!

∑
σ

sgn(σ)(∇ω)(Xσ(1), . . . , Xσ(k+1))

= Alt(∇ω)(X1, . . . , Xk+1)
= dω(X1, . . . , Xk+1)

Where we used that the antisymmetrization operator Alt is given by

Alt(β)(X1, . . . , Xn) := 1
n!
∑
σ

sgn(σ)β(X1, . . . , Xn),

for all tensors β ∈ (T ∗M)⊗n and the summation runs over all permutations σ of {1, . . . , n}.
In the last step we use the well-known fact that the antisymmetrization of the Levi-Civita

connection is the Cartan differential on forms. �

We take a generalised orthonormal frame
{
s0, . . . , sn

}
by the Gram-Schmidt process

from the coordinate vector fields ∂0, . . . , ∂n and identify (as in the proof before) the

form ∇α ∈ Γ(T ∗M ⊗ Λ∗M) with −s[0 ⊗∇s0α+
∑
l s
[
l ⊗∇sl

α and apply the Clifford

multiplication. This yields

0 = −c(s0)∇s0α+
∑
l

c(sl)∇sl
α. (1.11)

We multiply this expression with c(s0) and use the Clifford relation of the Clifford

multiplication

c(X)c(Y ) + c(Y )c(X) = −2g(X,Y ) · 1

to obtain

0 = − c(s0)c(s0)︸ ︷︷ ︸
=−g(s0,s0)=+1

∇s0α+
∑
l

c(s0)c(sl)∇sl
α

and thus

∇s0α =
∑
l

c(s0)c(sl)∇sl
α. (1.12)
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1.2 The evolution equations

However, we obtained the basis s0, . . . , sn by the Gram-Schmidt process, hence we

have coefficients ξ given by

s0 = 1
λ̃
∂t and si =

n∑
µ=0

ξµi [g]∂µ.

Now we fix a bundle chart x : U → V of M of the bundle Λ∗R1,n and identify in

this trivialization the fiber of the form bundle Λ∗R1,n with the vector space R2n+1
.

In this identification we can write the covariant derivative as ∇∂µ = ∂µ + Γ, where
Γ is an endomorphism on forms. The exact form of Γ is not relevant for the argu-

ments in the following4. Thus, we plug in the expansion of the basis si with respect

to the coefficients ξµ and the representation of the covariant derivative to rewrite

Equation (1.12) as an evolution equation:(
1
λ̃
−
∑
l

ξ0
l c(s0)c(sl)

)
∂tα =

∑
i

(∑
l

ξilc(s0)c(sl)
)
∂iα (1.13)

+
(

1
λ̃
−
∑
l

ξ0
l c(s0)c(sl)

)
Γα+

∑
k,l

ξkl c(s0)c(sl)Γkα.

4In general we can deduce from the product rule for the Levi-Civita connection: ∇cTb1...bn =
∂cTb1...bn −

∑n

i=1 Γd
bicTb1...bi−1,d,bi+1...bn
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2 The constraint equation as a symmetric
hyperbolic system

In the last section we had considered a parallel vector field and derived a list of

evolution equations for quantities corresponding to the parallel vector field and the

Lorentzian metric. The next step will be to write down initial data for this equations

in order to state a well-posed Cauchy problem for a symmetric hyperbolic system.

2.1 Initial data

Let x = (xµ) = (t = x0, xi) be a chart of M , then we introduce new variables

gµν,i := ∂igµν and κµν := ∂tgµν .

We have to specify the initial data for the list (gµν , gµν,i, κµν , α, Zij) to ensure that

the involved equations (PDEs) are well-posed and hyperbolic. We state the complete

list of the initial data here and explain the origins in the following remark:

g|t=0 = h|t=0 (2.1)

gµν,i|t=0
= (∂igµν)|t=0 = (∂ihµν)|t=0 (2.2)

κµν|t=0 =


−2λ2(F0)|t=0 + 2λ3 trgW, if (µ, ν) = (0, 0)

0, if (µ, ν) = (i, 0), (0, j)
−2λWij, if (µ, ν) = (i, j)

(2.3)

α|t=0 = h

(
u

λ
∂t − U, ·

)
|t=0

(2.4)

Z(N, ·)|t=0 = d trgW + δgW (2.5)

Z(X,Y )|t=0 = Ric(X,Y ) +R(X,N,N, Y ) +W 2(X,Y )−W (X,Y ) trgW
−W (X,N)W (Y,N) +W (X,Y )W (N,N) for X,Y ∈ N⊥ (2.6)

Remark 2.1: Wewill explain the origins of the initial conditions for the evolution

equations derived in the previous chapter. The first one is the vanishing of the
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2 The constraint equation as a symmetric hyperbolic system

correlation E between the Lorentzian metric g and the background metric h. The
second is the desired extension of the vector field U to a parallel null vector field:

Equation (2.3): The vector T = 1
λ∂t is a time orientation for the background metric

h and if we consider the following equations restricted toM for {ei}i a frame

of TM :

∂tg(ei, ej) = g( ∇tei︸ ︷︷ ︸
=∇i∂t, because [∂t,ei]=0

, ej) + g(ei,∇tej)

= g( ∇i(∂t)︸ ︷︷ ︸
∇i(λT )=(∂iλ)T+λ∇iT

, ej) + g(ei,∇j∂t)

= −λ [g(W (ei), ej) + g(ei,W (ej))]
= −2λWij .

Thus κij|t=0 = (∂tgij)|t=0 = −2λWij . The two other cases ((µ, ν) = (0, i), (i, j))
follow from the fact that the quantity Eµ has to vanish on (M, g), hence we

show the following claim.

Claim: Under the assumption of the Equation (2.1), Equation (2.2) and the

case (µ, ν) = (i, j) the vanishing of Eµ|t=0 = 0 is equivalent to the system

κ00|t=0 = −2λ2F0|t=0 + 2λ3 trgW

κ0i|t=0 = −λ2
[
−Fi|t=0 + ∂i log λ+ 1

2g
jk(2∂jgki − ∂igjk).

]

Proof.

Recall the definition of the expression Fµ = gµγg
αβΓ̃ γ

αβ and restrict E0 to t = 0:

E0|t=0 − F0|t=0 = −g0γg
αβΓ γ

αβ

= λ2gαβΓ 0
αβ

= λ2

2 g
αβg0γ [2∂αgβγ − ∂γgαβ]

= −gαβ∂αgβ0 + 1
2g

αβ∂0gαβ

= −gij (∂ig0j)︸ ︷︷ ︸
=0

+ 1
λ2 ∂0g00︸ ︷︷ ︸

=κ00

− 1
2λ2κ00 + 1

2g
ij∂0gij

= 1
2λ2κ00 + gijκij︸ ︷︷ ︸

=−2λ trg W
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2.1 Initial data

Where we used that Equations (2.1) and (2.2) holds. Equivalently we can write

this as

κ00|t=0 = λ2E0|t=0 − λ
2F0|t=0 + λ3 trgW.

We consider also the second equation for the system, where all expressions are again

restricted to t = 0:

Ei|t=0 − Fi|t=0 = −giγgαβΓ γ
αβ

= −gijgαβΓ j
αβ

= −1
2gijg

αβgjγ
[
2∂αgβγ − ∂γgαβ

]
= −1

2 gijg
jk︸ ︷︷ ︸

δk
i

gαβ
[
2∂αgβk − ∂kgαβ

]

= −1
2 gαβ︸︷︷︸
g00+gjk

[
2∂αgβi − ∂igαβ

]

= − 1
λ2 (∂0g0i︸ ︷︷ ︸

=κ0i

−1
2 ∂ig00︸ ︷︷ ︸

−∂iλ2

)− 1
2g

jk(2∂jgki − ∂igjk)

We can write the previous equivalently by:

κ0i|t=0 = −λ2
[
Ei|t=0 − Fi|t=0 + ∂i log λ+ 1

2g
jk(2∂jgki − ∂igjk)

]
.

�

Finally, when we plug in the special form of the background metric into the

second equation of the system we obtain the vanishing of the expression κ0i
at t = 0 or in other words: (Fi)|t=0 = ∂i log λ+ 1

2g
jk(2∂jgki − ∂igjk).

Equation (2.4): As mentioned before we like to extend the vector field U onM to a

parallel null vector field V , therefore we express V on the hypersurface (t = 0)
in hypersurface data namely the right hand side of Equation (2.4).

Equation (2.5): Here we will use the fact that E should vanish onM . This has the

consequence that the tensor Z coincides with Ric on M :

Z(N, ·)|M = Ric(N, ·)|M
Ric(V,·)=0= Ric(T, ·)|M = d trgW + δgW.

Where the last equality follows from the Mainardi equation, see [25, page 115,

Proposition 33].
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2 The constraint equation as a symmetric hyperbolic system

Equation (2.6): Similar to the previous step. Let e0, . . . , en be a local generalised

orthogonal frame for a neighbourhood of a point in (M, g), where e0 and en
are given by T and N . Let X,Y ∈ TM , then we have:

Z(X,Y )|M = Ric(X,Y )|M =
n∑
i=0

g(ei, ei)R(ei, X, ei, Y )

= −R(T,X, T, Y )︸ ︷︷ ︸
=R(N,X,N,Y )

+
n∑
i=1

R(ei, X, ei, Y )

=
n−1∑
i=1

R(ei, X, ei, Y ).

At this step we use the Gauß equation, see [25, page 100, Theorem 5]:

R(A,B,C,D) = R(A,B,C,D)−W (A,C)W (B,D) +W (A,D)W (B,C),

where A,B,C,D ∈ TM . Then we get

=
n−1∑
i=1

R(ei, X, ei, Y )−W (ei, ei)W (X,Y ) +W (ei, X)W (ei, Y )

= Ric(X,Y )−R(N,X,N, Y ) +W (N,N)W (X,Y )
−W (X,Y ) trgW −W (N,X)W (N,Y ) +W 2(X,Y ).

With this initial data we are able to rewrite the initial evolution equations locally

as symmetric hyperbolic system and obtain a well-posed Cauchy problem.

Proposition 2.2: Under the assumptions of Theorem 1.1, there exists for any

point p ∈ M an open neighbourhood Vp of p in R ×M , s. t. the coupled system of

equations

(EQ) =


(d+ δg)α = 0
∇gV Z = 0
Ricg = Z − Sym(∇gE)

for the unkowns (α, g, Z)1 on Vp is locally equivalent to a symmetric hyperbolic

system, provided the initial data Equations (2.1) to (2.6) holds. The objectsU, V,E, u

above are given in terms of the unkowns (α, g, Z) in the following way: V = α
](g)
1 ,

1Recall: α is a form, g is Lorentzian metric and Z is a symmetric bilinear form.
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2.1 Initial data

U = −πTM (V ), u =
√
g(U,U), E(X) = − trg(g(A(·, ·), X)), A(X,Y ) = ∇gXY −∇hXY

and h is the background metric −λ2dt2 + g on R×M .

Proof.

We fix a point p ∈ M and a coordinate neighbourhood Vp of p in R ×M and write

x = (xµ) = (x0 = t, xi). The unkowns (α, g, Z) should vary over Ω∗(Vp), Gp and

Γ(
⊙2 TVp), where Gp is the open subset of Lorentzian metrics on Vp given by

Gp :=
{
g | g(∂t, ∂t) < 0, g(gradg t, gradg t) < 0, gTM⊗TM Riemannian metric

}
. (2.7)

Indeed, Gp is not empty since it contains h: We have gradh t = − 1
λ2∂t and therefore

h(gradh t, gradh t) = − 1
λ2 < 0. Furthermore the restriction of the background metric h

on M is by construction positive definite, since it is g.

It remains to show that the system (EQ) is locally a symmetric hyperbolic system (see

Equation (1.4)). We notice that the objects V,U,N, u depends on g and α. In particular,

λ̃ only depends on the metric g.

∇V Z = 0: This equation is by Equation (1.6) locally given by

A0
1(t, x)∂t(Zkl)k,l>0 = Ai1(t, x, g, α)∂i(Zkl)k,l>0 + b1(t, x, g, ∂g, α, Z), (2.8)

where we set

A0
1(t, x) = id and Ai1(t, x, g, α) = λ̃N i id

(b1(t, x, g, ∂g, α, Z))kl = ZjlΓjtk + ZkjΓjtl − λ̃N
i
(
ZjlΓjik + ZkjΓjil

)
.

This is a symmetric hyperbolic system, since the matrices A0
1, A

i
1 are symmetric and

A0
1(t, x) is positive definite.

(d+ δg)α = 0: We have a system for α of the form:

A0
2(t, x, g)∂tα = Ai2(t, x, g)∂iα+ b2(t, x, g, ∂g, α). (2.9)

Where the matrices and the inhomogenous part b2 can be read off from Equa-

tion (1.13). We have to check that the matrices are symmetric w. r. t. the metric.

Indeed, its enough to show that the endomorphisms c(s0)c(si) are symmetric. We

can reduces this claim to the following lemma.

Lemma 2.3: We consider R1,n with an orientation induced by the standard

orthonormal basis. Let e0, . . . , en be a positive orthonormal frame of R1,n.
Then we induce a scalar product 〈·,·〉 on Λ∗R1,n by the rule that

{
ei1 ∧ . . . ∧
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2 The constraint equation as a symmetric hyperbolic system

eik | k = 0, . . . , n
}
in Λ∗R1,n is positive orthonormal basis for 〈·,·〉. Then we

have

〈c(eµ)α,β〉 = −εµ〈α,c(eµ)β〉,

for all α, β ∈ Λ∗R1,n. Where ε0 = −1, εi>0 = 1 and c(X) = X[ ∧ −ιX is the

Clifford multiplication on forms.

Proof.

W. l. o. g. let α = ei1∧. . .∧eik , β = ej1∧. . .∧ejl where i1 < . . . < ik, j1 < . . . < jl
and check the four possible cases by hand, i. e. µ ∈ or 6∈

{
i1, . . . , ik

}
and µ ∈ or

6∈
{
j1, . . . , jl

}
. This shows the claim. �

The previous lemma shows that the matrices are symmetric, since

〈c(s0)c(si)α,β〉 = −ε0〈c(si),c(s0)β〉 = ε0εi〈α,c(si)c(s0)β〉 = −ε0εi︸ ︷︷ ︸
=1

〈α,c(s0)c(si)β〉

= 〈α,c(s0)c(si)β〉

holds. Moreover, the matrixA0
2 is for g = h given by 1

λ̃
id, thus positive definite

and also positive definite on a neighbourhood of h.

Ric = Z − Sym(∇E): In this last case we use the trick that we introduce new variables

κµν := ∂tgµν and gµν,i := ∂igµν and rewrite the system with respect to this new

variables. We start with Equation (1.9):

Zµν = −1
2g

αβ∂α∂βgµν +∇(µFν) +Hµν ,

where we set Hµν := gαβgγδ [ΓαµγΓβνδ + ΓαµγΓβδν + ΓανγΓβδµ]. Then we rewrite
this system in the following way:

∂tgµν = κµν (2.10)

gij∂tgµν,i = gij∂iκµν (2.11)

−g00∂tκµν = 2g0j∂jκµν + gij∂jgµν,i − 2∇(µFν) − 2Hµν + 2Zµν (2.12)

Indeed, this new system is equivalent to the previous one under the assumption of

the initial data on gµν and gµν,i. We have:

gµν,i = ∂igµν = ∂iκµν
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2.2 Solution of the local system

onM . Let (gµν , gµν,i, κµν) be a solution of the new system above, then by the initial

condition of g, we know that gij is invertible for a small neighbourhood around p,
hence Equation (2.11) can be written in the form

0 = ∂tgµν,i − ∂i κµν︸︷︷︸
∂tgµν

= ∂t
(
gµν,i − ∂igµν

)
.

However, we know by the additional assumption that gµν,i = ∂igµν holds on M
and by the previous identity for any time. The Equation (2.12) is exactly the same

equation as the initial one, hence we have a equivalent formulation for the Equa-

tion (1.8). We can write the new system as a symmetric hyperbolic system:

A0
3(t, x, g)∂t(gµν , gµν,i, κµν) =

∑
l

Al3(t, x, g)∂l(gµν , gµν,i, κµν) + b3(t, x, g, ∂g, κ, Z)

(2.13)

where the matrices are given by

A0
3 =

1 0 0
0 gij 0
0 0 −g00

 and Ai3 =

0 0 0
0 0 gij

0 gij 2g0j


and the inhomogenous part by b3 = (0, 0,−2∇(µFν) − 2Hµν + 2Zµν). It is evi-

dent that the matrices are symmetric and A0
3 is positive definite, hence we have a

symmetric hyperbolic system.

We proceed that we can write (EQ) locally as a symmetric hyperbolic system when we

combine Equations (2.8), (2.9) and (2.13). This shows the claim. �

2.2 Solution of the local system

We have shown in the last section that we can write the coupled system of equations

for the unkowns (α, g, Z) locally as a symmetric hyperbolic system in the objects

(gµν , gµν,i, κµν , α, Zkl). By the uniqueness and existence result from the theory of

symmetric hyperbolic system (see [27]), we have a local solution on a neighbour-

hood Up. This solution enables us to construct a metric g = gµνdx
µdxν , a form α

and a symmetric tensor Z = Zkldx
kdxl 2 on the open set Up. The solution g on M

is equal to h, hence we can restrict to the neighbourhood, s. t. g is of Lorentzian

signature. The bilinearform Z is up to now a section of Γ(Up, T ∗M ⊗ T ∗M) and we

2Indeed, this tensor is symmetric by uniqueness of the solution and the symmetric initial conditions.
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2 The constraint equation as a symmetric hyperbolic system

want to extend it to T ∗Up. We do this with respect to the splitting TUp = RV ⊕TMp,

i. e. Z(V, ·) = 0. Furthermore we restrict Up, s. t.Mp = M ∩ Up is a Cauchy surface

in Up. Finally we define the vector field T = 1
λ̃
∂t and check easily that this is a time

orientation for Up. We obtained a solution

ωp = (g Up , αUp , ZUp)

on a neighbourhood of a point p ∈M .
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3 Global solution and the proof of
Theorem 1.1

3.1 Properties of E and ∇V

In the last part we obtained a local solution (α, g, Z) for the system (EQ) on an open
neighbourhood Up of p ∈M from the local reformulation of the constraint equation.

In this section we want to derive properties for this local solution. Up to now, the

form α is a general element in Ω∗(Up), but in the end we want an 1-form to consider

the dual vector field. Thus we show the following lemma.

Lemma 3.1: Let (α, g, Z) be the local solution on Up of the local reformulation

of (EQ) as constructed in the previous section and assume the initial condition

α|M = h
(
u
λ∂t − U, ·

)
|M as in Proposition 2.2, then α is an 1-form.

For the proof of the previous lemma we need the notion of a normally hyperbolic

operator, see [1, chapter 2].

Definition 3.2: Let E be a vector bundle over a Lorentzian manifoldM equipped

with a bundle metric 〈·,·〉. An operator P : Γ(E) → Γ(E) on this bundle of order 2
is called normally hyperbolic if the principial symbol P is of the form

σ(P, ξ) = −〈ξ,ξ〉 idπ∗E ,

for all ξ ∈ T ∗M . In particular, if we choose coordinates (xµ) = (x0, . . . , xn), we can
write the operator P locally as:

P (x) =
∑
µν

−gµν(x)∂µ∂ν +
∑
µ

Aµ(x)∂µ +B(x)

Example 3.3: The Hodge-Laplacian ∆HL = (d + δg)2 on a Lorentzian mani-

fold (M, g) is a normally hyperbolic operator. Indeed, we compute the principial

symbol of the Cartan differential, i. e. P = d : Ωk(M) → Ωk+1(M), α 7→ dα. Let
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3 Global solution and the proof of Theorem 1.1

f ∈ C∞(M) be a smooth function and x be a point of the Riemannian manifold

(M, g), s. t. f(x) = 0 and dxf = ξ holds. Moreover, we have a k-form α with exten-

sion α̃ to a section in Ωk(M) such that α̃(x) = α holds, then we compute:

σ(P = d, ξ)xα̃ = d(fα̃)x = (dxf) ∧ α̃(x) + f(x)dxα̃ = ξ ∧ α.

Therefore the principial symbol is σ(d, ξ) = ξ ∧ ·. It is immediate that the principial

symbol of ∆ is given by

σ(∆, ξ) = σ((d+ δg)2, ξ) = σ(d+ δg, ξ)2 = (σ(d, ξ)− σ(d, ξ)∗)2 = c(ξ)2 = −〈ξ,ξ〉 · id .

Where we used the exchange rule of the principial symbol with the adjoint, i. e.

σ(P ∗, ξ) = −σ(P, ξ)∗, and the composition rule σ(P ◦Q, ξ) = σ(P, ξ)◦σ(Q, ξ). Finally
we know that the adjoint of the wedge (ξ ∧ ·) is given by the insertion of a covector,

i. e. (ξ∧·)∗ = ιξ. It is also possible to use the identity (d+δg) = c◦∇ from Lemma 1.4

and the previous comments on the principial symbol.

We are able to proof the lemma with the previous consideration.

Proof of Lemma 3.1.

In the first step we decompose the form α degreewise i. e. α = α0 + . . .+αn ∈ Ω∗(Up) =⊕n+1
k=0 Ωk(Up). We know that ∆HLα = (d+δg)2α vanish by construction of α and as well

∆HLαk for every k, since ∆HL preserves the degree of the forms. Now we can consider

the following well-posed normally hyperbolic system
∆HLαk = 0, on Up

αk = 0, on Mp

(∇∂tαk) = 0, on Mp

for each k 6= 1 onMp = M ∩Up. Indeed, when we use Equation (1.12), then we observe

for k 6= 1 the following:(
∇∂tαk

)
|Mp

=
∑
l

c(∂t)c(sl)∇lαk |Mp
= 0.

Where we used that the derivative ∇lαk vanish on M , since we derive in TMp direction

and αk already vanish on Mp. The vanishing of αk on Mp is exactly the Equation (2.4).

Thus both initial conditions are satisfied and we can conclude by the uniqueness result for

normally hyperbolic system (see [8, Corollary 3.2.4,page 76]) that αk vanish for k 6= 1.
Here we needed the previous noticed fact that Mp is a Cauchy surface of Up.

�
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3.1 Properties of E and ∇V

The previous lemma yields the simplified solution (g, α = α1, Z) and we can con-

struct the vector field V = α
[(g)
1 and decompose V along the time orientation T in

the form uT − U = u(T − N) by the initial condition in Equation (2.4). The data

(g, V, Z) satisfies by construction the following equations:

Ric = Z − Sym(∇E), (3.1)

(d+ δg)V [ = 0, (3.2)

∇V Z(A,B) = 0 for all A,B ∈ TM, (3.3)

Z(V, ·) = 0. (3.4)

For the sake of completeness and latter usage we will write down the local expres-

sions of the equations above:

Ricab = Zab −
1
2
(
∇aEb +∇bEa

)
, (3.5)

(d+ δg)Va = 0, (3.6)

V c∇cZij = 0, (3.7)

V cZca = 0. (3.8)

The next goal is to show the vanishing of E and ∇V . The idea is to write down a

coupled system of a normally hyperbolic system and symmetric hyperbolic system

for the data that involvesE,∇V and terms that are derivatives and contractions ofE
and ∇V . Then we will write this coupled system locally as a symmetric hyperbolic

system and show that E and ∇V vanish. Here we will use the initial conditions

(Equations (2.1) to (2.6)).

In the following we will consider a bunch of tensors of different types, thus we

collect them in a single vector field:

η = (∇V,E,∇VE, (∇E)(V )).

This is a section of the bundle

E := (T ∗Up ⊗ TUp)⊕ T ∗Up ⊕ T ∗Up ⊕ T ∗Up,

which we equip with the induced covariant Laplace operator ∆ = ∇∗∇ acting in

each summand. We need furthermore the tensor ξ = δgL, where L is given by

Z − 1
2(trg Z)g. We want to show the following proposition.

Proposition 3.4: Let ∆ be the induced covariant Laplacian on E , (which acts

diagonally on the sections of E) then there exist linear operators F,H on E , such
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3 Global solution and the proof of Theorem 1.1

that

∆η = F (η,∇η, ξ), (3.9)

∇V ξ = H(η,∇η) (3.10)

holds.

The first step in this proof is to derive the coupled system in the data ∇V, E, ∇VE,
(∇E)(V ) and δgL. The following lemmata involves the following definition.

Definition 3.5: Let A,B,Cr ∈ Γ(T ∗,∗M) be tensors on a Riemannian manifold

(M, g) for r = 1, . . . , k. Then we write

A ≡ B mod (C1, . . . , Ck),

if there exists a linear function F : T ∗,∗M⊗N → T ∗,∗M in the variables C and all

possible contractions of elements Cr w. r. t. the metric g, which also depends on the
Riemannian metric g, such that A−B = F (C, CC) holds, where CC denotes the list

of all contractions of all elements of C.

The following example will be of great importance in future.

Example 3.6: We want to prove ∇V Z ≡ 0 mod (∇V ).

We decompose V in the form u(T − N) and rewrite this as T = 1
uV + N . Let

X = A + aT and Y = B + bT be general elements in TUp = TMp ⊕ RT , then we

calculate:

(∇V Z)(X,Y ) = (∇V Z)(A,B)︸ ︷︷ ︸
=0,Equation (3.4)

+b(∇V Z)(A, T ) + a(∇V Z)(T,B) + ab(∇V Z)(T, T )

So we consider the expressions (∇V Z)(T, T ) and (∇V Z)(T,X) for X ∈ TMp:

(∇V Z)(T, T ) = 1
u2 (∇V Z)(V, V ) + 2

u
(∇V Z)(V,N) + (∇V Z)(N,N)︸ ︷︷ ︸

=0

= 1
u2

∇V (Z(V, V ))︸ ︷︷ ︸
=0

−2Z(∇V V, V )︸ ︷︷ ︸
=0


+ 2
u

∇V (Z(V,N))︸ ︷︷ ︸
=0

−Z(∇V V,N)− Z(V,∇VN)︸ ︷︷ ︸
=0


= −2

u
Z(∇V V,N).
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So we have shown that (∇V Z)(T, T ) ≡ 0 mod (∇V ) holds.

Similar for (∇V Z)(V,X) ≡ 0 mod (∇V ):

(∇V Z)(T,X) = 1
u

(∇V Z)(V,X) + (∇V Z)(N,X)︸ ︷︷ ︸
=0

= 1
u

[
∂V (Z(V,X))− Z(∇V V,X)− Z(V,∇VX)

]
= −1

u
Z(∇V V,X).

In the following we will use frequently the commutator of covariant derivatives on

arbitary tensors, see [7, page 286].

Lemma 3.7: Let T
k1...kp

l1...lq
be a tensor of type (p, q), then the curvature of this tensor

in terms of the usual Riemannian curvature is given by

[∇a,∇b]T
k1...kp

l1...lq
=

p∑
r=1

R
kr

abm T
k1...kr−1,m,kr+1...kp

l1...lq
−

q∑
s=1

R
m

abls T
k1...kp

l1...ls−1,m,ls+1...lq
.

(3.11)

In particular the frequently used cases are

[∇a,∇b]Xc = R
c

ab dX
d (3.12)

and [∇a,∇b]T d
c = R

d
abmT

m
c −R

m
abc T

d
m . (3.13)

As indicated in Proposition 3.4, we have to compute the Laplacians of the sections

η and δgL in linear terms of η,∇η and δgL. We state the first result.

Lemma 3.8: The derivative ∇V satisfies:

∆∇V ≡ 0 mod
(
∇V,∇E, (∇∇E)(V ),∇∇VE,∇V∇E

)
.
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3 Global solution and the proof of Theorem 1.1

Proof.

We plug ∇V into the Laplacian:

∆∇aV b = ∇c ∇c∇a︸ ︷︷ ︸
commute

V b Equation (3.12)= ∇c
[
∇a∇cV b +R

b
ca dV

d
]

= ∇c∇a︸ ︷︷ ︸
commute

∇cV b + V d∇cR b
ca d +R

b
ca d∇

c
V d

Equation (3.13)= ∇a∇
c∇cV b − Ric c

a∇cV b +R
d b
a c∇dV c + V d∇cR b

ca d +R
b

ca d∇
c
V d

≡ ∇a∇
c∇cV b︸ ︷︷ ︸
(∗)

+V d∇cR b
ca d︸ ︷︷ ︸

(∗∗)

mod
(
∇V

)

We have an identity between the two Laplacians ∆HL := (d+δg)2 and ∆ := ∇a∇a given
by

∆HL = ∆ + Ric. (3.14)

This is a so called Weitzenböck formula. By the Equation (3.6) we have

0 = ∆HLV b = ∇a∇aV b + RicbaV a (3.15)

and can write (∗) as:

∇a∆V b Equation (3.15)= −∇a
[
RicbcV c

]
= −V c∇aRicbc − Ricbc∇aV c

Equation (3.5)= −V c∇aZbc + 1
2V

c
[
∇a∇

b
Ec +∇a∇cEb

]
− Ricbc∇aV c

≡ 0 mod
(
∇V,∇E, (∇∇E)(V ), (∇∇VE)

)
Where we used that the expression V c∇aZbc is equivalently given by:

V c∇aZbc = ∇a [ZbcV c]︸ ︷︷ ︸
=0,by Equation (3.8)

−Zbc∇aV c =
(

Ricbc + 1
2(∇bEc +∇cEb)

)
∇aV c

≡ 0 mod (∇V,∇E)

Finally we consider the expression (∗∗):

V d∇aR b
ac d = −V d

[
∇bR a

d ac +∇dR
ab
ac

]
(α)= V d

[
∇bRicda −∇dRicbc

]
= V d

[
∇bZda −

1
2∇

b[∇dEa +∇aEd]−∇dZbc + 1
2∇d[∇bEc +∇cEb]

]
≡ 0 mod

(
∇V,∇E, (∇∇E)(V ),∇V∇E,∇∇VE

)
.
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Where we used at (α) the second Bianchi identity: ∇aRbcde +∇bRcade +∇cRabde = 0.

�

Lemma 3.9: The 1-form (∇E)(V ) satisfies:

∆((∇E)(V )) ≡ 0 mod
(
∇V,∇∇V,E,∇E

)
.

Proof.

We calculate:

(∆((∇E)(V )))a = ∇c∇c(V b∇aEb)
= (∇c∇cV b)(∇aEb)︸ ︷︷ ︸

(α)

+2 (∇cV b)∇c∇aEb︸ ︷︷ ︸
(β)

+V b∇c∇c∇aEb︸ ︷︷ ︸
(γ)

.

(α): Here we use Equation (3.14) to obtain:

∆Vb = ∆HLVb︸ ︷︷ ︸
=0

−Ric a
b Va ≡ 0 mod (∇V ).

(β): Similar to the previous case.

(γ): We start with

V b∆∇aEb = V b∇c∇c∇aEb ≡ V b∇a∆Eb mod (∇V,∇∇V,E,∇E), (3.16)

where we used that if we pass by the covariant derivative ∇a along the Laplacian
we obtain curvature expressions depending on E.

Now we have to show the identity ∆Eb ≡ δLb mod E, where G(Z) := Z −
1
2 tr(Z)g is the Einstein tensor of Z and L := G(Z). We know by the vanishing

divergence of the Einstein tensor G(Ric), that we have

0 = δG(Ric) = δG(Z − Sym(∇E)) = δG(Z)− δG(∇E) = δL− δG(∇E)

and moreover

δG(∇E)a = ∇b
[1

2(∇bEa +∇aEb)−
1
2(∇bEb)

]
= 1

2

∇b∇b︸ ︷︷ ︸
=∆

Ea +∇a∇bEb −∇b∇aEb︸ ︷︷ ︸
=−RicabEb


and thus

0 = δLa −
1
2∆Ea −

1
2RicabEb. (3.17)
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3 Global solution and the proof of Theorem 1.1

We conclude ∆Ea ≡ δLa mod E. The Equation (3.16) reads as

V b∇a∆Eb ≡ V b∇a(δL)b mod (∇V,E,∇E)

and we look at the expression V bδLb and obtain

V bδLb = V b∇aZab −
1
2V

b∇bZ c
c

= ∇a (V bZab)︸ ︷︷ ︸
=0

−∇aV bZab −
1
2V

b∇bZ c
c ≡ 0 mod ∇V. (3.18)

Finally we have shown all remaining cases ((α), (β), (γ)) and conclude the claim. �

Lemma 3.10: The 1-form ∇V δL satisfies:

∇V δL ≡ 0 mod (∇V,∇∇V,∇E).

Proof.

We compute with the definition of L:

V b∇bδLa = V b∇b∇cZca −
1
2 V

b∇b∇aZ c
c︸ ︷︷ ︸

≡0 mod ∇V

≡ V b∇b∇cZca mod ∇V

= V b∇c∇bZca −R
c d
bc Zda −R

c d
ba Zcd

= V b∇c∇bZca︸ ︷︷ ︸
(α)

−V bRic d
b Zda︸ ︷︷ ︸

(β)

−V bR
c d
ba Zcd︸ ︷︷ ︸

(γ)

and look at the remaining cases:

(α): We already know that∇V Z ≡ 0 mod ∇V , hence∇∇V Z ≡ 0 mod (∇V,∇∇V ).

(β): This expression only depends on the first derivative of V , hence (β) ≡ 0 mod ∇V .

(γ): We argue similar to the previous case. The expression (γ) only depends on the first

and second derivative of ∇V and thus is equivalent to 0 mod (∇V,∇∇V,∇E).

�

- 26 -



3.2 Vanishing of E and ∇V

3.2 Vanishing of E and ∇V

In this section we want to show the vanishing of ∇V and E, in particular the proof

of Proposition 3.4. We will use the existence and uniqueness result from the theory

of symmetric hyperbolic systems.

Proof of Proposition 3.4.

Let η be given by (∇V,E,∇VE, (∇E)(V )), then ∆η is entrywise linear in the data η,∇η
and ξ, because of Lemma 3.8, Lemma 3.9 and Lemma 3.10:

∆∇V : Here we know by Lemma 3.8, that

∆∇V ≡ 0 mod (∇V,∇E, (∇∇E)(V ),∇∇VE,∇V∇E)

holds. All the expressions in the brackets are part of η or ∇η.

∆E: In the proof of Lemma 3.9 we have shown ∆E ≡ δL = ξ mod E.

∆∇VE: Here we have ∆∇VE ≡ ∇V ξ ≡ 0 mod (∇V,∇∇V∇E) by Lemma 3.10.

∆(∇E)(V ): Also by Lemma 3.9 we have: ∆(∇E)(V ) ≡ 0 mod (∇V,∇∇V,∇E).

∇V ξ: This is also clear by Lemma 3.10.

However we have constructed linear operators F andH, which depend linear on the data

η,∇η and ξ as indicated in the claim. �

Now we trivialize the bundle E on a neighbourhood U ⊂ M , w. l. o. g. U = Up
with coordinates (x0, . . . , xn) and consider for arbitary sections η and ξ the coupled
system of Equations (3.9) and (3.10) as an operator which acts on η, ξ and view this

as a normally hyperbolic operator.

We will use the fact that the operator P = ∆ − F (·,∇·, ξ) is a normally hyperbolic

operator for each ξ and write Equations (3.9) and (3.10) locally as a symmetric

hyperbolic system.

Proposition 3.11: We can write Equations (3.9) and (3.10) locally on M as a

symmetric hyperbolic system, under the assumption of the initial Equations (2.1)

to (2.6).

Proof.

We trivialize the bundle E in an open neighbourhood U of a point, i. e. E|U ∼= U × RN
where N = (n + 1)2 + 3(n + 1) and dim(M) = n + 1. We can write the operator

P := −∆ + F (·,∇·, ξ) : Γ(E|U )→ Γ(E|U ) for fixed ξ locally as

P (x) =
∑
µν

−gµν(x)∂µ∂ν +
∑
µ

Aµ(x)∂µ +B(x),
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3 Global solution and the proof of Theorem 1.1

because in Proposition 3.4 we have shown that the function F is linear in the correct

arguments, hence does not change the principial symbol of P . Let A = 0, . . . , N and

define the new variables κA := ∂tηA and ηA,i := ∂iηA. Then the system Pη = 0 is

equivalent to
∂tηA = κA

gij∂tηA,i = gij∂iκA

−g00∂tκA = 2g0j∂iκA + gij∂jηA,i + (A0) BA κB + (Ai) BA ηB,i + (B) BA ηB,

where we used the same arguments as in the proof of Proposition 2.2. When we set

A0
1(t, x) :=

1 0 0
0 gij 0
0 0 −g00

 , (b1)A(t, x, η, ∂η, ξ) := (A0) BA κB + (Ai) BA ηB,i + (B) BA ηB

Ai1(t, x) :=

0 0 0
0 gij gi0

0 g0j gij

 ,
then we can write the system above in the form of a symmetric hyperbolic system:

A0
1(t, x)

 ηA
ηA,i
κA

 =
∑
l

Al1(t, x, g)∂l

 ηA
ηA,i
κA

+ b1(t, x, η, ∂η, ξ)

Indeed, this is a symmetric hyperbolic system, since A0
1 is positive definite and Aµ1 is

symmetric.

When we look at Equation (3.10) and identify ∇µ = ∂µ + Γ as before, then we can write

this equations equivalently as:

∇V ξ = H(η,∇η)⇔ ∂tξ =
√
−g(∂t, ∂t)N i∂iξ + b2(t, x, η, ∂η, ξ)

Where we used V = u(T −N) and thatH only depends linear on the quantites η,∇η. we
define similarly to the previous case, A0

2(t, x) = id, Al2(t, x, g, λ) and b2 as above. This is
obviously a symmetric hyperbolic system.

Finally, when we patch these two systems together we obtain a bigger symmetric hyperbolic

system and hence the claim. �

The previous proposition shows that the data η and ξ satisfies locally a symmetric

hyperbolic system. In the next step we will use the uniqueness result for these

systems to show that the data vanish on the whole manifold Up.
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3.2 Vanishing of E and ∇V

Proposition 3.12: If we assume Equations (2.1) to (2.6), then the initial data for

η, ξ vanish on M , i. e.

g(V, V )|M = 0, η|M = 0,
∇T η|M = 0, ξ|M = 0.

Where η,ξ are given by (∇V,E,∇VE, (∇E)(V )) and ξ = δgL.

Proof.

In the following steps all equations are restricted to M , but we do not write this down

explicitly.

g(V, V )|M = 0: The initial data for V is given by V|M = uT − U (see Equation (2.4))

and now we can plug in:

g(V, V ) = u2 g(T, T )︸ ︷︷ ︸
=−1

−2u g(T,U)︸ ︷︷ ︸
=0

+ g(U,U)︸ ︷︷ ︸
=u2

= −u2 + u2 = 0

∇V|M = 0: The initial data for V is given by V|M = uT − U and when we use the

constraint equation for U,W (see Equation (1.1)) we obtain:

πTM (∇XV ) = ∇X(uT − U)|M = (∂Xu)T︸ ︷︷ ︸
=0,T|M =0

+u∇XT −∇XU = −uW (X)−∇XU = 0

and then πTM (∇XV ) vanish on M for X ∈ TM . When we derive g(V, V ) along
X ∈ TM and restrict to M , we obtain:

0 = 1
2∂Xg(V, V ) = g(∇XV, V ) = ug(∇XV, T )− g(∇XV,U)︸ ︷︷ ︸

=0

and thus g(∇XV, T ) = 0. We obtain ∇XV = 0 onM . In the next step we have to

show ∇TV = 0 on M . We start with Equation (3.2):

0 = (d+ δg)V [ = (c ◦ ∇)(V [)

and obtain c(T )(∇TV [) = 0 by the previous case. When we multiply with c(T ),
we obtain

0 = c(T )c(T )(∇TV [) = +(∇TV [)

and have ∇TV = 0. Finally ∇V vanish on M .
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3 Global solution and the proof of Theorem 1.1

E|M = 0: This is clear by the previous Remark 2.1.

∇E|M ,∇VE|M , (∇E)(V )|M = 0: By the previous point it is clear that ∇XE vanish on

M for X ∈ TM . So we have to show that ∇TE vanish on M . We rewrite the

Einstein tensor G ( given by Ric− 1
2scal · g) with the help of Equation (3.1) in the

following way:

Gab = Ricab −
1
2Ric c

c gab

= Zab −∇(aEb) −
1
2(Z c

c −∇cEc)gab. (3.19)

On the other hand we have the well-known hypersurface formulas on M :

G(T, T ) = 1
2
(
scal− trg(W 2) + (trgW )2

)
,

G(T,X) = (d trgW )(X) + (δgW )(X),

for X ∈ TM . These are consequences of the Codazzi and Mainardi equations, see

[25]. When we combine these formulas for (ab) = (0i), we obtain

G0i = ∇iW k
k −∇kW k

i = Z0i −
1
2(∇0Ei +∇iE0), (3.20)

because g0i = h0i = 0 holds on M . Since Z(T,X) = Z(N,X) + 1
u Z(V,X)︸ ︷︷ ︸

=0,Equation (3.4)

holds, we have

−1
2(∇0Ei +∇iE0) = ∇iW k

k −∇kW k
i − Z0i = ∇iW k

k −∇kW k
i −N jZij = 0.

Where the expression vanish by the Equation (2.5). We know already that ∇iE0
vanish onM and hence by the above argumentation also ∇0Ei = 0 onM . Finally

we have to consider the term ∇0E0.

Therefore we consider again the Equation (3.19) for (ab) = (00) to obtain

1
2(scal−WijW

ij + (W k
k )2) = G00 = Z00 −∇0E0 −

1
2 g00︸︷︷︸

=−1

(Z c
c −∇cEc)

= Z00 + 1
2( Z 0

0︸︷︷︸
=−Z00

+Z k
k )−∇0E0 −

1
2(∇0E

0 +∇kEk)

= 1
2Z00 −

1
2∇0E

0 + 1
2Z

k
k −∇kEk︸ ︷︷ ︸

=0

.
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When we use the simple rewriting Z00 = Z(T, T ) = Z(N,N) + 2
uZ(N,V ) +

Z(V, V ) = N iN jZij , we obtain

∇0E0 = N iN jZij + Z k
k − (scal−WijW

ij + (W k
k )2). (3.21)

The last step in this part is to show that the previous term vanish on M . We recall

the connection between u,U,N and W :

Ni = 1
u
Ui, u2 = g(U,U), ∇iUj + uWij = 0.

We derive the second equation in direction ∂i, to obtain

u∇iu = 1
2∇i(u

2) = g(∇iU,U) = −ug(W (ei), U)

and rewrite this as ∇iu = −uNkWik, where we used the equations above for

u,U and W . With this connection we will rewrite the first initial data (see Equa-

tion (2.5)) on Z:

Z(N,N) = N iN jZij = N i∇iW j
j −N

i∇jWij

= N i∇i
[
−1
u
∇jU j

]
−N i∇j

[
−1
u
∇iUj

]
= N i∇i

(
−1
u

)
∇jU j −

1
u
N i∇i∇jU j −N i∇j

(
−1
u

)
∇iU j + 1

u
N i∇j∇iU j

= 1
u2N

i∇i∇jU j −
1
u
N i∇i∇jU j −

1
u2N

i∇ju∇iU j + 1
u
N i∇j∇iU j

= −1
u
N iNkWik∇jU j −

1
u
N i (∇i∇j −∇j∇i)U j + 1

u
N iNkW j

k∇iUj

= N iNkWikW
j
j −N

iNkR j
ij k −N

iNkWijW
j
k

= −N iNk
[
WijW

j
k −WikW

j
j − Ricik

]
= −W 2(N,N) +W (N,N) trgW + Ric(N,N)

Nowwe pick an orthonormal basis of TM of the form e1, . . . , en−1, en, with en = N .

Indeed, this is orthogonal, since g(N,N) = 1
u2 g(U,U) = 1 holds. We rewrite the
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3 Global solution and the proof of Theorem 1.1

expression Z k
k +N iN jZij in the following way:

Z(N,N) +
n∑
i=1

Z(ei, ei) = 2Z(N,N) +
n−1∑
i=1

Z(ei, ei)

= −2W 2(N,N) + 2W (N,N) trgW + 2 Ric(N,N) +
n−1∑
i=1

Ric(ei, ei)

−R(ei, N, ei, N)−W 2(ei, ei) +W (ei, ei) trgW +W (ei, N)2 −W (ei, ei)W (N,N)

= Ric(N,N) +
n−1∑
i=1

Ric(ei, ei)) + Ric(N,N)−
n−1∑
i=1

R(ei, N, ei, N) +W (N,N) trgW

+ (trgW )2 −W 2(N,N)− trg(W 2) +
n−1∑
i=1

W (ei, N)2 −W (ei, ei)W (N,N)

= scal +(trgW )2 − (trgW 2) +
n∑
i=1

W (ei, N)2 −W 2(N,N)︸ ︷︷ ︸
=0

.

This concludes that the right hand side of Equation (3.21) vanish and hence

∇aE|M = 0. In particular ∇E|M = 0 , ∇VE|M = 0 and (∇E)(V )|M = 0.

∇∇V|M = 0: We already know that ∇V vanish onM , hence ∇i∇aV b
|M = 0. In the first

case we show that ∇0∇iV b vanish on M , i. e. a = i, or equivalently:

∇0∇iV b = ∇i∇0V
b︸ ︷︷ ︸

=0

+R b
0i aV

a. (3.22)

Consider the term R0abcV
b for (b, c) = (i, j) and (b, c) = (0, j):

R0aijV
a = −Rija0V

a = 0,

by ∇i∇aV|M = 0 and

R
0

0ajV
a = −RicajV a +R

k
akjV

a = 0,

where RicabV a vanish onM by Equation (3.1) and Equation (3.4). This concludes

R0abcV
a = 0 on M .

We will use this fact to rewrite the condition of the vanishing of Equation (3.22) by

the following: We will use the indices r, s that have the range 1, . . . , n− 1 and set

i = n for the vector field N . We can restrict the indices i, j in Ria0jV
a to i, j 6= n,

because of the following calculation:

Rna0jV
a = R( N︸︷︷︸

T− 1
u
V

, V, T,Ej) = R(T, V, T,Ej) = R0a0jV
a = 0
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and conclude

Ria0nV
a = R(ei, V, T,N) = −1

u
R(ei, V, T, V ) = −1

u
Rib0aV

aV b

= −1
u
R0aibV

a︸ ︷︷ ︸
=0

V b = 0.

We consider:

Rra0sV
a V

0=u,V i=−uN i

= uRr00s − uN iRri0s

= uR
0

r0s − uN iN jRrijs −RriasV a︸ ︷︷ ︸
=0

N i

= uRicrs − uR
i

ris − uN iN jRrijs.

Since we know that ∇E vanish on M and the Equation (3.1) holds, it follows:

Zrs = N iN jRrijs +R
i

ris . (3.23)

When we use the Gauß equation in its local form

Rijkl = Rijkl −WikWlj +WilWkj

to rewrite the Equation (3.23) and replace all the data on Up by data on M , we

obtain exactly second initial condition on Z, i. e. Equation (2.6) and hence we have
shown that ∇a∇iV vanish on M .

In the last step we consider ∇0∇0V on M . The conclusion follows from the fact

that RicabV a vanish on M and thus

0 = ∆HLV b = ∆V b + Ric b
a V

a︸ ︷︷ ︸
=0

= ∇c∇
c
V b = ∇i∇

i
V b︸ ︷︷ ︸

=0

−∇0∇0V
b.

Where we used the identity ∇i∇jV b = 0 on M . This shows that ∇∇V vanish on

M .

δgL|M = 0: We start with the expressionRicbc = Zbc−∇(bEc) and the fact that∇a(V aZbc)
vanish by Example 3.6 and the vanishing of ∇V . This yields:

V a∇aRicbc = V a∇a∇(bEc) = 1
2V

a
(
∇a∇bEc +∇a∇cEb

)
= 1

2V
a
(
∇a∇bEc −∇b∇aEc +∇a∇cEb

−∇c∇aEb +∇b∇aEc +∇c∇aEb
)

= V aR d
a(bc) Ed + V a∇(b∇aEc).
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3 Global solution and the proof of Theorem 1.1

Now we set (b, c) = (0, j) in the previous equation to obtain

V a∇aRic0j = V aR
d

a(0j)︸ ︷︷ ︸
=0

Ed + V a∇(0∇aEj)

= 1
2V

a

∇0∇aEj + ∇j∇aE0︸ ︷︷ ︸
=0,∇E=0 onM


= 1

2V
a∇0∇aEj

V 0=u,V i=−uN i

= u

2∇0∇0Ej −
u

2 N
i∇0∇iEj︸ ︷︷ ︸

=(∗)

.

The term (∗) vanish by the following computation:

N i∇0∇iEj = N i∇i∇0Ej︸ ︷︷ ︸
=0

+N iR d
0ij Ed = R(T,N, ej , E]) = R(T, T − 1

u
V, ej , E

]) = 0.

On the other hand we can rewrite the curvature expression V a∇aRic0j with the

second Bianchi identity as

V a∇aRic0j = −V a∇aR
i

ji0 = V a(∇jR
i

ia0 +∇iR
i

aj0)

and the last two terms vanish because R
i

ia0V
a vanish on M and hence the deriva-

tive in M direction. We can conclude that ∇0∇0Ej vanish on M and by Equa-

tion (3.17) we have ∆Ei − Ric(E], ·)i = 2δgLi, hence δgLi = 0 on M . The time

component of δgL is given by

δgL0 = δgL( T︸︷︷︸
1
u
V+N

) = 1
u
V a(δgL)a +N i δgLi︸ ︷︷ ︸

=0

and vanish by the fact that the Equation (3.18) is linear in the vanishing term ∇V
and we already know that ∇V vanish on M . We conclude that δgL vanish on M .

∇T∇VE|M = 0: In the previous step we have shown that V a∇0∇aEi vanish. It remains
to show that V a∇0∇aE0 vanish onM . We use again the fact that ∆E0 vanish and
that we have the identity

0 = ∆E0 = ∇c∇
c
E0 = ∇0∇

0
E0 +∇i∇

i
E0︸ ︷︷ ︸

=0

.

This concludes that ∇0∇0E0 vanish and thus ∇0∇0Eb = 0. Finally:

V a∇0∇aE0 = u∇0∇0E0 − uN i∇0∇iE0 = N i∇i∇0E0 +N iR
d

0i0 Ed

= R(T,N, T,E]) = R(T, T − 1
u
V, T,E]) = 0.
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3.3 Global solution and shape of the Lorentzian metric

So we had considered all different cases and the conclusion follows. �

Finally we can conclude the following corollary.

Corollary 3.13: The data E and ∇V vanish on Up.

Proof.

We recapitulate the previous steps: We have shown that η and ξ satisfies locally a sym-

metric hyperbolic system (see Proposition 3.11) and the initial data vanish on M (see

Proposition 3.12), thus (by the uniqueness) all components of η and ξ vanish, in partic-

ular E and ∇V . �

We can summarizes the previous results. For every Riemannian manifold (M, g)
equipped with a nowhere vanishing vector field U and endomorphism W , which

satisfies Equation (1.1), we obtained a time-oriented Lorentzian manifold (Up, g Up)
around every point p ∈ M with a parallel null vector field V . This construction

depends on the background metric h that we have chosen on the backgroundR×M ,

but it depends uniquely on this choice. The vanishing of E gives us the direct

correlation between the two metrics g and h.

3.3 Global solution and shape of the Lorentzian metric

In the last section we constructed a local solution for the Riemannian Cauchy prob-

lem, which we obtained by a local reformulation of the constraint equation. But

now we want to globalize this construction. Let p be a point in M , then we write

the solution of the Cauchy problem on a neighbourhood of this point as ωp =
(g Up , V Up , ZUp), where Up is the globally hyperbolic Lorentzian manifold which we

obtained as a solution. Let q be another point ofM with solution ωq = (g Uq , V Uq , ZUq ),
such that Up∩Uq 6= ∅ holds. Since ωp and ωq are solutions of the local reformulation

of (EQ) and this system has a unique solution, they coincide on the intersection,

i. e.

wp|Up∩ Uq
= wq |Up∩ Uq

.

Hence we can construct the global solution as the union of all local solutions, i.e.

M =
⋃
p∈M
Up ⊂ R×M.
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3 Global solution and the proof of Theorem 1.1

Moreover, the data w = (g, V, Z) is given by a union of all local solution. This gives

a well-defined Lorentzian metric g, since each local solution gUp is a solution in the

space Gp (see Equation (2.7)) and the spacelike hypersurface (M, g) embeds into

(M, g) with the Weingarten map W . Indeed, the Weingarten map of the inclusion

is given by W . We have to show that

∇XY −∇XY = −W (X,Y )T

holds for all X,Y ∈ TM and T is the time orientation given by T = 1
u(U + V ). It

is clear that the difference of the connections vanish in TM direction and thus it

remains to consider the projection in V direction.

g(∇XY −∇XY, V ) = g(∇XY, V )− g(∇XY, V )
= ∂Xg(V,X)− g(Y, ∇XV︸ ︷︷ ︸

=0,∇V=0

) + g(∇XY, U)

= −∂Xg(Y, U) + ∂Xg(Y, U)− g(∇XU, Y )
= −g(∇XU, Y ) = uW (X,Y ).

In the last step we used the Riemannian constraint equation. Now we are able to

write the difference of the connections with respect to a generalised local orthonor-

mal frame (T, ei) of TM :

∇XY −∇XY = −g(∇XY −∇XY, T )T +
∑
i

g(∇XY −∇XY, ei)ei

= −1
u
g(∇XY −∇XY, V )T

= −1
u
uW (X,Y )T = −W (X,Y )T.

Thus the Weingarten map is given by W . Finally, we have a parallel null vector

field V as desired.

3.3.1 M is a Cauchy surface of M

In this part, we have to show that (M, g) embeds into (M, g) as a Cauchy surface, i.e.
every inextendible timelikeC1-curve intersects (M, g) exactly once. So let γ : I →M
be such a curve, then there exists a time tp ∈ I where the curve goes through Up, i.e.
γ(tp) ∈ Up. W. l. o. g. we consider the curve which is γ restricted to this globally

hyperbolic Lorentzian manifold Up. Indeed, we only have to consider the curve in

the subset Up of M , since we can choose a countable covering of M by Up’s. If the
curve intersects the hypersurface M more than once, we can choose a subcovering
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3.3 Global solution and shape of the Lorentzian metric

of the covering above and obtain a contradiction by the timelikeness of the curve γ.
Finally we have to show that the curve hits the hypersurface exactly once. So let γ
be the curve that lies in Up, then we can consider the splitting of the curve

γ = (γt, γM ),

which we get by the splitting of ambient Lorentzian manifoldM ⊂ R×M . We have

g(γ̇, γ̇) < 0 by the timelikeness of the curve. Thus

g( ˙γM , ˙γM ) + 2g(γ̇t∂t, ˙γM ) + g(γ̇t∂t, γ̇t∂t) < 0. (3.24)

When we think back to the construction of the local Lorentzian metric g, we obtain
a contradiction if we assume that there exists a time t′ ∈ I such that γ̇t(t′) vanish. By
Equation (3.24) we obtain the condition g Up( ˙γM (t′), ˙γM (t′)) < 0 and see that this

is a contradiction by the construction of g, since the spatial part of the Lorentzian
metric is positive, see Equation (2.7).

Hence the map γ̇t is strictly monotone and by assumption on the hypersurface Mp

we see that γ hits M exactly once. So have shown that the hypersurface M is a

Cauchy surface of M .

3.3.2 The metric g is of the form −λ̃2dt2 + gt

Finally we have to show that our solution (M, g) is of the form (M,−λ̃2dt2 + gt) (up
to a diffeomorphism). On the first hand we consider the projection map t : M →
R, (t, x) 7→ t and the corresponding gradient vector field gradg(t). We consider two

derived objects for this gradient vector field: The rescaled vector field

F := 1
dt(gradg(t))

· gradg(t)

and the flow φ of F . The vector field F is well-defined, since we have

dt(gradg(t)) = g(gradg(t), gradg(t)) < 0,

by Equation (2.7). We can prove the following lemma.

Lemma 3.14: The flow φ of F sends level sets to level sets, i. e. we have φs(p) ∈
Mt+s for any p ∈Mt := {t} ×M . Moreover, the map

ψ : U :=
{
(t, x) ∈M | φt(x) exists

}
→M

(t, x) 7→ φt(x)
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3 Global solution and the proof of Theorem 1.1

is a well-defined diffeomorphism.

Proof.

Let p be a fixed point inMt for any t ∈ R such that φt(p) exists. Then we define the map

f(s) := t(φs(p)) for any s such that this expression is well-defined and check the identity

f(s) = s+ t for f . It is immediate, when we compute the derivative of the function f :

f ′(s) = dφs(p)t(dφs(p)) = dφs(p)t(F ) = 1

and hence we have f(s) = s · f ′(0) + f(0) = s + t. So a point p ∈ M is by defintion

in a level set Mt if t(p) = t holds. We have shown that p ∈Mt is map to φs(p) ∈Mt+s,
i. e. sends level sets to level sets.

We know by the previous part, that the hypersurface M0 is a Cauchy surface, hence the

curve γ : I → M, s 7→ φs(p) hits M0 exactly once. Therefore exists a unique τ(p) ∈ R
such that φ−τ(p)(p) ∈ M0 holds. So we can define the invers map of ψ with the help of

τ(p):

ψ−1 : M → U
p 7→ (τ(p), projM (φ−τ(p)(p)))

This is obviously a well-defined smooth map and by the previous argument also an invers

of ψ. This shows the claim. �

To conclude the proof of Theorem 1.1 we consider the pullback metric ψ∗g on U .
Initially we compute the derivative of the map ψ at a point p = (s, x) ∈ U and

obtain

(dpψ)(∂t) = F|ψs(x),

by the definition of the flow ψ of F . Thus we can compute the pullback metric ψ∗g
with the help of the previous identity:

(ψ∗g)(s,x)(∂t, ∂t) = gψs(x)(F, F ) = 1
g(gradg(t), gradg(t))

< 0

(ψ∗g)(s,x)(∂t, X) = gψs(x)(F, d(s,x)ψ(X)) = 0

Where X is an element of TMs, which is orthogonal to the gradient gradg(t). Hence
we can write the pullback metric as

ψ∗g = −λ̃2dt2 + gt,

where λ̃ :=
[
−g(gradg(t), gradg(t))

]− 1
2
and gt is a family of Riemannian metrics

which comes from the pullback construction and is given by gt(X,Y ) := (ψ∗g)(X,Y ).
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3.3 Global solution and shape of the Lorentzian metric

Finally we have to show Equation (1.3): Since the diffeomorphism ψ restricts to the

identity on the level set M0 we obtain g0 = g. Furthermore we have

λ̃|M =
[
−h(gradh(t), gradh(t))|M

]− 1
2 = λ|M ,

where we used the definition of the background metric, i. e. Equation (1.7). We

conclude for the proof of Theorem 1.1, that we pass from (M, g) to the isomorphic

Lorentzian manifold (U , ψ∗g) and obtain everything as in the claim. This shows the

Theorem 1.1.
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4 Alternative ansatz for the constraint
equation

In the last sections we constructed an extension (M, g) for a Riemannian manifold

(M, g) with nowhere vanishing vector field U , a g-symmetric endomorphismW and

the function u =
√
g(U,U), which satisfies

∇U + uW = 0.

In this chapter we want to show an alternative way to solve the Cauchy problem

corresponding to Equation (1.1) to obtain a Lorentzian manifold (M, g) with parallel
null vector field V , which extends U and has (M, g) as a Cauchy surface. We follow

some ideas from a discussion with Piotr Chrusciel, see [26].

The basic idea is to choose suitable coordinates on a tubular neighbourhood of M
in M and express the Lorentzian metric g in terms of data on M . In this way we

can omit the involved PDEs, that we considered in the previous sections and reduce

everything to simple manipulation of metrics.

Let (M, g) be a Lorentzian manifold with parallel null vector field V and let U be

the tubular neighbourhood of M in M , where the flow φVt of the vector field V is

well-defined. This flow is an isometry, since V is a Killing vector field, i. e. we have

to show that the Lie derivative of the metric g vanish along V : LetX,Y ∈ TM , then

we consider:

(LV g)(X,Y ) = ∂V (g(X,Y ))− g([V,X], Y )− g(X, [V, Y ])
= g(∇VX,Y ) + g(X,∇V Y )− g(∇VX −∇XV, Y )− g(X,∇V Y −∇Y V )
= g(∇XV, Y ) + g(X,∇Y V ) = 0.

Thus the Killing vector field V generates an isometric flow φVt
1.

1The arguments that follow do not depend on the fact that V is parallel. The crucial ingredient is

that the generated flow of V is an isometry, thus we could restrict to the assumption that we start

with a Killing vector field V .
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4 Alternative ansatz for the constraint equation

However we can extend the nowhere vanishing vector field V = ∂
∂t to a frame

∂
∂t ,

∂
∂x1 , . . . ,

∂
∂xn of TU with x a fixed chart ofM . Then we can write the metric g in

these coordinates in the general form:

g = −λtdt2 + αt � dt+ gt (4.1)

Where λt, αt and gt depend smoothly on the time coordinate t and � denotes the

symmetric tensor product, i. e. α�β := 1
2(α⊗β+β⊗α). When we act on the metric

by the flow φVs , we obtain the shifted version of the metric for sufficent small s:

(φVs )∗g = −λt+sdt2 + αs+t � dt+ gt+s.

But we know that the flow acts as an isometry and thus fixes the metric g. We have

the identity

(φVs g) = g

for all s in a small intervall where φVs is defined, hence by the basis representation

of dt, dx1, . . . , dxn the coefficients in Equation (4.1) are time independent. So we

have

g = −λdt2 + α� dt+ g,

because the metric restricts on {t = 0} = M to the metric g.

When we use that the vector field V is lightlike, we obtain

0 = g(V, V ) = −λ+ α(V )︸ ︷︷ ︸
=0

dt(V ) + g(V, V )︸ ︷︷ ︸
=0, since g(V,·)=0

= −λ

and thus λ vanish. Let X ∈ TM , then we consider the TM -projection:

g(V,X) = (α� dt)(V,X) + g(V,X) = 1
2(α(V )dt(X) + α(X)dt(V )) = 1

2α(X)

and thus

α(X) = 2g(V,X) g(T,X)=0= −2g(U,X) = −2g(U,X).

Finally we have α = −2U [.

We conclude that we can express the metric g in the tubular neighbourhood U in

data of M :

g = −2U [ � dt+ g on U .

Now we are able to construct a solution for a similar Cauchy problem as in Theo-

rem 1.1.

- 42 -



Proposition 4.1: Let (M, g) be a Riemannian manifold with a nowhere vanishing

vector field U , a g-symmetric endomorphism W and the function u =
√
g(U,U),

which satisfies

∇U + uW = 0.

Then there exists a solution (M, g, V, T ), given by a Lorentzian manifold (M, g) as
a open subset of R ×M with Cauchy surface M , a parallel null vector field V and

a time orientation T , of the following system:{
∇gV = 0, on M

V = −U, on M.
(4.2)

Moreover, the Weingarten map of the inclusion M ↪→M is given by the map W .

Remark 4.2: The second equation of Equation (4.2) is an identity of sections in

tangent bundle TM or in other words: We have an orthogonal decomposition of

TM = RT ⊕ TM and therefore a projection πTM,T onto the TM part. The second

equation of Equation (4.2) is an identity with respect to this projection.

Proof of Proposition 4.1.

Let (M, g) be the Riemannian manifold equipped with a nowhere vanishing vector field U ,
a g-symmetric endomorphismW and the function

√
g(U,U), which satisfies∇U+uW =

0. We consider M = R×M equipped with the metric

g = −2U [ � dt+ g,

where t corresponds to the first coordinate ofM . Moreover, we define V := ∂t as a section

of TM → M and have to prove that this nowhere vanishing vector field is parallel and

null.

V is null: We plug V into the metric:

g(V, V ) = −2(U [ � dt)(V, V ) + g(V, V )
= −2(g(V,U)) + g(V, V ) = 0,

since g(V, ·) = 0. Now we define a time orientation of M by T := 1
u(V + U) and

check

g(T, T ) = −2g(T,U)dt(T ) + g(T, T ) = 1
u2 (−2g(U,U) + g(V + U, V + U))

= 1
u2 (−2u2 + u2) = −1.

Thus T is a time orientation.
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4 Alternative ansatz for the constraint equation

V is parallel: We use the Koszul formula for the metric g:

2g(∇XV, Y ) = X(g(V, Y )) + V (g(X,Y ))− Y (g(V,X))
+ g([X,V ], Y )− g([X,Y ], V )− g([V, Y ], X).

for all X,Y ∈ TM = RV ⊕TM and check all different cases. We start with∇V V
on the V -projection:

2g(∇V V, V ) = V g(V, V ) = 0

We go on with ∇V V on the other part Y ∈ TM :

2g(∇V V, Y ) = V g(V, Y ) + V g(V, Y )− Y g(V, V )
+ g([V, V ], Y )− g([V, Y ], V )− g([V, Y ], V )

= 2 (V g(V, Y )− g([V, Y ], V ))
= 2 (g([V, V ], Y ) + g([V, Y ], V )− g([V, Y ], V )) = 0

Thus ∇V V vanish. In the next step we want to show that ∇XV vanish for all

X ∈ TM .

2g(∇XV, V ) = Xg(V, V ) + V g(X,V )− V g(V,X)
+ g([X,V ], V )− g([X,V ], V )− g([V, V ], X) = 0

Finally we consider X,Y ∈ TM :

2g(∇XV, Y ) = Xg(V, Y ) + V g(X,Y )− Y g(V,X)
+ g([X,V ], Y )− g([X,Y ], V )︸ ︷︷ ︸

=−g([X,Y ],U)

−g([V, Y ], X)

= −Xg(U, Y ) + Y g(U,X) + g([V,X], Y )
+ g(X, [V, Y ]) + g([X,V ], Y )− g([V, Y ], X)− g([X,Y ], U)

= −g(∇XU, Y ) + g(∇Y U,X) + g([X,Y ]−∇XY +∇YX,U) = 0

Where we used that ∇U = −uW is g-symmetric by assumption. We conclude that

V is a parallel null vector field.

Cauchy problem is solved by (M, g, V, T ): We have to show that the above constructed

vector field V satisfies the Equation (4.2). The first part of Equation (4.2) follows

directly from the calculation above. The second part of Equation (4.2) is a conse-

quence of the decomposition V = uT − U in TM = RT ⊕ TM . When we use the

projection πTM,T : TM = RT ⊕ TM → TM,X 7→ X + g(T,X)T , we obtain:

πTM,M (V ) = V + g(T, V )T = V − uT = −U.
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W is the second fundamental form of (M, g) ↪→ (M, g): We deduce thatM is Cauchy

surface in M , since all inextendible timelike curves intersect M exactly ones. This

follows in an analogous way as in Section 3.3.1. In particular we can do the same

calculation as in Section 3.3 to show that the Weingarten map is given by W .

�

In the previous proof, we constructed a Lorentzian manifold with a metric of the

form g = −2U [ � dt + g. In accordance with the statement of Theorem 1.1 we

are interested in the existence of a diffeomorphism φ, such that the pullback φ∗g
is of the form like in the conclusion of Theorem 1.1, i. e. the metric is of the form

−λ̃2dt2 + gt and λ̃, gt restricts on the hypersurface to the stated objects λ, g.

In the following we will need the extension of a tensor on T ∗M to a tensor on

T ∗(M ×R). So let T be a tensor in (T ∗
xM)⊗n for a point x ∈M , then we define the

extension E(T ) ∈ (T ∗
(x,0)M ×R)⊗n as the following:

E(T )(X̃1, . . . , X̃n) := T (X1, . . . , Xn)

for all X̃i = Xi + ai∂t ∈ T ∗
xM × T0R. This construction is unnatural in the sense,

that it is not compatible with pullback.

In the next theorem we will prove the existence of a suitable diffeomorphism or in

other words: We find a diffeomorphism, which deforms the solution metric from

the last proof into the form −λ̃2dt2 + gt and moreover fixes the Cauchy surface.

Theorem 4.3: Let (N,h) be a time-oriented Lorentzian manifold with a compact

spacelike hypersurface M and λ : M → (0,∞) is a smooth function. Then we can

construct the following objects:

• An ε > 0.

• A function λ̃ : M × (−ε, ε)→ R.

• A map φ : M × (−ε, ε)→ N .

• A smooth family of Riemannian metrics (gt)t∈(−ε,ε).

These objects satisfying the following statements:

• We have λ̃(x, 0) = λ(x) for all x ∈M and g0 = g, where g := (M ↪→ N)∗h.

• The map φ is a diffeomorphism on its image and fixes the hypersurface, i. e.

φ(x, 0) = x for x ∈M .
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4 Alternative ansatz for the constraint equation

• The pullback of h along φ is given by:

φ∗h = −λ̃2dt2 + E(gt)

Proof.

At the beginning we have (by compactness and time orientation) a timelike normal vector

field T (i. e. h(T, T ) = −1) given on a neighbourhoodM × (−ε, ε) ofM in N , which is

orthogonal to the tangent space TxM for every point x ∈ M . Additionally we consider

the flow of the vector field Z(x, t) = λ(x)T (x, t), defined by:

dφZt
dt

(x) = ZφZ
t (x) = λ(x)T (φZt (x)), for all (x, t) ∈ N × (−ε, ε)

φZ0 = id

We write ψ for the restricted flow to the open neighbourhoodM × (−ε, ε), i. e. ψ(x, t) =
φZt (x) and ψ(x, 0) = x for x ∈ M (We choose an ε small enough s. t. the identification

is possible). When we consider the pullback of the metric h along the diffeomorphism ψ,
we obtain the general form:

ψ∗(h) = −λ2dt2 + 2E(X[
t )� dt+ E(g̃t).

Where Xt is a time dependent family of vector fields on M or in other words a section

M×(−ε, ε)→ TM . The spacelike part of ψ∗h is given by a family of Riemannian metric
g̃t onM , i. e. g̃t(∂xi , ∂xj ) = (ψ∗h)(∂xi , ∂xj ) for a frame (∂xi)i of TM . This is true, since

ψ∗∂xi is tangent to TM by the orthogonality Tx ⊥ TxM for all x ∈ M and the flow

equation for Z. The lapse function of ψ∗h is given by the initial λ, since ψ∗∂t = λT holds

by the flow equation of ψ and therefore we have

(ψ∗h)(∂t, ∂t) = h(ψ∗∂t, ψ∗∂t) = λ2h(T, T ) = −λ2.

We like to have a diffeomorphism φ : M × (−ε, ε) → M × (−ε, ε) which satisfies an

identity of the form φ∗(h) = −λ̃2dt2 + E(gt) for suitable λ̃ and gt. In accordance with

that we consider the flow ρt := φ−Xt
t of the time dependent vector field −Xt, which

satisfies:

d

dt
(ρt)(y,t) = −(Xt)ρt(y,t), for (y, t) ∈ N × (−ε, ε).

ρ0 = id

Now we are able to write down all the necessary steps for the construction of the desired

diffeomorphism φ:

- 46 -



1) First we define the diffeomorphism Θ: M×(−ε, ε)→M×(−ε, ε), (x, t) 7→ (θt(x), t),
where θt is given by the invers of the flow ρt, i. e. θt := ρ−1

t . We check that this map

fixes the hypersurface M . Let x ∈M , then we have Θ(x, 0) = (θ0(x), 0) = (x, 0), by
the flow equation for ρt.

2) In the second step we define the vector field Vt := d
dtθt and check that this satisfies the

identity Vt = (θt)∗Xt. Indeed this is true, since we can derive the identity ρt ◦ θt = id
and use the flow equation for ρt.

3) In the third step we define the Lorentzian metric H = −λ̃2dt2 + gt on M × (−ε, ε),
where gt and λ̃ are given by ρ∗

t g̃t and θ
∗
t

[
λ2 − gt(Vt, Vt)

] 1
2 . The smooth function λ̃ is

well-defined, since Xt vanish for t = 0 and therefore Vt by the previous step. This has
the consequence that the expression λ2−gt(Vt, Vt) is positive in a small neighbourhood
of {t = 0} in M × (−ε, ε), since λ is positive by assumption.

4) In the next step we check that the diffeomorphism Θ pulls back the metric H =
−λ̃2dt2 + gt to ψ

∗h, i. e. Θ∗H = ψ∗h: Let (∂xi)i be a local frame of TM , then

we check the spatial part of the metric Θ∗H:

(Θ∗H)(∂xi , ∂xj ) = H(Θ∗∂xi ,Θ∗∂xj ) (α)= (θ∗
t gt)(∂xi , ∂xj ) = g̃t(∂xi , ∂xj )

Where we used at (α) that Θ∗∂xi is tangential to TM , since by the definition of

Θ(x, t) = (θt(x), t) there is no ∂t shift. The next step we look at the mixed part of

T (M × (−ε, ε)):

(Θ∗H)(∂t, ∂xi) = H(Θ∗∂t,Θ∗∂xi)
(β)= H(∂t + Vt, (θt)∗∂xi)
= H((θt)∗Xt, (θt)∗∂xi)
= gt((θt)∗Xt, (θt)∗∂xi)
= (θ∗gt)(Xt, ∂xi)
= g̃t(Xt, ∂xi)

Where we used at (β) that Θ∗∂t is given by ∂t + Vt. This follows directly from the

definition of Θ(x, t) = (θt(x), t) and Vt = d
dtθt. In the last step we look at the time

part of metric Θ∗H:

(Θ∗H)(∂t, ∂t) = H(Θ∗∂t,Θ∗∂t)
= H(∂t + Vt, ∂t + Vt)
= −(λ̃ ◦ θt)2 + gt(Vt, Vt) = −λ2
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4 Alternative ansatz for the constraint equation

Where we used in the last step the definition of λ. Now we are able to write down the

global form of the Lorentzian metric Θ∗H:

Θ∗H = −λ2dt2 + 2dt� E(X[
t ) + E(g̃t)

This shows the identity Θ∗H = ψ∗h

5) In the last step we set φ = ψ ◦Θ−1 and check that this does the job:

φ∗h = (ψ ◦Θ−1)∗h = Θ∗ ◦ ψ∗h = Θ∗Θ∗H = H.

Therefore we have the desired identity φ∗h = −λ̃2dt2 +E(gt). It remains to show that

the objects λ̃ and gt restrict onM to the objects λ and g. We know that gt is given by

ρ∗
t g̃t. When we restrict this object to t = 0 we obtain

gt=0 = (ρt=0︸︷︷︸
=id

)∗g̃t=0 = g̃t=0 = g,

where we used in the last step that ψ fixes the hypersurface. The metric g̃0 coincides

with h on M and therefore g̃0 is given by g. Finally we show that λ̃ restricts to λ on

M :

λ̃(x, 0) = (θt=0)∗︸ ︷︷ ︸
=id

[
λ2 − gt=0(Vt=0, Vt=0)

] 1
2 Vt=0=0= λ.

We conclude, that we have shown all the statements from the theorem. �

Remark 4.4: The previous theorem only mention compact hypersurfaces, but

one can prove a similar result for non-compact hypersurfaces. So let (N,h) be a

time-oriented Lorentzian manifold with a non-compact spacelike hypersurface M .

We choose a tubular neighbourhood U of M in N and a compact exhaustion of M ,

i. e. there is a family of compact subspaces (Ki)i∈N of M such that
⋃
i∈NKi = M

and Ki ⊂ Int(Ki+1) holds. Now we can apply the previous theorem to the sequence

of Lorentzian manifolds (Ki×(−εi, εi), hi) coming from the compact exhaustion and

the tubular neighbhourhood. We obtain a family of diffeomorphisms φi such that

the pullback metrics φ∗
ihi is of the desired form λ̃2

i dt
2 + (gi)t. Finally we consider

the metric g = φ∗h, where φ is given by a suitable diffeomorphism, which is given

by a compatible sequence of diffeomorphism φi.
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5 Local structure of manifolds with the
constraint equation

In the last sections we constructed an extension for a Riemannian manifold with a

nowhere vanishing vector field which satisfies the constraint Equation (5.1). Now

we want to show that these manifolds are foliated by Riemannian submanifolds, see

[28, Theorem 2].

Theorem 5.1: Let (M, g) be a Riemannian manifold, U a nowhere vanishing

vector field on M and W a g-symmetric endomorphism, s. t.

∇U + uW = 0 (5.1)

holds, where u =
√
g(U,U). Then (M, g) is locally isometric to (I ×F , u−2ds2 +hs),

where hs is a smooth family of Riemannian metrics on F and I a real interval. We

can write W as ∂s ( 1
u

)
gradhs 1

u

d
(

1
u

)
−u

2L∂shs


w. r. t. the local isometry.

Proof.

We start with the fact that the (0, 2)-tensor A := ∇U [ is by Equation (5.1) symmetric,

since W is symmetric. The symmetry of W is equivalent to the closedness of U [ as an
1-form, since we have

(dU [)(X,Y ) = X(g(U, Y ))− Y (g(U,X))− g(U, [X,Y ])
= g(∇XU, Y )− g(∇Y U,X) + g(U,∇XY −∇YX − [X,Y ]︸ ︷︷ ︸

=0

)

= A(X,Y )−A(Y,X) = 0.

Let x0 ∈ M be an arbitary point, then there exists by the Poincare lemma an open

neighbourhood V of p in M and a smooth function z : V → R, s. t. U [ = dz on V and

z(x0) = 0 holds. Using this construction we consider the distribution ker(dz) on V. We
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5 Local structure of manifolds with the constraint equation

obtain the integretability of the corresponding distribution given by U⊥, since the 1-form
U⊥ is closed. Indeed, let X,Y ∈ U⊥ then we have:

0 = (dU [)(X,Y ) = X(g(U, Y )︸ ︷︷ ︸
=0

)− Y (g(U,X)︸ ︷︷ ︸
=0

)− g(U, [X,Y ])

and hence [X,Y ] ∈ U⊥. In particular U⊥ is involutive and by the Frobenius theorem

integrable. The integrable manifolds of the distribution U⊥ are given by the level sets

Uc := z−1(c) for all c ∈ R. Indeed, let γ : (−ε, ε) → Uc be a smooth curve with γ(0) =
x ∈ Uc and γ̇(0) = v ∈ TxUc, then we compute

0 = d

dt |t=0
z(γ(t))︸ ︷︷ ︸

=c

= (dγ(0)z)(γ̇(0)) = (dxz)(v)

and hence v ∈ ker(dz)x = U⊥
x .

Now we consider the flow φ of Z = 1
u2U on (−ε, ε) × W, where W is an open neigh-

bourhood of x0 in V which is chosen geodesic centered around x0, i. e. the set is given by

Br(x0).

The maps

ψ : (−ε, ε)× U0 ↔ H :=
{
y ∈ W | |z(y)| < ε

}
: ψ̃

(s, x) 7→ φs(x)
(z(y), φ−z(y)(y))←[ y

are the desired diffeomorphisms. At first we show that the flow sends level sets to level

sets:

d

ds |s=0
z(x) + s = 1 (∗)= (dxz)(Zφ0(x)) = (dφ0(x)z)(φ̇0(x)) = d

ds |s=0
z(φs(x)).

However, this implies z(φs(x)) = z(x) + s, because z(φ0(x)) = z(x) = z(x) + 0 holds.

At (∗) we used that

dz(Z) = g(gradg z, Z)
Z= 1

u2U= = 1
g(U,U)g(gradg z, gradg z) U=gradg z on V= 1

holds. We have to check that ψ is a diffeomorphism with invers ψ̃:

Well-definedness: Check ψ(s, x) ∈ H, this is clear by: |z(φs(x))| = | z(x)︸︷︷︸
=0,x∈U0

+s| =

|s| < ε. Now Check ψ̃(y) ∈ (−ε, ε)× U0: z(φ−z(y)(y)) = z(y) + (−z(y)) = 0.
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ψ ◦ ψ̃ = id: Let y ∈ H, then we have

ψ(ψ̃(y)) = ψ(z(y), φ−z(y)(y)) = φz(y)(φ−z(y)(y)) = φz(y)−z(y)(y) = φ0(y) = y.

ψ̃ ◦ ψ = id: Let (s, x) ∈ (−ε, ε)× U0, then we have

ψ̃(ψ(s, x)) = ψ̃(φs(x))
= (z(φs(x)), φ−z(φs(x))(φs(x)))
= (z(x) + s, φ−z(x)−s(φs(x))
z(x)=0= (s, x).

Set F := U0. Let (s, x) ∈ (−ε, ε)×F and γ(t) = (s+ t, x) be a curve with γ(0) = (s, x)
and γ̇(0) = ∂s, then we have

(d(s,x)ψ)(∂s) = d

dt |t=0
(ψ ◦ γ)(t) = d

dt |t=0
φs+t(x) = φ̇s(x) = Zφs(x).

Now we look at the pullback metric ψ∗(g) on (−ε, ε)×F :

(ψ∗g)(s,x)(∂s, ∂s) = gψ(s,x)((d(s,x)ψ)(∂s), (d(s,x)ψ)(∂s)) = (g(Z,Z))φs(x) =
( 1
u2

)
φs(x)

(ψ∗g)(s,x)(∂s, X) = gφs(x)(Zφs(x), (d(s,x)ψ)(X)) = 0

Where we used that Z is a multiple of U , dψ maps level sets to sets, which are given by U⊥

and X is orthogonal to U . If we set (hs(X,Y ))(s,x) := (ψ∗g)(s,x)(X,Y ), then we have

the metric h = 1
u2ds

2 + hs on I ×F and we can express the g-symmetric endomorphism
W in this identification in the following way:

(ψ∗W )(s,x)(∂s, ∂s) = Wφs(x)(Zφs(x), Zφs(x))

= −1
u
gφs(x)(∇

g
ZU,Z)

= − 1
u5 gφs(x)(∇

g
UU,U)

= − 1
2u5∂U (u2)|ψ(s,x)

= − 1
u2 (∂su)|ψ(s,x) = ∂s

(1
u

)
|ψ(s,x)
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5 Local structure of manifolds with the constraint equation

Where we used the identification ψ∗(∂s) = Z. However, we have

(ψ∗g)(s,x)(∂s, X) = Wφs(x)(Z,ψ∗(X))

= −1
u
gφs(x)(∇

g
ZU,ψ∗(X))

= − 1
u3 gφs(x)(∇

g
UU,ψ∗(X))

= − 1
u2 (ψ∗(X))

√
g(U,U) = (ψ∗(X))(s,x)

(1
u

)
on the mixed part for X ∈ TF . Let X,Y ∈ TF , then we have

(ψ∗W )(s,x)(X,Y ) = Wφs(x)(ψ∗(X), ψ∗(Y )

= −1
u
gφs(x)(∇

g
ψ∗(X) U︸︷︷︸

=u2Z

, ψ∗(Y ))

g(Z,ψ∗(X))=0= −ugφs(x)(∇ψ∗(X)Z,ψ∗(Y ))

= −u2
[
(gφs(x)(∇ψ∗(X)Z,ψ∗(Y )) + gφs(x)(∇ψ∗(Y )Z,ψ∗(X))

]
= −u2 (LZg)(ψ∗(X), ψ∗(Y ))

= −u2 (Lψ∗(∂s)ψ∗(h))(ψ∗(X), ψ∗(Y ))

= −u2ψ∗ ((L∂s .h)(X,Y ))

This implies that we can write W in the identification of ψ like:∂s ( 1
u

)
gradhs 1

u

d
(

1
u

)
−u

2L∂shs


�
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6 Lorentzian manifolds with special
holonomy

One of the motivations of the construction of Lorentzian manifold with a parallel

null vector fields is the fact that these manifolds have special holonomy. In this

section we give a short overview on the subject holonomy, major theorems and the

special situation in the Lorentzian case. We will be guided by [2] and [29].

6.1 The holonomy group

Let E →M be a vector bundle with a connection ∇ over a manifoldM . In general

this connection is not induced by a metric. Let γ be a piecewise smooth curve inM
with start point p ∈ M and v be a vector in Ep. Then we can consider a system for

a vector field along a curve: {∇
dtξ = 0
ξ|t=0 = v.

(6.1)

The solution of the system exists, since we can trivialize the bundle along the path

γ with finitely many trivializations and patch the solutions over any of these trivia-

lizations together, where the existence of the solutions on any of these trivial parts

is guaranted by Picard-Lindelöf. The existence of the vector field ξ along the curve
γ induces a linear map

P∇
γ : Eγ(0) → Eγ(1)

v 7→ ξ(1),

where ξ is the solution of Equation (6.1) for v as the initial vector. This map is the

so called parallel transport along γ. We can encode geometric information about

our manifold M in the group of all parallel transports of curves that start and end

in a single point p ∈M , this is the holonomy group of ∇ at a point p.
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6 Lorentzian manifolds with special holonomy

Definition 6.1: Let (M,∇) be a manifold with connection ∇ on a vector bundle

E →M , then we define the holonomy group of (M,∇) by

Hol(M,∇)p :=
{
P∇
γ | γ piecewise smooth curve with γ(0) = γ(1) = p

}
.

The group multiplication is given by the composition of maps. The so called con-

nected holonomy group is given by

Hol0(M,∇)p :=
{
P∇
γ | γ piecewise smooth curve with γ(0) = γ(1) = p, γ contractible

}
.

If the connection is induced by a metric g, we write Hol(0)(M, g)p := Hol(0)(M,∇g)p.

Indeed this is a group by composition, since we can patch the solutions of Equa-

tion (6.1) together and obtain again a parallel transport. Moreover, the inverse is

given by the parallel transport along the reversed curve. However the holonomy

group is a subgroup of the isomorphisms of Ep and thus is equipped with a repre-

sentation

ρ : Hol(M,∇)p → GL(Ep).

The holonomy group characterizes special geometry of the underlying manifold,

e. g. existence of an orientation or existence of nice metrics.

Remark 6.2: Let (Mn, g) be a connected Riemannian manifold, then we can state

useful characterizations of special geometry, see [23]:

(1) The manifold is orientable if and only if the holonomy group Hol(M, g) lies in
SO(n).

(2) The manifold (M, g) is called Kähler, if there exists a compatible, almost com-

plex structure J : TM → TM , i. e. J∗ = −J and J2 = − id holds, and a

symplectic 2-form ω, s. t.

g = ω(J ·, ·)

holds and the objects J and ω are parallel w. r. t. the induced Levi-Civita con-

nection ∇g. Now there is a characterization of Kähler in terms of the holo-

nomy: The manifold (M, g) is Kähler if and only if Hol(M, g) ⊂ U(n2 ).

Beside the characterizations of geometric structure one can ask whether what kind

of subgroups of GL(Rn) appear as holonomy groups of manifolds with arbitary

connections. The following result gives an exhaustive answer to that question, see

[19].
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6.1 The holonomy group

Theorem 6.3 (Hano,Ozeki ’55): Let n ≥ 2. Any closed Lie subgroup of GL(Rn)
can be realised as a holonomy group of a linear connection on Rn ( in general with

torsion).

If we are only interested in the restricted holonomy group, we can assume that the

manifold is simply-connected.

Lemma 6.4: Let (M, g) be a connected semi-Riemannian manifold and

π : (M̃, g̃)→ (M, g) be its universal Riemannian covering, then π induces an isomor-

phism on the restricted holonomy groups. Moreover, holonomy groups for different

points are conjugated to each other.

Proof.

Let γ̃ : [a, b]→ M̃ be a path in M̃ with start point x̃, then we know by assumption that π
is a local isometry and we have

P g̃γ̃ = (dγ̃(b)π)−1 ◦ Pgγ ◦ dγ̃(a)π (6.2)

where γ := π ◦ γ̃. Now we know that any path γ : [a, b]→M , which is contractible, can

be lifted to the universal covering. Thus by Equation (6.2) we have

Holx̃(M̃, g̃) = Hol0x̃(M̃, g̃) = (dx̃π)−1 ◦Holx(M, g) ◦ (dx̃π) ∼= Holx(M, g),

where the last isomorphism comes from the fact that dxπ is an isomorphism.

Let p, q ∈M be arbitary points and γ : p; q be a curve, then we have an isomorphism

Holp(M, g)→ Pgγ−1 ◦Holq(M, g) ◦ Pgγ
Pgδ 7→ P

g
γ−1 ◦ Pgδ ◦ P

g
γ

of groups. �

The lemma tells us that we can drop the point x in the notation Hol(M, g)x.

If the holonomy group is induced by a metric connection (i. e. ∇ is a connection on

E → M with a compatible metric), then the holonomy group acts isometrically on

the fiber of the vector bundle, hence the representation is of the form

Hol(M,∇)x → O(Ex, gx).

In general it is a nontrivial task to compute the holonomy group of a connection,

but we can compute its Lie algebra in terms of the curvature of the connection ∇,
see [2, page 125, Satz 4.5].
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6 Lorentzian manifolds with special holonomy

Theorem 6.5 (Ambrose-Singer Theorem): Let (E,∇) → M be a bundle with

connection and p ∈ M be a point, then the Lie algebra of the holonomy group

Hol(M,∇)p is given by:

hol(M,∇)p = span
{
P−1
γ ◦R∇

γ(1)(X,Y ) ◦ Pγ

∣∣∣∣∣ γ : [0, 1]→M piecewise smooth curve

with γ(0) = p,X, Y ∈ Tγ(1)M

}

Beside the computation of the holonomy Lie algebra and hence the holonomy group,

we can characterize parallel objects of a bundle in terms of holonomy invariant

objects, see [2, Satz 4.8].

Theorem 6.6 (Holonomy Principle): Let (M, g) be semi-Riemannian manifold,

p be a point of M and T be a tensor bundle over M with induced Levi-Civita con-

nection ∇g, i. e. subbundle of T ∗,∗M =
⊕

k(T ∗M)⊗k ⊕ (TM)⊗k. Then we have a

bijection {
φ ∈ Γ(T ) | φ is parallel

}
−→

{
v ∈ Tx | Hol(M, g)v = v

}
φ 7→ φx,

or in other words: There is an one-to-one correspondence between parallel objects

of the tensor bundle and holonomy invariant tensors of a fibre of T .

The last important aspect of the holonomy group is a characterization of local iso-

metric splittings of our semi-Riemannian manifold (M, g). In accordance with that

we need the notion irreducible and indecomposable representations.

Definition 6.7: Let (M, g) be a semi-Riemannian manifold, x ∈ M be a point

and let ρ : Hol(M, g)x → O(TxM, gx) be the holonomy representation.

• We call (M, g) or Hol(M, g) irreducible, if the representation ρ is irreducible,
i. e. there is no proper invariant subspace of TxM .

• We call (M, g) or Hol(M, g) indecomposable, if there is no proper, non-

degenerated invariant subspace of TxM .

It is clear that every irreducible manifold is indecomposable. Let (M, g) be a semi-

Riemannian manifold and E ⊂ TpM be a proper non-degenerated invariant sub-

space, then we can construct the so called holonomy distribution given by

H : p ∈M 7→ Pgγ (E) ⊂ TpM,
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6.2 Decomposition of a Lorentzian manifold

where γ : q ; p is an arbitary path. Indeed, this distribution is well-defined, be-

cause if we choose another path γ′ : q ; p, then by the holonomy invariance of

E we obtain Pgγ−1γ′(E) = E and hence Pgγ (E) = Pgγ′(E). The crucial property of

this distribution is the involutivity and the maximal connected integrable manifolds

are submanifolds of our initial semi-Riemannian manifold. Thus by the Frobenius

theorem we have a local metric splitting.

Theorem 6.8 (De Rahm-Wu decomposition): Let (M, g) be a semi-Riemannian

manifold, p be a point of M and E ⊂ TpM be a proper non-degnerated holonomy

invariant subspace. Then for any point q ∈ M exists an open neighbourhood Uq,
such that Uq splits isometrically, i. e.

(Uq, gq |Uq
) ∼= (U1, g1)× (U2, g2).

Moreover, the holonomy group Hol0p(M, g) is isomorphic to O(E) × O(E⊥). If the
semi-Riemannian manifold (M, g) is simply-connected and geodesically complete,

then (M, g) is isometric to a product of simply-connected and geodesically complete

semi-Riemannian manifolds, i. e.

(M, g) ∼= (M0, g0)× (M1, g1)× . . .× (Mk, gk),

where (M0, g0) is a flat semi-Riemannian manifold and each (Mi, gi) for i ≥ 1 is

indecomposable and non-flat.

The previous decomposition theorem enables us to reduce the question of the struc-

ture of the Lorentzian holonomy groups to the study of indecomposable ones.

6.2 Decomposition of a Lorentzian manifold

In this part we want to restrict our point of view to the class of Lorentzian manifolds

and the corresponding holonomy groups. In the first instance we describe the gen-

eral situation. There is a classification of irreducible, not local-symmetric manifolds

first described by Berger, see [5].

Theorem 6.9: Let (M, g) be a simply-connected, irreducible semi-Riemannian

manifold with signature (p, q), which is not local-symmetric. Then the holonomy

group is up to conjugation in O(p, q) isomorphic to SO0(p, q) or one of the following
groups in the tabular:
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6 Lorentzian manifolds with special holonomy

Dimension Signature Holonomy group

n ≥ 4 (2r, 2s) U(r, s) or SU(r, s)
n ≥ 4 (p, p) SO(p,C)
2n ≥ 8 (4r, 4s) Sp(r, s) or Sp(r, s) · Sp(1)
2n ≥ 8 (2r, 2s) Sp(r,R) · SL(2,R)
2n ≥ 16 (4r, 4r) Sp(r,C) · SL(2,C)
7 (4, 3) G∗

2(2)
14 (7, 7) GC2
8 (4, 4) Spin(4, 3)
16 (8, 8) Spin(7,C)

The situation in the Lorentzian case is special, because of the special property of the

Lie group SO0(1, n), see [11].

Theorem 6.10 (Di Scala, Olmos ’01): If H is a connected subgroup of SO0(1, n)
which acts irreducible on R1,n, then H is already SO0(1, n), i. e. H = SO0(1, n).

We can adapt the De-Rahm-Wu decomposition to the Lorentzian case with the help

of Theorem 6.10.

Theorem 6.11: Let (M, g) be a simply-connected, geodesically complete Lorent-

zian manifold , then there exists a global isometric decomposition, i. e.

(M, g) ∼= (M0, g0)× (M1, g1)× . . .× (Mk, gk),

where each (Mi, gi) for i ≥ 1 is either flat or irreducible and (M0, g0) is one of the
following:

(1): The space (R,−dt2).

(2): An irreducible Lorentzian manifold with holonomy Hol0(M0, g0) isomorphic to

SO0(M0, g0).

(3): An indecomposable, non-irreducible Lorentzian manifold.

Thus we are interested in indecomposable, non-irreducible Lorentzian manifolds. In

the following we describe an important example, see [2, Bsp. 5.5].

Example 6.12: In this example we will construct a Lorentzian manifold (M, g)
which is indecomposable, but non-irreducible. Let (M, g) = (R × R × F, g) with
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6.2 Decomposition of a Lorentzian manifold

coordinates (v, u, x), where x = (x1, . . . , xn) is a chart of the Riemannian manifold

(F, h). The metric g is given by

g = 2dv � du+ fdu2 + h,

where f ∈ C∞(R× F ) is a smooth function in the variables (u, x). We consider the

following frame

e− := ∂

∂v
, e+ := −f2

∂

∂v
+ ∂

∂u
, si := ∂

∂xi
.

Where ∂
∂x1 , . . . ,

∂
∂xn is an orthonormal frame of the chart x. Moreover the frame is

a Witt basis, i. e. g(e+, e+) = g(e−, e−) = 0, g(e−, e+) = 1 and g(si, sj) = δij . In

particular the metric g in this frame is of the form

g =

0 1 0
1 0 0
0 0 En

 .
The only nontrival commutator of this frame is given by [e+, si] = 1

2si(f)e−, since
e−(f) = 0 holds by assumption. We claim that the description of the Levi-Civita

connection of g in the frame {e+, e−, si} is given by the following tabular:

∇gXY e− e+ sj
e− 0 0 0
e+ 0 −1

2 gradh f 1
2sj(f)e−

si 0 0 ∇hsi
sj

Table 6.1: Levi-Civita connection of (M, g)

In the following calculation we will use the Koszul formula for the Levi-Civita con-

nection, see [25, Theorem 11 page 61]:

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )
+ g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

for all X,Y, Z ∈ TM .

∇e− = 0: If we set Y = e− in the Koszul formula and let vary X,Z over the set{
e−, e+, si

}
, then the first three expressions vanish, because each g(·, ·) is con-

stant in this frame, thus

2g(∇Xe−, Z) = g([X, e−], Z)︸ ︷︷ ︸
=0

−g([X,Z], e−)− g([e−, Z], X)︸ ︷︷ ︸
=0

.
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Where we used that [e−, X] vanish for all X ∈
{
e−, e+, si

}
. The only nowhere

vanishing expressions can be only one of the cases (X,Z) = (e+, si), (si, e+),
but every commutator [X,Z] is of the formwe− for a functionw. Thus g(e−, e−)
vanish and hence ∇e− = 0.

∇e−e+ = 0: This follows from torsionfreeness of the Levi-Civita connection ∇g and
the previous case: ∇e−e+ = ∇e+e− + [e−, e+] = 0

∇e+e+ = −1
2 gradF f : We will use again the Koszul formula, to obtain:

2g(∇e+e+, Z) = g([e+, e+], Z)− g([e+, Z], e+)− g([e+, Z], e+) = −2g([e+, Z], e+)

Let Z = si, then we have g(∇e+e+, si) = −g([e+, si], e+) = −1
2si(f) and thus

∇e+e+ = −1
2 gradF f .

∇e−sj = 0: Again torsionfreeness:

∇e−sj = ∇sje− + [e−, sj ] = 0

∇e+sj = 1
2sj(f)e−: Same as before:

2g(∇e+sj , Z) = g([e+, sj ], Z)− g([e+, Z], sj)− g([sj , Z], e+)

Let Z = e−, then all commutators vanish. Let Z = e+, then

= 0 + 0 + g([e+, sj ], e+) = 1
2sj(f).

And in the last case Z = sj we have g(e−, si) = 0. Thus ∇e+sj = 1
2sj(f)e−.

∇sie+ = 0: Torsionfreeness:

∇sie+ = ∇e+si − [e+, si] = 1
2si(f)e− −

1
2si(f)e− = 0.

∇gsi
sj = ∇hsi

sj: This is clear by the construction of g.

Beside the Levi-Civita connection we are interested in the curvature of g. There-

fore we claim that the description of the Riemannian curvature of g in the frame

{e+, e−, si} is given by the following tabular:
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(X,Y, Z) Rg(X,Y )Z
(si, sj , sk) Rh(si, sj)sk
(e+, sj , sk) −1

2 Hessh(f)(sj , sk)e−
(si, sj , e+) 0
(e+, sj , e+) 1

2∇
h
sj

(gradh f)

Table 6.2: Curvature of the Levi-Civita connection of (M, g)

These are all the interesting curvature terms, because by the parallelity of e− all

expressions of the form Rg(X,Y )Z vanish if one of X,Y, Z is e−.

Rg(si, sj)sk: This is clear, because the connections∇g and∇h coincide on the frame

of (F, h).

Rg(e+, sj)sk: We use the entries of Table 6.1 and the definition of the Hessian of f ,
given by Hess(f)(X,Y ) = (∇df)(X,Y ) = XY (f)− (∇XY )(f) for X,Y ∈ TM ,

to obtain:

Rg(e+, sj)sk = ∇ge+∇
g
sj
sk −∇gsj

∇ge+sk −∇
g
[e+,sj ]sk

= (Γh)ljk∇ge+sl −∇
g
sj

(1
2sk(f)e−

)
− 1

2sj(f)∇ge−sk︸ ︷︷ ︸
=0

= (Γh)ljk
1
2sl(f)e− −

1
2sj(sk(f))e−

= −1
2
(
sjsk(f)− (∇hsj

sk)(f)
)
e−

= −1
2 Hessh(f)(sj , sk)e−

Where we used that (Γh)ljk only depends on the x coordinates, thus the ∂e+

derivative vanish.

Rg(si, sj)e+: We calculate:

Rg(si, sj)e+ = ∇gsi
∇gsj

e+ −∇gsj
∇gsi

e+ −∇g[si,sj ]e+ = 0

Where we used that [si, sj ] and the derivative ∇sje+ vanish.

Rg(e+, sj)e+: We calculate:

Rg(e+, sj)e+ = ∇ge+∇
g
sj
e+ −∇gsj

∇ge+e+ −∇g[e+,sj ]e+

= 1
2∇

h
sj

(gradh f)− 1
2sj(f)∇ge−e+︸ ︷︷ ︸

=0

= 1
2∇

h
sj

(gradh f)
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Now we are in the situation to determine the holonomy group of (M, g). We want

to prove:

Hol(M, g)p̃ = Hol(F, h)p nRn

Where we set p̃ = (0, 0, p) ∈M with p ∈ F . We have to consider parallel transportPgγ
along curves γ(τ) = (v(τ), u(τ), δ(τ)) closed at p̃. LetX(τ) be an arbitary vector field
along γ, then we can use the frame (e−, e+, si) to write it as a(τ)e−(τ) + b(τ)e+(τ) +
Y (τ), where e−(τ), e+(τ) are the vector fields transported parallel along γ with start
vectors e−, e+ and Y (τ) lies in TF . In general we have the following local formula

for the covariant derivative along a curve:

∇
dτ
X(τ) =

(
Ẋ(τ)µ + γ̇ν(τ)Xσ(τ)Γµνσ(γ(τ))

) ∂

∂xµ
.

When we use the previous identity and the special form of the vector field X(τ), we
obtain

∇
dτ
X(τ) =

(
ȧ+ 1

2u(τ)Y (f)
)
e−(τ) + ḃe+(τ) +∇h

δ̇
Y (τ)− 1

2b(τ)u̇(τ) gradh f. (6.3)

We have to compute the parallel transport of our initial frame e−, e+, sj along γ. We

claim that these are given by:

Pgγ (e−)p̃ = (e−)p̃, (6.4)

Pgγ (sj)p̃ = −1
2

(∫ 1

0
u̇(s)df(sj(s))ds

)
· (e−)p̃ + Phδ (sj)p, (6.5)

Pgγ (e+)p̃ = −1
2

(∫ 1

0
u̇(s)df(V )ds

)
· (e−)p̃ + (e+)p̃ + V (1). (6.6)

The Equation (6.4) comes from the fact that e− is parallel. The Equations (6.5)

and (6.6) are directly solutions of Equation (6.3), by integrating the system:{ ∇
dτX(τ) = 0
X(0) = e+ or sj ,

where V in Equation (6.5) is a solution of the ODE ∇h
δ̇
V = 1

2 u̇(τ) gradh f with

V (0) = 0. In other words, we can write a parallel transport Pgγ in the basis e−, si, e+
as a matrix in the form:

Pgγ =

1
(
−1

2

(∫ 1
0 u̇(s)df(si(s))ds

))T
i
−1

2

(∫ 1
0 u̇(s)df(V )ds

)
0 Phδ V (1)
0 0 1

 (6.7)
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The Equation (6.4) shows that the subspace L := (Re−)p̃ ⊂ Tp̃M is holonomy invari-

ant and by the lightlikeness of e− also degenerated, hence (M, g) is non-irreducible.
On the other hand we will show that any invariant subspace contains L and thus is

degenerated.

Let Pgγ ∈ Hol(M, g) be a parallel transport, then we have by Equation (6.4) an

inclusion of the holonomy group into the stabilisator of e−

Hol(M, g)p̃ ⊂ O(Tp̃M, gp̃)e− =


1 vT −1

2 |v|
2

0 A −Av
0 0 1

 ∣∣ v ∈ Rn, A ∈ O(n)

 , (6.8)

where we write the matrices in the basis e−, s1, . . . , sn, e+. We will show that any

nontrivial invariant subspace is degenerated and hence the holonomy is indecom-

posable. Let U be a nontrivial holonomy invariant subspace of Tp̃M , then we

want to show that e− lies in U . At first we consider the holonomy representation

ρ : Hol(M, g)p̃ → O(Tp̃M, gp̃) and obtain a representation of the Lie algebra of the

holonomy group into the skew-symmetric endomorphism:

dρ : hol(M, g)p̃ → o(Tp̃M, gp̃).

We consider an ideal I of hol(M, g)p̃ given by

I :=


0 xT 0

0 0 −x
0 0 0

 ∣∣ x ∈ Rn
 ⊂ hol(M, g)p̃ ⊂


0 xT 0

0 B −x
0 0 0

 ∣∣∣∣∣ x ∈ R
n,

B ∈ o(Tp̃M, gp̃)p

}
.

(6.9)

This ideal leads again to a representation on Tp̃M , in particular it stabilizes the

invariant subspace U . Indeed, this is an ideal in the Lie algebra hol(M, g) by the

following observation: Let f0 := f(0, ·) be non-degenerated at the point p ∈ F ,
i. e. the Hessian is non-degenerated at the point p and moreover the Hessian should

be diagonalized by the frame s1, . . . , sn, i. e.

Hess(f0)h(si, sj) = λiδij

or equivalently given by

∇hsj
gradh f0 = (Hessh(f0)(sj , ·))[(h) = λjsj

for all i, j ∈
{
1, . . . , n

}
and λi 6= 0. Then the Table 6.2 leads to the identification of

the curvature endomorphism Rg(e+, sj) in terms of the function f .
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Let X,Y ∈ Tp̃M and we identify the curvature Rg(X,Y ) as a form in Λ2(Tp̃M).
Moreover, we consider the generalised orthonormal basis of Λ2(Tp̃M) given by sv ∧
su, sv ∧ sj , su ∧ sj , si ∧ sj . Where we have the local generalised orthonormal frame

sv, su, si, with sv = 1√
2(e− − e+),su = 1√

2(e− + e+). Then we can develop the

curvature expression in the new basis and calculate:

Rg(e+, sj) = −g(Rg(e+, sj)sv, su)sv ∧ su − g(Rg(e+, sj)sv, sk)sv ∧ sk
+ g(Rg(e+, sj)su, sk)su ∧ sk + g(Rg(e+, sj)sk, sl)sk ∧ sl

= −g(Rg(e+, sj)
1√
2

(e− − e+), 1√
2

(e− + e+))e− ∧ e+

− g(Rg(e+, sj)
1√
2

(e− − e+), sk)sv ∧ sk + g(Rg(e+, sj)
1√
2

(e− + e+)sk)su ∧ sk

+ g(Rg(e+, sj)sk, sl)sk ∧ sl

= − 1
2
√

2
sv ∧ (∇hsj

gradh f) + 1
2
√

2
su ∧ (∇hsj

gradh f)

= 1
4e+ ∧ (∇hsj

gradh f0)

= 1
4λje+ ∧ sj = 1

4

0 −λjsTj 0
0 0 λjsj
0 0 0

 ∈ hol(M, g)p̃

Where we used the Ambrose-Singer theorem, which states that the holonomy Lie

algebra is generated by curvature terms, see Theorem 6.5. The ideal generated by

the terms Rg(e+, sj) is exactly I.

Now let v be a non-zero vector in U , we write v in the basis e−, si, e+ as (a,w0, b)
and consider different cases.

b = 0: If w0 vanish, then we have v = (a, 0, 0) ∈ U and we are finished, because we

assumed that v is non-zero and thus e− ∈ U . In other words U contains a

lightlike vector and therefore is a degenerated subspace. If the vector w0 is

non-zero, we can act on v by an element of the ideal I:
0 −

(
− w0

‖w0‖2

)t
0

0 0
(
− w0

‖w0‖2

)
0 0 0


 a
w0
0

 = (1, 0, 0)t = e− ∈ U.

b 6= 0: So we have v = (a,w0, b) and can assume b = 1, because we can multiply by a

scalar, since we are in the vector space U . Now we consider the case w0 = 0
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and act again on v by an element of the ideal:0 −eit 0
0 0 ei
0 0 0


a0

1

 = (0, si, 0)t.

Thus we have si ∈ U and can act again on this element and obtain with the

same argument as before that e− ∈ U . Now let w0 6= 0, then we can do the

same trick and obtain (a+ ‖w0‖2, 0, 1) ∈ U . As in the previous case we obtain

si ∈ U and hence e− ∈ U .

This shows that all invariant subspaces are degenerated and therefore the holonomy

is indecomposable.

A consequence of Equation (6.7) is the general form of a parallel transport:

Pgγ =

1 ∗ ∗
0 Phδ ∗
0 0 1

 .
Thus we had proved that the holonomy group is exactly of the form Hol(F, h)nRn.

6.3 The definition of the screen bundle and its properties

Let (M, g) be a Lorentzian manifold with parallel null vector field V . Then we can

consider the screen bundle of V given by

S := V ⊥/V →M.

This bundle is well-defined, since V ⊂ V ⊥ or in other words V is lightlike. On

this bundle exists a connection and a compatible metric induced by the structure on

TM :

g([X], [Y ]) := g(X,Y )
∇SZ [Y ] := [∇gZY ]

for all X,Y ∈ V ⊥ and Z ∈ TM . Indeed, this is well-defined: Let X − X̃ = αV, Y −
Ỹ = βV with X, X̃, Y, Ỹ ∈ V ⊥, then we have

g([X], [Y ]) = g(X,Y ) = g(X̃ + αV, Ỹ + βV )
= g(X̃, Ỹ ) + β g(X,V )︸ ︷︷ ︸

=0,X̃∈V ⊥

+α g(V, Ỹ )︸ ︷︷ ︸
=0,Ỹ ∈V ⊥

+αβ g(V, V )︸ ︷︷ ︸
=0,V is null

= g([X̃], [Ỹ ])
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and

∇SX [Y ] = [∇gXY ] = [∇gX(Ỹ + βV )] = [∇gX Ỹ + (∂Xβ)V + β∇gXV︸ ︷︷ ︸
=0,V is parallel

]

[X+V ]=[X]= [∇gX Ỹ ] = ∇SX [Ỹ ].

The screen bundle is in general not a subbundle of the tangent bundle, but in the

situation of Theorem 1.1 we can prove such an identification.

Let (M, g) be a Lorentzian manifold with a parallel null vector field V , which is a

solution of Theorem 1.1, i. e. the vector field V is decomposable as uT − U , where
T is the time orientation of M . In this situation we can identify the screen bundle

as a subbundle of the tangent bundle of M .

Lemma 6.13: The bundle map

(T⊥ ∩ V ⊥ ⊂ TM, pr∗ g, pr ◦∇) ψ→ (S = V ⊥/V, gS ,∇S)
Y 7→ [Y ]

is an isomorphism of vector bundles, which preserves the metric and connection.

Proof.

We check that the map is fiberwise an isomorphism. Let M = R1,n, V = (1, 1, 0, . . . , 0),
T = (1, 0, . . . , 0) and g = diag(−1, 1, . . . , 1). W. l. o. g. we have T⊥ = 〈e1, . . . , en〉 and
V ⊥ = 〈v = e0 +e1, e2, . . . , en〉, where e0, e1, . . . , en is the standard generalised orthonor-

mal basis ofR1,n. This implies T⊥∩V ⊥ = 〈e2, . . . , en〉
∼=→ V ⊥/V = (〈v, e1, . . . , en〉)/(〈v〉).

The preservation of the metric and connection follows directly from the observation that

the bundle metric and connection on T⊥ ∩ V ⊥ are the pulls back under the map ψ. �

We want to consider the holonomy group of a time-oriented Lorentzian manifold

with a parallel null vector field. These parallel objects gives us a reduction of the

holonomy group.

Proposition 6.14: Let (M, g) be a time-oriented Lorentzian manifold with a

parallel null vector field V , then we have

Hol(M, g) ⊂ SO(1, n)V ⊂ SO(1, n),
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where SO(1, n)V is the stabiliser of V . Furthermore, we can identify this stabiliser

with

SO(1, n)V
∼=→ SO(n) nRn =


1 vT −1

2‖v‖
2

0 A −Av
0 0 1

 ∣∣∣∣∣ A ∈ SO(n), v ∈ Rn

 .
Moreover, we have the identification of holonomy groups:

Hol(S,∇S) ∼= πSO(n) Hol(M, g) (6.10)

Proof.

The first statement follows immediately from the holonomy principle or in other words:

A parallel object is fixed under parallel transport. The identification of the stabiliser with

the group SO(n) nRn can be seen by dimension counting and the following calculation:

W. l. o. g. let (M, g) = (R1,n, g = diag(−1, 1, . . . , 1)), with the Witt basis

(s−, s1, . . . , sn−1, s+), such that g in this basis is given by

(g(sα, sβ))αβ =

0 0 1
0 En−1 0
1 0 0

 .
Then we set V = s− as the lightlike vector and see that an arbitary element (A, v) ∈
SO(n) nRn given by a matrix as in the claim fixes this vector v. By dimension counting

of SO(1, n)V and SO(n) n Rn and the fact that both Lie groups are closed we have an

diffeomorphism.

The identification of the holonomy groups follows directly by the identification of connec-

tions: ∇S = π ◦ ∇|S . �

6.4 Special holonomy and the constraint equation

A consequence of the proposition in the previous section is that the SO(n)-factor of
the semi-direct product SO(n)nRn of the holonomy group Hol(M, g) is determined

by the screen holonomy. When we want to construct Lorentzian metrics with special

holonomy, we can consider the Lorentzian metrics that we obtained in Theorem 1.1,

since they carry a parallel null vector. The goal of the following theorem is to

translate the special holonomy into analytical conditions on the hypersurface. The

idea is to find suitable PDEs on the foliation that we obtained in Theorem 5.1.
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Theorem 6.15: Let (M, g, U,W ) = (I × F , g = u−2ds2 + hs, U = u2∂s,W )
be a Riemannian manifold as in Theorem 5.1 that satisfies the Riemannian con-

straint equation and let (M, g, V ) be a solution of Riemannian Cauchy problem for

(M, g, U,W ) as in Theorem 1.1. Moreover letG = πSO(n) Hol(M, g) be the screen ho-
lonomy induced by the parallel null vector field V , then for all k, l ≥ 0 the following
statements are equivalent:

i) There exists a tensor σ ∈ T k,lRn, such that the screen holonomy lies in the

stabilizer of σ, i. e. G ⊂ SO(n)σ.

ii) There exists a ∇hs-parallel family ηs in Γ(TFk,l), which solves

η̇s := L∂sηs = −1
2 ḣ

]
s ◦ ηs.

Where ḣ]s◦ denotes the following action of endomorphisms f ∈ End(TF) on arbitary
tensors T ∈ T k,lF :

(f ◦ T )(X1, . . . , Xr) := f(T (X1, . . . , Xr))−
r∑

m=1
T (X1, . . . , f(Xm), . . . , Xr)

for all X1, . . . , Xr ∈ TF . Moreover:

1) There are proper subgroups H1,H2 of SO(n) such that G ⊂ H1 × H2 holds if

and only if there is a local metric splitting (F , hs) ∼= (F1 ×F2, h
1
s ⊕ h2

s) with the

condition Hol(Fi, his) ⊂ Hi for i = 1, 2.

2) If the screen holonomy G is contained in one of the special holonomy groups

SU(m),Sp(k), G2, Spin(7) or the trivial group, then the family of metrics hs satis-
fies the conditions of the following table:

dim(F) Condition on F Hol(M, g) ⊂
2m (F , ωs, Js, hs = ωs(Js·, ·)), Ricci-flat Kähler,

J̇s = −1
2 ḣ

]
s ◦ Js, δhs(ḣs) = 0

SU(m) nR2m

4m (F , ωis, J is, hs = ωis(J is·, ·))i=1,2,3, hyper-Kähler,

J̇ is = −1
2 ḣs

] ◦ J is

Sp(m) nR4m

7 (F , ϕs ∈ Ω3(F , hs)), G2 metrics,

ϕ̇s = −1
2 ḣs

] ◦ ϕs
G2 nR7

8 (F , ψs ∈ Ω4(F), hs = hs(ψs)),Spin(7) metrics,

ψ̇s = −1
2 ḣs

] ◦ ψs
Spin(7) nR8

n hs flat Rn

Table 6.3: Characterization of special screen holonomy in terms of flow equations
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For the proof of this theorem we have to consider the following bundles of rank n−
1:

(TF ,∇hs) (U⊥,∇⊥) = (S|M ,∇S|M ) (S,∇S)

F M M

In accordance with the desired translation of the screen holonomy and analytical

conditions on TF , we have to compare the connections and curvatures of the in-

volved bundles.

Lemma 6.16: Let (M, g, V ) be a Lorentzian manifold as in Theorem 6.15. Then

we have the following identities of structures on (TM,∇) and (S,∇S):

• ∇SXσ = ∇Xσ − 1
ug(σ,∇XT )V

• RS(X,Y )σ = πSR(X,Y )σ

• (∇SXRS)(Y, Z) + (∇SYRS)(Z,X) + (∇SZRS)(X,Y ) = 0

for all σ ∈ S and X,Y, Z ∈ TM .

Proof.

We know we can write the orthogonal projection πS : TM → S as

πS = id + 1
u
g(·, T )V.

One immediately sees by Lemma 6.13 the following:

∇SXσ = πS∇Xσ = ∇Xσ + 1
u
g(∇Xσ, T )V

= ∇Xσ + 1
u

∂X( g(σ, T )︸ ︷︷ ︸
=0,σ∈S=T⊥∩V ⊥

)− g(σ,∇XT )

V
= ∇Xσ −

1
u
g(σ,∇XT )V.
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In the next step will use the fact that the map πS is a projection, i. e. πS ◦ πS = πS , and
that it commutes with the screen covariant derivative, since

[∇S , πS ]σ = ∇S (πSσ)︸ ︷︷ ︸
=σ∈S

−πS ∇S︸︷︷︸
πS∇

σ

= ∇Sσ − πS ◦ πS︸ ︷︷ ︸
πS

∇σ

= ∇Sσ −∇Sσ = 0,

for all σ ∈ Γ(S). Using this observation, we calculate:

RS(X,Y )σ = ∇SX∇SY σ −∇SY∇SXσ −∇S[X,Y ]σ

= πS
[
∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ

]
= πSR(X,Y )σ

and

(∇SXRS)(Y, Z) Definition= ∇SX(RS(Y, Z))−RS(∇XY, Z)−RS(Y,∇XZ)
= ∇S(πS ◦R(Y, Z))− πS ◦R(∇XY, Z)− πS ◦R(Y,∇XZ))

= πS
(
∇X(R(Y, Z))−R(∇XY, Z)−R(Y,∇XZ)

)
= πS(∇XR)(Y, Z).

Where we used that the commutator [∇S , πS ] vanish also on the bundle S ⊗ S∗, by the

induced operators on this tensor product and the dual space1. The alternating sum of this

expression is zero by the second Bianchi identity of the usual curvature operator R. This
yields the Bianchi identity for the curvature RS and therefore the claim.

�

In the next step we observe that we have an one-to-one correspondence between

the parallel sections of the bundles S →M and S|M →M .

Proposition 6.17: Let (M, g, V ) be a Lorentzian manifold as in Theorem 6.15.

There exists a bijection ψ : Γ||(S|M ) → Γ||(S), where Γ||(E) denotes the parallel

sections of a vector bundle E →M with connection ∇.
Proof.

We define the map ψ in the following way: Let σ be a section of S|M →M , then we can

extend this to a section of S → M by parallel transport along the flow lines of V in M .

1dual with respect to gS
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We write σ̄ for this extended map. We have to show that this construction restricts to a

bijection on the corresponding parallel sections.

Let σ ∈ Γ||(S|M ) be a parallel section of S|M , then we have to show that σ̄ is again parallel.

By definition we know that∇SV σ̄ vanish, because σ̄ is given by the parallel transport along

the flow lines of V . Let X ∈ TM , then it remains to show the vanishing of ∇SX σ̄.

We consider the bundle H := (T⊥)∗ ⊗ S →M and the following operator

P : Γ(H)→ Γ(H)
A 7→ ∇SVA.

We have shown that this operator is a symmetric hyperbolic system (see Lemma 1.3).

Thus it remains to show that the section A(X) := ∇SX σ̄ of H is a solution of the Cauchy

problem {
P (A) = 0, on M

A = 0, on M.

Let X ∈ T⊥ = TM , then we calculate:

P (A)(X) = (∇SVA)(X)
= ∇SV (A(X))−A( ∇VX︸ ︷︷ ︸

=[V,X], since ∇V=0

)

= ∇SV∇SX σ̄ −∇S[V,X]σ̄

= RS(V,X)σ̄ +∇SX∇SV σ̄ = 0.

Where we used that V is parallel and ∇SV σ̄ vanish. On the other hand we can restrict A
to M and obtain for all X ∈ T⊥:

A(X)|M = (∇SX σ̄)|M
Lemma 6.16= (∇X σ̄ −

1
u
g(σ̄,∇XT )V )|M

= (∇X σ̄ + 1
u
g(∇X σ̄, T )V )|M

= (proj⊥ ◦∇X σ̄)|M

= (proj⊥ ◦∇gXσ) = ∇⊥
Xσ = 0,

where proj⊥ is the projection on the subbundle U⊥ = S|M and∇⊥σ vanish by assumption

on σ. Thus we have shown that the section A solves the Cauchy problem and thus vanish

by uniqueness and linearity. The previous arguments show that the map ψ is well-defined.

Now it is clear that this map is injective, since the extended sections coincide on M and

extends by the same procedure toM . Furthermore follows the surjectivity, since with the

same argument as before a parallel section of S restricts to a parallel section of S|M and

this is exactly the preimage of this section under the map ψ, hence we have a bijection. �
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Corollary 6.18: Let (M, g, V ) be a Lorentzian manifold as in Theorem 6.15.

Then there exists a bijection ψr,s : Γ||((S|M )r,s) → Γ||(Sr,s) for any r, s ≥ 0, where
Er,s → M is the tensor vector bundle for E → M with connection ∇, given by

Er,s := (E∗)⊗r ⊗ E⊗s with induced connection.

Proof.

We extend the map ψ from the previous lemma to a bijection of the corresponding tensor

bundle or in other words we repeat the proof of the previous lemma with the corresponding

tensor bundles. �

We want to compare the different connections on the bundles U⊥ and TF . In the

first step we observe that a section Z ∈ Γ(U⊥) is given by a smooth family of sections

(Zs)s ∈ Γ(TF), since the ∂s component of Z vanish by assumption and hence we

can write a general section Z = a∂s + Xs simplified as Z = Xs. Where the vector

field Xs takes values in TF with coefficients depending also on the parameter s ∈ I
or in other words: It is a section in Γ(I ×F → TF).

Now we derive the section Z = (Zs)s in the direction ∂s w. r. t. the connection ∇S
and obtain, by the usage of the Koszul formula, the following identity:

2g(∇S∂s
Z,X) = ∂s(g(Z,X)) + Z(g(∂s, X))−X(g(∂s, Z))

+ g([∂s, Z], X)− g([∂s, X], Z)− g([Z,X], ∂s)
= (L∂sg)(Z,X) + g([∂s, Z], X) + g([∂s, Z], X)

+ g([∂s, X], Z) + g([∂s, Z], X)− g([∂s, X], Z)
= (L∂shs)(Z,X) + 2g([∂s, Z], X)

Here we used that [Z,X] ∈ TF holds and the identity (L∂sg)(X,Y ) = (L∂shs)(X,Y )
for all X,Y, Z ∈ TF . Furthermore, we can dualize this equation and obtain

∇⊥
∂s
Z = [∂s, Z] + 1

2 ḣs
](Z). (6.11)

However, we can do the same calculation in direction of TF and obtain the identity

∇⊥
XZ = ∇hs

X Z.

If we have a family of 1-forms ωs ∈ Γ(T ∗F), then we can consider

(∇⊥
∂s
ωs)(X) = ∂s(ωs(X))− ωs(∇⊥

∂s
X)

= (L∂sωs)(X)− 1
2ωs(ḣs

](X))

for all X ∈ TF . Also we can dualize this and obtain

∇⊥
∂s
ωs = ω̇s + 1

2 ḣs
] ◦ ωs. (6.12)
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The previous calculations generalizes to higher tensors and we are able to put ev-

erything together.

Proposition 6.19: Let (M, g, U,W ) be as in Theorem 6.15 and p, q ≥ 0 , then

there is an one-to-one correspondence between the following objects:

i) A section ω̄ ∈ Γ(Sp,q) which is ∇S-parallel.

ii) A section ω ∈ Γ((U⊥)p,q) which is ∇⊥-parallel.

iii) A smooth family of sections ωs ∈ Γ(TFp,q) which satisfies for all s ∈ I the

following:

∇hs
X ωs = 0, for all X ∈ TF (6.13)

ω̇s = −1
2 ḣs

] ◦ ωs. (6.14)

Proof.

The proof is a recapitulation of the previous statements. By Corollary 6.18 we have the

one-to-one correspondence between i) and ii). Furthermore, if we have such a parallel

section, then we observed in Equations (6.11) and (6.12) and ∇⊥
XZ = ∇hs

X Z for all

X ∈ TF , that these statements are equivalent. �

Now we can prove the Theorem 6.15.

Proof of Theorem 6.15.

We have the Lorentzian manifold (M, g) as a solution of the Riemannian Cauchy problem
on (M, g). Additionally we have a parallel null vector field V which restricts the holonomy

group of (M, g) in such a way that the screen holonomy G = πSO(n)(Hol(M, g)) is by

Equation (6.10) given by the holonomy of the screen bundle (S,∇S).

On the other hand the holonomy principle yields an one-to-one correspondence between

the parallel sections of the screen bundle (Sp,q,∇S) and tensors of T p,qRn which are stable
under the action of the holonomy group. Hence by the previous Proposition 6.19 we know

that if we have a σ ∈ T p,qRn such that G ⊂ SO(n)σ, then there exists a corresponding

parallel section η ∈ Γ(Sp,q) and thus a family of ηs of∇hs-parallel sections which satisfies

the flow equation

η̇s = −1
2 ḣs

] ◦ ηs.

We start the proof with (2) and have to show the analytic conditions on the underlying

Riemannian manifold F if the screen holonomy G is contained in one of the special

holonomy cases, i. e. G ⊂ SU(m), Sp(m), G2,Spin(7) or trivial.

- 73 -



6 Lorentzian manifolds with special holonomy

Let G be contained in U(m) for dimM = n = 2m even-dimensional. Then by Equa-

tion (6.13), we know that Hol(F , hs) is also contained in U(m) and hence by a char-

acterization of complex geometry (see [23, Prop 17.2]), there exists smooth families of

almost complex structures Js and symplectic forms ωs on (F , hs), s. t. Js, ωs are parallel
w. r. t. the Levi-Civita connection of hs = ωs(Js·, ·). The Proposition 6.19 tells us that

the parallelity of Js and ωs corresponds to the flow equations:

J̇s = −1
2 ḣs

] ◦ Js (6.15)

ω̇s = −1
2 ḣs

] ◦ ωs (6.16)

Thus we have the equivalence of Hol(S,∇S) ⊂ U(m) and that Hol(F , hs) lies in U(m)
and the smooth families Js, ωs satisfies Equation (6.15) and Equation (6.16).

G ⊂ Sp(4m): Analog to the previous consideration, we have thatHol(F , hs) lies in Sp(4m)
and thus there exists families of almost complex structures J is with J

i
sJ

j
s = εijkJ

k
s

for all i, j, k ∈ {1, 2, 3} which satisfying the corresponding flow equations, because

it is parallel w. r. t. hs.

G ⊂ G2: There exists a smooth family of a stable 3-form ϕs, which satisfies the flow

equation as in Theorem 6.15.

G ⊂ Spin(7): Again, there exists a family of 4-forms ψs, which is ∇hs-parallel and thus

satisfies a flow equation.

G ⊂ SU(m): This is the tricky case.

On the first hand we use the previous consideration and see that there has to exist

smooth families of complex structures Js and symplectic forms ωs which are hs-
parallel. By Proposition 6.19 we know that this induces a complex structure on

U⊥ → M and by parallel transport a parallel complex structure JS on the screen

bundle (S,∇S).

On the level of Lie algebras, the inclusion hol(S,∇S) ⊂ su(m) is equivalent to

hol(S,∇S) ⊂ u(m) and that

tr(JS ◦A) = 0 (6.17)

holds for all A ∈ hol(S,∇S) ⊂ End(TpS) and a fixed point p ∈ M . This follows

directly from the identification of the holonomy algebra and its inclusion into the

endomorphisms of TpS and the fact that

trR(J ◦AR) = 2i trC(A)
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holds for all A ∈ hol(S,∇S) ⊂ u(m), since these A are skew-symmetric. Here we

use the R-algebra homomorphism:

(·)R : Cn×n → R2n×2n

A = Ax + iAy 7→
(
Ax −Ay
Ay Ax

)
.

The goal of the following argumentation is to translate the trace condition (Equa-

tion (6.17)) into the analytic statement δhs(ḣs) = 0.

We start with the observation that by the Ambrose-Singer theorem for the holonomy

algebra hol(S,∇S)p, we can write each element A of this algebra as sums, products

and compositions of curvature terms of the form

P−1
γ ◦RS(X,Y ) ◦ Pγ , (6.18)

where γ : [0, 1] → M is a curve with startpoint p and X,Y ∈ Tγ(1)M . Thus we

consider the trace condition for an A of the form of Equation (6.18).

Since we know that a parallel section commutes with parallel transport, we can

write Equation (6.17) as

tr(JS ◦RS(X,Y )) = 0 for all X,Y ∈ Γ(TM).

Additionally, we can translate the previous statement by the decomposition TM =
RV ⊕ TM and the fact that V annihilates the curvature into the form:

tr(JS ◦RS(X,Y )) = 0 for all X,Y ∈ Γ(T⊥ = TM)

When we want to achieve an analytical characterization of the previous statement,

we have to consider the trace expression as a section of a form bundle, i. e. C ∈
Γ(M,Λ2T⊥), given by C(X,Y ) := tr(JS ◦RS(X,Y )) for all X,Y ∈ T⊥. Where

we equip the bundle Λ2T⊥ with the induced Levi-Civita connection coming from

TM and write ∇ for this connection.

Now we use thate we have a symmetric hyperbolic system on this new bundle, given

by∇V : Γ(Λ2T⊥)→ Γ(Λ2T⊥) as we have proven in Lemma 1.3. In order to derive
a Cauchy problem like in Equation (1.5) we will show the vanishing of ∇V C for

all X,Y ∈ TM :

(∇V C)(X,Y ) (α)= tr(JS ◦ (∇SVRS)(X,Y ))
Lemma 6.16= − tr(JS ◦ (∇SXRS)(Y, V ))− tr(JS ◦ (∇SYRS)(V,X))
∇V=0= 0
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Where we used at (α) that JS is parallel and the Bianchi identity for the curvature

RS .

Thus we have the equivalence of C = 0 and C|M = 0 by the uniqueness of the

corresponding symmetric hyperbolic system ∇V . In the next step we express the

vanishing of C|M in terms of data on M . Let J be the induced complex structure

on the bundle S|M → M , let X,Y ∈ TM and {si}i be a local orthonormal frame

of S|M , then we have:

− tr(J ◦RS(X,Y ))|M = −
∑
i

g(JS(RS(X,Y )si), si)

=
∑
i

g(RS(X,Y )si, JS(si))

=
∑
i

R(X,Y, si, JS(si))

(∗)=
∑
i

R(X,Y, si, J(si))−W (X, si)W (Y, J(si))

+W (X, J(si))W (Y, si)
= − tr(J ◦R(X,Y ))−W (Y, J(W (X))) +W (X, J(W (Y )))

Where we used at (∗) the Gauß equation for a spacelike hypersurfaces in a Lorent-

zian manifold:

R(X1, X2, X3, X4) = R(X1, X2, X3, X4)−W (X1, X3)W (X2,W4) (6.19)

+W (X1, X4)W (X2, X3)

for all X1, X2, X3, X4 ∈ TM . Thus the statement C|M = 0 is equivalent to

tr(J ◦R(X,Y )) = −W (Y, J(W (X))) +W (X, J(W (Y ))) (6.20)

for all X,Y ∈ TM . We can write the left hand side of Equation (6.20) in terms of

data of (F , hs), when we use the Riemannian Gauß equation2:

R(X1, X2, X3, X4) = Rs(X1, X2, X3, X4) +W (X1, X3)W (X2,W4)
−W (X1, X4)W (X2, X3)

for allX1, X2, X3, X4 ∈ TF . However, letX,Y ∈ TF and plug in the Riemannian

2Attention: There is a different sign as in Equation (6.19)!
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Gauß equation into left hand side of Equation (6.20) and obtain:

tr(J ◦R(X,Y )) X,Y ∈TF= tr(Js ◦Rs(X,Y ))
= −

∑
i

hs(Rs(X,Y )si, Js(si))

(∗)= −
∑
i

Rs(X,Y, Js(si), si)

1. Bianchi identity=
∑
i

Rs(Y, Js(si), X, si) +Rs(Js(si), X, Y, si)

= −Rics(X, Js(Y )) + Rics(Js(X), Y ) = −2 Rics(X, Js(Y )) = 0

Where {si}i is a local orthonormal frame of TF and we used that the holonomy

group of (F , hs) is contained in SU(n2 ) and thus (F , hs) is Ricci-flat, see [23, page
121, Theorem 17.5]. Additionally we used at (∗) that Js is ∇hs-parallel. Indeed,

we can show that Rs(Js(X1), X2, X3, X4) = −Rs(X1, Js(X2), X3, X4) holds for
all X1, X2, X3, X4 ∈ TF by the simple calculation:

Rs(Js(X1), X2, X3, X4) = Rs(X3, X4, Js(X1), X2)
= hs(Rs(X3, X4)Js(X1), X2)

= hs
(
(∇hs

X3
∇hs
X4
−∇hs

X4
∇hs
X3
−∇hs

[X3,X4])J(X1), X2
)

∇J=0= hs (Js(Rs(X3, X4)X1), X2)
(β)= −Rs(X3, X4, X1, Js(X2)) = −Rs(X1, Js(X2), X3, X4)

Where we used at (β) that hs(Js(X), Y ) = −hs(X, Js(Y )) holds for allX,Y ∈ TF ,
since Js and hs are compatible.

It remains to evaluate the left hand side of Equation (6.20) on the mixed part of

TM = R∂s⊕ TF . We can achieve this with the help of the Codazzi Equation (see

[25, page 115, 34 Corallary]):

R(X1, T̃ , X2, X3) = (∇hs
X2
Ws)(X3, X1)− (∇hs

X3
Ws)(X2, X1)

for all X1, X2, X3 ∈ TF and T̃ = u∂s is a normal vector field for the hypersurface
F ⊂M . Moreover, the hs-symmetric tensorWs is second fundamental form of the

embedding of (F , hs) into (M, g) and is given by

∇gXY −∇
hs
X Y = Ws(X,Y ) · T̃

for all X,Y ∈ TF .
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Let X ∈ TF and plug (∂s, X) into Equation (6.20) to obtain

−(δhs ḣs)(Js(X))− 2g(gradg
(1
u

)
, J(W (X)).

on the right hand side and −2g(gradg
(

1
u

)
, J(W (X)) on the left hand side, where

we used the identification of the Weingarten map with∂s ( 1
u

)
gradhs 1

u

d
(

1
u

)
−u

2L∂shs

 .
Since Js is an isomorphism, we can write Equation (6.20) equivalently as

(δhs ḣs) = 0.

Therefore we translated the condition of special holonomy SU(m) into the analytic
condition above.

flat case: Finally we have to show the flat case. At first we show the splitting case, i. e. let

H1,H2 be subgroups of SO(n) such that

Hol(S,∇S) = G ⊂ H1 ×H2 ⊂ SO(n)

holds, then there exists a nontrivial, decomposable and ∇S-parallel form of the

screen bundle (S,∇S). By the holonomy principle and the de Rahm-Wu Theorem

we have a splitting

(F , hs) ∼= (F1 ×F2, h
1
s ⊕ h2

s),

where Hol(Fi, his) ⊂ Hi and additonally the equation

L∂s volhi
s = −1

2 ḣ
i,]
s ◦ volhi

s

holds. But one can show by a simple calculation that this is always satisfied. Now

the flat case follows directly by an iterated splitting into trivial holonomy represen-

tations.

This shows the claim. �
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In this chapter we will consider a Lorentzian spin manifold which carries a paral-

lel null spinor. Analogous to the first observation in Chapter 1 we can restrict the

parallel null spinor to a spacelike hypersurface and obtain a constraint on this hy-

persurface. In the following we assume a general knowledge about spin geometry,

in particular the defintion of a spin structure on a semi-Riemannian manifold, Clif-

ford modules and its representation and the induced spinor bundle. The reader can

consult [3], [18], [20] or [12, page 102].

7.1 Sesquilinearforms on a spinor bundle

Let ΣgN be the spinor bundle of a Lorentzian spin manifold (N, g) of dimension

n, then there exists two different non-degnerated sesquilinearforms on the spinor

bundle, that we will need in later sections. We give here a convenient construction

and list of properties of these two. We follow [3, section 1.5, page 67].

We write ∆ for the unique irreducible Cl(n, 1)-module if n is even and ∆+ for

the irreducible Cl(n, 1)-module which commutes with the volume element ω =
i

n(n+1)
2 e1 · . . . · en if n is odd. We denote by {ei}i the standard basis of Rn.

We start with the standard sesquilinearform on ∆(+) given by

(v, w) :=
2m∑
k=1

vkw̄k,

where v, w ∈ ∆(+) = C2m
and m = bn2 c. On the other hand we can also define

〈v,w〉 := (v, w)e1 := (e1 · v, w)

for all v, w ∈ ∆(+) and where {ei}i denotes the standard basis of Rn. We can prove

important properties of these two forms.

Proposition 7.1: The scalar product (·, ·) satisfies the following properties:
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(1) It is invariant under the maximal-compact subgroup K of Pin(n, 1), i. e.

K =

y1 · . . . · yr · x1 · . . . · xs ∈ Cl(n, 1)

∣∣∣∣∣∣∣∣
r, s ∈N, and for all 1 ≤ i ≤ r, 1 ≤ j ≤ s :

〈yi,yi〉n,1 = −1, yi ∈ span(e1) and
〈xj ,xj〉n,1 = 1, xj ∈ span(e2, . . . , en)

 .

(2) We have the identity

(x · v, w) + (v, θ(x) · w) = 0,

for all x ∈ Rn and v, w ∈ ∆(+), where the map θ : Rn → Rn is the reflection

along the hypersurface span(e2, . . . , en).

Proof.

In the following we will need an explicit form of the Clifford multiplication: Let

E =
(

1 0
0 1

)
, W =

(
1 0
0 −1

)
, U =

(
0 1
−1 0

)
, V =

(
i 0
0 i

)
,

then we define the following maps:

φn=2m : Cl(n, 1)→ Mat(C, 2m)
e2j−1 7→ τ2j−1W

⊗(j−1) ⊗ U ⊗ E⊗(m−j)

e2j 7→ W⊗(j−1) ⊗ V ⊗ E⊗(m−j)

and in the odd case

φn=2m+1 : Cl(n, 1)→ Mat(C, 2m)⊕Mat(C, 2m)
ej 7→ (φ2m(ej), φ2m(ej)), if j ≤ n− 1
en 7→ (iW⊗m,−iW⊗m).

Where ⊗ denotes the Kronecker product of matrices, i. e. A ⊗ B := (aijB)i,j , which is

associative and τj is given by i if j = 1 and 1 otherwise. Let φ̂n be given as φn if n is

even and proj1 ◦φn if n is odd, then we prove the following identity:

φ̂n(ej)T = −εjφ̂n(ej),

for all 1 ≤ j ≤ n. We see immediately that the Kronecker product preserves complex

conjuagtion and transposing, i. e. A⊗B = A⊗B and (A⊗B)T = AT ⊗BT . Now we

consider four different cases:
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n = 2m, j = 2k − 1: We have

ˆφn(ej)
T

=
[
τ2k−1W

⊗(k−1) ⊗ U ⊗ E⊗(m−k)
]T

= τ2k−1W
⊗(k−1) ⊗ UT︸︷︷︸

=−U

⊗E⊗(m−k)

= −εkτ2k−1W
⊗(k−1) ⊗ U ⊗ E⊗(m−k)

= −εjφ̂n(ej).

n = 2m, j = 2k: We have

φ̂n(ej)T =
[
τ2k−1W

⊗(k−1) ⊗ V ⊗ E⊗(m−k)
]T

= τ2k−1W
⊗(k−1) ⊗ V︸︷︷︸

−V

⊗E⊗(m−k)

= −φ̂n(ej).

n = 2m+ 1
1 ≤ j ≤ n− 1: It follows from the definition of φ̂n(ej) and the previous case.

n = 2m+ 1, j = n: We calculate:

φ̂n(en)T = (iW⊗m)T = iW⊗m = −(iW⊗m)

= −εnφ̂n(en).

Thus we have proven the first statement. Now let v, w ∈ ∆(+), x ∈ span(e2, . . . , en) and
y ∈ span(e1), then we have:

(y · v, w) = (φ̂n(y)v, w) = (φ̂n(y)v)Tw = vT (φ̂n(y))Tw = +vT φ̂n(y)w = (v, y · w)

and

(x · v, w) = (φ̂n(x)v, w) = (φ̂n(x)v)Tw = vT (φ̂n(x))Tw = −vT φ̂n(x)w = −(v, x · w)

Hence we have proven (2). Let k = y1 · . . . · yr · x1 · . . . · xs be a general element in K,

then we consider:

(k · v, k · w) = (y1 · . . . · yr · x1 · . . . · xs · v, y1 · . . . · yr · x1 · . . . · xs · w)
= (−1)s(v, xs · . . . · x1 · yr · . . . · y1 · y1 · . . . · yr · x1 · . . . · xs · w)

= (−1)s
s∏
i=1

(−〈xi,xi〉)
r∏
j=1

(−〈yj ,yj〉) · (v, w)

= (−1)2s(v, w) = (v, w)
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7 Spin geometry of Lorentzian manifolds

This shows the invariance of the scalar product and hence the claim.

�

The obvious disadvantage of the scalar product (·, ·) is the absence of a nice com-

patibility with the Clifford multiplication. Because of that we consider the adapted

sesquilinearform 〈·,·〉. But we have to pay the price for this, as we will see in Propo-

sition 7.3.

Proposition 7.2: The sesquilinearform 〈·,·〉 satisfies the following properties:

(1) It is non-degnerated and of split signature, i. e. its signature is (2m−1, 2m−1).

(2) It is invariant under the action of Spin0(n, 1).

(3) We have

〈x · v,w〉 = 〈v,x · w〉

for all x ∈ Rn and v, w ∈ ∆(+).

Proof.

The sesquilinearform 〈·,·〉 is determined by the complex matrix φ̂n(e1), which is of the

form (
0 iE2m−1

−iE2m−1 0

)

and has the eigenvalues ±1 of multiplicity 2m−1. Moreover, we have

〈v,w〉 = (φ̂(e1)v, w) = (w, φ̂n(e1)v) = (φ̂n(e1)w, v) = 〈w,v〉

and this shows (1). Let x = x1 + x2 be given in terms of the decomposition of Cn =
span(e1)⊕ span(e2, . . . , en). Then we have

〈x · v,w〉 = 〈x1 · v,w〉+ 〈x2 · v,w〉
= (e1 · x1 · v, w) + (e1 · x2 · v, w)
= (x1 · e1 · v, w)− (x2 · e1 · v, w)
= (e1 · v, x1 · w) + (e1 · v, x2 · w)
= (e1 · v, x · w) = 〈v,x · w〉.

Now let a be a general element in Spin+(n, 1), i. e. a = a1 · . . . a2i where 〈aj ,aj〉n,1 = ±1
for all j and a1 · . . . · a2i · a2i · . . . · a1 = 1 holds, then we have

〈a · v,a · w〉 = (−1)2i〈v,a1 · . . . · a2i · a2i · . . . · a1 · w〉 = 〈v,w〉,
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where we used the previous computation. We conclude that we have shown (2) and (3).

�

By the invariance of these sesquilinearform, we can extend these to the spinor bun-

dle ΣgN of a Lorentzian spin manifold. Moreover, these sesquilinearforms have

optimal properties as we will see in the next proposition.

Proposition 7.3: We have the following non-existence statements:

(1) There cannot exist a Spin(n, 1)-invariant, non-degenerated sesquilinearform on

∆(+).

(2) There cannot exist a Spin0(n, 1)-invariant scalar product ∆(+).

(3) There cannot exist a scalar product 〈〈·,·〉〉 on ∆(+) and a constant c ∈ C, s. t.

〈〈x · v,w〉〉 = c〈〈v,x · w〉〉

holds for all x ∈ Rn, v, w ∈ ∆(+).

Proof.

We write ρ : Spin(n, 1)→ GL(∆(+)) for the irreducible spin representation. When 〈〈·,·〉〉
is a non-degenerated sesquilinearform, which is invariant under the action of Spin(n, 1),
then we can derive the equation

〈〈ρ(a)v,ρ(a)w〉〉 = 〈〈v,w〉〉

at the neutral element 1 ∈ Spin(n, 1) and obtain

〈〈dρ(A)(v),w〉〉 = −〈〈v,dρ(A)(w)〉〉,

for all elements A in the Lie algebra spin(n, 1), that is generated by the elements eiej for
i < j. Thus we have

〈〈e1ejv,w〉〉 = −〈〈v,e1ejw〉〉

for all v, w ∈ ∆(+) and 1 < j. Now let a be a general element of Spin0(n, 1), i. e. a =
a1 · . . . · a2i and 〈ak,ak〉 = ±1, then we have by definition

e1 · ej · a ∈ Spin(n, 1).

Thus

〈〈v,w〉〉 assumption= 〈〈e1ejav,e1ejaw〉〉 = −〈〈a · v,e1eje1eja · w〉〉
= −〈〈a · v,a · w〉〉 = −〈〈v,w〉〉
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and this is of course a contradiction to the assumption.

For (2) we consider a Spin0(n, 1)-invariant scalar product 〈〈·,·〉〉. Let 1 < j and v ∈ ∆(+),
then we consider

0 ≤ 〈〈e1ej · v,e1ej · v〉〉 = −〈〈v,e1eje1ej · v〉〉 = −〈〈v,v〉〉 ≤ 0,

which is a contradiction to the assumption.

For the last part of the claim, we assume that we have a scalar product 〈〈·,·〉〉, which
satisfies

〈〈x · v,w〉〉 = c〈〈v,x · w〉〉.

Now we set A := (〈〈ei,ej〉〉)i,j as the matrix that determines the scalar product〈〈·,·〉〉,
i. e. we have 〈〈v,w〉〉 = (v,Aw) by definition. Let i = 1, . . . , n be an index, then we can

use the previous to obtain the following:

−εi(v, ei ·Aw) = (ei · v,Aw) = 〈〈ei · v,w〉〉 = c〈〈v,ei · w〉〉 = c(v,Aei · w)

and thus cAφn(ei) = −εiφn(ei)A holds for all i. When we apply the determinante on

this identity, we obtain

cdet(Aφn(ei)) = −εi det(φn(ei)A)

and thus

c = −εi

for all i, since 〈〈·,·〉〉 is positive definite and hence det(A) > 0 and det(φn(ei)) 6= 0 by

definition. Hence we have a contradiction:

1 = −ε1 = c = −ε2 = −1

�

7.2 The Dirac current and its properties

Let (N, g) be a time-oriented, spin manifold with a metric g ∈ Sym2(T ∗N) of the
signature (p, q), see [29, Def 7]. We want to introduce a vector field onN associated

to a spinor.
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Definition 7.4: Let ϕ ∈ Γ(ΣN) be a spinor, then we call the vector field Vϕ, given
by

g(Vϕ, X) = ip+1〈ϕ,X · ϕ〉

for all X ∈ Γ(TN), the Dirac current of ϕ. In otherwords, the (a priori complex)

vector field Vϕ is induced by the 1-form ip+1〈ϕ,(·)·ϕ〉 ∈ Ω1(N,C) via the isomorphism

g : TCN → T ∗
CN,X 7→ g(X, ·).

In the later part of this thesis we need some properties of the Dirac current, so we

prove the following proposition.

Proposition 7.5 (Properties Dirac current): Let ϕ ∈ Γ(ΣN) be a spinor and Vϕ
the induced Dirac current. Then we have the following statements:

(1) The Dirac current is real-valued.

(2) If ϕ is parallel, then also Vϕ.

(3) The zero sets of ϕ and Vϕ coincide.

(4) We have g(Vϕ, Vϕ) ≤ 0.

Now let (N, g) be a metric of Lorentzian signature.

(5) If ϕ is nowhere vanishing, then: Vϕ · ϕ = 0 if and only if ϕ is lightlike, i. e. Vϕ
is lightlike.

(6) If ϕ is parallel and lightlike, then there exists a function f ∈ C∞(N), s. t.

Ricg = fV [
ϕ ⊗ V [

ϕ, Vϕ(f) = 0,

in particular scalg = 0.

Proof.

(1) This is a simple calculation:

g(Vϕ, X) = ip+1〈ϕ,X · ϕ〉 = (−i)p+1〈X · ϕ,ϕ〉 = (−i)p+1(−1)p+1〈ϕ,X · ϕ〉
= g(Vϕ, X)

where we used the general slide property of sesquilinearform:

〈X · ϕ,ψ〉 = (−1)p+1〈ϕ,X · ψ〉.
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(2) We rewrite the expression g(∇Xϕ, Y ) for all X,Y ∈ Γ(TN):

g(∇XVϕ, Y ) = X(g(Vϕ, Y ))− g(Vϕ,∇XY )
= X(ip+1〈ϕ,Y · ϕ〉)− ip+1〈ϕ,∇XY · ϕ〉
= ip+1(〈∇Xϕ,Y · ϕ〉+ 〈ϕ,∇X(Y · ϕ)〉 − 〈ϕ,∇XY · ϕ〉)
= ip+1((−1)p+1〈Y · ∇Xϕ,ϕ〉+ 〈ϕ,Y · ∇Xϕ〉)
= 2 Re((−i)p+1〈Y · ∇Xϕ,ϕ〉).

So if ϕ is parallel, then also Vϕ.

(3) We choose a time orientation ξ ∈ Γ(TN) of N , then we have

g(Vϕ, ξ) = −〈ϕ,ξ · ϕ〉 = −〈ξ · ϕ,ϕ〉 = −(ϕ,ϕ) ≤ 0, (7.1)

since the scalar product (·, ·)ξ is positive definite. If Vϕ(x) vanish at a point x ∈
zero(Vϕ), then by Equation (7.1) also ϕ(x) = 0. On the other hand, let ϕ(x) = 0,
then we see with the Definition 7.4 also Vϕ(x) = 0.

(4) At this point, we use the fact that a time orientation ξ gives us a decomposition of the
tangent bundle TN = Rξ ⊕ ξ⊥, hence

Vϕ = αξ + Z

with α = −g(Vϕ, ξ), Z ∈ ξ⊥. Here is α > 0, because of the Equation (7.1) and

the assumption that ϕ is nowhere vanishing . We want to show g(Vϕ, Vϕ) ≤ 0 and

consider different cases.

x ∈ zero(Vϕ): This is obvious: g (Vϕ(x), Vϕ(x)) = 0 ≤ 0.

x ∈ zero(Z): We have by Equation (7.1):

g(Vϕ, Vϕ)(x) = g (−g(Vϕ, ξ)ξ,−g(Vϕ, ξ)ξ) (x) = g(Vϕ, ξ)2 g(ξ, ξ)︸ ︷︷ ︸
=−1

(x)

= −g(Vϕ, ξ)2(x) ≤ 0.

x ∈ Ñ := N \ {zero(Vϕ) ∪ zero(Z)} We are allowed to write down the following

vector field on Γ(TÑ):

N := − Z√
g(Z,Z)

∈ ξ⊥

We can decompose Vϕ w. r. t. the new vector field N :

Vϕ = αξ + βN
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where α = −g(Vϕ, ξ) > 0 and β = g(Vϕ, N) < 0. Because:

g(Vϕ, N) = g(αξ + βN,N) g(ξ,N)=0= βg(N,N) = β
1

g(Z,Z) · g(Z,Z) = β.

We obtain a second decomposition, with the following eigenspace decomposition

of the endomorphism ξ · N · : ΣN|Ñ → ΣN|Ñ . The only eigenvalues of this

endomorphisms are ±1, because:

(ξ ·N) · (ξ ·N)· g(ξ,N)=0= − ξ · ξ︸︷︷︸
=−g(ξ,ξ)=1

·N ·N︸ ︷︷ ︸
=−1

· = idΣN|Ñ
.

In particular we have an orthogonal (w. r. t. to (·, ·)ξ) eigenvalue decomposition
ϕ = ϕ+ + ϕ− ∈ ΣN|Ñ = Σ+ ⊕ Σ−. There is a way to express the coefficients

α, β in terms of ϕ±:

α = −g(Vϕ, ξ) = 〈ξ · ϕ,ϕ〉 = (ϕ,ϕ)ξ = ‖ϕ+‖2ξ + ‖ϕ+‖2ξ
β = g(Vϕ, N) = −〈N · ϕ,ϕ〉 = −〈ξ · ξ ·N · ϕ,ϕ〉 = −(ξ ·N · ϕ︸︷︷︸

=ϕ++ϕ−

, ϕ)ξ

= −(ϕ+, ϕ)ξ + (ϕ−, ϕ)ξ = ‖ϕ−‖2ξ − ‖ϕ+‖2ξ .

With this at hand we can consider g(Vϕ, Vϕ):

g(Vϕ, Vϕ) = g(ξ, ξ)α2 + g(N,N)β2 = −α2 + β2 (7.2)

= −
(
‖ϕ+‖2ξ + ‖ϕ−‖2ξ

)2
+
(
‖ϕ+‖2ξ − ‖ϕ−‖2ξ

)2

= −4‖ϕ+‖2ξ · ‖ϕ−‖2ξ ≤ 0.

(5) We consider again the decompositions Vϕ = αξ + βN and ϕ = ϕ+ + ϕ−, then we

have the following chain of equivalences:

ϕ is lightlike :⇐⇒ Vϕ is lightlike

Definition⇐⇒ g(Vϕ, Vϕ) = 0
Equation (7.2)⇐⇒ −α2 + β2 = 0
β<0,⇐⇒ α = −β > 0
⇐⇒ ‖ϕ+‖2ξ + ‖ϕ−‖2ξ = ‖ϕ+‖2ξ − ‖ϕ−‖2ξ
⇐⇒ ϕ− = 0
⇐⇒ ξ · ϕ = N · ϕ
⇐⇒ Vϕ · ϕ = αξ · ϕ+ β N · ϕ︸ ︷︷ ︸

=ξ·ϕ

= (α+ β)︸ ︷︷ ︸
=0

ξ · ϕ = 0
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(6) On the first hand we need a relation between the spin and Riemannian curvature.

Let RΣN be the spin curvature and Rg the Riemannian curvature. Moreover let

s0, . . . , sn be an orthogonal frame of TN , then we have:

∑
j

εjsj ·RΣN (X, sj)ϕ = −1
2 Ricg(X) · ϕ, (7.3)

∑
j

εjsj · Ricg(sj) · ϕ = − scalg ϕ (7.4)

for all X ∈ TN . We know that the local formula for the spin curvature is given by:

RΣN (X,Y )φ = 1
2
∑
k<l εkεlR

g(X,Y, sk, sl)sk · sl · φ. So we have:

∑
j

εjsj ·RΣN (X, sj)ϕ = 1
2
∑
j;k<l

Rg(X, sj , sk, sl)εjklsj · sk · sl · ϕ

= 1
4
∑
j,k,l

εjklR
g(X, sj , sk, sl)sj · sk · sl · ϕ

The sum above runs over the index set
{
j, k, l = 0, . . . , n

∣∣ k 6= l
}
, since the curva-

ture term vanish for k = l. Now we split the sum w. r. t. to the decomposition{
j, k, l

∣∣ k 6= l
}

=
{
j 6= k 6= l 6= j

}
∪̇
{
j = k 6= l

}
∪̇
{
j = l 6= k

}
to obtain:

1
4

 ∑
j 6=k 6=l 6=j

εjklR
g(X, sj , sk, sl)sj · sk · sl · ϕ+

∑
j=k;l

εjklR
g(X, sk, sk, sl)sk · sk · sl · ϕ

+
∑
j=l;k

εjklR
g(X, sl, sk, sl)sl · sk · sl · ϕ


and

= 1
4

−∑
k,l

εklR
g(sk, X, sl, sk)sl · ϕ+

∑
k,l

εkl(−1)Rg(sk, X, sl, sk)sl · ϕ


= −1

2
∑
l

[∑
k

εklR
g(sk, X, sl, sk)

]
sl · ϕ

= −1
2
∑
l

εl Ricg(X, sl)sl · ϕ

= −1
2 Ricg(X) · ϕ.
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and

∑
j

εjsj · Ricg(sj) · ϕ =
∑
j,k

εjk Ricg(sj , sk)sj · sk · ϕ

=
∑
k

Ricg(sk, sk) sk · sk︸ ︷︷ ︸
=−εk

ϕ = − scalg ϕ

If ϕ is lightlike, parallel and nowhere vanishing, we conclude from Equations (7.3)

and (7.4) that

Ricg(X) · ϕ = 0,
scalg = 0

holds. Moreover, we obtain

Ricg(X) · Ricg(X) · ϕ = −g(Ricg(X),Ricg(X))ϕ = 0
and (Ricg(X) · Vϕ + Vϕ · Ricg(X)) · ϕ = −2g(Vϕ,Ricg(X))ϕ = 0,

where the last line is true, because of the fact that g(Vφ,Ric(X)) = −〈Ric(X)·φ,φ〉 =
0 holds. So we have g(Vϕ, Vϕ) = g(Vϕ,Ricg(X)) = g(Ricg(X),Ricg(X)) = 0.
Therefore the two vector fields Vϕ and Ricg(X) are linear dependent, hence there

exist an 1-form ω, s. t. Ricg(X) = ω(X)Vφ. Lets write T := ξ
g(ξ,Vϕ) and check

g(Vϕ, T ) = 1: We see now:

ω(X) = ω(X)g(Vϕ, T ) = Ric(X,T ) = Ric(T,X) = ω(T )g(Vϕ, X). (7.5)

We can now write the Ricci curvature as the following:

Ric(X,Y ) = ω(X)g(Vϕ, Y ) Equation (7.5)= ω(T )g(Vϕ, X)g(Vϕ, Y ) = (fV [
ϕ ⊗ V [

ϕ)(X,Y )

for all X,Y ∈ TN and we set f := ω(T ).

We will need the divergence of a (p+ 1, 0)-tensor A, which is given by:

δ(A)(X1, . . . , Xp) :=
∑
i

(∇eiA)(ei, X1, . . . , Xp)

for allX1, . . . , Xp ∈ TM . In the last step we want to show that Vϕ(f) vanish. We use

the well-known identity d scal = 1
2δ(Ric) and the vanishing of the scalar curvature
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to obtain:

0 = δ(Ric) = δ(fV [
ϕ ⊗ V [

ϕ) =
∑
i

∇i(fV [
ϕ ⊗ V [

ϕ)(X, ei)

=
∑
i

∂i(fV [
ϕ(X)V [

ϕ(ei))− fV [
ϕ(∇iX)V [

ϕ(ei)− fV [
ϕ(X)V [

ϕ(∇iei)

=
∑
i

(∂if)V [
ϕ(X)V [

ϕ(ei) + f(g(∇iVϕ) + g(Vϕ,∇iX))g(Vϕ, ei)

+ fg(Vϕ, X)(g(∇iVϕ, ei) + g(Vϕ,∇iei))
− fg(Vϕ,∇iX)g(Vϕ, ei)− fg(Vϕ, X)g(Vϕ,∇iei)

= V [
ϕ(X)

∑
i

(∂if)V [
ϕ(ei) + f

∑
i

g(∇iVϕ, X)g(Vϕ, ei)

+ fV [
ϕ(X)

∑
i

g(∇iVϕ, ei)

= Vϕ(f)V [
ϕ(X) + f(∇VϕVϕ)[(X) + fV [

ϕ(X)δ(Vϕ)

By assumption Vϕ is parallel, hence Vϕ(f) vanish. This shows the proposition.

�

Remark 7.6: Let (M, g) be a Riemannian spin manifold with a nowhere vanishing

parallel spinor φ, then by Equation (7.3) we have

0 =
∑
j

sj ·RΣM (X, sj)φ︸ ︷︷ ︸
=0

= −1
2 Ricg(X) · φ,

since a parallel section annihilates the curvature. If we apply the Clifford multipli-

cation of Ricg(X) to the previous identity, we obtain

0 = Ric(X) · Ric(X) · φ = −g(Ric(X),Ric(X))φ.

By assumption that we have a nowhere vanishing spinor, we can conclude that a

Riemannian manifold with a parallel spinor needs to be Ricci-flat. An example for a

Lorentzian manifold with a parallel spinor, that is not Ricci-flat, is given by a special

case of Example 6.12. We consider (N,h) = (Rn+2, h = gλ) with metric

gλ =

0 1 0
1 f 0
0 0 En


and f(x) =

∑n
j=1 λjx

2
j and λ ∈ Rn. We compute the Ricci curvature as follows:

Recall that we have two different frames of interest:

e− = ∂

∂v
e+ = −f2

∂

∂v
+ ∂

∂u
si = ∂

∂xi
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and

sv = 1√
2

(e− − e+) su = 1√
2

(e− + e+) si = si.

where we have g(e−, e−) = g(e+, e+) = 0, g(e−, e+) = 1 and sv, su, si is a generalised
orthonormal basis, s. t. g(sµ, sν) = εµδµν and εµ=v = −1, εµ=u,i = 1.

We compute the Ricci curvature with help of the generalised orthonormal basis:

Ricg(X,Y ) =
∑
µ

εµg(Rg(sµ, X)Y, sµ)

= −g(Rg(sv, X)Y, sv) + g(Rg(su, X)Y, su) +
∑
i

g(Rg(si, X)Y, si)

= −1
2g(Rg(e+, X)Y, e+) + 1

2g(R
g(e+, X)Y, e+) +

∑
i

g(Rg(si, X)Y, si)

=
∑
i

g(Rg(si, X)Y, si)

Where we used that the curvature vanish if we plug in the parallel vector e−. We

have three cases (X,Y ) = (e+, e+), (e+, sk), (sj , sk):

(X,Y ) = (e+, e+): We will use again Table 6.2 and calculate:∑
i

g(Rg(si, e+)e+, si) = −1
2
∑
i

g(∇hsi
gradh f, si)

= −1
2
∑
i

∂si(g(gradh f, si))− g( ∇hsi
si︸ ︷︷ ︸

=0, since h is flat

, gradh f)

= −1
2
∑
i

∂i∂if = −
∑
i

λi

(X,Y ) = (e+, sk): We have∑
i

g(Rg(si, e+)sk, si) = 1
2
∑
i

Hessh(f)(si, sk) g(e−, si)︸ ︷︷ ︸
=0

= 0.

(X,Y ) = (sj , sk): We have ∑
i

g(Rg(si, sj)sk, si) = 0

since h is flat.

Thus we can write the Ricci curvature as Ricg = −(
∑
i λi)e[−⊗ e[− and of course this

is non-zero for generic λ. We recognize this curvature expression with the general

form of part 6) of Proposition 7.5.
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7.3 Spin constraints

Let (M, g) be a Lorentzian spin manifold with a spacelike hypersurface (M, g), a
fixed orientation and the embedding of the hypersurface has trivial normal bundle,

given by a vector field T . Then we can equip the hypersurface with a compatible

spin structure coming from (M, g). We consider an embedding of frame bundles

over M

ι : PSO(n)M → PSO0(n,1)M |M

(s1, . . . , sn) 7→ (T, s1, . . . , sn).

and define the induced spin structure on M by the pullback ι∗
(
PSpin0(n,1)M |M

)
.

There is a connection between the two different Clifford multiplications on ΣM and

ΣM given by: X ·ϕ = iT ?X ? φ|M for all X ∈ TM . We write X ·ϕ for the Clifford

multiplication on ΣM and X ? ϕ on ΣM . The reader can consult [9, section 3] for

a more detailed construction.

However, when we have a parallel null spinor on a Lorentzian manifold, then we

can restrict to the hypersurface and obtain constraints on the hypersurface.

Proposition 7.7 (spin constraints): Let (M, g) be a Lorentzian spin manifold,

(M, g) ⊂ (M, g) be a spacelike hypersurface with a future-directed timelike unit

normal field T . Moreover we have a lightlike parallel spinor φ on (M, g). The

restricted spinor ϕ = φ|M satisfies the following equations on (M, g):

{
∇ΣM
X ϕ = i

2W (X) · ϕ
Uϕ · ϕ = iuϕϕ

(7.6)

for all X ∈ Γ(TM), the so called spin constraints for ϕ, also called imaginery W -

Killing spinor. Where Uϕ is the Dirac current of ϕ, uϕ = ‖Uϕ‖g = ‖ϕ‖2 andW is the

Weingarten map from the embedding (M, g) ↪→ (M, g).

Proof.

Let s1, . . . , sn of M be an orthonormal frame and X ∈ Γ(TM). When we keep in

mind the identification of spinor bundles ofM andM as in [9, section 3], then we have

T, s1, . . . , sn as an orthonormal frame of TM . Set e0 = T, ei = si. Now we can consider
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the spin covariant derivative of φ in direction X:

∇ΣM
X φ = X(φ) + 1

2
∑
µ<ν

εµενg(∇gXeµ, eν)eµ ? eν ? φ

= X(φ)− 1
2

∑
µ=0;l>0

g(∇gXT, sl)T ? sl ? φ+ 1
2
∑

0<k<l
g(∇gXsk, sl)sk ? sl ? φ

= X(φ) + i

2
∑
l>0

g( ∇gXT︸ ︷︷ ︸
=−W (X)

, sl)(iT ? sl) ? φ

+ 1
2
∑

0<k<l
g(∇Xsk, sl)(iT ? sk) ? (iT ? sl) ? φ

If we restrict the previous expression to the hypersurface M , we obtain:

= X(ϕ)− i

2
∑
j

g(W (X), sj)sj · ϕ+ 1
2
∑
k<j

g(∇gXsk, sj)sk · sj · ϕ

= ∇ΣM
X ϕ− i

2W (X) · ϕ.

Where we used the identification of the Clifford multiplications X ·ϕ = iT ?X ?φ|M and

the fact that the Weingarten map is given as: W (X) = −πTM∇XT for X ∈ TM .

In the next step we decompose Vφ on M as uT − U , where U = πTM (−Vφ)|M and

u =
√
g(U,U). The equivalence in Proposition 7.5 gives us the vanishing of Vφ · φ. So

we obtain by multiplication of T the following:

0 = T ? Vφ ? φ|M = T ? (uT − U) ? φ|M = uϕ+ i (iT ? U ? φ)|M︸ ︷︷ ︸
U ·ϕ

= uϕ+ iU · ϕ.

Hence the algebraic condition U · ϕ = iuϕ. Finally we consider:

u2
ϕ = g(Uϕ, Uϕ) = i〈ϕ,Uϕ · ϕ〉 = i(−i)uϕ〈ϕ,ϕ〉

and thus uϕ = ‖ϕ‖2, which shows the last part of the statement. �

Analogous to the question of the Riemannian constraint equation and the previous

result, we can ask if existence of a solution of the spin constraint requires the ex-

istence of an extension of the initial Riemannian manifold into a Lorentzian spin

manifold with parallel spinor, which restricts to the spin constraints on the initial

Riemannian manifold.

So we want to prove the following theorem, see [22, Thm 1].
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Theorem 7.8: Let (M, g) be Riemannian, spin manifold with a nowhere vanishing

imaginary W -Killing spinor ϕ, i. e. ϕ satisfies{
∇ΣM
X ϕ = i

2W (X) · ϕ
Uϕ · ϕ = iuϕϕ

for all X ∈ Γ(TM) and some g-symmetric endomorphism W on M . Where uϕ =
〈ϕ,ϕ〉 and Uϕ is the Dirac current of ϕ. Then there exists an open neighborhood M
of M = {0} ×M in R×M and a unique Lorentzian metric g on M such that:

(1) The manifold (M, g) is spin and admits a parallel null spinor φ.

(2) We have φ|M = ϕ and g|M = g.

In particular (M, g) embeds into (M, g) as a spacelike Cauchy hypersurface with

Weingarten map W .

In order to prove the previous theorem we ascribe the W -Killing spinor ϕ to the

solution of the Riemannian constraint equation for the Dirac current Vϕ for ϕ.

Proposition 7.9: Let (M, g) be a Riemannian spin manifold with a spinor φ and a
g-symmetric endomorphismW , which satisfies the spin constraints ( Equation (7.6)),

then the induced Dirac current Uφ of φ satisfies the Equation (5.1), i. e. the Rieman-

nian constraint equation.

Proof.

We derive the expression g(Uφ, Y ) = i〈φ,Y · φ〉 and consider:

g(∇XUφ, Y ) = ∂Xg(Uφ, Y )− g(Uφ,∇XY )
= ∂X(i〈φ,Y · φ〉)− i〈φ,∇XY · φ〉
= i〈∇Xφ,Y · φ〉+ i(((((((〈φ,∇XY · φ〉+ i〈φ,Y · ∇Xφ〉 − i(((((((〈φ,∇XY · φ〉

= i〈 i2W (X) · φ,Y · φ〉+ i〈φ, i2Y ·W (X) · φ〉

= 1
2〈φ,(W (X) · Y + Y ·W (X) · φ〉 = g(−‖φ‖2W (X), Y )

and hence ∇Uφ + ‖φ‖2W = 0. Finally we have to show that uφ =
√
g(Uφ, Uφ) holds:

g(Uφ, Uφ) = i〈φ,Uφ · φ〉 = i〈Uφ,iuφφ〉 = i · (−i)uφ‖φ‖2 = u2
φ.

Where we used that the sesquilinearform 〈·,·〉 is complex antilinear in the second argument,
the definition uφ := 〈φ,φ〉 and Proposition 7.7. �
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Proof of Theorem 7.8.

In the first step we use the Theorem 1.1, because the corresponding Dirac current Uϕ
for the imaginery W -Killing spinor ϕ satisfies the Riemannian constraint equation (see

Equation (5.1)), as we have proved in Proposition 7.9.

Now we have a globally hyperbolic extension (M, g) of our data and a parallel, lightlike

vector field V on M , we can extend ϕ along the flow lines of V to the whole of M to

a spinor φ. It remains to show that φ is parallel and V coincides with the Dirac current

Vφ. The spin structure of (M, g) is the extension of the spin structure of (M, g) given the

semi-Riemannian cylinder construction as in [9, 3. section].

φ is parallel:

By the definition it is clear that ∇ΣM
V φ vanish, because we had defined the spinor φ by

parallel transport along the flow lines of V .

Consider now an arbitary vector field X ∈ ∂⊥
t and show that ∇ΣM

X φ vanish. We define

the section A ∈ Γ((∂⊥
t )∗ ⊗ ΣM) given by A(X) := ∇ΣM

X φ and show that A satisfies a

symmetric hyperbolic system.

For this purpose we consider the differential operator of order 1, given by

P = ∇T ∗M⊗ΣM
V : Γ(T ∗M ⊗ ΣM)→ Γ(T ∗M ⊗ ΣM)

A 7→ ∇VA :=
(
X 7→ (∇VA)(X) = ∇ΣM

V (A(X))−A(∇gVX)
)

and we have to show that this operator is a symmetric hyperbolic system. But we already

proved that in Lemma 1.3. In the following we have to show that we have a Cauchy

problem for A(X) = ∇ΣM
X φ: {

P (A) = 0 on M

A = 0 on M
(7.7)

The first step is to show the vanishing of P (A) for the initial data A(X) = ∇ΣM
X φ. Let

X ∈ Γ(TM), then we calculate:

P (A)(X) = (∇T ∗M⊗ΣM
V A)(X) = ∇ΣM

V (A(X))−A(∇gVX)

= ∇ΣM
V ∇ΣM

X φ−∇ΣM
∇g

V X
φ

= RΣM (V,X)φ+∇ΣM
X ∇ΣM

V φ︸ ︷︷ ︸
=0, assumption

−∇ΣM
∇gXV︸ ︷︷ ︸

=0,V parallel

φ

= 1
2
∑
k<l

εkεlR
g(V,X, sk, sl)︸ ︷︷ ︸

=0

sk · sl · φ = 0 (7.8)
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Where we used in the last step that V annihilates the curvature Rg, since V is parallel.

Now we want to use the uniqueness result from [1, Corollary 3.7.6] for the Equation (7.7).

Where the first equations in Equation (7.7) holds through Equation (7.8). The second

part of Equation (7.7) holds because of the following observation: Let X ∈ Γ(TM) be a
vector field, then we have a splitting of X in a V - and a TM -part. The V -part vanish by

construction. Let X ∈ Γ(TM), then we have

A(X)|M = (∇ΣM
X φ)|M

Proof of Proposition 7.7= ∇ΣM
X ϕ− i

2W (X) · ϕ constraint equations= 0.

Hence the uniqueness result for the Cauchy problem of symmetric hyperbolic systems gives

us the unique solution A = 0. Therefore the spinor φ is parallel.

V is the Dirac current of φ:

We can decompose the parallel null vector field V as uT −U , moreover we have T = 1
λ∂t

and N = 1
uU . This global vector fields reduce the SO(n, 1) frame bundle P of M to a

SO(n− 1) frame bundle P̃ , since they are parallel. Let P̃ be the SO(n− 1)-reduction of

the frame bundle P , then we have an induced Spin(n− 1)-principial bundle Q.

Claim: Let P be a G-principial bundle, Q be a H-principial bundle, R be a H̃-

principial bundle and we have an inclusion G ↪→ H and a group morphism λ : H̃ →
H. Moreover π1 : P → Q and π2 : R→ Q are reductions in the sense of [2, Defintion

2.11]. Then there exists a λ−1(G)-principial bundle S, s. t.

S R

P Q

π

π2

π1

commutes and π is a reduction of principial bundles.

The proof of that claim is simple. Set S := π−1
2 (π1(P )) and show that this S is a λ−1(G)-

principial bundle, but this is clear by the pullback construction.

Now we have the identification of spinor bundles ΣM = Ŝ ⊗∆1,1. The Clifford multipli-

cation of T,N and an arbitary X ∈ span(T,N)⊥ on ψ ⊗ u(ε) is given by:

T · (ψ ⊗ u(ε)) = −ψ ⊗ u(−ε) (7.9)

N · (ψ ⊗ u(ε)) = εψ ⊗ u(−ε) (7.10)

X · (ψ ⊗ u(ε)) = −ε(X · ψ)⊗ u(ε) (7.11)
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Where we used the basis of ∆1,1 = C2:
{
u(ε) =

(
1
−εi

)
| ε ∈ {±1}

}
. Now let

ψ = ψ1 ⊗ u(ε) + ψ−1 ⊗ u(−ε) ∈ Γ(ΣM) be an arbitary spinor, then we have a chain of

equivalences:

V · ψ = 0 V=u(T−N)⇐⇒ T · ψ = N · ψ T ·T=1⇐⇒ T ·N · ψ = ψ (7.12)

Equation (7.9),Equation (7.10)⇐⇒ ψ = ψ−1 ⊗ u(−1)

In the next step we want to show that the product V · φ vanish on M . Here we consider

again a symmetric hyperbolic system, given by P = ∇ΣM
V : Γ(ΣM) → Γ(ΣM) and the

corresponding Cauchy problem for V · φ:{
P (V · φ) = 0 on M,

(V · φ) = 0 on M.
(7.13)

The first part of Equation (7.13) is given by

P (V · φ) = ∇ΣM
V (V · φ) = (∇gV V ) · φ+ V · (∇ΣM

V φ) = 0,

where we used that both fields V, φ are parallel. The second part of Equation (7.13) is a

consequence of the second part of the spin constraint equations: We have U ·ϕ = iuϕ on

Γ(ΣM). The induced Clifford multiplication on Γ(ΣM) results in

iuT ? N ? φ|M = iT ? U ? φ|M = U · ϕ spin constraints= iuϕ = iuφ|M

and hence T ? N ? φ|M = φ|M . The chain of equivalences in Equation (7.12) gives us

the second part of the symmetric hyperbolic system and again with the uniqueness and

linearity of that system we obtain the desired result: V · φ vanish on M .

At this point we want to compare the parallel null vector fields V and the Dirac current

Vφ of φ. Let’s write Vφ as a linear combination Vφ = αT + βN +
∑
k γkXk for T,N and

Xk ∈ span(T,N)⊥. The coefficients are given by:

−α = αg(T, T ) = g(Vφ, T ) = −〈T · φ,φ〉 = −(φ, φ)T = −‖φ‖2T

and

β = g(Vφ, N) = −〈N · φ,φ〉
= −〈T · T ·N · φ,φ〉
= −(T ·N · φ, φ)T
Equation (7.12)= −(φ, φ)T
= −‖φ‖2T
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7 Spin geometry of Lorentzian manifolds

and

g(Vφ, Xk) = −〈Xk · φ,φ〉 = −(T ·Xk · φ, φ)T
Equation (7.12),φ=φ−1⊗u(−1)= −((Xk · φ)⊗ u(1), φ−1 ⊗ u(−1)) = 0.

Hence we have

Vφ = αT + βN = ‖φ‖2TT − ‖φ‖
2
TN = ‖φ‖2T (T −N) = ‖φ‖

2
T

u
V.

Now we use the fact that both vector fields Vφ, V are parallel along the t-lines in M ,

hence there exists a smooth function c ∈ C∞(M) independent of t-part, s. t. u(t, x) =
c(x)‖φ(t, x)‖2T . We consider now: u0(x) = u(0, x) = 〈ϕ(x),ϕ(x)〉 = ‖ϕ(x)‖2T =
‖φ(0, x)‖2T and hence c(x) = 1.

The last argument shows that V and the Dirac current Vφ coincide. �
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