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Abstract

Estimating the effects of interventions on patient
outcome is one of the key aspects of personalized
medicine. Their inference is often challenged by
the fact that the training data comprises only the
outcome for the administered treatment, and not
for alternative treatments (the so-called counter-
factual outcomes). Several methods were sug-
gested for this scenario based on observational
data, i.e. data where the intervention was not ap-
plied randomly, for both continuous and binary
outcome variables. However, patient outcome
is often recorded in terms of time-to-event data,
comprising right-censored event times if an event
does not occur within the observation period. Al-
beit their enormous importance, time-to-event
data is rarely used for treatment optimization.

We suggest an approach named BITES (Bal-
anced Individual Treatment Effect for Survival
data), which combines a treatment-specific semi-
parametric Cox loss with a treatment-balanced
deep neural network; i.e. we regularize differ-
ences between treated and non-treated patients us-
ing Integral Probability Metrics (IPM). We show
in simulation studies that this approach outper-
forms the state of the art. Further, we demonstrate
in an application to a cohort of breast cancer pa-
tients that hormone treatment can be optimized
based on six routine parameters. We successfully
validated this finding in an independent cohort.
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BITES is provided as an easy-to-use python im-
plementation.

1. Introduction
Inferring the effect of interventions on outcomes is rele-
vant in diverse domains, comprising precision medicine
and epidemiology (Frieden, 2017), or marketing (Kohavi
et al., 2009; Bottou et al., 2013). A fundamental issue of
causal reasoning is that potential outcomes are observed
only for the applied intervention but not for its alternatives
(the counterfactuals). For instance, in medicine, only the
factual treatment outcome is observed. The counterfactual
outcomes remain hidden.

Estimates of Average Treatment Effects (ATE) do not nec-
essarily hold on the level of individual patients, and the In-
dividual Treatment Effect (ITE) has to be inferred from data
(Holland, 1986). Solving the latter “missing data problem”
was attempted repeatedly in the literature using machine
learning methods in combination with counterfactual rea-
soning. There are two naive approaches to this issue: the
treatment can be included as a covariate or it can be used
to stratify the model development, i.e. individual treatment-
specific models are learned (also called T-learner). Potential
outcomes can then be estimated by changing the respective
treatment covariate or model. These naive approaches are
occasionally discussed in performance comparisons, e.g.,
in (Chapfuwa et al., 2020; Curth et al., 2021). An alterna-
tive approach is to match similar patients between treated
and non-treated populations using, e.g., propensity scores
(Rosenbaum and Rubin, 1983). This directly provides esti-
mates of counterfactual outcomes. However, a central issue
in this context is to define appropriate similarity measures,
which should ideally also be valid in a high-dimensional
variable space (King and Nielsen, 2019). Further alterna-
tives are Causal Forests (Athey et al., 2016; Wager and
Athey, 2017; Athey and Wager, 2019) or deep architec-
tures such as the Treatment-Agnostic Representation Net-
work (TARNet) (Johansson et al., 2016; Shalit et al., 2016).
Both methods do not account for treatment selection biases
and thus will be biased towards treatment-specific distribu-
tions. This issue was recently approached by several groups
which balanced the treated and non-treated distributions
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using model regularization via representations of Integral
Probability Metrics (IPM) (Müller, 1991). Suggested meth-
ods are, e.g., balanced propensity score matching (Diamond
and Sekhon, 2013; Li and Fu, 2017), deep implementations
such as the Counterfactual regression Network (CFRNet)
(Johansson et al., 2016; Shalit et al., 2016) or the auto-
encoder based Deep-Treat (Atan et al., 2018). Recently,
balancing was incorporated in a Generative Adversarial Net
for inference of Individualized Treatment Effects (GANITE)
(Yoon et al., 2018). Note, learning balanced representations
involves a trade-off between predictive power and bias since
biased information can be also highly predictive.

All aforementioned approaches deal with continuous or bi-
nary response variables. In medicine, however, patient out-
come is often recorded as time-to-event data, i.e. the time
until an event occurs. The patient is (right-)censored at the
last known follow-up if the event was not observed within
the observation period. A plethora of statistical approaches
deal with the analysis of time-to-event data (Martinussen
and Scheike, 2006), of which one of the most popular meth-
ods is Cox’s Proportional Hazards (PH) model (Cox, 1972).
The Cox PH model is a semi-parametric approach for time-
to-event data, which models the influence of variables on
the baseline hazard. Here, the PH assumption implies an
equal baseline hazard for all observations. In fact, the influ-
ence of variables can be estimated without any considera-
tion of the baseline hazard function (Cox, 1972; Breslow,
1972). The Cox PH model is also highly relevant in the
context of machine learning. It was adapted to the high-
dimensional setting using l1 and l2 regularization terms by
Tibshirani, (1997), with applications ranging from the pre-
diction of adverse events by patients with chronic kidney dis-
ease (Zacharias et al., 2021) to the risk prediction in cancer
entities (Jachimowicz et al., 2021; Staiger et al., 2020). The
Cox PH model can be also adapted to deep learning archi-
tectures, as proposed by Katzman et al., (2018). Alternative
machine-learning approaches to model time-to-event data
include discrete-time Cox models built on multi-outcome
feedforward architectures (Lee et al., 2018; Gensheimer and
Narasimhan, 2019; Kvamme and Borgan, 2019) and ran-
dom survival forests (RSF) (Ishwaran et al., 2008; Athey
and Wager, 2019).

The prediction of ITEs from time-to-event data has received
little attention in the machine learning community, which
is surprising considering the enormous practical relevance
of the topic. Seminal works are Chapfuwa et al., (2020)
and Curth et al., (2021). Most recently, Curth et al., (2021)
suggested to learn discrete-time treatment-specific condi-
tional hazard functions, which were estimated using a deep
learning approach. Treatment and control distributions were
balanced analogously to (Shalit et al., 2016) using the p-
Wasserstein distance (Kantorovitch, 1958; Ramdas et al.,
2017). This approach, named SurvITE, was shown to out-

perform the current state of the art in simulation studies.

We propose to combine the loss of the Cox PH model with
an IPM regularized deep neural network architecture to
balance generating distributions of treated and non-treated
patients. We named this approach “Balanced Individual
Treatment Effect for Survival data” (BITES). We show that
this approach – albeit its apparent simplicity – outcom-
petes SurvITE as well as alternative state-of-the-art methods.
First, we demonstrate the superior performance of BITES
in simulation studies where we focus on biased treatment
assignments and small sample sizes. Second, we used train-
ing data from the Rotterdam Tumour Bank (Foekens et al.,
2000) to show that BITES can optimize hormone treatment
in patients with breast cancer. We validated the latter model
using data from a controlled randomized trial of the German
Breast Cancer Study Group (GBSG) (Schumacher et al.,
1994) and analyzed feature importance using SHAP (SHap-
ley Additive exPlanations) values (Lundberg and Lee, 2017).
We further provide an easy-to-use python implementation of
BITES including scheduled hyper-parameter optimization1.

2. Methods
Patient outcome can be recorded as (right-)censored time-
to-event data. First, we will introduce models for such data,
i.e. the Cox proportional hazards model and recent non-
linear adaptations. Second, we will discuss the potential
outcome model and how it can be used to model survival.
Third, we introduce regularization techniques to account for
unbalanced distributions and, finally, we will combine these
methods in a deep neural network approach termed BITES
to learn treatment recommender systems based on patient
survival.

2.1. Survival Data

LetX be the space of covariates and T the space of available
treatments. Further, let y ∈ Y be the observed survival times
and E ∈ E = {0, 1} the corresponding event indicator.
Denote sample data of patient i by the triplet (xi, yi, Ei) ∈
X × Y × E . If the patient experiences the event within
the observation period, yE=1

i is the time until the event of
interest occurs, otherwise yE=0

i is the censoring time. Let
the survival times y be distributed according to f(y) with
the corresponding cumulated event distribution F (y) =∫ y

0
f(y′) dy′. The survival probability at time y is then

given by S(y) = 1− F (y). The hazard function is

λ(y;x) = exp(βTx)︸ ︷︷ ︸
hazard rate

λ0(y)

and corresponds to the risk of dying at time y (Cox, 1972),
i.e. a greater hazard corresponds to greater risk of failure.

1https://github.com/sschrod/BITES

https://github.com/sschrod/BITES
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Here, the model parameters are given by β and the base-
line hazard function is λ0(y) = λ(y;x = 0). Note that
λ0(y) = f(y)

1−F (y) = − d
dy log(S(y)). According to Cox’s

proportional hazards (PH) assumption, all patients share the
same baseline hazard function and, importantly, the baseline
hazard cancels in maximum likelihood estimates of β. Thus,
time dependence can be eliminated from the individual haz-
ard prediction and rather than learning the exact time to
event, Cox regression learns an ordering of hazard rates. At
every event time yE=1

i , the set of patients at risk is given by
Ri = Y(y ≥ yE=1

i ). The partial log-likelihood of the Cox
model (Cox, 1972; Breslow, 1972) is given by:

L(β) =
∑
i:Ei=1

log

 ∑
j:yj∈Ri

eβ
Txj

− βTxi
 . (1)

Faraggi and Simon (1995) suggested to replace the ordinary
linear predictor function, βTx, by a feedforward neural
network with a single outcome node hθ(x) and network
parameters θ. Following this idea, Katzman et al., (2018)
introduced DeepSurv, which showed improved performance
compared to the linear case, particularly if non-linear co-
variate dependencies are present.

2.2. The counterfactual problem

The outcome space for multiple treatment options k is given
by Y = Y0 × . . .× Y(k−1). For simplicity. we will restrict
the discussion to the binary case, k = 2, with a treated
group, T = 1, and a control group, T = 0.

We consider the problem where only a single factual out-
come is observed per patient, i.e. the outcomes for all other
interventions, also known as the counterfactuals, are miss-
ing. Hence, the individual treatment effect (ITE), defined
as

τ(xi) = Y T=1(xi)− Y T=0(xi) ,

can only be inferred based on potential outcome estimates
(Rubin, 1974). We will build a recommendation model that
assigns treatments to patients with predictions τ(xi) > 0.

Following recent work (Johansson et al., 2016; 2020; Shalit
et al., 2016; Alaa and van der Schaar, 2017; Athey and
Wager, 2019; Wager and Athey, 2017; Yoon et al., 2018;
Yao et al., 2018), we make the standard strong ignorability
assumption, which has been shown to be a sufficient condi-
tion to make the ITE identifiable (Shalit et al., 2016; Pearl,
2017), i.e. it guarantees proper causal dependencies on the
interventions. The strong ignorability assumption contains
the unconfoundedness and overlap assumptions:

Assumption 1 (Unconfoundedness) Covariates X do not
simultaneously influence the treatment T and potential out-

comes (Y T=0, Y T=1), i.e.

(Y T=0, Y T=1) ⊥⊥ T |X .

This assumption ensures that the causal effect is not in-
fluenced by non-observable causal substructures such as
confounding (Pearl, 2009). Correcting for confounding bias
requires structural causal models, which are ambiguous in
general and need to be justified based on domain knowledge
(Pearl, 2008).

Assumption 2 (Overlap) There is a non-zero probability
for each patient i to receive each of the treatments T ∈ T :

0 < p(Ti|xi) < 1.

2.3. Balancing distributions

Strong ignorability only removes confounding artifacts. Im-
balances of the generating distributions due to biased treat-
ment administration might still be present. Balancing the
generating distributions of treated and control group has
been shown to be effective both on the covariate space (Imai
and Ratkovic, 2014) and on latent representations (Johans-
son et al., 2016; Shalit et al., 2016; Li and Fu, 2017; Yao
et al., 2018; Huang et al., 2016; Johansson et al., 2020; Lu
et al., 2020; D’Amour et al., 2017). This is either achieved
by multi-task models or IPMs. The latter quantify the differ-
ence of probability measures P and Q defined on a measur-
able space S by finding a function f ∈ F that maximizes
(Müller, 1991)

dF (P,Q) := sup
f∈F

∣∣∣∣∫ f dP−
∫
f dQ

∣∣∣∣ .
Most commonly used are the Maximum Mean Discrepancy
(MMD), restricting the function space to reproducing kernel-
Hilbert spaces (Gretton et al., 2012), or the p-Wasserstein
distance (Ramdas et al., 2017). Both have appealing proper-
ties and can be empirically estimated (Sriperumbudur et al.,
2012). MMD has low sample complexity with a fast rate
of convergence, which comes with low computational costs.
A potential issue is that gradients vanish for overlapping
means (Feydy et al., 2018). The p-Wasserstein distance, on
the other hand, offers more stable gradients even for overlap-
ping means, which comes with higher computational costs,
i.e. by solving a linear program. The computational burden
can be reduced by entropically smoothing the latter and by
using the Sinkhorn divergence,

Spε (P,Q) := Wp
ε (P,Q)− 1

2
Wp
ε (P,P)− 1

2
Wp
ε (Q,Q) ,

where Wp
ε (P,Q) is the smoothed Optimal Transport (OT)

loss defined in the following (Ramdas et al., 2017; Feydy
et al., 2018)
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Definition 2.1 (Smoothed Optimal Transport loss) For
p ∈ [1,∞) and Borel probability measures P, Q on Rd the
entropically smoothed OT loss is

Wp
ε (P,Q) := min

π∈Γ(P,Q)

∫
Rd×Rd

||X − Y ||p dπ

+εKL(π|P⊗Q)

with KL(π|P⊗Q) :=

∫
Rd×Rd

log

(
dπ

dP dQ

)
dπ ,

with Γ(P,Q) the set of all joint probability measures whose
marginals are P, Q on Rd, i.e. for all subsets A ⊂ Rd, we
have π(A×Rd) = P(A) and π(Rd ×A) = Q(A). Here, ε
mediates the strength of the Kullback-Leibler divergence.

The Sinkhorn divergence can be efficiently calculated for
ε > 0 (Cuturi, 2013). For p = 2 and ε = 0 we can retrieve
the quadratic Wasserstein distance and in the limit ε →
+∞ it becomes the MMD (Genevay et al., 2017). BITES
tunes ε to take advantage of the more stable OT gradients
to improve the overlap while remaining computationally
efficient. In the following, we denote it by IPMp

ε (·, ·) to
highlight the possibility to use any representation of the
IPM. A thorough discussion of Sinkhorn divergences with
1- and 2-dimensional examples can be found in (Feydy et al.,
2018).

2.4. Treatment recommender systems

For comparison, we evaluated several strategies to build
treatment recommender systems.

Cox regression model We implemented the Cox regres-
sion as T-learner with treatment-specific survival models
using lifelines (Davidson-Pilon et al., 2021). Note, an ordi-
nary Cox regression model which uses both the covariatesX
and the treatment variable T as predictor variables generally
recommends the treatment with the better ATE; a treatment-
specific term adds to βTx and thus the treatment which
reduces the hazard most will be recommended. Therefore,
we did not include the latter approach and focus on the Cox
T-learner in our analysis.

DeepSurv Katzman et al., (2018) suggested to provide
individual recommendations based on single model predic-
tions using T and X as covariates based on τDS(T,xi) =
hθ(T = 1,xi)− hθ(T = 0,xi). Hence, it uses a treatment
independent baseline hazard which could compromise the
performance (Bellera et al., 2010; Xue et al., 2013).

Treatment-specific DeepSurv models To account for
treatment-specific differences of baseline hazard functions,
we also estimated DeepSurv as a T-learner (T-DeepSurv),
i.e. we learned models stratified for treatments. We then eval-
uated the time-dependent individual treatment effect based

. . . ΦX

. . . λT=1(x)

LT=1
Cox

T = 1 h1

. . . λT=0(x)

LT=0
Cox

T = 0
h0

IPMp
ε (Φ

T=1,ΦT=0)T

Y

λT=1(y)

λT=0(y)

ITE(x, y)

Figure 1. The BITES network architecture.

on the survival functions τT-DS(xi, y) = ST=1(xi, y) −
ST=0(xi, y).

Treatment-specific Random Survival Forests Analo-
gously to the previous approach, we learned treatment-
specific Random Survival Forests (RSF) (Ishwaran et al.,
2008; Athey et al., 2016) using the implementation of scikit-
survival (Pölsterl, 2020) to estimate the time-dependent
ITE.

SurvITE Curth et al., (2021) suggested to learn discrete-
time treatment-specific conditional hazard functions, which
were estimated using an individual outcome head for each
time interval2. We evaluated the time-dependent ITE to
assign treatments, as for the latter two methods.

2.5. BITES

BITES model architecture BITES combines survival
modeling with counterfactual reasoning, i.e. it facilitates
the development of treatment recommender systems using
time-to-event data. BITES uses the network architecture
shown in Figure 1 with loss function

lBITES(xi, yi, Ei, Ti) =

qLT=0
Cox (h0(Φ(x)), Y T=0, ET=0)

+(1− q)LT=1
Cox (h1(Φ(x)), Y T=1, ET=1)

+αLIPMpε (ΦT=1,ΦT=0) , (2)

where q is the fraction of patients in the control cohort (pa-
tients with T = 0) and LTCox is given by the negative Cox
partial log-likelihood of Equation 1, where we parametrize
the hazard function hT (Φ(x)) according to the network
architecture illustrated in Figure 1. The latent represen-
tation Φ is regularized by an IPM term to reduce differ-
ences between treatment and control distributions of non-
confounding variables. Throughout the article, we used the

2We employed their python implementation available under
https://github.com/chl8856/survITE.

https://github.com/chl8856/survITE
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Sinkhorn divergence of the smoothed OT loss with p = 2 as
IPM term. Hence, the parameter ε in Equation 2 calibrates
between the quadratic-Wasserstein distance (ε = 0) and
MMD (ε = ∞). The total strength of the IPM regulariza-
tion is adjusted by α. Models with α = 0 do not balance
treatment effects and therefore we denote this method as
“Individual Treatment Effects for Survival” (ITES). Mod-
els with α > 0 will be denoted as “Balanced Individual
Treatment Effects for Survival” (BITES). (B)ITES uses
the time-dependent ITE for treatment decisions. For the
studies shown in this article, we assigned treatments based
on the ITE evaluated for a survival probability of 50%,
i.e. τ(xi) = (S(x)λ1(y))−1(0.5)− (S(x)λ0(y))−1(0.5).

Implementation BITES uses a deep architecture of
dense-connected layers which are each followed by a
dropout (Srivastava et al., 2014) and a batch normalization
layer (Ioffe and Szegedy, 2015). It uses ReLU activation
functions (Nair and Hinton, 2010) and is trained using the
Adam optimizer (Kingma and Ba, 2014). Further, early stop-
ping based on non-decreasing validation loss and weight
decay regularizations (Krogh and Hertz, 1992) are used to
improve generalization. Our implementation is based on
the PyTorch machine learning library (Paszke et al., 2019)
and the pycox package (Kvamme and Borgan, 2019). The
Sinkhorn divergence is implemented using the GeomLoss
package (Feydy et al., 2018). We provide an easy-to-use
python implementation which includes a hyperparameter
optimization using the ray[tune] package (Liaw et al., 2018)
to efficiently distribute model training.

2.6. Performance measures

We used different measures to assess the performance of
treatment recommendation systems. This comprises both
measures for the quantification of prediction performance
and of treatment assignment. Discriminative performance
was assessed using a time-dependent extension of Harrell’s
C-index (Harrell, 1982) to account for differing baseline
hazards, which evaluates

Pr (S(yi|xi) < S(yi|xj) | yi < yj & Ei = 1) , (3)

for all samples i and j at all event times yE=1
i (Antolini et al.,

2005). This reduces to Harrell’s C-index for strictly ordered
survival curves. To quantify the performance of treatment
recommendations, we used the Precision in Estimation of
Heterogenous Effect (PEHE) score (Hill, 2011), which is
defined as the difference in residuals between factual and
counterfactual outcome:

εPEHE =
1

N

N∑
n=0

([y1(xn)− y0(xn)]− [ŷ1(xn)− ŷ0(xn)])
2
.

Note, the PEHE score can only be calculated if both the
factual and counterfactual outcomes are known, which is

usually only the case in simulation studies. Therefore, we
restricted its application to the latter. There, we further quan-
tified the proportion of correctly assigned “best treatments”.

3. Results
3.1. Simulation studies

We performed three exemplary simulation studies. First,
we simulated a scenario where covariates affect survival
only linearly. Second, we simulated data with additional
non-linear dependencies, and, finally, we performed a simu-
lation where the treatment assignments were biased by the
covariates.

Linear simulation study In analogy to Alaa et al., (2017)
and Lee et al., (2018), we simulated a 20-dimensional co-
variate vector x = (x1,x2) ∼ N (0, I) consisting of two
10-dimensional vectors x1 and x2, with corresponding sur-
vival times given by

Y T=0(x) ∼ exp
([
γT1 x1 + γT1 x2

])
,

Y T=1(x) ∼ exp
([
γT2 x1 + γT1 x2

])
.

We set the parameters γ1 = (0.1, . . . , 0.1)T and γ2 =
(15, 35, 55, 75, 95, 115, 135, 155, 175, 195)T · 10−2. The
first term in the exponent is treatment dependent while the
second term affects survival under both treatments iden-
tically. This simulation gives an overall positive average
treatment effect in ∼ 64% of the patients. Survival times
exceeding 10 years were censored to resemble common cen-
soring at the end of a study. Of the remaining samples, 50%
were censored at a randomly drawn fraction fc ∼ U(0, 1) of
the true unobserved survival time. Samples were assigned
randomly to the treated, T = 1, and control group, T = 0,
without treatment administration bias. Finally, we added
an error ε ∼ N (0, 0.1 · I) to all covariates. Detailed in-
formation about hyper-parameter selection is given in the
Supplementary materials.

Figure 2(a) shows the distributions of Harrell’s C-index
evaluated on 1000 test samples for 50 consecutive simula-
tion runs. We observed that across all investigated sample
sizes (x-axis) the T-learner Cox regression showed superior
performance, closely followed by ITES and BITES. These
three methods performed equally well for the larger sample
sizes n = 1800 and n = 2400. We further investigated
the proportion of correctly assigned treatments, Figure 2(a),
and PEHE scores, Supplementary Figure S1, where we
obtained qualitatively similar trends. RSF, DeepSurv and
T-DeepSurv showed inferior performance with respect to
C-Indices, correctly assigned treatments, and PEHE scores.
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Figure 2. Harrell’s C-index and the fraction of correctly predicted treatments for the linear (a,d), non-linear (b,e), and treatment biased
non-linear (c,f) simulations. The boxplots give the distribution for 50 consecutive simulation runs, i.e. for different model initializations,
based on the best set of hyper-parameter determined by the validation C-index. Results are shown for different training sample sizes with
1000 fixed test samples for each of the simulations. The dashed horizontal line represents the fraction of patients that benefits for 100%
treatment administration.

Non-linear simulation study Next, we simulated non-
linear treatment-outcome dependencies using the model

Y T=0(x) ∼ exp
([

(γT1 x1)2 + γT1 x2

]
c
)
,

Y T=1(x) ∼ exp
([

(γT2 x1)2 + γT1 x2

]
c
)
,

where we set the parameters γ1 = (2, . . . , 2)T and γ2 =
(0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3, 3.7, 4.1)T . Note, the
first term imposes sizable non-linear effects which differ
between both treatments. We further scaled the polynomials
by c = 0.01 to yield realistic survival times up to 10 years.
This setting gives an overall positive average treatment ef-
fect in ∼ 64% of the patients.

Figure 2(b) gives the performance of the evaluated meth-
ods in terms of Harrell’s C-index. We observed that the
ordinary Cox regression with linear predictor variables per-
forms worst across all sample sizes, followed by RSF, and
SurvITE. Approximately equal performance was observed
for the DeepSurv approaches, ITES, and BITES. Among
these methods, the treatment-specific DeepSurv models (T-
DeepSurv) showed a higher variance across the simulation
runs, in particular for the low sample sizes. Next, we studied
the corresponding PEHE scores (Supplementary Figure S1)
and the proportion of correctly assigned treatments (Fig-
ure 2(e)). We observed, although DeepSurv performed well

in terms of C-Indices, that the performance was highly com-
promised in the latter two measures. In fact, it was not able
to outperform the recommendation based on the ATE, i.e. al-
ways assigning T = 1, which corresponds to the dashed hor-
izontal line. We further observed that SurvITE performed
worst in this scenario with both substantially lower pro-
portions of correctly assigned treatments and higher PEHE
scores compared to the other methods. Here, T-DeepSurv,
ITES, and BITES performed best, however, the results of
the former are inferior compared to ITES and BITES for
sample sizes of n = 600 and n = 1200.

Non-linear simulation study with treatment bias Fi-
nally, we repeated the non-linear simulation study but now
took into account a treatment assignment bias, i.e. the value
of one or more covariates is indicative of the applied treat-
ment. To simulate this effect, we assigned the treatment
with a 90% probability if the fifths entry of x1 or x2 was
larger than zero. To ensure that the unconfoundedness as-
sumption holds, we set the corresponding entries γ1 and γ2

to zero. This simulation study yields a positive treatment
effect in ∼ 71% of the patients (dashed horizontal line in
Figure 2(f)).

Figures 2(c), 2(f), and Supplementary Figure S1, show the
results in terms of C-index, correctly assigned treatments,
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Figure 3. Survival probability for patients grouped according to the
respective treatment recommendations of BITES, based on the test
data from the GBSG Trial 2. For comparison, we show the KM
curves for all hormone treated and untreated (control) patients in
blue and orange, respectively (shown without error bars for better
visibility).

and PEHE scores, respectively. Similar to the previous stud-
ies, the best performing methods with respect to C-Indices
were the two DeepSurv models, ITES and BITES. With
respect to correctly assigned treatments and PEHE scores,
however, BITES consistently outperformed the other meth-
ods for reasonable sample sizes starting from n = 1200.
For n = 600, none of the methods was able to outperform a
model where the treatment is always recommended (dashed
line in Figure 2(f)).

3.2. BITES optimizes hormone treatment in patients
with breast cancer

We retrieved pre-processed data of 1,545 breast cancer pa-
tients as used by Katzman et al., (2018), which were origi-
nally extracted from the Rotterdam Tumour Bank (Foekens
et al., 2000). The available patient characteristics are age,
menopausal status (pre/post), number of cancerous lymph
nodes, tumor grade, and progesterone and estrogen receptor
status. Of these patients, 339 were treated by a combination
of chemotherapy and hormone therapy. The remaining pa-
tients were treated by chemotherapy only. Note, in this study
the application of hormone treatment was not randomized.
In total ∼ 37% of the patients were censored.

We used these data to learn treatment recommender systems
in order to predict the individual treatment effect of adding
hormone therapy to chemotherapy. We performed hyper-
parameter tuning as outlined in the Supplementary Material,
and selected the models with the lowest validation loss,
respectively.

Next, we evaluated the performance using test data from

Table 1. Predictive outcomes on the controlled randomized test set
of the RGBSG data obtained by each of the discussed models with
minimum validation loss found in a hyper-parameter grid search.

METHOD C-INDEX P-VALUE FRACTION T=1

COX REG. 0.471 0.0034 100%
DEEPSURV 0.671 0.0034 100%
T-DEEPSURV 0.652 0.202 92.9%
RSF 0.675 0.0013 82.5%
SURVITE 0.631 0.0039 98.1%
ITES 0.676 0.000198 75.8%
BITES 0.666 0.000016 83.4%

the GBSG Trial 2 (Schmoor et al., 1996). Excluding cases
with missing covariates, it contains 686 individual patients,
with ∼ 65% randomized hormone treatment assignments.
The obtained C-indices are summarized in Table 1. Note,
since only the factual outcomes are observable, we could
not evaluate the performance with respect to correctly as-
signed “best treatments” or PEHE scores. However, to
substantiate our findings, we stratified our patients into
two groups; the group “recommended treatment” contains
samples where the recommended treatment coincides with
the applied treatment, while the group “anti-recommended
treatment” contains the samples where the recommended
treatment does not coincide with the applied treatment (fol-
lowing Katzman et al., (2018)). The corresponding Kaplan-
Meier (KM) curves of BITES are shown in Figure 3 with
recommended treatment in green and anti-recommended
treatment in red. Corresponding results for the other meth-
ods are shown in Supplementary Figure S2. For comparison,
KM curves for the treated and control group are shown in
blue and orange in Figure 3. Interestingly, BITES recom-
mends hormone treatment only in 83.4% which resulted in
the largest difference in survival based on the recommenda-
tions made by BITES (p = 0.000016). On the other hand,
DeepSurv and Cox regression suggest to treat all patients
with hormone therapy, closely followed by SurvITE (treat-
ment recommended for 98.1% of patients). The results for
all models are summarized in Table 1. Note, the group
with BITES recommendation showed a superior survival
compared to the treated group and the group with BITES
anti-recommendation showed an inferior performance com-
pared to the control group. Both comparisons, however,
were not significant in a log-rank test.

Finally, we explored feature importance of the BITES model
using SHAP values (Lundberg and Lee, 2017) with results
shown in Figure 4 which correspond to treatment option
T = 0 (no hormone treatment) and T = 1 (hormone treat-
ment), respectively. Here, points correspond to patients and
positive (negative) SHAP values on the x-axis indicate an in-
creased (decreased) risk of failure. Further, the feature value
is illustrated in colors ranging from red to blue, where high
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values are shown in red and low values in blue. We observed
that the number of positive lymph nodes has the strongest
impact on survival with SHAP values ranging from ∼ −0.5
to ∼ 1 in the group with and without hormone treatment,
where more positive lymph nodes (shown in red) indicate a
worse survival. Considering the menopausal status, we ob-
served that patients post-menopause showed increased risk
of death in the group without hormone treatment (T = 0).
Interestingly, this effect was substantially mitigated in the
hormone-treated group. It was particularly interesting to ob-
serve that high tumor grade (grade 3, shown in red), yields
high SHAP values up to 0.5 in the hormone treated group.
This effect was substantially mitigated in the group with-
out hormone treatment. In summary, we observed strong
hints that hormone treatment alleviates the negative effect of
menopause, and increases the negative effect of high tumor
grade on patient survival.

4. Conclusion
We presented BITES, which is a machine learning frame-
work to optimize individual treatment decisions based on
time-to-event data. It combines Deep Neural Network coun-
terfactual reasoning with Cox’s proportional hazards model.
It further enables balancing of treated and non-treated pa-
tients using integral probability metrics on a latent layer
data representation. We demonstrated in simulation stud-
ies that BITES outcompetes state-of-the-art methods with
respect to prediction performance (Harrell’s C-index), cor-

rectly assigned treatments, and PEHE scores. We observed
that BITES can effectively capture both linear and non-
linear covariate outcome dependencies on both small and
large scale observational studies. Moreover, we showed that
BITES can be used to optimize hormone treatment in breast
cancer patients. Using independent data from the GBSG
Trial 2, we observed that BITES treatment recommenda-
tions might improve patient survival. In this context, SHAP
values were demonstrated to enhance the interpretability
and transparency of treatment recommendations.

Like most recently developed counterfactual tools, BITES
depends on the strong ignorability assumption. Hence, cau-
tion is necessary when analyzing heavily confounded obser-
vational data. Future work needs to address more special-
ized time-to-event models, such as competing event models,
and the generalization to multiple treatments and combina-
tions thereof. Both could substantially broaden the scope of
applications for BITES.

In summary, BITES facilitates treatment optimization from
time-to-event data. In combination with SHAP values,
BITES models can be easily interpreted on the level of
individual patients, making them a versatile backbone for
treatment recommender systems.
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Rosenwald, German Ott, and Rainer Spang. A novel lymphoma-
associated macrophage interaction signature (LAMIS) provides
robust risk prognostication in diffuse large B-cell lymphoma
clinical trial cohorts of the DSHNHL. Leukemia, 34(2):543–
552, 2020.

R. Tibshirani. The lasso method for variable selection in the Cox
model. Statistics in medicine, 16(4):385–395, 1997.

Stefan Wager and Susan Athey. Estimation and Inference of Het-
erogeneous Treatment Effects using Random Forests, 2017.

Xiaonan Xue, Xianhong Xie, Marc Gunter, Thomas E. Ro-
han, Sylvia Wassertheil-Smoller, Gloria Y. F. Ho, Dominic
Cirillo, Herbert Yu, and Howard D. Strickler. Testing the
proportional hazards assumption in case-cohort analysis.
BMC Medical Research Methodology, 13(1):88, 2013. URL
https://bmcmedresmethodol.biomedcentral.
com/articles/10.1186/1471-2288-13-88.

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and
Aidong Zhang. Representation Learning for Treatment Effect
Estimation from Observational Data. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAN-
ITE: Estimation of Individualized Treatment Effects using Gen-
erative Adversarial Nets. International Conference on Learning
Representations, 2018. URL https://openreview.net/
forum?id=ByKWUeWA-.

Helena U. Zacharias, Michael Altenbuchinger, Ulla T. Schultheiss,
Johannes Raffler, Fruzsina Kotsis, Sahar Ghasemi, Ibrahim Ali,
Barbara Kollerits, Marie Metzger, Inga Steinbrenner, Peggy
Sekula, Ziad A. Massy, Christian Combe, Philip A. Kalra, Flo-
rian Kronenberg, Bénédicte Stengel, Kai-Uwe Eckardt, Anna
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Supplement
S1. Simulations

To find the best set of model parameters for the three simulations, we employed a comprehensive hyper-parameter grid-search over the
listed in Table S1. For each combination, we fitted 50 initializations with randomized 60/40-train/validation splits, which resulted in
the presented 600 to 2400 training samples. To avoid over-fitting we used early-stopping based on non-improved validation loss over
50 consecutive epochs for all of the deep neural network recommendation systems ((T-)DeepSurv, SurvITE, (B)ITES). The best set of
hyper-parameters is determined based on the minimal mean average C-index evaluated on the validation set. All presented results are based
on an independent set containing 1000 samples, respectively, for each simulation. To reduce the computational cost of finding optimal
IPM parameters (α and ε), we used the best set of hyper-parameters obtained by the corresponding model without IPM regularization
(α = 0).

Table S1. List of parameters used for the hyper-parameter grid search for the three simulation studies.

HYPER-PARAMETERS COX RSF T-DEEPSURV SURVITE ITES
DEEPSURV BITES

LAYERS/SHARED LAYERS - - {[15, 10, 5], [10, 5]} {[50, 50], [20, 20]} {[15], [15, 10]}
INDIVIDUAL LAYERS - - - {[50, 50], [10, 10]} {[10, 5], [5]}
LEARNING RATE {0.1} - {0.001} {0.001} {0.001}
BATCH SIZE - - {all} {300, all} {all}
l2-REGULARIZATION {0.1, 0.3, 0.5, 0.7} - {0.01, 0.1, 1} {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
l1-REGULARIZATION {0.01, 0.1, 1} - - - -
DROPOUT-RATE - - {0.1, 0.3} {0.1} {0.1, 0.3}
IPM STRENGTH α - - - {0, 0.01, 0.1, 1} {0, 0.01, 0.1, 1}
SINKHORN INTERPOLATION ε - - - - {0.05, 0.1}
NUMBER OF TREES - {1000} - - -
MIN SAMPLES SPLIT/LEAF - {[6, 3], [12, 6] - - -

[24, 12]}

For SurvITE, we followed the provided example (https://github.com/chl8856/survITE). Accordingly, we considered an
over-parametrized architecture and scaled the outcome times to obtain 30 discrete time points. For IPM regularization (α 6= 0), we used
the predefined Wasserstein-distance. Figure S1 shows the achieved Precision in Estimation of Heterogenous Effect (PEHE) for each of the
simulations. The obtained results show similar behaviour as the fraction of correctly assigned treatment decisions presented in the main
article (Figure 2(d) to 2(f)).
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Figure S1. PEHE score obtained for the (a) linear, (b) non-linear and (c) non-linear treatment biased simulation. The boxplots give the
distribution of PEHE-scores for 50 consecutive model initializations on independent test data using the best set of hyper-parameters.

S2. Application: RGBSG

For the presented breast cancer application, based on data generated by the Rotterdam and the German Breast Cancer Study Group
(RGBSG), we performed a hyper-parameter grid-search for the Cox, RSF and SurvITE treatment recommendation systems with
parameters shown in S2. For the remaining models, including (T)-DeepSurv and (B)ITES, we used the ray[tune] python package (https:
//docs.ray.io/en/latest/tune/index.html) for the hyper-parameter search. This speeds up computation significantly by

https://github.com/chl8856/survITE
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html


BITES: Balanced Individual Treatment Effect for Survival data

Table S2. List of parameters used for the hyper-parameter search on the RGBSG training data.

HYPER-PARAMETERS COX RSF T-DEEPSURV SURVITE (B)ITES

LAYERS/SHARED LAYERS - - {[7, 5]} {[50, 50]} {[7, 5]}
INDIVIDUAL LAYERS - - - {[50, 50], [10, 10]} {[[5, 3], [3]]}
LEARNING RATE {0.1} - [0.0001, 0.1] {0.001} [0.0001, 0.1]
BATCH SIZE - - {all} {300} {all}
l2-REGULARIZATION {0.3, 0.5, 0.7, 0.9} - [0.01, 0.1] {0.0, 0.01, 0.1, 0.5} [0.01, 0.1]
l1-REGULARIZATION {0.1, 0.5, 1} - - - -
DROPOUT-RATE - - [0.1, 0.2] {0.1} [0.1, 0.2]
IPM STRENGTH α - - - {0.001, 0.1, 1, 10} {0.001, 0.01, 0.1, 1, 10}
SINKHORN INTERPOLATION ε - - - - {0.05, 0.1}
NUMBER OF TREES - {100} - - -
MIN SAMPLES SPLIT/LEAF - {[6, 3], [12, 6] - - -

[24, 12]}

using a scheduled hyper-parameter optimization. In this case, we used a grid-search for structural parameters and the Sinkhorn parameters,
and allowed for random choices for learning rate, l2 regularization and Dropout rate (paameters given in square brackets on Table S2. For
all models, we used 10 reinitializations with randomly drawn 80/20-train/validation splits. This yields 1236 training and 309 validation
samples. Similar to the simulation studies, we avoided over-fitting by using early-stopping if the validation loss did not improve within
50 consecutive epochs epochs. The final models were selected by the minimal validation loss achieved for all of the hyper-parameter
combinations and reinitializations. This model was then evaluated for an independent test cohort of 686 patients given by the GBSG Trial
2, with results shown in Figure 3, Figure S2 and Table 1.
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(a) RGBSG for Cox regression.
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(b) RGBSG for RSF.

0 20 40 60 80
Survival Time [month]

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.003427
C-Index=0.671
100.0% recommended for T=1

DeepSurv Recommendation
DeepSurv Anti-Recommendation

(c) RGBSG for DeepSurv.
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(d) RGBSG for T-DeepSurv.
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(e) RGBSG for SurvITE.
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(f) RGBSG for ITES.

Figure S2. Kaplan Meier curves corresponding to Figure 3, for (a) Cox regression, (b) RSF, (c) DeepSurv, (d) T-DeepSurv, (e) SurvITE
and (f) ITES. Each of the plots contains the p-value comparing the recommended and anti-recommended group, the obtained C-index and
the fraction of patients that the algorithm recommends to administer the treatment.


