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Abstract
Turbulent drag of an oscillating microsphere that is levitating in superfluid 4 He at 
mK temperatures, is unstable slightly above a critical velocity amplitude vc . The life-
time � of the turbulent state is determined by the number n of vortices shed per 
half-period. It is found that this number is identical to the superfluid Reynolds num-
ber. The possibility of moving a levitating sphere through superfluid 3 He at micro-
kelvin temperatures is considered. A laser beam moving through a Bose–Einstein 
condensate (BEC) (as observed by other authors) also produces vortices in the BEC. 
In particular, in either case, a linear dependence of the shedding frequency fv on 
Δv = v − vc is observed, where v is the velocity amplitude of the sphere or the con-
stant velocity of the laser beam above vc for the onset of turbulent flow: fv = aΔv , 
where the coefficient a is proportional to the oscillation frequency � above some 
characteristic frequency �k and assumes a finite value for steady motion � → 0 . A 
relation between the superfluid Reynolds number and the superfluid Strouhal num-
ber is presented that is different from classical turbulence.

Keywords Quantum turbulence · Vortex shedding · Superfluid He · Superfluid 
Reynolds number · Superfluid Strouhal number · BEC

1 Introduction

Quantum turbulence is a common phenomenon in superfluids, ranging from the 
dense 4 He and 3 He liquids to the very dilute Bose–Einstein condensates (BEC). The 
vortices have a quantized circulation � = h/m, where h is Planck’s constant, and m is 
the mass m4 of a 4 He atom, or 2m3 of a Cooper pair in superfluid 3He, or an atom of 
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a BEC gas. In 4He, we have � ≈ 10−7 m 2/s. Vortices can be created, e.g., by stirring 
the superfluids with a moving object or by rotation. In the helium superfluids, the 
easiest way to produce vorticity is by using oscillating objects like spheres, tuning 
forks or vibrating wires. Because of the simple geometry of a sphere, its behavior is 
more transparent and more easily analyzed than that of the more complicated oscil-
lating structures.

In the case of a BEC, the moving object is typically a laser beam that presents 
an obstacle to the condensate. The laser beam is swept continuously through the 
condensate. In addition to the experiments, there is a large number of theoretical 
work on the transition to turbulence based on numerical solutions (mostly two-
dimensional) of the nonlinear Schrödinger equation, often known as Gross–Pitaevs-
kii equation, which is applicable for BECs but not for the dense helium liquids.

The motivation for the present article is partly a comparison of the frequencies at 
which the vortices are shed in both types of superfluids. We find that in spite of the 
very different experimental parameters (density, coherence length, speed of sound, 
interaction strength, linear dimensions, etc.), the shedding frequencies are similar. 
Moreover, the change from oscillatory flow to steady flow will be discussed for both 
superfluids. This article is an update of an earlier review [1, 2], and it is an outlook 
to more experiments in the future. It is written for a more general readership than the 
one for the earlier review.

2  The Resonator

The experimental technique makes use of superconducting levitation of a ferromag-
netic sphere (radius R = 0.12 mm, mass m = 27μ g) between superconducting nio-
bium electrodes of a horizontal parallel plate capacitor (spacing d = 1 mm), see 
Fig. 1 (for details, see [1]).

We also have tested capacitors made of the high-Tc superconductor YBCO, both 
bulk and thin film [3]. At low oscillation amplitudes, the quality factors in vacuum 
were as high as for the one made of niobium (~ 106 ), but at larger amplitudes, the 
damping in vacuum became nonlinear, in contrast to the results with the Nb capaci-
tor. We therefore preferred to use the latter one.

Before cooling the capacitor into the superconducting state (for Nb at 9.2 K), we 
apply several hundred volts to the bottom electrode charging the sphere to about q ∼ 
1 pC. Vertical oscillations around the equilibrium position of the levitating sphere 

Fig. 1  Schematic of our resonator based on superconducting levitation of a magnetic sphere carrying an 
electric charge in a niobium capacitor filled with superfluid 4 He at mK temperatures (Color figure online)
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can be excited by applying an ac voltage Uac at resonance (~ 120 Hz) in the range 
from 0.1 mV to several volts, exerting on the sphere a driving force F = qUac∕d . 
The oscillations induce an ac current I = q v∕d that is detected by an electrometer. 
By measuring v(F) and the exponential free decay of the oscillations at the same 
temperature, we determine the electric charge. The stability of q is checked every 
morning by repeating some of the data from the day before. Usually, the charge is 
found to be quite stable.

Because no mechanical support is needed, the sphere moves at a well-defined 
velocity. Moreover, the simple spherical geometry makes the data transparent and 
more directly accessible in a quantitative way, in particular, the laminar and the tur-
bulent drag forces on the sphere can be identified quantitatively, as will be shown 
below.

3  Experimental Results

The velocity amplitude as a function of the driving force at 300 mK is displayed in 
Fig. 2.

In the linear regime, the drag force is a linear function of the velocity, namely 
F = �(T) v , and the coefficient � is attributed to ballistic phonon scattering:

where the phonon density �
��

 rapidly varies as T4 , and c is the velocity of sound. The 
quantitative agreement of Eq. (1) with the linear data in Fig. 2 is a testbed, reassur-
ing us that our technique yields understandable and reproducible results.

(1)�(T) = �
��
⋅ c ⋅ �R2

∝ T4 ,

Fig. 2  (From [4]) Velocity amplitude as a function of the driving force amplitude at 300 mK, oscillation 
frequency 114 Hz. There are three different regimes: At small drives, the linear increase is the regime of 
potential flow and the slope is given by ballistic phonon scattering; at larger driving forces, we observe 
stable nonlinear turbulent drag; and the shaded area indicates an unstable regime slightly above a criti-
cal velocity where the flow switches intermittently between both patterns, see Fig. 3 below. (Color figure 
online)
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The nonlinear dependence of v(F) in Fig.  2 can be properly described by a 
quadratic drag force F ∝ (v2 − v2

c
) . In contrast to a classical liquid, the apex of 

the parabolic shape of v(F) is shifted to the left of the origin by 0.4 nN, and the 
resulting finite intercept at F = 0 indicates a velocity range of frictionless flow 
which is the paradigm of superfluidity. Moreover, we observe a sharp onset of 
the turbulent regime, whereas in a classical liquid, there are about three orders 
of magnitude in flow velocity between Stokes’ regime of laminar flow and fully 
developed turbulence, where the classical turbulent drag on a sphere is given by 
�v2 with � = cD��R

2
∕2 ( � is the density of the liquid and the drag coefficient cD of 

a sphere is approximately 0.4 [5].
Of particular interest is the unstable regime, where in a narrow interval from 

the critical velocity vc up to vc + Δv , where Δv∕vc ≤ 0.03, the flow switches inter-
mittently between turbulence and potential flow, see Fig. 3.

We find that the lifetimes t of the turbulent phases are exponentially distrib-
uted exp(−t∕�) , and the mean lifetimes � increase rapidly with the driving force, 
namely as

see Fig. 4.

(2)�(F) = �0 exp[ (F∕F1)
2
],

Fig. 3  (From [7]) Three time series of the velocity amplitude at 300 mK and at three different driving 
forces (in pN: 47, 55, and 75) are shown from top to bottom. The low level vt corresponds to turbulent 
flow, while the increase occurs during a laminar phase. With increasing drive, the lifetimes of the laminar 
phases become shorter, whereas the lifetimes of turbulent phases grow rapidly. The time interval shown 
here extends over 1000 s ≈ 17 min, oscillation frequency 114 Hz
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The fitting parameters are �0 = 0.5 s at 119 Hz and 0.25 s at 160 Hz, and F1 = 18 pN 
and 20 pN, respectively. The force F1 can be interpreted as being caused by the loss of 
kinetic energy of the sphere due to the shedding of one vortex ring of radius R during 
one half-period [6]. From dimensional arguments and a fit to the data we find

where � is the density of the liquid and � = 2�f  . The driving force is obtained from 
the data ν(F) and is given by

The numerical factor 8∕3� = 0.85 takes into account the energy balance for an equi-
librium oscillation amplitude: energy gain from the drive and loss from a quadratic 
damping must cancel. While Eq. (4) is deduced from the experiment up to velocities 
of ca. 100 mm/s, which is five times larger than vc , Eq. (3) is proven valid only in 
the small interval Δv∕vc ≤ 0.03 where � was measurable. In this regime, we may 
approximate Eq. (4) by

(3)F1 = 1.3��R
√

��,

(4)F(v) = (8∕3�)�(v2 − v2
c
).

(5)F(v) = (8∕3�) 2� vc Δv.
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Fig. 4  (From [6]) Mean turbulent lifetimes as a function of the driving force at two different oscillator 
frequencies. Each data point is obtained from a time series, some of which lasted up to 36 h. The straight 
lines are fits of Eq. (2) to the data. The data of the 119 Hz oscillator were taken at 4 different tempera-
tures (in mK): red 403; blue 301; green 200; and violet 100. The data at 160 Hz were taken at 300 mK 
(black circles); at 30 mK with a mixture of 0.05% 3He (red squares); at 30 mK with 0.5% of 3He (blue 
diamonds). Note that the slopes 1/F1

2 and the intercepts τ0 are independent of temperature and 3He con-
centration, but both depend on the oscillation frequency (Color figure online)
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We assume that the number n = F∕F1 is the average number of vortex rings emitted 
per half-period. Inserting Eqs. (3) and (5), and using our results vc = 2.8

√

�� [1], 
we find

where v1 = 0.48 �∕R = 0.39 mm/s, and n lies in the interval 0.7< n <3.0.
In Fig. 5, we plot the normalized mean lifetime

The salient feature is that �∗ is independent of the oscillation frequency, of the tem-
perature, and is not affected by 3 He impurities. It is remarkable that only Δv matters 
and not the frequency � directly. The only explicit frequency dependence is in �0 . A 
theoretical interpretation of �∗(Δv) is, to our knowledge, presently not available. We 
note that the lifetimes of the turbulent phases increase faster than exponentially with 
Δv or with the superfluid Reynolds number. This characteristic is called "supertran-
sient chaos," here for the first time in a superfluid [8].

(6)n =
F

F1

=
(8∕3�) 2�vc Δv

1.3 � � R
√

� �

=
Δv

v1
,

(7)�
∗
(Δv) ≡ �∕�0 = exp [(Δv∕v1)

2
].
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Fig. 5  (From [9]) The normalized lifetimes �∗ = �∕�
0
 as a function of Δv = v − vc for the 119 Hz oscilla-

tor at 301 mK (blue squares) and the 160 Hz oscillator at 30 mK with 0.05% 3He  (black dots). Note the 
rapid increase of �∗ by 3 orders of magnitude over the small velocity interval of ca. 0.7 mm/s. At the top 
axis, the corresponding values of the superfluid Reynolds number are given, see text below. The dashed 
line is calculated from Eq. (7) (Color figure online)
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4  The Superfluid Reynolds Number

In classical hydrodynamics, the Reynolds number is defined as Re = vD∕� where 
D is a characteristic length scale, and � is the kinematic viscosity. Since there is no 
viscosity in superfluid helium at mK temperatures, � is replaced by the circulation 
quantum � that has the same dimension as � . Hence, Res = vD∕� describes a cir-
culation in units of the quantum � [9]. However, because below the critical velocity, 
there is no turbulence, it is clearly appropriate to modify the superfluid Reynolds 
number as introduced by Reeves et al. [10], namely

Applying this definition to our case [11], we choose D = 2R as the characteristic 
length scale and define v0 ≡ �∕2R , we have,

where in our case v0 = 0.40 mm/s. This result is valid for a sphere, but no assump-
tions have been made concerning the dimension of the flow (2D or 3D) nor of its 
type (steady or oscillatory). We note that the ratio �∕R determines the self-induced 
velocity of a vortex ring of radius R.

Comparing Eq. (6) with Eq. (9) we note that v
0
 and v

1
 differ only by 4%. From the 

accuracy of the numerical factors of vc and F
1
 we estimate an uncertainty of n in Eq. 

(6) to be about 10%, i.e., within our experimental resolution we have

This is a surprisingly simple result.
It should be mentioned that in simulations of vorticity in 2D, a similar result has 

been calculated, namely that the superfluid Reynolds number is given by the number 
of 2D vortices [12].

5  Outlook: A Levitating Sphere Moving in Superfluid 3He?

Although there is a large body of the literature on oscillating structures in super-
fluid 3He, like vibrating wires, tuning forks or grids, but so far there are no experi-
ments with a floating sphere that could be compared in detail with our work on 4 He 
. However, very recently, a fascinating attempt has been suggested by the group of 
D. Zmeev at Lancaster [13]. Due to the large magnetic fields that are required for 
adiabatic demagnetization in order to cool liquid 3 He into the superfluid state, our 
design cannot be used. Instead, the authors suggest to levitate a superconducting 
sphere (radius R = 0.55 mm) by a set of coils. This design will offer both oscilla-
tions as well as steady motion of the sphere. Moreover, the sphere will consist of a 
hollow plastic body covered with a thin film of indium. Therefore, its surface can 
be expected to be much smoother than that of our ferromagnetic particle. It will be 
very interesting to compare their results with ours. Because the radius R is now 4.4 

(8)Res = (v − vc)D∕�.

(9)Res =
Δv

v0
,

(10)Res = n.
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times larger than that of our sphere, all quantities that depend on R will be different, 
e.g., F1 (Eq. (3)), v1 (Eq. (6)), � (Eq. (2)). In addition all quantities depending on 
the oscillation frequency � , e.g., the critical velocity vc [1], can easily be varied, in 
contrast to our work, where R was fixed and � could only be changed by a new levi-
tation status (due to flux frozen in the electrodes), when warming the measuring cell 
above Tc of Nb. And finally, the physics of superfluid 4 He is very different from that 
of superfluid 3He, where exotic surface states exist, which very likely may affect the 
motion of the sphere. The results will definitely be fascinating.

6  Vortex Shedding from the Sphere and from a Laser Beam Moving 
Through a BEC

In this Section, we compare our own experiments in superfluid helium as described 
above with those in a BEC as observed by other authors, where a moving laser beam 
sheds vortices above a critical velocity. In particular, the frequency fv , with which 
vortices are shed, is found to be similar.

Beginning with our experiments, we obtain from the average number n of vortex 
rings shed per half-period, see Eq. (6), the shedding frequency

where the coefficient a = 2 f∕v1 . At f = 119 Hz, we obtain a = 0.60 μm−1 and at 160 
Hz a = 0.80 μm−1 , and shedding frequencies fv ranging up to ∼ 500 s −1 . The linear 
increase of a(f) must change to some finite limit when f → 0 , because it is clear that 
vortices can be shed also for steady motion.

From 1/a, we have a characteristic length scale, which is given here by v1∕2f  . At 
f = 119 Hz, we obtain 1/a = 1.7 μ m and at 160 Hz 1/a = 1.3 μ m. This length can be 

(11)fv = 2nf =
2fΔv

v1
= a Δv,

(R/κκ) ωω

a

1/R

2κ / R ωω

Fig. 6  (From [15]) Sketch of the coefficient a of fv = aΔv as a function of the oscillation frequency 
� = 2�f . At small frequencies, the radius R of the sphere is taken as the characteristic length scale, hence 
a ∼ 1∕R , whereas at large frequencies a scales as (R∕�)� , see Eq. (11). The characteristic frequency that 
marks the transition between both regimes is given by �∕R2 . Numerical factors of order 1 are neglected. 
(Color figure online)
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interpreted as the distance a vortex ring travels during one half-period. In the case of 
steady motion, we postulate that the characteristic length scale is given by the radius 
R of the sphere. In our case, this is a small but finite value a ∼ 1∕R = 0.008 μm−1 . In 
Fig. 6, a schematic of the frequency dependence of a is shown.

Shedding of vortex dipoles in a stable and periodic manner has been observed 
recently at Seoul National University by moving a repulsive Gaussian laser beam 
steadily through a BEC of 23 Na atoms [14]. The shedding frequency fv is also given 
by aΔv , where now vc = 0.99 mm/s and a = 0.25 μm−1 . Because the beam was 
moved steadily, we assume that the relevant length scale is given by the radius of 
the beam R = 4.6 μ m, in accordance with the arguments presented above. There-
fore, we estimate a ∼ 1∕R = 0.22 μm−1 , in fair agreement with the experimental 
result, and vc ∼ �∕R = 3.7 mm/s (where � = 1.7 10−8 m 2 /s for the 23 Na BEC). If 
the beam would have been oscillating at a frequency substantially larger than �k = 
(�∕2) �∕R2 = 1.26 103 s −1 (or 201 Hz), we would expect a shedding frequency fv 
proportional to � , in accordance with our results in 4He. Apparently this has not yet 
been investigated.

7  The Superfluid Strouhal Number

In classical time-dependent flows, the Strouhal number Sr is important in addition to 
the Reynolds number. Flows are said to be similar when both of their numbers are 
the same. There is a weak dependence of the Strouhal number on the Reynolds num-
ber [16]. Sr is related to the vortex shedding frequency fv , namely [17]

where in our case fv = aΔv , see Eq. (11).
At low frequencies 0 ≤ 𝜔 < 𝜔k we have a = 1/R, hence fv = Δv∕R and Sr = 

2Δv∕v , i.e., Sr varies from 0 at vc asymptotically up to 2 for large velocities Δv∕v → 
1. However, because the available data on vortex shedding in a BEC range from vc 
up to ≈ 2 vc [14], only the initial rise of Sr can be inferred, where Sr ≤ 1. Moreover, 
using the superfluid Reynolds number in order to replace Δv by Res , we find the 
relation

For frequencies larger than �k we have from Eq. (11) a = 2R�∕�� and Sr = 
(4R2

�∕��)Δv∕v . In that case Sr grows from 0 asymptotically to a maximum deter-
mined by (4R2

�∕��) , which for our values of R and � is ∼ 140. Also in this case, 
only the initial rise from vc , where Δv∕vc ≤ 0.03, has been experimentally accessi-
ble, hence limiting Sr ≤ 4. Finally, we find the relation

The validity of Eq. (11) for larger Δv remains to be investigated.

(12)Sr ≡ fv (2R∕v),

(13)Sr = Res(�∕Rv), (v ≥ vc).

(14)Sr = Res(2R�∕�v), (v ≥ vc).
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These results are obtained from our data at 2 frequencies larger than �k and those 
of Shin’s group [14] from vortex shedding by a laser beam moving steadily through 
a BEC. It would be interesting to have more data to compare with a(�) , see Fig. 6.

8  Summary

1. In the regime of potential flow, our oscillating sphere shows the expected linear 
drag force due to ballistic phonon scattering with geometric cross section, because 
the wavelength of a thermal phonon in liquid helium at 0.1 K is about 0.1 μ m, 
which is much smaller than the size of the sphere. The quantitative agreement of 
the data with ballistic phonon scattering is a testbed for our resonator.

2. In the stable turbulent regime, it is surprising that we find the classical turbulent 
drag �v2 of a sphere, except for a shift along the force axis F(0) = −(8∕3�)�v2

c
≈ − 

0.4 nN and F = 0 for v ≤ vc . This result needs a theoretical explanation for turbulent 
oscillatory flow, in particular, a rigorous calculation of vc as function of the oscilla-
tion frequency.

3. In the regime of intermittent switching between laminar and turbulent flow, we find a 
lifetime of the turbulent states that can be attributed to the number n of vortices that 
are shed per half-period with the same radius as the sphere. The lifetimes increase 
exponentially with n2 . We find that n is identical to the superfluid Reynolds number. 
The frequency with which the vortex rings are shed increases linearly with (v − vc) 
both in our experiment and in a BEC (as observed by other authors), and the coef-
ficient is determined by the radius of the sphere or of the laser beam, and the oscil-
lation frequency.

4. More experiments on vortex shedding in a BEC with a laser beam oscillating at 
various frequencies would be interesting to further test the frequency dependence 
a(�) in Fig. 6.
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