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1 Introduction

Since its first synthesis in 1958, mercury cadmium telluride (HgCdTe or MCT)
has become one of the most prominent materials for infrared detection because
of its highly tunable band gap that covers a wide range of frequencies from the
near infrared up to the terahertz range [1, 2]. In the early years, this material
was considered so significant that the research in the United States was even
classified until the late ’60s because of its potential military applications [2].
Due to this technological importance, great efforts have been made to enhance
the fabrication technologies for growing MCT-based crystals and heterostruc-
tures, resulting in a well-controlled fabrication process that allows for high
material quality and carrier mobilities nowadays [3–5]. Besides conventional
narrow-gap semiconductors or semimetals, it is also possible to realize novel,
topological phases in the MCT material class. This is attributed to the peculiar
band structure of mercury telluride (HgTe), where strong spin-orbit coupling
leads to an energetic inversion of the s- and p-like bands [6, 7]. Topologically
non-trivial phases can be realized, e.g., in CdxHg1−xTe crystals with cadmium
contents x below a specific temperature-dependent critical value xc [8, 9], or
in two-dimensional CdTe/HgTe/CdTe quantum well (QW) structures wider
than the critical thickness dc ≈ 6.3 nm [10–12]. In these systems, time-reversal
symmetry-protected boundary states with extraordinary properties form at
the interface to trivially insulating materials [7, 13]. These states exhibit a
linear energy dispersion that is described by the Dirac equation for mass-
less particles [14]. Due to a locking of spin and momentum directions, they
are effectively protected from backscattering, yielding dissipationless electrical
transport of the boundary states [12].

While the existence of these protected boundary states in the MCT system was
already predicted in the ’80s [15, 16], it took two decades until technological
advancements in material fabrication enabled the experimental observation of
the helical edge states in HgTe quantum wells in the context of the quantum
spin Hall effect [10, 11]. From that point on, extensive studies of MCT-based
materials led to the observation of a variety of fascinating phenomena, such as
terahertz radiation-induced photocurrents carried by the helical edge states in
topologically non-trivial HgTe QWs [17], or surface state cyclotron resonance
in three-dimensional topologically insulating strained HgTe films [18, 19]. Fur-
thermore, giant terahertz-induced photocurrents were detected in HgTe QWs
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corresponding to topologically trivial and non-trivial phases [20] as well as the
Dirac-like transition regime where the band gap shrinks to zero [21]. These
findings demonstrate that optoelectronic techniques, such as photocurrent or
photoconductivity measurements, provide very powerful methods for the study
of the electronic properties of such systems, important for both fundamental
science as well as applications. In particular, this approach allows to optically
probe spin-dependent phenomena [22] involving the spin-momentum-locked
topological boundary states. For such studies, the terahertz (THz) range of
frequencies is of particular importance since it provides photon energies that
are smaller than the bulk energy gap in these materials, which effectively pre-
vents the optical excitation of bulk carriers across the gap. Consequently,
this work is devoted to the study of MCT-based heterostructures employing
techniques such as terahertz spectroscopy and magnetophotoconductivity. De-
spite the number of investigations that have already been carried out on this
material class, there are still many open questions to be answered. An impor-
tant goal of this work is to obtain a better understanding of the topological
boundary states in these materials and their influence on electro-optical ef-
fects. The investigations focus on two-dimensional HgTe quantum wells as
well as three-dimensional CdxHg1−xTe films in both topologically trivial and
non-trivial regimes. Using continuous and pulsed terahertz excitation, fasci-
nating optoelectronic phenomena were discovered in the course of this study.

A detailed investigation of the terahertz photoconductivity in HgTe QWs
with inverted and non-inverted parabolic as well as linear band dispersion re-
vealed that these structures manifest a distinct sign-alternating photoresponse
in magnetic field [23]. Upon increase of the external, out-of-plane magnetic
field, the photoconductivity systematically changes its sign. This remarkable
effect was observed in QWs corresponding to both topologically trivial and
non-trivial regimes. Additionally, it was studied in samples with different ge-
ometries including conventional Hall bar and Corbino disk design. Notably,
the analysis of the photoconductivity in Corbino disk samples brought up an
elegant optoelectronic method to probe the carrier mobility in such systems.

During the research on the sign-alternating photoconductivity, a qualitatively
different behavior of the photoresponse was observed in a high-mobility 20 nm
QW. Instead of a single or double sign inversion in magnetic field, pronounced
ω/ωc-periodic oscillations were observed in photoresistivity for the Fermi en-
ergy lying in the conduction band [23]. Further analysis demonstrated that
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these oscillations have the same origin as microwave-induced resistance oscil-
lations (MIRO), which have previously been observed only in systems with
ultra-high mobility, such as ultra-clean high-mobility GaAs quantum wells,
under illumination with microwave radiation [24–26]. Similar to Shubnikov-de
Haas oscillations, which result from an interplay of Fermi energy EF and cy-
clotron energy ~ωc, MIRO express the commensurability between the photon
energy ~ω and ~ωc. Recently, their terahertz analogue, the terahertz-induced
resistance oscillations (TIRO), were observed in GaAs quantum wells [27, 28]
as well as in three-dimensional HgTe topological insulators [29]. The results
presented in this work represent the first observation of such MIRO-like oscil-
lations in HgTe quantum wells.

In addition to two-dimensional systems, the optoelectronic properties of three-
dimensional CdxHg1−xTe films were studied in the last part of this thesis. The
investigation of topologically non-trivial CdxHg1−xTe films with an inverted
band ordering revealed cyclotron resonance involving the two-dimensional sur-
face states [30]. The surface state resonance was detected in terahertz radiation
transmission as well as photogalvanic experiments. However, it was absent in
the investigated CdxHg1−xTe films with higher cadmium contents correspond-
ing to the topologically trivial regime, demonstrating the origin of the reso-
nance in the surface state carriers. Moreover, experiments with different film
designs showed the importance of sharp interfaces between topologically triv-
ial and non-trivial layers for the formation of fully two-dimensional topological
surface states.

This thesis is arranged in the following way: Chapter 2 covers the essential con-
cepts and phenomena relevant for this work. First, the concept of topological
insulators and their basic properties are outlined in Sec. 2.1, including a model
based on the relativistic Dirac Hamiltonian that allows the description of the
time-reversal protected boundary states. In the following, Sec. 2.2 presents
the basic properties of bulk cadmium telluride (CdTe) and mercury telluride
as well as their respective band dispersions. It is illustrated how topological
insulators can be constructed from two-dimensional HgTe quantum wells or
three-dimensional CdxHg1−xTe crystals. Section 2.3 gives a short introduction
into radiation-induced optoelectronic effects in semiconductors. Particular fo-
cus lies on the photogalvanic effect (see Sec. 2.3.1), which is described by a
phenomenological approach as well as several microscopic mechanisms includ-
ing photocurrents in strained topological HgTe films. Furthermore, the effect
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of photoconductivity (see Sec. 2.3.2) is outlined phenomenologically and mi-
croscopically by considering µ-photoconductivity caused by radiation-induced
carrier heating. Section 2.4 introduces the phenomenon of cyclotron resonance
in systems with parabolic as well as linear dispersion. In Chap. 3, the ex-
perimental methods are described, including the optically pumped terahertz
molecular gas laser setup (see Sec. 3.1) and the techniques for electrical signal
detection (see Sec. 3.2). Chapter 4 gives an overview on the properties of the
investigated samples. During the course of this work, six HgTe quantum wells
with various widths (described in Sec. 4.1) and five CdxHg1−xTe films with
different Cd content (described in Sec. 4.2) were studied. Subsequently, the
presentation of the experimental results starts with Chap. 5 and the description
of the sign-alternating photoconductivity in HgTe quantum wells. The findings
are compared for different QW widths and sample geometries in Sec. 5.1 and
afterwards discussed in Sec. 5.2. Chapter 6 continues with the presentation of
the MIRO-like oscillatory photoresponse observed in a 20 nm QW. The exper-
imental data are shown in Sec. 6.1 and discussed in Sec. 6.2 in the context of
the interplay between cyclotron and photon energies. Chapter 7 is focused on
the investigation of the three-dimensional CdxHg1−xTe films. The main part
of this chapter addresses the cyclotron resonance of topological surface states
that was observed in topologically non-trivial samples. The corresponding re-
sults are presented in Sec. 7.1. Additionally, resonances caused by magnetic
field-mediated ionization of impurities were detected. These are analyzed in
Sec. 7.2, followed by a detailed discussion of all results in Sec. 7.3 as well as
a theoretical modeling of the topological surface states in CdxHg1−xTe films
that demonstrates a strong influence of the film design on their properties.
Finally, this thesis concludes with a brief summary and an outlook on future
investigations in Chap. 8.



2 Physical basics 7

2 Physical basics

This chapter introduces the fundamental concepts that are relevant for this the-
sis. The first section gives an overview of the novel material class of topological
insulators and its fascinating properties. Subsequently, the characteristics of
bulk CdTe and HgTe, as well as HgTe quantum wells and CdxHg1−xTe alloys
are presented. In the next section, radiation-induced optoelectronic effects are
addressed. Particular focus lies on the photogalvanic effect, photoconductiv-
ity, and the phenomenon of cyclotron resonance which is outlined in the last
section of this chapter.

2.1 Topological insulators

In the most descriptive way, topological insulators are often portrayed as ma-
terials that are insulating in the bulk but host conducting states on their
boundary to surrounding vacuum or other non-topological materials [7, 13,
14]. These conducting states can be of different nature. In the most promi-
nent cases, they appear either as two-dimensional surface states enclosing a
three-dimensional piece of topological insulator [31], or as one-dimensional edge
states in topological insulators where the charge carrier movement is quantum
mechanically confined to two dimensions [13]. The existence of this peculiar
states originates from the inverted band ordering of topologically non-trivial
materials and the resulting crossing of the bands at the interfaces of these
materials to topologically trivial ones with a regular band ordering. Because
of this necessary band crossing, the band gap of the insulating bulk closes and
conducting states with an approximately linear, gapless dispersion emerge at
the boundaries [12].

So to put it simply, topologically trivial and non-trivial materials are distin-
guished by their different band ordering. Mathematically, this is expressed
in different values of so called topological invariants. One of these invariants,
originally introduced within the mathematical context of fiber bundles but
later adopted to the physical context of band structures, is the Chern number
c [32]. For the n-th band in a solid-state system, the Chern number [12]

cn = 1
2π

∫
S

Ωn(k) d2k (1)
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can be calculated as an integral over the surface of the Brillouin zone S using
the Berry curvature [14, 33]

Ωn = ∇k × i 〈un,k| ∇k |un,k〉 . (2)

The latter can be described as a gauge-invariant expression of the geometric
properties of the Bloch wave functions un,k in reciprocal space. Summation
over all bands yields the total Chern number c = ∑N

n=1 cn of the system. This
integer number is a distinct property that remains constant under smooth
transformations of the Hamiltonian of the corresponding system. It, however,
yields different values for topologically (in the sense of the Chern number or
Z-classification) non-identical systems, whose respective Hamiltonians cannot
be smoothly transformed into each other without shutting the energy gap [12].
In 1982, it was shown by Thouless, Kohmoto, Nightingale, and den Nijs that
in two-dimensional electron systems subjected to a strong perpendicular mag-
netic field, the Chern number is equal to the Landau level filling factor of the
corresponding quantum Hall state. In the quantum Hall effect, the current flow
is carried by edge states which naturally arise at the borders of the conduction
channel as a consequence of the transition between materials with different
Chern numbers. These edge states have the remarkable property that they
propagate in opposite directions at opposite edges of the conduction channel,
and are therefore called chiral [12]. Because of the lack of accessible states in
opposite propagation direction at the same edge, backscattering is not possible,
which renders these states robust against disorders [12, 13].

The quantum Hall states require an applied magnetic field that breaks time-
reversal symmetry. In strong contrast, the protected boundary states in Z2

topological insulators arise without external magnetic field, when time-reversal
symmetry remains unbroken [12]. Thus, such insulators define a new topologi-
cal class of materials characterized by their non-trivial Z2 topological invariant.
They exhibit remarkable properties that are linked to both spin-orbit coupling
and time-reversal symmetry, which describes the symmetry of physical laws
under the time-reversal transformation t 7→ −t. In systems with half-integer
spin, such a time reversal is expressed by the anti-unitary operator Θ which
reverses the momentum and spin of a Bloch eigenstate of the system according
to [14]

Θ |un,k,↑〉 = β |un,−k,↓〉 . (3)
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Here, β is a simple phase factor. The anti-unitary characteristic of Θ leads
to the important property Θ2 = −1 [34] that results in a degeneracy of the
systems eigenstates with respect to opposite crystal momenta and spins. A
direct consequence of this fact is Kramers theorem, which states that in systems
described by a time-reversal symmetric Hamiltonian, every energy state is
degenerate at least twice but either case even-numbered [12, 14]. In systems
without spin-orbit interaction, this degeneracy is simply expressed in the spin
degeneracy of every state [12]. However, when spin-orbit interaction lifts the
spin degeneracy, Eq. (3) ensures the existence of states where the momentum
and the spin direction are strongly coupled. These so called helical states
have the peculiar property that states with equal spin orientation move in the
same spatial direction, whereas an opposing spin alignment of states results
in contrary propagation directions [14]. This property is commonly known as
spin-momentum locking. An important consequence of this entanglement of
spin and momentum is that for helical states, backscattering is forbidden or,
to be more precise, possible only for scattering processes that involve a spin
flip [14]. In the ideal case, i.e. in the absence of spin-flip scattering, electrical
transport of helical states is dissipationless [35].

Another direct consequence of Kramers theorem is that for a time-reversal
invariant Hamiltonian, the states are required to be degenerate at points of
high symmetry in k-space, e.g. at k = 0 and k = π/a for one-dimensional
edge states. Here, a is the corresponding lattice constant. Away from these
time-reversal symmetric k-points, spin-orbit interaction can split the spin-
degeneracy and helical boundary states can arise in the gap [12]. However,
there are two principally different ways these helical bands can form connect-
ing the degenerate high-symmetry points. They can be linked either pairwise,
i.e. two bands emerge and end in the same set of degenerate k-points, as shown
in Fig. 1 (a). This leads to an even number of boundary states present in the
system at all times independent of the actual Fermi level. In Fig. 1 (a), the
bands are exemplarily arranged in such a way that two states are populated
for the given Fermi energy EF. However, by smoothly transforming the corre-
sponding Hamiltonian, the bands can just as well be moved out of the energy
gap, which would render the system topologically trivial. The other option,
illustrated in Fig. 1 (b), is that the Kramers-degenerate k-points are connected
in a way that no bands originate and end in the same two degenerate k-points.
In that event, there is always an odd number of intersections of the boundary
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valence bandvalence band

EF
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0 k

EF

E

0
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(a) (b)

π
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Figure 1: Schematic band dispersions of an insulator with boundary states
in the energy gap between the two Kramers-degenerate points k = 0 and
k = π/a. In panel (a), the Fermi energy EF crosses an even number of
boundary states, which renders them topologically trivial. In contrast, in (b),
the odd number of states crossed by EF ensures that they are topologically
protected. Because of time-reversal symmetry, the second half of the Brillouin
zone is a mirror image and not shown here. Adapted from Ref. [12].

states with the Fermi level and the bands can no longer be pushed out of the
energy gap by continuous transformations [12]. These two cases are distin-
guished with the help of the Z2 topological invariant ν ∈ {0, 1} [14, 36]. The
topologically trivial case sketched in Fig. 1 (a), where the Kramers points are
connected pairwise, is characterized by ν = 0 and the edge states are not pro-
tected. In contrast, the second situation, depicted in Fig. 1 (b), is characterized
by ν = 1 and describes the topologically non-trivial Z2 phase, where the helical
boundary states are protected by time-reversal symmetry. For mathematical
definitions of the Z2 topological invariant see, e.g., Refs. [36] or [14].

For three-dimensional insulators, this classification can be extended analo-
gously with the use of four Z2 topological invariants (ν0; ν1, ν2, ν3) with ν0 ∈
{0, 1} and ν1, ν2, ν3 ∈ Z [31]. In the surface Brillouin zone of a three-dimen-
sional insulator, Kramers theorem requires the existence of four degenerate,
time-reversal symmetric points Γ1,2,3,4 which now form two-dimensional Dirac
points in the surface band structure [14], as sketched in Fig. 2 (c). Again, the
decisive criteria for topologically non-trivial behavior is how these Kramers-
degenerate points are connected by the surface band dispersion. The number
of intersections of the Fermi surface with the straight line linking any pair
of time-reversal invariant points Γa and Γb defines whether the surface states
are topologically protected along this momentum direction or not. For each of
this possible directions, an even number of intersections results in topologically
trivial behavior, whereas for an odd number of crossings, the surface states are
topologically protected, in analogy to the situation illustrated in Figs. 1 (a)
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Figure 2: Sketch of the two-dimensional surface-state Brillouin zone with the
Kramers invariant points Γ1, Γ2, Γ3, and Γ4. Red lines exemplarily sketch
the evolution of the Fermi energy for a weak topological insulator with ν0 = 0
(a) and in case of a strong topological insulator described by ν0 = 1 (b). In
the STI depicted in panel (b), the Fermi energy encloses a single Dirac point
at Γ1 with the cone-like band dispersion of the surface states illustrated in
panel (c). Adapted from Ref. [12].

and (b) [31]. Figure 2 illustrates two possible shapes of the Fermi surface which
result in principally different topological properties. In the first scenario, dis-
played in Fig. 2 (a), the Fermi surface encloses two Kramers-degenerate points
Γ1 and Γ3 intersecting the connection lines between pairs Γ1-Γ2 and Γ3-Γ4.
Such a material can, e.g., be constructed by stacking weakly coupled layers of
two-dimensional quantum spin Hall insulators in y-direction, as illustrated in
Fig. 2 (a) [13]. Under such circumstances, the topologically protected helical
edge states of the individual layers form anisotropic surface states which are
no longer protected by time-reversal symmetry [13, 14]. This case is referred
to as weak topological insulator (WTI) described by ν0 = 0 and (ν1, ν2, ν3)
which may be understood as Miller indices defining the orientation of the lay-
ers [12]. In general, the Z2 topological invariant ν0 reflects whether the Fermi
surface encloses an even (ν0 = 0) or odd (ν0 = 1) number of Dirac points [14].
The simplest scenario for the so called strong topological insulator (STI) with
ν0 = 1 is sketched in Fig. 2 (b). Here, the Fermi surface encloses a single Dirac
point at Γ1 and intersects the connection lines between pairs Γ1-Γ2 and Γ1-Γ3.
In contrast to the WTI, in a strong topological insulator, the surface states are
protected by time-reversal symmetry and form a unique two-dimensional topo-
logical metal where, unlike to an ordinary metal, states are not spin-degenerate
[12]. Due to spin-momentum locking, the spin rotates with k around the Fermi
surface, which is illustrated by the arrows in Fig. 2 (b).

In general, the dispersion relation of such time-reversal symmetry-protected
boundary states can be deduced from the relativistic Dirac Hamiltonian for
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spin-1/2 particles [37, 38]

H = c p ·α+mc2β , (4)

where c is the speed of light, m and p represent the mass and the momentum
of the particle, respectively, and αi and β denote the Dirac matrices which can
be expressed in terms of the Pauli matrices

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , σz =
1 0

0 −1

 . (5)

In one dimension, the two Dirac matrices αx and β are any two of the three
Pauli matrices, e.g. αx = σx and β = σz. For the two-dimensional case, the
Dirac matrices are equal to the Pauli matrices, i.e. αx = σx, αy = σy, and
β = σz [14]. In three dimensions, the four-dimensional Dirac matrices are
given by

αi =
 0 σi

σi 0

 and β =
12 0

0 −12

 , (6)

with 12 being the 2 × 2 identity matrix. Solving the Schrödinger equation
yields the associated eigenenergies of the Dirac Hamiltonian [14]

E± = ±
√
m2c4 + p2c2 . (7)

Here, the two positive solutions describe an electron in spin-up and spin-down
state, whereas the negative solutions define the energy of a positron in either
spin-up or spin-down configuration. These two particle dispersions are sepa-
rated by an energy gap of 2mc2. In the case of a vanishing particle mass, the
mass-proportional term in Eq. (7) becomes zero and the dispersion is described
by E± = ± |cp| linear in velocity and momentum. It is important to note that
the Dirac equation is symmetrical in its positive and negative energy solutions
and, therefore, invariant under the transformation m → −m and β → −β
[14].

The Dirac equation for massless spin-1/2 particles is a good starting point
for the description of boundary states in topological insulators. In solid-state
systems, the solutions with different signs correspond to electron and hole
states, each double-degenerate reflecting the two different spin configurations.
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However, due to the symmetry of the Dirac equation, a topological distinction
between systems with positive mass (i.e. positive electron dispersion and neg-
ative hole dispersion) and negative mass (resulting in negative electronic and
positive hole energies) is not possible [38]. The easiest way to resolve this prob-
lem is to simply assign the first case as topologically non-trivial. A physically
more accurate attempt is to introduce a quadratic correction to the rest-mass
term in the Dirac Hamiltonian given by Eq. (4) to topologically distinguish
between these two cases: [14]

H = v p ·α+
(
mc2 − B̃p2

)
β (8)

Here, the speed of light has been replaced with the velocity v of the charge
carriers in the solid and B̃ is a parameter with the dimension of inverse mass.
The quadratic correction proportional to B̃ breaks the symmetry for positive
and negative masses [14]. Under the condition mB̃ > 0, Eq. (8) is topologi-
cally distinct from the original Dirac Hamiltonian and describes a topologically
non-trivial system (corresponding to a Z2 invariant of ν = 1) which hosts pro-
tected boundary states [38]. In contrast, for mB̃ ≤ 0, Eq. (8) characterizes a
topologically trivial system with ν = 0 [38]. In the framework of this modified
Dirac Hamiltonian, a two-dimensional topological insulator with a boundary
at x = 0 is then described by [14]

H2D = vpxσx ± vpyσy +
(
mv2 − B̃p2

)
σz . (9)

Using the relation pi = ~ki, the dispersion of the topologically protected states
forming at the interface to a topologically trivial material at x = 0 is then
given by

E± = ±v~ky sgn(B̃) ∝ ky , (10)

where the plus and minus sign reflect the different spin configurations of the
helical edge states propagating along the edge [14]. An analysis of the corre-
sponding eigenstates shows that the current density of the spin current which
is carried by the edge states decays exponentially away from the boundary
[14]. In case of a three-dimensional topological insulator, the resulting surface
states at the interface to a topologically trivial material (which is exemplarily
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defined as the yz-plane) are characterized by [14]

E± = ±v~ sgn(B̃)
√
k2
y + k2

z ∝
√
k2
y + k2

z . (11)

This defines a Dirac cone dispersion of the two-dimensional protected states
on the surface of the TI, as illustrated in Fig. 2 (c).

As already pointed out earlier, spin-orbit interaction is an important prerequi-
site for the formation of protected boundary states in topologically insulating
materials since it lifts the spin degeneracy away from the Kramers-invariant
points in k-space. In general, spin-orbit coupling (SOC) has to be considered
when a charged particle moves inside an electrostatic potential at relativistic
velocities. It describes the relativistic interaction of the particle’s spin with
the motion-related magnetic field B′, which leads to a modification of the
particle’s eigenenergies described by [39]

HSO = gµB

2 B′ · S′ = −gµB

2
1
c2 (v ×E) · S . (12)

Here, g is the g-factor, µB the Bohr magneton, c the speed of light, S the
spin operator, and primed variables indicate quantities in the rest frame of the
particle, whereas variables without prime correspond to the lab frame. Due
to the relativistic movement of the particle at velocity v, in its rest frame, it
senses a magnetic field B′ oriented normal to its direction of motion and the
electric field E resulting from the electrostatic potential [39].

In solid-state systems, SOC of electrons moving inside the periodic potential
of the positively charged nuclei can therefore induce a splitting of otherwise
spin-degenerate energy bands. Prominent examples of the consequences of
such spin-orbit interaction are the spin-orbit split-off band in all diamond or
zinc-blende semiconductors, as well as the Dresselhaus and Bychkov-Rashba
effects [39]. The Dresselhaus effect describes the spin splitting of bands in
non-centrosymmetric bulk crystals lacking inversion symmetry [40]. Here, the
intrinsic asymmetry in the lattice potential, also called bulk inversion asymme-
try (BIA), leads to a momentum-dependent splitting of the energy bands into
spin-aligned and anti-aligned subbands. The Bychkov-Rashba effect describes
a similar band splitting, but in contrast, here the asymmetric potential that
couples with the electron spin arises due to the structure inversion asymme-
try (SIA) [41–43]. In two-dimensional epitaxially grown heterostructures, the
charge carriers can, e.g., be trapped in a confinement potential without spatial
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inversion symmetry, which gives rise to a net electric field in growth direction
causing the Bychkov-Rashba type spin splitting. Due to this correlation with
the specific structure design, in this case, one speaks of structure inversion
asymmetry. It is worth noting that the strength of SIA can also be modi-
fied by applying an external electric field via a gate electrode [39]. Besides
two-dimensional heterostructures or surface states, the Rashba effect can also
appear in three-dimensional uniaxial crystals, such as wurtzite type ones [41].

Due to the influence of the nuclear charge on the electric potential and the
resulting field, SOI is larger in heavier atoms and, therefore, typically becomes
more important in materials composed of heavier atoms [13]. Mercury telluride
is a prominent example for such a material where strong spin-orbit coupling
due to the heavy mercury atoms lays the foundation for topologically non-
trivial behavior. As we will see in the next chapter, two- and three-dimensional
topological insulators with variable band gap energies can be realized by alloys
and heterostructures made of mercury telluride and cadmium telluride.

2.2 Mercury cadmium telluride based materials

Mercury telluride and cadmium telluride are both part of the II-VI group of
semiconductor compound materials. Both materials have a zinc-blende lattice
structure and exhibit a tetrahedral crystal symmetry as part of the Td point
group [7]. An important consequence that comes with this crystal structure
is the absence of a center of inversion [6]. Their similar lattice constants of
6.48 Å (CdTe) and 6.45 Å (HgTe) allow to build alloys with variable material
compositions and make them suitable for the design of nanoscale structures,
such as quantum wells or quantum dots [44]. Despite the similarities mentioned
above, HgTe and CdTe differ in the sequence of the fundamental band edges [7].

The conduction and valence band in HgTe are formed, respectively, by 5p
electrons from the tellurium atoms and 6s electrons from the mercury atoms,
whereas in CdTe they are comprised of the 5s electrons from the cadmium
as well as the 5p electrons of the tellurium atoms [6, 11]. For the calculation
of the respective band structures in these two materials, the consideration
of relativistic corrections like the Darwin-Term, mass-velocity correction, and
the spin-orbit interaction is essential. If relativistic effects are ignored, the
gap energy Ein between the valence and conduction band is similar in both
materials [6]. However, when the relativistic corrections are taken into account,
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Figure 3: Evolution of the energies of the s-like Γ6 and p-like Γ8 bands for
k = 0 in CdTe (a) and HgTe (b). Starting with the initial non-relativistic
Hamiltonian Hnr, the relativistic corrections for the Darwin term HD, the
mass-velocity Hmv, and the spin-orbit interaction Hso are included from left
to right. A strong energy shift Esmv due to the mass-velocity correction in
HgTe leads to the inversion of the Γ6 and Γ8 bands after the spin-orbit
interaction-induced splitting of the Γ8 bands. Picture after Ref. [6].

the energies of the resulting s-type Γ6 and the p-type Γ8 bands deviate strongly
in the two materials, as shown in Fig. 3. In HgTe, the mass-velocity correction
leads to a drastic lowering of the Γ6 band due to the big mass of mercury.
As a result of the additional spin-orbit interaction-induced splitting of the
three times degenerate Γ8 band (when neglecting degeneracy due to spin)
into the double-degenerate Γ8 and the Γ7 bands, the Γ8 bands shift above
the Γ6 band in pure HgTe [6]. This results in the inverted band structure
of HgTe, where the Γ8 bands are situated energetically higher than the Γ6

band [7], see Fig. 4 (b). Therefore, at the interfaces of HgTe to materials
without band inversion, topologically protected boundary states form as a
result of the transition from inverted to non-inverted band dispersion. In
CdTe the situation is different. Due to a much weaker influence of the mass-
velocity correction (see Fig. 3 (a)), the bands have a trivial ordering with a
band gap of around 1.6 eV at the Γ point between the Γ6 conduction and the
Γ8 valence bands consisting of a heavy and light hole band, see Fig. 4 (a) [46].
The Fermi energy typically lies inside the band gap, which results in CdTe
being an ordinary narrow-gap semiconductor.
In HgTe, however, the Fermi level is situated between the double-degenerate Γ8

bands, see Fig. 4 (b). Therefore, no energy gap is present in the system, which
makes HgTe effectively a zero-gap semiconductor. However, the absence of an
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Figure 4: Calculated band spectrum of CdTe (a) and HgTe (b) around the
Γ point using an empirical pseudopotential method. Dashed lines at E = 0
indicate the position of the Fermi level in the material. Panel (a) shows the
trivial band ordering in CdTe. Panel (b): In HgTe, the Γ8 bands are shifted
above the Γ6 band and the Fermi level intersects the Γ8 bands. Panel (c)
illustrates the conduction and valence bands in HgTe for different crystallo-
graphic directions. In directions away from 〈100〉, the valence band maximum
shifts away from k = 0 to slightly higher energies making HgTe a topological
semimetal. Pictures (a) and (b) adapted from Ref. [44]. Picture (c) according
to Refs. [6] and [45].

inversion center in the zinc-blende structure gives rise to linear terms in E(k).
In HgTe, these corrections, despite being negligible for the Γ6 band, result in a
shift of the Γ8 valence band maximum away from k = 0, as shown for certain
crystallographic directions in Fig. 4 (c) [6]. This slight displacement of the
band maximum away from the Γ point leads to a small overlap of conduction
and valence bands effectively rendering HgTe a topological semimetal [7, 44].
The maximum overlap is found along the 〈111〉 direction, whereas the effect
vanishes along the 〈100〉 direction [6]. Another important consequence of the
inverted band ordering in HgTe is the unusual temperature dependence of the
gap energy Eg [6]. Contrary to ordinary semiconductors, where the gap energy
decreases with temperature (i.e. ∂Eg/∂T < 0) due to the thermal expansion
of the crystal and the interaction of carriers with phonons (for example in
CdTe, as shown in the curve for x = 1 in Fig. 7 (a)), in HgTe, the gap energy
was shown to increase with temperature (i.e. ∂Eg/∂T > 0), as illustrated in
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Fig. 7 (a). Note that in both HgTe and CdTe, spin-orbit interaction induces a
split-off Γ7 valence band [6].

To realize a topologically insulating state in HgTe, the Γ8 degeneracy has to be
lifted by opening a band gap between the conduction and valence bands while,
at the same time, maintaining the inverted band ordering in the material.
This can be done, for example, by introducing uniaxial tensile strain in a
thin layer of HgTe by growing it onto CdTe which exhibits a slightly larger
lattice constant [7, 18, 19, 47, 48]. This anisotropic deformation disturbs the
symmetry of the crystal structure and, in this way, lifts the band degeneracy
at the Γ8 point [6]. Moreover, the Γ8 degeneracy can also be lifted by quantum
confinement in HgTe-based heterostructures [14, 49].

The most prominent example for such a structure is the HgTe quantum well,
where a thin layer of HgTe with thickness d is sandwiched between two CdTe
or CdxHg1−xTe barriers building a type III quantum well [10]. Here, the six
relevant bands (|Γ6,

1
2〉, |Γ6,−1

2〉, |Γ8,
3
2〉, |Γ8,

1
2〉, |Γ8,−1

2〉, |Γ8,−3
2〉) combine

to form three spin-degenerate quantum well subbands E1, HH1 and LH1. At
the Γ point, the |E1,mJ〉 subband state is composed of a linear combination of
the |Γ6,mJ = ±1

2〉 and |Γ8,mJ = ±1
2〉 states, whereas the |HH1,mJ〉 quantum

well state is formed from the |Γ8,mJ = ±3
2〉 states [10]. The LH1 subband is

energetically split off the other two bands [10]. Away from k = 0, where mJ

is no longer a good quantum number, the E1 and HH1 states can mix [10].

Due to the influence of the trivial band ordering in the barrier material CdTe,
where the Γ6 band energetically exceeds the Γ8 bands, the dispersion of the
QW states depends on the thickness d of the HgTe layer [10], as illustrated in
Fig. 5 (a). For thin HgTe films with d < dc, the influence of the CdTe barrier
prevails and the E1 band is located above the HH1 states (shown in Fig. 5
(b)), resulting in an ordinary band ordering resembling the one in CdTe [10,
11]. However, if the QW width exceeds a certain threshold dc, the influence of
the HgTe dispersion dominates and the HH1 band shifts above the E1 band
(depicted in Fig. 5 (c)), resulting in an inverted band ordering [10]. Since these
two dispersion types are characterized by a different Z2 topological order and
cannot be transformed into one another with only smooth deformations of the
corresponding Hamiltonian, there has to be an inevitable crossing of the E1
and HH1 bands at the threshold width dc [10], as highlighted in Fig. 5 (a). Such
quantum wells with d = dc are characterized by an almost linear dispersion
without an energy gap and described by the theory of massless Dirac fermions
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Figure 5: Panel (a): Calculations of the energies of the E1 (turquoise) and
HH1 (orange) bands with respect to the quantum well thickness d at k‖ = 0.
Here k‖ denotes the k-vector in the QW plane. At dc ≈ 6.3 nm the two bands
cross each other. Panels (b) and (c): Schematic depiction of the energetic
positions of the Γ6, Γ8, E1, and HH1 bands in a HgTe QW with CdTe
barriers for d < dc (b) and d > dc (c). Solid lines indicate the energies of the
fundamental Γ6 (turquoise) and Γ8 (orange) bands in the materials, whereas
dashed lines represent the resulting E1 (turquoise) and HH1 (orange) bands
in the QW. Pictures according to Ref. [10].

[11]. In literature, this critical threshold thickness is estimated to be around
dc = 6.3 ± 0.1 nm [10, 11, 50]. The exact value of dc can depend on multiple
parameters, such as the interface orientation [50], temperature [51], as well as
lattice mismatch-induced strain and, thus, also on the respective composition
of the CdxHg1−xTe barriers in QW structures where no pure CdTe barriers are
used [52].

In the topological non-trivial phase (d > dc), a single pair of gapless helical
edge states forms at the interface between the quantum well (inverted band
dispersion) and the barrier (trivial band dispersion) as a consequence of their
different Z2 order parameter [10]. These states have an almost linear disper-
sion, are topologically protected by time-reversal symmetry, and propagate
dissipationless along the edges [10, 11]. Due to spin-momentum locking, carri-
ers with opposite spin travel in different directions on opposing edges. In the
absence of an external magnetic field, this leads to a spin current along the
edges of the QW termed the quantum spin Hall effect [11]. Each spin-resolved
edge channel exhibits a distinct quantized conductance of e2/h characteristic
for one-dimensional transport [11]. Note that the states in QWs with critical
thickness dc exhibit no topological protection even though they have a similar
band dispersion. Moreover, the topological protection of the edge states in
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Figure 6: Sketch of the energy dispersion around the Γ point in CdxHg1−xTe
alloys with different cadmium contents x for a fixed temperature. A turquoise
shading of the bands indicates s-like (Γ6) symmetry, while red coloring marks
p-like (Γ8) bands. Note that in panel (b), the linear bands are in fact a mix-
ture of the Γ6 and Γ8 bands. The orange plane between the bands illustrates
the flat heavy hole Γ8 band. Panel (a): For x > xc, the alloy behaves as
a typical narrow-gap semiconductor with trivial band ordering and a pos-
itive gap energy. Panel (b): At the critical content xc the gap closes and
the material hosts massless Kane fermions. Panel (c): Inverted Γ8 and Γ6
bands indicated by a negative gap energy Eg yield topologically non-trivial
behavior for x < xc. Picture according to Ref. [9].

QWs with d > dc can also be removed by breaking time-reversal symmetry,
e.g, by applying an external magnetic field. Despite the fact, that topologically
protected boundary states were first observed experimentally in HgTe quan-
tum wells, it was predicted long ago that such states also exist in CdxHg1−xTe
alloys [15, 16].

In such compounds, consisting of HgTe and CdTe with variable composition,
the band gap can be tuned over a wide frequency range spanning the entire
infrared region [46]. By variation of the cadmium content x, gap energies
ranging between around 1.6 eV (for pure CdTe with x = 1) and −0.3 eV (for
pure HgTe with x = 0) can be realized. Note that negative gap energies in-
dicate an inverted ordering of the Γ8 and Γ6 bands, whereas positive values
correspond to a trivial band ordering. Consequently, CdxHg1−xTe is one of
the leading materials for photovoltaic detectors in this frequency range [46].
The more mercury in the alloy (i.e. the lower x), the stronger the influence
of the heavy atoms on the relativistic mass-velocity and spin-orbit correction.
A consecutive lowering of the cadmium content, therefore, has to lead to a
phase transition from a topologically trivial to a non-trivial state (similar to



2.2 Mercury cadmium telluride based materials 21

0 . 2 0 . 4 0 . 6 0 . 8 1 . 000
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

c a d m i u m  c o n t e n t ,  x  

tem
per

atu
re, 

T (
K)

- 0 . 3 5
0 . 0 5
0 . 4 5
0 . 8 5
1 . 2 5
1 . 6 5

E g  ( e V )

( a ) ( b )

0 3 0 6 0 9 0 1 2 0 1 5 0- 3 5 0- 3 0 0- 2 5 0
- 5 0

0
5 0

1 0 0
1 5 0
2 0 0

1 5 5 0
1 6 0 0
1 6 5 0

E g 
(m

eV
)

T  ( K )

x  =  0 . 2 5 1

x  =  0 . 2 2 3 x  =  0 . 1 7 9

x  =  0

x  =  0 . 1 5 1

x  =  1

Figure 7: Panel (a): Gap energy Eg in CdxHg1−xTe alloys with respect to the
temperature T for different cadmium contents x. The curves labeled x = 1
and x = 0 show the temperature dependence in pure CdTe and HgTe, re-
spectively. Symbols correspond to experimental data collected from different
sources: Squares are taken from Ref. [46], stars from Ref. [53], and dia-
monds were extracted from Ref. [54]. Solid lines are calculations according
to Eq. (13). Picture after Ref. [9]. Panel (b): Color plot of the gap energy Eg
with respect to cadmium content x and temperature T calculated according
to Eq. (13). Solid lines are contour lines at integer multiples of 0.25 eV with
the white line indicating the gapless state at x = xc with Eg = 0, as sketched
in Fig. 6 (b). In the region to the left of the white line, the band gap is
negative, implying inverted band ordering, whereas to the right of the white
line, a trivial band ordering is present in the alloy.

the one described above for HgTe quantum wells) at a certain cadmium con-
tent (see Fig. 6) since both HgTe and CdTe are characterized by a different
Z2 topological order [8]. This so called critical cadmium content xc was shown
to be dependent on temperature, see Fig. 7 (b) [9]. Figures 6 (a), (b) and (c)
sketch the conduction and valence bands for alloys with x > xc, x ≈ xc, and
x < xc, respectively. Alloys with a critical cadmium content exhibit gapless,
approximately linear bands that are intersected by the almost flat heavy hole
band at the vertex [8, 9]. In alloys with a Cd content below xc, the Γ6 and
Γ8 bands are inverted, rendering the material a three-dimensional topological
semimetal with protected surface states at the boundary of the material to
trivially insulating materials or vacuum [8]. Note that additional crystallo-
graphic strain can open up an energy gap between the Γ8 bands, similar as in
pure HgTe. In this case, the semimetallic character of the CdxHg1−xTe alloy
changes to a topologically insulating one. If the Cd content is increased be-
yond xc, however, the alloy becomes a standard gapped semiconductor and,
as a consequence, no topologically protected states are present on the surface.

A topological phase transition can also be induced in alloys with a fixed x
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by variation of the temperature [9, 55], see Fig. 7 (a). It was demonstrated
that the gap energy can be described empirically as a function of the cadmium
content x and temperature T by [46]

Eg(x, T ) =− 0.303 (1− x) + 1.606x− 0.132x (1− x)

+ (6.3 (1− x)− 3.25x− 5.92x (1− x)) 10−4 T 2

11 (1− x) + 78.7x+ T
[eV]

(13)

within the range 0 ≤ x ≤ 1 and 0 ≤ T ≤ 500. Figure 7 presents different
calculations of the gap energy Eg according to Eq. (13) together with exper-
imental data. It is seen that below a certain critical temperature Tc, alloys
with a sufficiently low cadmium content (x . 0.17) exhibit a negative energy
gap corresponding to an inverted band ordering [8, 9]. Alloys with a higher
x, however, exhibit positive gap energies in the whole temperature range and,
therefore, no such critical temperature exists in this case, see Fig. 7. It is worth
mentioning that for a cadmium content of exactly x = 0.505, Eq. (13) predicts
the gap energy to be independent of temperature [46]. Note that a transition
from inverted to non-inverted regime, similar to the temperature- or cadmium
content-induced transitions described above, can also be induced by applying
hydrostatic pressure to the CdxHg1−xTe alloy [6].

2.3 Radiation-induced optoelectronic effects

Illumination of semiconductors with terahertz radiation can lead to a multi-
tude of photoelectric effects. In most cases, the photon energies in the terahertz
range are much smaller than the band gap in conventional semiconductor ma-
terials, which prevents direct single-photon excitation of electrons across the
energy gap. Thus, the terahertz photoresponse is dominated by redistribution
effects of photoexcited carriers in momentum and energy space [56]. As we
will discuss in this chapter, such momentum redistribution as a response to
uniform terahertz illumination gives rise to a direct electric current in homo-
geneous materials without any external bias. This phenomenon is termed the
photogalvanic effect [57]. Furthermore, terahertz illumination can also alter
the conductivity of a material by modifying either the density or the mobility
of the charge carriers. In this chapter, an overview over these basic effects
is presented, including the phenomenological approach as well as microscopic
models.
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2.3.1 Photogalvanic effect

The effect of an external electromagnetic field on the electric current density
in a material can be phenomenologically described by a series expansion in
powers of the electric field strength E(ω, q) inside the medium [56]. For that,
the incident radiation field is taken in the form of a planar wave according to

E(r, t) = E(ω, q)ei(q·r−ωt) +E∗(ω, q)e−i(q·r−ωt) . (14)

Here, q and ω are the photon wavevector and frequency, respectively, and the
second term in Eq. (14) is the complex conjugate (denoted by the asterisk)
of the first term, which will be abbreviated with c.c. in the following. Conse-
quently, the time- and space-dependent current density inside the material up
to the second order in E(ω, q) is given by [58]

jα(r, t) =
∑
β

(
σ

(1)
αβEβ(ω, q)ei(q·r−ωt) + c.c.

)
+
∑
β,γ

(
σ

(2′)
αβγEβ(ω, q)Eγ(ω, q)e2i(q·r−ωt) + c.c.

)
+
∑
β,γ

(
σ

(2)
αβγEβ(ω, q)E∗γ(ω, q)

)
+ . . . ,

(15)

where the indices α, β, and γ take the values of the Cartesian coordinates x, y,
and z. Note that effects proportional to the third power of the electric field are
omitted in Eq. (15) and are discussed separately in the next chapter. The first
term in Eq. (15) represents the linear transport response that averages to zero
in case of an alternating terahertz driving field. This term becomes relevant
only in case of a dc electric driving field where it is commonly known as Ohm’s
law with the dc conductivity σ(1)

αβ (ω = 0). The second term, which oscillates in
time with a frequency of 2ω, characterizes the phenomenon of second harmonic
generation that, as an effect in the second order of the electric field, occurs
only in crystals without inversion symmetry [59].

In contrast to the first two current density contributions which both oscillate in
time, the third term of Eq. (15) is independent of t and, consequently, describes
the generation of a direct current as response to the homogeneous radiation
field. The corresponding second-order conductivity σ

(2)
αβγ can be partitioned
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into a photon wavevector-independent and dependent part according to [58]

σ
(2)
αβγ(ω, q) = σ

(2)
αβγ(ω, q = 0) + σ

(2)
αβγ(ω, q 6= 0)

' χαβγ(ω) + Tαδβγ(ω)qδ .
(16)

In the last step, only the contributions linear in q were considered for the
wavevector-dependent part characterized by the fourth-rank tensor Tαδβγ. This
procedure allows to distinguish two different contributions in the direct current
density response to the external radiation field [56]

jα(r) =
∑
β,γ

σ
(2)
αβγ(ω, q)EβE∗γ

'
∑
β,γ

χαβγ(ω)EβE∗γ︸ ︷︷ ︸
photogalvanic effect

+
∑
δ,β,γ

Tαδβγ(ω)qδEβE∗γ︸ ︷︷ ︸
photon drag effect

. (17)

The first term proportional to the third-rank tensor χαβγ(ω) and independent
of the photon wavevector describes the photogalvanic effect, which can only
occur in non-centrosymmetric crystals due to symmetry arguments [57, 58].
The second term proportional to the photon wavevector and the fourth-rank
tensor Tαδβγ(ω) represents the photon drag effect, which considers a transfer
of the photon momentum to the electrons in the material. In contrast, this
effect is also allowed in centrosymmetric crystals because of the fact that due
to the linear proportionality to the photon wavevector, a spatial inversion also
leads to a change of sign of Tαδβγ(ω)qδ [58].

Both effects can be further examined in terms of their polarization dependence.
For that, the product EβE∗γ is mathematically decomposed into a sum of the
real part

{
EβE

∗
γ

}
= 1

2

(
EβE

∗
γ + EγE

∗
β

)
, which is symmetrical with respect

to the permutation of the indices β and γ, and the antisymmetrical, purely
imaginary part

[
EβE

∗
γ

]
= 1

2

(
EβE

∗
γ − EγE∗β

)
according to [56]

EβE
∗
γ =

{
EβE

∗
γ

}
+
[
EβE

∗
γ

]
. (18)

While a similar analysis can also be carried out for the photon drag effect, in
the following the treatment will be exemplarily demonstrated for the photo-
galvanic effect. Because of the contraction of the tensor χαβγ with EβE∗γ in the
photogalvanic effect (see Eq. (17)), the symmetries of the real and imaginary
parts of EβE∗γ also reflect in χαβγ. Thus, the real part of χαβγ is symmet-
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ric in the indices βγ, while the imaginary part is antisymmetric in βγ [57].
The antisymmetric, imaginary part can be reduced to the real, second-rank
pseudotensor ξαν with the help of the antisymmetric Levi-Civita permutation
tensor ενβγ according to [56]

∑
β,γ

χαβγ
[
EβE

∗
γ

]
=i ·

∑
ν,β,γ

ξανενβγ
[
EβE

∗
γ

]
=
∑
ν

ξανi (E ×E∗)ν

=
∑
ν

ξαν êνPcircE
2 .

(19)

Introducing the cross product in Eq. (19) highlights that this contribution to
the photogalvanic effect is proportional to the degree of circular polarization
Pcirc ∈ [−1, 1] of the radiation incident along the direction of the unit vector
ê = q/q. Hence, this term describes the current density resulting from the
circular photogalvanic effect (CPGE), which occurs only in gyrotropic media
as a result of illumination with circularly polarized radiation [56]. The total
photogalvanic current density is then given by

jα =
∑
β,γ

χαβγ
{
EβE

∗
γ

}
︸ ︷︷ ︸

linear photogalvanic effect

+
∑
ν

ξανi (E ×E∗)ν︸ ︷︷ ︸
circular photogalvanic effect

. (20)

Here, the first term proportional to χαβγ = χαγβ accounts for the linear pho-
togalvanic effect (LPGE) which is excited by linearly polarized radiation in
non-centrosymmetric crystals, whereas the second term represents the CPGE.
The phenomenological approach presented above allows to conveniently de-
duce key properties of radiation-induced currents, such as their dependence
on polarization or angle of incidence, from the symmetry group of the studied
materials [58]. However, it is important to note that the underlying micro-
scopic origin of current generation is of great significance for understanding
the exact characteristics of the photogalvanic currents. In the following, two
microscopic mechanisms for the photogalvanic effect are described exemplar-
ily. For a detailed description of the multitude of photogalvanic mechanisms
please refer to, e.g., Refs. [57], [56] or [58].

In many cases, photogalvanic currents caused by homogeneous illumination
arise because of an asymmetry in the relaxation rates of photoexcited free
carriers. When considering the scattering rate Wp,p′ , which describes the
probability that a carrier with initial momentum p adopts the momentum
p′ after an elastic scattering event, time-reversal symmetry and spatial sym-
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Figure 8: Sketch of the microscopic mechanism of the LPGE in structures with
C3v symmetry as a result of asymmetric elastic scattering. Electrons (indi-
cated by lightly transparent and solid cyan circles before and after scattering,
respectively) in the system are accelerated along the oscillating electric field
E and scatter on equally oriented, equilateral triangles which represent the
symmetry of this point group. Panels (a) and (b) illustrate this process for
two perpendicular orientations of the radiation field. Due to the shape of the
triangles, the preferred scattering direction of the electrons is different for the
two polarization angles α, resulting in an opposite direction of the generated
photocurrents depicted by the red arrows. Adapted from Refs. [56, 57, 60].

metry usually ensure that Wp,p′ = W−p′,−p (called the reciprocity theorem)
and Wp,p′ = W−p,−p′ , respectively [57]. In systems where one of these two
symmetries is broken, the principle of detailed balance Wp,p′ = Wp′,p [57]
is no longer valid, resulting in asymmetric scattering [56]. For instance, in
non-centrosymmetric structures, spatial inversion symmetry is broken, i.e.
Wp,p′ 6= W−p,−p′ , which leads to a violation of the principle of detailed balance,
i.e. Wp,p′ 6= Wp′,p. Furthermore, also the breaking of time-reversal symmetry
due to, e.g., an external magnetic field can lead to an asymmetric relaxation
rate, even in centrosymmetric systems [56].

One of the simplest examples that allows an easy graphical demonstration of
the underlying microscopic mechanism of the LPGE are triangular structures
exhibiting a C3v symmetry [60, 61]. This symmetry group includes structures
with a three-fold rotational symmetry, three mirror planes, and no inversion
center. In such systems, the lack of spatial inversion symmetry causes an
asymmetry in the relaxation rate that results in directed photogalvanic cur-
rents when incident linearly polarized, homogeneous, terahertz radiation is
absorbed by free carriers [56]. The microscopic current generation process can
be illustrated by considering elastic scattering on equally oriented, equilateral
triangles, as sketched in Fig. 8. Illumination with a linearly polarized, alter-
nating electric field E leads to an optical alignment of the momenta of carriers
which are accelerated along the direction of E. Due to the oscillatory nature of
the excitation, this alone does not lead to a directed photocurrent. However,
when the excited, momentum-aligned carriers relax because of elastic scat-
tering on the triangle structures, the preferred scattering direction strongly
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depends on the orientation of the wedge structures with respect to the electric
field, causing an asymmetric scattering probability [56]. For an electric field
oriented parallel to one of the triangle’s sides, as illustrated in Fig. 8 (a), car-
riers are predominantly scattered perpendicular to the direction of the driving
field, resulting in a net photogalvanic current normal to the applied electric
field. In contrast, a rotation of the electric field by 90°, as shown in Fig. 8 (b),
results in a change of the preferred scattering direction that leads to a sign in-
version of the resulting current [57]. This behavior gives rise to a polarization
dependence of the observed LPGE characteristic for the respective symmetry
group of a material. Note that this model can also be extended to include
inelastic scattering [57].

Photocurrents resulting from asymmetric photoexcitation and energy relax-
ation of free carriers have also been observed in three-dimensional topological
insulators on the basis of strained HgTe films [18, 19]. Strong magnetic field-
induced resonances were observed in the photocurrents, which were shown
to originate from the surface states of the film. The applied magnetic field
modifies the electron scattering rate according to

Wp,p′ = W
(0)
p,p′ +W

(1)
p,p′B , (21)

where W
(0)
p,p′ describes the scattering rate at zero field and W

(1)
p,p′ represents

an asymmetric correction that results from the mixing of electronic states
due to the magnetic field [62]. This magnetic field-induced asymmetry in
the scattering rate, in turn, leads to the generation of a directed current as
a result of scattering of photoexcited electrons on phonons or static defects.
The corresponding distribution fp of the surface state electrons can be deduced
from the Boltzmann equation [18]

e (v ×B) · ∂fp
∂p

= gp −
fp − 〈fp〉p

τ
, (22)

where the momentum and velocity of the electrons are given by p and v,
respectively, gp denotes the generation rate of electrons with momentum p, τ
designates the momentum relaxation time, and 〈fp〉p implies the average of
the distribution function over all momentum directions. This equation can be
rewritten in terms of the photocurrent density j = ∑

p evfp by multiplication
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Figure 9: Illustration of the generated photocurrents (depicted as red arrows)
with respect to the direction of the generation vector G (indicated by the
turquoise arrow) for two antiparallel orientations of the external magnetic
field B, shown in panels (a) and (b). For the depicted orientation of G,
the x-component of the photogalvanic current j behaves antisymmetrically
in magnetic field, i.e., inverts its sign when the direction of B is inverted,
whereas jy is symmetric in B. Note that the direction of j systematically
deviates from G by the Hall angle αc = arctan(ωcτ) due to the Lorentz force.
Adapted from Ref. [18].

with ev and summation over all momenta p according to [18]

−j × ωc = G− j
τ

. (23)

Here, ωc = ωcẑ is a vector pointing in z-direction whose absolute value cor-
responds to the cyclotron frequency ωc = eBz/m

∗ and G = ∑
p evgp denotes

the rate of current generation. Certainly, the direction and magnitude of the
current generation vector G depend on the asymmetry in the rate of surface
electron scattering as well as on the absorbed radiation intensity [18]. As al-
ready demonstrated in the example of elastic scattering in the C3v point group,
the scattering asymmetry strongly depends on the symmetry of the system.
Consequently, the direction of G is also affected by the symmetry of the ma-
terial. Since (013)-grown HgTe structures are part of the C1 point group, they
possess no non-trivial symmetry operation. Thus, in such systems, the scatter-
ing asymmetry is not bound to certain crystallographic axes and the magnetic
field-assisted photocurrent generation rate is given in the general form [18]

G = γIη(ω)Bz , (24)

with the radiation intensity I, the absorbance η(ω) of the material, and the
vector γ whose direction is defined by the magnetic field-induced asymmetry of
electron scattering. Solving Eq. (23), the photogalvanic current density from
the surface states of three-dimensional (013)-oriented HgTe films is given for
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two perpendicular in-plane directions by [18]

jx =γx + ωcτγy
1 + ω2

cτ
2 Iη(ω)Bz

jy =γy − ωcτγx
1 + ω2

cτ
2 Iη(ω)Bz .

(25)

Due to the lack of symmetry operations in the C1 point group, G ∝ γ is not
constrained to certain crystallographic axes and may depend on multiple pa-
rameters, such as temperature, radiation frequency, or applied static electric
fields. Figure 9 illustrates that this behavior of the photocurrent generation
vector may result in photocurrents which can be even or odd in magnetic field
depending on the exact orientation ofG. In the example sketched in Fig. 9, the
respective orientation of G results in a photocurrent whose projections jx and
jy on the coordinate axes behave odd and even in magnetic field, respectively.
Note that the direction of the total photocurrent density j systematically de-
viates from the direction of G due to the Lorentz force which acts on moving
carriers [57].

2.3.2 Photoconductivity

Besides the photogalvanic effect, illumination with terahertz radiation can also
lead to a change of the material conductivity, i.e. photoconductivity. This
effect is proportional to the third order of the electric field according to [58]

jα(r, t) =
∑
βγδ

= σ
(3′′)
αβγδEβ(ω, q)E∗γ(ω, q)E(dc)

δ (0, 0) . (26)

Here, the fourth-rank conductivity tensor σ(3′′)
αβγδ describes the interaction be-

tween the incident radiation fieldE(ω, q) and the static electric field E(dc)
δ (0, 0)

caused by the applied bias voltage. Note that σ(3′′)
αβγδ can be separated into

symmetric and antisymmetric parts analogously to Eqs. (19) and (20) to dis-
tinguish between the linear and circular photoconductivity [58]. As Eq. (26)
points out, the photoconductive response is proportional to both the amplitude
of the bias field E

(dc)
δ (0, 0) and the intensity I ∝ |E(ω, q)|2 of the radiation

electric field. In the Drude formalism, the static conductivity without any
external fields is given by σ0 = qnµ, with the charge q, density n, and mobility
µ of the charge carriers in the system [63, 64]. From this relation it becomes
clear that in a material with either electrons or holes with |q| = e, one way
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to achieve photoconductivity is by a radiation-induced variation of the charge
carrier density. Such a change is typically caused by interband transitions in
narrow-gap semiconductors that generate electron-hole pairs [63], or by pho-
toionization of deep and shallow impurities, which generates only one specific
kind of carriers [56]. Furthermore, the conductivity can also change due to a
modification of the carrier mobility. This process is called µ-photoconductivity
or electron bolometric photoconductivity and results from Drude absorption of
radiation which leads to a heating of the charge carriers that, in turn, modifies
their energy distribution and, consequently, also their mobility. This effect
becomes especially important if the free-carrier concentration in the material
is sufficiently high and the radiation energies are smaller than the band gap
of the material, which effectively prevents photoexcitation across the band
gap [56]. Strong electron gas heating manifests for a high free-carrier con-
centration which causes the electron-electron scattering time τee, defined as
the average time between two consecutive collisions of an electron with other
electrons, to be much shorter than the energy relaxation time τε. The latter
one is a measure of how fast electrons and lattice exchange energy, i.e. how
fast electron temperature Te and lattice temperature Tl thermalize, e.g. due to
inelastic electron-phonon scattering. Under conditions where τee � τε, domi-
nant electron-electron collisions cause a strong energy thermalization between
the electrons themselves, which establishes an average electron temperature Te

that significantly differs from the lattice temperature Tl [56]. The magnitude
of Te is defined by the interplay of radiation absorption by the electron sub-
system and the energy transfer to the lattice. This is expressed in the balance
equation for bulk materials [56]

K(ω)Iεeff

~ω
= 〈Q(Te)〉n . (27)

Here, K(ω) denotes the absorption coefficient that is linearly proportional to
the free-carrier concentration n, εeff is the effective energy which is transferred
from one photoexcited electron to the electron subsystem via electron-electron
collisions, and 〈Q〉 = 〈dε/dt〉 describes the average energy loss per unit time
for a single electron. In case of weak heating, µ-photoconductivity can be well
approximated by [56]

∆σ
σ0

= 1
µ

∂µ

∂Te

∣∣∣∣∣
Te=Tl

∆Te , (28)
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where ∆Te is the photo-induced change in the electron temperature Te. It
is immediately seen that the sign of the bolometric, photoconductive signal is
defined by the derivative ∂µ/∂Te. If the mobility of the electrons increases with
rising temperature (i.e. ∂µ/∂Te > 1), one speaks of positive photoconductivity.
Such a behavior occurs for example under conditions where charged impurity
scattering is the dominant mechanism in the electron momentum loss rate. In
contrast, negative photoconductivity caused by a decline of the mobility with
temperature (i.e. ∂µ/∂Te < 1) is known to occur in the case of predominant
electron-phonon scattering [56, 63]. Electron bolometric photoconductivity
is governed by very fast temporal kinetics based on the free-carrier energy
relaxation time τε which commonly is in the sub-ps to ns range depending
on the particular temperature, material, as well as carrier density [56]. For
typical terahertz pulse durations of around 100 ns > τε used for investigations
of the photoconductivity kinetics in this work, µ-photoconductive signals thus
mimic the temporal evolution of the excitation pulse. This effectively allows to
distinguish µ-photoconductivity from other photoconductive mechanisms with
longer temporal kinetics, such as ionization of impurities or lattice heating.
The latter one, for example, can be induced by highly intense radiation pulses
but, in contrast, exhibits much slower kinetics determined by the slow cooling
of the sample as a whole. This results in a much longer decline time of the
corresponding photoconductive signal up to microseconds or longer [56]. It is
important to note that despite of the huge radiation intensities of the laser
pulses used in parts of this work, their corresponding energy is fairly small.
For this reason, lattice heating does not constitute a dominant contribution
to the photoconductive signals under the experimental conditions of this work
and can be neglected.

In general, the magnitude of both photogalvanic effect and photoconductivity
depends on the absorbed radiation power, see e.g. Eqs. (20) and (26). Thus,
they are strongly enhanced under conditions of cyclotron resonance where,
as we will discuss in the next chapter, resonant absorption of the incident
radiation takes place. Hence, measurements of photogalvanic currents, photo-
conductivity as well as radiation transmission are excellent tools to investigate
the cyclotron resonance in materials, as demonstrated, e.g., in Refs. [18–21].
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2.4 Cyclotron resonance

The phenomenon of cyclotron resonance (CR) can be described either in a
quasiclassical or in a quantum mechanical picture. The full, quantum mechan-
ical description becomes necessary for quantizing magnetic fields including
the regime of Shubnikov-de Haas oscillations and the quantum Hall regime.
Let us begin with the more basic and physically transparent, classical Drude-
Boltzmann description. Particles with charge q moving with velocity v in a
magnetic fieldB are subjected to the Lorentz force F = q (v ×B) which forces
them on circular or helix-like trajectories around the magnetic field axis in real
space [63, 65, 66]. In k-space, the charge carriers are constrained to a periodic
movement on areas of constant energy normal to the magnetic field [67]. The
angular frequency of this circular movement is called cyclotron frequency and
is given by [39, 65–68]

ωc = qB

m
, (29)

determined by the magnetic field strength B as well as the carrier mass m
and charge q. For carriers in solid-state systems, the description is analo-
gous. However, these states are characterized by their effective mass tensor
m̂∗ which takes into account the surrounding, periodic grid potential of the
positively charged ions [64, 65]. The equation of motion for such a system
with an isotropic effective mass m∗ under the influence of an external, alter-
nating electric field E is given by [63, 65, 68]

m∗
dv
dt = q (E + v ×B)− m∗v

τ
. (30)

Here, an additional damping term proportional to the momentum relaxation
rate 1/τ is included that accounts for scattering of the carriers, e.g. on lattice
impurities. When the frequency ω of the driving field E matches the cyclotron
frequency of the charge carriers, a strong, resonant absorption of radiation is
observed which is called cyclotron resonance [63, 65–68]. Sharp, well-defined
resonances are obtained under the condition ωcτ � 1 [65, 66]. This ensures
that carriers can perform closed loops in k-space around the magnetic field axis
without being scattered off the cyclotron trajectory by impurities or phonons
[67]. For a fixed frequency ω of the electric field, cyclotron resonance occurs
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at a magnetic field strength corresponding to

BCR = m∗ω

q
. (31)

To drive the cyclotron motion, the polarization of the electric field has to
match the direction of the circular carrier motion so that resonant energy
transfer from the electric field to the charge carriers becomes possible [66].
For a magnetic field with magnitude |B| = BCR, parallel incident radiation
is therefore absorbed resonantly by electrons (holes) when the electric field is
left-handed (right-handed) circularly polarized [68]. Note that reversing the
direction of the applied magnetic field inverts this correlation. This makes it
possible to optically determine the prevailing carrier type in semiconductor
structures [67]. In the following, magnetic fields for which the incident cir-
cularly polarized radiation field is absorbed resonantly are addressed as CR
active, in contrast to CR inactive fields for which resonance conditions are not
fulfilled.

The time-averaged, optical power absorption P per unit volume in case of
right-handed (P+) or left-handed (P−) circularly polarized radiation incident
parallel to the applied magnetic field is given by the Lorentzian function [63,
68]

P±(ω, ωc) = σ0E
2
0

1
1 + (ω ± ωc)2 τ 2

. (32)

Here, E0 is the magnitude of the electric field acting on the electrons and
σ0 = qnµ = q2nτ/m∗ denotes the static dc conductivity of a material with
carrier density n, mobility µ, and momentum relaxation time τ . As a lin-
ear polarization state is represented by a superposition of right-handed and
left-handed circular polarization states, resonant stimulation of the carrier cy-
clotron motion is also achieved for a linearly polarized, incident radiation field.
The time-averaged, absorbed optical power per unit volume in this case is given
by [65, 68]

Plinear(ω, ωc) = σ0E
2
0

4

(
1

1 + (ω + ωc)2 τ 2
+ 1

1 + (ω − ωc)2 τ 2

)
. (33)

Hence, for linearly polarized radiation at a fixed frequency ω, cyclotron mo-
tion of electrons and holes is stimulated both for positive as well as negative
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magnetic fields ±BCR. It is important to mention that Eqs. (32) and (33)
allow the extraction of the momentum relaxation time τ or mobility µ of the
charge carriers from P (ω) or P (B) curves with a fixed magnetic field or radi-
ation frequency, respectively. For magnetoabsorption P (B) at fixed radiation
frequency, the full width at half maximum (FWHM) at CR is simply given by
FWHM = 2

µ
[65].

Note that radiative decay caused by coherent dipole reradiation can lead to an
additional broadening of the resonance that has to be taken into account [69–
71]. This effect arises when one relates the electric field which is acting on the
electrons to the external field of the incoming wave. The external, oscillating
field forces the charge carriers in the material to oscillate, which in turn causes
them to emit a secondary radiation [69]. Because of strong reflection of the
incoming wave near conditions of CR, this phenomenon leads to an additional
effective broadening of the resonance linewidth governed by the superradiant
decay rate which is given by [70]

Γ = nse
2

2ε0m∗c
(34)

for a two-dimensional electron system with sheet carrier density ns. The CR
linewidth in the system is then determined by the collisional scattering rate
γ = 1/τ plus the superradiant decay rate Γ [69]. From the ratio of these two
contributions

Γ
γ

= σ0

2ε0c
(35)

it becomes clear that the line broadening due to radiative decay is of particular
importance in well conducting systems with a high carrier mobility [69]. In
fact, in systems with Γ/γ � 1, the main part of the incident radiation is
reflected by the two-dimensional electron gas in the immediate vicinity of CR
instead of being absorbed or transmitted [69].

In the quantum mechanical approach, CR is defined in terms of resonant,
optical transitions between Landau levels [65]. The energy quantization into
discrete Landau levels directly follows from solving the Schrödinger equation
for a free electric charge subjected to a magnetic and electric field described
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by the Hamiltonian [72]

H = p2
x

2m + 1
2m

(
py −

qBx

c

)2
+ p2

z

2m , (36)

assuming a magnetic field B = (0, 0, B) applied along z-direction. In a solid-
state system with a parabolic conduction band minimum, the corresponding
Schrödinger equation for the electrons in the effective mass model reads [39,
66]

 p2
x

2m∗ + m∗ω2
c

2

(
x− ~ky

m∗ωc

)2

+ p2
z

2m∗

ψ = E(k)ψ . (37)

It is seen that Eq. (37) resembles the Schrödinger equation of a harmonic
oscillator shifted in x-direction by ~ky

m∗ωc
and, thus, can be rewritten in the

frame of the relative coordinate ξ = x− ~ky

m∗ωc
as [65, 66]

[
p2
ξ

2m∗ + m∗ω2
c

2 ξ2
]
ψ(ξ,k) =

[
El(kz)−

~2k2
z

2m∗

]
ψ(ξ,k) . (38)

The energy of the l-th Landau level in systems with parabolic band dispersion
is then given by [65, 66]

El(kz) = ~ωc

(
l + 1

2

)
+ Ez(kz) , with Ez(kz) = ~2k2

z

2m∗ , (39)

and l ∈ N. In this case, the Landau levels have an equidistant energy spacing
of ∆l = ~ωc = ~qB/m∗, see Fig. 10 (a). Due to dipole selection rules, optical
transitions are only allowed between neighboring Landau levels [65, 66]. Note
that the corresponding cyclotron magnetic field BCR = |m∗ω/q| scales linearly
with radiation frequency ω. Moreover, BCR is independent of the Fermi energy,
as shown in Fig. 10 (a) for two different Fermi levels.

In two-dimensional systems with linear dispersion E(k) = ~vF
√
k2
x + k2

y, such
as the surface states of three-dimensional topological insulators, the situation
is different. Here, the energy of the l-th Landau level is calculated as [73–76]

El = sgn(l) ~vF

√
2eB |l|

~
, (40)

with the Fermi velocity vF and the Landau level number l ∈ Z. Positive level
numbers l > 0 correspond to positive, electron-like Landau levels, whereas
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Figure 10: Panel (a) illustrates the Landau level spectrum in a system with
parabolic dispersion. Shown are the energies El with respect to magnetic field
B for the first Landau levels up to l = 10 and Ez(kz) = 0. The transition
energies ~ωc between adjacent Landau levels and at a constant magnetic field
are independent of the Fermi energy EF, which is illustrated exemplarily for
two Fermi levels EF1 and EF2. Panel (b) depicts the Landau level spectrum
for a two-dimensional system with linear dispersion. Shown is the upper part
of the Landau spectrum with l ≥ 0 (electron-like levels) up to l = 10. The
cyclotron-resonant transition with energy ~ω1 at the bottom illustrates the
quantum mechanical limit where EF1 < ~ω1. It is seen that in this case, the
cyclotron frequency scales with the square root of B. In the semiclassical
limit for EF2 � ~ω2, which is sketched in the upper transition, the cyclotron
frequency approaches an almost linear scaling with magnetic field.

negative energies obtained for l < 0 represent hole-like Landau levels [76]. It
is important to highlight that the Landau levels, in this case, scale with the
square root of the magnetic field as well as the square root of the Landau level
number, see Eq. (40). As a consequence, the quantized levels are no longer
equidistant, but the energy difference ∆l between two adjacent levels

∆l = El+1 − El = ~ωc = ~vF

√
2eB
~

(
sgn(l + 1)

√
|l + 1| − sgn(l)

√
|l|
)

,

(41)

and therefore also the cyclotron frequency ωc become dependent on B and
l [74].

In the strict, quantum mechanical limit where the Fermi energy is smaller than
the resonant photon energy, i.e. EF < ~ωc, the cyclotron frequency scales with
the square root of the magnetic field according to Eq. (41) [75]. This case is
sketched in Fig. 10 (b) for the transition from the l = 0 to the l = 1 state at
EF1 < ~ω1. However, in the semiclassical limit where the Fermi energy is much
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larger than the radiation energy, i.e. EF � ~ωc, the cyclotron frequency scales
approximately linear with magnetic field [74]. This is illustrated in Fig. 10 (b)
for the transition at EF2 � ~ω2. In this limit of high Landau levels with l� 1,
the cyclotron frequency can be expressed as [74]

ωc = vF

√
2eB
~

(√
l + 1−

√
l
)
≈ vF

√
2eB
~

1
2
√
l

. (42)

Considering the cyclotron-resonant transition from level l, which has an energy
roughly equivalent to the Fermi energy, to level l + 1 it follows from

EF ≈ El that
√
l ≈ EF

vF
√

2~eB
, (43)

which, when inserted into Eq. (42), gives [74]

ωc ≈
√

2eB
~

vF

2 ·
vF

EF

√
2~eB = v2

F
EF

eB = eB

m∗
∝ B . (44)

Here, it was taken into account that in systems with linear dispersion, the
mass becomes a function of the Fermi energy according to [74, 77]

m∗ = EF

v2
F

. (45)

Thus, in the semiclassical limit EF � ~ωc, the Landau levels in systems with
linear dispersion approach an almost equidistant spacing and the cyclotron
frequency exhibits a similar, linear magnetic field dependence as observed in
systems with parabolic dispersion. The only difference to the parabolic case
is that the cyclotron mass in linear dispersion systems becomes dependent on
carrier density [8, 74, 77]. Note that the studies presented in this work mostly
focus on the semiclassical regime of high Landau levels.
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3 Experimental techniques and methods

This chapter provides an overview of the experimental setup and devices used
for terahertz spectroscopy, including a detailed description of the techniques for
photocurrent, photoconductivity, and radiation transmission measurements.

3.1 Laser setup

For optical excitation of the investigated samples, terahertz molecular gas
lasers in continuous wave (cw) and pulsed operation modes were used. The
lasing in this devices is based on rotational transitions in polar molecules with
a permanent dipole moment [56, 79, 83]. Methanol, difluoromethane, formic
acid, and ammonia were used as active media gases for the measurements in
this work. The variety of optical transitions in these molecules gives access to
an abundance of different laser lines in the terahertz range of frequencies [56,
83]. Table 1 gives a comprehensive listing of all utilized laser lines, as well as
the respective active media, excitation frequencies, and operation modes. The
media is optically pumped by mid-infrared radiation that excites vibrational-
rotational transitions in the molecules following the selection rules for sym-
metric top molecules ∆ν = 1, ∆J = 0,±1, and ∆K = 0 [79], as shown in
Fig. 11 (b). Subsequently, far-infrared (FIR) radiation is generated as a result
of the purely rotational transitions between J ′ and J ′ − 1 in the upper, and
J + 1 and J in the lower vibrational state [79, 83].

The CO2 lasers, which provide the mid-infrared pumping radiation for the ter-
ahertz lasers, consist of a gas mixture of carbon dioxide, nitrogen, and helium
and are pumped electronically via high-voltage electron discharge [56, 78]. Ra-
diative transitions take place between different vibrational modes in the CO2

λ
(µm)

f
(THz)

Eph
(meV)

λCO2

(µm)
operation

mode active medium

118 2.54 10.5 9.695 cw methanol (CH3OH)
148 2.03 8.4 9.676 pulsed ammonia (NH3)
184 1.63 6.7 9.210 cw difluoromethane (CH2F2)
432 0.69 2.9 9.271 cw formic acid (CH2O2)

Table 1: Overview of the wavelengths λ, frequencies f , photon energies Eph,
corresponding pumping wavelengths λCO2 , operation modes, and active me-
dia gases for the laser lines used in the experiments.
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Figure 11: Panel (a): Scheme of the energetic levels and transitions relevant
for lasing in the CO2 laser. Dashed arrows represent the pumping of CO2
and N2 molecules by electron collisions, while the solid black arrow indicates
the almost resonant energy transfer (with energy difference around 2.2 meV)
between the excited N2 and CO2 molecules. The red lines mark the lasing
transitions with lines centered around 9.4 µm and 10.4 µm, while green and
blue arrows highlight radiative and non-radiative transitions, respectively.
Note that rotational sublevels are not depicted for clarity of presentation.
Figure adapted from Refs. [56] and [78]. Panel (b) shows a sketch of the
lasing mechanism in a THz molecular gas laser. Solid black lines indicate the
rotational energy sublevels in a symmetric top molecule for the vibrational
ground (ν = 0) and first excited (ν = 1) level. K denotes the projection of
the angular momentum J on the symmetry axis of the molecule. The dashed
arrow indicates optical pumping, while the red arrows illustrate the lasing
transitions that emit THz radiation. Figure adapted from Refs. [79] and [56].

molecule [56, 78, 84], as sketched in Fig. 11 (a). The energetically highest
mode, the antisymmetric stretching mode (0001), is excited by both direct col-
lisions with accelerated electrons and resonant collisional energy transfer from
nitrogen molecules that have been excited to their first metastable vibrational
level by electron impact [56, 78, 84]. From the (0001) state, radiative transi-
tions take place to the energetically lower bending mode (0200) at f = 32 THz
(λ = 9.4 µm) or to the symmetric stretching mode (1000) at f = 29 THz
(λ = 10.4 µm) [56]. The subsequent depletion of the lower levels is caused by
optical transitions allowed due to the Fermi resonance between the (1000) and
(0200) levels, as well as by non-radiative relaxation processes including colli-
sions with helium atoms [56, 78, 84]. As the energies of the vibrational levels
in the CO2 molecule are further split into rotational sublevels, the vibrational-
rotational transitions can be tuned in a wide range around the two center
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Figure 12: Sketch of the continuous wave (a) and pulsed (b) terahertz molec-
ular gas lasers. Panel (a) shows how cw MIR radiation from a longitudi-
nally pumped CO2 laser is focused into the resonator of the cw terahertz
gas laser (Edinburgh Instruments 295FIR). Panel (b) depicts the resonator
of the pulsed terahertz laser which is pumped by pulsed MIR radiation from
a TEA CO2 laser. In both panels, the red dashed line corresponds to the
optical path. Picture adapted from Refs. [80], [81] and [82].

frequencies from approximately 27 THz to 33 THz (around 9.2 µm to 10.9 µm)
[84]. Please note that two different types of CO2 lasers were used for optical
pumping of continuous wave and pulsed terahertz lasers. The continuous wave
molecular gas laser was pumped by a longitudinally-excited flowing gas CO2

laser (Edinburgh Instruments PL5), operating at a low gas pressure of about
25 mbar and providing radiation powers up to around 50 W. On the other
hand, a transversely-excited atmospheric pressure (TEA) CO2 laser with a
pulse duration of about 100 ns and peak pulse powers up to megawatts was
used to pump the pulsed terahertz gas laser.

Figures 12 (a) and (b) present sketches of the two different types of resonators
used for generating continuous wave and pulsed terahertz radiation, respec-
tively. In the continuous wave system, ZnSe windows are mounted at the
Brewster angle φB = arctan(nwindow/nair) [85] on the radiation exit of the CO2

and the rear entrance of the terahertz molecular gas resonator to ensure a high
degree of linear polarization of the pumping MIR radiation. Here, nwindow and
nair denote the refractive indices of the ZnSe window and air, respectively.
The cw FIR resonator consists of a glass cylinder with a gold-coated, steel
mirror including a coupling hole in the middle and a movable, silver-coated,
z-cut quartz mirror with an uncoated part in the middle to couple out the
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generated terahertz beam, but prevent MIR pumping radiation from leaving
the resonator [83]. In the pulsed system, the MIR pumping radiation from the
TEA CO2 laser is focused by a BaF2 lens and coupled into the FIR resonator
via a NaCl window. The resonator itself is comprised of a glass cylinder with
two spherical Cu mirrors with a hole in the middle. Note that the output hole
in the front contains a polymethylpentene (TPX) window which transmits the
generated terahertz beam but absorbs residual MIR pumping radiation.

To ensure a linear polarization of the THz beam at all frequencies, linear
wire-grid or polyethylene polarizers were used [56, 79]. In general, assuming
linearly polarized pumping radiation, the polarization of the generated FIR
emission depends on the change of the angular momentum J in the pumping
and lasing transitions. If |∆J | is the same for both transitions, the electric
fields of pump and terahertz beam are polarized parallel to each other. On the
other hand, if |∆J | is not the same in both cases, the two beams are polarized
orthogonally to each other [86]. Furthermore, the degree of linear polarization
of the FIR output is high if the pump excites states, where the projection K

of the angular momentum J on the symmetry axis of the molecule fulfills the
condition K � J . At the same time, the degree of linear polarization is low
for excited molecular levels where K is similar to J [56].

For both the cw and pulsed FIR system, the beam shape was monitored by
a pyroelectric camera. The respective parameters were adjusted to obtain a
mode shape as close as possible to the Gaussian fundamental mode [56]. A typ-
ical beam profile is shown in Fig. 14 (b). Continuous wave beam powers were
measured with a power meter and range from around 15 mW to 100 mW de-
pending on the specific laser line. For the pulsed line with f = 2.03 THz, a peak
power of 70 kW was detected using a photon drag detector. The frequency-
dependent beam diameters, defined as the full width at half maximum of de-
tected power, were extracted from the beam profiles and range from 1.5 mm
to 3 mm for the laser lines given in Tab. 1. Corresponding radiation intensities
IR were calculated based on the extracted beam diameters and powers.

In the experiments, the initial linear polarization of the FIR laser was further
manipulated with the help of λ/2- or λ/4-waveplates. These waveplates are
made of a birefringent material and exploit the existence of two different re-
fraction indices no and neo for electric fields polarized along the ordinary and
extraordinary axes, both oriented at a 90° angle with respect to each other
[79]. A phase shift is generated between the two electric field components E‖
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Figure 13: Panels (a) and (b) sketch the function principle of a λ/2- and
λ/4-waveplate, respectively. In (a), the incoming, linearly polarized electric
field Ei enters the half-wave plate at an angle α′ relative to the optical c-axis
indicated by the dashed line. The electric field Ef after the λ/2-waveplate is
rotated by the angle α = 2α′ with regard to Ei. In (b), the angle ϕ between
the incident, linearly polarized electric field Ei and the c-axis leads to an
outgoing, elliptically polarized electric field Ef. The thickness of the wave
plates is indicated by d. Figures after Refs. [80] and [87].

and E⊥ due to their different propagation velocities inside the medium [79,
85]. Here, E‖ and E⊥ denote the field components parallel and normal to the
extraordinary or also called optical c-axis. The phase shift [79]

∆φ = kd (no − neo) = 2π
λ
d∆n with ∆n = no − neo (46)

is dependent on the thickness d of the waveplate and the wavelength λ (or
wavevector k = 2π

λ
) of the radiation [85].

For λ/2-waveplates, the phase shift ∆φ between the two perpendicular field
components is (2j+1)π, with j being the integer numbering order. Under this
condition, the polarization plane of incident linearly polarized light is rotated
after the waveplate by the azimuthal angle α [79], as shown in Fig. 13 (a).
Here, α = 2α′ depends on the angle α′ between the incident polarization plane
and the c-axis of the λ/2-waveplate. In case of λ/4-waveplates, the phase shift
inside the birefringent medium is (2j + 1

2)π, which can lead to a change of
the polarization state from linear to circular or elliptical, or vice versa [79].
Whether incident linearly polarized radiation fields are changed to circular
or elliptical polarization depends on the phase angle ϕ between the incident
polarization plane and the optical axis in the λ/4-waveplate. For ϕ = lπ2 (with
l ∈ Z), the polarization state is not changed at all, i.e. the final polarization
is parallel to the incident one. However, for ϕ = π

4 + lπ or ϕ = 3
4π + lπ,

the waveplate changes the incident linear polarization to right-handed (σ+)
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Figure 14: Panel (a): Sketch of the principal measurement setup. Note that
the optical components include linear polarizers, half- or quarter-wave plates,
as well as an optical chopper which modulates the beam at a given frequency
fchop. Figure adapted from Refs. [82] and [87]. Panel (b) depicts an exem-
plary FIR beam profile obtained with a pyroelectric camera at a radiation
frequency of f = 2.54 THz.

or left-handed (σ−) circular polarization, respectively. For angles ϕ between
these values, the polarization is changed from linear to elliptical, as sketched
in Fig. 13 (b).

For polarization manipulation of the terahertz laser beam used in the exper-
iments, several half-wave and quarter-wave plates made of x-cut crystalline
quartz with different thicknesses were used. This material is ideal for this pur-
pose, since it is strongly birefringent with ∆n ≈ 0.047 at room temperature as
well as highly transparent for terahertz radiation [79, 88].

3.2 Experimental Setup

For the measurements, the samples were placed in an optical helium bath
cryostat (Oxford Instruments Spectromag SM4000-8) with windows made of
z-cut crystalline quartz or polymethylpentene (TPX), which are both highly
transparent in the terahertz range of frequencies [56, 83]. Note that in con-
trast to the above mentioned x-cut crystalline quartz, z-cut crystalline quartz
does not modify the polarization of transmitted light. The THz beam was fo-
cused onto the samples using gold-coated off-axis parabolic mirrors, as shown
in Fig. 14 (a). A red HeNe laser aligned with the THz beam allowed proper ad-
justment and position control of the THz spot on the sample [56]. After adjust-
ment, the cryostat windows were completely covered with black polyethylene
foil that is transparent in the THz range but inhibits uncontrolled illumination
of the samples by room light or near-infrared radiation. To monitor the power
output of the FIR laser during the experiments, a small, constant fraction of
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the THz beam was deflected onto a pyroelectric reference detector using a my-
lar beam splitter [56]. In case of continuous wave operation, the reference beam
was mechanically chopped and the reference signal was analyzed by a lock-in
amplifier tuned to the frequency of modulation. Feeding this signal to a laser
stabilizer (Edinburgh Instruments ALS-1) allowed to minimize fluctuations in
the continuous wave output power.

Most measurements were carried out at a temperature of T = 4.2 K, which
was obtained by flooding the sample chamber with liquid helium. Even lower
temperatures down to T = 1.6 K were achieved by additional pumping of the
sample chamber to bring the helium into its superfluid state. It was further-
more possible to stabilize the sample at any temperature between liquid helium
and room temperature by placing a PID-controlled ohmic heater in proxim-
ity to the sample and adjusting the helium flow with a needle valve. The
actual sample temperature was monitored by Cernox sensors in close vicinity
to the sample mount. All measurement devices were controlled and read out
via General Purpose Interface Bus (GPIB) by measurement software written
in LabVIEW and Python. For magnetotransport and terahertz magnetospec-
troscopy, magnetic fields up to 7 T were applied normal as well as parallel to
the sample using a liquid helium-cooled superconducting split coil magnet.

Magnetotransport. In all investigated samples, dark magnetotransport
measurements were carried out to characterize the electrical properties and
extract the carrier densities and mobilities. In most cases, standard low-
frequency lock-in amplifier technique in a four-terminal measurement scheme
was used. An alternating bias current Iac in the range of 10−9 A to 16 · 10−6 A
was applied to the sample using an ac voltage source and a series resistor with
resistance Rac ranging from 106 Ω to 108 Ω. In Hall bar shaped samples the
longitudinal Rxx and transversal (Hall) resistance Rxy were then obtained by
measuring the voltage drop parallel and perpendicular to the applied current,
respectively, and dividing it through the applied current. Enough distance
between the current and voltage probes ensured the current flow between the
voltage probes to be as homogeneous as possible under the influence of an ex-
ternal magnetic field applied normally to the sample plane [39]. The Hall bar
design allows the extraction of the sheet resistivity ρxx from the longitudinal
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resistance according to [39]

ρxx = Rxx
W

L
, (47)

simply by considering the width W of the conduction channel and the distance
L between the two voltage probes.

Obtaining the sample resistivity in van der Pauw samples required another
procedure. For an arbitrary shaped sample with four contacts at the edges
termed A, B, C and D, one has to measure the non-local resistance RAB,CD =
VCD/IAB. After a cyclic permutation of the contacts, and in this way obtaining
the resistance RBC,DA = VDA/IBC, the relation [89, 90]

exp
(
−πd
ρ
RAB,CD

)
+ exp

(
−πd
ρ
RBC,DA

)
= 1 (48)

can be used to calculate the resistivity

ρ = πd

ln 2 ·
RAB,CD +RBC,DA

2 · F . (49)

Here, d is the sheet thickness and F denotes the form factor which is dependent
on the ratio RAB,CD/RBC,DA and derived in Refs. [89, 90]. Given almost square
shaped samples where RAB,CD ≈ RBC,DA, the form factor can be assumed as
unity and the sheet resistivity is then given by

ρxx ≈
π

ln 2RAB,CD . (50)

The Hall resistance in van der Pauw samples was measured analogously to
Hall bar samples by probing the voltage drop over two contacts perpendicular
to the applied current and divide it through the latter. Note that in van der
Pauw geometry, the available current and voltage probe directions may not
be aligned exactly perpendicular to each other. To account for this fact, the
resistance was measured for the two configurations RAC,BD(B) and RBD,CA(B).
The Hall resistivity was then calculated as [39]

ρxy(B) = 1
2

(
RAC,BD(B) +RBD,CA(B)−RAC,BD(0)−RBD,CA(0)

)
. (51)

In contrast to Hall bar or van der Pauw geometry, Corbino disk samples only
have two contacts, i.e. inner and outer ring contact. Thus, this type of sample
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geometry only allows two-terminal measurements. The longitudinal conductiv-
ity σxx was extracted from transport measurements of the resistance R between
the inner and outer contact according to [39]

σxx =
ln
(
ro
ri

)
2π

1
R

. (52)

Here, ri and ro denote the radii of the inner and outer ring contact, respectively.
It is important to mention that the conductivity obtained in Corbino disk sam-
ples usually is smaller than in Hall bar samples made from the same material
due to the unavoidable contribution of the contact resistance in two-terminal
measurements [39].

From the dark magnetotransport data, the two-dimensional sheet carrier den-
sity ns was obtained in two different ways. In most cases, it was calcu-
lated from the slope of the magnetic field dependence of the Hall resistivity
ρxy(B) obtained for a field applied perpendicular to the sample plane. For
two-dimensional systems, ns was additionally extracted from the period of
Shubnikov-de Haas oscillations in the magnetic field dependence of the lon-
gitudinal sheet resistivity ρxx(B) [39]. The carrier mobility µ was calculated
from the carrier density and sheet resistivity without applied magnetic field
via [39]

µ = 1
ns · e · ρxx(B = 0) . (53)

Photosignals. The optoelectronic response of the samples to incident ter-
ahertz radiation was probed in different ways. Photogalvanic signals were
obtained by measuring the current or voltage in the unbiased samples arising
due to the incident THz beam. Continuous wave laser radiation was modu-
lated with a mechanical chopper at a frequency fchop ranging between 70 Hz
and 150 Hz, which allows detection of the photosignals by lock-in amplifier
technique. For pulsed excitation, the temporal evolution or peak values of the
photosignals were monitored by a GHz digital storage oscilloscope. Photovolt-
age was picked up over two sample contacts by voltage probes with an internal
resistance of Ri = 10 MΩ. Photocurrents were measured as the voltage drop
∆V over a load resistor with a defined resistance RL in parallel to the sample.
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From this, the corresponding photocurrent can be calculated by

Iph = ∆V
Rtotal

= ∆V(
1
Rs

+ 1
RL

)−1 ≈
∆V
RL

, (54)

where in the last step it was assumed that the load resistance RL is significantly
smaller than the sample resistance Rs.

The radiation-induced change of the sample conductivity or resistivity was
measured by additionally applying a constant dc bias Vdc to the sample and
repeating the measurement for two inverted bias directions ±Vdc. According
to Eq. (26), the photoconductive response is proportional to the applied bias,
whereas the photogalvanic signal contributions are bias-independent. There-
fore, possible photocurrent contributions can be eliminated by subtraction of
the two signals obtained at inverted bias directions. Note that an additional
division by a factor of 2 is necessary for correct normalization of the photocon-
ductivity. In some cases, photoconductivity was additionally measured with
the double-modulation method, where both bias current as well as laser radia-
tion were modulated at different frequencies and the resulting signal was read
out by two lock-in amplifiers in series (see for example Refs. [91] or [23]). In-
stead of the dc bias in the method described earlier, here an ac bias was applied
at a low frequency fac and the laser beam was modulated at a substantially
higher frequency fchop � fac. In this method, the first lock-in amplifier is tuned
to the higher frequency fchop and gives an output signal that consists of a con-
stant photogalvanic signal on top of a slowly oscillating component. This signal
is then fed into a second lock-in amplifier tuned to fac, which yields a constant
signal proportional to the photo-induced change of conductivity/resistivity.
Note that to achieve proper results with this method, amplifier settings such
as integration time or band filter slope have to be adjusted properly to the
modulation frequencies fac and fchop [23].

Radiation transmission. In addition to measurements of the photo-induced
variation of electrical properties described above, the transmission of terahertz
radiation through the samples was also monitored during the experiments.
To this end, the samples were mounted on special sample holders with a
hole drilled into the back plane. The hole diameter exceeded the frequency-
dependent beam diameters of the THz laser radiation. This allowed the trans-
mitted THz beam to exit the cryostat through the rear window, where it was
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Figure 15: Sketch of the setup for magnetotransmission measurements. Panel
(a) shows the Faraday configuration with the terahertz beam incident nor-
mally on the sample surface and the external magnetic field applied antipar-
allel to the beam. In contrast, in Voigt configuration (b) the magnetic field
is applied parallel to the sample plane, i.e. perpendicular to the laser beam.
Adapted from Ref. [30].

focused onto a pyroelectric detector using a parabolic mirror. The detector
measured a voltage signal proportional to the incident power, which was fur-
ther processed using standard lock-in amplifier technique as described above.
For more information on the functional principle of pyroelectric detectors see,
e.g., Ref. [79]. In the magnetotransmission experiments, the laser beam typi-
cally hit the sample at a normal incidence and an external magnetic field was
applied either parallel/antiparallel or normal to the incident THz beam, see
Fig. 15. These two measurement configurations depicted in Figs. 15 (a) and
(b) are referred to as Faraday and Voigt configuration, respectively.
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4 Investigated samples

In this thesis, two different types of heterostructures from the MCT com-
pound system were studied, namely CdHgTe/HgTe/CdHgTe quantum wells
with different widths as well as bulk films made from CdxHg1−xTe alloys with
different compositions of CdTe and HgTe. Both structure types are very at-
tractive semiconductor materials for optoelectronical investigations since they
are highly tunable in their gap energy, as pointed out in Chap. 2.2. In par-
ticular, topological phase transitions can be easily realized by a variation of
characteristic structure parameters, such as the HgTe quantum well width
d, the cadmium content x in CdxHg1−xTe alloys, and even by changing the
temperature. Hence, both structure types provide access to inverted and non-
inverted parabolic spectra as well as Dirac-like states directly at the topolog-
ical transition point. This allows the comparison of phenomena excited for
different electronic dispersions in one material system [20]. Several samples
from the topologically trivial and non-trivial regime were studied in this work.
The wafers used for sample fabrication were grown by S. A. Dvoretsky, N. N.
Mikhailov, and their team at the Rzhanov Institute of Semiconductor Physics
in Novosibirsk by molecular beam epitaxy. All important technical details on
wafer growth and material design, as well as information on the sample fabri-
cation and specifications are presented in this chapter. Furthermore, magne-
totransport characterization data are shown along with the extracted sample
parameters.

4.1 HgTe quantum wells

First, the HgTe/CdHgTe quantum well structures investigated in this work
are addressed. They were grown by molecular beam epitaxy according to the
heterostructure design sketched in Fig. 16. On top of the either (013)- or (001)-
oriented GaAs substrate, these structures include a 5 nm thick layer of ZnTe,
followed by a 6 µm wide CdTe buffer layer, which leads to the adaptation of the
lattice constant of CdTe [5]. The barriers on both sides of the HgTe quantum
well are formed by 30 nm Cd0.4Hg0.6Te layers, while the thickness d of the
HgTe QW itself varies and ranges between 5 nm and 20 nm in the investigated
samples. Thin indium δ-doping layers were buried symmetrically inside the
otherwise undoped Cd0.4Hg0.6Te barrier layers at a distance of around 10 nm
from the HgTe quantum well [92]. On top, all heterostructures were capped
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Figure 16: Illustration of the layer structure of the HgTe quantum wells used
for preparation of samples #1 to #7. Note that the top part consisting of
the SiO2, gold and titanium layers is only present in sample #1. Adapted
from Ref. [23].

with a 40 nm CdTe layer for protection since CdTe is mechanically more robust
than HgTe or CdHgTe alloys [2]. During the growth process, the composition
and thickness of the layers were controlled by light beam ellipsometry [92].

For electro-optical measurements, the wafers were prepared into samples with
Hall bar, Corbino disk and square geometry. The Hall bars with length l and
width w were fabricated by optical lithography. Center and outer ring con-
tacts of Corbino disk samples were manufactured on top of the heterostructure
via indium diffusion, resulting in a Corbino disk with inner and outer radii ri

and ro, respectively. Additionally, sample #1 was equipped with a semitrans-
parent gate made of 20 nm titanium and 5 nm gold layers evaporated on top
of the heterostructure, separated by a 200 nm wide insulating SiO2 layer, as
illustrated in Fig. 16. As already pointed out in detail in Chap. 2.2, the width
d strongly influences the band dispersion of the quantum well. Samples #1
and #2 with d = 20 nm as well as sample #3 with d = 8 nm exhibit inverted,
roughly parabolic bulk bands along with Dirac-like helical edge states lying
within the bulk energy gap. By contrast, bulk states with an almost linear
spectrum are realized in sample #4 (d = 6.6 nm) as well as samples #5 and
#6 (both d = 6.5 nm) with QW widths close to the critical thickness dc. Sam-
ple #7 with d = 5 nm < dc corresponds to a regular narrow-gap semiconductor
with trivial band ordering.

All samples were characterized in the absence of irradiation by low-frequency
magnetotransport measurements at liquid helium temperature with out-of-
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Figure 17: Results of k · p calculations for the bulk band dispersion in HgTe
quantum wells with width d = 8 nm (a) and d = 20 nm (b). The solid
blue and dashed red traces show the dispersion of the bands along [100]-
direction for (013)- and (001)-oriented samples, respectively. The curves
were calculated by G. V. Budkin [93].

plane magnetic fields up to 7 T. Table 3 gives an overview of all QW samples
including their respective QW widths, sample geometries, and characteristic
parameters. Additionally, k · p calculations of the band structure of the in-
vestigated HgTe quantum wells were carried out by Dr. G. V. Budkin from
the Ioffe Institute in St. Petersburg. The data for 8 nm and 20 nm wide QWs
are presented in Fig. 17. In both cases, a comparison of the relevant energy
bands for (013)- and (001)-oriented structures (see solid and dashed lines in
Fig. 17) demonstrates that the change of orientation has only a negligibly small
influence on the band dispersion.

4.2 CdxHg1−xTe bulk films

The CdxHg1−xTe films for this study were grown via molecular beam epitaxy
in a similar fashion than the HgTe quantum wells described in the previous
chapter. Fig. 18 (a) sketches the principal design of such a film. As basis, a
(013)-oriented GaAs substrate with epitaxial layers of ZnTe (30 nm) and pure
CdTe (6 µm) was used. This structure served as a virtual substrate for the
CdxHg1−xTe bulk films that were grown on top with a thickness ranging from
5 µm to 12 µm. Samples #A, #B, #D and #E (see Figs. 18 (b), (c), (e) and
(f)) have a conventional design with a gradually varying cadmium content x
at the bottom and top interface of the film, enclosing a wide region where the
cadmium concentration is kept constant at x = 0.15 (samples #A and #B),
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Figure 18: Panel (a): Schematic illustration of the principal structure of
all investigated CdxHg1−xTe films. The specific design of the individual
CdxHg1−xTe films is displayed in panels (b) to (f), which show the cadmium
concentration profile x(d) as a function of the distance d from the top of the
preceding CdTe layer (colored in purple in panel (a)). A light red background
highlights the flat regions with a Cd content as indicated in each panel. Note
that in contrast to all other structures where x(d) varies smoothly, sample
#C has a sharp interface between the flat region with x = 0.15 and the 30 nm
cap layer with x = 0.85, as highlighted by the blue background in panel (d).
Adapted from Ref. [30].

x = 0.18 (sample #D), or x = 0.22 (sample #E). This region ranges from
a thickness of around 3 µm to 10 µm depending on the specific structure and
will be called flat region in the following. Smooth interfaces with varying x

around the flat region were shown to improve optoelectronic and electronic
transport properties of the structures [3] due to, e.g., a reduction of interface
disorder effects and lattice mismatch-induced strain. However, sample #C
(see Fig. 18 (d)) omits the gradual increase of x at the top interface and intro-
duces a sharp transition from the flat region with x = 0.15 to a 30 nm thick
Cd0.85Hg0.15Te cap layer. This results in a sharp boundary between the flat re-
gion with inverted and the cap layer with regular, non-inverted band ordering.
Precise information about the structure of all investigated CdxHg1−xTe bulk
films is presented in Figs. 18 (b) to (f). During preparation, the wafer material
was cut into small, square-shaped pieces with a size of around 5 mm × 5 mm.
Ohmic indium contacts were soldered to the sample edges and corners, re-
sulting in a van der Pauw geometry. Additionally, micrometer-sized Hall bar
samples were fabricated by optical lithography from several wafers to allow for
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Figure 19: Magnetotransport data of a Hall bar sample made from wafer
#A with x = 0.15 for different temperatures, T = 1.7 K (purple curve),
10 K (dark blue curve), 15 K (light blue curve), 20 K, 25 K, 30 K, 40 K, 50 K
(yellow curve), 70 K, 100 K, 150 K, and 300 K (red curve). Panel (a) shows
the longitudinal resistivity ρxx, panel (b) the Hall resistivity ρxy and panel
(c) the sheet electron density ns extracted from the linear slope of ρxy at
B = 0 as a function of temperature. Adapted from Ref. [30].

detailed magnetotransport studies.

Longitudinal and Hall resistivities were extracted directly from Hall bar mea-
surements or calculated from data obtained on van der Pauw samples using
the permutation method. The transport studies demonstrate that all samples
show a rather similar magnetotransport behavior which seems to be mostly
unaffected by the presence of band inversions and the type of interfaces. A
typical example of this behavior is presented in Fig. 19 which shows longi-
tudinal and Hall resistivities as well as extracted carrier densities for a Hall
bar sample made of wafer #A for different temperatures. At low temper-
atures, all samples exhibit a strong, positive longitudinal magnetoresistance
(see Fig. 19 (a)) and a nonlinear Hall resistance (see Fig. 19 (b)). For small
magnetic fields, the Hall slope corresponds to negatively charged carriers, i.e.
electrons, while at high magnetic fields, the slope changes to a hole-like one
(not shown). This indicates that the hole density slightly exceeds the electron
density, whereas electrons exhibit a significantly higher mobility in these struc-
tures [94]. The sheet carrier densities and mobilities were extracted from the
transport data with a classical two-component Drude model which has been
applied successfully for HgTe quantum wells before [19, 95, 96]. Additionally,
a simpler single-component Drude model was used that approximates the ef-
fective sheet carrier density from the linear slope of the Hall resistivity ρxy at
small magnetic fields. Table 2 displays the values of the sheet electron densi-
ties ns as well as the average volume electron densities n for all investigated
samples. The latter were calculated from the respective sheet electron densi-
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sample Cd content,
x

band
structure

top
interface ns (1011 cm−2) n (1014 cm−3)

#A 0.151 inverted smooth 2.9 4.8
#B 0.150 inverted smooth 2.2 3.7
#C 0.151 inverted sharp 3.3 6.7
#D 0.179 normal smooth 4.2 4.2
#E 0.223 normal smooth 2.4 1.9

Table 2: Overview of the basic parameters of the investigated CdxHg1−xTe
films, including the cadmium content x, the corresponding band ordering
in the flat region, the type of top interface between the flat region and the
cap layer, as well as the sheet electron densities ns and the volume electron
densities n obtained from low-frequency magnetotransport measurements at
T = 4.2 K.

ties via n = ns/w, where w is the corresponding thickness of the CdxHg1−xTe
film extracted from Fig. 18. At low temperatures, the sheet electron densi-
ties ns are rather small and lie in the range of 2 · 1011 cm−2 to 4 · 1011 cm−2 in
all samples, while the sheet hole densities are slightly larger than that. Both
electron and hole densities increase for higher temperatures up to an electron
sheet density in the range of 2 · 1012 cm−2 to 3 · 1012 cm−2 at 77 K and between
3 · 1013 cm−2 to 1.2 · 1014 cm−2 at 300 K.



4.2 CdxHg1−xTe bulk films 55

sa
m

pl
e

nu
m

be
r

Q
W

w
id

th
,

d
(n

m
)

ge
om

et
ry

su
bs

tr
at

e
or

ie
nt

at
io

n
n

s
(1

011
cm
−

2 )
µ

(1
04

cm
2 /

Vs
)

siz
e

(m
m

)

#
1

20
ga

te
d

H
al

lb
ar

(0
01

)
1

to
7

17
to

50
l

=
0.

25
,w

=
0.

05

#
2

20
H

al
lb

ar
(0

13
)

8.
2

15
l

=
0.

25
,w

=
0.

05

#
3

8
H

al
lb

ar
(0

13
)

7.
5

6.
7

l
=

0.
25

,w
=

0.
05

#
4

6.
6

C
or

bi
no

(0
13

)
12

4.
4

r i
=

0.
36

,r
o

=
1.

9

#
5

6.
5

C
or

bi
no

(0
13

)
9.

7
11

r i
=

0.
25

,r
o

=
1.

9

#
6

6.
5

H
al

lb
ar

(0
13

)
10

13
l

=
0.

25
,w

=
0.

05

#
7

5
C

or
bi

no
(0

13
)

4.
0

0.
14

r i
=

0.
32

,r
o

=
1.

2

Table 3: Specifications and parameters of the HgTe quantum well samples.
Electron densities and mobilities were extracted from dark magnetotransport
measurements performed at T = 4.2 K for samples #2 to #7 and T = 2 K for
sample #1. Please note that the actual mobilities in samples with Corbino
disk geometry may be slightly larger than the values given in the table. This
is due to the inevitable contribution of the contact resistance in the corre-
sponding two-point measurements. The ranges of densities and mobilities
given for gated sample #1 correspond to the values within the gate voltage
range of 2 V to 10 V, as shown in Figs. 28 (b) and (c).
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5 Sign-alternating terahertz photoconductiv-
ity in HgTe quantum wells

This chapter is devoted to the terahertz photoconductivity in HgTe quantum
wells with normal and inverted parabolic band structures as well as in QWs
with linear dispersion. It will be demonstrated that the application of an
out-of-plane magnetic field results in a systematic change of the sign of pho-
toconductivity. In the following, the characteristics of this sign-alternating
photoconductivity are presented for different QW widths and sample geome-
tries. Subsequently, the origin of the sign inversion is discussed within the
framework of µ-photoconductivity.

5.1 Experimental results

By illumination with modulated terahertz radiation from a continuous wave
molecular gas laser, the photoconductive response was investigated in HgTe
quantum wells with various widths corresponding to the topologically triv-
ial and non-trivial regimes. Surprisingly, the application of a magnetic field
oriented normally to the QW plane resulted in a systematic change of the
sign of the photoconductive signal in both regimes. In Corbino disk sam-
ples, a sweep of the magnetic field strength revealed two sign inversions at
low applied fields. Figure 20 demonstrates this magnetic field dependence of
the photoconductivity exemplarily for Corbino disk sample #5. This sample
hosts a HgTe quantum well with d = 6.5 nm close to critical thickness and
is consequently characterized by an almost linear bulk band dispersion [21,
97]. The data presented in Fig. 20 were obtained at liquid helium temperature
for excitation of the sample with right-handed circularly polarized terahertz
radiation at different frequencies f = 2.54 THz, 1.63 THz and 0.69 THz using
a two-terminal setup. At low fields, the photoconductivity ∆σxx normalized
to the incident radiation intensity IR manifests two distinct sign inversions at
±Binv and ±B∗inv symmetrically around B = 0. At higher fields, 1/B-periodic
oscillations with a period corresponding to Shubnikov-de Haas oscillations set
in. These high-field quantum oscillations will be discussed in detail later. Let
us first focus on the double sign inversion which, in contrast, is detected at
substantially lower fields.

Notably, the two inversion fields Binv and B∗inv exhibit a different frequency
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Figure 20: Photoconductivity ∆σxx normalized to the incident radiation inten-
sity IR with respect to magnetic field. The data are obtained at T = 4.2 K on
Corbino disk sample #5 which hosts a QW with d = 6.5 nm. The sample was
illuminated by a right-handed circularly polarized (σ+ polarized) THz laser
beam with frequencies f = 2.54 THz, 1.63 THz, and 0.69 THz, corresponding
to the blue, red, and black traces, respectively. Note that the upper curves
are shifted vertically by 4 · 10−6 cm2 Ω−1 W−1 each and that the low-field
values were omitted for the black curve for clarity. The photoconductivity
changes sign at magnetic fields B = ±Binv and B = ±B∗inv as highlighted by
black arrows for the lowest curve. Adapted from Ref. [23].

dependence. While the first inversion at Binv is found to be independent
of the photon energy, the second inversion at B∗inv shifts to slightly smaller
magnetic fields for higher photon energies, see Fig. 21 (a) and (b). Figure
21 (a) presents the photoconductivity data for all frequencies normalized to
the respective photoconductivity ∆σxx (B = 0) at zero magnetic field. These
zero-field values accurately follow the expected frequency dependence for µ-
photoconductivity, as demonstrated in Fig. 21 (c). Note that in the model
of free carrier heating, the photoconductivity is proportional to the classical
radiation absorption given by the Drude-Lorentz formula ∆σxx ∝ (1 + ω2τ 2)−1

[56] (red dashed line in Fig. 21 (c)), in accordance with the experimental find-
ings. Additionally, the bolometric response is expected to decrease for higher
temperatures. This was confirmed in the experiment, where a drastic suppres-
sion of the normalized zero-field photoconductivity ∆σxx(B = 0)/IR has been
detected at higher temperatures, as shown in Fig. 21 (d).

In strong contrast to the Corbino disk geometry, only a single sign inversion was
observed in the low-field photoresponse of Hall bar samples. To directly com-
pare the influence of the sample geometry, Hall bar sample #6 was fabricated
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Figure 21: Panel (a) presents a zoom of the low-field part of the photoconduc-
tivity data shown in Fig. 20. All three curves obtained at f = 2.54 THz (blue
trace), 1.63 THz (red trace), and 0.69 THz (black trace) are normalized to the
respective photoconductivity ∆σxx(B = 0) at zero field. Panel (b) displays
the extracted magnetic field values Binv and B∗inv for the first and second pho-
toconductivity sign inversion, respectively, plotted against the photon energy
~ω. Panel (c) shows the zero-field photoconductivity ∆σxx(B = 0)/IR (black
triangles) from the data set presented in Fig. 20 with respect to radiation fre-
quency. The red dashed line presents a fit according to ∆σxx ∝

(
1 + ω2τ2)−1.

Panel (d) features the temperature dependence of the zero-field photoconduc-
tivity ∆σxx(B = 0)/IR measured on sample #5 at f = 2.54 THz (red circles).
Here, the red dashed line is a guide for the eye. Adapted from Ref. [23].

from the same wafer as Corbino sample #5 with d = 6.5 nm. The correspond-
ing 4-terminal-photoresistivity data of Hall bar sample #6 obtained by illumi-
nation with a linearly polarized laser beam with f = 2.54 THz is presented in
Fig. 22. Note that in Hall bar geometry one measures the photoresistivity, i.e.
the radiation-induced change ∆ρxx of the longitudinal resistivity ρxx, rather
than the photoconductivity ∆σxx which can be directly extracted from mea-
surements in Corbino disk geometry. For both quantities, the extracted sign in-
version magnetic fields are directly comparable with each other since ∆σxx = 0
also yields ∆ρxx = 0 and vice versa. However, it is important to note that
photoresistivity ∆ρxx and photoconductivity ∆σxx consistently have opposite
signs at B = 0. The Hall bar photoresistivity shown in Fig. 22 (a) is negative
at small magnetic fields, and subsequently changes sign at ±B∗inv(Hall bar).
These fields coincide with the inversion fields ±B∗inv(Corbino) obtained in the
corresponding Corbino disk sample under the same conditions. A detailed
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Figure 22: Magnetic field dependence of the photoresistivity ∆ρxx normal-
ized to the respective dark resistivity ρxx obtained in Hall bar sample
#6 (d = 6.5 nm). The data were recorded while the sample was illumi-
nated with modulated linearly polarized terahertz radiation with frequency
f = 2.54 THz and intensity IR = 1.2 W/cm2. Panel (a) presents the curve
obtained at T = 2 K in the full range of magnetic fields, whereas panel
(b) shows a zoom of the low-field part, highlighted by the red dashed box
in (a), for different temperatures T = 2 K, 4.2 K, 5.5 K and 7 K. Panel
(c) illustrates the temperature dependence of the Hall bar inversion fields
B∗inv(Hall bar) extracted from panel (b) as well as the first and second inver-
sion fields Binv(Corbino) and B∗inv(Corbino) detected in Corbino disk sam-
ple #5. The dashed lines are linear fits to the data points. Adapted from
Ref. [23].

analysis of the temperature dependence of the inversion fields in both Hall bar
and Corbino disk geometries presented in Fig. 22 (c) reveals that the inversion
field B∗inv increases with rising temperatures. Furthermore, the temperature
dependence of B∗inv is strikingly similar in both geometries. In contrast, the
first inversion point Binv, which is observed in photoconductivity only, shows
no measurable dependence on temperature. This results clearly point towards
the conclusion that the origin of the sign inversion at B∗inv is the same in both
sample geometries. On the other hand, the sign inversion at Binv, which is in-
dependent of temperature and radiation frequency, seems to be characteristic
for the photoconductivity measured in Corbino disk geometry.

Analogue behavior was also observed in other investigated samples with dif-
ferent quantum well widths. Figures 23 (a) and (b) present photoresistivity
data obtained under similar conditions (f = 2.54 THz and T = 4.2 K) on Hall
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Figure 23: Magnetic field dependence of the photoresponse in samples #2, #3,
and #7 measured at T = 4.2 K under incidence of linearly polarized radiation
with frequency f = 2.54 THz and intensity IR ' 0.7 W/cm2. Panels (a) and
(b) present the photoresistivity ∆ρxx in Hall bar samples #2 (d = 20 nm)
and #3 (d = 8 nm), whereas panel (c) shows the photoconductivity ∆σxx in
Corbino disk sample #7 (d = 5 nm). Adapted from Ref. [23].

bar samples #2 (d = 20 nm) and #3 (d = 8 nm), both corresponding to the
regime of inverted band ordering. In both cases, the photoresistivity exhibits
a similar magnetic field dependence with negative ∆ρxx at zero field, a sign
inversion at B∗inv, and 1/B-periodic oscillations at higher fields. Furthermore,
the photoconductivity measured in Corbino disk samples with different QW
widths exhibits a qualitatively similar behavior as described for sample #5,
featuring two sign inversions in magnetic field. This is shown in Fig. 24 (b) for
sample #4 with d = 6.6 nm and in Fig. 23 (c) for sample #7 with a QW width
of d = 5 nm. The only significant difference between data obtained for different
QW widths is the position of the inversion fields Binv and B∗inv. Especially for
sample #7, which exhibits the lowest carrier mobility, the inversion field Binv

is significantly higher than in other samples.

To gain a better understanding of the high-field photoconductivity which per-
forms 1/B-periodic oscillations, supporting dark magnetotransport measure-
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Figure 24: Comparison of the terahertz photoconductivity ∆σxx with the
reciprocal dark conductivity σ−1

xx at T = 4.2 K for Corbino disk samples #5
(a) and #4 (b). In panel (a), the photoconductivity in sample #5 is obtained
for radiation with f = 0.69 THz and IR = 0.14 W/cm2, whereas panel (b)
includes photoconductivity data for sample #4 measured at f = 2.54 THz
and IR = 1 W/cm2. Adapted from Ref. [23].

ments were carried out without THz irradiation. Figures 24 (a) and (b) present
a comparison between the inverse dark conductivity σ−1

xx and the photocon-
ductivity ∆σxx in the two Corbino disk samples #5 (d = 6.5 nm) and #4
(d = 6.6 nm), respectively. The data clearly demonstrate that the photocon-
ductivity oscillations at higher magnetic fields coincide with the Shubnikov-de
Haas (SdH) oscillations observed in dark magnetotransport. Such a behavior,
that has also been detected in all other QW samples, is typical for photocon-
ductivity resulting from free carrier heating. Here, the terahertz radiation-
induced electron heating leads to a thermal suppression of the amplitude of
SdH oscillations [20]. Note that for samples #5 and #6 (both with a QW
width d = 6.5 nm close to the critical one) the shape of the SdH oscillations
becomes more complicated at higher fields B & 2.5 T (see e.g. Fig. 24 (a) or
Fig. 27 (a)) because both cyclotron and spin gaps in the density of states are
resolved. This manifests also in the photoconductivity traces which exhibit
additional extrema, see e.g. Fig. 24 (a).

Further analysis of the photoconductivity signals obtained for different radia-
tion frequencies shows that for high photon energies, the former are substan-
tially enhanced at the positions of CR, as e.g. shown in Fig. 25 (a). Here,
the photoconductivity obtained at f = 2.54 THz in Corbino disk sample #5
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Figure 25: Comparison of magnetic field dependences of the photoconductivity
∆σxx and radiation transmission T for Corbino disk sample #5 at T = 4.2 K.
The curves presented in panel (a) were obtained by illuminating the sample
with a right-handed circularly polarized laser beam with f = 2.54 THz and
IR = 0.3 W/cm2, whereas panel (b) shows data for f = 0.69 THz and IR =
0.2 W/cm2. Vertical dashed lines mark the positions of BCR extracted from
the magnetotransmission curves (in panel (a): BCR = 3.0 T, in panel (b):
BCR = 0.82 T). Adapted from Ref. [23].

is shown with respect to magnetic field alongside the simultaneously recorded
radiation transmission from which the corresponding CR magnetic fields BCR

were extracted. Such resonant enhancement is in accordance with previous
studies of the terahertz photoresponse in HgTe QWs under conditions of CR
[20]. Surprisingly, in the present experiments, no cyclotron-resonant increase
of the photoresponse magnitude is present at the lowest radiation frequency
f = 0.69 THz, as displayed in Fig. 25 (b). In this case, the position of CR lies
below the onset of SdH oscillations and the photoconductivity is completely
featureless at BCR.

To summarize, a sign-alternating photoconductive/photoresistive response was
found in HgTe QW samples with different energy dispersions and geometries.
In Corbino disk samples, two sign inversions at magnetic fields Binv and B∗inv

were systematically observed, whereas in Hall bar samples only the inversion
at B∗inv was detected.

5.2 Discussion

At first, the sign inversion at Binv, characteristic for the Corbino disk geometry,
is discussed. In the previous chapter, it was shown that the inversion field Binv
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is independent of temperature as well as photon energy, see Figs. 22 (c) and
21 (b). Intriguingly, such a sign inversion of the photoconductivity is expected
to necessarily occur in Corbino disk samples within the semiclassical Drude
description of the electron bolometric effect as a result of the transition from
classically weak to classically strong magnetic fields at ωcτ = 1. According to
the Drude model, the conductivity

σxx ∝
τ

(1 + ω2
cτ

2) (55)

is proportional to the transport scattering time τ in the parametric region
of classically weak magnetic fields (ωc � 1/τ), whereas in the opposite limit
ωc � 1/τ the conductivity is proportional to 1/τ . Assuming a bolometric
mechanism, i.e. the incident terahertz radiation field modifies τ due to heating
of the charge carriers, the sign of photoconductivity is indeed opposite in
these two magnetic field regions. Within this model, the inversion field Binv is
therefore given by

Binv = m∗

eτ
= 1
µ

. (56)

This relation has been checked by extraction of the transport scattering time
τ and mobility µ from dark magnetotransport measurements and calculation
of the cyclotron mass mCR from BCR detected in magnetotransmission exper-
iments. In fact, it is possible to correctly reproduce the inversion field Binv

from these extracted parameters, which demonstrates the bolometric nature of
the observed low-field photoconductivity. Note that due to a possible influence
of the contact resistance in two-terminal magnetotransport measurements in
Corbino disk geometry, the transport parameters obtained on corresponding
Hall bar samples made from the same wafer were used, if available, to achieve
higher accuracy. Moreover, the bolometric origin is also supported by the
temperature and frequency independence of Binv detected in the experiment.
Indeed, within the mechanism of µ-photoconductivity, the position of the in-
version field Binv is expected to be independent of temperature and radiation
frequency, since a change in frequency only modifies the magnitude of heating.
The independence of temperature holds true as long as the terahertz-induced
variation of τ due to heating remains small. It is important to note that the
sign inversion at Binv allows to directly calculate the carrier mobility according
to Eq. (56). This provides a powerful optoelectronic method to measure the
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carrier mobility in such systems.

While the inversion of the photoconductivity at Binv can be well understood
within the model of carrier heating, the absolute sign of the photosignal for
B < Binv and B > Binv is contrary to what one would expect. Within the tem-
perature range used in the experiments, typically electron-phonon scattering
is the dominant contribution to momentum relaxation. Therefore, electron gas
heating should result in a reduction of the scattering time τ , i.e. dτ(T )/dT < 0
[56]. As a consequence, the conductivity σxx in Corbino disk geometry should
decrease due to incident terahertz radiation for |B| < Binv, resulting in a neg-
ative photoconductivity ∆σxx, and increase for |B| > Binv (i.e. positive photo-
conductivity). Contrary to that, in the experiment, positive photoconductivity
has been observed for |B| < Binv, that changes to negative photoconductivity
for |B| > Binv. This implies that here the radiation-induced heating causes an
increase of the transport scattering time, i.e. dτ(T )/dT > 0, at B . Binv.

Now, the discussion of the results within the framework of electron gas heating
is extended to the photoresistivity obtained on Hall bar samples. Within the
Drude model, the classical longitudinal resistivity ρxx is proportional to the
momentum relaxation rate 1/τ for both classically weak as well as classically
strong magnetic fields. Therefore, generally no sign inversion of the photore-
sistivity is expected in Hall bar geometry, in particular not at Binv. The sign
of the photoresistivity should simply reflect the temperature dependence of
the scattering time τ . In accordance with the results obtained on Corbino
disk samples, the photoresistivity in Hall bar samples is expected to be neg-
ative in the region of small magnetic fields including B = 0 and B = Binv.
Indeed, this is fully consistent with the experimental data, see e.g. Figs. 22
and 23. In turn, this also implies that the sign inversion at B∗inv, where both
photoconductivity and photoresistivity change sign, may originate from the
temperature dependence of the scattering time τ . Indeed, it could be inter-
preted as the transition point to a more conventional temperature dependence
of τ at |B| > B∗inv, where the terahertz radiation-induced heating reduces the
scattering time (i.e. dτ(T )/dT < 0) due to more pronounced electron-phonon
scattering.

It is important to mention that the high-field inversion at B∗inv lies well within
the region of classically strong magnetic fields (ωc � 1/τ), where ρxx � ρxy,
i.e. the longitudinal resistivity ρxx exceeds the Hall resistivity ρxy ' eB/n.
Thus, the longitudinal conductivity σxx is given by σxx ' ρxx/ρ

2
xy. As a conse-
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Figure 26: Comparison of the inverse dark conductivity σ−1
xx (black curve) of

Corbino disk sample #5 with σ−1
xx obtained under continuous irradiation with

non-modulated terahertz radiation (red curve) with frequency f = 0.69 THz
and intensity IR = 0.27 W/cm2. The data were obtained at T = 4.2 K with
an applied driving current of I = 100 nA. Adapted from Ref. [23].

quence, the behavior and sign of the photoconductivity ∆σxx and photoresis-
tivity ∆ρxx is expected to be the same in the vicinity of B∗inv, assuming that the
electron density n is not influenced by the incident terahertz radiation. This
is in perfect agreement with the experimental data, see e.g. Figs. 20 and 23,
where both the photoconductivity in Corbino disk geometry and photoresis-
tivity in Hall bar geometry change from negative to positive at B∗inv. A deeper
analysis of the Shubnikov-de Haas oscillations reveals that their period is al-
most unaffected by the incident terahertz radiation (see Fig. 26) or a variation
of the temperature (see Fig. 27). This demonstrates that the electron den-
sity is only very weakly sensitive to temperature and terahertz irradiation in
conditions of the experiments. When comparing photoconductivity and pho-
toresistivity, it is worth mentioning that the visibility of features is enhanced in
photoconductivity within the parametric region |B| & B∗inv. This is because of
the large scaling factor ∆σxx ∝ ρ−2

xy ∝ B−2. Indeed, this is in accordance with
the experimental data. On the other hand, the fact that for low excitation
frequencies, no enhanced cyclotron-resonant photoresponse was detected (see
Fig. 25 (b)) remains unclear and requires further study.

As suggested above, the observation of the sign-alternating photoresponse in
the experiment is consistent with the model of µ-photoconductivity, assuming
that the sign inversion at B∗inv originates from an unconventional temperature
behavior of the momentum scattering time τ , which increases with rising tem-
perature for |B| < B∗inv and decreases with temperature for |B| > B∗inv. To
probe the temperature dependence of τ , supporting four-terminal dark magne-
totransport measurements were carried out on Hall bar sample #6 at different
temperatures. The results are presented in Fig. 27. At first glance, the longi-
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Figure 27: Magnetotransport data for sample #6 with Hall bar geometry and
QW width d = 6.5 nm. Panel (a) features longitudinal ρxx (left axis) and Hall
magnetoresistivity ρxy (right axis) for a driving current I = 100 nA at T =
2 K (black trace), 4.2 K (red trace), 10 K (blue trace), and 20 K (orange trace).
Panel (b) shows a zoom of the data presented in panel (a) around the low-field
region highlighted by the red dashed box. The green curve corresponding to
the right axis indicates the difference ∆ρxx = ρxx(20 K) − ρxx(2 K) of the
longitudinal resistance obtained at 20 K and 2 K. The black dashed line
highlights the sign inversion of ∆ρxx. In panel (c), extracted values of the
carrier density ns and mobility µ at zero magnetic field are plotted against
temperature. Adapted from Ref. [23].

tudinal resistance ρxx appears to be only weakly dependent on temperature in
the relevant classical range of magnetic fields before the onset of Shubnikov-de
Haas oscillations (see Fig. 27 (a)). Actually, this is in line with the fact that the
longitudinal resistance ρxx ∝ 1/τ is only sensitive to the temperature variation
of the momentum scattering rate 1/τ in the regime of classical fields, whereas
the amplitude of the SdH oscillations at higher fields is governed by an addi-
tional, in this case, much stronger exponential temperature-dependent factor
[98]. However, a closer look (see. Fig. 27 (b)) reveals that the temperature de-
pendence of the longitudinal resistivity ρxx indeed changes from dρxx/dT < 0
for small magnetic fields to dρxx/dT > 0 for higher fields at around 0.8 T. This
is highlighted by the green curve in Fig. 27 (b) which presents the difference of
the longitudinal resistivities obtained at 20 K and 2 K. Furthermore, the tem-
perature dependence of the carrier mobility at zero field extracted from the
dark magnetotransport measurements (see Fig. 27 (c)) clearly demonstrates
that at B = 0, the mobility µ ∝ τ slightly increases with temperature. This,
indeed, confirms the temperature behavior of the momentum relaxation rate
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1/τ that was suggested from the shape of the photoresponse. It decreases with
temperature for B . 0.8 T and increases for B & 0.8 T. In fact, this value
agrees reasonably well with the inversion field B∗inv detected in Corbino disk
sample #5 and Hall bar sample #6. Here, it is important to bear in mind that
µ-photoconductivity generally measures the sensitivity of the transport proper-
ties to the electron temperature Te under non-equilibrium conditions, where Te

is larger than the lattice temperature Tl due to radiation-induced carrier heat-
ing. Temperature-dependent dark magnetotransport, however, yields informa-
tion on the temperature evolution of the scattering time τ only in conditions
where electrons and lattice are in thermal equilibrium, i.e. Te = Tl. This may
explain the slight variation of the inversion fields, where dτ/dT changes from
positive to negative, detected in photoresistivity and dark magnetotransport.
All together, this provides a strong support to the bolometric interpretation
of the sign-alternating photoresponse presented above.
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6 Terahertz-induced resistance oscillations in
HgTe quantum wells

While the previous chapter was centered on the description of the sign-alterna-
ting photoconductivity observed in QWs with moderate carrier mobilities, this
chapter addresses the photoconductivity in a gated 20 nm QW with signif-
icantly higher mobility. Besides the SdH-like oscillations at higher magnetic
fields, the measurements reveal additional 1/B-periodic oscillations in the tera-
hertz photoresponse at considerably low magnetic fields. These oscillations are
presented for different applied gate voltages and afterwards discussed within
the framework of photo-assisted transitions between disorder-broadened Lan-
dau levels.

6.1 Experimental results

Upon irradiation with the terahertz electric field, an oscillatory photoresponse
was observed in sample #1 for small magnetic fields applied normally to the
QW plane, as shown in Fig. 28 (a). This Hall bar sample hosts a 20 nm wide
HgTe quantum well and is additionally equipped with a semitransparent top
gate structure which allows to tune the Fermi energy. For positive applied
gate voltages, a mobility up to 5 · 105 cm2/(V s) is achieved, which exceeds the
mobility of all other investigated QW samples, see Tab. 3. The data presented
in Fig. 28 (a) were obtained for different applied gate voltages at a tempera-
ture T = 2 K, using linearly polarized radiation with frequency f = 0.69 THz.
Analysis of the magnetic field dependences reveals that the nodes of the os-
cillatory photoresistivity coincide with the position of cyclotron resonance at
BCR and its second harmonic BCR/2, as illustrated by the dashed vertical
lines in Fig. 28 (a). This demonstrates that the oscillations are caused by an
interplay between the photon energy ~ω and the cyclotron energy ~ωc, a phe-
nomenon known as microwave-induced resistance oscillations (MIRO). Such
oscillations exhibit a distinctive ω/ωc-periodicity with nodes at harmonics of
the cyclotron resonance and minima and maxima shifted away from integer
ω/ωc by a quarter cycle [99]. This is in full agreement with the experimental
data. Note that for excitation frequencies in the terahertz range, this effect is
often referred to as terahertz-induced resistance oscillations (TIRO), describing
a high-frequency MIRO analogue. For low applied driving currents I . 1 µA,
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Figure 28: Panel (a) displays the magnetic field dependence of the photore-
sistivity ∆ρxx measured at T = 2 K in Hall bar sample #1 which hosts a
quantum well with d = 20 nm. The data were measured with the double
modulation technique using an applied alternating current I = 16 µA and
a linearly polarized radiation field with frequency f = 0.69 THz and inten-
sity IR = 0.2 W/cm2. Curves obtained at different gate voltages in the
range between Vg = 2 V and 10 V are vertically offset from each other by
0.1 Ω for clarity. The vertical dashed lines correspond to the CR magnetic
field BCR = 0.47 T and its second harmonic BCR/2 extracted from radiation
transmission measurements. Panels (b) and (c) show the sheet electron den-
sity ns and mobility µ with respect to gate voltage for sample #1 obtained
at T = 2 K. Adapted from Ref. [23].

additional overlapping 1/B-periodic oscillations emerge at fields B & BCR that
correspond to Shubnikov-de Haas oscillations, which were also observed in dark
magnetotransport measurements. Therefore, in the presented curves the driv-
ing current has been adjusted to I = 16 µA, which completely suppresses the
SdH oscillations in the measured photosignals. This fact clearly rules out that
the oscillations at higher applied currents presented in Fig. 28 are caused by
a decrease of the SdH oscillation amplitude due to carrier heating similar to
the results discussed in Chap. 5. Instead, all findings described above pro-
vide strong evidence that the oscillations in Fig. 28 indeed originate from the
TIRO effect. Note that the respective resonance field BCR = 0.47 T, which cor-
responds to a cyclotron mass of mCR = 0.019 me, with me being the electron
mass, has been extracted from separate magnetotransmission measurements.
Irradiation of the sample by circularly polarized terahertz radiation yields CR
dips of the radiation transmission at positive fields for σ+ polarization, and
at negative fields for σ−. These results have been double-checked on ungated
square-shaped samples with a side length of 5 mm that were fabricated from
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the same wafer as sample #1. Such macroscopic samples generally yield more
pronounced dips in radiation transmission measurements than Hall bar sam-
ples with a micrometer-sized conduction channel.

The MIRO-like photoresistivity oscillations were observed for a Fermi level
position in the conduction band within a wide electron density range cor-
responding to applied gate voltages between Vg = 2 V and 10 V. However,
they disappear in the range below 2 V where Hall measurements without in-
cident radiation indicate the transition to a transport regime with two types
of carriers. In this range, the Fermi energy crosses both conduction and va-
lence band resulting in the coexistence of electron and holes in the system, see
Fig. 17 (b). Figures 28 (b) and (c) present the sheet electron density ns and
mobility µ as a function of the applied gate voltage. Here, the density ns (Vg)
has been extracted from the Hall resistivity ρxy (Vg) with respect to the applied
gate voltage measured for a constant applied magnetic field B = 0.2 T. Note
that the linearity of ρxy (B) has been checked for 2 V < Vg < 10 V to ensure
proper results with this method. In this range, the electron density rises from
2 · 1011 cm−2 up to 7 · 1011 cm−2 and the mobility reduces from 5 · 105 cm2/(V s)
to 2.5 · 105 cm2/(V s), see Figs. 28 (b) and (c). Note that for Vg & 6 V the car-
rier density dependence ns (Vg) featured in Fig. 28 (b) begins to deviate from
a linear dependence ns ∝ Vg. This is most probably linked to the occupation
of the second electron subband in the HgTe quantum well [100]. As can be
seen in Fig. 28 (a), the increase of the electron density at higher gate voltages
leads to a moderate boost of the MIRO amplitude, whereas the positions of
the MIRO nodes as well as oscillation extrema do not change.

6.2 Discussion

In the following, the characteristic features of the observed MIRO-like oscil-
lations in the 20 nm HgTe quantum well are explained in the framework of
the displacement mechanism [102, 103] which captures the experimental find-
ings well. Note that there are also other theoretical descriptions of the MIRO
effect, such the inelastic mechanism [104–106] or other approaches, that at-
tribute MIRO to boundary effects, originating from the finite sample size [59,
107], or classical memory effects [108].

Essentially, the quasiclassical displacement model describes how the spatial dis-
placements of electron cyclotron orbits due to radiation-assisted impurity scat-
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Figure 29: Panel (a): Schematic illustration of the scattering-induced guiding
center shift ∆R of the cyclotron orbit with radius R normal to the magnetic
field B ‖ ẑ. ∆X denotes the component of ∆R parallel to the electric force
−eE resulting from the dc electric field E applied along negative x-direction.
R and v (R′ and v′) designate the CR orbit center and direction of motion
of the electron before (after) the scattering event. Panel (b): Sketch of the
correlation between the direction of the guiding center shifts ∆X and the
sign of the excitation frequency detuning δω from the second harmonic of
cyclotron resonance. The red graded areas correspond to the maxima of the
density of states of the Landau levels εtot

l that are spatially tilted because of
the external electric field E. Adapted from Ref. [101].

tering can lead to ω/ωc-periodic oscillations in the photoconductivity. There
are several prerequisites for the model, such as an applied magnetic field that
induces Landau quantization and a symmetry breaking dc electric field that
leads to a tilting of the Landau energies in real space. Furthermore, the model
requires the existence of defects that can act as scattering centers as well as lead
to a broadening of the Landau levels (LLs). The displacement mechanism can
be intuitively understood on a qualitative level. First, the Landau quantiza-
tion due to the normally applied magnetic field leads to a periodic modulation
in the density of states (DOS) for a system with parabolic dispersion described
by

DOS(ε) ' DOS(ε+ ~ωc) . (57)

In an ideal, clean system with a delta-like DOS of the LLs, radiation-induced
excitation of the carriers is only possible by dipole-allowed transitions between
neighboring LLs for radiation energies equivalent to the cyclotron energy ~ωc.
However, introducing impurities to the system causes a disorder-broadening of
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the LLs and also lifts the selection rules, which permits also optical transitions
between distant LLs. Thus, the carriers can also be excited by radiation ener-
gies that are smaller or greater than integer multiples of the cyclotron energy.
Due to the spatial asymmetry of the DOS induced by the dc electric field E,
carriers that are excited in such a way into regions where the DOS is not max-
imal will statistically scatter more likely into the direction of increasing DOS,
see Fig. 29 (b). This leads to an average shift ∆X of the cyclotron orbit guiding
centers as illustrated in Fig. 29 (a). For excitation of a state, initially located
at a maximum of the DOS, with radiation energies slightly smaller than mul-
tiples of ~ω, i.e. a small negative detuning δω = ω/ωc −N < 0 from the Nth
harmonic of CR, the charge carriers therefore have an increased probability to
scatter against the direction of the applied dc electric field (∆X > 0). On the
other hand, for energies with a slight positive detuning δω > 0 from CR, scat-
tering in the direction of the dc bias field becomes more likely, which results
in an average spatial shift of the cyclotron motion guiding centers ∆X < 0.
This directional scattering of charge carriers leads to either an increase (for
∆X > 0) or decrease (for ∆X < 0) of the current flow depending on the
excitation energy. To be more precise, the preferred direction of the described
displacement with respect to the symmetry breaking dc field oscillates with
ω/ωc. In turn, this manifests in radiation-induced oscillations of the observed
longitudinal resistivity with period ω/ωc as observed in the experiment. Note
that for carriers which are excited from a maximum of the DOS to another max-
imum by radiation energies equal to exact multiples of the cyclotron energy,
no preferred scattering direction exists since the DOS decreases symmetrically
in both directions. This results in nodes of the photoresistivity at multiples of
the cyclotron frequency, in accordance to the obtained experimental findings.

In the limit ωcτq � 1, which describes strongly disorder-broadened and over-
lapping LLs, the magnetic field dependence of MIRO is expressed by [101]

∆ρxx
ρxx

= −A ω

ωc
sin

(2πω
ωc

)
exp

(
−2π
ωcτq

)
. (58)

Here, ∆ρxx stands for the radiation-induced correction to the dark dissipative
resistivity ρxx, A is an amplitude factor which is proportional to the radiation
power P in case of sufficiently low P , and τq denotes the quantum scatter-
ing time responsible for an exponential damping of the oscillations at small
magnetic fields. Due to this damping at low B, the radiation frequency f
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has to be comparable or larger than the quantum scattering rate 1/τq, i.e.
fτq & 1, in order to observe MIRO [101]. In most materials, this scattering
rate lies in the picosecond or subpicosecond range [56]. Thus, strong MIRO and
particularly associated zero-resistance states so far could only be observed in
two-dimensional electron systems with ultra-high quality, such as high-mobility
GaAs/AlGaAs quantum wells with mobilities up to µ & 107 cm2/(V s) [24, 99],
or ultraclean two-dimensional electron systems on the surface of liquid helium
[109–111]. In contrast, the mobility of carriers in the investigated HgTe quan-
tum well sample #1 is significantly smaller (see Tab. 3), which yields rather
short momentum relaxation times τ , ranging from 2.8 ps to 5.7 ps in the rele-
vant gate voltage range, and even smaller quantum lifetimes τq < τ . However,
MIRO-like oscillations are still clearly detected in the terahertz range of fre-
quencies. In fact, recent experiments have successfully demonstrated that by
using terahertz radiation frequencies, the rigid requirements on the material
properties are significantly alleviated and pronounced MIRO-like (or in this
case TIRO) oscillations can be excited even in GaAs heterostructures with a
rather low mobility of only µ = 1.5 · 105 cm2/(V s) [27, 28]. In the present study
of terahertz-induced resistance oscillations in 20 nm HgTe quantum wells, the
experimental conditions yield a fairly small value of fτq ≈ 1, which leads to
a fast decay of the oscillations at small magnetic fields, see Fig. 28 (a). In
the experiment, TIRO were only detected for the lowest radiation frequency
f = 0.69 THz and were absent at higher frequencies. However, this is in line
with previous theoretical and experimental studies (see, e.g., Refs. [28, 101])
which indicate a swift decline of the MIRO amplitude for higher radiation fre-
quencies corresponding to a theoretical ω−4-scaling of the amplitude parameter
A in Eq. (58). Therefore, it is not surprising that TIRO were not observed at
higher frequencies f = 1.63 THz and 2.54 THz within the range of intensities
available, in spite of the considerably higher value of fτq at higher frequencies.
Note that the results displayed in this chapter and published in the original
paper [23] present the first observation of terahertz-induced resistance oscilla-
tions in HgTe quantum wells.

It should be mentioned that the experimental findings are also in agreement
with the inelastic model of MIRO [104, 105]. In contrast to the displacement
mechanism where an equilibrium electron distribution function is assumed, in
the inelastic model MIRO emerge due to a radiation-induced correction to the
distribution function. However, since both models yield a similar periodic-
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ity and phase of the resulting resistance oscillations, effectively they can be
regarded as two different contributions that add up in the generation of the
MIRO phenomenon. Which of the two mechanisms dominates is in general
strongly dependent on temperature and the correlation properties of the dis-
order present in the respective system [101]. In systems with a fast energy
relaxation of the carriers, i.e. a high inelastic scattering rate 1/τin, the in-
elastic contribution proportional to τin is small compared to the displacement
contribution. On the other hand, the inelastic contribution dominates in sys-
tems with a slow energy thermalization, i.e. large inelastic scattering times
τin [104]. Even though the experimental findings for MIRO-like oscillations in
20 nm HgTe quantum wells can be well explained in the framework of both
models, it is difficult to identify which mechanism dominates in said case be-
cause it is not known experimentally which kind of impurities dominate in
HgTe quantum well structures. Then again, the type of disorder is crucially
important for the displacement contribution, which becomes small in case of
dominant small-angle scattering [112, 113]. To conclude, the MIRO-like ef-
fect resulting from the interplay between photon energy and cyclotron energy
provides a solid theoretical basis for understanding the oscillatory terahertz
photoresistivity in high mobility HgTe quantum wells, as demonstrated above.
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7 Cyclotron resonance of topological surface
states in CdxHg1−xTe bulk films

In the previous chapters photoconductivity in two-dimensional quantum well
structures was discussed. Now, we turn to the terahertz magnetospectroscopy
of three-dimensional CdxHg1−xTe films. In the following, results of photo-
galvanic, photoconductivity, and radiation transmission studies of samples
with different cadmium concentrations are presented and discussed. It will
be demonstrated that cyclotron resonance of the topologically protected sur-
face states has been observed in topologically non-trivial CdxHg1−xTe films.

7.1 Cyclotron resonances in CdxHg1−xTe films

Let us begin with the description of magnetic field dependences of the tera-
hertz radiation transmission obtained for two almost identical Cd0.15Hg0.85Te
films #A and #B. With a Cd content of x = 0.15 both samples exhibit a neg-
ative band gap, i.e. inverted band ordering, in the flat region for temperatures
T . 90 K [9]. Additionally, the flat region is encapsulated by areas with grad-
ually increasing Cd content providing smooth interfaces to domains without
band inversion, see Figs. 18 (b) and (c). Magnetotransmission measurements
in Faraday geometry at liquid helium temperature using a continuous wave
molecular gas laser at frequency f = 2.54 and 1.63 THz reveal three reso-
nant dips for both negative and positive values of the out-of-plane magnetic
field: Two narrow sharp resonances at magnetic fields ±BCR1 and ±BCR2, and
broad minima at higher magnetic fields ±Bi, as highlighted in Figs. 30 (a)
and (b). Note that the positions of all resonances are always symmetrically
offset from B = 0 and the exact values can be found in Tab. 4. The two
sharp, low-field resonances are sensitive to the helicity of the incident radia-
tion, i.e. resonances at +BCR1,2 only appear for σ+ polarization, while dips at
−BCR1,2 solely emerge for a σ−-polarized laser beam. In addition, the reso-
nance positions scale linearly with the frequency of the electric field, as shown
in Fig. 30 (d). Those characteristics point towards cyclotron resonance of
negatively charged free carriers being the cause of the sharp, low-field mag-
netotransmission dips. The broad minima in the magnetotransmission curve
at ±Bi, however, are insensitive to the radiation helicity and appear at pos-
itive and negative magnetic fields for both σ+- and σ−-polarized radiation.



7.1 Cyclotron resonances in CdxHg1−xTe films 76

- 2 - 1 0 1 2

0 . 5

1 . 0

0 - 2 - 1 0 1 2
0 . 4
0 . 6
0 . 8
1 . 0

- 2 - 1 0 1 2

0 . 5

1 . 0

0 0 1 2 3

0 . 5
1 . 0
1 . 5

0

tra
nsm

iss
ion

, 

m a g n e t i c  f i e l d ,  B  ( T )

�  − �  +

f  =  2 . 5 4  T H z

( a )

B C R 1

B i

B C R 2

s a m p l e  # A

� � +� � −

tra
nsm

iss
ion

, 

m a g n e t i c  f i e l d ,  B  ( T )

f  =  1 . 6 3  T H z

( b ) B i

B C R 2B C R 1

�  +�  −

tra
nsm

iss
ion

, 

m a g n e t i c  f i e l d ,  B  ( T )

( c )

f  =  0 . 6 9  T H z B C R

B i

res
ona

nce
 fie

ld  (
T)

r a d i a t i o n  f r e q u e n c y ,  f  ( T H z )

B i

B C R 1

B C R 2

( d )
s a m p l e  # A
s a m p l e  # B

Figure 30: Panels (a) to (c): Magnetotransmission normalized to its maximum
value for sample #A with a cadmium content of x = 0.151 corresponding to
a band inversion in the flat region. The data were obtained in Faraday con-
figuration at T = 4.2 K using σ+- and σ−-polarized radiation with frequency
f = 2.54 THz (a), 1.63 THz (b), and 0.69 THz (c) and is shown by open cir-
cles whereas solid lines are fits after Eq. 60, as described in Chap. 7.3. In all
cases sharp, deep, helicity-dependent minima are observed at the position of
cyclotron resonance (Narrow double resonances BCR1 and BCR2 in panels (a)
and (b), and a single resonance BCR in panel (c)) as indicated by arrows and
labeled for positive magnetic fields. At higher fields a wide symmetric min-
ima insensitive to the radiation helicity is observed at Bi. Panel (d) shows
the extracted resonance fields BCR1, BCR2 and Bi plotted against radiation
frequency for sample #A (circles) and #B (stars). Dashed lines correspond
to linear fits through the coordinate origin. Adapted from Ref. [30].

These resonances are attributed to photoionization of impurities and will be
addressed in detail later in Chap. 7.2. Certainly, the presence of two distinct
CRs at BCR1 and BCR2, as clearly observed for 2.54 THz (see Fig. 30 (a)), ev-
idently reveals the existence of two kinds of electrons with different cyclotron
masses in the system. These could either be bulk electrons or protected surface
state electrons that form at the interfaces of the topologically non-trivial flat
region and the surrounding, topologically trivial areas of increasing Cd con-
tent. Note that for lower radiation frequencies, the two distinct CRs begin to
merge and at f = 0.69 THz cannot be resolved and appear as a single merged
dip at ±BCR in the magnetotransmission curve, see Fig. 30 (c). For sample
#B the observed CR positions are almost identical to those detected in sample
#A, as shown in Fig. 30 (d).

Along with the transmission data, photovoltage signals were additionally mon-
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Figure 31: Panel (a): Photovoltage Vph normalized to the incident radiation
power P with respect to magnetic field. The data were obtained on sample
#A in Faraday configuration at f = 2.54 THz and T = 4.2 K. Dashed lines
highlight the characteristic maxima at BCR1 and BCR2. Panel (b) displays
the dependence of the resonance fields BCR1, BCR2 and Bi, extracted from the
photovoltage signals measured on sample #A at T = 4.2 K, on the radiation
frequency. Panel (c): Dependence of the resonance fields on the tilt angle θ.
The data were extracted from photovoltage measurements on sample #A at
T = 4.2 K and f = 1.63 THz in Faraday configuration with the sample tilted
by the angle θ. Dashed lines correspond to linear fits of the data. Adapted
from Ref. [30].

itored using corner or edge contacts of van der Pauw samples. Cyclotron res-
onance was also observed in the photovoltage traces in form of sharp resonant
peaks as exemplarily demonstrated for sample #A and frequency f = 2.54 THz
in Fig. 31 (a). The positions of the two resonant photovoltage peaks coincide
with the CR dips in magnetotransmission at BCR1 and BCR2, as indicated by
the dashed black lines. Similar to the magnetotransmission data, the magnetic
field values of both CR-resonant photovoltage peaks also scale linearly with ra-
diation frequency, see Fig. 31 (b). Note that in the photovoltage traces, the two
resonances are distinctly resolved even at the lowest frequency f = 0.69 THz,
in contrast to magnetotransmission where the resonances are merged into one
dip for this frequency, see Fig. 30 (c).

To check whether the two CRs stem from bulk or topological surface states,
experiments with tilted magnetic field were carried out. In a two-dimensional
electron gas, the cyclotron resonance position is known to shift to significantly
higher magnetic fields B for increasing tilt angles θ. This is because CR of
carriers bound to a two-dimensional plane is only sensitive to the magnetic
field component B⊥ = B cos θ normal to this plane. In a three-dimensional
electron system, however, the carriers are free to perform the cyclotron motion
normal to the applied magnetic field B and the resonance position therefore
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Figure 32: Normalized magnetotransmission traces measured in Voigt config-
uration on sample #A at T = 4.2 K with σ+- (black curve) and σ−-polarized
(red curve) radiation with f = 1.63 THz. Two pairs of sharp, well resolved CR
dips at BV

CR1 and BV
CR2 are observed symmetrically for positive as well as neg-

ative magnetic fields for both radiation helicities. In addition, broad helicity-
insensitive resonances emerge for higher magnetic fields at BV

i . Adapted from
Ref. [30].

is independent of the tilt angle. Note that even in case of three-dimensional
electrons, the resonance position may vary slightly with θ due to anisotropy of
the effective mass. However, this shift is substantially smaller than the shifts
at large tilting angles in case of two-dimensionally confined carriers. Experi-
mentally, tilted magnetic fields were implemented by rotation of the sample by
an angle θ. This leads to a reduced magnetic field component normal to the
sample surface, as well as oblique incidence of radiation. The analysis of the
photovoltage traces for different tilt angles, presented in Fig. 31 (c), shows that
the positions of BCR1,2 are almost independent of θ. These findings indicate
a three-dimensional nature of the charge carriers responsible for the CR at
BCR1,2 rather than a two-dimensional character. This conclusion is confirmed
by further magnetotransmission measurements in Voigt configuration. Here,
both CRs are still observable even for an in-plane orientation of the magnetic
field, as shown in Fig. 32, providing a clear evidence that the resonances are
excited in a three-dimensional electron system. Note that in Voigt geometry
the CR dips, as expected, are independent of the radiation helicity and present
at positive and negative magnetic fields for both helicities. Additionally, the
CR magnetic fields BV

CR1,2 observed in sample #A with an applied in-plane
magnetic field are slightly smaller than those detected with the out-of-plane
field orientation, see Tab. 4. This fact can be attributed to well-known plas-
monic shifts [114] which will be discussed later in Chap. 7.3. However, such
shifts are not detected for the other samples, as can be seen in Tab. 4.

Alongside samples #A and #B with gradually increasing Cd content on both
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Figure 33: Normalized magnetotransmission data measured on sample #C
in Faraday (a) and Voigt configuration (b) at different temperatures with
a radiation frequency of f = 2.54 THz. Here, empty circles correspond to
measurement data points, whereas solid lines in panel (a) are fits according
to Eq. (60). Note that the traces are offset by 0.25 each for clarity. Panel (c)
shows the photovoltage signal normalized to the incident radiation power P
measured on sample #C in Faraday configuration at a temperature T = 30 K.
Panel (d) presents the temperature dependences of the dip amplitudes ∆T
of the CR dips at BCR1 (black circles), BCR2 (red circles) in Faraday and
Bi (blue circles) in Voigt geometry, extracted from the magnetotransmission
data presented in panel (a) and (b). The red dashed line is a guide for the
eye. Adapted from Ref. [30].

sides of the flat region, a Cd0.15Hg0.85Te film with an abrupt boundary between
the flat region with x = 0.15 and the cap layer, termed sample #C (see
Fig. 18 (d)), was also studied. Despite the fact that the Cd content in the
flat region is the same and that the films only differ in the top interface of the
flat region, the behavior of the CRs is qualitatively different in sample #C.
Similar to samples #A and #B, two clearly resolved CRs were observed for
sample #C in both magnetotransmission (see Fig. 33 (a)) and photovoltage
(see Fig. 33 (c)) in Faraday configuration. However, when switching to the
in-plane orientation of the magnetic field, only one CR dip was detected in
magnetotransmission in sample #C, as shown in Fig. 33 (b). The fact that
the other resonance cannot be excited for an in-plane magnetic field is a clear
evidence that it stems from two-dimensionally confined electronic states.

To further investigate the nature of the charge carriers responsible for the
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Figure 34: Normalized magnetotransmission measured in Faraday (a) and
Voigt configuration (b) on sample #D with a cadmium content of x = 0.22
(i.e. without band inversion in the flat region). The data were obtained at
T = 4.2 K using linearly polarized radiation with f = 1.63 THz. Black circles
in panel (a) correspond to measurement data while the black solid line is a fit
according to Eq. (60). Panel (c) shows the photovoltage Vph normalized to
the incident radiation power P obtained under the same conditions as panel
(a) in Faraday geometry. Panel (d) displays the extracted resonance fields
BCR with respect to radiation frequency. The blue dashed line is a linear fit
through the coordinate origin. Adapted from Ref. [30].

two CRs, the dip amplitudes ∆T at BCR1, BCR2, and BV
CR were extracted

for different temperatures. These data are depicted in Fig. 33 (d). While for
BCR1 (Faraday configuration) and BV

CR (Voigt configuration), ∆T is almost
independent of temperature, the dip amplitude at BCR2, which is detected only
for the out-of-plane magnetic field orientation, is strongly increasing with rising
temperature. This behavior is remarkably similar to the temperature evolution
of the CR dip amplitude for the topological surface states previously observed
in strained 80 nm and 200 nm HgTe films [18, 19]. Thus, these findings indicate
the formation of two-dimensional surface states at the sharp interface between
the topologically non-trivial flat region with x = 0.15 and the topologically
trivial cap layer.

So far, all investigated samples have a Cd content of x = 0.15 in the flat region
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Figure 35: Panel (a): Normalized magnetotransmission of circularly polar-
ized radiation with f = 2.54 THz measured on sample #E with a cadmium
content of x = 0.18. The data were obtained at T = 4.2 K in Faraday con-
figuration. The simultaneously recorded normalized photovoltage Vph/P is
shown in panel (b) for a σ−-polarized laser beam. Panel (c) features the
extracted resonance fields BCR plotted against the radiation frequency. The
blue dashed line is a linear fit through the coordinate origin. Adapted from
Ref. [30].

resulting in a negative bandgap and therefore inverted band ordering at low
temperatures. Now, let us turn to the investigation of samples #D (x = 0.22)
and #E (x = 0.18) with a higher Cd content that results in a conventional
band ordering in the flat region. At liquid helium temperature, where the mea-
surements were carried out, the critical Cd content indicating the transition
from positive to negative gap energy, i.e. from conventional to inverted band
ordering, is around xc(4.2 K) ' 0.17 [9, 115], see Fig. 7 (b). Consequently,
in conditions of our experiments, sample #D and #E are expected to behave
as topologically trivial narrow-gap semiconductors. Indeed, in both samples
only a single CR is observed in the experiment. Figures 34 (a) and (b) show
the magnetotransmission data obtained on sample #D for out-of-plane (Fara-
day configuration) and in-plane magnetic fields (Voigt configuration). In both
cases, only one CR is present at BCR or BV

CR. Note that the data in Fig. 34
were obtained with linearly polarized terahertz radiation, which results in the
resonances being present for both polarities of magnetic field. A similar picture
is observed in the magnetotransmission spectrum of sample #E presented in
Fig. 35 (a) which features only one highly asymmetrical CR. Similar to pre-
vious samples, the CR magnetic fields BCR in sample #D and #E also scale
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linearly with radiation frequency, as shown in Figs. 34 (d) and Fig. 35 (c), re-
spectively. However, it is worth highlighting that the corresponding cyclotron
masses mCR in samples #D (x = 0.22) and #E (x = 0.18) (see Tab. 4) are
significantly different to those detected in samples with x = 0.15. Actually,
this is in agreement with the evolution of the band structure for a variation of
the cadmium content. The largest cyclotron mass is expected for the x = 0.22
sample because of the large band gap and corresponding parabolic dispersion.
On the other hand, the lowest mass is predicted to occur in the x = 0.18 sam-
ple, which is closest to the critical Cd content xc(T = 4.2 K) ' 0.17 associated
with a gapless, linear energy dispersion. In fact, the obtained cyclotron masses
shown in Tab. 4 exactly match this anticipated behavior.

The monitoring of photogalvanics reveals a strong resonant enhancement of
the photovoltage at the CR magnetic field BCR in both sample #D and #E,
as shown in Figs. 34 (c) and 35 (b). Under linearly polarized terahertz irradi-
ation, the photovoltage peaks appear symmetrically at positive and negative
magnetic fields (see Fig. 34 (c)), while for circular polarization they behave
helicity-dependent and emerge solely for the respective active magnetic field
polarity (see Fig. 35 (b)). Note that in Fig. 35 (b), an additional peak with
a substantially smaller amplitude was detected at the corresponding CR inac-
tive magnetic field polarity. This is most probably caused by parasitic antenna
effects produced by the contact wires which can cause a slight distortion of the
incident radiation polarization. In addition to CR, the photovoltage traces in
all investigated samples (#A to #E) also exhibit a broad helicity-independent
resonance at the magnetic field Bi which is exemplarily shown and highlighted
in Fig. 34 (c) and Fig. 35 (b) for sample #D and #E, respectively. These
resonances appear due to photoionization of impurities and will be discussed
in the following chapter.

7.2 Impurity resonances in CdxHg1−xTe films

Besides the CRs at low magnetic fields, which represent the main focus of
this study, broader resonances at higher magnetic fields were observed in all
investigated samples in magnetotransmission, photovoltage, and also photo-
conductivity, see e.g. in Figs. 30 or 35. As will be demonstrated later, these
resonant features appear due to the photoionization of impurity states in the
CdxHg1−xTe films and, thus, they are referred to as impurity resonances in the
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following. These impurity resonances always emerge at moderate magnetic
fields ±Bi for both in-plane and out-of-plane orientation (see Figs. 30 and 32).
Furthermore, they are insensitive to the radiation helicity and appear sym-
metrically in magnetic field for both σ+ and σ−, as well as linear polarization
(see Figs. 30, 32, and 34). This fact clearly rules out that these resonances
are caused by CR. The impurity resonance fields scale linearly with radiation
frequency, as demonstrated in Figs. 30 (d) and 31 (b) for Bi extracted from
magnetotransmission and photovoltage in samples #A and #B. Magnetotrans-
mission measurements at different temperatures reveal that the dip amplitude
∆T at Bi greatly decreases with rising temperatures and even vanishes for
T & 30 K, see Fig. 36 (a). Moreover, also the resonance positions Bi them-
selves are sensitive to temperature and drift to slightly smaller magnetic fields
with increasing temperature, as shown Fig. 36 (b). This strongly contrasts the
temperature evolution of the observed low-field CRs with the resonance fields
BCR1,2 being independent of temperature and the dip amplitude ∆T being
either constant or increasing for rising temperatures, see Fig. 33. Note that
the impurity resonance fields Bi for a given radiation frequency substantially
differ between samples with different Cd content, as can be seen in Tab. 4.
In addition, it is worth noting that while for samples #A, #B, and #C, with
x = 0.15 in the flat region, the impurity resonance was detected in both mag-
netotransmission and photogalvanics, in samples #D and #E, with x > xc,
they were observed only in photovoltage but not in magnetotransmission.

So far, these features point towards photoionization of impurity states as cause
of the resonant behavior at Bi if one considers the effect of the magnetic freeze-
out of impurities [116]. This effect describes the significant increase of the ac-
tivation energies of shallow impurities due to an applied magnetic field. If the
resonant behavior at Bi indeed stems from such an ionization of impurites, this
would result in different kinetics of the photoresponse at Bi compared to that
at BCR1,2. Therefore, the photoconductive response of the CdxHg1−xTe films
to terahertz radiation was probed using cw radiation as well as a pulsed molec-
ular THz laser for additional time-resolved photoconductivity measurements.
Similar to the photovoltage data, a very strong enhancement of the photore-
sponse at magnetic fields around the impurity resonance ±Bi was also observed
in the photoconductivity ∆σ/σ traces, as shown exemplarily for sample #A
in Fig. 36 (c). An analysis of the time-resolved photoconductivity signals in-
deed reveals substantial different kinetics at Bi and BCR, see Fig. 36 (d). The
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Figure 36: Panel (a): Temperature dependence of the amplitudes ∆T of the
Lorentzian dips in magnetotransmission around the impurity resonance at Bi
extracted from data measured on sample #A for f = 2.54 THz. The inset
illustrates how the dip amplitudes were obtained. Panel (b) depicts the tem-
perature dependence of the impurity resonance position Bi extracted from the
same data set. Note that the dashed blue curve is a guide for the eye. Panel
(c): Magnetic field dependence of the normalized photoconductivity ∆σ/σ
measured on sample #A at liquid helium temperature and f = 2.54 THz
with an applied current of 100 µA. Panel (d): Time-resolved photoconduc-
tivity responses U ∝ ∆σ normalized to their maximum value obtained on
sample #A at T = 4.2 K using a pulsed molecular gas laser operating at
f = 2.03 THz. The black curve was recorded at an applied magnetic field
B = BCR = 0.29 T corresponding to CR, whereas the red curve was obtained
at the center of the impurity resonance at B = Bi = 1.0 T. Solid blue and
grey curves indicate exponential fits ∝ exp (−t/τ) with the corresponding
decay times τ = 110 ns at BCR and τ = 350 ns at Bi. Adapted from Ref. [30].

decay of the photoresponse at the impurity resonance Bi (red trace in Fig. 36
(d)) is several times slower than that at BCR (black trace in Fig. 36 (d)),
where the photosignal essentially reproduces the temporal shape of the tera-
hertz laser pulse (not shown). This indicates that the kinetics of the electrons
involved in CR is fast on the time scale of the pulse duration which is given
by τpulse ≈ 100 ns. On the other hand, the photoresponse at Bi exhibits a
considerable long time tail that can be well fitted by an exponential function
exp(−t/τ) (blue line in Fig. 36 (d)) with a decay time τ = 350 ns. Note that
in photoconductivity only a single merged CR at BCR was resolved in sample
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#A even at the highest frequency f = 2.54 THz instead of the split resonance
detected in photovoltage and transmission experiments.

These findings provide clear evidence that the resonance at Bi is indeed caused
by the magnetic field-mediated photoionization of shallow impurity states in
the CdxHg1−xTe films. In this model, the magnetic freeze-out of the impurities
defines a parametric region of moderate magnetic fields around Bi where the
photoionization of impurity states into the conduction band becomes possible.
At zero or low magnetic fields, the impurity activation energy is so small that
all impurities are already thermally ionized even at low temperatures as in
our experiments. This effectively inhibits the photoionization of the impurity
states [117]. However, with increasing magnetic field the activation energy of
the impurities increases so that, at sufficiently low temperatures, they are no
longer thermally activated but remain in their neutral state. At the same time,
the photon energy is larger than the activation energy, which allows photoion-
ization of electrons from impurity states to the conduction band. In this region
of magnetic fields, a significant influence of the photoionization process man-
ifests in the transmission, photogalvanic, and photoconductive signals. Upon
further increase of the magnetic field strength, however, photoionization is no
longer possible as soon as the energy distance between ground impurity level
and vacant unbound conduction band states exceeds the photon energy. In
this way, photoionization is limited to a range of intermediate magnetic fields
centered around a characteristic field Bi, and sufficiently small temperatures,
as observed in the experiments. Furthermore, Bi is expected to increase with
radiation frequency and should, additionally, be strongly sensitive to temper-
ature and Cd content in the film, since both of these parameters modify the
energy band dispersion and, therefore, also affect the position of impurity lev-
els. The temperature dependence of Bi can additionally be affected by possible
processes where electrons on hydrogen-like impurity states are first photoex-
cited into higher bound levels and, subsequently, thermally activated into the
continuum of unbound conduction band states [118, 119].

7.3 Discussion

As discussed above, cyclotron resonances from two types of carriers with differ-
ent cyclotron masses were observed in magnetotransmission and photovoltage
traces obtained on samples with a topologically non-trivial flat region, see e.g.
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Fig. 30. Strikingly, one of these CRs behaves qualitatively different in samples
with a sharp top interface between layers with inverted and non-inverted band
ordering compared to samples with smooth interfaces. In sample #C, which
hosts a sharp top interface, the two-dimensional nature of the correspond-
ing carriers has been demonstrated by experiments with an in-plane magnetic
field orientation where the respective CR is absent. The strong temperature
dependence observed in Faraday configuration additionally distinguishes this
CR from other resonances present in both Faraday and Voigt geometry which
likely originate from three-dimensional carriers localized at smooth interfaces.

All these results support the conclusion that smooth interfaces between layers
with inverted and non-inverted band ordering lead to the formation of multiple
surface states, also known as Volkov-Pankratov states (VPSs) [15, 120–122]. In
systems where multiple VPSs are occupied, the carrier dynamics can be effec-
tively three-dimensional, which provides an explanation for the experimental
observations. This behavior is similar to the quasi two-dimensional nature of
electrons populating multiple subbands in a wide quantum well, e.g. at higher
temperature. Aside from the requirement for at least one VPS at the interface
between materials with different topology, the number of VPSs is generally
not fixed and their number and properties are affected by various parameters,
such as the material choice, growth conditions, form of interfaces, and strain
profile.

However, an important fact that at first glance seems to contradict the con-
clusion that the discussed resonance stems from topologically protected two-
dimensional surface states is the observed frequency dependence of the reso-
nance position. As presented in Figs. 30 (d) and 31 (b), the resonance positions
scale fairly linearly with radiation frequency. Yet, this seemingly conflicts the
well-known fact that the transition energies between adjacent Landau levels
scale with

√
B in systems with linear dispersion, such as topologically pro-

tected surface states [75]. In fact, in the semiclassical limit of high chemical
potential, where many Landau levels are populated and the radiation energy
is significantly smaller than the Fermi energy, the linear scaling on B, known
from systems with parabolic band dispersion, is approximately restored even
for Dirac quasiparticles, as shown in Chap. 2.4 and Refs. [74, 77]. Although
this quasiclassical approach works well for all radiation frequencies used in this
work, a reliable determination of the exact chemical potential in the investi-
gated structures turned out to be quite difficult due to the presence of several



7.3 Discussion 87

types of carriers as well as surface states. At the same time, an experimental
evidence for the scaling according to

√
B would require further CR studies in

a broader frequency range.

Another point that needs to be addressed is the highly asymmetrical shape of
the CR dips in the magnetotransmission curves, e.g. in Figs. 30 (c) and 35 (a).
This asymmetry is a signature of strong interference effects [123] and is well
captured by the displayed fits based on a two-component Drude model which
considers interference of the electric field due to multiple reflections within the
sample substrate. In this model, the complex terahertz conductivity σ, which
determines the electric field transmitted through the sample, is calculated as
the sum of all contributions from the prevailing conduction channels. Following
the Drude formula, the conductivity σj of each electron transport channel j is
given by [30]

σj = ens,j

µ−1
j + i (BCRj ±B)

. (59)

Here, e denotes the elementary charge, ns,j and µj are the respective electron
sheet density and mobility in transport channel j, and BCRj = mCRj2πf/e
is the magnetic field strength where CR occurs for a given frequency f . This
magnetic field value is characteristic for each conduction channel j and defined
by the corresponding cyclotron mass mCRj of the charge carriers within this
channel. Note that the plus and minus sign before B in Eq. (59) correspond
to the left-handed and right-handed circular polarization state of the incident
terahertz electric field, respectively. The total terahertz conductivity σ =∑
j σj is then given as the sum over all contributions and with σ̃ = σ/ (2εoc)

the fraction of power transmitted through the sample in Faraday configuration
can be expressed by [30]

T (B) =
∣∣∣∣∣(1 + σ̃) cosφ− i1 + n2

r + 2σ̃
2nr

sinφ
∣∣∣∣∣
−2

. (60)

Here, ε0 denotes the vacuum permittivity, c is the speed of light, nr the re-
fractive index of the substrate, and φ denotes the interference phase that the
electromagnetic wave accumulates after a single reflection in the substrate. De-
pending on this interference phase, the shape of the transmission dips can be ei-
ther symmetrical in B under conditions of constructive interference (sinφ = 0)
or destructive interference (cosφ = 0), or asymmetrical for intermediate values
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of φ [123]. With this model it is possible to qualitatively fit all magnetotrans-
mission curves with good agreement even those that are highly asymmetrical.
In fact, the observation of such strong asymmetry in the experiment clearly
underlines the importance of interference effects in terahertz magnetotrans-
mission studies. However, the magnetotransmission curves normalized to the
respective maximum, as measured in the experiment, do not provide sufficient
information to precisely extract all model parameters. Therefore, additional
amplitude scaling and a constant offset accounting for non-resonant contribu-
tions of other transport channels were implemented in the fitting process. Note
that for higher magnetic fields, two additional, identical, negative Lorentzian
functions centered at Bi and −Bi were added to Eq. (60) to consider the ad-
ditional resonant radiation absorption due to the impurity resonance at ±Bi.

As briefly mentioned in Chap. 7.1, the CRs observed in sample #A in Voigt
configuration exhibit a slight down-shift to smaller magnetic fields BV

CR1,2 in
comparison to the Faraday resonance positions BCR1,2, see Tab. 4. This is
attributed to the plasmonic shift of resonances emerging in Voigt geometry.
Here, the resonance condition is given by ω2 = ω2

p +ω2
c , which implies that the

resonant frequency ω is affected by the plasma frequency ωp = ne2/mε of the
three-dimensional electron gas [114]. In Faraday configuration, on the other
hand, this condition is simply given by ω2 = ω2

c and resonance and cyclotron
frequency correspond to each other. A rough estimation of the relative permit-
tivity εr = ε/ε0 ≈ 10 in the Cd0.15Hg0.85Te film allows to calculate the carrier
density corresponding to the observed plamonic shift in sample #A according
to

BV
CR/BCR =

√
1− ω2

p/ω
2 . (61)

Taking the extracted cyclotron mass of about mCR/me = 0.004 (see Tab. 4),
one finds that the detected relative shifts BV

CR/BCR ≈ 0.8 correspond to a vol-
ume carrier density of about n ≈ 5 · 1014 cm−3, which agrees almost perfectly
with the value obtained from magnetotransport characterization, see Tab. 2.
However, it is surprising that in sample #B no significant plasmonic shift has
been detected although sample #A and #B have essentially the same design
and Cd content.

A well-known related material where topological states have been intensively
studied for systems with sharp interfaces are strained HgTe films [18, 124, 125].
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Figure 37: Illustration of the spatial probability density distribution (high-
lighted in cyan) of the surface states emerging in CdxHg1−xTe films with
sharp (a) and smooth interfaces (b) between the CdHgTe film with inverted
band ordering on the left side and the cap layer with regular band ordering
on the right. Orange and turquoise solid lines picture the evolution of the
main energy bands Ev(z) and Ec(z) with respect to the z-direction. In case
of a smooth interface (b) multiple VPS levels arise between the bulk light
and heavy hole subbands that are indicated by the green and purple dashed
lines, whereas for a sharp interface (a) only a single topologically protected
surface state is present. Adapted from Ref. [30].

In such films, the energies of the protected surface states lie between the en-
ergy levels of the light and heavy hole subbands depending on the wavevector
k‖ in the interface plane [16, 47]. For k‖ = 0, the energy of the lowest topolog-
ical surface state corresponds to the top of the heavy-hole subband, while for∣∣∣k‖∣∣∣→∞, the high-energy surface state dispersion converges to the light hole
one. Internal strain in the crystal opens up an energy gap between the two
hole subbands that is only crossed by the surface state dispersion. Therefore,
in strained HgTe films with the Fermi level right in this gap, the transport
properties at low temperatures are expected to be determined strongly by the
topologically protected surface states. Note that the surface state dispersion,
at the same time, is significantly affected by hybridization with the heavy hole
band [30]. CdxHg1−xTe films with a band inversion and sharp interfaces be-
have quite similar to strained HgTe films concerning the properties mentioned
above.

However, the situation changes if one considers smooth interfaces with grad-
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ually varying Cd content between materials with and without band inversion.
The following calculations demonstrate that rather than a single topologically
protected state, a smooth interface can indeed host multiple VPSs [15, 120–
122]. The VPS energies also lie between the light and heavy hole bands, analo-
gously to the case of sharp interfaces described above. Figure 37 schematically
illustrates the forming of the surface states at a sharp interface (a) as well
as at a smooth interface (b). The left parts correspond to the flat region in
a Cd0.15Hg0.85Te film with inverted band ordering, the right parts to the cap
layer with non-inverted dispersion, and the middle parts to the different types
of interfaces. In case of the sharp interface sketched in panel (a), the topologi-
cal surface state forms directly at the sharp interface and its spatial extension
is characterized by a rather fast exponential decay of the wave function inside
the CdHgTe film and the cap layer. On the other hand, for smooth interfaces,
the extension of the VPSs is determined by the spatial gradient of the band
gap near the band inversion point. The spatial distribution of the probability
density for the respective wave functions is depicted in Fig. 37 in cyan color.
Thus, an enlargement of the transition region between the materials with dif-
ferent topology leads to an increase in both the total number and width of the
VPSs. This provides an explanation for the qualitatively different behavior of
the CR in Voigt configuration observed in samples #A and #C which have
nearly identical design and differ only in the interface type. Sample #C with
a sharp, abrupt interface hosts two-dimensional surface states that cannot be
excited into CR by an in-plane magnetic field parallel to the interface. Sample
#A, however, displays the typical behavior of a quasi two-dimensional system
with several occupied subbands.

Supporting numerical calculations were carried out by Dr. G. V. Budkin in
the framework of the six-band Kane model, additionally considering a static
crystal strain that leads to a splitting of heavy and light hole subbands. The
corresponding Kane Hamiltonian is given in the basis of the Γ6 and Γ8 states
as

H =
Ec12 Hcv

H†cv Ev14 +HBP

 . (62)
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Here, 1n represents the n× n identity matrix and

H†cv = Pcv


−kx−iky√

2 0√
2
3kz −kx−iky√

6
kx+iky√

6

√
2
3kz

0 kx+iky√
2

 , (63)

where Pcv is the Kane parameter and HBP represents the Bir-Pikus Hamilto-
nian. Additionally, the splitting of the heavy and light hole bands is introduced
by adding a non-zero uzz component to the strain tensor. In this case, the Bir-
Pikus Hamiltonian is given by the diagonal matrix

HBP = buzz diag (−1, 1, 1,−1) (64)

with b being the valence band deformation potential. In the following, uzz is
chosen in such a way that the heavy hole subband is below the light-hole one.

The resulting Hamiltonian for the CdHgTe bulk film has three double-degener-
ate eigenstates: on top, the light hole subband states with energy εl(k), then
the dispersionless heavy hole subband states described by εh(k) below them,
followed by the low-lying conduction band states with dispersion εc(k). The
corresponding energies are given by

εl,c = E0 ±
√
δ2 + 2P 2

cvk
2/3 (65)

and

εh(k) = Ev − buzz (66)

with

2E0 = Ev + buzz + Ec and 2δ = Ev + buzz − Ec . (67)

Now, the wave functions and VPS spectrum for a smooth interface are calcu-
lated by considering the dependence of the band edges Ec and Ev on the z coor-
dinate which corresponds to the growth direction of the CdxHg1−xTe films. For
the calculation of the VPSs in sample #A, the gap energy Ec−Ev = −32 meV
for Cd0.15Hg0.85Te is introduced [46], the parameter 2m0 (Pcv/~)2 = 18.8 eV is
fixed according to Ref. [126], and the dependences of Ec(z) and Ev(z) are ex-
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tracted from the sample compound profiles shown in Fig. 18. Furthermore, the
parameter buzz = 2 meV is set and a static electric field E = 2 kV/cm at the
band closing is added. For k‖ = 0.02 nm−1, the calculations yield the existence
of three VPSs in the Cd0.15Hg0.85Te film at energies 3 meV, 5 meV, and 8 meV
with respect to the heavy hole energy at the Γ point. Their probability density
is distributed over hundreds of nanometers, which is larger than the cyclotron
radius rc of the carriers in the Cd0.15Hg0.85Te samples. The corresponding cy-
clotron radii rc = v/ω = v/(2πf) for the frequencies f = 2.54 THz, 1.63 THz,
and 0.69 THz in the experiment are calculated as rc = 65 nm, 100 nm, and
240 nm, respectively, by using the estimate v =

√
2/3Pcv/~ ≈ 108 cm/s for the

carrier velocity. Note that the calculations have also shown that the variation
of the band gap as well as the energy splitting of the light and heavy hole bands,
introduced by the strain and the static electric field, have a very strong influ-
ence on the number of VPSs emerging at such smooth interfaces. Since these
parameters are not precisely known, they are implemented here as phenomeno-
logical parameters. To summarize, the presented calculations demonstrate that
in CdxHg1−xTe films smooth interfaces with gradually varying Cd content x
can indeed result in the emergence of Volkov-Pankratov states. This, in turn,
results in a quasi two-dimensional character of the charge carriers polulating
the VPSs and, consequently, cyclotron resonance can be excited for magnetic
fields in both in-plane and out-of-plane orientation.
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Table 4: Resonance magnetic fields and the corresponding cyclotron masses
extracted from magnetotransmission and photovoltage traces obtained at
T = 4.2 K. Note that resonances marked with an asterisk were visible in
photovoltage only and were not resolved in magnetotransmission. Dashed
entries indicate that the corresponding resonances were not detected in the
measurements.
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8 Summary and Outlook

In the framework of this thesis, optical excitation of two- and three-dimensional
HgTe-based structures was studied in the topologically trivial as well as non-
trivial regime. By means of terahertz spectroscopy, intriguing optoelectronic
effects were observed in these materials. In HgTe quantum wells of different
width, a photoconductive response was detected that systematically changes
its sign depending on the external out-of-plane magnetic field [23]. Moreover,
terahertz-induced resistance oscillations resulting from the interplay of the pho-
ton and cyclotron energies were observed in a high-mobility 20 nm QW. This
represents the first observation of TIRO in HgTe QWs so far [23]. Furthermore,
cyclotron resonance of the two-dimensional surface states was detected in topo-
logically non-trivial CdxHg1−xTe films [30]. All here mentioned experimental
findings were presented and discussed in Chaps. 5, 6, and 7.

The sign-alternating photoconductivity, presented in Chap. 5, was observed
in several HgTe QWs corresponding to normal and inverted band ordering as
well as linear dispersion. Variation of the radiation frequency showed that the
photoconductive signal at zero magnetic field decreases for rising frequencies
following the dependence of classical, Drude-like radiation absorption. This
demonstrates that photoconductivity is caused by free carrier heating. In
both photoconductivity and photoresistivity, the experiments revealed a sign
inversion at a moderate magnetic field strength that increases for rising tem-
peratures. Within the model of µ-photoconductivity it was shown that this
sign inversion implies a non-monotonic behavior of the transport scattering
rate, which was indeed confirmed by dark magnetotransport measurements.
Further studies revealed an additional sign inversion that was observed at
very low fields solely in the photoconductivity signals. This sign inversion was
shown to emerge as a result of the transition from classically weak to clas-
sically strong magnetic fields. Comparison with dark magnetotransport data
demonstrates that the respective inversion field is inversely proportional to the
carrier mobility in the QW offering an unconventional optoelectronical method
to probe the carrier mobility [23].

In Chap. 6, the oscillatory photoresponse observed in a high-mobility 20 nm
HgTe QW was presented. The experiments revealed ω/ωc-periodic oscillations
in the photoresistivity at low magnetic fields. Extraction of the corresponding
cyclotron mass showed that the oscillation nodes coincide with the position
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of CR and its higher harmonics. This demonstrated that these oscillations
are caused by the interplay of the photon and cyclotron energies similar to
MIRO but for illumination with terahertz radiation [23]. It was shown that
the TIRO can be well described by the displacement and inelastic mechanisms
established for MIRO. However, from the data of the current study it is hard to
state which mechanism dominates in the generation of the TIRO in HgTe QWs.
In future investigations, a more detailed study of the temperature dependence
of the observed TIRO could help in understanding the different weights of
both inelastic and displacement contribution. Still, interpretation of such data
has to be performed with great care, since temperature not only modifies
the inelastic MIRO contribution but also affects the density of states which
becomes relevant at high temperatures for both mechanisms [101].

Besides two-dimensional systems, terahertz optoelectronics were also studied
in three-dimensional CdxHg1−xTe films with different Cd contents and inter-
face types. These experiments, presented in Chap. 7, demonstrated that the
formation of fully two-dimensional topological surface states requires sharp in-
terfaces between layers with and without band inversion. This finding is of
high importance for future investigations of the topologically non-trivial na-
ture of epitaxially grown CdxHg1−xTe crystals. Indeed, it was shown that only
in case of a sharp top boundary, the corresponding surface state CR was ob-
served for an out-of-plane orientation of the external magnetic field but absent
for an in-plane orientation. On the other hand, in samples with a top inter-
face with gradually varying Cd content, the surface state CR was detected for
both out-of-plane and in-plane magnetic fields revealing the effectively three-
dimensional nature of the associated carriers. The subsequent discussion of
the results within the framework of Volkov-Pankratov states and a theoretical
modeling of the surface states for different film designs carried out by G. V.
Budkin from the Ioffe Institute in St. Petersburg demonstrated the strong
influence of the interface type on the formation of two-dimensional surface
states [30]. Moreover, the experiments revealed additional broad, helicity-
independent resonances with slower kinetics and a higher temperature sen-
sitivity in all samples, which were attributed to photoionization of impurity
states. Note that besides the semiclassical regime of high chemical potential
that was investigated in this work, future studies of the surface state CR in
topological CdxHg1−xTe films should address the quantum-mechanical limit,
where the photon energy becomes comparable to the Fermi energy. In this
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limit, the scaling of ωc ∝
√
B should be clearly observable. Furthermore,

the studies should be focused on films with sharp boundaries between the flat
region and the buffer and cap layers to ensure the perfectly two-dimensional
character of the surface states.
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