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Abstract  
 
UMOD is a major risk gene for monogenic and complex forms of kidney disease. The encoded 

kidney-specific protein uromodulin is highly abundant in urine and related to chronic kidney 

disease, hypertension, and pathogen defense. To gain insights into potential systemic roles, 

we performed genome-wide screens of circulating uromodulin using complementary 

antibody-based (N=13,985) and aptamer-based (N=18,070) assays. We detected 3 and 10 

distinct significant (p<5e-8) loci, respectively. Integration of antibody-based results at the 

UMOD locus with functional genomics data (RNA-seq, ATAC-seq, Hi-C) of primary human 

kidney tissue highlights an upstream variant with differential accessibility and transcription in 

uromodulin-synthesizing kidney cells as underlying the observed cis effect. Shared association 

patterns with complex traits, including chronic kidney disease and blood pressure, place the 

PRKAG2 locus in the same pathway as UMOD. Experimental validation of the third antibody-

based locus, B4GALNT2, shows that the p.Cys466Arg variant of the encoded N-

acetylgalactosaminyltransferase has a loss-of-function effect leading to higher serum 

uromodulin levels. Aptamer-based results point to enzymes writing glycan marks present on 

uromodulin and to their receptors in the circulation, suggesting that this assay permits 

investigating uromodulin’s complex glycosylation rather than its quantitative levels. Overall, 

our study provides new insights into circulating uromodulin and its emerging functions. 
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Introduction 

Chronic kidney disease (CKD) can progress to kidney failure, is a major risk factor for 

cardiovascular morbidity and mortality, and a leading cause of death (1-3). CKD affects 

approximately 10% of adults (1). Genome-wide association studies (GWAS) of kidney 

function, CKD, and CKD progression in population-based studies have consistently identified 

the largest effect for common variants at the UMOD locus (4-7). The encoded protein 

uromodulin, previously named Tamm-Horsfall protein, is the most abundant protein in the 

urine of healthy individuals (8). It is exclusively synthesized in the kidney’s thick ascending 

limb (TAL) of the loop of Henle (LOH) and the distal convoluted tubule (DCT) (9). Urinary 

uromodulin has important roles in protecting against urinary tract infections (10). 

Glycosylation accounts for approximately 30% of the mature protein’s molecular weight in 

urine and may be important for some of the protein’s functions, including an emerging 

immuno-modulatory role (8).  

Common CKD risk variants in UMOD are also associated with higher risk of hypertension, 

hyperuricemia and gout, and lower risk of kidney stone disease (4, 11-14). Their association 

with higher uromodulin transcript levels in kidney (7, 15) and higher uromodulin levels in 

urine (7, 16) directly implicates a pathophysiologic role of uromodulin. Rare mutations in 

UMOD cause one of the most common monogenic kidney diseases, autosomal-dominant 

tubulo-interstitial kidney disease (17, 18).  

UMOD is hence a main driver of genetic kidney disease, and genetic studies of the kidney-

specific protein uromodulin may yield insights not only into kidney disease but also into the 

protein’s other diverse functions and associated diseases. Such studies can also reveal 

regulators and interaction partners that can help to understand potential consequences of 

therapeutic manipulation and may reveal new entry points to do so, with the final goal to 
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reach pharmacological intervention (19). Previous studies of uromodulin have almost 

exclusively focused on urine. The protein is, however, also released from the basolateral 

membrane of renal TAL and DCT cells and reaches the blood, where its concentration is about 

100-fold lower than in urine (8). In a previous study, urine and plasma uromodulin levels were 

moderately correlated (20), although they are both associated with the kidney function 

measure estimated glomerular filtration rate (eGFR). The mechanisms influencing circulating 

uromodulin, whether circulating and urine uromodulin share association patterns with 

complex diseases, and any factors related to the glycans carried by uromodulin are unknown. 

Quantification of circulating uromodulin on a population scale has recently become feasible 

(21-24). A small GWAS of serum uromodulin levels reported only an association with the 

known CKD-associated UMOD variants in cis (23).  

Here, we perform meta-analyses of GWAS of circulating uromodulin to obtain insights into 

factors that may be relevant to CKD pathophysiology and into any systemic functions of this 

kidney-specific protein. Using an antibody-based assay, we (i) identify an upstream variant at 

the UMOD locus with differential accessibility and transcription in human uromodulin-

synthesizing kidney cell types and compartments that is strongly associated with circulating 

and urine uromodulin, CKD and hypertension, (ii) place the PRKAG2 locus in the same 

pathway as UMOD with respect to its disease associations, and (iii) show that p.Cys466Arg in 

the uromodulin-glycosylating enzyme B4GALNT2 is a loss-of-function allele leading to higher 

serum uromodulin levels. Using an aptamer-based assay, we identify non-overlapping loci 

that point to enzymes writing glycan marks present on uromodulin and to their receptors in 

the circulation. Together, our study based on human genetic evidence provides new insights 

into circulating uromodulin and its emerging functions.  
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Results 

GWAS meta-analysis identifies 13 genetic loci associated with circulating uromodulin 

Characteristics of the 32,055 individuals from seven participating studies (ARIC, CHS, Fenland, 

GCKD, KORA, LURIC, ORIGIN), including distributions of age, sex, and the estimated 

glomerular filtration rate (eGFR), are shown Supplementary Table 1. There were 29,439 

participants of European ancestry (EA), 400 African Americans (AA), and 2,216 Hispanics (HIS). 

GWAS of age-, sex-, and eGFR-adjusted and inverse normal rank transformed circulating 

uromodulin measurements were carried out in each of the seven studies using densely 

imputed genotypes (25, 26) (Supplementary Table 2) and combined via meta-analysis 

(Methods).  

 Trans-ethnic meta-analysis of 10,735,251 genetic variants of minor allele frequency 

(MAF) >1% across five studies with antibody-based uromodulin quantification (CHS, GCKD, 

KORA, LURIC, ORIGIN; N=13,985) revealed three genomic loci with at least one significantly 

associated (p<5e-8) genetic variant (Figure 1A; Supplementary Table 3): UMOD/PDILT (index 

SNP rs77924615, p=6.4e-577), B4GALNT2 (rs7224888, p=1.8e-32), and PRKAG2 (rs55791829, 

p=2.9e-09). The genomic control parameter was 0.99, consistent with the absence of 

undetected population stratification (Supplementary Figure 1A). The estimated SNP-based 

heritability of uromodulin was 0.135 (95% confidence interval [CI] 0.010-0.259, Methods). 

Except for the UMOD locus, there was little heterogeneity of genetic effects in the five 

contributing studies (Supplementary Figure 2). The index variant rs77924615 at the locus 

with the strongest association, UMOD/PDILT, explained an estimated 18% of the serum 

uromodulin variance (Table 1, Methods).  

 The GWAS meta-analysis of 8,815,558 genetic variants across two studies with plasma 

aptamer uromodulin-readout (ARIC and Fenland; N=18,070) showed no evidence of inflation 
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(=0.99; Supplementary Figure 1B) and revealed 10 genome-wide significant loci (Figure 1B; 

Supplementary Table 3), with the statistically strongest association observed at rs34211178 

upstream of ST3GAL6 on chromosome 3 (p=6.9e-442). ST3GAL6 encodes for ST3 Beta-

Galactoside Alpha-2,3-Sialyltransferase (27), an enzyme with alpha-2,3-sialyltransferase 

activity toward Gal-beta1,4-GlcNAc structures that are present on the glycoprotein 

uromodulin (28). The largest effect size was observed for a low frequency variant in ASGR2, 

with each minor allele associated with one standard deviation higher age- and sex-adjusted 

plasma aptamer uromodulin-readout. The estimated SNP-based heritability was 0.177 (95% 

CI -0.032-0.386). For each of the two assays, regional association plots for all 13 loci that 

achieved genome-wide significance are shown in Supplementary Figure 3, and association 

statistics in Supplementary Table 3. 

The two meta-analyses of antibody- and aptamer-based uromodulin measurements 

identified different genetic loci. A cis-association between SNPs in the UMOD gene and levels 

of the encoded protein uromodulin were only observed with antibody quantification, 

supporting that this assay measures the amount of protein. Within each of the two meta-

analyses, the association results showed consistent effect sizes and directions in all 

contributing studies, and both assays had low coefficients of variation (Methods). Moreover, 

genes identified with both assays can be connected to uromodulin through different sources 

of external evidence (see below). This indicates that the antibody- and aptamer-based assays 

for circulating uromodulin deliver reproducible measurements, but assess different 

properties of their respective targets such as protein amount and glycosylation pattern, 

respectively.  

 

Secondary analyses, sex-specific effects, and association with urine uromodulin levels   
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Genome-wide discovery screens without adjustment for eGFR showed virtually identical 

results (Supplementary Figure 4A and B), indicating that kidney function did not confound 

genetic associations with uromodulin. A secondary analysis restricting to 11,369 EA 

participants with antibody-based measurements yielded very similar results as the primary 

trans-ethnic meta-analysis (Supplementary Table 3).  

 We next evaluated the presence of sex-specific genetic effects, motivated by the 

observation that women have higher serum uromodulin levels than men (22, 29, 30). Higher 

circulating uromodulin in women as compared to men was observed for both the antibody- 

(mean of the mean uromodulin 103.62 ng/ml in women vs. 92.76 ng/ml in men) and the 

aptamer-based assay (10329 vs. 9813 relative fluorescence units). Sex-specific analyses 

identified several genome-wide significant loci for both assays (Supplementary Figure 5), all 

of which were also identified in the primary combined analyses. The index SNPs at the 13 

significant loci did not show evidence for sex-specific differences (Supplementary Figure 6), 

nor did GWAS of the X-chromosome or a genome-wide test for differences of SNP effects on 

uromodulin between men and women yield significant findings (Supplementary Table 4). 

Given that a previous GWAS meta-analysis of urine uromodulin reported significant 

associations at the UMOD locus (16), we queried the association between the 13 index SNPs 

identified in this study and urine uromodulin levels among 29,262 EA individuals (Methods). 

Except for rs77924615 at UMOD/PDILT (p=5.3e-97), which explained 1.4% of the urine 

uromodulin variance, none of the other SNPs showed significant (p<3.8e-03 = 0.05/13) 

associations (Supplementary Table 5).  

 

Prioritization of causal variants in uromodulin-associated loci 
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Statistical fine-mapping was carried out to identify the most likely causal variants in 

uromodulin-associated loci (Methods). Conditional analyses supported the presence of more 

than one independent signal at UMOD/PDILT (n=2), B4GALNT2 (n=3), ST3GAL6 (n=4) and 

ASGR1/ASGR2 (n=2; Supplementary Table 6). For each of 20 independent, uromodulin-

associated signals within the 13 identified loci, we calculated a SNP set that contains the 

variant driving the respective association signal with 99% posterior probability. There were 

12 sets with <20 variants, five of which had <5 variants (Supplementary Table 6). 

Credible set variant annotation showed several noteworthy findings (Supplementary 

Table 7). The antibody-based association on chromosome 16 could be mapped to a single 

intronic variant, rs77924615, in PDILT, the gene upstream of UMOD. Another independent 

set of 10 variants in the locus mapped to UMOD (Figure 2), with the lead SNP rs4293393 

experimentally shown to affect UMOD transcription (15). To study whether rs77924615 may 

be an upstream variant regulating UMOD transcription, we generated functional genomic 

annotation data of chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) from 

cortex and medulla of native human kidney tissue (Methods) that showed transcription of 

UMOD, more strongly in medulla than in cortex, but not of PDILT. Both independent variants, 

rs77924615 in PDILT and rs4293393 in the UMOD promoter, mapped into regions of open 

chromatin in medulla, where UMOD transcript levels in human kidney are highest (GTEx 

Project V8) (31). These regions aligned with open chromatin in LOH and DCT kidney cells from 

single-nucleus ATAC-seq data (Methods), that were not observed in several other kidney and 

immune cell types (Figure 2). Both variants mapped into the same topological associated 

domain, with predicted contacts based on chromatin conformation capture (Hi-C, Methods). 

Thus, the identified SNPs likely are regulatory variants in kidney cell types producing 

uromodulin. 
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The lead SNP at the B4GALNT2 locus, rs7224888, was identified with the antibody assay 

and is a missense variant. Its minor C allele encodes a cysteine-to-arginine substitution 

(p.Cys466Arg; NP_703147.2) in the encoded enzyme beta-1,4-N-acetyl-

galactosaminyltransferase 2. The C allele was associated with higher circulating uromodulin 

in our study, and has been linked to the absence of the Sda antigen (32), a blood group antigen 

synthesized by B4GALNT2 that is present on uromodulin (33). The B4GALNT2 locus also 

contained an independent small credible set of three variants. The most likely causal 

rs72835417 maps into a splice region; its minor allele was associated with higher uromodulin 

in our study, and with lower B4GALNT2 expression (p=1.8e-7) in micro-dissected kidney 

tubules (34), further supporting that reduced B4GALNT2 function relates to higher circulating 

uromodulin. 

At SIGLEC9, the major G allele at the most likely causal variant rs2075803 leads to a lysine-

to-glutamine substitution in SIGLEC9 (p.Lys100Glu; NP_001185487.1). It was associated with 

lower aptamer signal in our study (p=3.8e-100), and with lower circulating SIGLEC9 protein 

(p=6e-2142) (35) and serum C-reactive protein (p=5e-10) (36) in previous studies. The 

encoded sialic acid-binding Ig-like lectin-9 is an inhibitory receptor mainly present on 

neutrophils and monocytes. It has been experimentally shown to interact with urinary 

uromodulin (37), indicating that genetically encoded variation in SIGLEC9 levels relates to 

differences in the aptamer readout of circulating uromodulin. 

 

Uromodulin-associated loci are associated with distinct sets of biomarkers and diseases 

Genetic studies have linked variation in UMOD to monogenic autosomal-dominant 

tubulointerstitial kidney disease (17, 38), to complex kidney function traits and CKD (4), blood 

pressure and hypertension (11, 12), uric acid levels and gout (13) as well as to kidney stone 
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disease (14). In order to investigate whether any of the 13 significant loci share phenotype 

association patterns, and to detect additional disease associations that may be mediated by 

altered uromodulin levels or properties, we performed colocalization with (i) levels of 30 

biomarkers and (ii) 1,404 complex traits and diseases based on data from the UK Biobank 

study, as well as (iii) additional traits previously linked to common UMOD variants – namely 

eGFR, CKD, systolic (SBP), diastolic blood pressure (DBP) and uromodulin levels in urine 

(Methods). Interestingly, genetic associations with antibody-based circulating uromodulin at 

the PRKAG2 and UMOD/PDILT loci shared a very similar pattern of colocalization with 

numerous kidney-related traits (creatinine, cystatin C, urea, eGFR, CKD, urinary calculus, DBP, 

SBP, hypertension; Supplementary Table 8, Figure 3). The directions of association of 

colocalizing traits were consistent with biological knowledge based on studies of uromodulin 

levels in urine, for example higher serum uromodulin and higher risk of CKD (Figure 3). These 

observations are consistent with a common biological context of the PRKAG2 and 

UMOD/PDILT loci in the pathophysiology of CKD, hypertension, and kidney stone disease, and 

with the earlier identification of the PRKAG2 locus in GWAS of CKD (39). Conditional co-

localization of two independent SNP sets at the UMOD locus further supported a shared 

genetic cause between the levels of circulating and urine uromodulin levels (Figure 3, 

Supplementary Table 9). 

 There were several other examples of positive colocalizations supported by biological 

knowledge: first, genetic associations at the B4GALNT2 locus with antibody-based circulating 

uromodulin colocalized with the odds of multiple gestation. This is consistent with a role of 

the B4GALNT2-mediated Sda antigen in embryo implantation in mice (40) (Figure 3). Second, 

SNPs at SIGLEC9 associated with plasma aptamer uromodulin-readout colocalized with levels 

of alkaline phosphatase in blood, which is in line with altered bone turnover described in 
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recent knockout mouse model of the homologous gene (41). These observations suggest that 

the aptamer-based assay is particularly well suited to generate insights into the generation of 

glycosylation residues that are present on uromodulin, and how such glycosylation residues 

are recognized in the circulation. Tests of pairwise interactions of the 13 index SNPs, which 

could point towards non-additive effects when the same pathway is affected, showed a 

significant interaction between genotype at the lead SNPs in ST3GAL6 and SIGLEC9 on plasma 

aptamer uromodulin-readout (interaction p-value=3e-07; Methods). These two genes are 

indeed functionally related, as ST3GAL6 is involved in the synthesis of sialic acid moiety that 

is bound by SIGLEC9. 

Additionally, we tested the aggregate effect of rare (MAF <0.1%), potentially 

deleterious variants in the genes prioritized at each of the 13 uromodulin-associated genetic 

loci on 770 complex diseases (Methods). Using data from whole exome sequencing of 173,688 

UK Biobank participants, significant associations (p<4.9e-06) were identified between carrier 

status of rare UMOD variants and anemia of chronic disease (OR=2.8, p=6.1e-09), 

hypertensive CKD (OR=2.6, p=1.8e-06), and CKD (OR=1.89, p=2.0e-09; Supplementary Table 

10).  

 

Prioritization of causal genes in uromodulin-associated loci 

Colocalization analyses of the uromodulin association signals at all 13 significant loci were 

also performed with the expression of genes in cis based on transcriptome-wide RNA-

sequencing of 36 non-brain tissues (GTEx Project V8) (31), tubulo-interstitial and glomerular 

kidney tissue portions (42), as well as with circulating plasma proteins (35) in order to 

prioritize the most likely causal genes (Methods). Plasma proteomics captures information 

about the abundance, structure, and context of circulating proteins and, when integrated 
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with genomics, can reveal new insights into proteins that mediate genetic associations with 

complex traits and diseases (35, 43, 44). At least one positive colocalization with gene 

expression or plasma proteins was observed for most loci (Supplementary Table 11, 

Supplementary Figure 7). For example, the association of genetic variants on chromosome 

19 with uromodulin colocalized with their association with SIGLEC9 protein, further 

supporting that genetic variation in SIGLEC9 relates to changes in the aptamer readout of 

circulating uromodulin. We confirmed that the aptamer readouts of plasma uromodulin and 

SIGLEC9 were correlated in the ARIC study (Spearman coefficient 0.53, p<2.2e-16).  

Integration of colocalization evidence with additional sources of annotation (Methods) 

implicated PRKAG2, B4GALNT2, and UMOD/PDILT as the genes most likely causing the 

association with antibody-based uromodulin, and CFH, MGAT5, ST3GAL6, HLA-DRB1, 

B4GALT1, ABO, DPP7/MAN1B1, ST3GAL4, ASGR1/ASGR2, and SIGLEC9 for the aptamer-based 

readout (Supplementary Table 12).  

Antibody- and aptamer-based measurement of circulating uromodulin differ in their 

approach (Figure 4A). Whereas the antibody-based methods quantify abundance of the 

circulating protein as evidenced by the cis-association at UMOD/PDILT, the aptamer-based 

assay may rather identify differences related to glycan marks known to be present on 

uromodulin and their receptors, for example because such modifications may lead to 

differential aptamer binding. In order to detect any shared functions, processes and pathways 

among the respective genes identified by each assay, enrichment analyses were performed 

(Methods). Terms and pathways related to protein glycosylation were highly enriched for 

genes identified via aptamer plasma uromodulin readout (Figure 4B), with the genes that 

drove the enrichment encoding for enzymes and receptors involved in the biosynthesis and 

recognition of glycans, respectively (Figure 4C, Supplementary Table 13).  
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B4GALNT p.Cys466Arg causes reduced enzyme function and processing 

To study the possible biological effect of rs7224888, we first generated a homology-based 

model of B4GALNT2. The arginine insertion at p.Cys466Arg was predicted to reduce protein 

structural stability by three different programs (Pymol, Site Direct Mutation, Missense3D), 

likely as a consequence of the higher steric hindrance of arginine (Figure 5A and data not 

shown). To validate the in silico findings, we transfected Madin-Darby Canine Kidney (MDCK) 

cells with expression vectors for the two B4GALNT2 allelic variants. Two isoforms were 

reported for B4GALNT2, long and short (45). For this project, we employed an already 

described expression vector for B4GALNT2 short isoform, where cysteine 466 corresponds to 

residue 406. A previous study (32) suggested that the p.Cys466Arg variant affects a region 

that glycosyltransferases typically use to interact with their substrate, impairing B4GALNT2 

activity. Thus, we tested the activity of the enzyme isoforms (wildtype [wt] and Arg406) by 

taking advantage of the well-established interaction between the Dolichos biflorus agglutinin 

(DBA) and the Sda antigen (46). By using a rhodamine labelled version of DBA we observed a 

clear signal, mostly localized on the plasma membrane, in MDCK cells expressing wt 

B4GALNT2, while virtually no signal could be detected for Arg406 expressing cells (Figure 5B), 

confirming absent activity. Double staining of wt B4GALNT2 and DBA confirmed the specific 

presence of Sda antigen only in cells expressing the enzyme (Figure 5C). 

Western blot analysis on cells lysates showed that Arg406 B4GALNT2 had a slightly 

reduced molecular weight compared with wt protein. Such difference is related to different 

glycosylation, due to retention of Arg406 B4GALNT2 in the endoplasmic reticulum (ER). 

Indeed, the lower band observed for the Arg406 isoform was fully sensitive to treatment with 

Endo H, a deglycosylating enzyme that is specific for high-mannose, ER-type N-glycans, while 
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only a minor fraction of wt B4GALNT2 was cleaved by Endo H (Figure 6A). To substantiate this 

finding, we analyzed the intracellular localization of B4GALNT2 by immunofluorescence. 

While the wt isoform showed the expected predominant localization in the Golgi 

compartment, the Arg406 isoform fully colocalized with the ER marker KDEL, confirming its 

ER retention (Figure 6B, C). These results demonstrate that the B4GALNT2 variant 

p.Cys466Arg is functional and leads to loss of B4GALNT2 function and ER retention, likely due 

to protein misfolding.  

Previous in vitro studies demonstrated that a N-acetyl-β-D-galactosaminyltransferase 

activity present in microsomal preparations of guinea-pig kidney transfers N-[14C]-

acetylgalactosamine to N-linked glycans of UMOD for the synthesis of Sda antigen (47). To 

assess whether B4GALNT2 directly acts on uromodulin under physiological conditions, we 

first verified their co-expression in kidney cells using real-time RT-qPCR on RNA extracted 

from micro-dissected mouse nephron segments and immunofluorescence on mouse and 

human kidney tissue (Methods). Real-time RT-qPCR demonstrated the presence of B4GALNT2 

transcript in TAL and DCT segments where uromodulin is expressed (Figure 7A). These data 

were confirmed by immunofluorescence analysis that showed a strong B4GALNT2 signal in 

collecting ducts (AQP2+), and a low but consistent signal in UMOD-positive cells (Figure 7B). 

B4GALNT2 expression in UMOD-positive cells was also confirmed in human kidney tissue 

(Figure 7C). To demonstrate the activity of B4GALNT2 on uromodulin glycosylation, we 

generated MDCK clones stably expressing uromodulin +/- B4GALNT2. Western blot analysis 

showed that uromodulin has a slightly increased molecular weight in lysates of B4GALNT2-

positive cells that is due to different protein glycosylation, as demonstrated by removal of N-

glycans through PNGase F treatment (Figure 7D). 
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Finally, we excluded that the association of B4GALNT2 loss-of-function with higher 

circulating uromodulin can be ascribed to altered immunoreactivity due to absence of the Sda 

antigen based on two observations: first, the quantitative, additive effect of UMOD variants 

on serum uromodulin was clearly detected regardless of the B4GALNT2 genotype (Figure 8A). 

Second, the immunoreactivity of both ELISA antibodies did not differ from a reference 

antibody in detecting increasing amounts of uromodulin produced by cells expressing or not 

expressing B4GALNT2, hence carrying or not the Sda antigen glycan moiety (Figure 8B). 

 

Discussion  

This GWAS meta-analysis of circulating uromodulin using complementary antibody-based 

(N=13,985) and aptamer-based (N=18,070) assays has four principal findings: first, it identifies 

an upstream variant at the UMOD/PDILT locus for which integration with functional genomics 

data from primary human kidney tissue supports differential chromatin accessibility and 

transcription in cells synthesizing uromodulin as underlying its strong association with 

circulating and urine uromodulin, as well as CKD and hypertension. Second, shared 

association patterns of uromodulin-associated genes with complex traits and diseases are 

plentiful and place the PRKAG2 and UMOD loci into the same context with respect to their 

associations with CKD, hypertension, and kidney stone disease. Third, the missense variant 

p.Cys466Arg in the uromodulin-glycosylating enzyme B4GALNT2 is a loss-of-function allele 

leading to higher levels of circulating uromodulin. Fourth, our study reveals enzymes that 

write glycan marks found on uromodulin and their receptors that may be related to 

uromodulin’s complex glycosylation pattern, function and clearance.  

 Previous GWAS of circulating uromodulin quantified with antibody assays only 

identified the UMOD locus (16, 23). At the UMOD locus, findings were consistent with those 
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from urine (16) and a previous small GWAS of serum uromodulin (23), e.g., the major allele 

at the index SNP was associated with higher uromodulin levels. The generation of functional 

genomic data from kidney tissue now allowed for new insights at this locus, by providing a 

plausible mechanism by which an intronic variant rs77924615 in the upstream gene PDILT is 

associated with uromodulin levels (16), despite the absence of PDILT transcription in kidney. 

Evidence for accessible chromatin at the SNP’s position solely in target kidney cell types for 

uromodulin synthesis, TAL and DCT cells, and mapping of rs77924615 and the functional 

UMOD promoter index SNP rs4293393 within the same topological associated domain, are 

indicative of a regulatory effect of this upstream variant on uromodulin transcription. This 

mechanism is also likely to underlie the reported associations of rs77924615 with urine 

uromodulin levels, kidney function and CKD (7).  

There are several potential explanations why a previous meta-analysis of urine 

uromodulin levels did not detect any of the other loci identified here despite a similar sample 

size (16). First, uromodulin occurs as a polymer in urine but is present as a monomer in blood. 

In addition, the 100-fold higher levels in urine as well as the high biological variability of urine 

concentration and composition may preclude the detection of slight variations that can be 

observed in plasma. Our study supports a shared genetic basis for urine and circulating 

uromodulin levels, but the index variant rs77924615 explained more than 10 times as much 

of the uromodulin variance in the circulation compared to the urine. Thus, circulating 

uromodulin may be a more attractive biomarker to estimate uromodulin production in the 

kidney. Second, it is conceivable that receptors recognizing glycan marks present on 

uromodulin, potentially affecting its stability or clearance, differ between urine and the 

circulation. Third, previous urine studies did not use aptamer-based assays. Our results 

suggest that the aptamer detects genetic loci related to the writing of glycans that are present 



 19

on many secreted glycoproteins, including uromodulin, and their recognition in the 

circulation, rather than representing the abundance of the intact protein in blood. Future 

validation of the uromodulin aptamer, and investigations how the amount of uromodulin 

protein relates to its glycosylation patterns, are of interest. Regardless, the aptamer readout 

carries complementary information by delivering insights into the glycan component of this 

important glycoprotein. Despite the distinct set of loci detected with the two assays, there 

are also connections: the ABO encoded glycosyltransferase acts on precursor chains that are 

also substrates of the enzymes encoded by ST3GAL4 and ST3GAL6 to synthesize type 2 

monosialyl-galactosylgloboside that is used for the synthesis of sialyl Lewis X antigen, and by 

B4GALNT2 for the synthesis of the Sda antigen (48, 49).  

Concerning B4GALNT2, our functional studies demonstrate that the p.Cys466Arg 

variant leads to retention of the Arg466 isoform in the ER and its absence in the Golgi 

compartment. This is likely due to protein misfolding, as suggested by prediction analysis of 

the effect of the missense change on B4GALNT2 structural stability. The consequence, loss of 

protein function, is demonstrated by virtual absence of DBA-positivity. These data are 

consistent with and provide a mechanistic explanation for previous results showing that the 

Arg466 variant is statistically correlated with absence of the Sda antigen (32).  

The role of B4GALNT2 in uromodulin glycosylation is supported by the proteins’ 

demonstrated co-expression in TAL and DCT segments in mouse and human kidney. 

Moreover, we show that expression of B4GALNT2 in cells expressing uromodulin leads to 

addition of a glycan moiety, presumably the Sda antigen. The functional role of the Sda 

antigen on uromodulin is not known. Through the addition of β1,4-linked GalNAc it may 

hinder binding of bacterial adhesins and, hence, have a role in pathogen resistance. There are 

several potential explanations for how B4GALNT2 loss-of-function, i.e. absence of the Sda 
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antigen, may lead to higher serum levels of uromodulin as quantified by antibody. Neither 

our experimental nor our population study data provides evidence for an altered 

immunoreactivity due to absence of the Sda antigen, making this an unlikely option. It is 

conceivable that the presence of the Sda antigen is associated with lower stability of 

circulating uromodulin, as observed for von Willebrand factor (vWF) through a mechanism 

that depends on ASPGR activity (50). Alternatively, the absence of the Sda antigen may 

influence uromodulin polarized trafficking, partly redirecting the protein towards the 

basolateral membrane and from there to the circulation.  

Common variants at the PRKAG2 locus showed a striking similarity to those at UMOD 

with respect to shared disease association patterns. Considering that we tested for 

colocalization with hundreds of human traits and diseases, these mirroring patterns are 

extremely unlikely to result from chance. Our results imply that genetic variants at PRKAG2 

are associated with higher risk for CKD and hypertension, as well as lower risk for kidney stone 

disease, through the same biological context as UMOD. PRKAG2 encodes for the regulatory 

gamma subunit of the AMP-activated protein kinase (AMPK), an enzyme with a key role in 

regulating multiple processes related to cellular energy metabolism. AMPK has been 

described to phosphorylate the kidney-specific Na+-K+-2Cl- cotransporter (51), the molecular 

link between CKD-associated UMOD variants and hypertension (15). However, although this 

connection is biologically plausible, we cannot exclude that GALNT11, GALNT5 or other genes 

or elements in the PRKAG2 locus represent the causal link. 

 The loci identified through aptamer-readout point towards the importance of 

uromodulin glycosylation in general and sialylation in particular. SIGLEC9 receptor binding to 

uromodulin depends on the presence of terminal sialic acid on uromodulin N-glycans (37). 

ASGPR, mainly expressed in liver hepatocytes and to lower extent in several cell types 
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including monocytes (52), mediates binding, endocytosis and degradation of glycoproteins 

with decreased sialylation and exposed terminal galactose or N-acetylgalactosamine (GalNAc) 

residues (52-55). An observed four-fold increase of circulating uromodulin in mice upon 

ablation of Asgr2 and the mannose receptor (56) as well as the association between a rare 

ASGR2 variant and the aptamer uromodulin-readout in our study raise the possibility that 

circulating uromodulin may be another glycoprotein recognized by the ASGPR. The function 

of SIGLEC9 and ASGPR intersects with that of the ST3Gal family of sialyltransferases, which 

add sialic acid in alpha2,3 linkage to terminal galactose, thereby generating potential SIGLEC9 

ligands, while masking ASPGR ligands (53, 57-59). Overall, these data point at a clear 

functional relationship between SIGLEC9 and ASGPR, potentially involved in uromodulin-

mediated immunomodulatory signaling and clearance, and ST3GAL4 and 6, modulating such 

activities through sialylation of glycan moieties. 

Our study also provides insights of potential clinical relevance. It indicates that a 

common genetic basis of urine uromodulin levels with higher risk of CKD and hypertension 

extends to circulating uromodulin levels, and identifies kidney cell-type specific regulation of 

uromodulin expression as a mechanism. Interventions aimed at reducing uromodulin 

synthesis can therefore be expected to have concomitant effects on both urine and serum 

levels of the protein, which may be of importance given its emerging systemic relevance. The 

association of genetic variants at PRKAG2 with higher risk for CKD and hypertension as well 

as lower risk for kidney stone disease suggests a biological link between PRKAG2 and UMOD 

and suggest that PRKAG2 represents another target to modulate uromodulin-mediated risk 

of CKD. Finally, therapeutic targeting of (a)sialoprotein receptors may impact on circulating 

uromodulin, possibly modulating cross-talk between the kidney and the innate and adaptive 

immune system.  
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In conclusion, our study provides human genetic evidence of new pathway members 

of uromodulin and delivers novel insights into its determinants and systemic role in the 

circulation. 
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Methods 

Study design and participants  

Seven prospective studies participated in the genome-wide analyses of serum/plasma 

uromodulin levels (Supplementary Table 1): the Cardiovascular Health Study (CHS) (60), 

German Chronic Kidney Disease (GCKD) study (61), the Cooperative Health Research in the 

Region Augsburg (KORA) study (62), the LUdwigshafen RIsk and Cardiovascular Health (LURIC) 

study (63), the Outcome Reduction with an Initial Glargine Intervention (ORIGIN) trial (64), 

the Atherosclerosis Risk in Communities (ARIC) (65) study and the Fenland study (66). Each 

study contributed data from EA participants. Data from AA and HIS participants were 

contributed by the CHS study (AA) and the ORIGIN trial (AA, HIS). The ARIC, CHS, Fenland and 

KORA studies have a population-based design, the GCKD study recruited patients with chronic 

kidney disease, the LURIC study recruited patients with cardiovascular disease, and the 

ORIGIN trial patients with impaired glucose tolerance or early type 2 diabetes. Demographic 

information including age and sex was collected using standardized procedures. The 

estimated glomerular filtration rate (eGFR) was calculated from IDMS-traceable serum 

creatinine measurements using the four-variable CKDEpi equation (7). 

 

Genotyping and imputation 

Details about genotyping and imputation in each of the six studies are provided in 

Supplementary Table 2. In brief, all samples were genotyped for genome-wide single 

nucleotide polymorphisms (SNPs) using Illumina or Affymetrix arrays and called using 

commercial software. Variant-level quality control and cleaning included removal for low call 

rate and deviation from Hardy-Weinberg equilibrium. Genotype imputation was then 

performed using phasing and imputation software, based on the Trans-Omics for Precision 
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Medicine (TOPMED) haplotypes version r2 (ARIC) or the Haplotype Reference Consortium 

(HRC) haplotypes version r1.1 (all other studies) reference panels.  

 

Uromodulin quantification 

The CHS, GCKD, KORA, and LURIC studies quantified uromodulin from serum using a 

commercial ELISA (23, 30, 67, 68) (Euroimmun, Medizinische Labordiagnostika AG). The assay 

is based on a colorimetric sandwich immunoassay, in which the capture antibody was a mouse 

monoclonal antibody against human uromodulin, and the detection antibody was a 

biotinylated mouse monoclonal antibody against human uromodulin. The intra-assay 

precision of the assay at 30–214 ng/mL was 1.8–3.2%, and the inter-assay precision at 35–

228 ng/mL 6.6% to 7.8% (21). The ORIGIN study measured serum uromodulin using an 

immunoassay that is part of the Human DiscoveryMAP panel (Myriad RBM Inc.) with a 

biotinylated polyclonal detection antibody against human uromodulin (69). In the ARIC and 

Fenland study, uromodulin was quantified as part of plasma proteome profiling using the 

SOMAscan assay (Seq-ID 9451-20), a multiplexed modified DNA-based aptamer technology 

by SomaLogic as described previously (43). The aptamer was raised against amino acids 24-

611 of human uromodulin (NP_001008390.1). Its signal-to-noise ratio was 114, and its intra- 

and inter-assay coefficients of variation were 3.2% and 3.6%, respectively. 

 

GWAS of serum uromodulin levels and meta-analyses 

Each study performed four sets of GWAS according to a pre-specified analysis plan: a primary 

analysis, in which inverse normal rank transformed age-, sex-, and eGFR-adjusted residuals of 

uromodulin levels were used as the dependent variable and regressed on genotypes as the 

predictor, controlling for principal components. In addition, three secondary analyses were 
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carried out: the primary analysis was repeated separately for men and women (without 

adjustment for sex and only when at least 50 participants were available), and a sex-combined 

analysis was performed in which the residuals were not adjusted for eGFR. Studies with 

participants of different ancestries performed separate GWAS for each ancestry group. Sex-

stratified GWAS of chromosome X markers, assuming X inactivation and an additive model, 

were only available from the CHS and GCKD studies. Genome-wide summary statistics were 

collected in a prespecified format and uploaded to a central server for meta-analysis. 

Prior to meta-analysis, GWAS summary statistics from individual studies were 

subjected to thorough quality control using GWAtoolbox (70). The variant identifiers in each 

GWAS file were harmonized to the format chromosome:position:ref:alt, where ref and alt are 

the REF and ALT alleles in the HRC r1.1 reference site file. Genome-wide summary statistics 

were combined for studies with antibody-based uromodulin quantification using inverse-

variance weighted meta-analysis of effect estimates. Previous meta-analyses of uromodulin 

levels in urine quantified from ELISA and the RBM immunoassay showed little heterogeneity 

and comparable results when using inverse variance weighted and sample size weighted 

meta-analysis (16). The primary meta-analysis was a trans-ethnic analysis, combining data 

from EA, AA, and HIS participants, and performed using metal (71). Sex-specific summary 

statistics of chromosome X were combined via meta-analysis. Genomic control was applied 

to individual GWAS files when the inflation parameter was >1. Genome-wide significance was 

defined as p<5e-08.  EA-specific meta-analyses were also performed, as EA participants were 

the largest subsample. SNP-based heritability was estimated using LDSC v1.0.1 with the 

option --h2. Pre-computed LD scores from 1000 Genomes European data were used as 

reference. Input files for LDSC were GWAS summary statistics from the primary association 

analyses filtered for MAF >0.01 (antibody-based assay) or MAF >0.005 (aptamer-based assay). 
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Downstream characterization of GWAS meta-analysis results 

Several complementary approaches to characterize genetic loci identified through genome-

wide screens of circulating uromodulin were employed, with detailed Methods described in 

the Supplementary Material.  These include (i) associations with urine uromodulin levels, (ii) 

annotation, enrichment analyses and functional genomics, (iii) independent SNP selection, 

statistical fine mapping and credible set annotation, (iv) colocalization with gene expression, 

plasma protein levels, biomarkers and diseases, (v) PheWAS of serum uromodulin levels, as 

well as (vi) gene-by-gene interaction analyses. 

 

3D modelling of B4GALNT2 and prediction of the effect of p.Cys466Arg 

The sequence of B4GALNT2 isoform 2 (Uniprot Q8NHY0-2) was analyzed in PFAM 

(http://pfam.xfam.org) to map functional domains. The region 254-464 containing the 

glycosyltransferase domain was analyzed in iTasser (72) to generate a homology-based 3D 

model. The effect of the p.Cys466Arg substitution was analyzed in Pymol (version 2.3.4) 

(Schrödinger) with the Mutagenesis Wizard function, in Site Direct Mutator (73) and in 

Missense3D (74). 

 

Experimental studies of B4GALNT2 

Detailed information regarding functional studies of B4GALNT2 (constructs, cell lines and 

culture conditions, protein extracts and Western blot analysis, RNA isolation and quantitative 

RT-PCR, immunofluorescence analysis, antibodies) are reported in Methods section in the 

Supplementary Material. Protein and RNA extracts, Western blot, quantitative RT-PCR and 

immunofluorescence analyses were carried out as previously described (9, 75). 
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Study approval 

All participants of CHS, GCKD, KORA, LURIC, ORIGIN, ARIC and Fenland studies provided 

written informed consent, and the studies were approved by their local ethics committees as 

outlined in their respective design publications (60-66). The use of human kidney biopsies in 

experimental studies of B4GALNT2 has been approved by the UCLouvain Ethical Review 

Board. Human kidney tissues used in functional genomics were collected in deidentified 

fashion through Northwest Biotrust at the University of Washington Medical Center (Seattle, 

WA) with local IRB approval (Study 1297). 

All mouse experiments were performed in accordance with the ethical guidelines at 

University of Zurich (Zurich, Switzerland) and the legislation of animal care and 

experimentation of Canton Zurich (Kanton Zürich Gesundheitsdirektion Veterinäramt; 

protocol ZH049/17).    
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Figures 
 
Figure 1: Manhattan plot of GWAS of antibody-based and aptamer-based circulating 
uromodulin. The plots represent, for each SNP, the p-value from meta-analyses of GWAS of 
antibody-based (N=13,985, dark blue; panel A and of aptamer-based circulating uromodulin 
(N=18,070, light blue, panel B. The x-axis shows chromosomal location and the y-axis the -
log10(p-value) of SNP associations with circulating uromodulin. The plots were generated 
using the R package EasyStrata v8.6. Meta-analyses of X-chromosomal markers did not yield 
any significant findings. 
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Figure 2: Functional genomic annotation of significantly associated independent variants at 
the UMOD/PDILT locus using gene expression and chromatin accessibility data from 
primary human kidney. The upper part shows the regional association plot of the 
UMOD/PDILT locus, using the two independent variants as reference SNPs. For non-reference 
SNPs, the extent of LD with the reference SNP with higher correlation is shown by color 
gradients. Genetic positions (x-axis) represent GRCh38 coordinates. Open chromatin peaks in 
different kidney cell type tracks based on single nuclear (sn)ATAC-seq are shown underneath 
the regional association plot. Gene expression and open chromatin tracks of cortex (light blue 
tracks) and medulla (dark green tracks) based on bulk RNA-seq and ATAC-seq are shown in 
the lower part as density peaks. SNPs in the two independent credible sets are marked by 
ticks (purple) and the 10 kb windows encompassing them indicated by the black horizontal 
bars. Hi-C data generated from kidney cortex was analyzed for contacts (orange arcs) between 
the 10kb windows encompassing the indicated SNPs with contacts closest to the causal SNPs 
arbitrarily shown in bold. Intervals for DomainCaller computed topology associated domains 
(TADs) are shown as black bars below contact arcs. A heatmap of all Hi-C contacts 
encompassing this region is shown at the bottom (purple). Podo: podocyte, PT: proximal 
tubule, LOH: loop of Henle, DCT: distal convoluted tubule, CDPC: collecting duct principal cells, 
CDIC: collecting duct intercalated cells. 
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Figure 3: Summary of findings from colocalization of uromodulin signals with associations 
from GWAS of biomarkers and diseases. The colocalization analyses findings are shown in 
two categories, biomarkers and diseases. The x-axis indicates the index SNPs with the likely 
causal genes. The y-axis shows the traits for biomarkers and diseases, and only top level UKB 
PheCodes are shown. Within each category, horizontal lines separate different data sources 
(Methods). Included traits had at least one positive colocalization signal (H4>0.8, Methods). 
Dots are black when H4>0.8 and grey otherwise, and scaled in size to reflect the different 
ranges of H4. The trait-to-uromodulin effect size ratios are shown as gradient background for 
positive colocalization signals, with red indicating positive and blue negative changes per unit 
higher uromodulin levels. The colocalization with urine uromodulin (uUMOD) was based on 
conditional association statistics (Methods). H4: hypothesis that one shared SNP underlies 
the association with two traits; PP: posterior probability.  
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Figure 4: Biological context of genes associated with circulating uromodulin and conceptual 
model. A, Schematic of antibody- and aptamer-based measurement of circulating 
uromodulin. B, Dot plot shows Gene Ontology (GO) terms - grouped into three categories (BP: 
biological process, MF: molecular function, CC: cellular component) - and KEGG pathways 
enriched for uromodulin-associated genes from the aptamer assay on the y-axis. X-axis shows 
the proportion of the genes in the corresponding GO term or KEGG pathway. Only terms and 
pathways with more than two uromodulin associated-genes are displayed. The color intensity 
of the dots’ scales with the -log10(Benjamini Hochberg-adjusted p-value). C, Conceptual model 
placing the most likely causal genes associated with circulating uromodulin into their 
biological context. Loci detected with the aptamer assay predominantly affect differential 
synthesis or recognition of glycan marks present on uromodulin. 
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Figure 5: B4GALNT2 p.Cys466Arg is a functional allele. A, Homology-based model of the 
tridimensional structure of B4GALNT2 enzyme. The partial sequence of B4GALNT2 isoform 2 
(Uniprot Q8NHY0-2) containing the glycosyltransferase domain (residues 254-464) was 
analyzed with iTasser. The top scoring model is shown. The position of cysteine 406 
(corresponding to position 466 in B4GALNT2 isoform 1, Uniprot Q8NHY0-1) in the reference 
sequence is shown. The effect of the p.Cys406Arg substitution was analyzed in Pymol with 
the Mutagenesis Wizard function. For each isoform, the most likely stereoisomer is shown. 
Visible red disks indicate significant contacts and bumps. The arginine substitution at position 
406 is predicted to increase steric clashes, destabilizing protein structure. B, Representative 
immunofluorescence analysis showing DBA signal (red) on the plasma membrane of 
unpermeabilized MDCK cells, transiently transfected with wt or p.Cys406Arg human 
B4GALNT2 (N=3). C, Representative immunofluorescence analysis showing wt B4GALNT2 
(green) and DBA (red) in stably transfected MDCK cells. DBA signal is mostly evident in 
B4GALNT2-expressing cells (N=3). 
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Figure 6: B4GALNT2 p.Cys466Arg is retained in the ER. A, Representative western blot 
analysis showing B4GALNT2 wt or p.Cys406Arg in stably transfected MDCK cells lysates, 
untreated or after deglycosylation with Endo H or PNGase F (N=3). B,C, Representative 
immunofluorescence analysis showing intracellular signal of wt (B) or p.Cys406Arg (C) 
B4GALNT2 (red) and GM130 (Golgi marker, green) or KDEL (ER marker, green) and merged 
pictures (N=3). 
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Figure 7: B4GALNT2 and uromodulin expression analysis. A, RT-qPCR analysis of B4galnt2 
expression in isolated mouse nephron segments. Glom, glomerulus; PCT, proximal convoluted 
tubule; PST, proximal straight tubule; TAL, thick ascending limb; DCT, distal convoluted 
tubule; CD, collecting duct. Bars indicate mean ± SEM. n ≥ 3 fractions. B, Upper panels: 
Immunofluorescence analysis showing UMOD (green) and B4GALNT2 (red) on paraffin-
embedded kidney sections from wild-type mouse (N=2). Right panels show high magnification 
pictures of UMOD-positive and UMOD-negative tubules. Nuclei are counterstained with DAPI. 
Lower panels: Immunofluorescence analysis showing AQP2 (green) and B4GALNT2 (red) on 
mouse kidney, showing a strong signal in the intercalated cells of collecting ducts. Right panels 
show high magnification pictures of AQP2- and B4GALNT2-positive tubules. Nuclei are 
counterstained with DAPI. C, Immunofluorescence analysis showing UMOD (green) and 
B4GALNT2 (red) on paraffin-embedded kidney sections from a normal human kidney. Right 
panels show high magnification pictures of UMOD-positive and UMOD-negative tubules. 
Nuclei are counterstained with DAPI. D, Western blot analysis showing uromodulin (UMOD) 
and B4GALNT2 in lysates of MDCK cell clones expressing UMOD with or without B4GALNT2 
(see Methods), untreated or after deglycosylation with PNGase F. Actin is shown as a 
normalizer. 
  

  

BA

CD DCT TAL PST PCT Glom

0.0

0.5

1.0

1.5

2.0

B
4g

al
nt
2 

m
R

N
A

 e
xp

re
ss

io
n

(n
or

m
al

iz
e

d 
on

G
ap

dh
)

D

PNGaseF

UMOD B4GALNT2 DAPIUMOD B4GALNT2

AQP2 B4GALNT2 DAPIB4GALNT2AQP2

50 µm

C

B11 C11

35 kDa -

100 kDa -

150 kDa -

75 kDa -

ACTIN

UMOD

50 kDa - B4GALNT2

A11 B9

(Sda+)(Sda-)

UMOD B4GALNT2 DAPI

UMOD B4GALNT250 µm

Untreated

B11 C11A11 B9

(Sda+)(Sda-)



 46

Figure 8: ELISA-based uromodulin quantification is not affected by presence of Sda antigen. 
A, Uromodulin serum levels in individuals carrying GG or GA/AA genotype at UMOD variant 
rs77924615, stratified for their genotype at B4GALNT2 variant rs7224888 (CC, Sda+; TT, Sda-
). The expected differences in uromodulin levels are detected regardless of the 
presence/absence of Sda antigen. The start and end of boxes represent the 25th and 75th 
percentiles of the uromodulin distribution. The line inside the box represents the median, and 
the dots indicate outliers above the 75% + 1.5 × (interquartile range) of uromodulin values. B, 
Representative western blot analysis (left) and relative quantification (right) of uromodulin in 
lysates of MDCK cells transduced with lentiviral vector expressing HA-tagged uromodulin 
(lv.HA-hUMOD) and stably expressing B4GALNT2 (Sda+) or not (Sda-). The immunoreactivity 
of 3 different antibodies (anti-HA, and the two antibodies of the Euroimmun ELISA anti-UMOD 
capture and anti-UMOD detector) was assessed by loading and quantifying increasing amount 
of cell lysate. Each value represents the ratio between B11 (negative clone) and B9 (positive 
clone) expressed as fold relative to the ratio measured with 25 μg of cell lysate (n=3 
independent experiments). Data are represented as vertical scatter plot expressed as mean ± 
S.D. (one way ANOVA; p=0.66). The ratios obtained for the different antibodies are 
comparable, suggesting similar immunoreactivity that is not modified by the presence of the 
Sda antigen. 
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Tables  
 
Table 1: Summary of genomic loci with genetic variants significantly associated with uromodulin levels. The SNP with the lowest association 
p-value (index SNP) at each of the genomic loci is shown.  
 

Uromodulin 
assay 

SNP chr Position 
(b37) 

Locus Effect 
allele / 
non-effect 
allele 

Effect 
allele 
fre-
quency 

Effect StdErr P-value Sample size Proportion of 
explained 
variance 

antibody rs55791829 7 151407429 PRKAG2 C/G 0.72 -0.08 0.014 2.89E-09 13956 0.003 

antibody rs77924615 16 20392332 UMOD/PDILT A/G 0.19 -0.76 0.015 6.39e-577 13956 0.180 

antibody rs7224888 17 47246163 B4GALNT2 T/C 0.90 -0.25 0.021 1.77E-32 13956 0.011 

aptamer rs10922098 1 196664651 CFH T/C 0.61 0.08 0.011 2.30E-12 18070 0.003 

aptamer rs7601756 2 134893447 MGAT5 A/G 0.28 -0.07 0.012 8.81E-09 18070 0.002 

aptamer rs34211178 3 98383562  ST3GAL6 A/G 0.45 -0.46 0.010 6.88e-442 18070 0.105 

aptamer rs3117139 6 32364667 HLA-DRB1 A/G 0.13 0.14 0.016 2.60E-19 18070 0.005 

aptamer rs10738906 9 33135634 B4GALT1 T/C 0.69 -0.09 0.011 8.44E-15 18070 0.003 

aptamer rs532436 9 136149830 ABO A/G 0.20 -0.14 0.013 4.74E-26 18070 0.006 

aptamer rs9411249 9 139992907 MAN1B1/DPP7 T/G 0.36 0.06 0.011 1.77E-08 18070 0.002 

aptamer rs3967200 11 126232385 ST3GAL4 T/C 0.14 -0.15 0.015 9.24E-24 18070 0.006 

aptamer rs146261845 17 7012254 ASGR1/ASGR2 T/C 0.01 1.05 0.080 6.74E-39 16741 0.015 

aptamer rs2075803 19 51628529 SIGLEC9 A/G 0.44 0.37 0.011 2.40E-280 18070 0.069 
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Data availability  
Genome-wide summary statistics of the meta-analyses of circulating uromodulin are available 
at web page https://nxc-1453.imbi.uni-freiburg.de/s/gReQNkMJtkYYLxa.  
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