
PHYSICAL REVIEW B 105, 125417 (2022)

Feynman-Vernon influence functional approach to quantum transport
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We present a nonperturbative and formally exact approach for the charge transport in interacting nanojunctions
based on a real-time path-integral formulation of the reduced system dynamics. For reservoirs of noninteracting
fermions, the exact trace over the leads’ degrees of freedom results in the time-nonlocal Feynman-Vernon
influence functional, a functional of the Grassmann-valued paths of the nanojunction, which induces correlations
among the tunneling transitions in and out of the nanojunction. An expansion of the influence functional in terms
of the number of tunneling transitions, and integration of the Grassmann variables between the tunneling times,
allows us to obtain a still exact generalized master equation for the populations of the reduced density matrix in
the occupation-number representation, as well as a formally exact expression for the current. By borrowing the
nomenclature of the famous spin-boson model, we parametrize the two-state dynamics of each single-particle
fermionic degree of freedom, in the occupation-number representation, in terms of blips and sojourns. We apply
our formalism to the exactly solvable resonant level model (RLM) and to the single-impurity Anderson model
(SIAM), the latter being a prototype system for studying strong correlations. For both systems, we demonstrate
a hierarchical diagrammatic structure. While the hierarchy closes at the second tier for the RLM, this is not the
case for the interacting SIAM. Upon inspection of the current kernel, known results from various perturbative and
nonperturbative approximation schemes to quantum transport in the SIAM are recovered. Finally, a noncrossing
approximation for the hierarchical kernel is developed, which enables us to systematically decrease temperature
at each next level of the approximation. Analytical results for a simplified fourth-tier scheme are presented both
in equilibrium and nonequilibrium and with an applied magnetic field.
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I. INTRODUCTION

The qualitative understanding and quantitative description
of transport properties of interacting nanojunctions is one
of the core problems of nonequilibrium condensed matter
physics. Interacting nanojunctions describe the general class
of open systems whereby a quantum system S of interest (a
molecule, a quantum wire, a set of quantum dots, etc.) is
coupled via tunneling to two or more fermionic reservoirs
held at different chemical potential and/or temperature (see
Fig. 1). Relevant observables of interest are typically the aver-
age current flowing through the junctions, or its higher-order
cumulants, which result from a nonequilibrium configuration
in the leads.

The presence of many-body electronic interactions in the
central system, in combination with the large number of
degrees of freedom in the fermionic reservoirs, renders the
solution of the transport problem a challenge. Not even for
the archetypal single-impurity Anderson model (SIAM) [1],
where the central system is a single orbital which can ac-
commodate two electrons of opposite spin, the current-voltage
characteristics for this model has yet been obtained in closed
analytic form in the whole regime of parameters. The SIAM
is a prototypical example to investigate the interplay between
strong correlations in the central system and a continuum of
degrees of freedom provided by the leads’ electrons. Below
a critical temperature, known as Kondo temperature TK, this

interplay gives rise to the emergence of the Kondo singlet,
a bound state at the Fermi level signaling the screening of
the unpaired impurity spin by the conduction electrons [2–6].
Importantly, the Kondo temperature depends exponentially on
the tunneling coupling, showing the need of nonperturbative
approaches in the tunneling to capture this effect [4].

The necessity to develop approximation schemes enabling
the treatment of tunneling and interactions on the same footing
is at the core of various approaches to interacting quantum
transport which have been proposed in the literature. In order
to understand the method proposed in this work, and to put
it in a proper context, we shortly summarize the very essence
of the main approaches available so far. We start by distin-
guishing between numerically exact methods and analytical
or semianalytical schemes. In equilibrium, numerically exact
methods such as the numerical renormalization group (NRG)
[7,8] or the density matrix renormalization group (DMNRG)
[9,10] are well established to evaluate the linear conductance
through nanojunctions with only few degrees of freedom of
the central system. In this work we shall use results from
DMNRG simulations to benchmark various approximation
routes for the SIAM. Numerical schemes also applicable in
nonequilibrium situations are being developed and involve,
among others, time-dependent DMNRG methods [11,12], it-
erative [13] and Monte Carlo [14] path-integral schemes,
and hierarchical equation-of-motion approaches [15,16], also
based on the path-integral approach, or auxiliary function
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FIG. 1. General transport setting where a central interacting re-
gion, the system S, is tunnel coupled to several noninteracting
fermionic leads with given temperature and chemical potential.

methods [17–19]. See also [20] for a more detailed review and
comparative study of some of these approaches. The compu-
tational effort, however, grows exponentially with the number
of degrees of freedom of the central system, which renders nu-
merical approaches impractical for interacting nanojunctions
with more than a few degrees of freedom.

For this reason, also semianalytical and analytical schemes
have attracted much interest to address the transport problem.
These encompass frameworks where the expression for the
current involves the calculation of nonequilibrium Greens’
functions and associated self-energies [21–27] to ones where
the current results from a statistical average, and thus the cen-
tral quantities are the density operator or the reduced density
matrix (RDM) of the open system (see, e.g., [28–31]). Given
the large variety of methods and their different range of appli-
cability, it is rather difficult to keep focus of the enormous
amount of literature by now available, so that comparison
between various schemes and short topical reviews becomes
very valuable [32–38].

From the perspective of this work, it is convenient to sepa-
rate the available methods in two main groups. In the first one,
and by far the most popular, the starting point are dynamical
equations for the relevant quantities, which are solved by trun-
cating a hierarchy of equations, or by systematic perturbation
schemes. The most known dynamical schemes involve equa-
tions of motion for the Green’s functions [33,39–43], kinetic
equations for the density matrix [44,45] or the reduced density
operator [29,46–52], and perturbative RG schemes [53–60]. In
the second and much less explored one, the starting point are
formally exact expressions for generating functions or for the
reduced density matrix obtained with field integral methods.
Here the relevant information on the time evolution of the
open system is captured, e.g., by Keldysh effective action
[61–63] or double-path Feynman-Vernon influence function-
als [64,65], resulting from an exact trace over the reservoir
degrees of freedom. The advantage of these approaches is to
enable analytical solutions being intrinsically nonperturbative
in both the tunneling and interaction. For example, generating
functional methods have been used to treat zero-bias anoma-
lies in metallic islands [66], and the nonequilibrium Kondo
effect in the SIAM [67,68] and in carbon nanotube-based
quantum dots [69–71]. However, a treatment of interacting
nanojunctions based on an exact path-integral expression for

the junction’s RDM has not been discussed yet. In this work,
we wish to bridge this gap.

Here we propose an analytical method, based on the
Feynman-Vernon influence functional approach for fermionic
reservoirs. This approach provides an exact expression for the
RDM in the fermionic coherent-state representation [72,73]
and has been used to investigate transient and stationary trans-
port in noninteracting nanojunctions [65,74–76]. We show
that the influence functional is also a powerful tool to treat
interaction effects all the way down to low temperatures for
a generic nanojunction linearly coupled to nonequilibrium
fermionic reservoirs. Starting from the exact formal expres-
sion for the system’s RDM, we derive a still exact quantum
master equation for the same object. Importantly, and one
major result of this work, a nested hierarchical structure of
the quantum master-equation kernel is recognized which al-
lows for devising systematic, nonperturbative schemes in the
calculation of the kernel. Similarly, a path-integral expres-
sion for the current through the nanojunction is obtained
and its relation to current formulas in terms of nonequilib-
rium Green’s functions [21] elucidated. We apply then our
formalism to two archetypal examples. The first one, the
exactly solvable resonant level model (RLM) [36], is used
to show that the nesting in the hierarchical structure is finite
for noninteracting models, and thus a closed analytical form
for the current can be obtained. The second is the SIAM,
where the combined effect of interactions and tunnel cou-
pling implies an infinite, hierarchical structure. On the one
hand, by performing an expansion of the kernel in powers
of the tunneling coupling, Coulomb blockade physics, single-
electron tunneling and cotunneling effects occurring in the
weak coupling limit [77] can be described, in agreement
with established diagrammatic perturbative schemes (see, e.g.,
[34,47]). On the other hand, by truncating the hierarchy to
the second tier, the diagrammatic resonant tunneling approx-
imation (RTA) [45,47] is recovered. By neglecting crossed
diagrams in the RTA, a second-tier noncrossing approxima-
tion (NCA2) is obtained. Noticeably, the NCA2 reproduces
the famous result for the SIAM Green’s function as obtained
in [78] using the equation-of-motion (EOM) method. Finally,
by only including charge fluctuations, the NCA2 reduces to
the dressed-second-order (DSO) approximation discussed in
[49]. Such schemes foresee the onset of the Kondo zero-
bias anomaly, but are plagued by a pinning problem of the
self-energy at the particle-hole symmetry point when decreas-
ing the temperature (see, e.g., [40]). Further, the temperature
for the onset of the anomaly differs from the proper Kondo
temperature (see, e.g., [49]). Thus, higher-order tiers are
required. In this work, we develop an infinite-tier scheme
named dressed bubble approximation (DBA), and a simplified
NCA version of it, whereby the problem of finding the self-
energies, and thus the retarded Green’s function, is reduced
to a geometrical problem involving the inversion of matrices
of dimension 4 × 4, at most, for the SIAM. Exemplarily, we
discuss a fourth-tier scheme, the NCA4, whose simplified
version allows for an easy-to-handle analytical solution that
improves over the second-tier schemes by lifting the pinning
problem. We test the predictions for the linear conductance
of this simplified NCA4 scheme against numerically exact
DMNRG results. Moreover, we study the transport properties
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in a nonequilibrium situation and in the presence of an applied
magnetic field.

The paper is structured as follows. In Sec. II we introduce
the generic model for interacting nanojunctions and derive
formally exact path-integral expressions in the coherent-state
representation [72] for both the RDM and for the current
at a given lead [65,74]. Here, as a result of the trace over
the fermionic reservoirs, tunneling events in and out of the
central system become correlated through the action of the
time-nonlocal Feynman-Vernon influence functional. How to
then obtain an exact master equation for the RDM in the
case of noninteracting nanojunctions is further discussed in
[65,74]. Since our focus is on the interplay of interactions
and tunneling, we perform a first crucial step by expressing
the exact propagator in the occupation-number representation
starting from the coherent-state picture. This transformation
paves the route for the expansion of the influence functional
in series of tunneling transitions discussed in Sec. III, and for
the diagrammatic representation of the propagator in terms
of blips and sojourns illustrated in Sec. IV. Here, borrow-
ing the nomenclature from the famous spin-boson problem
[79], we show that by expanding the influence functional
and integrating out the Grassmann variables we can view a
path as a sequence of blips and sojourns as for the two-state
system in the spin-boson problem; the two states of the spin
correspond here to (fermionic) degrees of freedom of the
central system being empty or singly occupied. In Sec. V
this knowledge is used to obtain an exact generalized master
equation (GME) for the diagonal elements (populations) of
the RDM, as well as an integral equation for the current.
The hierarchical structure of the populations kernel in Laplace
space and the Dyson equation for its propagator are derived in
the central Sec. VI. Specializing to the case of proportional
coupling, the connection between the current kernel and the
retarded Green’s function is established in Sec. VII. In such
case, the Meir-Wingreen formula for the current is recovered.
There follow two sections where we apply our general for-
malism to the exactly solvable RLM, Sec. VIII, and to the
SIAM, Sec. IX. Since the RLM accommodates at most one
electron, interaction effects play no role here, and the Dyson
equation for the propagator is solved exactly at the second-tier
level. In the SIAM, in contrast, the hierarchy of equations for
the propagator does not close, and approximation schemes
are required. We show how to recover within our formalism
various common approximation schemes for the SIAM and
discuss further the infinite-tier DBA scheme. Analytical re-
sults, which include the temperature dependence of the linear
conductance and the differential conductance in the presence
of an applied magnetic field, are then exemplarily obtained
within the NCA4, a truncation of this scheme to the fourth tier,
with some additional simplifications. Finally, conclusions are
drawn in Sec. X. Some of the detailed derivations are deferred
to the Appendixes.

II. PATH-INTEGRAL REPRESENTATION FOR THE
REDUCED DENSITY MATRIX AND THE CURRENT

We consider the general transport setting depicted in
Fig. 1, where a central interacting region, with a number
N of available electron states, indexed by i or j in what

follows, is connected via tunnel coupling to noninteracting
fermionic leads, held in general at different chemical poten-
tials and/or different temperatures. This general setting can
describe molecular junctions [26,27], manufactured nanos-
tructures, such as lateral quantum dots [80], or other complex
junctions [81].

The Hamiltonian of this transport setup consists of three
terms, corresponding to the partition in central system (S) plus
leads coupled via a particle exchange term, and reads as

H = HS +
∑
αkσ

εαkc†
αkσ cαkσ

+
∑
iαkσ

[tiαkσ a†
i cαkσ + t∗iαkσ c†

αkσ ai]. (1)

The central system part is left unspecified at the present stage,
being some function of the fermionic creation and annihila-
tion operators a†

i and ai relative to the single-particle basis
{|i〉} in S. It contains in principle interaction terms which
are quartic in these operators. Further, for simplicity, HS is
assumed to be time independent, although the inclusion of
time-dependent terms in a real-time path-integral formalism
is straightforward [64,82]. The second term is the free leads
part with creation and annihilation operators c†

αkσ and cαkσ ,
where α runs over the leads, σ is the spin degree of freedom,
and k denotes the kth electronic state in the lead α. The third
term in Eq. (1) describes the exchange of particles between
dot and leads, with the energies tiαkσ giving the amplitude of
the tunnel coupling. In the continuum limit, denoting with
�ασ (ε) the density of states of lead α in energy space, we
set
∑

αkσ →∑
ασ

∫
dε �ασ (ε). Then, the tunnel coupling is

characterized by the energy-dependent hybridization matrix
�(ε) =∑α �α (ε) whose elements are

[�α (ε)]i j := 2π
∑
σ

�ασ (ε)tiασ (ε)t∗jασ (ε). (2)

A. Reduced density matrix and current

Let us denote with ρ the reduced density matrix (RDM)
of the central system. The RDM is obtained from ρtot (t ),
the total density matrix, by tracing out the leads’ degrees of
freedom ρ(t ) = Trleads[ρtot (t )], with the time evolution of ρtot

being governed by the evolution operator associated to the
Hamiltonian (1). Since we have assumed noninteracting leads,
this trace can be performed exactly in the coherent-state repre-
sentation using standard path-integral techniques [72,74]. We
consider for simplicity an initially factorized density matrix
ρtot (t0) = ρ(t0) ⊗ ρ th

leads, where ρ th
leads =⊗α ρ th

α , with the lead
α in the grand-canonical equilibrium state at a given tempera-
ture Tα and chemical potential μα (see Fig. 1). The propagator
J yields the matrix elements of the RDM in the coherent-state
representation at time t according to

〈ξa|ρ(t )|ξb〉 =
∫

d2ξ0d2ξ̄0J (ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0)ρξ0 ξ̄0

(t0),

(3)
where ρξ0 ξ̄0

(t0) = 〈ξ0|ρ(t0)|ξ̄0〉. The Grassmann variables ξ =
(. . . , ξ i, . . . ) and ξ∗ = (. . . , ξ i∗, . . . ) have one component
for each electronic state which is defined by âi|ξ〉 = ξ i|ξ〉
and 〈ξ|â†

i = ξ i∗〈ξ|. Following the procedure outlined in
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Appendix A, the propagator acquires the formal, exact path-
integral expression in the coherent-state representation

J (ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0) =

∫ ξ∗
a

ξ0

Dξ

∫ ξb

ξ̄
∗
0

Dξ̄e
i
h̄ [SS(ξ∗,ξ)−S∗

S (ξ̄
∗
,ξ̄)]

× F (ξ∗, ξ, ξ̄∗
, ξ̄), (4)

where
∫

Dξ = ∫ ∏K
k=1 dξ(tk )∗dξ(tk ) and

∫
Dξ̄ =∫ ∏K

k=1 d ξ̄(tk )∗d ξ̄(tk ) denote the sums over paths in the
forward and backward time branches, respectively, with fixed
end points and K → ∞. The action of the central system
is given by the time-discretized expression [ξk ≡ ξ(tk ) and

tk+1 = tk + δt]

e
i
h̄ SS(ξ∗,ξ) =

K∏
k=0

e−ξ∗
k ·ξk+ξ∗

k+1·ξk− i
h̄ HS(ξ∗

k+1,ξk )δt ,

e
i
h̄ S∗

S (ξ̄
∗
,ξ̄) =

K∏
k=0

e−ξ̄
∗
k ·ξ̄k+ξ̄

∗
k ·ξ̄k+1+ i

h̄ HS(ξ̄
∗
k ,ξ̄k+1 )δt ,

(5)

with ξ∗(tK+1) ≡ ξ∗
a and ξ̄(tK+1) ≡ ξb. Due to the trace over

the leads, these paths are coupled by the Feynman-Vernon in-
fluence functional [64] F (ξ∗, ξ, ξ̄∗

, ξ̄) = exp[Φ(ξ∗, ξ, ξ̄∗
, ξ̄)]

whose phase can be given in the following symmetric form
(see Appendix B):

Φ(ξ∗, ξ, ξ̄∗
, ξ̄) = −

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[ξ∗(t ′) · g−(t ′ − t ′′) · ξ(t ′′) + ξ(t ′) · g∗
+(t ′ − t ′′) · ξ∗(t ′′)

− ξ̄(t ′) · g∗
−(t ′ − t ′′) · ξ̄

∗
(t ′′) − ξ̄

∗
(t ′) · g+(t ′ − t ′′) · ξ̄(t ′′) + ξ̄

∗
(t ′) · g−(t ′ − t ′′) · ξ(t ′′)

+ ξ̄(t ′) · g∗
+(t ′ − t ′′) · ξ∗(t ′′) − ξ(t ′) · g∗

−(t ′ − t ′′) · ξ̄
∗
(t ′′) − ξ∗(t ′) · g+(t ′ − t ′′) · ξ̄(t ′′)]. (6)

The correlation matrices g± have elements

gi j,±(t ) = 1

h̄2

∑
αkσ

tiαkσ t∗jαkσ f α
± (εk )e− i

h̄ εαkt , (7)

where f α
+ (εk ) = [1 + eβα (εαk−μα )]−1 is the Fermi function of

lead α and f α
− (εk ) := 1 − f α

+ (εk ). As shown in Appendix C,
these matrix elements are the correlation functions of the
leads’ force operator.

The phase of the influence functional, Eq. (6), displays the
eight fundamental processes involved in the transport setup
consisting of pairs of tunneling events, each creating or an-
nihilating one electron in the central system, connected by a
fermion line. These processes are shown in Fig. 2. A fermion
line is mathematically represented by the time-dependent part
of the correlation function calculated at the difference between
the times of the two events [see Eq. (7)]. To the two tunneling
transitions coupled by a correlation matrix g we attributed
the product of the two tunnel amplitudes with the appropriate
Fermi function, as given by the prefactors of g. As an example
of process in the phase of the influence functional, consider
ξ i∗(t ′)gi j,−(t ′ − t ′′)ξ j (t ′′), which is one of the terms generated

FIG. 2. The elementary processes displayed in the phase of the
influence functional (6): each line joining a pair of tunneling transi-
tions represents either a creation/annihilation or annihilation/creation
process, giving a total of eight elementary processes. In the lower
panel, the paths in the forward (f) and backward (b) time branched
are coupled by the influence phase Φ.

by the scalar product in the first term of the sum in Eq. (6).
This is the forward process depicted in the upper-right part
of Fig. 2 and consists in the destruction of one electron in the
state j of the central system at time t ′′ followed by the creation
of one electron at a later time t ′ in the state i. Note that this
is actually a collection of processes, as there is a sum over
the leads and their states in the correlation function. Likewise,
ξ̄ i(t ′)g∗

i j,−(t ′ − t ′′)ξ̄ j∗(t ′′) gives the creation of one electron in
the dot at time t ′′ followed by the annihilation of an electron at
a later time t ′ in the backward time branch (see the upper-left
part of Fig. 2).

As can be seen from Eq. (6), in the influence functional,
forward and backward paths of the individual degrees of
freedom are self-interacting and also coupled to each other
in a time-nonlocal fashion. The latter feature ensures that
the Feynman-Vernon approach takes fully into account the
back-action due to the leads in the system evolution.

B. Current

We define the particle current in lead l as the expectation
value of ˙̂Nl (t ), the time derivative of the particle-number
operator of lead l . In the Heisenberg picture N̂l (t ) =∑

kσ c†
lkσ (t )clkσ (t ) so that, with the general Hamiltonian in

Eq. (1),

˙̂Nl (t ) = − i

h̄
[N̂l (t ),H (t )]

= − i

h̄

∑
ikσ

[t∗ilkσ c†
lkσ (t )ai(t ) − tilkσ a†

i (t )clkσ (t )]. (8)

The electron current Il (t ) = −e〈 ˙̂Nl (t )〉, where 〈 ˙̂Nl (t )〉 =
Tr[ ˙̂Nl (t )ρtot], assumes the form

Il (t ) = e
i

h̄

∑
ikσ

[t∗ilkσ 〈c†
lkσ (t )ai(t )〉 − tilkσ 〈a†

i (t )clkσ (t )〉]

≡ e2 Re TrS[Al (t )], (9)

125417-4



FEYNMAN-VERNON INFLUENCE FUNCTIONAL … PHYSICAL REVIEW B 105, 125417 (2022)

where, using ÔH (t ) = U †(t, t0)ÔSU (t, t0), we have defined
the system operator Al (t ) as the following trace over the leads:

[Al (t )]ii := − i

h̄

∑
kσ

tilkσ Trleads[a
†
i clkσ ρtot (t )]. (10)

The system operator Al (t ) admits a path-integral representa-
tion similar to the one carried out for the RDM, namely,

〈ξa|Al (t )|ξb〉 =
∫

d2ξ0d2ξ̄0J I
l (ξ∗

a, ξb, t ; ξ0, ξ̄
∗
0, t0)ρξ0 ξ̄0

(t0).

(11)
The current propagator is given by [65,74]

J I
l (ξ∗

a, ξb, t ; ξ0, ξ̄
∗
0, t0)

=
∫ ξ∗

a

ξ0

Dξ

∫ ξb

ξ̄
∗
0

Dξ̄e
i
h̄ [SS(ξ∗,ξ)−S∗

S (ξ̄
∗
,ξ̄)]

× Il (ξ
∗, ξ, ξ̄)F (ξ∗, ξ, ξ̄∗

, ξ̄). (12)

This expression is similar to that of the propagator for the
system RDM [Eq. (4)], the difference being the multiplicative
current functional

Il (ξ
∗, ξ, ξ̄) = −

∫ t

t0

dt ′ ξ∗(t )[gl,−(t − t ′)ξ(t ′)

− gl,+(t − t ′)ξ̄(t ′)]. (13)

Here, the correlation matrices bear the index l (which is not
summed over) of the lead considered for the calculation of
the current, with g±(t ) =∑α gα,±(t ). Moreover, there is one
single time integral and the last Grassmann variable has the
time argument fixed at the final time t while the argument of
the first runs from t0 to t . Finally, the structure of the integrand
in I is similar to that of Φ, the exponent of the influence
functional F given in Eq. (6), except for the two constraints
that fix the nature of the last Grassmann variable, reflecting the
fact that the operator a†

i is fixed in the calculation of Al [see
Eq. (10)]. In Appendix D, we show the connection between
the path-integral expression for the current and the Green’s
functions.

C. Propagators in the occupation-number representation

For a system with N electronic states i = 1, . . . ,N , we
introduce the composite index n = (n1, . . . , nN ) collecting the
occupations of the states in the occupation-number represen-
tation, with ni = 0, 1 for state i. The anticommutation relation
obeyed by any two Grassmann variables yields the property
[72] ∫

dξ ∗dξ{ξ ∗ξ, ξ ∗, ξ , 1} = {−1, 0, 0, 0}. (14)

Note that ξ ∗ and ξ are independent Grassmann variables. The
definition of coherent states

|ξ〉 =
N∏

i=1

(1 − ξ ia†
i )|0i〉

and the property of the Grassmann integrals [Eq. (14)] allow
us to define the projectors that map the system state from the
coherent state to the occupation-number representation. For

example, in the case of a single-electron state (N = 1) an ele-
ment of the RDM reads as in the coherent-state representation

〈ξ |ρ(t )|ξ̄〉 = ρ00(t ) + ρ01(t )ξ̄ + ρ10(t )ξ ∗ + ρ11(t )ξ ∗ξ̄ , (15)

where we have used 〈0|ξ 〉 = 〈0|(1 − ξa†)|0〉 = 1 −
〈0|ξ |1〉 = 1 − ξ 〈0|1〉 = 1 and 〈1|ξ 〉 = 〈0|a|ξ 〉 = 〈0|ξ |ξ 〉 =
ξ 〈0|ξ 〉 = ξ . The elements of the RDM in the occupation-
number representation are then recovered by performing the
Grassmann integrals

ρnn′ (t ) = �(n′)�∗(n) 〈ξ |ρ(t )|ξ̄〉, (16)

where the projectors �∗(n) and �(n) integrate out the
Grassmann variables to the left and to the right of the operator
|0〉〈0|, respectively. Their definitions are

�∗(0) =
∫

dξ ∗ξ ∗, �∗(1) =
∫

dξ ∗,

�(0) =
∫

d ξ̄ ξ̄ , �(1) =
∫

d ξ̄ ,

(17)

as can be checked by applying the rules in Eq. (14) for the
Grassmann integrals. In the general case, the populations,
identified by the occupations n1, . . . , nN , are given by
Pn(t ) = ρnn(t ) = �b(n)�∗

a(n) ρab(t ), where

�(n) =
N∏

i=1

�i(ni ), �∗(n) =
1∏

i=N

�i∗(ni ). (18)

The propagator for the populations in the occupation-number
representation gives the population vector at time t according
to

Pn′ (t ) =
∑

n′′
Jn′n′′ (t, t0)Pn′′ (t0). (19)

Thus, the matrix element (n′,n) of the propagator is
obtained by fixing the initial state to ρ(t0) = |n〉〈n| so
that Pn′′ (t0) = δn′′n. Then,

Jn′n(t, t0) = �b(n′)�∗
a(n′)

∫
d2ξ0d2ξ̄0J (ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)

× 〈ξ0|n〉〈n|ξ̄0〉, (20)

where we use Eq. (15) to calculate the matrix element
of the RDM at t0 in the coherent-state representation.
Equation (20) provides the recipe to obtain the propagator
in the occupation-number representation starting from the
coherent-state path-integral picture.
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Likewise, the diagonal elements of the current propagator
in Eq. (11) are obtained as

JI
l,n′n(t, t0)=�b(n′)�∗

a(n′)
∫

d2ξ0d2ξ̄0J I
l (ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)

× 〈ξ0|n〉〈n|ξ̄0〉. (21)

III. TUNNELING EXPANSION OF
THE INFLUENCE FUNCTIONAL

The influence functional couples the processes within and
between the forward and backward time branches of the prop-
agators. To move forward in the actual calculations, first we
unify the two time branches in a single one and then discretize
the paths of the central system in this unique time branch by
expanding the influence functional in the number of processes,
namely, in powers of  [see Eq. (2)]. This expansion gives
rise to a diagrammatic unraveling of the propagator. The pe-
culiarity of the present approach is the parametrization of the
paths of S in terms of N paths of reduced density matrices of
individual two-state systems, one for each electron state of the
central system.

A. Diagrammatic unraveling of the propagator
from the expansion of the influence functional

Adopting the notation

ξ+1
+1 = ξ, ξ−1

+1 = ξ∗, ξ+1
−1 = ξ̄, ξ−1

−1 = ξ̄
∗
,

g+1
+1 = g+, g−1

+1 = g∗
+, g+1

−1 = g−, g−1
−1 = g∗

−,
(22)

where the lower index identifies the time branch (sign of
the Fermi function) and the upper index performs the com-
plex (Hermitian) conjugation for the Grassmann-valued paths
(correlation matrices), the phase of the influence functional
(6) can be expressed in the compact form Φ(ξ∗, ξ, ξ̄∗

, ξ̄) =∫ t
t0

dt ′ ∫ t ′

t0
dt ′′F (t ′, t ′′), where

F (t ′, t ′′) = −
∑

x,y,z=±1

x ξz
y(t ′)g−z

xz (t ′ − t ′′)ξ−z
x (t ′′). (23)

The eight elementary processes comprised by the phase of
the influence functional are rendered by the sum over the
three binary indices x, y, and z. As these processes consist of
couples of tunneling transitions, the expansion in the tunnel
coupling is given by the sum over the number m of pairs of
transitions

J (ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0) =

∞∑
m=0

J (m)(ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0).

The term with 2m transitions [order m in , cf. Eq. (2)] reads
as

J (m)(ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0) =

∫
D{t}m

∫ ξ∗
a

ξ0

Dξ

∫ ξb

ξ̄
∗
0

Dξ̄

× e
i
h̄ [SS(ξ∗,ξ)−S∗

S (ξ̄
∗
,ξ̄)]
∑
Pm

m∏
p=1

Fkp,lp,

(24)

K K K K

KK

K K

FIG. 3. Forward (nonbarred) and backward (barred) Grassmann
variables arranged in a single (forward) time axis with reversal of the
time direction for the backward branch. This requires associating to
ξ̄ ∗ the annihilation and to ξ̄ the creation of an electron in the central
system.

where Pm denotes one of the (2m)!/(2mm!) possible arrange-
ments of 2m time indices in groups of 2 with no repetitions,
meaning that two transitions at the same time instant are
not allowed. The symbol

∫
D{t}m comprises the nested time

integrations over the 2m transition times. Explicitly,∫
D{t}m :=

∫ t

t0

dt2m

∫ t2m

t0

dt2m−1· · ·
∫ t2

t0

dt1. (25)

In Eq. (24), we have introduced the Grassmann-valued func-
tions

Fkl = −
N∑

i, j=1

∑
x,y,z=±1

x
[
ξ i

k

]z
y

[gi j (tk − tl )]
−z
xz

[
ξ

j
l

]−z

x
. (26)

Thus, in the present time-discretized picture of the influence
functional, the Grassmann-valued paths, which are expressed
in terms of a set of Grassmann numbers associated to the
specific time instants of the tunneling transitions, consist of
individual transition at specific times (the sequence of times
being ordered). The nested time integrals in Eq. (25) re-
produce all the possibilities for the sequences of processes.
Finally, the sum over the set of coefficients x, y, and z in
Eq. (26) and the sum over the system states, implicit in the
scalar products with the correlation matrix, produce the sum
over paths.

To deal with the forward and backward paths with a single
parametrization, it is convenient to use a single time direction
for the two time branches depicted in Fig. 2. In order to do so,
it is necessary to make the associations

ξ ∗/ξ creation/annihilation in S,

ξ̄ ∗/ξ̄ annihilation/creation in S,
(27)

as suggested by Fig. 3.
The resulting diagrammatic notation is more compact and

the topology of the diagrams is different with respect to the
Keldysh formalism. For example, diagrams displaying cross-
ings in the Keldysh contour, as, e.g., in the seminal work by
König et al. [47], can be crossing free when the time branches
are collapsed in a single one, as in the present treatment (see
also, e.g., [37,83]).

Two examples of paths, comprising two tunneling tran-
sitions each, are detailed in Fig. 4 where the Grassmann
variables associated to the transition times tk and tl and con-
tained in the functions Fkl are highlighted. Both processes
in Fig. 4 fall in the class succinctly represented by the only
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... *
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*
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*
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*
ll

...

*
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FIG. 4. Two examples of paths of an individual electron state
in the central system. The transition times and the corresponding
Grassmann variables ξk ≡ ξ (tk ) contained in the influence functions,
Eq. (26), are highlighted by red boxes. Zeros and ones indicate the
occupation of the state in the forward and backward branches.

diagram generated by the first-order term in the expansion of
the influence function, namely,

F21 . (28)

As a further example, the second-order term in the expansion
of the influence functional gives

P2

2

p=1

Fkp lp = F21F43 + F32F41 + F31F42

+ + ,

where we provided a diagrammatic picture of the three terms
resulting from the sum over the permutations. Note that each
function Fkl contains a pair of Grassmann-valued (vector)
variables and therefore the functions F commute with each
other.

IV. STATE-CONSERVING TUNNELING
AND DIAGRAMMATIC RULES

A. Diagonal hybridization matrix

The expansion in terms of the influence functions Fkl given
in Eq. (24) is very general and only relies on the properties of
Grassmann numbers. In the remaining of this work we focus
for simplicity on the case in which the correlation matrices
are diagonal in the basis {|i〉} of single-electron states of the
central system S, namely,

[gα,±(t )]i j = 1

h̄2

∑
kσ

|tiαkσ |2 f α
± (εk )e− i

h̄ εαktδi j, (29)

with g±(t ) =∑α gα,±(t ). This implies that the paths of the
different electron states in S are correlated only via the in-
teraction term at the level of the system Hamiltonian and
are otherwise independent. As a result, the energy-dependent

hybridization matrix of lead α [Eq. (2)] specializes to

[�α (ε)]i j = 2π
∑
σ

�ασ (ε)|tiασ (ε)|2δi j, (30)

which is still state dependent, i.e., not proportional to the
identity. Note that the hybridization matrices of the dif-
ferent leads are simultaneously diagonal in the occupation
basis {|n1, . . . , nN 〉}. Archetype examples of systems to which
Eq. (29) applies are the resonant level model (RLM) and
the single-impurity Anderson model (SIAM) discussed in
Secs. VIII and IX, respectively.

Due to the diagonal correlation matrices [Eq. (29)], the
influence functional is factorized and the fermion lines only
connect transitions which change the occupation of individual
states. As a result, if no coherences are present at the initial
time t0, none will be produced at later times. This is not true
for nondiagonal correlation matrices, where coherences can
develop and couple to the populations. This aspect is crucial,
for example, in the so-called spin-valve setup [84–88] and
for interacting nanojunctions displaying interference effects
[44,89,90].

With the correlation matrices given by Eq. (29), the
Grassmann-valued functions in Eq. (26) specialize to Fkl =∑N

i=1 Fi
kl , where

Fi
kl =

∑
x,y,z=±1

−x
[
ξ i

k

]z
y
[gii(tk − tl )]

−z
xz

[
ξ i

l

]−z

x
. (31)

The assumption of diagonal correlation matrices allows us
to establish diagrammatic rules for the paths of individual
fermionic single-particle states i and to express the contri-
bution of a composite diagram, involving different electron
states, in terms of the individual diagrammatic contributions
and of a common phase factor accounting for the interactions.

B. Parametrization for a single degree of freedom
(resonant level model)

Before considering the general case, we focus our attention
on an individual degree of freedom of the central system S or,
equivalently, on the simplest case of a spinless level coupled to
electronic reservoirs, the so-called resonant level model (see
Fig. 15 below).

To this extent we notice that a single fermionic degree
of freedom is characterized, in the occupation-number rep-
resentation, by the two values 0,1, for the state being empty
or occupied, respectively. Thus, one can consider the degree
of freedom as a two-state system; the corresponding time
evolution of generic forward and backward paths for such
pseudospin, or qubit, is shown in Fig. 5. Borrowing ideas
from the path-integral formulation of the famous spin-boson
problem [64], we conveniently collapse the two-state paths
on the forward and backward branches into a single four-
state path. As shown in Fig. 5, in analogy to the spin-boson
nomenclature, we call sojourns the states (0, 0̄) and (1, 1̄),
and blips the combinations (0, 1̄) and (1, 0̄). This is done
under the assumption of instantaneous tunneling events that
change the occupation number of the electron states in S. A
sojourn state corresponds to having the same occupation of
the electron state both in the forward and in the backward path,
meaning that the state is either empty (η = −1) or occupied
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f
0 1 0

t

b
0̄ 1̄ 0̄

t

η = −1

soj.

ζ = +1

blip

η = +1

soj.

ζ = −1

blip

η = −1

soj.
t

00̄

η = −1

01̄

ζ = −1

11̄
η = +1

10̄
ζ = +1

FIG. 5. Blip and sojourn parametrization. Left: Forward and
backward paths associated to the occupation of an individual elec-
tron state with the corresponding collapsed, single-branch path
parametrized in terms of blip and sojourns (below). Right: The time
evolution now occurs along the four sides of the square, whose
corners define the four elements of the density matrix of a two-state
system. The red full dot on the top-left corner denotes the starting
(and final) state of the path.

(η = +1) in both branches. On the contrary, a blip state refers
to different occupation of the two branches, namely, occupied
in the forward and empty in the backward (ζ = +1) or vice
versa (ζ = −1) (see the right panel of Fig. 5). In the present
case, since N = 1, we disregard the state index i, and Eq. (31)
reduces to Fi

kl → Fkl .
To proceed, we perform the integration of the Grassmann

variables associated to the time instants between transitions,
as done explicitly in Appendix. F. This results in the phase
factors related to the central system S which are discussed be-
low. The residual Grassmann variables are the ones associated
to the transition times, as shown in Fig. 6 for a collapsed path
which comprises four tunneling transitions.

A path of the electron state with 2m transitions starting and
ending in a sojourn has m + 1 sojourn intervals (η0, . . . , ηm)
and m blip intervals (ζ1, . . . , ζm). The path is thus uniquely
identified by the corresponding sequence

η0, ζ1, η1, . . . , ζk, ηk, . . . , ζm, ηm.

With the associations made in Eqs. (22) and (27), to this
sequence of blip and sojourn indices there correspond the
following sequence of Grassmann variables,

ξ
−ζ1
−η0ζ1

, ξ
ζ1
−η1ζ1

, . . . , ξ
−ζk
−ηk−1ζk

, ξ
ζk
−ηkζk

, . . . , ξ
ζm
−ηmζm

,

as shown in Fig 6. To each transition to a blip state (odd
transition times t2k−1) is associated the Grassmann variable
[ξ2k−1]−ζk

−ηk−1ζk
≡ ξ

−ζk
−ηk−1ζk

and to a transition to a sojourn (even

transition times t2k) is associated [ξ2k]ζk
−ηkζk

≡ ξ
ζk
−ηkζk

. Grass-
mann variables at different times are independent, otherwise,
a path with two Grassmann variables of the same type (e.g.,
creation in the forward path) would yield a vanishing contri-
bution due to the property (ξ ∗)2 = ξ 2 = 0. Note that to a given
path there correspond different arrangements of the functions
Fkl (fermion lines) attached to couples of transitions.

η0 ζ1 η1 ζ2 η2

ξ−ζ1
−η0ζ1

t1

ξζ1
−η1ζ1

t2

ξ−ζ2
−η1ζ2

t3

ξζ2
−η2ζ2

t4

FIG. 6. Sequence of Grassmann variables associated to the tran-
sition times of an individual degree of freedom of the central system
in the blip and sojourn parametrization [see Eqs. (22) and (27)].

From Eq. (31), and using (ζk )2 = 1, according to the type
of transitions being involved at times tk and tl (blip-sojourn,
sojourn-blip, blip-blip, or sojourn-sojourn), the function Fkl

acquires one of the forms

(b → s) F2k 2l−1 = ξ
ζk
−ηkζk

f2k 2l−1 ξ
−ζl
−ηl−1ζl

,

(s → b) F2k−1 2l = ξ
−ζk
−ηk−1ζk

f2k−1 2l ξ
ζl
−ηlζl

,

(b → b) F2k−1 2l−1 = ξ
−ζk
−ηk−1ζk

f2k−1 2l−1 ξ
−ζl
−ηl−1ζl

,

(s → s) F2k 2l = ξ
ζk
−ηkζk

f2k 2l ξ
ζl
−ηlζl

,

(32)

where

f2k 2l−1 = ηl−1ζl g−ζl
−ηl−1

(t2k − t2l−1)δζk ,ζl ,

f2k−1 2l = ηlζl gζl
ηl

(t2k−1 − t2l )δζk ,ζl ,

f2k−1 2l−1 = ηl−1ζl g−ζl
−ηl−1

(t2k−1 − t2l−1)δζk ,−ζl ,

f2k 2l = ηlζl gζl
ηl

(t2k − t2l )δζk ,−ζl . (33)

Equation (32) is the combined result of the parametrization
of the paths shown in Figs. 5 and 6 and the form of the influ-
ence functions in Eq. (31). This result is essential to establish
the diagrammatic rules discussed in the next section once the
residual Grassmann variables are integrated out. The follow-
ing scheme clarifies the associations in Eq. (32) in the case
m = 2:

b → s

t1 t2

b → s

t3 t4

b → s

t1 t4

s → b

t2 t3

b → b

t1 t3

s → s

t2 t4

. (34)

aside from depending on the influence functions Fi
kl , the

propagator also depends on the action of the central system
SS(ξ∗, ξ) [see Eq. (4)]. Upon integrating out the Grassmann
variables between transitions, this action produces the phase
factors bkl associated to the influence functions in Eq. (32).
For a central system with a single spinless level of energy ε

these phase factors are schematized by

(b → s) e− i
h̄ ζlε (t2k−t2l−1 ),

(s → b) e+ i
h̄ ζlε (t2k−1−t2l ),

(b → b) e− i
h̄ ζlε (t2k−1−t2l−1 ),

(s → s) e+ i
h̄ ζlε (t2k−t2l ). (35)

Note that the sign of the exponent is determined by the state
(blip or sojourn) from which the fermion line departs [see the
scheme (34)]. Applying Eq. (20) to the propagator order by
order [Eq. (24)], we are left with the following expansion of
the propagator for the populations in the resonant level model:
Jη′η(t ; t0) =∑∞

m=0 J (m)
η′η (t ; t0), where

J (m)
η′η (t ; t0) =

∑
pathsm

∫
D{t}m

∑
P

Bm(P )�m(P ). (36)

Here, the sum over the permutations P accounts for the dif-
ferent ways in which the fermion lines can connect m pairs of
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tunneling transitions within the path joining the two sojourns
η and η′ [see Eq. (34)]. The central system and influence
functional part are given by

Bm(P ) =
m∏

p=1

bkp lp,

�m(P ) =
∫

D{ξ}m

m∏
p=1

Fkp lp,

(37)

respectively.
The sum over paths in Eq. (36) amounts to summing over

the possible values of the intermediate blip and sojourn state
with 2m tunneling transitions. For example, in the case m = 2,

paths2

=
ζ1,η1,ζ2

η ζ1 η1 ζ2 η .

(38)
Finally, the symbol

∫
D{ξ}m performs the integration over the

residual Grassmann variables associated to the 2m transition
times ∫

D{ξ}m :=
∫ m∏

k=1

(−ζkηk )dξ−ζk
−ηk−1ζk

dξ ζk
−ηkζk

. (39)

The factors −ηkζk in the above integration measure
reflect the noncommuting nature of the symbols dξ
and are introduced to keep track of the order in
which the Grassmann-valued coordinates appear origi-
nally in the integration measure, i.e.,

∏
k d2ξ (tk )d2ξ̄ (tk ) =∏

k dξ ∗(tk )dξ (tk )d ξ̄ ∗(tk )d ξ̄ (tk ), with the ∗ numbers to the left
within the two classes of forward and backward variables, and
with the backward variables to the right of the forward. This
is exemplified in Appendix G.

C. Parametrization for N degrees of freedom

Due to the diagonal hybridization matrices introduced in
Sec. IV A, the influence functional factorizes in the product of
functionals for the individual electron states i or, equivalently,
the phase of the influence functional (6) is the sum over the
electron states i. As a result, the above description of the res-
onant level model generalizes in a straightforward fashion to
N electronic states. In this case, the populations are identified
with the string of sojourns associated to the different electron
states via the vector index η = {ηi}, with the correspondences
ni = 0 ↔ ηi = −1 and ni = 1 ↔ ηi = +1. The propagator
for the populations now reads as Jη′η(t ; t0) =∑∞

m=0 J (m)
η′η (t ; t0),

where

J (m)
η′η (t ; t0) =

∑
pathsm

∫
D{t}m

∏
i

∑
Pi

Bi
mi

(Pi)�
i
mi

(Pi ), (40)

with
∑

i mi = m, and where

Bi
mi

(P ) =
mi∏

p=1

bi
kp lp

,

�i
mi

(Pi) =
∫

D{ξ}mi

mi∏
p=1

Fi
kp lp

. (41)

The sum over the permutations Pi accounts now for the dif-
ferent ways in which the fermion lines can connect mi pairs of
tunneling transitions within the same path, that of the electron
state i joining the two sojourns ηi and ηi ′.

While the influence functions �i
mi

depend exclusively
on the path of the individual state i, the phase factors in
Bi

mi
couple the paths of the different states via the inter-

action. Specifically, the constant single-particle energies εi

turn into the path-dependent energies Ei; they depend on
the instantaneous states of all degrees of freedom {η j}n

during the time interval τn between consecutive transitions,
not necessarily of the same electron state. For example, as-
sume that a fermion line associated to the state i departs
from a blip state at time tl and encompasses W intervals
with

∑W
n τn = tk − tl . Then, the corresponding phase factor

reads as

bi
kl :=

W∏
n=1

e− i
h̄ ζl Ei ({η}n )τn , (42)

which reduces for a noninteracting system to

bi
kl =

W∏
n=1

e− i
h̄ ζlεiτn = e− i

h̄ ζlεi (tk−tl ). (43)

Thus, in the noninteracting case, the integrand in Eq. (40) is
actually factorized in the system’s degrees of freedom.

Finally, the sum over paths in Eq. (40) now takes into
account the different possibilities to distribute 2m transitions
among the paths of the N individual states i connect-
ing the initial and final sojourn states η and η′ with∑

i mi = m.
To exemplify how these phase factors and the sum over

paths work in the case of a multistate system (N > 1), con-
sider the case of the SIAM. As it describes an interacting
central system which is a single, spinful level, we have N = 2
and i ≡ σ = ↑,↓ [cf. Eq. (149) below]. In this specific case,
denoting with σ̄ the opposite spin state with respect to σ ,
the energies associated to the spin σ in the phase factors
read as

Eσ (η) = εσ + (1 + η)U/2 (blip-sojourn),

Eσ = εσ + U/2 (blip-blip). (44)

Thus, for example, if the path of σ̄ is in a sojourn state with
η = +1, then Eσ = εσ + U : this is the addition energy to be
payed for adding a further electron to the dot. The presence
of the term U/2 in the second line of Eq. (44) implies that
overlap of different fermion lines can produce the energy U
according to the relative sign of the index ζ (see Appendix F
for details). In Fig. 7 an example which shows the energies
Eσ is provided for a path with two transitions for each spin
path.
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↑ η↑
0 ζ↑1 η↑

1

↑ + U
2
(1 + η↓

0) ↑ + U
2

↓ η↓
0 ζ↓1 η↓

1

↓ + U
2 ↓ + U

2
(1 + η↑

1)

FIG. 7. Path-dependent energies in the SIAM. The energies Eσ

in the phase factors [Eq. (42)] associated to the overlap of blip and
sojourn of the two electron states σ = ↑,↓ are Eσ (η) = εσ + (1 +
η)U/2 for blip-sojourn overlap and Eσ = εσ + U/2 for blip-blip
overlap. The time axis is divided in five intervals τk separated by
four tunneling transitions (m = 2) distributed between the two paths.
The phase factors descends from the action of the central system
[see Eqs. (4) and (5)] after integrating out the Grassmann variables
between the tunneling transitions.

The sum over paths with four transitions connecting the
populations η = (η↑, η↓) and η′ = (η′↑, η′↓) is given by

populations η = (η↑, η↓) and η = (η ↑
, η

↓) is given by

paths2

=
ζ↑
1 ,η↑

1 ,ζ↑
2

η↑ ζ↑1 η↑
1 ζ↑2 η ↑

η↓ = η ↓

+
ζ↑
1 ,ζ↓

1

η↑ ζ↑1 η ↑

η↓ ζ↓1 η ↓

+
ζ↓
1 ,η↓

1 ,ζ↓
2

η↓ ζ↓1 η↓
1 ζ↓2 η ↓

η↑ = η ↑

.

(45)
Note that if η′↓ = η↓, then the uppermost line of Eq. (45) does
not contribute to the sum over paths. The same holds for σ =
↑ and the bottom line. If initial and final sojourns η and η′
differ for both spin states, then only the central line contributes
to the sum.

Finally, the Grassmann variables and blip and sojourn in-
dices in the symbol

∫
D{ξ}mi acquire the state index i:

∫
D{ξ}mi :=

∫ mi∏
k=1

(−ζ i
kη

i
k

)
dξ

−ζ i
k

−ηi
k−1ζ

i
k
dξ

ζ i
k

−ηi
kζ

i
k

(46)

[cf. Eq. (39)].
Using the parametrization of the paths in Fig. 6 for the

individual degrees of freedom i and the integration measure
in Eq. (46) for the residual Grassmann variables associated
to the transition times, we are able to automatically carry out
the integrations over these variables. The result is simply an
overall sign given by the anticommutation property of the
ξ ’s, as detailed in Appendix F. In other words, we find from

Eq. (32) the simple form

�i
mi

(Pi ) = sgnPi

mi∏
k=1

ζ i
kη

i
k

mi∏
p=1

f i
kp lp

, (47)

where sgnPi
is an overall sign given by the integration over

the Grassmann variables associated to the transitions. This
sign depends on the order of the transitions, and thus on
the permutation P , due to the noncommuting character of
the Grassmann variables. Importantly, Eq. (47) allows us to
establish diagrammatic rules, whereby the explicit form of the
functions fkl is obtained by just looking at the arrangement of
the fermion lines in the associated diagram [cf. Eq. (33)]. The
diagrammatic rules are summarized below.

D. Diagrammatic rules in the time domain
for the individual electron states

Once specified a path of the full system with 2m transi-
tions, the individual influence functions �i

mi
[Eq. (41)], are

the sums over the different arrangements of fermion lines f i
kl

connecting 2mi transitions, where
∑

i mi = m. Each of these
arrangements of fermion lines constitutes a diagram relative
to the state i. In this section we establish diagrammatic rules
individually for each state. This is convenient because, since
the Pauli exclusion principle applies separately to the different
states in the central system, the overlap of fermion lines yields
different diagrammatic contributions according to whether the
lines involve the same or different electron states. Diagrams
relative to different states are then coupled by the phase factors
in Bi

mi
[see Eqs. (41) and (42)]. Each diagrammatic contri-

bution Bi
mi

(Pi )�i
mi

(Pi ) to Eq. (40) consists of the following
(from here on the state index i is understood):

(i) The overall sign (−1)n. crossings due to the integration
of the Grassmann variables in �m [see Eqs. (32), (41), and
Eq. (47)].

(ii) The product
∏m

k=1(−ζkηk ), from the normal ordering
of the Grassmann integration measure [see Eqs. (39) and
(46)].

(iii) The product of the functions fkl [Eq. (33)] represent-
ing the fermion lines which connect two tunneling transitions,
times the corresponding phase factor bkl of the central system
[Eqs. (35) and (42)]. To each fermion line is associated the
constraint on the ζ ’s connected by the line, according to the
scheme in Eq. (33).

Below we show examples with m from 0 to 2. More exam-
ples, with higher-order diagrams are shown in Appendix H.
For m = 0 there are no tunneling transitions. Hence,

(0) .δη ,η (48)

For m = 1 there is only one fermion line connecting two
tunneling times

(1)
η0ζ1

(+1)(−ζ1η1) f21b21

=(−ζ1η1) η0ζ1g
−ζ1
−η0

(t2 − t1)b21

= η η [−g−ζ1
−η (t2 − t1)]b21 .

(49)
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Here we used (ζ1)2 = 1 and identified η0 = η and η1 = η′.
The full dot in the above diagram indicates the vertex, here
associated to the transition from which the fermion line de-
parts. Analogously, with m = 2

(2a)
η0ζ1 η1ζ2

(+1)ζ1η1ζ2η2 f21b21f43b43

= ζ1η1ζ2η2 η0ζ1g
−ζ1
−η0

(t2 − t1)b21

× η1ζ2 g−ζ2
−η1

(t4 − t3)b43

= η η [−g−ζ1
−η (t2 − t1)]b21[−g−ζ2

−η1
(t4 − t3)]b43,

(50)

(2b)
η0ζ1 ζ1η1

(+1)ζ1η1ζ2η2 f41b41f32b32

= ζ1η1ζ2η2 η0ζ1 g−ζ1
−η0

(t4 − t1)b41

× ζ1η1 gζ1
η1

(t3 − t2)b32δζ2,ζ1

= η ηδζ2,ζ1 [−g−ζ1
−η (t4 − t1)]b41 [−gζ1

η1
(t3 − t2)]b32,

(51)

(2c)
η0ζ1 ζ1η1

(−1)ζ1η1ζ2η2 f31b31f42b42

= ζ1η1ζ2η2 η0ζ1 g−ζ1
−η0

(t3 − t1)b31

× ζ1η1 gζ1
η1

(t4 − t2)b42δζ2,−ζ1

= η η [−g−ζ1
−η (t3 − t1)]b31 [−gζ1

η1
(t4 − t2)]b42δζ2,−ζ1,

(52)

where we used ζ1ζ2δζ2,−ζ1 = −δζ2,−ζ1 .
Noticeably, for all second-order diagrams, the product of

the inner sojourns and blips results in a factor +1. Multipli-
cation by internal sojourn indices emerges as we go to higher
orders and overlap of more than two fermion lines. This is
exemplified by the following diagram of order m = 3 (see also
the complete list in Appendix H):

(3)
η0ζ1 ζ1η1 η1ζ2

3

k=1

(−ζkηk)η0ζ1 g−ζ1
−η0

(6, 1)b61 ζ1η1gζ1
η1

(5, 2)b52

× η1ζ2g
−ζ2
−η1

(4, 3)b43δζ3,ζ1

= η ηη1η2 [−g−ζ1
−η (6, 1)]b61 [−gζ1

η1
(5, 2)]b52

× [−g−ζ2
−η1

(4, 3)]b43δζ3,ζ1,
(53)

where, for the sake of compactness, we set g(tk − tl ) ≡
g(k, l ).

By applying the above rules we notice that the multi-
plicative factors ζ are always compensated by the product∏m

k=1(−ζkηk ) and by the constraints δζk ,±ζl contained in the
functions fkl [Eq. (33)]. The multiplicative sojourn indices
are instead compensated solely by the products ζlηl or ηl−1ζl

associated to each departing line (i.e., to the vertices). As a
result, each diagram presents, as a multiplicative factor, the
product η′η of the last and first sojourn indices times the
product of the ηk’s of the internal sojourns which are not
compensated, i.e., the ones with zero or two departing lines.

We are now in the position to set the diagrammatic rules
for the individual states [to a full diagram will correspond the
product of the diagrammatic contributions from each state, see
Eq. (40) and the examples in Sec. IV E]. To each diagram we
associate the following:

(1) An overall sign (−1)n. crossings.
(2) A sign given by the products of the noncompensated ζ

indices (namely, the ones of the blip states with zero or two
vertices) times the corresponding constraints. For example,
ζkζlδζk ,−ζl = −δζk ,−ζl and ζkζlδζk ,ζl = δζk ,ζl (because ζ = ±1).
These constraints make the corresponding sums in the sum-
over-paths collapse.

(3) The product η′η times the product of the noncompen-
sated η indices, namely, the ones of the sojourn states with
zero or two vertices.

(4) The products of the correlators −gy
x(tk − tl ) and the

associated phase factors bkl of the central system for each
fermion line.

To exemplify this, we consider the following third-order
diagram:

ζ1 η1 ζ2 η2 ζ3 η

δζ2ζ1 δζ3,−ζ1

ηζ1 ζ1η1 η1ζ2

− η ηη1η2[−g−ζ1
−η (4, 1)]b41 [−gζ1

η1
(6, 2)]b62

× [−g−ζ1
−η1

(5, 3)]b53δζ3,−ζ1δζ2,ζ1,
(54)

where, as in Eq. (52), we used ζ1ζ3δζ3,−ζ1 = −δζ3,−ζ1 .
Another example is given by

ζ1 η1 ζ2 η2 ζ3 η

δζ2ζ1 δζ3ζ1 δζ3ζ2

ηζ1 ζ1η1 η1ζ2

− η ηη1η2[−g−ζ1
−η (4, 1)]b41 [−gζ1

η1
(5, 2)]b52

× [−g−ζ1
−η1

(6, 3)]b63δζ3,ζ1δζ2,ζ1 ,
(55)

where we used ζ1ζ3δζ3,ζ1 = δζ3,ζ1 .
By inspection of the diagrams in Eqs. (53)–(55), one sees

that none of the correlators g bear the index η2. If also the
phase factors bkl do not depend on η2, as e.g. in the case of
the resonant level model, or in the noninteracting case [see
Eq. (42)], then by performing the sum over paths the diagrams
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with this topology vanish collectively due to the sum over
η2. A similar argument holds for all the diagrams with more
than two overlapping fermion lines of the same state i because
overlap of more than two fermion lines entails the presence of
sojourns with no vertices. This means, in particular, that

(i) the exact propagator for the resonant level model is
reproduced by the diagrams with at most two overlapping
fermion lines;

(ii) for the noninteracting spinful level the exact prop-
agator is reproduced by the diagrams with at most four
overlapping fermion lines, of which no more that two can
belong to the same spin.

These results are in agreement with what has been proved
using a Liouville space approach in [45].

E. Diagrams for N-state systems

A full diagram for N > 1 and with diagonal hybridization
matrices is given by the arrangements of fermion lines, with
some fixed topology, connecting the transitions within the
paths of the individual system states i. As an example, con-
sider again the SIAM. A so-called crossing diagram (m = 2,
with crossing fermion lines)

(56)

can be obtained in the following ways:

.
(57)

The diagrammatic rules developed in the previous section are
thus applied to the two states σ = {↑,↓}, according to how
the fermion lines are distributed among these electron states.
The resulting integrand in Eq. (40) is given by the product of
the contributions from each state. Also, in the interacting case,
the phase factors bσ

kl [see Eqs. (42) and (44) and Fig. 7] de-
pend on the details of the paths of both states simultaneously.
For example, the second diagrammatic contribution above is
evaluated as

↑
↓

η↑ η↑η↓ η↓ [−g−ζ↑
1

−η↑(t3 − t1)]b
↑
31 [−g−ζ↓

1
−η↓(t4 − t2)]b

↓
42 ,

(58)

with

b↑
31 = e− i

h̄ ζ
↑
1 E↑(η↓ )(t2−t1 )e− i

h̄ ζ
↑
1 E↑(t3−t2 ),

b↓
42 = e− i

h̄ ζ
↓
1 E↓(t3−t2 )e− i

h̄ ζ
↓
1 E↓(η↑′

)(t4−t3 ),

(59)

with Eσ = εσ + U/2 and Eσ (η) = εσ + U/2(1 + η) (see the
scheme in Fig. 7). In the absence of interactions Eσ ,Eσ (η) →
εσ and therefore b↑

31 → exp[−iζ ↑
1 ε↑(t3 − t1)/h̄] and b↓

42 →
exp[−iζ ↓

1 ε↓(t4 − t2)/h̄], as in Eq. (35).
As an application of the diagrammatic rules developed in

Sec. IV D to the SIAM, let us consider the three diagrams
whose fermion lines involve both spin states:

(A) ↑
↓

(B) ↑ η↑2

↓
= 0

(C) ↑ η↑2

↓
.

= 0

(60)

The multiplicative factor η↑
2 is brought by the overlap of more

than two fermion lines of the same spin state. Consider the
noninteracting case. While (A) contributes, the diagrams (B)
and (C) vanish collectively once the sum over paths (specif-
ically over η

↑
2 ) is performed, as the phase factor B in the

propagator is independent of the sojourn indices [see Eq. (42)
and Fig. 7]. In the interacting case, (C) contributes because
there is a phase factor associated to η

↑
2 due to the sojourn-blip

overlap, while (B) is still vanishing, as the sojourn-sojourn
overlap does not contribute to the phase factors (see also
Ref. [45]).

V. GENERALIZED MASTER EQUATION FOR
THE POPULATIONS AND THE CURRENT

In the absence of time-dependent driving, the propagator
has time-translation symmetry. It is therefore convenient to
Laplace-transform the population propagator order by order
and obtain a generalized master equation (GME) for the pop-
ulations and an integral equation for the current. The kernels
of these equations are related to each other and, in turn,
connected to the Green’s functions. This connection will be
elaborated in Sec. VII. In the following, we indicate as f̂ (λ) =∫∞

0 dt exp(−λt ) f (t ) the Laplace transform of a function f (t ).

A. GME for the populations

Due to the nested time integrals in the definition of J (m)

[Eq. (40)], the reducible contributions, i.e., the ones that can
be cut by a vertical line not crossing any fermion line, fac-
torize in Laplace space. For this reason, the populations and
current kernels collect the so-called irreducible diagrammatic
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contributions, the ones that cannot be cut by a vertical line not
crossing any fermion line.

Using Eq. (48), the zeroth-order contribution to the propa-
gator is

J (0)
η′η (t ; 0) = δη′η, (61)

and its Laplace transform reads as

Ĵ (0)
η′η (λ) = 1

λ
δη′η. (62)

Let us denote with η(i) the set of sojourn indices associated to
all states except i, namely,

η(i) = (. . . , ηi−1, ηi+1, . . . )

and set the initial time t0 = 0. The term m = 1 contains two
tunneling transitions. This implies the change in the occupa-
tion of one state at most. Thus, the first-order propagator has
composite indices η′ and η that differ for at most one entry.
The resulting first-order propagator can be readily calculated
according to the definition (40), and the diagrammatic rules
set up in Sec. IV D, yielding

J (1)
η′η (t ; 0) =

∑
i

∫ t

0
dt2

∫ t2

0
dt1
∑
ζ i

e− i
h̄ ζ

iEi (η(i) )(t2−t1 )

× η′iηi [−g−ζ i

−ηi (t2 − t1)]δη′ (i)η(i) . (63)

If, for some i, η′i = ηi, we have η′iηi = −1 because η = ±1.
Moreover, the sum over i collapses to a single term due to the
constraint δη(i) ′η(i) . Taking into account Eq. (61), this implies
that, up to first order,

Jηη(t ; 0) = 1 −
∑

i

J (η′ i =ηi )
η′η (t ; 0),

in agreement with the conservation of the total probability.
Let us introduce the irreducible kernel of order 1 using the

explicit form for the correlator (29):

K(1)
η′η(τ ) =

N∏
j=1

η′ j
η j
∑

iζ iαkσ

e− i
h̄ ζ

i[Ei (η(i) )−εk ]τ

× −|tiαkσ |2
h̄2 f α

−ηi (εk )δη′ (i)η(i) , (64)

where we singled out the prefactor
∏

j η
′ j
η j = ±1, common

to all orders (see the diagrammatic rules), by exploiting the
property that when two sojourn indices are the same they
contribute as (ηi )2 = 1. In Laplace space, the first-order prop-
agator acquires then the form

Ĵ (1)
η′η (λ) =1

λ
K̂(1)

η′η(λ)
1

λ
, (65)

with

K̂(1)
η′η(λ) =

N∏
j=1

η′ j
η j
∑

iζ iαkσ

−(|tiαkσ |2/h̄2) f α
−ηi (εk )

λ + iζ i[Ei(η(i) ) − εk]/h̄
δη′ (i)η(i) .

(66)
If, for some i, η′i = ηi, then the prefactor is −1 and the
sum over i collapses to a single term, as for the first-order
propagator. This entails that, from Eqs. (63) and (65), the

FIG. 8. The three topologies of second-order diagrams. Each
fermion line can belong to each of the N states of the central system
S. The first diagram is reducible while the second and third are
irreducible.

diagonal elements of the irreducible kernel are related to the
off-diagonal ones by

K̂(1)
ηη (λ) = −

∑
i

K̂(1),η′ i =ηi

η′η (λ). (67)

Since, as we show below, the rates K̂(1)
η′η(0) are the steady-state

rates of the master equation for the populations in the sequen-
tial tunneling approximation [34], Eq. (67) is consistent with
the conservation of the total probability.

Higher-order contributions can be calculated as well ac-
cording to the diagrammatic rules given in Sec. IV D. The
second-order contribution to the propagator for the popula-
tions is the sum of the three classes of diagrams in Fig. 8. The
first is a reducible diagram and in Laplace space is the product
of two lower-order diagrams

(68)

Here, the internal sum over η has been singled out, allowing
for the use of the matrix notation

(69)

The full propagating function Ĵ
(2)

in Laplace space, expressed
as the sum of the three diagrammatic contributions shown in
Fig. 8, is given by

Ĵ
(2)

(λ) = 1

λ

[
K̂(1)

(λ)

λ
· K̂

(1)
(λ)

λ
+ K̂(2)

(λ)

λ

]
, (70)

where the irreducible kernel of second order K̂(2)
(λ) is the

sum of the two second-order irreducible diagrams in Fig. 8
(the second and the third) in Laplace space. As discussed
in Sec. VI below, these contributions can be written as the
contraction of a matrix block with a vertex, as in Eq. (66),
with the difference that the block has now internal processes.
The same applies to higher-order irreducible kernels leading
to the final Eq. (97) below.

Going to the third-order propagator, it collects the contri-
butions from the 15 diagrams listed in Fig. 9 where, in order
to give a compact visualization, we introduce the symbols

2 = + (71)

and

3 = + + . (72)

The crosses have the role of exchanging the fermion lines
to produce the different topologies of diagrams. In the first

125417-13



LUCA MAGAZZÙ AND MILENA GRIFONI PHYSICAL REVIEW B 105, 125417 (2022)

2 2

2 2 3

2

FIG. 9. Compact representation for the 15 third-order diagrams.
The five diagrams in the left column are reducible and can be seen
as combinations of the first- and second-order ones (see Fig. 8). The
10 diagrams on the right are irreducible and their explicit forms are
the same as the ones listed in Appendix H for an individual degree of
freedom of S. The lower-right class of diagrams vanishes when each
of the three fermion lines belongs to the same state.

column of Fig. 9 are listed the reducible third-order diagrams
that can be obtained by combining the two second-order irre-
ducible diagrams in Fig. 8 and a first-order one. The second
column of Fig. 9 lists the irreducible diagrams divided for
convenience in the two classes with overlap of two and three
fermion lines. Irreducible diagrams containing n overlapping
fermion lines are called n-tier diagrams.

Along the same lines as with the second order, we can write
the third-order propagating function in Laplace space as the
sum of products of lower-order irreducible kernels plus the

irreducible third-order kernel K̂(3)
(λ), i.e.,

Ĵ
(3)

(λ) = 1

λ

[(
K̂(1)

(λ)

λ

)3

+ K̂(1)
(λ)

λ
· K̂

(2)
(λ)

λ

+ K̂(2)
(λ)

λ
· K̂

(1)
(λ)

λ
+ K̂(3)

(λ)

λ

]
, (73)

where K̂(3)
(λ) collects the irreducible third-order diagrams in

Fig. 9 (the ones in the second column).
At this point we are in the position to derive the formally

exact GME for the populations and the current. The exact
propagator is obtained by summing over all orders m the
mth-order propagators as follows:

Ĵ(λ) =
∞∑

m=0

Ĵ
(m)

(λ)

= 1

λ

[
1 + K̂(1)

(λ)

λ
+
(
K̂(1)

(λ)

λ

)2

+ K̂(2)
(λ)

λ

+
(
K̂(1)

(λ)

λ

)3

+2
K̂(1)

(λ)

λ
· K̂

(2)
(λ)

λ
+K̂(3)

(λ)

λ
+· · ·

]

= 1

λ

∞∑
m=0

(
K̂(1)

(λ)

λ
+ K̂(2)

(λ)

λ
+ · · ·

)m

= 1

λ

∞∑
m=0

(K̂(λ)

λ

)m

= [λ1 − K̂(λ)
]−1

, (74)

where we introduced the kernel

K̂(λ) =
∞∑

m=1

K̂(m)
(λ) (75)

which collects all the irreducible contributions to Ĵ. From
Eq. (74), λĴ(λ) − 1 = K̂(λ) · Ĵ(λ). By transforming back to
the time domain, this implies that J is the solution of the
following GME:

d

dt
J(t ) =

∫ t

0
dt ′ K(t − t ′) · J(t ′). (76)

According to Eq. (19), the populations are obtained by mul-
tiplying the above matrix equation by P(0), the population
vector at the initial time t = 0, which results in

d

dt
P(t ) =

∫ t

0
dt ′ K(t − t ′) · P(t ′). (77)

The asymptotic populations are the solution of the equa-
tion 0 = K̂(0) · P∞, which is obtained upon applying to
Eq. (77) the final value theorem f (t → ∞) = limλ→0 λ f̂ (λ).

B. Integral equation for the current

In the present situation of diagonal hybridization matrices,
the current functional Il [Eq. (13)], entering the expression
for the current through the lead l via Eq. (12), specializes to

Il (ξ
∗, ξ, ξ̄) = −

∫ t

t0

dt ′ ∑
i,x,y,z

[
x ξ z

y (t )g−z
l,xz(t − t ′)ξ−z

x (t ′)
]

i

× δz,−1δy,+1. (78)

The current functional has thus the same form as the phase
of the influence functional except that there is no integration
over the time of the last tunneling transition and there are
constraints on the contributing processes. This entails that the
diagrammatic unraveling of the current propagator, obtained
by expanding the influence functional as a series in the tun-
neling transitions, goes along the same lines as the one for the
populations. The differences consist in the last fermion line
of the diagrams bearing the constraints associated with the
current and the nested time integrals missing the integration
over the last tunneling time. The expansion of JI

l,η′η(t, t0) starts
from m = 1 because, not being at the exponent, the current
functional adds two additional transitions to the ones gener-
ated by expanding the influence functional. This also implies
that, if there are no coherences in the initial state of the system,
then also the paths contributing to the current start and end
in sojourn states. The current propagator, in the discretized
picture and in the occupation-number representation, is then
JI

l,η′η(t ; 0) =∑∞
m=1 JI (m)

l,η′η (t ; 0), where

JI (m)
l,η′η (t ; 0) =

∑
pathsm

∫
DI{t}m

∏
i

∑
Pi

Bi
mi

(Pi )�
i
mi

(Pi )

× constraints, (79)

with
∑

i mi = m and Bi
mi

and �i
mi

defined in Eq. (41). To order
m there are 2m tunneling transitions, as for the populations,
however, in the case of the current the last transition occurs at
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i, l

η
i
= +1

i, l

η
i
= +1

i, l

η
i
= +1

i, l

η
i
= +1

FIG. 10. Examples of diagrams contributing to Al . The sojourn
of the degree of freedom i associated to the last transition is con-
strained to be ηi ′ = +1.

the final time t , yielding the definition∫
DI{t}m :=

∫ t

t0

dt2m−1

∫ t2m−1

t0

dt2m−2· · ·
∫ t2

t0

dt1. (80)

Going to the details of the constraints in the current calcu-
lations, they can be read off from Eq. (78). The first is that
the correlator of the last fermion line is not summed over
the leads but has the index l of the considered lead. Further,
according to Eq. (32) the Grassmann variable associated to
the last transition (the paths start from and land in a sojourn)
is of the type ξ

ζ ′
−η′ζ ′ . Then, the constraints in Eq. (78) translate

into ζ ′ = −1 and −η′ζ ′ = +1, which imply δη′,+1, namely,
the last sojourn of the degree of freedom i associated to the last
transition has to be +1. Summarizing, the current constraints
on the last fermion line are as follows:

(i) The last fermion line is specific to the lead l so that
there is no contraction over the lead index α′.

(ii) The index ζ ′ of the last fermion line is constrained to
be ζ ′ = −1.

(iii) The final sojourn of the state i associated to the
fermion line making the last transition must be η′i = +1 (the
sum over i accounts for all possible processes).

Examples of paths that contribute to Al with associated
fermion lines are shown in Fig. 10.

The explicit expression for the term m = 1 in the expansion
of the current propagator is

JI (1)
l,η′η(t ; 0) =

N∏
j=1

η′ j
η j
∑

i

∫ t

0
dt1
∑
ζ i

e− i
h̄ ζ

iEi (η(i) )(t2−t1 )

× [−g−ζ i

l,−ηi (t2 − t1)
]
δη′ (i)η(i)δζ i,−1δη′ i,+1 (81)

[cf. Eq. (63)]. In Laplace space

Ĵ
I (1)
l (λ) =K̂I (1)

l (λ)
1

λ
. (82)

Let us denote with K̂I
l (λ) =∑m K̂I (m)

l (λ) the sum of all the
irreducible diagrammatic contributions to Âl (λ) with the last
fermion line satisfying the constraints given by the current
functional. Note that the reducible contributions to Âl (λ)
are products of ordinary irreducible kernels K̂(λ) with only

the last factor of the type K̂I
l (λ). This is because only the

last fermion line bears the constraints of the current calcu-
lation. Then, we find that the exact current propagator is the

h

t1 t2

v

FIG. 11. Irreducible diagram of order 1. The vertex v is denoted
by the full dot. The two ends of the fermion line are contracted,
namely, the indices ζ i, α, k, and σ are summed over. The time
interval t2 − t1 is a blip only for the state associated to the fermion
line. Note that the states i are summed over in contracting the fermion
line [see Eq. (90)].

following sum over all orders m of the mth-order propagators:

Âl (λ) = K̂I
l (λ)

λ
·
[

1 + K̂(1)
(λ)

λ
+
(
K̂(1)

(λ)

λ

)2

+ K̂(2)
(λ)

λ

+
(
K̂(1)

(λ)

λ

)3

+ K̂(1)
(λ)

λ
· K̂

(2)
(λ)

λ
+ · · ·

]

= K̂I
l (λ) · [λ1 − K̂(λ)]−1

= K̂I
l (λ) · Ĵ(λ), (83)

or, in the time domain

Al (t ) =
∫ t

0
dt ′ KI

l (t − t ′) · J(t ′). (84)

Similarly to the steady-state populations, the steady-state cur-
rent is found by applying to Eq. (83) the final value theorem,
which results in

I∞
l = e2 Re TrS

[
A∞

l

]
= lim

λ→0
e2 Re TrS

[
K̂I

l (λ) · λĴ(λ)
]

= e2 Re TrS
[
K̂I

l (0) · J∞]
= e2 Re

∑
η′η

K̂I
l,η′η(0)P∞

η , (85)

where we assumed that the matrix elements of the asymptotic
propagator J∞ are independent of their column index, i.e., that
the steady-state populations are independent of their initial
values. In other words, in the asymptotic propagator matrix
each column is equal to the asymptotic population vector.

VI. EXACT FORMAL EXPRESSION FOR THE KERNEL

A. Block structure of the irreducible kernel

The diagrammatic contributions to the populations and
current propagators display an exponential dependence on
time [cf. Eqs. (29) and (42)]. This feature and the nested
time integrals enable one to express the irreducible kernels
in Laplace space as the contraction of products of blocks,
each equipped with a matrix structure, with an initial vertex.
The simplest example is provided by the first-order irreducible

kernel K̂(1)
(λ) in Eq. (66), which can be rendered by the con-

traction of the product of two matrices, associated to an initial
vertex v and a block h(λ) which encompasses a free-fermion
line, respectively (see Fig. 11).
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The matrix blocks are indexed by the state index i and the
associated collective index

χ := (ζ i, α, k, σ︸ ︷︷ ︸
κ

, η(i) )
(86)

which includes path and leads variables (note that the compo-
nents of χ depend on the state i). The scalar product between
two generic blocks A and B is given by

[A · B]i′i
χ′χ =

∑
i′′χ′′

[A]i′i′′
χ′χ′′ [B]i′′i

χ′′χ. (87)

We denote by the symbol 〈·〉 the contraction of a matrix
block C with an initial vertex v−ηi . The contraction consists in
summing over the initial and final index κ and κ′ [cf. Eq. (86)],
namely,

〈C · v−ηi〉i′i
η′ (i′ )η(i) =

∑
κ′κ

[C]i′i
χ′χvi

−ηi (κ). (88)

As a result, the first-order kernel in Eq. (66) can be written as

K̂(1)
η′η(λ) =

N∏
j=1

η′ j
η j
∑

i′i

〈h(λ) · v−ηi〉i′i
η′ (i′ )η(i) , (89)

which is the contraction of the scalar product

〈h(λ) · v−ηi〉i′i
η′ (i′ )η(i) =

∑
κ′,κ

∑
i′′χ′′

[h(λ)]i′i′′
χ′χ′′ [v−ηi ]i′′i

χ′′χ. (90)

Here, we have defined the matrix blocks of elements

[h(λ)]i′i
χ′χ := 1

λ + iζ i[Ei(η(i) ) − εk]/h̄
δi′iδχ′χ,

[v±ηi ]i′i
χ′χ := − |tiασ (εk )|2

h̄2 f α
±ηi (εk )δi′iδχ′χ

≡ vi
±ηi (κ)δi′iδχ′χ. (91)

Graphically, the vertices v± are associated to the two pro-
cesses

ηi
v−ηi,

ηi
v+ηi, (92)

with the ± sign of v being established directly by the form
of the influence functional. Note that, since we deal with the
population propagator, the paths start and end in sojourns, thus
the initial vertex is always of the type v−η. In all diagrams,
the two ends of each fermion line are contracted in this way.
Analogously, the matrix element of the irreducible current
kernel of first order KI (1)

l (λ) reads as

[
K̂I (1)

l (λ)
]
η′η =

N∏
j=1

η′ j
η j
∑

i′i

δη′ i,+1〈c′
lh(λ) · v−ηi〉i′i

η′ (i′ )η(i) ,

(93)
where c′

l := δζ ′ i,−1δα′,l , so that

[c′
lh(λ)]i′i

χ′χ := δζ i,−1δα,l

λ + iζ i[Ei(η(i) ) − εk]/h̄
δi′iδχ′χ (94)

[cf. Eq. (91).

v
t1 t4t2 t3

h B h

v
t1 t4t2 t3

h X h

FIG. 12. Irreducible diagrams contributing to J (2). A vertex is
denoted by a full dot. The two ends of the lines connecting two blocks
carry path indices that are summed over in the connection. The first
block is contracted with the vertex v and the right end of the last
block is also contracted.

Going to orders higher than the first, consider the four-
transition diagrams of Fig. 12: the time slicing yields a
block-product structure in Laplace space. The blocks are
shown in Fig. 13. Each of them is a matrix with state indices
i, j and the two collective indices χ′ and χ that specify the
path and lead variables according to Eq. (86).

The sum over paths is performed automatically by the
matrix multiplications implied by forming the diagrams from
blocks which, in turn, possibly contain internal processes. The
simplest examples of the latter are given by the bubble and
crossing blocks B and X of Fig. 13. The irreducible kernel of
order 2 in Laplace space acquires the following expressions in
terms of the blocks defined above:

K̂(2)
η′η =

N∏
j=1

η′ j
η j
∑

i′i

〈h · [B + X] · h · v−ηi〉i′i
η′ (i′ )η(i) , (95)

where the dependencies on λ are understood.
The bubble and the crossing shown in Fig. 13 consti-

tute the building blocks of the important resonant tunneling
approximation (RTA) [47] in which diagrams with overlap
of more than two overlapping fermion lines are neglected
[see Eq. (106) below]. The third-order irreducible kernel in
Laplace space reads as, within the RTA,

K̂(3)
RTAη′η =

N∏
j=1

η′ j
η j
∑

i′i

〈h · [B + X] · h

· [B + X] · h · v−ηi〉i′i
η′ (i′ )η(i) . (96)

Including in a formal way the contributions beyond RTA and
the higher-order irreducible diagrams with overlap of arbi-
trarily many fermion lines, we obtain a picture where the
kernel results from contraction of a dressed block, the irre-
ducible propagator φ, whose definition is the object of the next
section.

iκ iκ

η(i) η(i)

h

iκ iκ

η(i) η (i)

B

iκ i κ

η(i) η (i)

X

FIG. 13. The free propagator, bubble, and crossing blocks in-
volved in the diagrams of Figs. 11 and 12.
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B. Diagrammatic unraveling of the kernel

The sum of all irreducible diagrams can be obtained by
contracting with an initial vertex the dressed block φ which
gives the exact kernel according to

K̂η′η(λ) =
N∏

j=1

η′ j
η j
∑

i′i

〈φ(λ) · v−ηi〉i′i
η′ (i′ )η(i) . (97)

The irreducible propagator φ can be seen as a block with an
incoming and an outgoing fermion line, similar to the ones
shown in Fig. 13, dressed by processes of all orders. Using
the notation introduced in Sec. V, with the boxes that per-
mute the fermion lines numbered according to the number of
overlapping lines, we can give the following (symbolic) exact
expression:

η(i) η (i )

iκ i κ

φ

=

h1
∞

n=0

vS2

2

h1

+

vS2

2
∞

m=1

vS3

3

h2

+

vS3

3
∞

k=1

. . . .

k
h2

m
h1

n

(98)

Notice that, for simplicity, the diagrams and the corresponding
formulas above them are both ordered from left to right here,
at variance with the convention used throughout the text,
where formulas are ordered from right to left. This formal
unraveling of the propagator constitutes a main result of this
work. It systematically encompasses the truncation schemes
based on the order in  (e.g., sequential tunneling and cotun-
neling) and on the depth of the hierarchy of overlap of fermion
lines (e.g., RTA), as we exemplify below. In Eq. (98) we have
introduced h1 ≡ h and, similarly, for the blocks with higher
overlap of noncrossing fermion lines hn. As in the definition
of the first-order irreducible kernel in Eq. (90), the symbol 〈·〉
implies the contraction with an initial vertex of a fermion line,
in this case the most internal. The boxes 2 and 3 are defined

in Eqs. (71) and (72), respectively. The box 4 reads as

4 = + + + , (99)

and analogous definitions hold for the higher-order boxes.
Finally, Sn contains the box n that operates on n-fermion
lines by exchanging them in pairs and thus represents a class
of blocks.

From the schematic expression in Eq. (98) we find in
Laplace space

φ =
∞∑

n=0

(
h〈S̃2v〉)nh (100)

with 〈S2v〉 ≡ B + X, the RTA self-energy, and h1 ≡ h (see
Fig. 13). In Eq. (100), we have defined the dressed self-
energies iteratively as

S̃n−1 :=
∞∑

k=0

(hn−1〈S̃nv〉)kSn−1. (101)

Summing the geometrical series in Eq. (100) we find the exact
result

φ = [h−1 − 〈S̃2v〉]−1. (102)

Thus, the function φ is the solution of the Dyson equation

φ = h + h〈S̃2v〉φ. (103)

The formal exact expression for φ generates the different ap-
proximations schemes used in literature by suitably truncating
the series expression (100) and/or the depth of the hierarchy in
Eq. (101). For example, the sequential tunneling (ST) scheme,
first order in , is recovered by truncating Eq. (100) to n = 0,

φST = h. (104)

The next-order perturbative scheme includes the cotunneling
(CT) diagrams, with n = 0, 1 in Eq. (100) and S̃2 = S2, so that
〈S2v〉 = B + X. Then, the irreducible propagator reads as

φCT = h + h(B + X)h. (105)

Retaining all orders in the series expansion for φ and trun-
cating the hierarchy in Eq. (101) to two overlapping fermion
lines, i.e., to the second tier, where S̃2 = S2, we obtain the
Dyson equation for the RTA propagator

φRTA = h + h(B + X)φRTA. (106)

This approximation scheme is nonperturbative in the tun-
nel coupling  and corresponds to the scheme proposed in
[45,47]. Note that the propagator φCT is readily recovered by
expanding φRTA to order 2. From the RTA, neglecting the
crossing block, we obtain the second-tier noncrossing approx-
imation (NCA2), to be discussed below, which is the solution
of

φNCA2 = h + hBφNCA2 (107)

and reproduces the results obtained by Meir, Wingreen, and
Lee in [39] with the equation-of-motion method.

C. Dyson equation for the kernel in terms of dressed
bubbles and crossings

We split the exact, dressed self-energy of Eqs. (102) and
(103) as 〈S̃2v〉 = B̃ + X̃, according to whether the incoming
and outgoing fermion lines are the same or not. This yields

φ = [h−1 − (B̃ + X̃)]−1. (108)

Hence, the sum B̃ + X̃ is the self-energy for the exact propa-
gator φ. The irreducible block B̃ is a fermion line dressed by
processes of all orders, including crossings. In the dressed,
irreducible crossing block X̃, the incoming and outgoing
fermion lines are not the same, which implies the presence
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i κ i κ

η(i) η (i)

B̃
i κ i κ

η(i) η (i )

X̃

FIG. 14. Dressed, irreducible bubble and crossing blocks that
generalize the ones shown in Fig. 13. The sum B̃ + X̃ is the
self-energy for the exact propagator φ. Within the dressed bubble
approximation (DBA), the irreducible bubble diagram B̃ is the self-
energy of the propagator φDBA.

of crossings involving these main fermion lines. These two
dressed blocks are shown in Fig. 14.

Let us introduce the dressed propagator in the dressed bub-
ble approximation (DBA) φDBA, obtained by setting to zero
the crossing block X̃. It satisfies the same Dyson equation as
φ, but with the dressed bubble self-energy alone; namely, in
Laplace space,

φDBA =[h−1 − B̃]−1 (109)

or, equivalently,

φDBA =h + hB̃φDBA. (110)

Truncation of the hierarchy to the second tier yields the NCA2
[Eq. (107)], where B̃ ≡ B. In terms of φDBA, we can cast the
exact equation for φ, Eq. (103), in the form

φ = φDBA + φDBAX̃φ. (111)

Due to the lack of crossings on the main fermion line, φDBA is
diagonal in κ and in i (but not in η(i)), namely,

[φDBA]i′i
χ′χ = ϕii

DBA,η′ (i)η(i) (κ)δi′iδκ′κ. (112)

Componentwise in κ, retaining the matrix structure induced
by η(i) = (. . . , ηi−1, ηi+1, . . . ) and with the dependence on λ

left implicit, Eq. (111) reads as

φi′i(κ′, κ) = ϕii
DBA(κ′)δi′iδκ′κ

+ ϕi′i′
DBA(κ′) ·

∑
i′′κ′′

X̃i′i′′ (κ′, κ′′) · φi′′i(κ′′, κ),

(113)

where ϕii
DBA(κ) is the left-contracted propagator given by

ϕii
DBA(κ) =

∑
i′κ′

φi′i
DBA(κ′, κ). (114)

The steady-state population kernel can then be written as

K̂η′η(0) =
N∏

j=1

η′ j
η j
∑

i′i

〈φ · v−ηi〉i′i
η′ (i′ )η(i)

=
N∏

j=1

η′ j
η j
∑
i′iκ′κ

φi′i
η′ (i′ )η(i) (κ

′, κ)vi
−ηi (κ). (115)

As anticipated in Sec. V A, the steady-state populations P∞
η

are the solutions of the matrix equation

0 =
∑

η

K̂η′η(0)P∞
η . (116)

D. Current kernel

As shown in Sec. V B, the current kernel can be calculated
along the same lines as the population kernel provided that the
additional constraints

δ
η′ i′ ,+1c′

l ≡ δ
η′ i′ ,+1δα′,lδζ ′,−1

are introduced for the last fermion line.
According to Eq. (85), the general formula for the steady-

state current on lead l is

I∞
l = e2 Re

∑
η′η

K̂I
l,η′η(0)P∞

η , (117)

where the kernel is in Laplace space and calculated at λ = 0.
The current kernel formally reads as

K̂I
l,η′η(0) =

N∏
j=1

η′ j
η j
∑

i′i

δ
η′ i′ ,+1〈c′

lφ · v−ηi〉i′i
η′ (i′ )η(i)

=
N∏

j=1

η′ j
η j
∑
i′iκ′κ

δ
η′ i′ ,+1c′

lφ
i′i
η′ (i′ )η(i) (κ

′, κ)vi
−ηi (κ)

(118)
[cf. Eq. (115)].

Summarizing, the steady-state populations and currents of
the N-state system coupled to multiple leads can be obtained
via Eqs. (116) and (117), respectively. Both the population
and the current kernels are in turn directly given by the ir-
reducible propagator φ which is calculated via the Dyson
equations (110) and (111).

VII. PROPORTIONAL COUPLING AND CONNECTION
WITH THE GREEN’S FUNCTIONS

Consider the situation in which the central system is con-
nected to two leads (L and R) and the tunneling amplitudes
are related by

|tiRσ (ε)|2 = γiR|tiLσ (ε)|2/γiL

with γiR + γiL = 1 (proportional coupling). Current conser-
vation at the steady state I∞ = I∞

L = −I∞
R implies, for pro-

portional coupling, I∞ =∑i[γiRI∞
iL − γiLI∞

iR ], where I∞
i′α =

e2 Re
∑

η′η K̂I
i′l,η′η(0)P∞

η is the state-resolved steady-state cur-

rent and K̂I
i′l,η′η(0) is given by Eq. (118) without the sum over

the final state i′. Correspondingly, we introduce the current
kernel

K̂I
η′η(0) :=

∑
i′

[
γi′RK̂I

i′L,η′η(0) − γi′LK̂I
i′R,η′η(0)

]
, (119)

with the steady-state current obtained as

I∞ = e2 Re
∑
η′η

K̂I
η′η(0)P∞

η . (120)

Consider now the Dyson equation for φ, Eq. (113). To obtain
the current kernel for the current on lead l we make a contrac-
tion with the vertex as in Eq. (118), which gives

〈c′
lφ · v−ηi〉 = 〈c′

l [φDBA + φDBA · X̃ · φ] · v−ηi〉 (121)
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or, in symbols,

l

φ

= l

φDBA

+
φ X̃

l

φDBA

,

(122)
where we highlighted the last fermion line which bears the
cur-
rent constraints of the lead l . In the first term on the right-hand
side, the vertex from which the last fermion line departs is the
first vertex, the one explicitly appearing in the contraction.
On the other hand, in the second term, this vertex is inside the
dressed block with crossing of the main fermion line X̃. Using
the relation f α

−η(εk ) = δη,+1 − η f α
+ (εk ), both these vertices

[denoted with red full dots in Eq. (122)] can be split as

vi
−ηi (κ) = δηi,+1vi(κ) − ηivi

+(κ), (123)

where vi(κ) = −|tiασ (εk )|2/h̄2 does not contain the Fermi
function. Then, we can write the dressed crossing block by
singling out this internal vertex as follows:

X̃i′i(κ′κ) = vi′ (κ′)x̃i′i(κ′κ) − vi′
+(κ′)x̃i′i

+ (κ′κ). (124)

Taking the difference in Eq. (119), the terms not containing
the Fermi function, i.e., the ones with vi′ , cancel out for
proportional coupling, so that from (118), (121), and (124)
we obtain

K̂I
η′η(0) =

N∏
j=1

η′ j
η j
∑

i′i

δ
η′ i′ ,+1

[
γi′R〈c′

Lφ · v−ηi〉i′i
η′ (i′ )η(i)

− γi′L〈c′
Rφ · v−ηi〉i′i

η′ (i′ )η(i)

]
= −

∑
i′κ′

[γi′Rvi′L
+ (κ′) − γi′Lvi′R

+ (κ′)]�i′
η′η(κ′)δζ ′,−1,

(125)

with vil
+(κ) = vi

+(κ)δα,l and

�i′
η′η(κ′) :=

N∏
j=1

η′ j
η jδ

η′ i′ ,+1

∑
i

[
ηiϕii

DBA(κ′)δi′i + ϕi′i′
DBA(κ′)

×
∑
i′′κ′′κ

x̃i′i′′
+ (κ′, κ′′)φi′′i(κ′′, κ)vi

−ηi (κ)

]
η′ (i′ )η(i)

,

(126)

where matrix multiplication with respect to the composite
sojourn indices η(i) is understood in the second line.

Using the above definitions and Appendix E, the sta-
tionary current with proportional coupling reads as I∞ =
−2 ReTrS[A∞]. From Eqs. (120) and (125)

TrS[A∞] =
∑
η′η

K̂I
η′η(0)P∞

η

= −
∑

i

γiLγiR

2π h̄2

∫
dε[ f L

+(ε) − f R
+ (ε)]ii(ε)

×
∑
ζ

∑
η′η

�i
η′η(ζ , ε)P∞

η δζ ,−1, (127)

where we used the property γiLiiR(ε) = γiRiiL(ε) =
γiLγiRii(ε). On the other hand, from Eqs. (E3) and (E6),

TrS[A∞]=
∑

i

−iγiLγiR

2π h̄

∫
dε
[

f L
+(ε) − f R

+ (ε)
]
ii(ε)Ga

ii(ε),

(128)
where Ga is the advanced Green’s function of the central
system. Note that the blip index ζ always multiplies the imag-
inary unit, as can be seen in the definition of the correlation
functions gζ which enter the diagrammatic contributions to
the propagator [see Eqs. (48)–(55)], along with the phase
factors bkl defined by Eq. (42). This means that, in the time
domain, ζ establishes the sign of the time variable and the
real part can be obtained by removing the constraint δζ ,−1 and
summing over ζ . We can thus make the following identifica-
tion with the retarded and advanced Green’s functions

G (ζ )
ii (ε) = − iζ

h̄

∑
η′η

�i
η′η(ζ , ε)P∞

η , (129)

where ζ = +1 (−1) gives the retarded (advanced) Green’s
function. The exact steady-state current acquires, in the con-
tinuum limit, the form of the Meir-Wingreen formula [21]

I∞ = e

h̄

∑
i

∫
dε

[
L(ε)R(ε)

L(ε) + R(ε)

]
ii

[ f L
+(ε) − f R

+ (ε)]

×
[
− 1

π
Im Gr

ii(ε)

]
, (130)

where iiα (ε) = 2π
∑

σ �ασ (ε)|tiασ (ε)|2 and where we
used Re[−iGa

ii(ε)] = ImGa
ii(ε) = −ImGr

ii(ε). The function
−(1/π )Im Gr

ii(ε) is the system’s density of states in the pres-
ence of tunnel coupling to the leads.

A quantity used to characterize the transport properties of
the setup in a nonequilibrium setting, namely, in the presence
of a voltage bias eV := μL − μR, is the differential conduc-
tance ∂I/∂V . At equilibrium, μL = μR = μ, the behavior of
the transport setup is described by the linear conductance G,
defined as the limiting value of the differential conductance
for vanishing bias. Setting μL = μ + eV/2 and μR = μ −
eV/2, and using ∂ f L

+/∂V = −(e/2)∂ f L
+/∂ε and ∂ f R

+/∂V =
(e/2)∂ f R

+/∂ε, the linear conductance assumes the form [67]

G = − πG0

∑
i

∫
dε

[
L(ε)R(ε)

L(ε) + R(ε)

]
ii

∂ f+(ε)

∂ε

×
[
− 1

π
Im Gr

ii(ε)

]
, (131)

where, due to the vanishing bias, f L
+(ε) = f R

+ (ε) = f+(ε).
Here, G0 := 2e2/h is the conductance quantum. At T = 0, the
derivative of the Fermi function is −δ(ε − μ) so that

GT =0 = πG0

∑
i

[
L(μ)R(μ)

L(μ) + R(μ)

]
ii

[
− 1

π
Im Gr

ii(μ)

]
.

(132)
In the following, we shall apply the general formalism devel-
oped here to two archetypal models, the resonant level model
and the SIAM.
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FIG. 15. Scheme of a spinless level of energy ε0 tunnel coupled
to two noninteracting leads.

VIII. RESONANT LEVEL MODEL

Up to here, we have considered a general interacting cen-
tral system connected to a number of noninteracting leads,
with possibly energy- and state-dependent tunnel coupling.
The only constraint has been given on the correlation matrices
in the form of Eq. (29). In Sec. VII, we have specialized the
discussion to the case of two leads and proportional coupling.

To exemplify the construction carried out so far, we con-
sider in this section the resonant level model (RLM). This
model describes a single, spinless level of energy ε0 coupled
to two noninteracting leads as shown in Fig. 15.

The model Hamiltonian is

H = ε0 a†a +
∑
αkσ

εαkc†
αkσ cαkσ

+
∑
αkσ

[tαka†cαkσ + t∗αkc†
αkσ a]. (133)

Due to the lack of interactions in the dot, this model admits
an exact solution and has been analyzed with a variety of
methods in Ref. [36] (see also [38]). According to the dia-
grammatic rules set up in Sec. IV D, the contributing diagrams
for a noninteracting system can have at most two overlapping
fermion lines for the same electron state. Since the dot is
equipped with a single state, the RTA, discussed in Sec. VI B,
provides the exact description of the resonant level. Hence, the
exact equation (111) reduces to the RTA, where the crossing
block X is not dressed by internal processes and the dressed
propagator φB is given by the bare propagator h dressed by
the bubbles B (see Fig. 16). As a result, the exact Dyson
equation (113) specializes to

φ(κ ′, κ ) = ϕNCA2(κ )δκ ′κ + ϕNCA2(κ ′)

×
∑
κ ′′

X(κ ′, κ ′′)φ(κ ′′, κ ), (134)

κ κ

h

κ κ

η

κ1

B

κ κ

η

X

FIG. 16. Blocks involved in the propagator of the resonant level
model. Full dots represent the vertices defined in Eqs. (91) and (92).
Dashed and solid lines at the bottom denote blip and sojourn states,
respectively. The sojourn index η assumes the values +1 and −1 for
occupied and empty dot, respectively. These internal sojourns are
summed over, the sum being included in the definitions of the blocks.

where the matrix structure in the sojourn index η(i) is lost due
the fact that there is a single-electron state so that χ ≡ κ with

κ = (ζ , α, k).

The dressed propagator φNCA2(κ ′, κ ) = ϕNCA2(κ ′)δκ ′κ is in
turn given by

φNCA2 =[h−1 − B]−1, (135)

according to Eq. (109).
In Laplace space the bare propagator h(λ = 0+) reads as

[h]κ′κ = ih̄
1

ζ (εk − ε0) + i0+ δκ′κ (136)

[see Eq. (91)].
The bubble block, the central diagram in Fig. 16, is the

contraction with a vertex of the internal fermion line (indexed
with 1) of the free propagator with two overlapping fermion
lines

[h2]κ κ =
κ
κ1

η
= i

δζ1,−ζ

ζ( k − k1) + i0+
δκ κ . (137)

Here, the index ζ1 is constrained to be equal to −ζ by the
diagrammatic rules [see Eq. (51) where the upper indices of
the correlation functions gζ

η have opposite signs]. Note that the
block h2 bears no dependence on the dot energy as the system
is in a sojourn state, denoted with η, contrary to the block h
in Eq. (136) where the system is in a blip state (dashed line,
see the left diagram in Fig. 16). Including the sum over the
internal sojourn η due to the sum over paths, the bubble block
is evaluated as follows:

[B]κ κ =
κκ1

η =
η

h2vη

= iζ
κ1

η vη(κ1)δζ1,−ζ

k − k1 + iζ0+
δκ κ

= − iζ

α1,k1

|tα1( k1)|2
k − k1 + iζ0+

δκ κ ,

(138)

where we used
∑

η fη(εk ) = 1 in the vertex

vη(κ) := −|tα (εk )|2
h̄2 f α

η (εk ). (139)

In the wide-band limit (WBL), i.e., for energy-independent
tunneling amplitudes, using the result of Eq. (I1) we obtain

[B]κ′κ = ζ
i

h̄

∑
α1

�α1 |tα1 |2
∫

dε1
δκ′κ

ε1 − εk − iζ0+

= − 1

h̄
π
∑
α1

�α1 |tα1 |2δκ′κ

= − 

2h̄
δκ′κ, (140)

where  = 2π
∑

α �α|tα|2. As a result, from Eq. (135),

ϕNCA2(ζ , k) = iζ h̄
1

εk − ε0 + iζ/2
. (141)
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The block X is given by attaching the vertex vη to the outgoing
fermion line (with index κ′) in the propagator[

hX
2

]
κ′κ = ih̄

δζ ′,−ζ

ζ (εk − εk′ ) + i0+ , (142)

resulting in

[X]κ κ =
κ κ

η

=
iζ η vη(κ )

k − k + iζ0+
δζ ,−ζ

= − iζ |tα ( k )|2
k − k + iζ0+

δζ ,−ζ.

(143)

Here, as for B, the internal sojourn index η is summed over
due to the sum over path with the result that X does not contain
the Fermi function.

The retarded and advanced Green’s functions are given by
Eq. (129) via the function �η′η defined in Eq. (126) which, in
the RLM, adapts to

�η′η(κ′) = η′ηδη′,+1

[
ηϕNCA2(κ′) + ϕNCA2(κ′)

×
∑
κκ′′

x+(κ′, κ)φ(κ, κ′′)v−η(κ′′)
]
. (144)

The block x+ [see Eqs. (123) and (124)] is easy to evaluate
and from Eq. (143) reads as

x+ = iζ h̄
∑

η η

εk − εk′ + iζ0+ δζ ′,−ζ = 0.

Thus,

�η′η(ζ , k) = δη′,+1ϕNCA2(ζ , k),

and the resulting expression for the Green’s function is

G (ζ )(εk ) = − iζ

h̄

∑
η′η

�η′η(ζ , k)P∞
η

= − iζ

h̄
ϕNCA2(ζ , k)

∑
η

P∞
η = 1

εk − ε0 + iζ/2
,

(145)

where we used Eq. (141). Thus, as expected, the single-
particle Green’s function acquires a broadening /2 due to
the coupling of the resonant level to the leads.

Substituting G (ζ=+1)(ε) in Eq. (130), the current for pro-
portional coupling γLR = γRL (with γL + γR = 1), in the
WBL reads as1

I∞ = e

h

∫
dε [ f L

+(ε) − f R
+ (ε)]

LR

(ε − ε0)2 + 2/4

= e

h

LR


r(ε0), (146)

1This integral can be solved by noting that the denominator in the
integral splits as {[(ε − ε0) − i/2]−1 − [(ε − ε0 ) + i/2]−1}/i
and by applying Eq. (I6).

FIG. 17. Single-impurity Anderson model realized by a quantum
dot tunnel coupled to two noninteracting leads.

where  = L + R and where we defined

r(x) = Imψ

(
1

2
+ i

x − μL − i2
2πkBT

)

− Imψ

(
1

2
+ i

x − μR − i2
2πkBT

)
, (147)

with �(x) the digamma function. Equation (146) provides
the exact, finite-temperature expression for the current in the
RLM.

Summarizing, while the RTA gives the exact irreducible
propagator φ and consequently the exact density matrix and
current for the RLM, the crossing diagrams do not contribute
to the retarded and advanced Green’s functions (and therefore
to the current for proportional coupling). Note that, as the dot
can host at most one electron, the system is necessarily non-
interacting and consequently inelastic processes are absent.
This gives the Landauer formula (146), where the tempera-
ture dependence is exclusively in the Fermi functions. Using
Eq. (131) for the conductance, with the imaginary part of
Eq. (145), we readily obtain the analytical expression for the
conductance at T = 0, where −∂ f+/∂ε = δ(ε − μ), which is
of the Breit-Wigner form [22,23]

G = 2e2

h

LR/2

(μ − ε0)2 + 2/4
. (148)

For α = /2 the conductance saturates to half of the quan-
tum of conductance G0 = 2e2/h at resonance, i.e., for μ = ε0.
In the noninteracting spinful model, where the dot can host
two electrons with opposite spin, the sum over σ yields the
maximum Gmax = G0.

IX. SINGLE-IMPURITY ANDERSON MODEL (SIAM)

We now specialize the discussion to the simplest, yet
highly nontrivial, instance of the general model of interacting
nanostructure described by Eq. (1), the single-impurity An-
derson model (SIAM). In the SIAM, the central system is a
quantum dot that can host at most two electrons with opposite
spin states, the latter being denoted by σ = ↑,↓. The dot is
connected to two leads, L and R, via a tunnel coupling which
we assume here to be spin independent. A scheme of the
model is provided in Fig. 17. The resulting four many-body
dot states are given by |0〉, | ↑〉, | ↓〉, and |2〉, or, in terms of the
sojourn indices (η↑, η↓), by | − 1 − 1〉, | + 1 − 1〉, | − 1 + 1〉,
and | + 1 + 1〉, respectively. The difference in chemical po-
tentials produces at long times a stationary current which is
essentially determined by three energy scales: the interaction
energy U between the electrons in the dot, the tunnel coupling
, and the thermal energy kBT . Despite its simplicity, this
model already displays a variety of interesting physical effects
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T
0 TK Γ

CT, ST (pert.)

RTA, NCA2, DSO (2nd-tier)

NCA4, sNCA4 (4th-tier)

DBA, NCA (∞-tier)

FIG. 18. The different approximation schemes for the SIAM dis-
cussed in this work, in their range of validity (kB = 1). Dashed lines
indicate the expected regime of validity. Sequential tunneling (ST)
and cotunneling (CT) are perturbative in  (first and second order,
respectively). The second-tier noncrossing approximation (NCA2)
and the resonant tunneling approximation (RTA) are nonperturbative
in  and neglect diagrams with overlap of more than two fermion
lines (second-tier schemes). The first is obtained from the second by
neglecting the crossing diagrams and yields the Meir-Wingreen-Lee
result [39] for the retarded Green’s function. Higher-tier approxi-
mation schemes deepen the hierarchy of fermion lines. We propose
infinite- and fourth-tier schemes which neglect the crossings at the
first (DBA) or at all levels (NCA, NCA4, sNCA4) and can be seen
as dressed versions of the NCA2.

and transport regimes arising from the interplay of these en-
ergy scales (see Fig. 18). For example, the Kondo effect [4–6],
an exquisitely nonperturbative many-body phenomenon due
to the correlation between electrons in the dot and the leads,
becomes relevant for temperatures around and below a certain
value TK which depends exclusively on , U , and the single-
particle energies εσ .

The full Hamiltonian of the setup reads as

H =
∑
σ

εσ n̂σ + Un̂↑n̂↓ +
∑
αkσ

εαkc†
αkσ cαkσ

+
∑
αkσ

[tαka†
σ cαkσ + t∗αkc†

αkσ aσ ], (149)

where α = L,R, and n̂σ = a†
σ aσ . The single-particle energies

εσ are possibly split by an externally applied magnetic field
ε↑ − ε↓ = �B. Note that spin-independent coupling constants
tαk (and nonmagnetic leads) imply that the correlation matri-
ces g± [Eq. (7)] are not only diagonal, but also proportional to
the identity, namely, [g±(t )]σ ′σ = δσ ′σ g±(t ) with

g±(t ) = 1

h̄2

∑
αk

|tαk|2 f α
± (εk )e− i

h̄ εαkt . (150)

In what follows we use the compact notation of Eq. (22)
which, in the case considered here, adapts to

g+1
+1 = g+, g−1

+1 = g∗
+, g+1

−1 = g−, g−1
−1 = g∗

−. (151)

In the WBL, the tunnel coupling is quantified by  :=
2π
∑

α �α|tα|2. The collective index χ, defined for the general
case in Eq. (86), specializes in the SIAM to

χ := (κ, ησ̄ ), where κ = (ζ , α, k)

and where σ̄ denotes the opposite spin with respect to σ .
In order to simplify the notation, from here on we make the

identifications

ησ ≡ ν and ησ̄ ≡ η,

with ν̄ ≡ −ν and η̄ ≡ −η, so that χ := (κ, η). The system
energies Ei in the phase factors of Eq. (42) are in this case the
dot energies shown in Fig. 7. For the fermion lines associated
to the state σ these energies read as

Eσ = εσ + U/2, σ̄ in a blip state

Eσ (η) = εσ + (1 + η)U/2, σ̄ in the sojourn η
(152)

with similar expressions for Eσ̄ and Eσ̄ (ν).
The retarded (ζ = +1) and advanced (ζ = −1) dot

Green’s functions [Eq. (129)] adopt in the SIAM the form

G (ζ )
σσ (εk ) = − iζ

h̄

∑
η′η

�σ
η′η(ζ , k)P∞

η , (153)

with

�σ
η′η(κ) = η′ηδν ′,+1

∑
s=↑,↓

[
ϕσ

B(κ)δσ s + νϕσ
B(κ)

×
∑
σ ′′κ′′κ′

x̃σσ ′′
+ (κ, κ′′)φσ ′′s(κ′′, κ′)v−ηs (κ′)

]
η′ηs̄

,

(154)
where we used (ν)2 = 1. Here, the blocks in parentheses have
a 2 × 2 matrix structure induced by the sojourn indices η′η,
and the vertex is given by

v−η(κ) := −|tα (εk )|2
h̄2 f α

−η(εk ). (155)

The Meir-Wingreen formula, which gives the current for a
general system in the case of proportional coupling with the
leads (130), adapts for the SIAM to

I∞ = e

h̄

LR



∑
σ

∫
dε [ f L

+(ε) − f R
+ (ε)]

[
− 1

π
ImGr

σσ (ε)

]
.

(156)
The asymptotic population of the spin states σ is the trace
over the occupation states of σ̄ of the SIAM populations P∞

η ,
namely, pσ

ν =∑η P∞
η . In terms of the expectation value of the

number operator n̂σ ,

pσ
+ = 〈n̂σ 〉, pσ

− = 1 − 〈n̂σ 〉. (157)

These expectation values can be calculated either by solving
the master equation for P∞

η [see Eq. (116)] or self-consistently,
via the equations-of-motion technique [42], where, in the
wide-band limit,

〈n̂σ 〉 = 1



∫
dε
[
L f L

+(ε) + R f R
+ (ε)

][− 1

π
ImGr

σσ (ε)

]
,

(158)

with  = L + R.

A. Approximation schemes

Despite the existing rich literature on the SIAM, an exact
analytical solution for the dot Green’s function (153), en-
compassing the whole regime of parameters U , , and T , is
not known so far. In the forthcoming sections, we show how
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known perturbative schemes in , as well as some nonpertur-
bative ones, are recovered within our approach. Furthermore,
an infinite-tier approximation scheme is discussed.

In Fig. 18 we sketch the regime of validity of different
analytical approaches derived from the diagrammatic unrav-
eling of the exact irreducible propagator in Eq. (98). The
sequential tunneling and cotunneling schemes are perturbative
in  and thus valid when  is the smallest energy scale,
namely,  � kBT for U = 0 and  � kBT,U for U = 0. In
order to access the regime  ∼ kBT one needs to include
processes of all orders. The simplest way to do this is to
truncate the hierarchy of diagrams discussed in Sec. VI B
to a maximum overlap of two fermion lines. We call the
resulting schemes second tier. Iterating the insertion of the
bare bubble and crossing blocks defined above in the bare
propagator h and summing the geometrical series results in
the RTA [45,47], where the propagator φRTA is the solution
of the Dyson equation (106). Neglecting the crossing blocks
of the RTA, one is left with a main fermion line dressed by
bubbles, a scheme which we call NCA2. It generalizes the
dressed second order (DSO), which accounts only for charge
fluctuations internal to the main fermion line [49]. In our
language the DSO considers the bubble blocks diagonal in
the index η. On the contrary, the NCA2 takes into account
the full matrix structure of the bubbles and, along with the
RTA, recovers the noninteracting Green’s functions. These
second-tier schemes display artifacts such as the pinning of
the density of states at the particle-hole symmetry point, due
to the temperature-independent self-energy at this symmetry
point, and do not predict the correct Kondo temperature TK.
Crossing diagrams contribute to inelastic processes but are
not expected to be relevant for investigating the zero-bias
anomaly. For these reasons, in Sec. IX D, we discuss the
infinite-tier approximation DBA which allows to recover the
NCA2 form for the Green’s function but with dressed self-
energies [see Eqs. (210) and (215) below]. In Sec. IX F, we
explicitly evaluate such self-energies in a simplified version
of the fourth-tier scheme NCA4 (sNCA4). In concluding this
section, we notice that the NCA scheme discussed here is
different from the slave-boson NCA for the SIAM reviewed
in [91]. We nevertheless use the same name since we similarly
neglect the crossing diagrams at all levels.

B. Perturbative schemes

1. Sequential tunneling

The simplest approximation, valid for kBT,U �  (or
kBT �  if U = 0), consists in truncating to the lowest order
in  the Dyson equation for the propagator φ [Eq. (103)].
This results in φST = h, where the bare propagator with a sin-
gle fermion line reads as for the SIAM [h]σ

′σ
χ′χ = hσ

ηηδσ ′σ δχ′χ,
where

hσ
ηη =

σκ

η
= i

1
ζ[ k − Eσ(η)] + i0+

. (159)

This propagator yields the current to the lowest order, namely,
the second order in the tunneling amplitude t (or first order in
). Note that the propagator φST is diagonal both in the spin
and in the remaining variables χ. Using Eqs. (153) and (154),
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[2
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FIG. 19. Differential conductance vs the gate voltage Vg and bias
voltage V in the sequential tunneling (ST) approximation. At low-
bias voltages, the current is strongly suppressed inside the regions
enclosed by so-called Coulomb diamonds due to charging effects.
The ST approximation does not account for virtual processes (of
higher order in ) which enable transport of charge also inside the
Coulomb diamonds. Degenerate case εσ = ε0 = −U/2 + eVg, with
temperature kBT = 0.1U and tunneling rates L = R = 0.005U .

the Green’s functions in the ST approximation are

G (ζ )
σσ,ST(εk ) = − iζ

h̄

∑
η′η

η′ηϕσσ
ST,η′η(ζ , k)pσ̄

η

=
∑
η

pσ̄
η

εk − Eσ (η) + iζ0+ , (160)

where pσ̄
η =∑ν P∞

η . Recall that ϕσσ
ST,η′η(κ ) =∑

σ ′κ ′ φσ ′σ
ST,η′η(κ ′, κ ) [see Eq. (114)]. In the ST approximation,

from Eqs. (157) and (160),

− 1

π
ImGr

σσ (ε) = δ(ε−εσ )(1−〈n̂σ̄ 〉) + δ(ε − εσ − U )〈n̂σ̄ 〉,
(161)

where we have used limε→0+ ε/(x2 + ε2) = πδ(x), and the
general formula (156) gives for the current

I∞
ST = e

h̄

LR



∑
σ

{[ f L
+(εσ ) − f R

+ (εσ )](1 − 〈n̂σ̄ 〉)

+ [ f L
+(εσ + U ) − f R

+ (εσ + U )]〈n̂σ̄ 〉}. (162)

The level’s populations are obtained by solving Eq. (158)
which yields in this case

〈n̂σ̄ 〉 =
∑

α α f α
+ (εσ )

 +∑α α f α+ (εσ ) −∑α α f α+ (εσ + U )
. (163)

In Fig. 19, we show the differential conductance ∂I∞
ST/∂V in

the degenerate case, obtained from Eqs. (162) and (163) by us-
ing ∂ f L

+/∂V = −(e/2)∂ f L
+/∂ε and ∂ f R

+/∂V = (e/2)∂ f R
+/∂ε.

The differential conductance is shown as a function of the
bias voltage eV = μL − μR, and the gate voltage, which shifts
the position of the (degenerate) level via ε0 = −U/2 + eVg.
Such plot, called stability diagram, highlights the resonances
which form diamond-shaped regions where the differential
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FIG. 20. Linear conductance within the NCA2, in units of the
conductance quantum G0 = 2e2/h, vs the gate voltage ε0 − μ in the
degenerate case εσ = ε0. The peaks shrink and move towards the cen-
ter as temperature is decreased. The curves at the lowest temperatures
display an unphysical pinning at the particle-hole symmetry point.
The tunnel coupling is  = 0.1U with L = R = /2.

conductance is zero. In the central regions called Coulomb
diamonds, the dot populations are 0, 1, and 2, from left
to right, and the current is suppressed. This effect is called
Coulomb blockade and appears in the present regime of weak
tunnel coupling, where the Coulomb interaction dominates
and /kBT � 1.

A horizontal cut (V = 0) of the stability diagram gives
the linear conductance G = ∂I/∂V |V =0 [see Eq. (131)]. The
linear conductance, which is suppressed at the center of the
Coulomb diamond, shows two peaks separated by the energy
U (see Fig. 20 below). A straightforward extension of the ST
which accounts for a  broadening in the Green’s function is
discussed in Sec. IX C 4 below.

2. Cotunneling

The next improvement over the ST, also perturbative in
, is the cotunneling approximation. It allows charge trans-
fer across the dot also in the parameter regimes where ST
processes are exponentially suppressed due to the Coulomb
blockade [34], i.e., around the center of the Coulomb diamond
Vg ∼ 0 (see Fig. 19). In our diagrammatic approach, this oc-
curs via virtual processes encoded in the bubble and crossing
blocks B and X, i.e., according to Eq. (105),

φCT = h + h(B + X)h. (164)

As the sequential tunneling approximation, also this scheme
is valid when  is the smallest energy scale of the problem.

As already noticed in the case of the RLM, the diagram-
matic rules in Sec. IV D and in Appendix H imply that when
there are at most two overlapping fermion lines associated to
the same state (in the present case to the same spin state), the
fermion line of a bubble has the index ζ opposite to the one of
the main fermion line. Similarly, in a crossing, the outgoing
line has the index ζ opposite to the one of the incoming line.
These constraints do not apply when the spin states involved
in a bubble or in a crossing block are different. It is therefore
natural to distinguish these two cases.

The bubble block is obtained by contracting with a vertex
the internal fermion line (indexed with 1) of the bare propa-
gator with two overlapping fermion lines which can be of the
same [σ (σ )] [see Eq. (165)] or of opposite [σ (σ̄ )] spin. The
first is given by [h(σ )

2 ]σ
′σ

χ′χ,ν ′ν = hσ (σ )
2 δσ ′σ δκ′κδη′η, where

hσ(σ)
2 =

σκ
σκ1

ν
η

= i
δζ1,−ζ

ζ( k − k1) + i0+
, (165)

[cf. Eq. (137)]. Note that the block h(σ )
2 has a 4 × 4 structure

in the composite index (ν, η) ≡ (ησ , ησ̄ ). The propagator with
overlap of two fermion lines with opposite spin is given by the
block [h(σ̄ )

2 ]σ
′σ

κ′κ = hσ (σ̄ )
2 δσ ′σ δκ′κ, with

hσ(σ̄)
2 =

σκ
σ̄κ1

= i
1

ζ( k − Eσ) + ζ1( k1 − Eσ̄) + i0+

(166)
which has no structure in the sojourn indices. The bubble
block resulting from the contraction of the internal fermion
lines of the two above propagators with the vertices

v±η(κ) := −|tα (εk )|2
h̄2 f α

±η(εk ) (167)

is given by [B]σ
′σ

χ′χ = Bσ
η′ηδσ ′σ δκ′κ. The function Bσ

η′η is the sum

Bσ
η η = Bσ(σ)

η η + Bσ(σ̄)
η η

=
σκσκ1

ν
η

+

σκσ̄κ1

η η

=
κ1

i ν vν(κ1)δζ1,−ζ

ζ( k − k1) + i0+
δη η

+
κ1

i v−η(κ1)
ζ( k − Eσ) + ζ1( k1 − Eσ̄) + i0+

.

(168)

The first contribution, which is diagonal in all the indices,
is calculated as in Eqs. (138)–(140), and reads as Bσ (σ )

η′η =
−/(2h̄)δη′η in the WBL. The second term in Eq. (168)
depends on η via the vertex and can be evaluated as well
in the WBL where

∑
κ1

→∑
ζ1α1

�α1

∫
dε1. We obtain (see

Appendix I)

− i

h̄

∑
ζ1

ζ1

∑
α1

α1

2π

∫ W

−W
dε1

f α1−η(ε1)

ε1 − Eζ1 + iζ10+

= iη
∑
α

α

2π h̄

[
Reψ

(
1

2
+ i

E+1 − μα

2πkBT

)

− Reψ

(
1

2
+ i

E−1 − μα

2πkBT

)]

−
∑
α

α

2h̄

[
f α
−η(E+1) + f α

−η(E−1)
]
, (169)
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where Eζ1 := Eσ̄ + ζ ζ1(Eσ − ε). All in all, the WBL expres-
sion for the bubble block reads as

Bσ
η′η = − 

2h̄
δη′η −

∑
α1,ζ1

α1

2h̄

[
f α1−η(Eζ1 )

− i
ηζ1

π
Reψ

(
1

2
+i

Eζ1 − μα1

2πkBT

)]
. (170)

Note that the second term, while depending on the sojourn
index η, is independent of η′. Thus, in the WBL, the matrix
elements of the bubble can be written as the sum

Bσ
η′η = − 

2h̄
δη′η + Bσ

η̄η. (171)

The crossing blocks, with overlap of fermion lines with same
and opposite spin, read as

[X]σσ
χ χ =

σ, κ σ, κ

ν
η η

=
i ν vν(κ )

ζ( k − k ) + i0+
δζ ,−ζδη η ,

[X]σ̄σ
χ χ =

σ, κ σ̄, κ

η ν =
i v−η(κ )

ζ( k − Eσ) + ζ ( k − Eσ̄) + i0+
,

(172)
respectively. Here, in the spin-diagonal crossing block, we
include the sum over the internal sojourn ν in the definition, as
done for the bubble with overlap of same-spin fermion lines
[see Eq. (168)].

In order to write the Green’s function, we use the cotunnel-
ing irreducible propagator in Eq. (164). This yields

�σ,CT
η′η (κ) = η′ηδν ′,+1

{
hσ
ηη(κ)δη′η

+ [hσ (κ)Bσ (κ)hσ (κ)]η′η

+
∑
σ ′κ′

[νhσ (κ)xσσ ′
+ (κ, κ′)hσ ′

(κ′)v−ησ ′ (κ′)]η′ησ̄ ′

}
,

(173)
where, according to Eqs. (123) and (124), we split the crossing
block Xσ ′σ as

Xσσ ′
(κκ′) = v(κ)xσσ ′

(κκ′) − v+(κ)xσσ ′
+ (κκ′). (174)

Now, from inspection of Eq. (172) we find that xσσ
+ = 0 due

to the sum over ν (and in analogy to the RLM case) because
nothing else depends on ν. We are then left with

�σ,CT
η′η (κ) = η′ηδν ′,+1

[
hσ
ηη(κ)δη′η + hσ

η′η′ (κ)Bσ
η′η(κ)hσ

ηη(κ)

+ ν
∑
κ′

hσ
η′η′ (κ)xσ σ̄

+,η′ν (κ, κ′)hσ̄
νν (κ′)v−η(κ′)

]
,

(175)

where

xσ σ̄
+,η′ν (κ, κ′) = ih̄ η′

ζ (εk − Eσ ) + ζ ′(εk′ − Eσ̄ ) + i0+ . (176)

Using the above result and Eq. (168) we can cast �σ
CT in the

form

�σ,CT
η′η (κ) = η′ηδν ′,+1

{
hσ
ηη(κ)δη′η + hσ

η′η′ (κ)Bσ (σ )
η′η (κ)hσ

ηη(κ)

+ ih̄
∑
κ′

hσ
η′η′ (κ)[hσ

ηη(κ) + νη′hσ̄
νν (κ′)]v−η(κ′)

ζ (εk − Eσ ) + ζ ′(εk′ − Eσ̄ ) + i0+

}
.

(177)
As a result, the Green’s function is the sum of the ST contri-
bution, given by the first term in Eq. (177), plus the terms of
fourth order in the tunneling amplitude (second order in )
and reads as

G (ζ )
σσ,CT(εk ) = − iζ

h̄

∑
η′η

�σ
η′η,CT(ζ , k)P∞

η

= G (ζ )
σσ,ST(εk ) + G (ζ )

σσ,4th(εk ). (178)

For a comprehensive diagrammatic analysis of cotunneling
effects we refer to [34]. In the recent paper [88], interference
phenomena at the cotunneling level, where one needs to go
beyond the assumption of state-conserving tunneling, are dis-
cussed for interacting double quantum dots. In this work, we
rather focus on nonperturbative schemes.

C. Nonperturbative, second-tier schemes

1. Resonant tunneling approximation (RTA)

Iterating the insertion of the cotunneling blocks B and X in
the bare propagator h, one obtains the nonperturbative RTA.
The Dyson equation for the irreducible propagator φRTA =
[h−1 − B − X]−1 [Eq. (106)] can be given in terms of the
NCA2 propagator φNCA2 = [h−1 − B]−1(see the next section)
as follows:

φRTA = φNCA2 + φNCA2XφRTA. (179)

Componentwise in κ, with the 2 × 2 matrix structure induced
by the sojourn indices η↑, η↓ left implicit, this equation reads
as

φσ ′σ
RTA(κ′, κ) = ϕσ ′σ ′

NCA2(κ′)δκ′κδσ ′σ

+ ϕσ ′σ ′
NCA2(κ′) ·

∑
σ ′′κ′′

Xσ ′σ ′′
(κ′, κ′′) · φσ ′′σ

RTA(κ′′, κ).

(180)

The RTA is equivalent to the second-order von Neumann
approach [45] and in the noninteracting case reproduces the
current for the SIAM, but not the full density matrix, contrary
to the case of the RLM which is fully described by the RTA.
Indeed, as discussed in Sec. IV D, for U = 0 the contributing
diagrams have at most four overlapping fermion lines, of
which at most two with the same spin.

In the infinite-U limit, the RTA admits an analytical solu-
tion to be found along the lines of [47,92]. In this limit, the
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blocks specialize to (consider ζ = +1)

[h]σ
′σ

χ′χ = ih̄
1

εk − εσ + i0+ δσ ′σ δχ′χδη,−1,

[X]σσ
χ′χ = ih̄

∑
ν vα′

ν (k′)
εk − εk′ + i0+ δζ ′,−ζ ,

[X]σ̄ σ
χ′χ = ih̄

vα′
+ (k′)

εk − εk′ + i0+ δζ ′,−ζ ,

[B]σ
′σ

χ′χ = ih̄
∑
α′′k′′

∑
ν vα′′

ν (k′′) + vα′′
−η(k′′)

εk − εk′′ + i0+ δσ ′σ δχ′χ. (181)

The 2 × 2 matrix structure of Eq. (180) is lost because η

can only assume the value −1, as induced by the interaction
energy appearing at the denominator of h for η = +1, namely,
the dot can be occupied at most by one electron. As a result,
we get the following two equations for the diagonal and off-
diagonal elements in the spin index (we omit the labels RTA
and NCA2)

φσσ (ε, ε′) = ϕσσ (ε)δ(ε − ε′)

+ ϕσσ (ε)
∫

dε′′Xσσ (ε, ε′′)φσσ (ε′′, ε)

+ ϕσσ (ε)
∫

dε′′Xσ σ̄ (ε, ε′′)φσ̄σ (ε′′, ε′),

φσ̄σ (ε, ε′) = ϕσ̄ σ̄ (ε)
∫

dε′′Xσ̄ σ (ε, ε′′)φσσ (ε′′, ε)

+ ϕσ̄ σ̄ (ε)
∫

dε′′Xσ̄ σ̄ (ε, ε′′)φσ̄σ (ε′′, ε),

(182)

where Xσ̄ σ̄ = Xσσ and Xσ̄ σ = Xσ σ̄ [see Eq. (181)]. Consider
now the degenerate system ε↑ = ε↓ = ε0. In this case ϕσσ =
ϕσ̄ σ̄ = ϕσ and, by summing the above two equations, we
obtain

φσ (ε, ε′) = ϕσ (ε)δ(ε − ε′)+ϕσ (ε)
∫

dε′′X(ε, ε′′)φσ (ε′′, ε),

(183)
where

φσ (ε, ε′) =
∑
σ ′

φσ ′σ (ε, ε′),

X(ε, ε′) = Xσσ (ε, ε′) + Xσ̄ σ (ε, ε′)

= ih̄
∑
α

2vα
+(ε) + vα

−(ε)

ε − ε′ + i0+ (184)

[see Eq. (181)]. Solving Eq. (183), it is found that the real part
of φ, the one which enters the current, as in Eqs. (117) and
(118), reads as

Re
∫

dε′φσ (ε, ε′)v−η(ε′)

= Cη

∑
α

[2vα
+(ε) + vα

−(ε)]|ϕ(ε)|2, (185)

where Cη is a constant depending on the initial vertex v−η. As
shown in [49], in this regime of large interaction U , the RTA
and the DSO (see Sec. IX C 3) display a qualitatively similar
behavior of the linear conductance, though the RTA predicts
higher peak conductance. Moreover, the two schemes share

the same prediction for the zero-bias anomaly temperature
scale, which is given in Eq. (198) below.

2. Second-tier noncrossing approximation (NCA2)

In the NCA2, the propagator φNCA2 is given by the Dyson
equation (107). As a result, the bare ST propagator is dressed
by the bubble diagrams B, namely,

φNCA2 = [h−1 − B]−1. (186)

While being diagonal in σ and κ, the bubble blocks B have a
nontrivial 2 × 2 matrix structure in terms of the sojourn index
η [see Eq. (171)], a feature which accounts for charge transfer
by processes internal to the main fermion line. As a result,
they induce a 2 × 2 structure to the contracted (matrix) func-
tion ϕσσ

NCA2(κ ), defined by φσ ′σ
NCA2(κ ′, κ ) = ϕσσ

NCA2(κ )δκ ′κδσ ′σ .
Neglecting the crossings in the main fermion lines results

in the Green’s function [see Eqs. (153) and (154)]

G (ζ )
σσ (εk ) = − iζ

h̄

∑
η′η

η′ηϕσσ
NCA2,η′η(ζ , k)pσ̄

η

= − iζ

h̄

∑
η

[
ϕσσ

NCA2,ηη(ζ , k) − ϕσσ
NCA2,η̄η(ζ , k)

]
pσ̄
η .

(187)
The matrix elements of ϕNCA2, from Eq. (186), read as

ϕσσ
NCA2,ηη =

(
hσ
η̄η̄

)−1 − Bσ
η̄η̄[(

hσ
ηη

)−1 − Bσ
ηη

][
(hσ

η̄η̄ )−1 − Bσ
η̄η̄

]− Bσ
ηη̄Bσ

η̄η

,

ϕσσ
NCA2,η̄η = Bσ

η̄η[(
hσ
ηη

)−1 − Bσ
ηη

][(
hσ
η̄η̄

)−1 − Bσ
η̄η̄

]− Bσ
ηη̄Bσ

η̄η

,

(188)

where hσ
η′η is defined in Eq. (159) and where the dependence

on κ of the block functions is understood. Note that the de-
nominators are independent of η. Plugging these results in
Eq. (187), with pσ

η given by Eq. (157), the dot Green’s function
reads as

G (ζ )
σσ = 1 − 〈n̂σ̄ 〉

ε − εσ − iζ h̄Bσ−− + iζ h̄Bσ+−
ε−εσ −iζ h̄[Bσ−−+Bσ−+]

ε−εσ −U−iζ h̄[Bσ+++Bσ+−]

+ 〈n̂σ̄ 〉
ε−εσ−U−iζ h̄Bσ++ + iζ h̄Bσ−+

ε−εσ −U−iζ h̄[Bσ+++Bσ+−]
ε−εσ −iζ h̄[Bσ−−+Bσ−+]

.

(189)

In the WBL, we can simplify this expression by using the
result in Eq. (171) and the property∑

η

Bσ
η̄η = −/h̄, (190)

which can be checked by inspection of Eq. (170). The retarded
(ζ = +1) Green’s function in the NCA2 reads as

Gr
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε − εσ + i/2 + �σ−(ε) U
ε−εσ −U+i3/2

+ 〈n̂σ̄ 〉
ε − εσ − U + i/2 − �σ+(ε) U

ε−εσ +i3/2

,

(191)
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where we have singled out the constant broadening i/2 and
identified the interaction-induced contributions with the off-
diagonal matrix elements of the bubbles via

�ση(ε) := ih̄Bσ
η̄η(κ )|ζ=+1

= −
∑
α1

α1

2π

∑
ζ1

[
ηζ1Reψ

(
1

2
+ i

Eζ1 − μα1

2πkBT

)

+ iπ f α1−η(Eζ1 )

]
, (192)

with Eζ1 := Eσ̄ + ζ1(Eσ − ε) and Eσ = εσ + U/2. Note that,
by virtue of the property (190), which implies

�ση(ε) = −�ση̄(ε) − i, (193)

we can express the retarded Green’s function in terms of a
single self-energy, e.g., �σ−(ε). Interestingly, the result in
Eq. (191) is equivalent to the one obtained by Meir, Wingreen,
and Lee in [39] with the equations-of-motion technique.

We now summarize the properties and predictions of the
NCA2. For vanishing interaction U = 0, we recover the cor-
rect WBL result for the noninteracting case

Gr
σσ (ε) = 1

ε − εσ + i/2
. (194)

As anticipated below Eq. (148), the zero-temperature conduc-
tance in the noninteracting limit

G = G0
LR

(μ − ε0)2 + 2/4
(195)

saturates, at resonance and for α = /2, to the conductance
quantum G0 due to the sum over the spin degree of freedom.
This can be seen by applying the general formula (131) to the
SIAM with the retarded Green’s function given by Eq. (194).

For finite interaction, on the other hand, the NCA2 displays
a zero-bias anomaly at a characteristic temperature T ∗ =
TNCA2. This temperature is defined as the one at which the
real parts of the denominators vanish, causing a peak in the
density of states −Im[Gr

σσ (μ)]/π . By virtue of the property
(193) satisfied by the self-energies, this condition is the same
for the two terms in Eq. (191) and reads as

(μ − ε0)(μ − ε0 − U ) − 32/4 + U Re[�σ−(μ)|T ∗ ] = 0.
(196)

For sufficiently large interaction energy U , away from the
condition μ − ε0 = U/2, we can approximate the real part of
the self-energy in Eq. (192) as

Re�σ−(μ)|T ∗ � 

2π
ln

(
U

2πkBT ∗

)
. (197)

Then, assuming U � , solving Eq. (196) for T ∗ = TNCA2,
we find

kBTNCA2 � U

2π
e2π (μ−ε0 )(μ−ε0−U )

U . (198)

Notice that this result differs from the Kondo temperature TK,
which has the prefactor π in place of 2π at the exponent [5,6],
namely,

kBTK =
√

U

2
eπ

(μ−ε0 )(μ−ε0−U )
U , (199)

with limU→∞ kBTK ∝ exp[−π (μ − ε0)/].

Another problem of this approximation scheme is the
temperature-independent behavior at the particle-hole sym-
metry point (sp) μ − ε0 = U/2 at equilibrium in the degen-
erate case [40]. Indeed, since E± − μ = ∓(ε − μ), we have
f+(E+) = f−(E−). Also Reψ (x + iy) = Reψ (x − iy). Thus,
from Eq. (192) we find that the self-energy is purely imaginary
and temperature independent

�sp
ση(ε) = −i/2. (200)

Consequently, the retarded Green’s function becomes

Gr,sp
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε + U/2 + i/2 − i(/2) U
ε−U/2+i3/2

+ 〈n̂σ̄ 〉
ε − U/2 + i/2 + i(/2) U

ε+U/2+i3/2

. (201)

This feature causes the onset of an artifact in the linear
conductance G when the temperature decreases below : a
pinning at a temperature-independent value of G at the sym-
metry point. Note that inclusion of the crossings does not lift
this problem: This can be seen from Fig. 3 of Ref. [44] where
a scheme equivalent to the RTA, which includes the crossings,
is used.

The linear conductance from the NCA2 is shown in Fig. 20,
for the degenerate case, as a function of the gate voltage
ε0 − μ for various temperatures. At high temperatures kBT >

, there are two temperature-broadened peaks separated by
the energy U , in agreement with the ST result shown in
Fig. 19. Upon decreasing T , the peaks get narrower and
closer, witnessing the transition to -broadened conductance
peaks, where the dot energies are renormalized by the tunnel
coupling to the leads. This is captured by the nonperturba-
tive character of the NCA2. As anticipated above, at low
temperatures kBT � , the pinning of G at a temperature-
independent value appears at the particle-hole symmetry point
ε0 − μ = −U/2. The onset of this artifact signals the break-
down of the approximation scheme. As shown in Sec. IX F,
introducing higher-tier processes which dress the NCA2 bub-
ble diagrams, this problem is lifted as the dependence of the
self-energies on the temperature is restored.

3. Charge fluctuations only: Dressed second order

The DSO is the simplest, nontrivial approximation scheme
nonperturbative in , being the dressed version of the sequen-
tial tunneling [see Eq. (104)], where the main fermion line
is dressed by charge fluctuations [49,93,94]. The diagrams
retained are formally similar to the ones of the NCA2, namely,
they consist in dressing the main fermion lines with bare
bubble diagrams. The difference is that the DSO only accounts
for charge fluctuations of the main fermion line, meaning that
the sojourn states before and after a bubble are the same,
η = η1 = · · · = η′. As a consequence, the charge in the dot
does not vary by more than one unit between the two ends
of the main fermion line, net charge transfers being operated
solely by the latter. In this scheme, the kernel connects the
same states as those connected by the sequential tunneling, the
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states that differ by no more than one electron in occupancy.
Note that the same is not true for the NCA2, which includes
also processes that vary the dot charge also within the main
line (pair tunneling). The fact that the internal processes leave
the intermediate sojourns unchanged means that the bubbles
in the Dyson equation (208) for the function ϕσσ have a
diagonal structure yielding the solution

ϕσσ
η′η,DSO(κ ) = 1

(hσ
ηη )−1 − Bσ

ηη

δη′η. (202)

Thus, according to Eq. (187), the retarded DSO Green’s func-
tion assumes, in the WBL, the form

Gr
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε − εσ + i/2 − �σ−(ε)

+ 〈n̂σ̄ 〉
ε − εσ − U + i/2 − �σ+(ε)

, (203)

with �ση(ε) given by Eq. (192). Note that, contrary to the
NCA2, the correct result in the noninteracting limit is not
recovered within the DSO. However, in the limit U → ∞, the
DSO reproduces the NCA2 result in the same limit, namely,
one obtains

lim
U→∞

Gr
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε − εσ + i/2 − �σ−(ε)
. (204)

The corresponding prediction for the Kondo-type temperature
TDSO is in this limit

kBTDSO � U

2π
e−2π (μ−ε0 )/, (205)

and is the same as for the NCA2 and RTA, with the wrong
prefactor in the exponent. Nevertheless, the DSO is the sim-
plest scheme, namely, the one with the minimal collection
of diagrams, which captures the emergence of a zero-bias
anomaly at low temperatures kBT � . A comparison be-
tween the linear conductance calculated within the NCA2 and
the one from the DSO is shown in Fig. 21, for kBT/ = 0.2,
where the linear conductance follows qualitatively the DM-
NRG result, down to kBT/ = 0.002, where both schemes
break down. The parameters are chosen so as to allow for a
direct comparison with Fig. 6 of Ref. [35], where the scheme
EOM2 (equation-of-motion method) behaves similarly to the
NCA2.

4. � broadening of the ST

Dressing the main fermion line exclusively with the
temperature-independent bubble, namely, the first term of
Eq. (168), amounts to neglecting in the DSO retarded Green’s
function the temperature-dependent self-energies �σ±(ε)
[see Eq. (203)]. The only internal process retained here
corresponds to the temperature-independent diagrammatic
contributions in Ref. [52]. The resulting Green’s function is
that of a -broadened version of the ST approximation, where
the single-particle energies acquire a broadening  due to the
coupling to the leads and reads as

Gr
σσ (εk ) =

∑
η

pσ̄
η

εk − Eσ (η) + i/2
. (206)

0
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1

−2 −1.5 −1 −0.5 0 0.
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0

0.5
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−2 −1.5 −1 −0.5 0 0.
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G
/G

0

( 0 − μ)/U

0

0.5
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−2 −1.5 −1 −0.5 0 0.5 1

kBT = 0.0004 U

G
/G

0

( 0 − μ)/U

FIG. 21. Linear conductance within the NCA2 and the DSO
schemes compared with the curves from the numerically exact DM-
NRG. We consider the degenerate case εσ = ε0 for three different
temperatures. The tunnel coupling is  = 0.2U with L = R =
/2. The parameters are chosen to allow a direct comparison with
the results of [35].

This scheme is the same as the EOM0 reviewed in [35],
which is derived with the EOM method. With this result for
the Green’s function, the general formula (130), gives for the
current in the ST approximation

I∞ = e

h
LR

∑
σ

∫
dε [ f L

+(ε) − f R
+ (ε)]

×
[

1 − 〈n̂σ̄ 〉
(ε − εσ )2 + 2/4

+ 〈n̂σ̄ 〉
(ε − εσ − U )2 + 2/4

]

= e

h

LR



∑
σ

[(1 − 〈n̂σ̄ 〉)r(εσ ) + 〈n̂σ̄ 〉r(εσ + U )],

(207)
where r(x) is defined in Eq. (147).

125417-28



FEYNMAN-VERNON INFLUENCE FUNCTIONAL … PHYSICAL REVIEW B 105, 125417 (2022)

0

0.02

0.04

−2 −1.5 −1 −0.5 0 0.5 1

G
/G

0

( 0 − μ)/U

kBT
U = 0.5

0.2

0.1
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FIG. 22. Linear conductance within the -broadened ST
[Eq. (206)] vs the gate voltage ε0 − μ in the degenerate case εσ = ε0.
Lowering the temperature, the peaks shrink until kBT �  but they
do not move towards the center. Their height grows as T −1. The
tunnel coupling is  = 0.01U with L = R = /2.

In Fig. 22 , we show the linear conductance G, obtained by
inserting the retarded Green’s function (ζ = +1) of Eq. (206)
into the general expression (131). The linear conductance is
plotted, in the degenerate case, where ε↑ = ε↓ = ε0, against
the gate voltage. Decreasing the temperature, G is suppressed
around the particle-hole symmetry point ε0 − μ = −U/2, the
central region between the two peaks separated by the energy
U , the separation being independent of the temperature, con-
trary to the NCA2 (cf. Fig. 20).

D. Infinite-tier schemes I: Neglecting the crossings
in the main fermion line (DBA)

From the considerations above, the second-tier approx-
imations well describe the behavior of the SIAM above
temperatures of the order kBT ∼ . Also they capture the
onset of a zero-bias anomaly at low temperature. However,
artifacts occur when the temperature is lowered even further.
As shown in the next sections, the problems with the Kondo
temperature TK and the pinning at the particle-hole symmetry
point are mitigated by deepening the hierarchy of internal
process including third- and fourth-tier bubble diagrams.

Let us go to the exact formal expression for φ, Eq. (102),
and assume that the main fermion line does not undergo cross-
ings, which yields a diagonal irreducible propagator in σ and
κ . Within this assumption, the equation for φ → φDBA is

φDBA = [h−1 − B̃]−1 (208)

[see Eq. (109)]. The propagator is dressed by internal pro-
cesses according to the hierarchy of Eq. (101) with 〈S̃2v〉 →
B̃2 ≡ B̃, where the block [B̃]σ

′σ
χ′χ = B̃σ

η′η(κ )δσ ′σ δκ ′κ is given by
the contraction of a free propagator dressed by all possible (ir-
reducible) processes, including crossings. The diagrammatic
of this dressing is in fact the same as the exact irreducible
propagator φ itself (see Fig. 14).

As the bare bubbles of the NCA2, the dressed bubbles
are diagonal in all indices except for η, inducing a 2 × 2
structure to the contracted (matrix) function ϕDBA(κ ). Along
similar lines as in the NCA2, the matrix elements of ϕDBA

read as

ϕσσ
DBA,ηη =

(
hσ
η̄η̄

)−1 − B̃σ
η̄η̄[(

hσ
ηη

)−1 − B̃σ
ηη

][(
hσ
η̄η̄

)−1 − B̃σ
η̄η̄

]− B̃σ
ηη̄B̃σ

η̄η

,

ϕσσ
DBA,η̄η = B̃σ

η̄η[(
hσ
ηη )−1 − B̃σ

ηη

][(
hσ
η̄η̄

)−1 − B̃σ
η̄η̄

]− B̃σ
ηη̄B̃σ

η̄η

,

(209)

where the bare block B has been replaced by the dressed one
B̃. Similar to Eq. (187), the dot Green’s function in the ∞-tier
scheme reads as

G (ζ )
σσ = 1 − 〈n̂σ̄ 〉

ε − εσ − iζ h̄B̃σ−− + iζ h̄B̃σ+−
ε−εσ −iζ h̄[B̃σ−−+B̃σ−+]

ε−εσ −U−iζ h̄[B̃σ+++B̃σ+−]

+ 〈n̂σ̄ 〉
ε−εσ−U−iζ h̄B̃σ+++iζ h̄B̃σ−+

ε−εσ −U−iζ h̄[B̃σ+++B̃σ+−]
ε−εσ −iζ h̄[B̃σ−−+B̃σ−+]

.

(210)

As above, the dependence on κ is understood. Thus, neglect-
ing the crossing of the main fermion line, we obtain a general
structure for the retarded Green’s function by a simple 2 × 2
(block) matrix inversion. The matrix elements of the dressed
bubbles are schematized by

B̃σ
η η =

σ σ

η η

+

σ σ

η η

. (211)

Here, the bare contribution (no internal processes) to the first
bubble diagram is diagonal in η′η and is also independent of
the value of the sojourn η, as it does not include interactions.
This bare bubble is the same as the one of the NCA2 and,
in the WBL, is evaluated to be −1/2h̄ [see Eq. (168)]. In
the presence of internal processes, the first dressed bubble in
Eq. (211) depends in principle on the sojourn η′. This occurs
when the latter has overlap with a blip of the σ path. However,
in this case the block vanishes because the overlap implies
overlap of three fermion lines of the state σ , resulting in a
factor ν that makes the whole diagram vanish upon summing
over ν, as exemplified in the diagram (B) of Eq. (60). As a
result, this block is independent of the value of the last sojourn
η′. The same independence of η′ holds for the second block
because the sojourn η′, although involved with interactions,
lies outside the block itself. On the contrary, the initial sojourn
is relevant for both bubbles because it determines the vertex
of the fermion line of spin σ̄ according to the definition in
Eq. (92). Summarizing, on the basis of the diagrammatic rules
we conclude that the dressed bubble B̃ possesses the same
property of the bare bubble, namely,

B̃η′η = − 

2h̄
1δη′η + B̃η̄η, (212)

where, again, boldface objects indicate diagonal matrices in
the indices σ and κ. Exploiting the symmetry in Eq. (212),
we can simplify the form of the Green’s function in Eq. (210).
In particular, the retarded (ζ = +1) Green’s function in the
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WBL reads as

Gr
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε − εσ + i2 + �̃σ−(ε) U
ε−εσ −U+i 2 −�̃σ (ε)

+ 〈n̂σ̄ 〉
ε − εσ − U + i2 − �̃σ+(ε) U

ε−εσ +i 
2 −�̃σ (ε)

,

(213)

where

�̃σ (ε) =
∑
η

�̃ση(ε). (214)

Equation (213) is one of the main results of this work. The
problem of calculating the retarded Green’s function, and thus
the relevant physical properties for proportional coupling, re-
duces to that of determining the retarded, dressed self-energies
�̃ση, here identified with the off-diagonal elements of the
dressed bubbles via

�̃ση(ε) := ih̄B̃σ
η̄η(κ )|ζ=+1. (215)

The evaluation of these self-energies remains complicated due
to the inner processes dressing the bubble B̃σ .

The retarded Green’s function in Eq. (213) has the same
form of the one found in [42] with a self-consistent trunca-
tion of the equations of motion. As such, provided that the
self-energies have the correct form, the DBA can in principle
reproduce the unitary limit at T = 0. In the degenerate case,
the latter is obtained if, at the particle-hole symmetry point
ε0 − μ = −U/2, the dressed self-energies acquire the values

�̃σ±(μ) = ±

π
ln

(
2kBTK√

U

)
+ i

Im�̃σ (μ)

2
(216)

in terms of the Kondo temperature, Eq. (199), so that
ImGr

σσ (μ) = −2/. We next introduce an approximation
scheme, the noncrossing approximation (NCA), where also
the internal crossings are neglected. Note that this scheme,
obtained by systematically neglecting the crossings in the di-
agrammatic unraveling of the self-energies, does not coincide
with the NCA well known in the Green’s functions literature
[67]

E. Infinite-tier schemes II: Neglecting all crossings (NCA)

In the absence of crossings at all levels, the hierarchy in
Eq. (101) simplifies to

h̃n−1 =
∞∑

k=0

(hn−1〈h̃nv〉)khn−1 = [h−1
n−1 − B̃NCA

n

]−1
, (217)

with hn = 1hn denoting the bare propagator with n over-
lapping fermion lines and h̃n the corresponding propagator
dressed by higher-tier bubbles B̃NCA

n = 〈h̃nv〉. In particu-
lar, B̃NCA

2 = 〈h̃2v〉 ≡ B̃, where h̃2 = [h−1
2 − B̃NCA

3 ]−1. In the
following we drop the indices and make the identification
B̃NCA

2 ≡ B̃. The dressed bubble B̃ in Eq. (211) is then schemat-

ically described by the following sum of two contributions:

B̃σ
η η = B̃σ(σ)

η η + B̃σ(σ̄)
η η

=
η ηh̃

σ(σ)
2

+
η ηh̃

σ(σ̄)
2

.

(218)

Here, the white rectangles indicate the dressing of the prop-
agators h2 with two overlapping fermion lines by iteration
of third-tier bubbles. Specifically, the dressed bubble of type
σ (σ ) is given by the following contraction of a dressed prop-
agator with 4 × 4 matrix structure in η = (ν, η):

B̃σ (σ )
η′η =

∑
ν

〈∑
ν ′

[
h̃σ (σ )

2

]
η′ηvν

〉
, (219)

where h̃σ (σ )
2 is obtained by dressing the bare propagator 1hσ (σ )

2

[Eq. (165)] with the third-tier bubble B̃σ (σ )
3 , namely,

h̃σ (σ )
2 = [[1hσ (σ )

2

]−1 − B̃σ (σ )
3

]−1
. (220)

The third-tier bubble B̃σ (σ )
3 is in turn given by the sum

B̃σ(σ)
3,η η =

ν ν
η η

h̃
σ(σσ̄)
3

+
ν ν
η η

h̃
σ(σσ)
3

= ν ν h̃σ(σσ̄)
3,ν ν v−η + ν ν h̃σ(σσ)

3,η η v−ν

≡ ν νB̃A
3,ν ν(η) + ν νB̃B

3,η η(ν). (221)

The prefactor ν ′ν stems from overlap of three fermion lines of
spin σ , according to the diagrammatic rules [see Eqs. (53)–
(55) and also Eq. (H5)]. Note that these third-tier bubbles
can in principle change the occupation state of both spin de-
grees of freedom. As a result, they capture spin-flip processes,
which are virtual processes by which the state of the dot
with single occupation changes spin due to multiple (virtual)
transitions as, for example, in

↑ −→ (↑↓) −→ ↓ .

We anticipate that, since in the SIAM we deal with two de-
grees of freedom, the 4 × 4 structure of B̃σ (σ )

3 is the largest in
the hierarchical analysis.

The other second-tier bubble in Eq. (218) is B̃σ (σ̄ ). It is
calculated as the contraction of a dressed propagator which
bears no structure in the sojourn indices

B̃σ (σ̄ )
η′η = 〈h̃σ (σ̄ )

2 v−η

〉
, (222)

where h̃σ (σ̄ )
2 is obtained by dressing the bare propagator hσ (σ̄ )

2

in Eq. (166) with the third-tier bubble B̃σ (σ̄ )
3 according to

h̃σ (σ̄ )
2 = [[hσ (σ̄ )

2

]−1 − B̃σ (σ̄ )
3

]−1
. (223)
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The third-tier bubble entering this equation is

B̃σ(σ̄)
3 =

η η
h̃

σ(σσ̄)
3

+

η η
h̃

σ(σ̄σ̄)
3

=
ν ν

h̃σ(σ̄σ)
3,ν ν vν +

η η

h̃σ(σ̄σ̄)
3,η η vη .

(224)

Note that also the bubble B̃σ (σ̄ )
3 has no structure in the so-

journ indices. Moreover, we have included the sums over the
sojourns internal to the bubbles in the definitions. The corre-
sponding self-energy �̃(σ̄ )

ση (ε) := ih̄B̃σ (σ̄ )
η̄η (κ )|ζ=+1 is given by

�̃(σ̄ )
ση (ε) = −η

∑
α

α

2π

[
ψ

(
1

2
+ i

Ẽ+ − μα

2πkBT

)

− ψ∗
(

1

2
+ i

Ẽ− − μα

2πkBT

)]
− i



2
(225)

(see Appendix N), where

Ẽζ1 = εσ̄ + ζ1(εσ − ε) + δζ1,+1U

+ ζ1Re �̃
(σ̄ )
3σ,ζ1

− i
∣∣Im �̃

(σ̄ )
3σ,ζ1

∣∣. (226)

Note that for vanishing third-tier self-energies, given by
Eq. (L8), one recovers the NCA2 self-energies �ση(ε) [see
Eq. (192)].

The task of finding the dressed self-energies �̃ση(ε) has
thus been reduced to the evaluation of the dressed bubbles B̃3

together with the inversion of the 4 × 4 matrix in Eq. (220). In
turn, the propagators h̃3 in Eqs. (221) and (224) are given by
dressing the bare propagators h3 with overlap of three fermion
lines with the fourth-tier bubbles B̃4, namely,

h̃3 = [[h3]−1 − B̃4]−1, (227)

where we made no reference to the spin of the fermion lines.
The hierarchy of internal processes proceeds similarly for

higher overlaps of fermion lines. Note that the dimension
associated to the matrix structure in the sojourn indices varies
between 0 and 4 (never exceeding this upper bound in the
SIAM) according to the number and the spin of the overlap-
ping fermion lines.

F. Fourth-tier scheme: NCA4

Up to this point, the description of the hierarchy of dia-
grammatic contributions to the second-tier bubbles, namely
to the self-energies [see Eq. (215)], is exact, within the ap-
proximation of neglecting the crossings. The truncation of
the hierarchy in Eq. (217) to the level n = 4 gives rise to a
fourth-tier scheme where h̃4 = h4, namely, B̃4 ≡ B4.

The fourth-tier bubbles B4 are similar to the NCA2 second-
tier bubbles Bσ

η′η [see Eq. (168)], except for the additional
layers of fermion lines, and the products of sojourn indices
associated to the overlap of three fermion lines of the same
spin. The fourth-tier bubbles dressing the propagators h̃3 in

Eq. (221) are schematized as

Bσ(σσ̄)
4,ν ν =

ν ν

+
ν ν

=
η

hσ(σσ̄σ̄)
4,ν ν vη + ν ν h̃σ(σσ̄σ)

4 v−ν

Bσ(σσ)
4,η η =

η η

+
η η

=
ν

hσ(σσσ)
4,η η vν + h̃σ(σσσ̄)

4 v−η .

(228)

Analogously, the propagators h̃3 in Eq. (224) are dressed by
the fourth-tier bubbles

Bσ(σ̄σ)
4,ν ν =

ν ν

+
ν ν

=
η

hσ(σ̄σσ̄)
4,ν ν vη + ν ν hσ(σ̄σσ)

4 v−ν

Bσ(σ̄σ̄)
4,η η =

η η

+
η η

=
ν

hσ(σ̄σ̄σ)
4,η η vν + η η hσ(σ̄σ̄σ̄)

4 v−η .

(229)

Note the prefactor η′η in the last line which is absent in
Eq. (228). The structure of the dressed propagators h̃σ

3 is
the same as the one of φσσ

NCA2 [see Eq. (188)] and of φσσ
DBA

[Eq. (209)[ and their matrix elements read as (we omit any
reference to the spin)

h̃3,ηη = h−1
3,η̄η̄ − B4,η̄η̄[

h−1
3,ηη − B4,ηη

][
h−1

3,η̄η̄ − B4,η̄η̄
]− B4,ηη̄B4,η̄η

,

h̃3,η̄η = B4,η̄η[
h−1

3,ηη − B4,ηη
][

h−1
3,η̄η̄ − B4,η̄η̄

]− B4,ηη̄B4,η̄η
. (230)

Finally, the bare propagators with overlap of three fermion
lines are diagonal 2 × 2 matrices with elements

hσ(σσ̄)
3,ν ν =

σκ
σκ1

σ̄κ2

ν
=

i δν ν

ζ( k − k1) + ζ2[ k2 − Eσ̄(ν)] + i0+

hσ(σσ)
3,η η =

σκ
σκ1
σκ2

η

=
i δη η

ζ( k − k1) + ζ2[ k2 − Eσ(η)] + i0+
,

(231)
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and

hσ(σ̄σ)
3,ν ν =

σκ
σ̄κ1
σ̄κ2

ν
=

i δν ν

ζ( k − k2) + ζ1[ k1 − Eσ̄(ν)] + i0+

hσ(σ̄σ̄)
3,η η =

σκ
σ̄κ1
σ̄κ2

η

=
i δη η

ζ1( k1 − k2) + ζ[ k − Eσ(η)] + i0+
,

(232)
where Eσ (η) = εσ + (1 + η)U/2.

The determination of the dressed second-tier bubble B̃σ (σ̄ )

[Eq. (222)] and in turn of the self-energy �̃(σ̄ )
ση (ε) [Eq. (N7)]

relies on the calculation of the dressed NCA4 third-tier
bubbles (224). On the other hand, evaluating the dressed
second-tier bubble B̃σ (σ ) [Eq. (219)] is more involved, as we
need in principle to invert and contract a 4 × 4 matrix whose
matrix structure is inherited by the one of the dressed third-tier
bubbles (221).

As shown in Appendix K, a closed formal expression can
be found for the bubble B̃σ (σ ) with a two-stage procedure that
yields

B̃σ(σ)
η η =

η ηh̃
σ(σ)
2

= − Γ
2

δη η + Kσ(σ)
η η v+ ,

(233)
where, as a key result,

Kσ (σ )
η′η = η

�Aσ̄
+([

hσ (σ )
2

]−1 + /h̄
)2 − �Aσ+�Aσ̄+

. (234)

Here, the functions �Aσ/σ̄
+ are differences of the dressed prop-

agators h̃σ (σσ )
3,ηη or h̃σ (σ σ̄ )

3,νν , as seen in Eq. (K37). They lead to
a nontrivial, temperature-dependent, renormalization of the
self-energy �̃(σ )

ση (ε) := ih̄B̃σ (σ )
η̄η (κ )|ζ=+1 [see e.g. Eq. (241)

below]. We notice that
∑

η Kσ (σ )
η̄η = 0, therefore, the cor-

responding self-energy has the property
∑

η �̃
(σ )
ση (ε) = 0.

On the other hand, it is easy to see from Eq. (N7) that∑
η �̃

(σ̄ )
ση (ε) = −i. The dressed self-energies have thus the

property ∑
η

�̃ση(ε) = �̃σ (ε) = −i, (235)

where

�̃ση = �̃(σ )
ση + �̃(σ̄ )

ση .

This is the same property as the one obeyed by the bare self-
energies in the NCA2 [Eq. (190)]. Therefore, in the NCA4,
the retarded Green’s function, whose general noncrossing-
approximated form is provided in Eq. (213), simplifies to

Gr
σσ (ε) = 1 − 〈n̂σ̄ 〉

ε − εσ + i/2 + �̃σ−(ε) U
ε−εσ −U+i3/2

+ 〈n̂σ̄ 〉
ε − εσ − U + i/2 − �̃σ+(ε) U

ε−εσ +i3/2

.

(236)

The important difference with the NCA2 is that the self-
energies are now dressed by higher-level processes, and
specifically by third-tier bubbles [see Eqs. (219) and (222)].
This crucial feature lifts the pinning problem at the symmetry
point μ − ε0 = U/2, as the self-energies remain temperature
dependent. Using the sum rule (235), we can give the retarded
Green’s function solely in terms of the self-energy �̃σ−.

Consider the degenerate case ε↑ = ε↓ = ε0 at equilib-
rium μL = μR = μ. As for the NCA2 and the DSO, a
zero-bias peak in the conductance appears for temperature
below a certain value T ∗ for which the real parts of the
denominators vanish, causing a peak in the density of states
−Im[Gr

σσ (μ)]/π . This condition is

(μ − ε0)(μ − ε0 − U ) − 32/4 + U Re[�̃σ,−(μ)|T ∗ ] = 0,
(237)

which is formally the same as for the NCA2, except that here
the self-energy is dressed. In the degenerate case, �Aσ̄

+ =
�Aσ

+ = �A+, and a decomposition of Eq. (234) in partial
fractions allows us to express

Kσ (σ )
η′η = η

2

[
1

[hσ (σ )
2 ]−1 + /h̄ − �A+

− 1

[hσ (σ )
2 ]−1 + /h̄ + �A+

]
. (238)

Notice that �A+ = (aR + iaI )/h̄ is a complex function. This
leads to a temperature-dependent renormalization of the prop-
agator hσ (σ )

2 [cf. Eq. (165)]. Explicitly, we define ±(T ) =
 ± aR(T ); the imaginary part aI(T ) yields energy renormal-
ization. As seen in Eq. (K37), �A+ shares with the Green’s
function (236) the same renormalization of the dot energies
Eσ̄ (ν) [Eσ (η)] which thus occurs also at the level of the self-
energy and in principle at all (even) levels of the hierarchy. We
find (not shown) a similar structure for the third-tier bubbles
that renormalize the dot energy in the self-energy �̃(σ̄ )

ση (ε).
Lastly, we notice that, at the particle-hole symmetry point
ε0 − μ = −U/2, and in the degenerate case, the equilibrium
NCA4 retarded Green’s function in Eq. (236) acquires the
particularly simple expression

Gr
σσ (μ) = i3/2

(U/2 + i/2)(−U/2 + i3/2) + U �̃σ,−(μ)
.

(239)

In what follows, by discarding the nontrivial, off-diagonal
contributions from the fourth-tier bubbles, we obtain an ap-
proximate fourth-tier scheme easier to handle for analytical
evaluations.

1. Simplified NCA4 (sNCA4)

To provide an easy-to-handle, analytical treatment that im-
proves on the NCA2, we consider a simplified version of the
NCA4 propagators h̃3. Specifically, we neglect the second
terms in Eqs. (228) and (229). This approximation yields, for
all the fourth-tier bubbles, the simple result B4 = −/(2h̄)1,
where 1 is the two-dimensional identity in the index η or ν. As
a consequence, the bare propagators in Eqs. (231) and (232)
simply acquire a broadening /(2h̄) and the dressed propaga-
tors in Eq. (230) become diagonal, as the nontrivial parts of B4
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are disregarded. Note that this treatment repeats what is done
in the -broadened sequential tunneling approximation (see
Sec. IX C 4), but at the fourth level of the hierarchy rather than
the second. In this case �Aσ̄

+ and �Aσ
+ are real. In addition,

the third-tier bubbles B̃σ (σ̄ )
3 , dressing the dot energy in the

self-energy �̃(σ̄ )
ση (ε) [Eq. (N7)], are real at the symmetry point.

Thus, contrary to the NCA4, the sNCA4 only accounts for the
renormalization of the lifetime but not of the energy in the
arguments of the self-energies. In Appendixes L and M, we
give explicit expressions for the simplified third-tier bubbles
of Eq. (221), and for the functions �Aσ/σ̄

+ defined in Eq. (M1).
The resulting dressed second-tier bubbles are calculated in

Appendixes M and N. They satisfy the properties

B̃σ (σ )
η′η = − 

2h̄
δη′η + B̃σ (σ )

η̄η and B̃σ (σ̄ )
η′η = B̃σ (σ̄ )

η̄η . (240)

Thus, the sum B̃σ
η′η = B̃σ (σ )

η′η + B̃σ (σ̄ )
η′η respects the property

given in Eq. (212) with the general, ∞-tier DBA scheme of
Eq. (208). We find for the corresponding dressed, retarded
self-energy �̃(σ )

ση (ε) = ih̄B̃σ (σ )
η̄η (κ )|ζ=+1

�̃(σ )
ση (ε)

= −η

2

√
|�Aσ̄+|
|�Aσ+|

∑
α,p=±

p
α

2π

[
Reψ

(
1

2
+ p(T )

2πkBT
+i

ε − μα

2πkBT

)

− i Imψ

(
1

2
+ p(T )

2πkBT
+ i

ε − μα

2πkBT

)]
, (241)

where ±(T ) =  ± h̄(�Aσ
+�Aσ̄

+)1/2. Further, �̃(σ̄ )
ση (ε) is

given by Eq. (N5) with �̃
(σ̄ )
3σ,ζ1

approximated as in Eq. (L8).

G. sNCA4 results at equilibrium

In what follows we consider the symmetric coupling to
the leads L = R = /2. Assuming that the parameters are
such that the dot is close to the center of the Coulomb di-
amond, i.e., ε0 − μ,U − ε0 + μ � , we can approximate
the self-energy in order to obtain a simple expression for
the Kondo-type temperature from the condition in Eq. (237).
From Eq. (N5), retaining the first term for sufficiently
large U , away from the condition μ − ε0 = U/2, the real
part of the self-energy �̃

(σ̄ )
σ,− is the same as in the NCA2

x [cf. Eq (197)]:

Re
[
�̃

(σ̄ )
σ,−(μ)

] � 

2π
ln
( U

2πkBT

)
. (242)

As shown in Appendix M [see Eq. (M7)], the retarded self-
energy of type (σ ) is calculated to be

�̃
(σ )
σ,−(μ) � 

4π
ln

(
2

2πkBT

)
, (243)

and the resulting value for the Kondo-type temperature T ∗ =
TsNCA4 is

kBTsNCA4 = (2U 2)1/3

2πeπ/(2U )
e4π (μ−ε0 )(μ−ε0−U )

3U , (244)

which essentially reproduces the one obtained in [41]. The
result of the simplified NCA4 deviates from the true Kondo
temperature TK [Eq. (199)]. This deviation is ascribed to the
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FIG. 23. Linear conductance of the simplified NCA4 vs the
gate voltage for three different temperatures. Degenerate case εσ =
ε0 with  = 0.2U . The dashed lines depict the expectation value
〈n̂↑〉 = 〈n̂↓〉. The parameters are chosen to allow a direct comparison
with the results of [35]. The Kondo temperature [Eq. (199)] for this
choice of parameters is kBTK � 0.004U . The sNCA4 conductance
has a very weak dependence on temperature in the lowest two panels,
a hint that the Fermi-liquid regime is approached (see also Fig. 25).
However, in contrast to the DMNRG curve, the unitary limit G = G0

is not approached.

fact that, in the dressing of the third-tier bubbles, only diag-
onal contributions were included, yielding a simple structure
for the fourth-tier bubbles. Diagrams describing spin fluctu-
ations involve the fourth-tier bubbles in the second column
of Eqs. (228) and (229) which are arguably relevant in the
low-temperature regimes. In fact, as shown exemplarily in
Eq. (K37), they lead to a temperature-dependent energy shift
in the self-energy.

In Figs. 23 and 24 , we show the linear conductance calcu-
lated within the sNCA4 scheme considered here, for  = 0.2
and 0.4U , respectively. In both cases we consider three val-
ues of the temperature. The sNCA4 reproduces the DMNRG
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FIG. 24. Linear conductance of the simplified NCA4 vs the
gate voltage for three different temperatures. Degenerate case εσ =
ε0 with  = 0.4U . The dashed lines depict the expectation value
〈n̂↑〉 = 〈n̂↓〉. The Kondo temperature [Eq. (199)] for this choice of
parameters is kBTK � 0.04U . Note that the sNCA4 performs better
at low temperature with respect to the case  = 0.2U (cf. Fig. 23).

curve quantitatively until temperatures slightly above TK over
the whole gate voltage range. After that, the conductance
has only a weak temperature dependence, as expected in
the Fermi-liquid regime [4]. However, it fails to reproduce
the saturation predicted for the SIAM to the plateau value
G0 = 2e2/h for T → 0. We notice that the sNCA4 has a better
qualitative behavior at the larger value of . As in Fig. 21,
the parameters of Fig. 23 are chosen so as to allow for a
direct comparison with Fig. 6 of Ref. [35], where different
approximation schemes, some of which are derived with the
EOM technique, are contrasted with the NRG results.

1. Particle-hole symmetry point

At the particle-hole symmetry point ε0 − μ = −U/2, and
in the degenerate case, the retarded self-energy simpli-

fies to �̃σ,−(μ) = �̃
(σ )
σ,−(μ) + �̃

(σ̄ )
σ,−(μ) = Re�̃σ−(μ) − i/2,

where, from Eqs. (M8) and (N8),

Re�̃σ,−(μ) = 3

4π

∑
p=±

p Reψ

(
1

2
+ p

2πkBT

)
. (245)

In turn, the arguments ± read as

± = 

[
1 ± 2

π
Imψ

(
1

2
+ /2

2πkBT
+ i

U/2

2πkBT

)]
.

From Eq. (239), this entails for the density of states

− 1

π
ImGr

σσ (μ) = 3/2π

U 2/4 + 32/4 − U Re�̃σ,−(μ)
. (246)

The linear conductance saturates at zero temperature and, as
shown in Appendix O, displays a Fermi-liquid behavior at
low T .

The zero-temperature expression for the self-energy

�̃σ,−(μ) = 3

4π
ln

(
1 + (2/π ) arctan(U/)

1 − (2/π ) arctan(U/)

)
− i



2
, (247)

along with Eqs. (132) and (246), provides the saturation value
GT =0 = −G0

∑
σ ImGr

σσ (μ)/4 for the sNCA4 linear con-
ductance.

Figure 25 shows the linear conductance at the particle-hole
symmetry point as a function of the temperature, for both
values of  considered in Figs. 23 and 24. In the limit T → 0,
the sNCA4 displays saturation at values lower than the correct
value G0, which improves for larger . In fact, saturation to
G0 is attained in the limit  � U since the theory is exact
in the noninteracting case. An improvement over the sNCA4
results is expected at the NCA4 level. Here, the inclusion of
the off-diagonal contributions in the fourth-tier matrices B4

naturally leads to an energy shift also in the self-energies
[see Eq. (K37)], which becomes crucial below the Kondo
temperature. The predictions of the full NCA4 will be the
subject of future investigations.

H. Nonequilibrium properties of the sNCA4

The simple form of the sNCA4 self-energies [Eqs. (N7)
and (241)] allows us to use the NCA4 Green’s function (236)
to address the nonequilibrium situation. An insight on the
peak structure of the differential conductance in the degen-
erate case, for different values of the tunnel coupling , is
given by Figs. 26 and 27. Specifically, we show the differential
conductance as a function of the voltage bias eV = μL − μR

with μL = μ + eV/2 and μR = μ − eV/2 at the two gate
voltages shown in Fig. 26(a) (see the cuts of the stability
diagram). In Fig. 26(b) the differential conductance vs bias
voltage is shown at different temperatures for  = 0.1U . The
same is done in Figs. 27(a) and 27(b) for  = 0.2U and 0.4U ,
respectively. As above, we consider a symmetric coupling to
the leads L = R = /2.

The Kondo temperature TK [Eq. (199)] is a function of
ε0 − μ; for this reason to the two values of the gate volt-
age considered there correspond different Kondo temperatures
at a given . For  = 0.1U [Fig. 26(b)], the temperatures
considered are larger than TK for both gate voltages and the
Kondo peak at zero bias is absent, although one can see the
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FIG. 25. Temperature dependence of the linear conductance in
the simplified NCA4 and NCA2 at the particle-hole symmetry point
ε0 − μ = −U/2. Degenerate case εσ = ε0 with  = 0.2U (upper
panel) and  = 0.4U (lower panel). The red dashed lines are at the
values of the Kondo temperature TK given by Eq. (199) while the
vertical solid lines correspond to the three temperatures considered
in in Figs. 23 and 24. Consistently with the DMNRG results, well
below TK the sNCA4 curves depend only weakly on the temperature.
However, the unitary value G0 is not attained.

onset of the peak at the lowest value of T . The same holds
for  = 0.2U [Fig. 27(a)] at the particle-hole symmetry point
ε0 − μ = −U/2, where kBTK < 0.04U . In contrast, the gate
voltage ε0 − μ = −U/4 yields kBTK > 0.04U . This second
situation is reflected by a zero-bias peak which develops
fully as the temperature is decreased. For the largest value
of the coupling, namely,  = 0.4U [Fig. 27(b)], at both gate
voltages the lowest value of T used is lower than TK. This
entails that the two plots in Fig. 27(b) show the same features,
namely, fully developed zero-bias peaks.

1. Effect of an applied magnetic field

In the presence of an applied magnetic field, the Zeeman
splitting of the dot energies εσ is given by �B = ε↑ − ε↓, with
ε↑ = ε0 + �B/2 and ε↓ = ε0 − �B/2. We address the result-
ing nondegenerate situation in Fig. 28, where the conductance
is calculated as a function of the gate voltage both at equi-
librium (zero voltage bias) and in nonequilibrium (eV = U ).
The same scheme of the stability diagram shown in Fig. 26(a)
is reproduced in Fig. 28(a) and presents the conductance at
zero applied magnetic field for two fixed values of the voltage
bias, corresponding to the horizontal cuts. In Fig. 28(b), we

0
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0.2

−2 −1 0 1 2

(b)

(a)

−2 −1 0 1 2

∂
I
/∂

V
[G

0
]

eV/U eV/U

kBT/U = 0.1
0.05
0.01

FIG. 26. Effect of the temperature on the sNCA4 differential
conductance for  = 0.1U , with L = R = /2, in the degener-
ate case. (a) Scheme of the stability diagram for the SIAM (cf.
Fig. 19). The curves are the differential conductance for two values
of the gate voltage at kBT = 0.04U . (b) Differential conductance
vs voltage bias eV = μL − μR, for different temperatures. The gate
voltage is set to the values shown in (a), namely, ε0 − μ = −U/2
(left) and ε0 − μ = −U/4 (right). At the particle-hole symmetry
point, ε0 − μ = −U/2, the Kondo temperature, Eq. (199), is kBTK �
0.000 06U .

consider different values of �B for the two values of the bias
shown in Fig. 28(a). According to the chosen bias voltage
eV = μL − μR, we obtain multiple-peak structures with dif-
ferent relative magnitudes. The peaks in the conductance are
split by the effect of the applied magnetic field.

X. CONCLUSIONS

In summary, we have illustrated how the Feynman-Vernon
approach, well known in the study of the dissipative dynamics
of quantum particles in bosonic environments [64,79,82,95],
is also a useful tool in the context of nonlinear transport in
interacting nanojunctions. Integration over the reservoirs’ de-
grees of freedom enables one to obtain an exact path-integral
representation for the reduced density matrix and the cur-
rent for a general open system connected to several leads.
Dealing with fermions, the path integral is given in terms of
fermionic coherent states. Here, the Feynman-Vernon influ-
ence functional, a functional of the system paths, accounts
exactly for the effects of the leads on the system’s dynamics.
While the residual integration over the Grassmann variables
can be easily performed for noninteracting systems [15], this
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FIG. 27. Effect of the temperature on the sNCA4 differential
conductance vs voltage bias eV = μL − μR in the degenerate case
and for (a)  = 0.2U and (b)  = 0.4U . The gate voltage is set to
the same values as in Fig. 26, namely, ε0 − μ = −U/2 (particle-hole
symmetry point, left) and ε0 − μ = −U/4 (right). At the particle-
hole symmetry point, the Kondo temperature, Eq. (199), is kBTK �
0.004U in (a) and kBTK � 0.04U in (b).

is no longer the case when local interactions are present in the
nanojunction, a situation which is the topic of our work.

In the first and general part, we show how this difficulty
can be overcome by expressing the path integral for the prop-
agator in the occupation-number representation. This allows
for a systematic expansion of the Feynman-Vernon influence
functional in the system-leads tunneling amplitude and its
diagrammatic characterization. The diagrammatic expansion
is carried out for a general system provided that the tunneling
matrices are diagonal in the system’s states, meaning that the
tunneling is state preserving. In practice, we exclude from
the discussion situations like those of noncollinearly polar-
ized leads, or when orbital coherence is important [84–86,88–
90,96]. This assumption enables us to consider exclusively the
populations of the nanojunction. Since, due to Pauli exclu-
sion principle, a single fermionic degree of freedom can only
be empty or occupied, we exploit this “two-level” character
to parametrize the propagator paths in terms of “blips” and
“sojourns,” in analogy to the spin-boson model [79]. The di-
agrammatic contributions to the propagating functions for the
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FIG. 28. Effect of the magnetic field on the sNCA4 conductance.
Symmetric coupling to the leads with  = 0.1U , and temperature
kBT = 0.01U . (a) Scheme of the stability diagram for the SIAM.
The solid black curves are the differential and linear conductances
at zero magnetic field and for two values of the bias voltage eV =
μL − μR, namely, eV = 0 and eV = U . (b) Linear and differential
conductances vs the gate voltage, calculated for the two values of the
bias voltage shown in (a), for different values of the Zeeman splitting
�B = ε↑ − ε↓.

populations are summed to yield a formally exact generalized
master equation (GME). Similarly, an integral equation for
the current is derived. In the last part devoted to the general
formalism, we give hierarchical diagrammatic expressions for
both the kernels of the GME and of the integral equation for
the current, which constitutes a major result of this gen-
eral part. We have reported crucial steps of the derivations
in numerous Appendixes. This allows nonexpert readers to
get acquainted with some mathematical intricacies. At the
same time, readers not interested in the elimination of the
Grassmann variables can start from the diagrammatic rules
discussed in Sec. IV and continue with the derivation of the
GME.

In the second part of the work, the formalism is applied to
two important archetype models: the exactly solvable resonant
level model and the single-impurity Anderson model (SIAM).
Due to the vast literature on the topic, we found it important
to show how seemingly different treatments or approxima-
tion schemes can be reconciled within our formalism. For
example, the nonperturbative resonant tunneling approxima-
tion proposed in [47] is soon recovered by truncating the
hierarchy in the kernel of the GME to the second tier. Also,
the famous Meir-Wingreen formula for the SIAM retarded
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Green’s function, derived with the equation-of-motion ap-
proach [39], is obtained here within a selection of second-tier
diagrams, which we call second-tier noncrossing approxima-
tion (NCA2).

While the resonant tunneling approximation and the NCA2
already capture the onset of the Kondo zero-bias anomaly
upon decreasing temperature, they both have some drawbacks
that can be overcome only by going to higher-tier treatments.
To this aim, we develop first an infinite-tier approximation, the
dressed bubble approximation (DBA). Then, we proceed with
a simplified version of the DBA which neglects the crossing at
all levels, the NCA. Here, the evaluation of the SIAM retarded
Green’s function is formally reduced to the inversion of a 4 ×
4 self-energy matrix and the Green’s function self-energies be-
come dressed by virtual tunneling transitions. Being interested
in analytical solutions, we investigate the outcomes of our ap-
proximation within fourth-tier schemes dubbed NCA4 and the
simplified NCA4 (sNCA4). Here, like the Green’s function,
also the NCA4 self-energies acquire a finite lifetime and an
energy shift. While inclusion of the full NCA4 self-energy
is still intricate, its simplified version allows for a complete
analytical treatment of the SIAM. Exemplarily, we show that
the conductance is well reproduced from high temperatures
down to the Kondo temperature for moderate interaction. The
validity of the sNCA4 in this parameter range was checked for
the equilibrium SIAM against exact numerical renormaliza-
tion group simulations. While the sNCA4 solves the pinning
problem and displays a Fermi-liquid behavior at low T , pre-
dicting a saturation of the conductance at zero temperature,
it still does not yield the expected unitary value G = 2e2/h
for a Kondo impurity. A full NCA4 treatment at the level
of the fourth tier is expected to improve the low-temperature
predictions for the SIAM current-voltage characteristics. We
defer the study of this full fourth-tier scheme to future inves-
tigations.

Finally, the purpose of this work is to introduce an an-
alytical approach to interacting nanojunctions based on the
Feynman-Vernon influence functional, and to apply it to
archetypal models such as the resonant level model and the
SIAM. Due to the generality of the method, more com-
plex situations encompassing multilevel or multidot systems,
state nonconserving tunneling, or junctions subject to time-
dependent drive, can be included in the theory. We hope that
this potential will stimulate further investigations using the
Feynman-Vernon approach.
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APPENDIX A: PATH-INTEGRAL EXPRESSION
FOR THE SYSTEM PROPAGATOR

In the absence of an external time-dependent driving, the
propagator for the quantum state of the full system, from the

initial time t0 to time t , reads as

U (t, t0) = e− i
h̄ H (t−t0 ), (A1)

with H the complete Hamiltonian of the transport setup,
Eq. (1).

A path-integral expression for the reduced density matrix
of the central system can be obtained in the coherent-
state representation [72]. The fermionic coherent states for
the central system are defined as |ξ〉 = exp(−∑i ξ

iâ†
i )|0〉 =∏

i exp(−ξ iâ†
i )|0i〉 =∏i(1 − ξ iâ†

i )|0i〉 = ∏
i(|0i〉 − ξ i|1i〉),

where the Grassmann variables ξ = (. . . , ξ i, . . . ) and ξ∗ =
(. . . , ξ i∗, . . . ) have one component for each electronic state
i defined by âi|ξ〉 = ξ i|ξ〉 and 〈ξ|â†

i = 〈ξ|ξ i∗. The Grassmann
variables obey the relations {ξ i, ξ j} = {ξ i, ξ j∗} = 0, meaning
that (ξ i )2 = 0. Analogous definitions hold for the leads’ states
|φ〉 in the coherent-state representation. Using the notation
from Cahill and Glauber [73]∫

d2ξ i :=
∫

dξ i∗dξ i,

∫
d2ξ :=

∫ ∏
i

d2ξ i, and

ξ∗ · ξ =
∑

i

ξ i∗ξ i, (A2)

the identity in the Hilbert space of the central system reads as

Î =
∫

d2ξ e−ξ∗·ξ|ξ〉〈ξ|. (A3)

The overcompleteness of the set of coherent states is manifest
in the overlap between coherent states

〈ξa|ξb〉 = e ξ∗
a ·ξb . (A4)

The trace of an operator in the coherent-state representation is

Tr{A} =
∫

d2ξ e−ξ∗·ξ〈−ξ|A|ξ〉, (A5)

and the Gaussian integrals are performed via∫
d2ξ e−ξ∗·M·ξ+η∗·ξ+ξ∗·ψ = det[M]eη∗·M−1·ψ. (A6)

Assuming the factorized initial condition ρtot (t0) = ρ(t0) ⊗
ρleads for the total density matrix, the matrix element
〈ξa|ρ(t )|ξb〉 in the coherent-state representation of the system
RDM ρ(t ) is given by the following trace over the leads:

〈ξa|ρ(t )|ξb〉 = 〈ξa|Trleads{U (t, t0)ρtot (t0)U †(t, t0)}|ξb〉

=
∫

d2φ e−φ∗·φ〈−ξaφ|U (t, t0)ρ(t0)

⊗ ρleads(t0)U †(t, t0)|φξb〉, (A7)

where |φ〉 is the state of the leads in the coherent-state rep-
resentation. At this point we apply the standard procedure
of dividing the time interval t − t0 into K small intervals
of length δt and introducing the identity for the composite
system

Ik =
∫

d2ξ(tk )d2φ(tk ) e−ξ∗(tk )·ξ(tk )

× e−φ∗(tk )·φ(tk )|φ(tk )ξ(tk )〉〈ξ(tk )φ(tk )| (A8)
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at each time instant tk , both in the forward and in the backward
propagators U (t, t0) and U †(t, t0). This results in

〈ξa|ρ(t )|ξb〉 =
∫

d2φ e−φ∗·φ
∫

d2ξ0d2φ0d2ξ̄0d2φ̄0

× e−ξ∗
0 ·ξ0−ξ̄

∗
0 ·ξ̄0 e−φ∗

0 ·φ0−φ̄
∗
0 ·φ̄0

×〈−ξaφ|U (t, t0)|φ0ξ0〉〈ξ0φ0|ρ(t0)

⊗ ρleads(t0)|φ̄0ξ̄0〉〈ξ̄0φ̄0|U †(t, t0)|φξb〉. (A9)

Explicitly, setting ξ∗(tK+1) ≡ ξ∗
a, ξ̄(tK+1) ≡ ξb, 〈φ(tK+1)| ≡

〈−φ|, and |φ̄(tK+1)〉 ≡ |φ〉, the path-integral expression for
the matrix elements of the forward and backward propagators
reads as

〈−ξaφ|U (t, t0)|φ0ξ0〉

=
∫ K∏

k=1

d2ξ(tk )d2φ(tk )e−ξ∗(tk )·ξ(tk )−φ∗(tk )·φ(tk )

×
K+1∏
k=1

eξ∗(tk )·ξ(tk−1 )+φ∗(tk )·φ(tk−1 )e− i
h̄ H [ξ∗(tk ),φ∗(tk ),ξ(tk−1 ),φ(tk−1 )]δt

(A10)

and

〈ξ̄0φ̄0|U †(t, t0)|φ̄ξ̄b〉

=
∫ K∏

k=1

d2ξ̄(tk )d2φ̄(tk )e−ξ̄
∗
(tk )·ξ̄(tk )−φ̄

∗
(tk )·φ̄(tk )

×
K+1∏
k=1

eξ̄
∗
(tk−1 )·ξ̄(tk )+φ̄

∗
(tk−1 )·φ̄(tk )e

i
h̄ H [ξ̄

∗
(tk−1 ),φ̄

∗
(tk−1 ),ξ̄(tk ),φ(tk )]δt ,

(A11)

respectively. Collecting the above results, we obtain the ma-
trix element of the RDM at time t ,

〈ξa|ρ(t )|ξb〉 =
∫

d2ξ0d2ξ̄0J (ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0)〈ξ0|ρ(t0)|ξ̄0〉,

(A12)

where the propagator has the following path-integral expres-
sion:

J (ξ∗
a, ξb, t ; ξ0, ξ̄

∗
0, t0)

=
∫ ξ∗

a

ξ0

Dξ

∫ ξb

ξ̄
∗
0

Dξ̄ e
i
h̄ [SS(ξ∗,ξ)−S∗

S (ξ̄
∗
,ξ̄)]F (ξ∗, ξ, ξ̄∗

, ξ̄). (A13)

Here, the integration measures of the Grassmann-valued
paths are defined by

∫
Dξ = ∫ ∏K

k=1 dξ∗
kdξk and

∫
Dξ̄ =∫ ∏K

k=1 d ξ̄
∗
kd ξ̄k . The functional containing the action of

the central system is given by Eq. (5) of the main text.
The Feynman-Vernon influence functional F (ξ∗, ξ, ξ̄∗

, ξ̄) =
exp[Φ(ξ∗, ξ, ξ̄∗

, ξ̄)] is a functional of the Grassmann-valued
paths of the central system which encapsulates the dissipative
effect due to the coupling to the leads. Its phase reads as
[15,65,74]

Φ(ξ∗, ξ, ξ̄∗
, ξ̄)

= −
∑

i j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[gi j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′)

+G∗
ji(t

′ − t ′′)ξ̄ i∗(t ′′)ξ̄ j (t ′)]

−
∑

i j

∫ t

t0

dt ′
∫ t

t0

dt ′′{gi j (t
′ − t ′′)ξ̄ i∗(t ′)ξ j (t ′′)

− g+,i j (t
′ − t ′′)

[
ξ i∗(t ′) + ξ̄ i∗(t ′)

]
[ξ j (t ′′) + ξ̄ j (t ′′)]},

(A14)

with the temperature-independent and temperature-dependent
correlation matrix of elements gi j (t ) and g+,i j (t ) defined as

gi j (t ) = 1

h̄2

∑
αkσ

tiαk t∗jαkσσ e− i
h̄ εαkt ,

(A15)
g+,i j (t ) = 1

h̄2

∑
αkσ

tiαkσ t∗jαkσ f α
+ (εk )e− i

h̄ εαkt ,

respectively, where f α
+ (εk ) = [1 + eβα (εαk−μα )]−1 is the Fermi

function of lead α. We also define

g−,i j (t ) := gi j (t ) − g+,i j (t )

= 1

h̄2

∑
αkσ

tiαkσ t∗jαkσ f α
− (εk )e− i

h̄ εαkt , (A16)

where f α
− (εk ) := 1 − f α

+ (εk ).

APPENDIX B: PHASE OF THE INFLUENCE FUNCTIONAL

The terms in Eq. (A14) can be rearranged in a convenient manner:

Φ(ξ∗, ξ, ξ̄∗
, ξ̄) = −

∑
i j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[gi j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′) + G∗

ji(t
′ − t ′′)ξ̄ i∗(t ′′)ξ̄ j (t ′)]

+
∑

i j

∫ t

t0

dt ′
∫ t

t0

dt ′′[g+,i j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′) + g+,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ̄ j (t ′′)

+ g+,i j (t
′ − t ′′)ξ i∗(t ′)ξ̄ j (t ′′) − g−,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ j (t ′′)]. (B1)
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Further, exchanging the order of integration and using the relation gi j (−t ) = g∗
ji(t ) [see Eq. (A15)], the influence phase in

Eq. (B1) can be cast in the following compact form:

Φ(ξ∗, ξ, ξ̄∗
, ξ̄) = −

∑
i j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[gi j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′) + G∗

ji(t
′ − t ′′)ξ̄ i∗(t ′′)ξ̄ j (t ′)]

+
∑

i j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[g+,i j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′) + g+,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ̄ j (t ′′)

+ g+,i j (t
′ − t ′′)ξ i∗(t ′)ξ̄ j (t ′′) − g−,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ j (t ′′) + g∗
+, ji(t

′ − t ′′)ξ i∗(t ′′)ξ j (t ′)

+g∗
+, ji(t

′ − t ′′)ξ̄ i∗(t ′′)ξ̄ j (t ′) + g∗
+, ji(t

′ − t ′′)ξ i∗(t ′′)ξ̄ j (t ′) − g∗
−, ji(t

′ − t ′′)ξ̄ i∗(t ′′)ξ j (t ′)]

= −
∑

i j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[g−,i j (t
′ − t ′′)ξ i∗(t ′)ξ j (t ′′) − g+,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ̄ j (t ′′)

− g+,i j (t
′ − t ′′)ξ i∗(t ′)ξ̄ j (t ′′) + g−,i j (t

′ − t ′′)ξ̄ i∗(t ′)ξ j (t ′′) − g∗
+, ji(t

′ − t ′′)ξ i∗(t ′′)ξ j (t ′)

+ g∗
−, ji(t

′ − t ′′)ξ̄ i∗(t ′′)ξ̄ j (t ′) − g∗
+, ji(t

′ − t ′′)ξ i∗(t ′′)ξ̄ j (t ′) + g∗
−, ji(t

′ − t ′′)ξ̄ i∗(t ′′)ξ j (t ′)]

= −
∫ t

t0

dt ′
∫ t ′

t0

dt ′′
[
ξ∗(t ′) · g−(t ′ − t ′′) · ξ(t ′′) + ξ(t ′) · g∗

+(t ′ − t ′′) · ξ∗(t ′′)

− ξ̄(t ′) · g∗
−(t ′ − t ′′) · ξ̄

∗
(t ′′) − ξ̄

∗
(t ′) · g+(t ′ − t ′′) · ξ̄(t ′′) + ξ̄

∗
(t ′) · g−(t ′ − t ′′) · ξ(t ′′)

+ ξ̄(t ′) · g∗
+(t ′ − t ′′) · ξ∗(t ′′) − ξ(t ′) · g∗

−(t ′ − t ′′) · ξ̄
∗
(t ′′) − ξ∗(t ′) · g+(t ′ − t ′′) · ξ̄(t ′′)]

= −
∫ t

t0

dt ′
∫ t ′

t0

dt ′′ ∑
x,y,z=±1

x ξz
y(t ′)g−z

xz (t ′ − t ′′)ξ−z
x (t ′′), (B2)

where we used the anticommutation property of the Grassmann variables and Eq. (A16). In the last line, we established the
notation

ξ+1
+1 = ξ, ξ−1

+1 = ξ∗, ξ+1
−1 = ξ̄, ξ−1

−1 = ξ̄
∗
, g+1

+1 = g+, g−1
+1 = g∗

+, g+1
−1 = g−, g−1

−1 = g∗
−. (B3)

Equation (B2) is the form of the influence phase used throughout this work.

APPENDIX C: LEADS’ FORCE OPERATOR
CORRELATION FUNCTION

The correlation functions g±,i j (t ) are related to the corre-
lation function of the (fermion) baths force operator which
appears in the quantum Langevin equation for the dot operator
ai(t ). Indeed, given the full Hamiltonian (1), the Heisen-
berg equation of motion for the leads’ operators ċαkσ (t ) =
i[H, cαkσ (t )]/h̄ is solved by

cαkσ (t ) = cαkσ (t0)e− i
h̄ εαk (t−t0 )

− i

h̄

∑
j

t∗jαkσ

∫ t

t0

dt ′e− i
h̄ εαk (t−t ′ )a j (t

′). (C1)

Plugging this result in the Heisenberg equation for the system
operator ai(t ),

ȧi(t ) = i

h̄
[H, ai(t )] = i

h̄
[HS, ai(t )] − i

h̄

∑
αkσ

tiαkσ cαkσ (t )

(C2)

we obtain the quantum Langevin equation

ȧi(t ) = i

h̄
[HS, ai(t )] − 1

h̄2

∑
jαkσ

tiαkσ t∗jαkσ

×
∫ t

t0

dt ′e− i
h̄ εαk (t−t ′ )a j (t

′) + ζ̂i(t ), (C3)

where the baths force operator reads as

ζ̂i(t ) = − i

h̄

∑
αkσ

tiαkσ e− i
h̄ εαk (t−t0 )cαkσ (t0) (C4)

(see, e.g., Ref. [97]). The correlation functions in Eq. (A15)
are thus related to the correlation function of the baths’ force
operators via

〈ζ̂ †
i (t )ζ̂ j (t

′)〉 = g+,i j (t − t ′),

〈ζ̂i(t )ζ̂ †
j (t ′)〉 = g−,i j (t − t ′). (C5)

APPENDIX D: PATH-INTEGRAL REPRESENTATION OF
THE CURRENT AND THE GREEN’S FUNCTIONS

Consider the current on lead l . Using the definition
f l
−(εk ) := 1 − f l

+(εk ), the current functional I in Eq. (13) can
be rewritten as

Il (ξ
∗, ξ, ξ̄) = −

∫ t

t0

dt ′ {ξ∗(t )gl (t − t ′)ξ(t ′)

− ξ∗(t )g̃+,l (t − t ′)[ξ(t ′) + ξ̄(t ′)]}, (D1)

where

i j = [g+,l (t ) + g−,l (t )]i j = 1

h̄2

∑
kσ

tilkσ t∗jlkσ e− i
h̄ εlkt . (D2)
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With this expression, recalling the relation between the operators ai and the corresponding Grassmann variables ξ i, the current
Il (t ) = −2 Re TrS[Al (t )], with the path-integral representation of Al (t ) given by Eqs. (11) and (12), can be seen as the path-
integral representation of the following trace over system and leads’ degrees of freedom:

TrS[Al (t )] = −
∑

i j

∫ t

t0

dt ′ {gli j (t − t ′)Trtot[a
†
i U (t, t ′)a jU (t ′, t0)ρtot (t0)U †(t, t0)]

− g+,li j (t − t ′)Trtot[a
†
i U (t, t ′)a jU (t ′, t0)ρtot (t0)U †(t, t0) + a†

i U (t, t0)ρtot (t0)U (t ′, t0)a jU
†(t, t ′)]}

= −
∑

i j

∫ t

t0

dt ′[gli j (t − t ′)〈a†
i (t )a j (t

′)〉 − g+,li j (t − t ′)〈{a†
i (t ), a j (t

′)}〉]

= ih̄
∑

i j

∫ t

t0

dt ′ [gli j (t − t ′)G<
ji (t

′ − t ) − g+,li j (t − t ′)Ga
ji(t

′ − t )]

= ih̄
∫ t

t0

dt ′ Tr[gl (t − t ′) · G<(t ′ − t ) − g+,l (t − t ′) · Ga(t ′ − t )], (D3)

where the last trace is in the matrix sense. The lesser, retarded,
and advanced Green’s functions are defined by

[G<(t ′, t )]i j = i〈a†
j (t )ai(t

′)〉/h̄,

[Gr (t, t ′)]i j = −iθ (t − t ′)〈{ai(t ), a†
j (t

′)}〉/h̄,

[Ga(t, t ′)]i j = [Gr†(t ′, t )]i j

= iθ (t ′ − t )〈{a†
j (t

′), ai(t )}〉/h̄, (D4)

respectively. Note that the Heaviside function is already taken
into account in the time integral that guarantees the ordering
t ′ < t .

APPENDIX E: TWO LEADS AND
PROPORTIONAL COUPLING

Let us confine ourselves to the case of diagonal correlation
matrices g+,α . Having diagonal correlation matrices implies
that, in the continuum limit,

[�α (ε)]i j := 2π
∑
σ

�ασ (ε)|tiασ (ε)|2δi j .

In a typical transport setting, the system is connected to
two leads, α = L,R. In the case of proportional coupling,
the tunneling coefficients in the Hamiltonian are related by
tiRσ (ε) = √

γiR/γiL tiLσ (ε) with γiL + γiR = 1. Since I∞
L =

−I∞
R , the current IL is asymptotically equal to the current

I (t ) =∑i[γiRIiL(t ) − γiLIiR(t )] which we can directly write
as

I (t ) = e2 Re TrS[A(t )]. (E1)

The path-integral representation for the dot operator with di-
agonal elements Aii(t ) := γiRAiiL(t ) − γiiLAiiR(t ) is formally
the same as the one in Eq. (11). The current propagator J I

for A(t ) is similar to J I
l [Eq. (12)], the difference being the

functional I (ξ∗, ξ, ξ̄) in place of Il (ξ
∗, ξ, ξ̄), where

I (ξ∗, ξ, ξ̄) =
∑

i

∫ t

t0

dt ′ξ i∗(t )[γiRg+,iiL (t − t ′)

− γiLg+,iiR(t − t ′)][ξ i(t ′) + ξ̄ i(t ′)]. (E2)

Here we used the property f α
− (ε) = 1 − f α

+ (ε) in the defi-
nition of the correlation matrices. In the calculation of I (t )

for proportional coupling, the temperature-independent term
involving the lesser Green’s function in Eq. (D3) drops and

TrS[A(t )] =
∑

i

[γiRAiiL(t ) − γiLAiiR(t )]

= −ih̄
∑

i

∫ t

t0

dt ′[γiRg+,iiL (t − t ′)

− γiLg+,iiR(t − t ′)]Ga
ii(t

′ − t ). (E3)

In the continuum limit
∑

kσ →∑
σ

∫
dε �ασ (ε), with �ασ (ε)

the density of states in energy space of lead α. We define
�(ε) = �L(ε) + �R(ε), so that, for proportional coupling,
Eq. (E3) reads as

I (t ) = e
∑

i

γiLγiR

π h̄

∫
dε[ f L

+(ε) − f R
+ (ε)]

× Im

[
ii(ε)

∫ t

t0

dt ′e− i
h̄ ε(t−t ′ )Ga

ii(t
′ − t )

]
. (E4)

Asymptotic limit

In the limit t − t0 → ∞, the time integral in Eq. (E4) yields
the Fourier transform with

I∞ = e
∑

i

γiLγiR

π h̄

∫
dε
[

f L
+(ε) − f R

+ (ε)
]
Im [ii(ε)Ga

ii(ε)].

(E5)
Taking into account the definition of the matrix �(ε), the
current formula (E5) coincides with the well-known result of
Meir and Wingreen [21]. We have

I∞ = e
∑

i

γiLγiR

h̄

∫
dε[ f L

+(ε) − f R
+ (ε)]ii(ε)

1

π
Im Ga

ii(ε)

= e

h̄

∑
i

∫
dε[ f L

+(ε) − f R
+ (ε)]

[
�L(ε)�R(ε)

�L(ε) + �R(ε)

]
ii

×
[
− 1

π
Im Gr

ii(ε)

]
, (E6)

where we used the relation Im Ga
ii(ε) = −Im Gr

ii(ε).
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APPENDIX F: INTEGRATING OUT THE GRASSMANN
VARIABLES IN THE SIAM

In this Appendix, we show how to trace over the Grass-
mann variables associated to the paths of the central system
for specific instances of paths. This procedure yields ulti-
mately the diagrammatic rules that can be traced back to the
anticommutation property of Grassmann numbers. First, we
exemplify the procedure for the simplest case of a central
system consisting of a single, spinless level, the resonant level
model. Then, we make the calculations for the more involved
case of the single-impurity Anderson model. Here, due to the
Coulomb interaction, the phase associated to the action of the
dot in the path-integral expression for the propagator produces
the phase factors that couple the diagrammatic contributions
stemming from the individual spin paths.

In order to perform specific calculations we employ the
formula that connects the coherent-state representation of the
propagator for the populations to a given order m to the corre-
sponding occupation-number representation

J (m)
n′n (t, t0)

= �b(n′)�∗
a(n′)

∫
d2ξ0d2ξ̄0J (m)(ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)

×〈ξ0|n〉〈n|ξ̄0〉, (F1)

where n = (. . . , ni, . . . ) with ni = 0, 1. The projectors are
defined by

�(n) =
N∏

i=1

�i(ni ), �∗(n) =
1∏

i=N

�i∗(ni ), (F2)

with

�∗(0) =
∫

dξ ∗ξ ∗, �∗(1) =
∫

dξ ∗,

�(0) =
∫

d ξ̄ ξ̄ , �(1) =
∫

d ξ̄ . (F3)

Resonant level model

In the RLM, the central system consists of a single, spinless
level with energy ε. We start by considering in full detail
specific instances of paths with low number of transitions,
situated in the forward and backward paths. In this case the
occupation of the level is the single degree of freedom of the
central system. Let us use Eqs. (F1) and (F2) to evaluate the

contributions to the propagator at different orders in  given
by specific instances of paths.

According to Eq. (15) we have

〈ξ0|0〉〈0|ξ̄0〉 = 1 and 〈ξ0|1〉〈1|ξ̄0〉 = ξ ∗ξ̄ .

To order zero, using Eq. (5) and defining p := −iεδt/h̄,

J (0)
00 (t ; t0) = �b(0)�∗

a(0)
∫

d2ξ0d2ξ̄0J (0)(ξ ∗
a , ξ̄b, t ; ξ0, ξ̄

∗
0 , t0)

×〈ξ0|0〉〈0|ξ̄0〉

=
∫

d ξ̄N+1ξ̄N+1dξ ∗
N+1ξ

∗
N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn

× e−ξ̄∗
n ξ̄n

N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

n

=
∫

d ξ̄N+1ξ̄N+1dξ ∗
N+1ξ

∗
N+1

×
N∏

n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

= 1, (F4)

with ξ ∗
N+1 ≡ ξ ∗

a and ξ̄N+1 ≡ ξb. Here we have used the prop-
erty exp(ψ ) = 1 + ψ and Eq. (14). These properties imply
that, for all n, the terms in the rightmost product contribute as
1, otherwise there would be either products of same Grass-
mann numbers (ψ2 = 0) or integrations not compensated
by the corresponding Grassmann numbers in the integrand
(
∫

dψ = 0) [see Eq. (14)].
On the other hand, along the same lines one can see that a

path with no transitions cannot join two states with different
occupation, namely,

J (0)
10 (t ; t0) = �b(1)�∗

a(1)
∫

d2ξ0d2ξ̄0J (0)(ξ ∗
a , ξ̄b, t ; ξ0, ξ̄

∗
0 , t0)

×〈ξ0|0〉〈0|ξ̄0〉

=
∫

d ξ̄N+1dξ ∗
N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

×
N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

n

= 0, (F5)

sojourn (00) blip (10) sojourn (00)

(a) (b)

sojourn (00) blip (01) sojourn (00)

FIG. 29. Two examples of paths with two transitions, either in the forward (a) or in the backward (b) time branch. The Grassmann variables
boxed in red are the ones appearing in the influence functional for the examples of paths considered. Note that we use the same time direction
for the two branches with the consequence that ξ̄ and ξ̄ ∗ creates and annihilates an electron in the dot, respectively.
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where, again, we used the properties of the Grassmann inte-
grals (14). In the following we associate the color red to the
tunneling times and the colors black and blue to the sojourn
and blip times, respectively. These are the time intervals when
the RDM is in a diagonal (respectively off-diagonal) state
(see Fig. 5).

Going to first order in , we first consider the path in
Fig. 29(a) with tunneling transitions in the forward branch.
Specifically, an electron is created in the central system at
time tk and subsequently annihilated at time tm. The path is
thus identified by the sequence ξ ∗

k , ξm (see Fig. 6). Using the
preliminary results

m∏
n=k

d2ξn = dξ ∗
k

(
m∏

n=k+1

dξn−1dξ ∗
n

)
dξm,

m∏
n=k

d2ξ̄n =
k∏

n=m

d2ξ̄n = d ξ̄ ∗
m

(
k+1∏
n=m

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄k, (F6)

the contribution from path (a) in Fig. 29 is obtained as

J (1)
(a),00(t ; t0) = �b(0)�∗

a(0)
∫

d2ξ0d2ξ̄0J (1)
(a) (ξ ∗

a , ξ̄b, t ; ξ0, ξ̄
∗
0 , t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtm

∫ tm

t0

dtk

∫
d ξ̄N+1ξ̄N+1dξ ∗

N+1ξ
∗
N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

nξm[−g∗
+(tm − tk )]ξ ∗

k

=
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

∫
dξ ∗

N+1d ξ̄N+1ξ̄N+1ξ
∗
N+1

N∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n

k−1∏
n=0

d2ξne−ξ∗
n ξn

N∏
n=m+1

d2ξne−ξ∗
n ξn

× dξ ∗
k

(
m∏

n=k+1

dξn−1dξ ∗
n

)
dξm

(
m∏

n=k+1

ξ ∗
n ξn−1 pn

)
ξmξ

∗
k

=
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

m∏
n=k+1

pn

∫
dξ ∗

k dξmξmξ
∗
k︸ ︷︷ ︸

=1

−→
∫ t

t0

dt2

∫ t2

t0

dt1 [−g∗
+(t2 − t1)]e− i

h̄ ε(t2−t1 ). (F7)

Similarly, the contribution from path (b) in Fig. 29 is

J (1)
(b),00(t ; t0) = �b(0)�∗

a(0)
∫

d2ξ0d2ξ̄0J (1)
(b) (ξ ∗

a , ξ̄b, t ; ξ0, ξ̄
∗
0 , t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtm

∫ tm

t0

dtk

∫
d ξ̄N+1ξ̄N+1dξ ∗

N+1ξ
∗
N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

n ξ̄ ∗
m g+(tm − tk )ξ̄k

=
∫ t

t0

dtm

∫ tm

t0

dtkg+(tm − tk )
∫

dξ ∗
N+1d ξ̄N+1ξ̄N+1ξ

∗
N+1

N∏
n=0

d2ξne−ξ∗
n ξn

×
k−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n

N∏
n=m+1

d2ξ̄ne−ξ̄∗
n ξ̄n d ξ̄ ∗

m

(
k+1∏
n=m

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄k

(
m∏

n=k+1

ξ̄ ∗
n−1ξ̄n p∗

n

)
ξ̄ ∗

mξ̄k

=
∫ t

t0

dtm

∫ tm

t0

dtkg+(tm − tk )
m∏

n=k+1

p∗
n

∫
d ξ̄ ∗

md ξ̄k ξ̄
∗
mξ̄k︸ ︷︷ ︸

=−1

−→
∫ t

t0

dt2

∫ t2

t0

dt1 [−g+(t2 − t1)]e
i
h̄ ε(t2−t1 ). (F8)

Hence, the two propagators for the specific paths (a) and (b) are the complex conjugates of each other.
Next we consider the two paths contributing to J (1)(1, t ; 0, t0) which are depicted in Fig. 30.
The contribution of path (c) is evaluated similarly to those of paths (a) and (b). Explicitly,

J (1)
(c),10(t ; t0) = �b(1)�∗

a(1)
∫

d2ξ0d2ξ̄0J (1)
(c) (ξ ∗

a , ξ̄b, t ; ξ0, ξ̄
∗
0 , t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtm

∫ tm

t0

dtk

∫
d ξ̄N+1dξ ∗

N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

n ξ̄m[−g∗
+(tm − tk )]ξ ∗

k

=
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

∫
d ξ̄N+1dξ ∗

N+1

k−1∏
n=0

d2ξne−ξ∗
n ξn

m−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n dξ ∗

k

(
N∏

n=k+1

dξn−1dξ ∗
n

)
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FIG. 30. Paths with two transitions, one in the forward and the other in the backward branch. The boxed Grassmann variables in red are
the ones appearing in the influence functional for the examples of paths considered.

× dξN

(
N∏

n=k+1

ξ ∗
n ξn−1 pn

)
ξ ∗

N+1ξN pN+1d ξ̄ ∗
N

(
m+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄m

(
N∏

n=m+1

ξ̄ ∗
n−1ξ̄n p∗

n

)
ξ̄ ∗

N ξ̄N+1 p∗
N+1ξ̄mξ

∗
k

= −
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

∫ k−1∏
n=0

d2ξne−ξ∗
n ξn

m−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n

(
N∏

n=k+1

dξn−1dξ ∗
n

)(
N∏

n=k+1

ξ ∗
n ξn−1 pn

)
pN+1

×
(

m+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1

)(
N∏

n=m+1

ξ̄ ∗
n−1ξ̄n p∗

n

)
p∗

N+1

∫
dξ ∗

k d ξ̄mξ̄mξ
∗
k

= −
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

N+1∏
n=k+1

pn

N+1∏
n=m+1

p∗
n

∫
dξ ∗

k d ξ̄mξ̄mξ
∗
k

= −
∫ t

t0

dtm

∫ tm

t0

dtk [−g∗
+(tm − tk )]

m∏
n=k+1

pn −→ −
∫ t

t0

dt2

∫ t2

t0

dt1 [−g∗
+(t2 − t1)]e− i

h̄ ε(t2−t1 ). (F9)

Analogously, for the path (d ) in Fig. 30 we obtain

J (1)
(d )10(t ; , t0) = �b(1)�∗

a(1)
∫

d2ξ0d2ξ̄0J (1)
(σ̄ ) (ξ ∗

a , ξ̄b, t ; ξ0, ξ̄
∗
0 , t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtm

∫ tm

t0

dtk

∫
d ξ̄N+1dξ ∗

N+1

N∏
n=0

d2ξnd2ξ̄ne−ξ∗
n ξn e−ξ̄∗

n ξ̄n

N+1∏
n=1

eξ
∗
n ξn−1 pn eξ̄

∗
n−1 ξ̄n p∗

nξ ∗
mg+(tm − tk )ξ̄k

=
∫ t

t0

dtm

∫ tm

t0

dtk g+(tm − tk )
∫

d ξ̄N+1dξ ∗
N+1

k−1∏
n=0

d2ξne−ξ∗
n ξn

m−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n dξ ∗

m

(
N∏

n=m+1

dξn−1dξ ∗
n

)

× dξN

(
N∏

n=m+1

ξ ∗
n ξn−1 pn

)
ξ ∗

N+1ξN pN+1d ξ̄ ∗
N

(
k+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄k

(
N∏

n=k+1

ξ̄ ∗
n−1ξ̄n p∗

n

)
ξ̄ ∗

N ξ̄N+1 p∗
N+1ξ

∗
mξ̄k

= −
∫ t

t0

dtm

∫ tm

t0

dtk g+(tm − tk )
∫ k−1∏

n=0

d2ξne−ξ∗
n ξn

m−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n dξ ∗

m

(
N∏

n=m+1

dξn−1dξ ∗
n

)

× dξN dξ ∗
N+1

(
N∏

n=m+1

ξ ∗
n ξn−1 pn

)
ξ ∗

N+1ξN pN+1d ξ̄N+1d ξ̄ ∗
N

(
k+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄k

(
N∏

n=k+1

ξ̄ ∗
n−1ξ̄n p∗

n

)
ξ̄ ∗

N ξ̄N+1 p∗
N+1ξ

∗
mξ̄k

= −
∫ t

t0

dtm

∫ tm

t0

dtk g+(tm − tk )
N+1∏

n=m+1

pn

N+1∏
n=k+1

p∗
n

∫
dξ ∗

md ξ̄kξ
∗
mξ̄k

= −
∫ t

t0

dtm

∫ tm

t0

dtk [−g+(tm − tk )]
m∏

n=k+1

p∗
n −→ −

∫ t

t0

dt2

∫ t2

t0

dt2 [−g+(t2 − t1)]e
i
h̄ ε(t2−t1 ). (F10)

We notice that Eqs. (F7) and (F9) only differ by a sign and the same holds for Eqs. (F8) and (F10).
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FIG. 31. Path with four transitions, two in the forward and the others in the backward branch. Here, only the collective path is represented,
with diagonal and off-diagonal states depicted with continuous and dashed lines, respectively. The boxed Grassmann variables in red are the
ones appearing in the influence functional in this example.

Now we consider the specific four-transition path (second order in ) individuated by the ordered sequence of Grassmann
variables {ξ ∗

k1
, ξ̄k2 , ξ̄

∗
k3
, ξk4} and shown in Fig. 31.

The contribution of this path to J (2)
00 (t ; t0) is evaluated along the same lines as above:

J (2)
(e),00(t ; t0) = �b(0)�∗

a(0)
∫

d2ξ0d2ξ̄0J (2)
(e) (ξ ∗

a , ξ̄b, t ; ξ0, ξ̄
∗
0 , t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1ξ̄N+1dξ ∗

N+1ξ
∗
N+1

k1−1∏
n=0

d2ξne−ξ∗
n ξn

N∏
n=k4+1

d2ξne−ξ∗
n ξn

k2−1∏
n=0

d2ξ̄ne−ξ̄∗
n ξ̄n

N∏
n=k3+1

d2ξ̄ne−ξ̄∗
n ξ̄n

× dξ ∗
k1

(
k4∏

n=k1+1

dξn−1dξ ∗
n

)
dξk4

(
k4∏

n=k1+1

ξ ∗
n ξn−1 pn

)
d ξ̄ ∗

k3

(
k2+1∏
n=k3

d ξ̄nd ξ̄ ∗
n−1

)
d ξ̄k2

(
k3∏

n=k2+1

ξ̄ ∗
n−1ξ̄n p∗

n

)

× {ξ̄k2 [−g∗
+(tk2 − tk1 )]ξ ∗

k1
ξk4 g∗

−(tk4 − tk3 )ξ̄ ∗
k3

+ ξk4 [−g∗
+(tk4 − tk1 )]ξ ∗

k1
ξ̄ ∗

k3
g+(tk3 − tk2 )ξ̄k2

}
=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
dξ ∗

k1
dξ4d ξ̄ ∗

k3
d ξ̄k2

{
ξ̄k2ξ

∗
k1
ξk4 ξ̄

∗
k3

[−g∗
+(tk2 − tk1 )]g∗

−(tk4 − tk3 )

+ ξk4ξ
∗
k1
ξ̄ ∗

k3
ξ̄k2 [−g∗

+(tk4 − tk1 )]g+(tk3 − tk2 )
} k2∏

n=k1+1

pn

k4∏
n=k3+1

pn

=
∫ t

t0

dt4· · ·
∫ t2

t0

dt1{[−g∗
+(t2 − t1)][−g∗

−(t4 − t3)] + [−g∗
+(t4 − t1)][−g+(t3 − t2)]}e− i

h̄ ε(t2−t1 )e− i
h̄ ε(t4−t3 ). (F11)

Note that a product of the type g(t4 − t2)g(t3 − t1), implying
a crossing of the fermion lines, is not present for this spe-
cific path because we have fixed the Grassmann variables at
the transition times and the form of the influence functional
prevents the fermion lines from joining two starred or two
nonstarred charges [see Eq. (6)].>

From the examples above we can draw some conclu-
sions:

(i) Integrations over the sojourn time intervals yield an
overall phase factor 1.

(ii) Integrations over the blip time intervals yield the phase
factors exp(−ζ iετ/h̄), where τ is the blip length and ζ = ±1,
depending on the nature of the blip.

Once the trivial integrations over the sojourns and blip time
intervals are performed, we are left with a final integration
over the Grassmann variables associated to the transitions. As
a result of this procedure, neither the Grassmann variables in
the integration measures nor the ones in the integrands are
time ordered. Specifically, please note:

(i) In the integration measure, the backward variables ap-
pear to the right of the forward and, within these two classes,
starred variables are to the left of the nonstarred ones. This
reflects the original order of the integrations.

(ii) In the integrand, the Grassmann variables appear as
a sequence of pairs whose order depends on how they are
coupled by the functions g(t j − ti ).
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(f)

FIG. 32. Path with four transitions distributed in the two sub-
paths of the spin variables ↑ and ↓. Note that the path for σ = ↑
is of the type (c) in Fig. 30, while σ = ↓ undergoes a sequence of the
type (a) in Fig. 29.

SIAM

We now generalize the procedure used for the RLM by
analyzing specific instances of paths involving both spin
states in the SIAM. To avoid adding further indices we de-
note the Grassmann variables associated to σ = ↑ with the
usual ξ and the ones associated to σ = ↓ with the letter
ψ . As for the RLM, instead of using the collective so-
journ index η = (η↑, η↓), we indicate the initial and final
occupation of the spin states of the dot in the argument
of the propagator. The integration measure has the property
d2ξ = dξ ∗dψ∗dξ dψ = −dξ ∗dξ dψ∗dψ , so that d2ξ d2ξ̄ =
dξ ∗dξ dψ∗dψ d ξ̄ ∗d ξ̄ dψ̄∗dψ̄ = d2ξ d2ξ̄ d2ψ d2ψ̄ . We use
this property to factorize the integrations over the Grassmann
variables for the two degrees of freedom.

For the SIAM, the coherent states are expressed, in terms
of occupation-number states, as

|ξ〉 = (1 − ξ â†
↑)(1 − ψ â†

↓)|0↑0↓〉
= |0↑0↓〉 + |1↑0↓〉ξ + |0↑1↓〉ψ + |1↑1↓〉ψξ,

〈ξ| = 〈0↓0↑|(1 − â↓ψ∗)(1 − â↑ξ ∗)

= 〈0↓0↑| + ψ∗〈1↓0↑| + ξ ∗〈0↓1↑| + ξ ∗ψ∗〈1↓1↑|.
(F12)

(g)

FIG. 33. Path with four transitions distributed in the two sub-
paths of the spin variables ↑ and ↓. Note that the subpaths are both
of the type (c) in Fig. 30.

As a result, the populations are found by calculating the matrix
element of the impurity RDM,

〈ξ|ρ|ξ̄〉 = P00 + · · · + ψ∗ψ̄ P01 + · · · + ξ ∗ξ̄ P10

+ · · · + ξ ∗ψ∗ψ̄ ξ̄ P11 (F13)

and applying the projectors defined in Eq. (F2) via Pn ≡
ρnn = �b(n)�∗

a(n)〈ξ|ρ|ξ̄〉.
Let us introduce the abbreviations

overlap : O↑
n = e−ξ∗

n ξn , Ō↑
n = e−ξ̄∗

n ξ̄n ,

O↓
n = e−ψ∗

n ψn , Ō↓
n = e−ψ̄∗

n ψ̄n ,

H0 : P↑
n = eξ

∗
n ξn−1 p↑

n , P̄↑
n = eξ̄

∗
n−1 ξ̄n p∗↑

n ,

P↓
n = eψ

∗
n ψn−1 p↓

n , P̄↓
n = eψ̄

∗
n−1ψ̄n p∗↓

n ,

interaction Un = eξ
∗
n ξn−1ψ

∗
n ψn−1un , Ūn = eξ̄

∗
n−1 ξ̄nψ̄

∗
n−1ψ̄nu∗

n ,

(F14)

where pσ
n := 1 − (i/h̄)εσ δtn and un := −(i/h̄)Uδtn, with U

the interaction energy. Consider the path in Fig. 32. From
Eqs. (F1) and (F2), the contribution to J (2)

10,00(t ; t0) given by
the path reads as

J (2)
( f ),10,00(t ; t0) = �

↑
b (1)�↓

b (0)�↓∗
a (0)�↑∗

a (1)
∫

d2ξ0d2ξ̄0J (2)
( f ) (ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1dψ̄N+1 ψ̄N+1dψ∗

N+1ψ
∗
N+1dξ ∗

N+1

N∏
n=0

d2ξnd2ψnd2ξ̄nd2ψ̄nO↑
n O↓

n Ō↑
n Ō↓

n

×
N+1∏
n=1

P↑
n P↓

n P̄↑
n P̄↓

n UnŪnξ̄k3 [−g↑∗
+ (tk3 − tk1 )]ξ ∗

k1
ψk4 [−g↓∗

+ (tk4 − tk2 )]ψ∗
k2

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1dξ ∗

N+1

(
k1−1∏
n=0

dξ ∗
n dξnO↑

n

)
dξ ∗

k1

(
N∏

n=k1+1

dξn−1dξ ∗
n P↑

n

)
dξNP↑

N+1P̄
↑
N+1d ξ̄ ∗

N

×
(

k3+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1P̄↑

n

)
d ξ̄k3

(
0∏

n=k3−1

d ξ̄ ∗
n d ξ̄nŌ↑

n

)
ξ̄k3 [−g∗↑

+ (tk3 − tk1 )]ξ ∗
k1

dψ̄N+1 ψ̄N+1dψ∗
N+1ψ

∗
N+1

(
N∏

n=0

dψ̄∗
n dψ̄nŌ↓

n

)

×
(

k2−1∏
n=0

dψ∗
n dψnO↓

n

)
dψ∗

k2

(
k4∏

n=k2+1

dψn−1dψ∗
nP↓

n Un

)
dψk4

(
N∏

n=k4+1

dψ∗
n dψnO↓

n

)
ψk4 [−g∗↓

+ (tk4 − tk2 )]ψ∗
k2
. (F15)

Now, since [see Eq. (F14)]∏
n

dξ ∗
n dξnOn = ∏

n dξ ∗
n dξne−ξ̄∗

n ξ̄n = 1 and
∏

n dξn−1dξ ∗
n Pn =

∏
n

dξn−1dξ ∗
n eξ

∗
n ξn−1 pn =

∏
n

pn, (F16)
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we get

J (2)
( f ),10,00(t ; t0) =

∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N∏
n=k1+1

p↑
n

k4∏
n=k2+1

(p↓
n + un)

N∏
n=k3+1

p↑∗
n [−g↑∗

+ (tk3 − tk1 )][−g↓∗
+ (tk4 − tk2 )]

×
∫

d ξ̄N+1dξ ∗
N+1dξ ∗

k1
dξNP↑

N+1P̄
↑
N+1d ξ̄ ∗

N d ξ̄k3 ξ̄k3ξ
∗
k1

dψ̄N+1 ψ̄N+1dψ∗
N+1ψ

∗
N+1dψ∗

k2
dψk4ψk4ψ

∗
k2

= −
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N+1∏
n=k1+1

p↑
n

k4∏
n=k2+1

(p↓
n + un)

N+1∏
n=k3+1

p↑∗
n [−g↑∗

+ (tk3 − tk1 )][−g↓∗
+ (tk4 − tk2 )]

×
∫

dξ ∗
k1

d ξ̄k3 ξ̄k3ξ
∗
k1

dψ∗
k2

dψk4ψk4ψ
∗
k2

= −
∫ t

t0

dt4· · ·
∫ t2

t0

dt1 e− i
h̄ ε↑(t3−t1 )e− i

h̄ (ε↓+U )(t4−t2 )[−g↑∗
+ (t3 − t1)][−g↓∗

+ (t4 − t2)], (F17)

where we have used Eq. (F6) and the properties that couples of Grassmann variables commute with other Grassmann variables
and that variables belonging to different spins anticommute.

Next we consider the process depicted in Fig. 33, which contributes to ρ11,11. As above, we have

J (2)
(g)11,00(t ; t0) = �

↑
b (1)�↓

b (1)�↓∗
a (1)�↑∗

a (1)
∫

d2ξ0d2ξ̄0J (2)
(g) (ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1dψ̄N+1 dψ∗

N+1dξ ∗
N+1

N∏
n=0

d2ξnd2ψnd2ξ̄nd2ψ̄nO↑
n O↓

n Ō↑
n Ō↓

n

×
N+1∏
n=1

P↑
n P↓

n P̄↑
n P̄↓

n UnŪnξ̄k3 [−g↑∗
+ (tk3 − tk1 )]ξ ∗

k1
ψ̄k4 [−g↓∗

+ (tk4 − tk2 )]ψ∗
k2

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1dξ ∗

N+1

(
k1−1∏
n=0

dξ ∗
n dξnO↑

n

)
dξ ∗

k1

(
N∏

n=k1+1

dξn−1dξ ∗
n P↑

n

)
dξNP↑

N+1

× P̄↑
N+1d ξ̄ ∗

N

(
k3+1∏
n=N

d ξ̄nd ξ̄ ∗
n−1P̄↑

n

)
d ξ̄k3

(
0∏

n=k3−1

d ξ̄ ∗
n d ξ̄nŌ↑

n

)
ξ̄k3 [−g↑∗

+ (tk3 − tk1 )]ξ ∗
k1

× dψ̄N+1dψ∗
N+1

(
k2−1∏
n=0

dψ∗
n dψnO↓

n

)
dψ∗

k2

(
N∏

n=k2+1

dψn−1dψ∗
nP↓

n Un

)
dψNP↓

N+1UN+1

× P̄↓
N+1ŪN+1dψ̄∗

N

(
k4+1∏
n=N

dψ̄ndψ̄∗
n−1P̄↓

n Ūn

)
dψ̄k4

(
0∏

n=k4−1

dψ̄∗
n dψ̄nŌ↓

n

)
ψ̄k4 [−g↓∗

+ (tk4 − tk2 )]ψ∗
k2
. (F18)

Again we use the definitions of Pn and On to integrate out the terms in parentheses and get

J (2)
(g)11,00(t ; t0) =

∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N∏
n=k1+1

p↑
n

N∏
n=k2+1

(p↓
n + un)

N∏
n=k3+1

p↑∗
n

N∏
n=k4+1

(p↓∗
n + u∗

n )[−g↑∗
+ (tk3 − tk1 )][−g↓∗

+ (tk4 − tk2 )]

×
∫

d ξ̄N+1dξ ∗
N+1dξ ∗

k1
dξNP↑

N+1P̄
↑
N+1d ξ̄ ∗

N d ξ̄k3 ξ̄k3ξ
∗
k1

dψ̄N+1dψ∗
N+1dψ∗

k2
dψNP↓

N+1UN+1P̄↓
N+1ŪN+1dψ̄∗

N dψ̄k4ψ̄k4ψ
∗
k2

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N+1∏
n=k1+1

p↑
n

N+1∏
n=k2+1

(p↓
n + un)

N+1∏
n=k3+1

p↑∗
n

N+1∏
n=k4+1

(p↓∗
n + u∗

n )

× [−g↑∗
+ (tk3 − tk1 )][−g↓∗

+ (tk4 − tk2 )]
∫

dξ ∗
k1

d ξ̄k3 ξ̄k3ξ
∗
k1

dψ∗
k2

dψ̄k4ψ̄k4ψ
∗
k2

=
∫ t

t0

dt4· · ·
∫ t2

t0

dt1 e− i
h̄ ε↑(t3−t1 )e− i

h̄ (ε↓+U )(t4−t2 )[−g↑∗
+ (t3 − t1)][−g↓∗

+ (t4 − t2)]. (F19)
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It is already apparent that the interaction is present in the time intervals where both spin states are occupied either in the forward
or in the backward branch. Simultaneous double occupation in the two branches, as it is the case for the sojourn states (11,11),
leads to a cancellation due to the sum of un and u∗

n at the exponent. To better clarify this point, consider the example in Fig. 34.
This path contributes to J (2)

01,00(t ; t0), the contribution being

J (2)
(h)01,00(t ; t0) = �

↑
b (0)�↓

b (1)�↓∗
a (1)�↑∗

a (0)
∫

d2ξ0d2ξ̄0J (2)
(h) (ξ∗

a, ξ̄b, t ; ξ0, ξ̄
∗
0, t0)〈ξ0|0〉〈0|ξ̄0〉

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
d ξ̄N+1ξ̄N+1dψ̄N+1 dψ∗

N+1dξ ∗
N+1ξ

∗
N+1

N∏
n=0

d2ξnd2ψnd2ξ̄nd2ψ̄nO↑
n O↓

n Ō↑
n Ō↓

n

×
N+1∏
n=1

P↑
n P↓

n P̄↑
n P̄↓

n UnŪnξ̄
∗
k4

g↑
+(tk4 − tk1 )ξ̄k1ψ̄k3 [−1g↓∗

+ (tk3 − tk2 )]ψ∗
k2

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

∫
dξ ∗

N+1d ξ̄N+1ξ̄N+1ξ
∗
N+1

(
N∏

n=0

dξ ∗
n dξnO↑

n

)(
k4+1∏
n=N

d ξ̄ ∗
n d ξ̄nŌ↑

n

)
d ξ̄ ∗

k4

(
k1+1∏
n=k4

d ξ̄nd ξ̄ ∗
n−1P̄↑

n

)
d ξ̄1

×
(

0∏
n=k1−1

d ξ̄ ∗
n d ξ̄nŌ↑

n

)
ξ̄ ∗

k4
[−g↑

+(tk4 − tk1 )]ξ̄k1 dψ∗
N+1dψ̄N+1

(
k2−1∏
n=0

dψ∗
n dψnO↓

n

)
dψ∗

k2

(
N∏

n=k2+1

dψn−1dψ∗
nP↓

n

)
dψN

×P↓
N+1dψ̄∗

N P̄
↓
N+1

(
k3+1∏
n=N

dψ̄ndψ̄∗
n−1P̄↓

n

)
dψ̄k3

(
0∏

n=k3−1

dψ̄∗
n dψ̄nŌ↓

n

)
k4∏

n=k3+1

Ūnψ̄k3 [−g↓∗
+ (tk3 − tk2 )]ψ∗

k2
. (F20)

Once the trivial integrations are carried out as before, we are left with

J (2)
(h)01,00(t ; t0) =

∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N∏
n=k2+1

p↓
n

k4∏
n=k1+1

p↑∗
n

k4∏
n=k3+1

(p↓∗
n + u∗

n )
N∏

n=k4+1

p↓∗
n [−g↑

+(tk4 − tk1 )]

× [−g↓∗
+ (tk3 − tk2 )]

∫
dξ ∗

N+1d ξ̄N+1ξ̄N+1ξ
∗
N+1d ξ̄ ∗

k4
d ξ̄1ξ̄

∗
k4
ξ̄k1 dψ∗

N+1dψ̄N+1dψ∗
k2

dψNP↓
N+1dψ̄∗

N P̄
↓
N+1dψ̄k3ψ̄k3ψ

∗
k2

=
∫ t

t0

dtk4 · · ·
∫ tk2

t0

dtk1

N+1∏
n=k2+1

p↓
n

k4∏
n=k1+1

p↑∗
n

k4∏
n=k3+1

(p↓∗
n + u∗

n )

×
N+1∏

n=k4+1

p↓∗
n [−g↑

+(tk4 − tk1 )][−g↓∗
+ (tk3 − tk2 )]

∫
d ξ̄ ∗

k4
d ξ̄1ξ̄

∗
k4
ξ̄k1 dψ∗

k2
dψ̄k3ψ̄k3ψ

∗
k2

= −
∫ t

t0

dt4· · ·
∫ t2

t0

dt1 e
i
h̄ ε↑(t4−t1 )e− i

h̄ ε↓(t3−t2 )e
i
h̄ U (t4−t3 )[−g↑

+(t4 − t1)][−g↓∗
+ (t3 − t2)]. (F21)

In the above examples the phase factors stemming from the
action of the dot have been factorized as

∏n
j=1 exp[− i

h̄ E jτ j]
in order to reflect the time intervals τ j between transitions.
One can recognize that these phase factors are related to the

(00) (10)

(00)

*
k

(00) (01)

(11)

(h)

k4

k3

FIG. 34. Path with four transitions distributed in the two sub-
paths of the spin variables ↑ and ↓. Note that the subpath σ = ↑
is of the type (b) in Fig. 29, while σ = ↓ undergoes a sequence of the
type (c) (see Fig. 30).

blip and sojourn states of the underlying spin paths according
to the example in Fig. 7.

APPENDIX G: INTEGRATION MEASURE
∫
D{ξ}

To see how the parametrization of the integrals over the
Grassmann variables associated to the transition times works,
consider the example of path shown in Fig. 35(b). Following
Eq. (46), the integration measure reads as

− η2dξ ∗
1 dξ2dξ ∗

3 (dξ4)−η2 (dξ ∗
5 )−η2 dξ6

=
{

dξ ∗
1 dξ2dξ ∗

3 dξ4dξ ∗
5 dξ6, η2 = −1

dξ ∗
1 dξ2dξ ∗

3 dξ6d ξ̄ ∗
5 d ξ̄4, η2 = +1.

(G1)
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(a) η0 ζ1 η1 ζ2 η2 ζ3 η3

[ξ1]
−ζ1
−η0ζ1

t1

[ξ2]
ζ1
−η1ζ1

t2

[ξ3]
−ζ2
−η1ζ2

t3

[ξ4]
ζ2
−η2ζ2

t4

[ξ5]
−ζ3
−η2ζ3

t5

[ξ6]
ζ3
−η3ζ3

t6

(b) −1 +1 −1 +1 η2 +1 −1

ξ∗1

t1

ξ2

t2

ξ∗3

t3

[ξ4]−η2

t4

[ξ∗5 ]−η2

t5

ξ6

t6

(c) −1 +1 −1 +1 η2 ζ3 −1

ξ∗1

t1

ξ2

t2

ξ∗3

t3

[ξ4]−η2

t4

[ξ∗5 ]−ζ3
−η2ζ3

t5

[ξ6]
ζ3

ζ3

t6

FIG. 35. Six-transition path. General case (a) and two specific examples: In the first η2 is left unspecified while η0 = η1 = η3 = −1 and
ζ1 = ζ2 = ζ3 = +1 (b). In the second also ζ3 is left unspecified (c).

As a further example, we leave also ζ3 unspecified [see Fig. 35(c)], so that the integration measure reads as

−η2ζ3dξ ∗
1 dξ2dξ ∗

3 (dξ4)−η2 (dξ5)−ξ3
−η2ζ3

(dξ6)ζ3
ζ3

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dξ ∗
1 dξ2dξ ∗

3 dξ4dξ ∗
5 dξ6, η2 = −1, ζ3 = +1

dξ ∗
1 dξ2dξ ∗

3 dξ6d ξ̄ ∗
5 d ξ̄4, η2 = +1, ζ3 = +1

dξ ∗
1 dξ2dξ ∗

3 dξ4d ξ̄ ∗
6 d ξ̄5, η2 = −1, ζ3 = −1

dξ ∗
1 dξ2dξ ∗

3 dξ5d ξ̄ ∗
6 d ξ̄4, η2 = +1, ζ3 = −1.

(G2)

Carrying out an integration over the Grassmann variables associated to the tunneling transitions is straightforward in the present
derivation: The integral yields simply an overall sign, due to the order of the variables to be integrated, times the factors (−ηkζk ).

APPENDIX H: FURTHER EXAMPLES OF DIAGRAMMATIC CONTRIBUTIONS FROM AN INDIVIDUAL STATE

For the sake of compactness, in the following expressions we set (t j − ti ) ≡ ( j, i). Then, the 10 third-order irreducible
diagrammatic contributions Bi

mi
(Pi )�i

mi
(Pi) [see Eq. (40)] take the form

η0ζ1 ζ1η1 ζ2η2

(+1)
3

n=1

(−ζnηn) [η0ζ1g
−ζ1
−η0

(6, 1)]b61 [ζ1η1gζ1
η1

(3, 2)]b32 [ζ2η2gζ2
η2

(5, 4)]b54 δζ3,ζ1δζ2,ζ1

= η η [−g−ζ1
−η (6, 1)]b61 [−gζ1

η1
(3, 2)]b32 [−gζ1

η2
(5, 4)]b54 δζ3,ζ1δζ2,ζ1,

η0ζ1 ζ1η1 ζ2η2

(−1)
3

n=1

(−ζnηn) [η0ζ1g
−ζ1
−η0

(5, 1)]b51 [ζ1η1gζ1
η1

(3, 2)]b32 [ζ2η2gζ2
η2

(6, 4)]b64 δζ3,−ζ1δζ2,ζ1

= η η [−g−ζ1
−η (5, 1)]b51 [−gζ1

η1
(3, 2)]b32 [−gζ1

η2
(6, 4)]b64 δζ3,−ζ1δζ2,ζ1,

η0ζ1 ζ1η1 ζ2η2

(−1)
3

n=1

(−ζnηn) [η0ζ1g
−ζ1
−η0

(3, 1)]b31 [ζ1η1gζ1
η1

(6, 2)]b62 [ζ2η2gζ2
η2

(5, 4)]b54 δζ3,−ζ1δζ2,ζ1

= η η [−g−ζ1
−η (3, 1)]b31 [−gζ1

η1
(6, 2)]b62 [−gζ1

η2
(5, 4)]b54 δζ3,−ζ1δζ2,ζ1,

(H1)

η0ζ1 ζ1η1 ζ2η2

(+1)
3

n=1

(−ζnηn) [η0ζ1g
−ζ1
−η0

(3, 1)]b31 [ζ1η1gζ1
η1

(5, 2)]b52 [ζ2η2gζ2
η2

(6, 4)]b64 δζ3,ζ1δζ3,−ζ2

= η η [−g−ζ1
−η (3, 1)]b31 [−gζ1

η1
(5, 2)]b52 [−g−ζ1

η2
(6, 4)]b64 δζ3,ζ1δζ2,−ζ1,

(H2)
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η0ζ1 ζ1η1 η1ζ2

3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(6, 1)]b61 [ζ1η1gζ1
η1

(5, 2)]b52 [η1ζ2g
−ζ2
−η1

(4, 3)]b43δζ3,ζ1

= η ηη1η2 [−g−ζ1
−η (6, 1)]b61 [−gζ1

η1
(5, 2)]b52[−g−ζ2

−η1
(4, 3)]b43δζ3,ζ1,

η0ζ1 ζ1η1 η1ζ2

(−1)
3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(6, 1)]b61 [ζ1η1gζ1
η1

(4, 2)]b42 [η1ζ2g
−ζ2
−η1

(5, 3)]b53δζ3,−ζ2δζ2,−ζ1

= −η ηη1η2 [−g−ζ1
−η (6, 1)]b61 [−gζ1

η1
(4, 2)]b42[−g−ζ2

−η1
(5, 3)]b53 δζ3,ζ1δζ2,−ζ1,

η0ζ1 ζ1η1 η1ζ2

(−1)
3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(5, 1)]b51 [ζ1η1gζ1
η1

(6, 2)]b62 [η1ζ2g
−ζ2
−η1

(4, 3)]b43δζ3,−ζ1

= η ηη1η2 [−g−ζ1
−η (5, 1)]b51 [−gζ1

η1
(6, 2)]b62[−g−ζ2

−η1
(4, 3)]b43 δζ3,−ζ1,

(H3)

η0ζ1 ζ1η1 η1ζ2

(+1)
3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(5, 1)]b51 [ζ1η1gζ1
η1

(4, 2)]b42 [η1ζ2g
−ζ2
−η1

(6, 3)]b63δζ3,−ζ1δζ2,−ζ1

= −η ηη1η2 [−g−ζ1
−η (5, 1)]b51 [−gζ1

η1
(4, 2)]b42[−g−ζ2

−η1
(6, 3)]b63 δζ3,−ζ1 δζ2,−ζ1 ,

η0ζ1 ζ1η1 η1ζ2

(+1)
3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(4, 1)]b41 [ζ1η1gζ1
η1

(6, 2)]b62 [η1ζ2g
−ζ2
−η1

(5, 3)]b53δζ3,−ζ1δζ2,ζ1

= −η ηη1η2 [−g−ζ1
−η (4, 1)]b41 [−gζ1

η1
(6, 2)]b62[−g−ζ1

−η1
(5, 3)]b53 δζ3,−ζ1 δζ2,ζ1 ,

η0ζ1 ζ1η1 η1ζ2

(−1)
3

k=1

(−ζkηk)[η0ζ1 g−ζ1
−η0

(3, 1)]b31 [ζ1η1gζ1
η1

(4, 2)]b52 [η1ζ2g
−ζ2
−η1

(6, 3)]b63δζ3,ζ2δζ2,ζ1

= −η ηη1η2[−g−ζ1
−η (4, 1)]b41 [−gζ1

η1
(5, 2)]b52 [−g−ζ1

−η1
(6, 3)]b63δζ3,ζ1δζ2,ζ1 . (H4)

We also evaluate the following irreducible fourth-order diagram, which is relevant for the scheme NCA4 introduced in Sec. IX F:

η0ζ1 ζ1η1 η1ζ2 η2ζ3

(+1)
4

k=1

(−ζkηk) [η0ζ1g
−ζ1
−η0

(8, 1)]b81 [ζ1η1gζ1
η1

(7, 2)]b72 [η1ζ2g
−ζ2
−η1

(4, 3)]b43 [η2ζ3g
−ζ3
−η2

(6, 5)]b65 δζ4,ζ1

= η ηη1η3 [−g−ζ1
−η (8, 1)]b81 [−gζ1

η1
(7, 2)]b72 [−g−ζ2

−η1
(4, 3)]b43 [−g−ζ3

−η2
(6, 5)]b65 δζ4,ζ1.

(H5)

APPENDIX I: CONTRACTION INTEGRALS IN THE WIDE-BAND LIMIT

(i) Integral not involving the Fermi function (ζ = ±1)

I0(E ; ζ ) =
∫ W

−W
dx

1

x − E ′ + iζ E ′′ � −iζπ (W � E ′). (I1)
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(ii) Integral involving f−η(x),where η = ±1, with f+(x) = [eβ(x−μ) + 1]−1 the Fermi function and f−(x) = 1 − f+(x).
Assume E independent of x, with E ′′ > 0 and W � E ′, μ,

I+(E ) =
∫ W

−W
dε

f+(ε)

ε − E ′ + iE ′′ =
∫ W̄

−W̄
dx

f̄+(x)

x − (E ′ − μ)/kBT + iE ′′/kBT
[ f̄+(x) = (ex + 1)−1, W̄ � W/kBT ]

= 2π i
∑

j

Res j

{
f̄+(z)

z − (E ′ − μ)/kBT + iE ′′/kBT

}
= −2π i

kW̄∑
k=0

1

2π i(k + 1/2) − (E ′ − μ)/kBT + iE ′′/kBT
− i

π

2

= −
kW̄∑

k=0

1

k + 1/2 + E ′′/(2πkBT ) + i(E ′ − μ)/(2πkBT )
− i

π

2
. (I2)

Now, since W → ∞, the sum can be extended to infinity. Following Ref. [48], if E is independent of ε, we single out the k = 0
term in the sum over k and add and subtract the Euler-Mascheroni constant γE = limK→∞

∑K
k=1 1/k − ln(K ). At this point,

using the definition of digamma function ψ (z) = −γE − 1/z −∑∞
k=1[1/(k + z) − 1/k], we obtain

I+(E ) = Reψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)
− ln

W

2πkBT
− i

[
π

2
− Imψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)]
,

I−(E ) =
∫ W

−W
dx

f−(x)

x − E ′ + iE ′′ =
∫ W

−W
dx

1 − f+(x)

x − E ′ + iE ′′

= −Reψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)
+ ln

W

2πkBT
− i

[
π

2
+ Imψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)]
, (I3)

where we used Eq. (I1). Thus,

I (E ; η) =
∫ W

−W
dx

f−η(x)

x − E ′ + iE ′′

= −η

[
Reψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)
− ln

W

2πkBT

]
− i

[
π

2
+ η Imψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)]
. (I4)

Further,

I∗(E ; η) =
∫ W

−W
dx

f−η(x)

x − E ′ − iE ′′

= − η

[
Reψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)
− ln

W

2πkBT

]
+ i

[
π

2
+ η Imψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)]
. (I5)

Then, collecting the above results we can give the compact expression

I (E ; ζ , η) =
∫ W

−W
dx

f−η(x)

x − E ′ + iζE ′′

= −η

[
Reψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)
− ln

W

2πkBT

]
− iζ

[
π

2
+ η Imψ

(
1

2
+ i

E ′ − iE ′′ − μ

2πkBT

)]
. (I6)

(iii) Special case, E ′′ = 0+:∫ W

−W
dx

f−η(x)

x − E ′ + iζ 0+ = −η

[
Reψ

(
1

2
+ i

E ′ − μ

2πkBT

)
− ln

W

2πkBT

]
− iζπ f−η(E ′) (I7)

[see also Eq. (E1) of Ref. [48]]. Here we used the property

1

2
∓ 1

π
Imψ

(
1

2
+ i

E ′ − μ

2πkBT

)
= f±(E ′) (I8)

and also f−η(x) = δη,+1 − η f+(x). Note that∫ W

−W
dx

1

x − E ′ + iζ 0+ =
∑
η

∫ W

−W
dx

f−η(x)

x − E ′ + iζ 0+ = −iζπ,

in agreement with Eq. (I1).
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(iv) We assume that, in general, E = E (ζ , η) and consider the distinct cases E (η) = Eη and E (ζ ) = Eζ . In the first case,
summing over η

∑
η

I (Eη; ζ , η) = −
[

Reψ

(
1

2
+ i

E ′
+ − iE ′′

+ − μ

2πkBT

)
− Reψ

(
1

2
+ i

E ′
− − iE ′′

− − μ

2πkBT

)]

− iζ

[
π + Imψ

(
1

2
+ i

E ′
+ − iE ′′

+ − μ

2πkBT

)
− Imψ

(
1

2
+ i

E ′
− − iE ′′

− − μ

2πkBT

)]
. (I9)

Note that if E is independent of η, then
∑

η I (E ; ζ , η) = −iζπ . Likewise, when E = Eζ

∑
ζ

ζ I (Eζ ; ζ , η) = −η

[
Reψ

(
1

2
+ i

E ′
+ − iE ′′

+ − μ

2πkBT

)
− Reψ

(
1

2
+ i

E ′
− − iE ′′

− − μ

2πkBT

)]

− i

[
π + η Imψ

(
1

2
+ i

E ′
+ − iE ′′

+ − μ

2πkBT

)
+ η Imψ

(
1

2
+ i

E ′
− − iE ′′

− − μ

2πkBT

)]
. (I10)

If E is independent of ζ , then
∑

ζ ζ I (E ; ζ , η) = 2iζ ImI (E ; ζ , η).

APPENDIX J: EVALUATION OF THE NCA4 FOURTH-TIER BUBBLES Bσ(σσ )
4 AND Bσ(σσ̄)

4

The fourth-tier bubbles Bσ (σ σ̄ )
4,ν ′ν and Bσ (σσ )

4,η′η have the same structure as the NCA2 second-tier bubbles Bσ̄
ν ′ν and Bσ

η′η [Eq. (168)],
respectively, except for the additional upper layers of fermion lines, and the products of sojourn indices associated to the overlap
of three fermion lines of the same spin. They are schematized as (in view of calculating the retarded self-energy we consider
ζ = +1)

Bσ(σσ̄)
4,ν ν |ζ=+1 =

σκ
σκ1
σ̄κ2

ν ν

+

σκ
σκ1
σ̄κ2

ν ν

=
η

hσ(σσ̄σ̄)
4 vη ζ=+1δν ν + ν ν h̃σ(σσ̄σ)

4 v−ν ζ=+1

=
κ3

i η vη(κ3)δζ3,−ζ2

ζ( k − k1) + ζ2( k2 − k3) + i0+
δν ν

ζ=+1
+

κ3

ν ν i v−ν(κ3)
ζ( k − k1) + ζ2( k2 − Eσ̄) + ζ3( k3 − Eσ) + i0+ ζ=+1

=
κ3

−iζ2 v(κ3)δζ3,−ζ2

k3 − k2 − ζ2( k − k1) − iζ20+
δν ν +

κ3

ν ν iζ3 v−ν(κ3)
k3 − Eσ + ζ3( k − k1) + ζ3ζ2( k2 − Eσ̄) + iζ30+

= ζ2
i

α

α|tα|2 3
δζ3,−ζ2

3 − E − iζ20+
δν ν − ν ν

i

ζ3

ζ3

α

Γα

2π

W

−W
3

fα
−ν( 3)

3 − E(4)
σ,ζ3

+ iζ30+

= − Γ
2

δν ν − ν ν
α

Γα

2
fα
−ν(E(4)

σ,+) + fα
−ν(E(4)

σ,−) − iν
π

Reψ
1
2

+ i
E(4)

σ,+ − μα

2πkBT
− Reψ

1
2

+ i
E(4)

σ,− − μα

2πkBT

≡ − Γ
2

δν ν − ν ν
i
Σ(σσ̄)

4,σν , (J1)

where Eσ = εσ + U/2 and vx(κ ) := −(|tα (εk )|2/h̄2) f α
x (ε) (note the product ν ′ν given by the overlap of three fermion lines with

spin σ ). Here we used the property (I8) to define the fourth-tier self-energy

�
(σ σ̄ )
4,σν := −ν

∑
α

α

2π

[
ψ

(
1

2
+ i

E (4)
σ,+ − μα

2πkBT

)
− ψ∗

(
1

2
+ i

E (4)
σ,− − μα

2πkBT

)]
− i



2
, (J2)

where

E (4)
σ,± := εσ ± ζ (ε1 − ε) ± ζ2(εσ̄ − ε2) + δζ2,±1U .
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Analogously,

Bσ(σσ)
4,η η =

σκ
σκ1
σκ2

η η

+

σκ
σκ1
σκ2

η η

=
ν

hσ(σσσ)
4 vν δη η + hσ(σσσ̄)

4 v−η

=
κ3

i ν vν(κ3)δζ3,−ζ2

ζ( k − k1) + ζ2( k2 − k3) + i0+
δη η +

κ3

i v−η(κ3)
ζ( k − k1) + ζ2( k2 − Eσ) + ζ3( k3 − Eσ̄) + i0+

=
κ3

−iζ2 v(κ3)δζ3,−ζ2

k3 − k2 − ζ2ζ( k − k1) − iζ20+
δη η +

κ3

iζ3 v−η(κ3)
k3 − Eσ̄ + ζ3ζ( k − k1) + ζ3ζ2( k2 − Eσ) + iζ30+

= ζ2
i

α

α|tα|2 3
δζ3,−ζ2

3 − E − iζ20+
δη η − i

ζ3

ζ3

α

Γα

2π

W

−W
3

fα
−η( 3)

3 − Eσ̄,ζ3 + iζ30+

= − Γ
2

δη η −
α

Γα

2
fα
−η(Eσ̄,+) + fα

−η(Eσ̄,−) − iη
π

Reψ
1
2

+ i
Eσ̄,+ − μα

2πkBT
− Reψ

1
2

+ i
Eσ̄,− − μα

2πkBT

≡− Γ
2

δη η − i
Σ(σσ)

4,ση , (J3)

where �
(σσ )
4,ση is defined as in Eq. (J2), with ν → η and σ → σ̄ . Note that the fourth-tier self-energies �4,σ are formally identical

to the second-tier NCA2 self-energies [see Eq. (192)].

APPENDIX K: DRESSING THE BUBBLE Bσ(σ ) IN THE NCA4

The dressed bubble B̃σ (σ ) is obtained by contracting the dressed propagator

h̃σ (σ )
2 = [[1hσ (σ )

2 ]−1 − B̃σ (σ )
3

]−1
, where hσ (σ )

2 = ih̄
δζ1,−ζ

ζ (εk − εk1 ) + i0+ (K1)

[see Eq. (220)] according to

B̃σ(σ)
η η =

η ηh̃
σ(σ)
2

=
ν ν

[h̃σ(σ)
2 ]η ηvν

=
ν ν

h̃σ(σ)
2,η η(ν , ν)(δν,−1v + νv+)

=
ν

h̃σ(σ)
2,η η(ν ,−1)v +

ν ν

νh̃σ(σ)
2,η η(ν , ν)v+

= − Γ
2

δη η +
ν ν

νh̃σ(σ)
2,η η(ν , ν)v+

≡− Γ
2

δη η + Kσ(σ)
η η v+ ,

(K2)

where we have introduced the 2 × 2 matrix Kσ (σ ) of elements Kσ (σ )
η′η :=∑ν

∑
ν ′ νh̃σ (σ )

2,η′η(ν ′, ν) and where the vertex reads as

vν = −|tα (εk )|2
h̄2 f α

ν (εk ). (K3)

In Eq. (K2), we have used the splitting of the Fermi function fν (x) = δν,−1 + ν f+(x) in the vertex. Also, we assumed that
h̃σ (σ )

2,η′η(ν ′,−1) has no poles in the upper complex plane, so that the contraction with the temperature-independent vertex v simply

yields −/2h̄, as in the nondressed case [see Eqs. (140) and (170)]. The matrix h̃σ (σ )
2 has a 4 × 4 structure in the collective

sojourn index η = (ν, η) induced by the third-tier bubble B̃σ (σ )
3 .

In order to avoid the inversion of a four-dimensional matrix to evaluate h̃2, we exploit the specific form of the third-tier
bubbles forming B̃σ (σ )

3 in the NCA4 and use a two-step procedure. We start by writing the matrix element of the 4 × 4 third-tier
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bubble as

B̃σ(σ)
3,η η = ν ν

η η
B

σ(σσ̄)
4,ν ν

+ ν ν

η η
B

σ(σσ)
4,η η

= B̃A
3,ν ν(η) + ν νB̃B

3,η η(ν).
(K4)

Note that B̃B
3,η′η(ν) is independent of ν ′ and B̃A

3,ν ′ν (η) is independent of η′, as shown in the above diagrams. It is convenient

to define separately the first and second contributions to B̃σ (σ )
3,η′η, in Eq. (K4) as two 2 × 2 matrices, denoted with A and B,

respectively. Let the first, B̃A
3 (η), be a matrix in the indices ν ′ν with explicit dependence on the vertex index η. Specifically, the

matrix elements of B̃A
3 (η) are given by the contraction of a propagator dressed by fourth-tier bubbles

B̃A
3,ν ′ν (η) := 〈h̃σ (σ σ̄ )

3,ν ′ν v−η

〉
, (K5)

where

h̃σ (σ σ̄ )
3,νν =

(
hσ (σ σ̄ )

3,ν̄ν̄

)−1 − Bσ (σ σ̄ )
4,ν̄ν̄

Dσ (σ σ̄ )
, h̃σ (σ σ̄ )

3,ν̄ν = Bσ (σ σ̄ )
4,ν̄ν

Dσ (σ σ̄ )
, (K6)

with hσ (σ σ̄ )
3,ν ′ν given in Eq. (231) and with Dσ (σ σ̄ ) = [(hσ (σ σ̄ )

3,νν )−1 − Bσ (σ σ̄ )
4,νν ][(hσ (σ σ̄ )

3,ν̄ν̄ )−1 − Bσ (σ σ̄ )
4,ν̄ν̄ ] − Bσ (σ σ̄ )

4,νν̄ Bσ (σ σ̄ )
4,ν̄ν a function of the

energies, independent of the indices ν ′ν. As shown in Appendix J, the bare fourth-tier bubbles Bσ (σ σ̄ )
4,ν ′ν , with NCA2 structure, are

Bσ (σ σ̄ )
4,ν ′ν = − 

2h̄
δν ′ν + ν ′νF(σ )

ν , where F(σ )
ν = − i

h̄
�

(σ σ̄ )
4,σν . (K7)

The symmetries of the fourth-tier bubble imply

h̃σ (σ σ̄ )
3,νν =

(
hσ (σ σ̄ )

3,ν̄ν̄

)−1 + /2h̄

Dσ (σ σ̄ )
− F(σ )

ν̄

Dσ (σ σ̄ )
, h̃σ (σ σ̄ )

3,ν̄ν = − F(σ )
ν

Dσ (σ σ̄ )
. (K8)

Thus, Eq. (K5) yields

B̃A
3,νν (η) =

〈(
hσ (σ σ̄ )

3,ν̄ν̄

)−1 + /2h̄

Dσ (σ σ̄ )
v−η

〉
−
〈

F(σ )
ν̄

Dσ (σ σ̄ )
v−η

〉
≡ Aσ̄ (ν, η) −

〈
F(σ )
ν̄

Dσ (σ σ̄ )
v−η

〉
,

B̃A
3,ν̄ν (η) = −

〈
F(σ )
ν

Dσ (σ σ̄ )
v−η

〉
. (K9)

For later purposes, let us define the matrix given by the sum over the vertex SA
3 :=∑η B̃A

3 (η) and its off-diagonal elements

sA
ν := 〈[F(σ )

ν

/
Dσ (σ σ̄ )]v

〉
. (K10)

We can express SA
3 in terms of its off-diagonal elements as

SA
3,νν : =

∑
η

〈
h̃σ (σ σ̄ )

3,νν v−η

〉 = 〈h̃σ (σ σ̄ )
3,νν v

〉 =∑
η

Aσ̄ (ν, η) − sA
ν̄ = −

h̄
+ sA

ν ,

SA
3,ν̄ν : =

∑
η

〈
h̃σ (σ σ̄ )

3,ν̄ν v−η

〉 = 〈h̃σ (σ σ̄ )
3,ν̄ν v

〉 = −sA
ν , (K11)

where we used
∑

η Aσ̄ (ν, η) −∑ν sA
ν =∑η〈(h̃σ (σ σ̄ )

3,νν + h̃σ (σ σ̄ )
3,ν̄ν )v−η〉 = −/h̄, assuming that the function

h̃σ (σ σ̄ )
3,νν + h̃σ (σ σ̄ )

3,ν̄ν = 1(
hσ (σ σ̄ )

3,νν

)−1 − Bσ (σ σ̄ )
4,νν − Bσ (σ σ̄ )

4,ν̄ν
(hσ (σ σ̄ )

3,νν )−1−Bσ (σ σ̄ )
4,νν +Bσ (σ σ̄ )

4,νν̄

(hσ (σ σ̄ )
3,ν̄ν̄ )−1−Bσ (σ σ̄ )

4,ν̄ν̄ +Bσ (σ σ̄ )
4,ν̄ν

= iζ h̄

ε − εk1 + ζ ζ2[εk2 − Eσ̄ (ν)] + iζ/2 − ζ2ν�
(σ σ̄ )
4,σν

U
ε−εk1 +ζ ζ2[εk2 −Eσ̄ (ν̄)]+iζ3/2

(K12)

is analytical in the upper complex plane. Here, we used Eqs. (K7), (K8), and (231), and Eσ̄ (ν) − Eσ̄ (ν̄) = νU . Note the formal
similarity with the terms of the NCA2 Green’s function [Eqs. (189) and (191)]. As a matrix with indices ν ′ν, SA

3 reads as

SA
3 = −

h̄

(
1 0

0 1

)
+
(

sA
+ −sA

−
−sA

+ sA
−

)
= −

h̄
1 + sA. (K13)
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Analogously, we introduce the 2 × 2 matrix B̃B
3 (ν) in the indices η′η with explicit dependence on the vertex index ν [see the

second term in Eq. (K4)]. The matrix element of B̃B
3 (ν) is

B̃B
3,η′η(ν) := 〈h̃σ (σσ )

3,η′η v−ν

〉
, (K14)

where

h̃σ (σσ )
3,ηη =

(
hσ (σσ )

3,η̄η̄

)−1 − Bσ (σσ )
4,η̄η̄

Dσ (σσ )
, h̃σ (σσ )

3,η̄η = Bσ (σσ )
4,η̄η

Dσ (σσ )
. (K15)

The bare fourth-tier bubbles Bσ (σσ )
4,η′η , with NCA2 structure, can be written as

Bσ (σσ )
4,η′η = − 

2h̄
δη′η + F(σ̄ )

η , where F(σ̄ )
η = − i

h̄
�

(σσ )
4,ση

(K16)

(see Appendix J). As above, also in this case the diagonal elements can be expressed in terms of the off-diagonal ones, which
results in

B̃B
3,ηη(ν) =

〈
(hσ (σσ )

3,η̄η̄ )−1 + /2h̄

Dσ (σσ )
v−ν

〉
−
〈

F(σ̄ )
η̄

Dσ (σσ )
v−ν

〉
≡ Aσ (η, ν) −

〈
F(σ̄ )
η̄

Dσ (σσ )
v−ν

〉
,

B̃B
3,η̄η(ν) =

〈
F(σ̄ )
η

Dσ (σσ )
v−ν

〉
,

(K17)

with Dσ (σσ ) = [(hσ (σσ )
3,ηη )−1 − Bσ (σσ )

4,ηη ][(hσ (σσ )
3,η̄η̄ )−1 − Bσ (σσ )

4,η̄η̄ ] − Bσ (σσ )
4,ηη̄ Bσ (σσ )

4,η̄η . For the matrix SB
3 :=∑ν B̃B

3 (ν) of indices η′η we
get

SB
3,ηη : =

∑
ν

〈
h̃σ (σσ )

3,ηη v−ν

〉 = 〈h̃σ (σσ )
3,ηη v

〉 =∑
η

Aσ (η, ν) − sB
η̄ = −

h̄
+ sB

η ,

(K18)
SB

3,η̄η : =
∑
ν

〈
h̃σ (σσ )

3,η̄η v−ν

〉 = 〈h̃σ (σσ )
3,η̄η v

〉 = sB
η ,

where sB
η := 〈[F(σ̄ )

η /Dσ (σσ )]v〉. Similarly as for SA
3,ν ′ν , we used

∑
ν Aσ (η, ν) −∑η sB

η =∑ν〈(h̃σ (σσ )
3,ηη − h̃σ (σσ )

3,η̄η )v−ν〉 = −/h̄,
assuming that the function

h̃σ (σσ )
3,ηη − h̃σ (σσ )

3,η̄η = 1(
hσ (σσ )

3,ηη

)−1 − Bσ (σσ )
4,ηη + Bσ (σσ )

4,η̄η
(hσ (σσ )

3,ηη )−1−Bσ (σσ )
4,ηη −Bσ (σσ )

4,ηη̄

(hσ (σσ )
3,η̄η̄ )−1−Bσ (σσ )

4,η̄η̄ −Bσ (σσ )
4,η̄η

= iζ h̄

ε − εk1 + ζ ζ2[εk2 − Eσ (η)] + iζ/2 − ζ2η�
(σσ )
4,ση

U
ε−εk1 +ζ ζ2[εk2 −Eσ (η̄)]+iζ3/2

(K19)

[see Eqs. (K15), (K16), and (231)] is analytical in the upper complex plane. In matrix form, with indices η′η,

SB
3 = −

h̄

(
1 0

0 1

)
+
(

sB
+ sB

−
sB
+ sB

−

)
= −

h̄
1 + sB. (K20)

The dressed bubble B̃σ (σ ), with 2 × 2 structure in η′η [see Eq. (K2)] is then obtained as the contraction

B̃σ(σ)
η η =

η ηh̃A
2

+
η ηh̃A

2 h̃A
2B̃B

3

+ . . . , (K21)

where h̃A
2 (η) is the propagator dressed solely by the B̃A

3 bubbles.
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First, we evaluate h̃A
2 (η), considering its matrix structure in ν and dependencies on η′, η explicit. It is given by the series

h̃A
2 (η , η) =

η

+
η η

B4

+
η

η
η

B4 B4
+ . . .

= 1hσ(σ)
2 δη ,η + hσ(σ)

2 B̃A
3 (η)hσ(σ)

2 + hσ(σ)
2

η

B̃A
3 (η )hσ(σ)

2 B̃A
3 (η)hσ(σ)

2 + . . .

= 1hσ(σ)
2 δη ,η + hσ(σ)

2 B̃A
3 (η)hσ(σ)

2 + hσ(σ)
2 SA

3 hσ(σ)
2 B̃A

3 (η)hσ(σ)
2 + . . .

= 1hσ(σ)
2 δη ,η +

hσ(σ)
2

1[hσ(σ)
2 ]−1 − SA

3

B̃A
3 (η)

≡ 1hσ(σ)
2 δη ,η + C̃AB̃A

3 (η),
(K22)

where SA
3 has been introduced above and

C̃A := hσ (σ )
2

1[hσ (σ )
2 ]−1 − SA

3

. (K23)

Inversion of the matrix in the denominator of C̃A then yields

C̃A = hσ (σ )
2([

hσ (σ )
2

]−1 + /h̄
)([

hσ (σ )
2

]−1 + /h̄ − sA+ − sA−
)
([

hσ (σ )
2

]−1 + /h̄ − sA
− −sA

−
−sA

+
[
hσ (σ )

2

]−1 + /h̄ − sA
+

)

= hσ (σ )
2 h̃σ (σ )

2

[
1 + h̃σ (σ )

A

(
sA
+ −sA

−
−sA

+ sA
−

)]
, (K24)

where

h̃σ (σ )
2 := 1[

hσ (σ )
2

]−1 + /h̄
, h̃σ (σ )

A := 1[
hσ (σ )

2

]−1 + /h̄ − sA
, and sA :=

∑
ν

sA
ν = −

h̄
〈[Dσ (σ σ̄ )]−1v〉. (K25)

Now that we have a closed form for h̃A
2 (η′, η), let us switch to representing every quantity as a matrix in η′η while making

explicit the dependencies on ν ′ and ν. This is natural for B̃B
3 (ν). On the other hand, as an intermediate step, we express h̃A

2 (η′, η)
[Eq. (K22)] as the matrix element

h̃A
2,η′η(ν ′, ν) = hσ (σ )

2 δη′,ηδν ′,ν +
∑
ν ′′

C̃A(ν ′, ν ′′)B̃A
3,η′η(ν ′′, ν), (K26)

where the product ν ′′ν is associated to the overlap of three spin-σ fermion lines in B̃A
3,ηη(ν ′, ν) [see Eq. (K4)]. Due to the sole

dependency on the first-sojourn index η, the following property holds:

B̃A
3,ηη(ν ′, ν) = B̃A

3,η̄η(ν ′, ν). (K27)

Moreover, from Eqs. (K9) and (K17), B̃A
3,η′η(ν ′, ν) and B̃B

3,η′η(ν) have the symmetries

B̃A
3,η′η(ν, ν) = Aσ̄ (ν, η) + B̃A

3,η′η(ν, ν̄ ), B̃B
3,ηη(ν) = Aσ (η, ν) − B̃B

3,ηη̄(ν). (K28)

From Eqs. (K24) and (K25), the function C̃A(ν ′, ν), which does not depend on η, reads as

C̃A(ν ′, ν) = hσ (σ )
2 h̃σ (σ )

2

(
δν ′ν + h̃σ (σ )

A ν ′ν sA
ν

)
. (K29)

Therefore, as a matrix in (η′, η),

h̃A
2 (ν ′, ν) = 1hσ (σ )

2 δν ′,ν +
∑
ν ′′

C̃A(ν ′, ν ′′)B̃A
3 (ν ′′, ν). (K30)
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Finally, let us introduce the matrices

∑
ν

νh̃A
2 (ν ′, ν) : = 1hσ (σ )

2

∑
ν

νδν ′,ν + KA(ν ′),

KA(ν ′) : =
∑
ν

ν
∑
ν ′′

C̃A(ν ′, ν ′′)B̃A
3 (ν ′′, ν), KA :=

∑
ν ′

KA(ν ′). (K31)

Note that the matrices KA(ν) and KA inherit the symmetry (K27).
We are now in the position to iterate the third-tier bubbles B̃B

3 as outlined in Eq. (K21). Accounting for the factors ν and ν ′
associated to overlap of three spin-σ fermion lines in B̃B

3 , the second term of Eq. (K2) yields the matrix in the indices η′η:

Kσ (σ ) =
∑
ν ′

∑
ν

νh̃σ (σ )
2 (ν ′, ν)

=
∑
ν ′

∑
ν

νh̃A
2 (ν ′, ν) +

∑
ν ′

∑
ν

ν
∑
ν ′′′

h̃A
2 (ν ′, ν ′′′)ν ′′′∑

ν ′′
B̃B

3 (ν ′′)ν ′′h̃A
2 (ν ′′, ν)

+
∑
ν ′

∑
ν

ν
∑
νv

h̃A
2 (ν ′, νv )νv

∑
ν iv

B̃B
3 (ν iv )ν iv

∑
ν ′′′

h̃A
2 (ν iv, ν ′′′)ν ′′′∑

ν ′′
B̃B

3 (ν ′′)ν ′′h̃A
2 (ν ′′, ν) + . . .

= KA + KA
∑
ν ′′

B̃B
3 (ν ′′)ν ′′∑

ν

h̃A
2 (ν ′′, ν)ν

+ KA
∑
ν iv

B̃B
3 (ν iv )ν iv

∑
ν ′′′

h̃A
2 (ν iv, ν ′′′)ν ′′′∑

ν ′′
B̃B

3 (ν ′′)ν ′′∑
ν

h̃A
2 (ν ′′, ν)ν + . . .

= KA 1

1 −∑ν ′ B̃B
3 (ν ′)ν ′∑

ν h̃A
2 (ν ′, ν)ν

,

[
Eq. (K31)

] = KA 1

1 − hσ (σ )
2 SB

3 −∑ν B̃B
3 (ν)νKA(ν)

,

[
Eq. (K20)

] = KA 1

1(1 + hσ (σ )
2 /h̄) − hσ (σ )

2 sB −∑ν B̃B
3 (ν)νKA(ν)

. (K32)

From the properties of the third-tier bubbles [Eqs. (K9), (K17), (K27), (K28) and the definitions of KA and KA(ν), Eq. (K31)],
we have

KA
η′η =

∑
ν ′,ν

C̃A(ν ′, ν)νAσ̄ (ν, η),

[∑
ν

B̃B
3 (ν)νKA(ν)

]
η′η

=
∑
ν ′,ν

ν ′ν C̃A(ν ′, ν)Aσ (η′, ν ′)Aσ̄ (ν, η). (K33)

After some lengthy manipulations one obtains the following results:

KA
η′η = η �Aσ̄

+ hσ (σ )
2 h̃σ (σ )

2 ,
∑
ν

B̃B
3 (ν)νKA(ν) = (1�Aσ

+�Aσ̄
+ + P) hσ (σ )

2 h̃σ (σ )
2 ,

where �Aσ/σ̄
+ = Aσ/σ̄ (+,+) − Aσ/σ̄ (−,+),

(K34)

with Pηη = Pη̄η. This latter property, along with sB
ηη = sB

η̄η, yields, upon inverting the matrix K, the key result

Kσ (σ )
η′η = η

�Aσ̄
+([

hσ (σ )
2

]−1 + /h̄
)2 − �Aσ+�Aσ̄+

. (K35)

Note that the above expression implies for the retarded self-energy �̃(σ )
ση (ε) = ih̄B̃σ (σ )

η̄η (κ )|ζ=+1 the property

∑
η

�̃(σ )
ση (ε) = 0. (K36)
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The explicit expression for �Aσ̄
+ = Aσ̄ (+,+) − Aσ̄ (−,+) is found from the definition of Aσ̄ (ν, η) [Eq. (K9)], adding

(/h̄)/Dσ (σ σ̄ ) to both the contracted functions in the difference, and using Eq. (K12). The result is

�Aσ̄
+ =

〈[(
hσ (σ σ̄ )

3,−−
)−1 + /2h̄

Dσ (σ σ̄ )
−
(
hσ (σ σ̄ )

3,++
)−1 + /2h̄

Dσ (σ σ̄ )

]
v−

〉

=
〈

iζ h̄

ε − εk1 + ζ ζ2[εk2 − Eσ̄ (+)] + iζ/2 − ζ2�
(σ σ̄ )
4,σ+

U
ε−εk1 +ζ ζ2[εk2 −Eσ̄ (−)]+iζ3/2

v−

〉

−
〈

iζ h̄

ε − εk1 + ζ ζ2[εk2 − Eσ̄ (−)] + iζ/2 + ζ2�
(σ σ̄ )
4,σ−

U
ε−εk1 +ζ ζ2[εk2 −Eσ̄ (+)]+iζ3/2

v−

〉

=
∑
ν

ν

〈
iζ2h̄

εk2 − Eσ̄ (ν) + ζ ζ2(ε − εk1 ) + iζ2/2 − νζ�
(σ σ̄ )
4,σν

U
εk2 −Eσ̄ (ν̄)+ζ ζ2(ε−εk1 )+iζ23/2

v−

〉
, (K37)

where the contraction involves the innermost fermion line indexed with κ2 and where we used ζ 2 = 1. Here, Eσ̄ (ν) = εσ̄ + (1 +
ν)U/2. A similar result holds for �Aσ

+. Note that this expression displays the same structure as the one for the Green’s function
(236); this makes evident that the renormalization of the dot energies Eσ̄ (ν) [Eσ (η)] occurs also at the level of the self-energy
and in principle at all (even) levels of the hierarchy.

APPENDIX L: EVALUATION OF THE DRESSED THIRD-TIER BUBBLES IN THE SIMPLIFIED NCA4

A simplification of the NCA4 is obtained by setting to zero the nontrivial parts of the fourth-tier bubbles, namely, setting �
(σ )
4,ν

in Eq. (K37) or, equivalently F(σ )
ν = F(σ̄ )

η = 0 in Eqs. (K7) and (K16). As a result, the definition in Eqs. (K9) yields

Aσ̄(ν, η)

σκ
σκ1

ν ν

η η

=
1

(hσ(σσ̄)
3,νν )−1 + Γ/2

v−η

=
iζ2

k2 − Eσ̄(ν) + ζζ2( − k1) + iζ2Γ/2
v−η

= − i

α2

α2 |tα2 |2
ζ2

ζ2

W

−W
2

fα2−η( 2)

2 − [Eσ̄(ν) − ζ2ζ( − 1)] + iζ2Γ/2
,

(L1)

where Eσ̄ (ν) = εσ̄ + (1 + ν)U/2. Here, the vertex vη(κ) is defined in Eq. (155), the propagator hσ (σ σ̄ )
3,νν is given in Eq. (231), and

the width /2h̄ is graphically rendered by the dashed box which is the sum of the geometrical series

= + + + . . . (L2)

Using Eq. (I6) to solve the integral we obtain

Aσ̄ (ν, η) � i

h̄

∑
α

α

2π

{
η

[
Reψ

(
1

2
+ i

ζ (ε1 − ε) + Eσ̄ (ν) − i/2 − μα

2πkBT

)
− Reψ

(
1

2
+ i

ζ (ε − ε1) + Eσ̄ (ν) − i/2 − μα

2πkBT

)]

+ i

[
π + η Imψ

(
1

2
+ i

ζ (ε1 − ε) + Eσ̄ (ν) − i/2 − μα

2πkBT

)
+ η Imψ

(
1

2
+ i

ζ (ε − ε1) + Eσ̄ (ν) − i/2 − μα

2πkBT

)]}
,

(L3)

where α = 2π�α|tα|2 and
∑

α α = . As a further approximation, we fix the argument ε1 = ε, which yields

Aσ̄ (ν, η) � −
∑
α

α

h̄

[
1

2
+ η

1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

Eσ̄ (ν) − μα

2πkBT

)]
. (L4)
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A similar calculation for Aσ (η, ν), defined in Eq. (K17), gives

Aσ (η, ν) � −
∑
α

α

h̄

[
1

2
+ ν

1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

Eσ (η) − μα

2πkBT

)]
. (L5)

The third-tier bubble of type σ (σ̄ ) does not have a matrix structure and is given by the contraction of the propagators in
Eq. (232), dressed by the simplified fourth-tier bubble B4 = −/2, with the vertex vx = −|tα (εk )|2 f α

x (εk )/h̄2, where x stands
for η or ν. It is the composite bubble

B̃σ(σ̄)
3

σκ
σ̄κ1

η η

+

σκ
σ̄κ1

η η

=
κ2 ν

vα2
ν ( k2)δζ2,−ζ

Γ/2 − iζ( k − k2) − iζ1[ k1 − Eσ̄(ν)]
+

η

vα2
η (k2)δζ2,−ζ1

Γ/2 − iζ1( k1 − k2) − iζ[ k − Eσ(η)]

=
iζ

α2

α2 |tα2 |2
ν

W

−W
2

fα2
ν ( 2)

2 − + ζζ1[Eσ̄(ν) − 1] − iζΓ/2

+
iζ1

α2

α2 |tα2 |2
η

W

−W
2

fα2
η ( 2)

2 − 1 + ζζ1[Eσ(η) − ] − iζ1Γ/2
,

(L6)

where Eσ (η) = εσ + (1 + η)U/2. From Eq. (I6) we obtain

B̃σ (σ̄ )
3 � i

h̄

∑
α

α

2π

{
ζ Reψ

(
1

2
+ i

ε − ζ ζ1(εσ̄ + U − ε1) − i/2 − μα

2πkBT

)
− ζ Reψ

(
1

2
+ i

ε − ζ ζ1(εσ̄ − ε1) − i/2 − μα

2πkBT

)

+ ζ1Reψ

(
1

2
+ i

ε1 − ζ ζ1(εσ + U − ε) − i/2 − μα

2πkBT

)
− ζ1Reψ

(
1

2
+ i

ε1 − ζ ζ1(εσ − ε) − i/2 − μα

2πkBT

)

+ i

[
2π − Imψ

(
1

2
+ i

ε − ζ ζ1(εσ̄ + U − ε1) − i/2 − μα

2πkBT

)
+ Imψ

(
1

2
+ i

ε − ζ ζ1(εσ̄ − ε1) − i/2 − μα

2πkBT

)

− Imψ

(
1

2
+ i

ε1 − ζ ζ1(εσ + U − ε) − i/2 − μα

2πkBT

)
+ Imψ

(
1

2
+ i

ε1 − ζ ζ1(εσ − ε) − i/2 − μα

2πkBT

)]}
. (L7)

Taking ε = ε1 = μα , the retarded (ζ = +1) third-tier self-energies �̃
(σ̄ )
3σ,ζ1

:= ih̄B̃σ (σ̄ )
3,ζ1

|ζ=+1 read as

�̃
(σ̄ )
3σ,ζ1

� −
∑
α

α

2π

{
Reψ

(
1

2
− i

ζ1(εσ̄ + U − μα ) + i/2

2πkBT

)
− Reψ

(
1

2
− i

ζ1(εσ̄ − μα ) + i/2

2πkBT

)

+ ζ1Reψ

(
1

2
− i

ζ1(εσ + U − μα ) + i/2

2πkBT

)
− ζ1Reψ

(
1

2
− i

ζ1(εσ − μα ) + i/2

2πkBT

)

+ i

[
2π − Imψ

(
1

2
− i

ζ1(εσ̄ + U − μα ) + i/2

2πkBT

)
+ Imψ

(
1

2
− i

ζ1(εσ̄ − μα ) + i/2

2πkBT

)

− Imψ

(
1

2
− i

ζ1(εσ + U − μα ) + i/2

2πkBT

)
+ Imψ

(
1

2
− i

ζ1(εσ − μα ) + i/2

2πkBT

)]}
. (L8)

Consider the degenerate case ε↑ = ε↓ = ε0 at equilibrium μα = μ. At the particle-hole symmetry point μ − ε0 = U/2, Eq. (L8)
simplifies to

�̃
(σ̄ )
3σ,± � −i

[
1 ± 2

π
Imψ

(
1

2
+ /2

2πkBT
+ i

U/2

2πkBT

)]
. (L9)
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APPENDIX M: EVALUATION OF THE DRESSED BUBBLE B̃σ(σ ) WITHIN THE SIMPLIFIED NCA4

Within the simplified NCA4, we can give an explicit expression for the functions �Aσ̄ /σ
+ appearing in Kσ (σ )

η′η [Eq. (K35)].
Using the simplified third-tier bubbles [Eqs. (L4) and (L5)], we find

�Aσ̄
+ = −

∑
α

α

h̄

[
1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

εσ̄ + U − μα

2πkBT

)
− 1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

εσ̄ − μα

2πkBT

)]
,

�Aσ
+ = −

∑
α

α

h̄

[
1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

εσ + U − μα

2πkBT

)
− 1

π
Imψ

(
1

2
+ /2

2πkBT
+ i

εσ − μα

2πkBT

)]
. (M1)

We can write Kσ (σ )
η′η as

Kσ (σ )
η′η = − η

�Aσ̄
+

2(�Aσ+�Aσ̄+)1/2

[
1[

hσ (σ )
2

]−1 + /h̄ + (�Aσ+�Aσ̄+)1/2
− 1[

hσ (σ )
2

]−1 + /h̄ − (�Aσ+�Aσ̄+)1/2

]
. (M2)

Since the above expression is independent of η′, the bubble B̃σ (σ ) = −(/2h̄)1 + 〈Kσ (σ )v+〉 has the property [see Eq. (K2)]

B̃σ (σ )
η′η = − 

2h̄
δη′η + B̃σ (σ )

η̄η . (M3)

Noting that �Aσ̄ /σ
+ = −|�Aσ̄ /σ

+ |, the off-diagonal elements are

B̃σ (σ )
η̄η = 〈Kσ (σ )

η̄η v+
〉 = iζ

h̄

η

2

√
|�Aσ̄+|
|�Aσ+|

∑
α1

�α1 |tα1 |2
∫ W

−W
dε1

[
f α1+ (ε1)

ε1 − ε − iζ+
− f α1+ (ε1)

ε1 − ε − iζ−

]
, (M4)

where ± =  ± h̄(�Aσ
+�Aσ̄

+)1/2. Using Eq. (I5) to perform the integrations we obtain for the corresponding retarded self-
energies

�̃(σ )
ση (ε) = ih̄B̃σ (σ )

η̄η (κ )|ζ=+1

= −η

2

√
|�Aσ̄+|
|�Aσ+|

∑
α

α

2π

{
Reψ

(
1

2
+ +

2πkBT
+ i

ε − μα

2πkBT

)
− Reψ

(
1

2
+ −

2πkBT
+ i

ε − μα

2πkBT

)

− i

[
Imψ

(
1

2
+ +

2πkBT
+ i

ε − μα

2πkBT

)
− Imψ

(
1

2
+ −

2πkBT
+ i

ε − μα

2πkBT

)]}
. (M5)

Note that these self-energies maintain the property of the full NCA4 result in Eq. (K36). At equilibrium, μL = μR = μ, and in
the degenerate case, ε↑ = ε↓ = ε0,

�̃(σ )
ση (ε) � − η

2



2π

{
ψ∗
(

1

2
+ +

2πkBT
+ i

ε − μ

2πkBT

)
− ψ∗

(
1

2
+ −

2πkBT
+ i

ε − μ

2πkBT

)}
. (M6)

The self-energies are well behaved in the limit T → 0, though they do not yield the correct unitary limit for the conductance.
Moreover, the correct behavior for the exponent of the expression for the Kondo temperature is not captured by this scheme. In-
deed, for μ − ε0,U − μ + ε0 � , from Eq. (M1) �Aσ̄

+ = �Aσ
+ ∼ −/h̄ and the dressed self-energy �̃

(σ )
σ−(μ) is approximated,

at low temperature, by

�̃
(σ )
σ,−(μ) � 

4π

[
Reψ

(
1

2
+ 2

2πkBT

)
− Reψ

(
1

2

)]
� 

4π
Reψ

(
1

2
+ 2

2πkBT

)
. (M7)

As shown in the main text, the prefactor yields an incorrect exponent in the Kondo temperature. At the particle-hole symmetry
point μ − ε0 = U/2,

�̃(σ )
ση (μ) = −η



4π

{
Reψ

(
1

2
+ +

2πkBT

)
− Reψ

(
1

2
+ −

2πkBT

)}
, (M8)

where, since �Aσ̄
+ = �Aσ

+ = �A+, the arguments of the digamma function read as

± =  ± h̄�A+ = 

[
1 ± 2

π
Imψ

(
1

2
+ /2

2πkBT
+ i

U/2

2πkBT

)]
.

Note that, according to Eq. (L9),

�̃
(σ̄ )
3σ,± = −i±. (M9)
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APPENDIX N: EVALUATION OF THE DRESSED BUBBLE B̃σ(σ̄)

In the NCA, the dressed bubble B̃σ (σ̄ ) is given by iteratively inserting the composite third-level bubble B̃σ (σ̄ )
3 in Eq. (224)

which results in the geometrical series

B̃σ (σ̄ )
η′η =

〈
1[

hσ (σ̄ )
2

]−1 − B̃σ (σ̄ )
3

v−η

〉
, (N1)

where the bare propagator hσ (σ̄ )
2 is given by

hσ (σ̄ )
2 = ih̄

1

ζ (εk − Eσ ) + ζ1(εk1 − Eσ̄ ) + i0+ (N2)

and Eσ = εσ − U/2. From Eq. (N1), the retarded (ζ = +1), dressed self-energy of type (σ̄ ) reads as

�̃(σ̄ )
σ,η(ε) ≡ iζ h̄B̃σ (σ̄ )

η̄η (κ )|ζ=+1

= iζ h̄2
∑
κ1

−(|tα1 (εk1 )|2/h̄2) f α1−η(εk1 )

−iζ (εk − εσ − U/2h̄) − iζ1(εk1 − εσ̄ − U/2h̄) − h̄B̃σ (σ̄ )
3

∣∣
ζ=+1

=
∑
α1

�α1 |tα1 |2
∑
ζ1

ζ1

∫ W

−W
dε1

f α1−η(ε1)

ε1 − [εσ̄ + ζ1(εσ − ε) + δζ1,+1U ] − iζ1h̄B̃σ (σ̄ )
3

∣∣
ζ=+1

=
∑
α1

�α1 |tα1 |2
∑
ζ1

ζ1

∫ W

−W
dε1

f α1−η(ε1)

ε1 − [εσ̄ + ζ1(εσ − ε) + δζ1,+1U ] − ζ1�̃
(σ̄ )
3σ,ζ1

. (N3)

By summing over η and applying Eq. (I1), one finds in the NCA (and in the lower-tier schemes)∑
η

�̃(σ̄ )
ση (ε) = −i. (N4)

Within the NCA4, and further assuming the third-tier self-energies to be energy independent, i.e., given by Eq. (L8), the integral
in Eq. (N3) is readily solved as

�̃(σ̄ )
ση (ε) �

∑
α

�α|tα|2
∑
ζ1

ζ1

∫ W

−W
dε1

f α
−η(ε1)

ε1 − [εσ̄ + ζ1(εσ − ε) + δζ1,+1U + ζ1Re �̃
(σ̄ )
3σ,ζ1

]− iζ1Im �̃
(σ̄ )
3σ,ζ1

=
∑
α

�α|tα|2
∑
ζ1

ζ1

∫ W

−W
dε1

f α
−η(ε1)

ε1 − [εσ̄ + ζ1(εσ − ε) + δζ1,+1U + ζ1Re �̃
(σ̄ )
3σ,ζ1

]+ iζ1

∣∣Im �̃
(σ̄ )
3σ,ζ1

∣∣
= −η

∑
α

α

2π

[
ψ

(
1

2
+ i

Ẽ+1 − μα

2πkBT

)
− ψ∗

(
1

2
+ i

Ẽ−1 − μα

2πkBT

)]
− i



2
, (N5)

where, in the second line, we used explicitly the fact that the imaginary part of �̃
(σ̄ )
3σ,ζ1

is negative [see Eq. (L7)]. Here, the
energies in the arguments of the digamma functions read as

Ẽζ1 = εσ̄ + ζ1(εσ − ε) + δζ1,+1U + ζ1Re �̃
(σ̄ )
3σ,ζ1

− i
∣∣Im �̃

(σ̄ )
3σ,ζ1

∣∣. (N6)

In the degenerate case, ε↑ = ε↓ = ε0, at equilibrium, μα = μ:

�̃(σ̄ )
ση (ε) = −η



2π

[
ψ

(
1

2
+ i

2ε0 + U − ε + �̃
(σ̄ )
3σ,+ − μ

2πkBT

)
− ψ∗

(
1

2
+ i

ε − �̃
(σ̄ )∗
3σ,− − μ

2πkBT

)]
− i



2
. (N7)

At the particle-hole symmetry point μ − ε0 = U/2,

�̃(σ̄ )
ση (μ) = −η



2π

[
Reψ

(
1

2
+ +

2πkBT

)
− Reψ

(
1

2
+ −

2πkBT

)]
− i



2
, (N8)

where we used Eq. (M9).
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APPENDIX O: FERMI-LIQUID BEHAVIOR WITHIN THE sNCA4

Assuming a symmetric coupling L = R = /2 in the degenerate case εσ = ε0, Eq. (131) yields for the SIAM linear
conductance

G(T ) = G0
π

2

∫
dε

(
−∂ f+(ε)

∂ε

)
g(ε,T ), (O1)

where G0 = 2e2/h is the unit of conductance and g(ε,T ) := [−ImGr
σσ (ε,T )/π ]. Integrating by parts Eq. (O1), using the

Sommerfeld expansion for the resulting integral, and expanding g(μ,T ) to second order in T , we obtain the following low-
temperature expression for the linear conductance [98]:

G(T ) � G0
π

2

[
g(μ, 0) + ∂T g(μ, 0)T + ∂2

T g(μ, 0)T 2/2 + π2k2
B∂

2
ε g(μ, 0)T 2/6

]
. (O2)

From Eq. (246), we find for the temperature derivatives of the function g(ε,T ), calculated at the particle-hole symmetry point,

∂T g(μ, 0) = 3U2

2π

∂T Re�̃−(μ, 0)

[D(μ, 0)]2
,

(O3)

∂2
T g(μ, 0) = 3U2

2π

[D(μ, 0)]2∂2
T Re�̃−(μ, 0) + 2UD(μ, 0)[∂T Re�̃−(μ, 0)]2

[D(μ, 0)]4
,

where D(ε,T ); = U 2/4 + 32/4 − U Re�̃σ,−(ε,T ). The relation ψ (1/2 + z) = 2ψ (2z) − ψ (z) − 2 ln(2) and the asymptotic
expansion of the digamma function ψ (z) ∼ ln(z) + 1/2z − 1/12z2 [99] give, in the low-temperature limit, with Z = X + iY ,
the approximation

ψ

(
1

2
+ Z

2πkBT

)
∼ ln

( |Z|
2πkBT

)
+ i arctan

(Y

X

)
+ 1

24

(
2πkBT

Z

)2

. (O4)

Allowing for a temperature-dependent argument Z = Z (T ) and using the above expression we obtain

∂T ψ

(
1

2
+ Z (T )

2πkBT

)
∼ − 1

T
+ (πkB)2

3[Z (T )]2
T +

[
1

Z (T )
− (πkBT )2

3[Z (T )]3

]
∂T Z (T ),

∂2
T ψ

(
1

2
+ Z (T )

2πkBT

)
∼ 1

T 2
+ (πkB)2

3[Z (T )]2
+ T ∂T

(πkB)2

3[Z (T )]2
+ ∂T

[
1

Z (T )
− (πkBT )2

3[Z (T )]3

]
∂T Z (T ) +

[
1

Z (T )
− (πkBT )2

3[Z (T )]3

]
∂2

T Z (T ).

(O5)
These results can be applied to the self-energy �̃σ,−(μ) = �̃

(σ )
σ,−(μ) + �̃

(σ̄ )
σ,−(μ) at the particle-hole symmetry point

�̃σ,−(μ,T ) = 3

4π

{
Reψ

(
1

2
+ +(T )

2πkBT

)
− Reψ

(
1

2
+ −(T )

2πkBT

)}
− i



2
, (O6)

with

±(T ) = 

[
1 ± 2

π
Imψ

(
1

2
+ /2

2πkBT
+ i

U/2

2πkBT

)]
.

Equation (O4) also yields

∂T ±(T ) = ∓16πk2
B

3

2U

(2 + U 2)2
T . (O7)

As a result,

∂T �̃σ,−(μ, 0) = 0

and ∂2
T �̃σ,−(μ, 0) = πk2

B

4

{(
1

[+(0)]2
− 1

[−(0)]2

)
−
(

1

+(0)
+ 1

−(0)

)
162U

π (2 + U 2)2

}
. (O8)

From Eq. (O3)

∂T g(μ, 0) = 0, ∂2
T g(μ, 0) = 3U2

2π

∂2
T Re�̃σ,−(μ, 0)

[U 2/4 + 32/4 − U Re�̃σ,−(μ, 0)]2
= 0. (O9)

The general expression for the NCA4 Green’s function at equilibrium, conveniently rewritten as

GR
σσ (ε) = ε − εσ − U + i3/2 + U 〈nσ̄ 〉

(ε − εσ + i/2)(ε − εσ − U + i3/2) + U �̃σ,−(ε)
, (O10)
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yields for the derivative with respect to ε of the function g(ε,T ) calculated at the particle-hole symmetry point and in the
degenerate case

∂2
ε g(μ, 0) = /π

[D(μ, 0)]2

[
7 + 2U∂εRe�̃σ,−(μ, 0) + (3/2)U∂2

ε Re�̃σ,−(μ, 0)
]

+ /π

[D(μ, 0)]3

{
123 − 3U 2

[
∂εRe�̃σ,−(μ, 0)

]2}
. (O11)

For an energy-independent argument Z we have for the derivatives with respect to the energy [71]

∂ε ψ

(
1

2
+ Z

2πkBT
+ i

ε − μ

2πkBT

)∣∣∣∣∣
ε=μ, T =0

= sin(ϕ) + i cos(ϕ)

|Z| ,

∂2
ε ψ

(
1

2
+ Z

2πkBT
+ i

ε − μ

2πkBT

)∣∣∣∣∣
ε=μ, T =0

= cos(2ϕ) − i sin(2ϕ)

|Z|2 ,

(O12)

where Z = |Z| exp(iϕ). Using Eqs. (M6) and (N7), this entails

∂εRe�̃σ,−(μ, 0) = − 

2π

sin(ϕ+)

|Z+| , ∂2
ε Re�̃σ,−(μ, 0) = 

2π

[
cos(2ϕ+)

|Z+| − 1

−

]
+ 

4π

[
1

2+
− 1

2−

]
, (O13)

where ϕ+ = arctan(2μ/+) and |Z+| =
√

(2μ)2 + 2+. The vanishing linear term in the low-temperature expansion of the linear
conductance, Eq. (O2), and the resulting quadratic dependence on T indicate that the sNCA4 displays at low temperature a
Fermi-liquid behavior. Nevertheless, the saturation value at T = 0 differs in the sNCA4 from the correct value g(μ, 0) = 2/π .
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