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Moments of parton distribution functions for the
pion and rho meson from Nf = 2 + 1 lattice QCD

Abstract

We compute the second Mellin moments of parton distribution functions for the

pion and rho meson from Nf = 2+1 lattice QCD using improved Wilson fermions.

Our results are presented in terms of singlet and non-singlet flavor combinations

and, for the first time, take disconnected contributions fully into account. Besides

condensing the common knowledge about spin-1 structure functions and parton

distribution functions, we provide a detailed description of the software stack im-

plemented by our group, in order to compute quark-line connected three-point

functions using stochastic estimators. The main application is based on the fac-

torization of the entire correlation function into two parts which are evaluated

with open spin- (and to some extent flavor-) indices. This allows us to estimate

the two contributions of the factorization simultaneously for many different initial

and final states and momenta, with little computational overhead.

Our numerical analysis yields moments of the structure function F1 (pion and

rho) and of the structure function b1, providing additional contributions in the

case of spin-1 particles. To this end we use 26 gauge ensembles, mainly generated

by the CLS effort, with pion masses ranging from 214 MeV up to 420 MeV and

with five different lattice spacings in the range of 0.05 fm to 0.1 fm in our numerical

analysis. This choice of gauge configurations enables us to resolve the quark mass

dependencies reliably, as well as to extrapolate to the continuum limit. However,

due to the resonance character of the rho meson, our final results are possibly

contaminated by additional two-pion states, which we also discuss. We present
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our results in the MS scheme at µ = 2 GeV. We find

v
(u+d+s)
2 = 0.220(207) , v

(u+d−2s)
2 = 0.344(28) ,

a
(u+d+s)
2 = 0.285(295) , a

(u+d−2s)
2 = 0.384(52) ,

d
(u+d+s)
2 = 0.226(124) , d

(u+d−2s)
2 = 0.163(39) ,

for the second moment v2 of the pion structure function F1, the second moment a2

of the rho structure function F1, and the second moment d2 of the rho structure

function b1 respectively. Based on these values we finally conclude, that the valence

quarks in the pion carry about 35% of the total momentum, in the rho the valence

quarks carry about 40% of the total momentum, and the non-vanishing values

for d2 suggest that the quarks in the rho meson carry a substantial amount of

orbital angular momentum.
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Moments of parton distribution functions for the
pion and rho meson from Nf = 2 + 1 lattice QCD

Zusammenfassung

Wir berechnen die zweiten Mellin Momente von Parton-Verteilungsfunktionen für

das Pion und das Rho Meson mittels Gitter QCD Simulationen, unter Zuhilfe-

nahme von Clover Fermionen. Unsere Ergebnisse werden als Singlet- und Non-

Singlet Farbkombinationen angegeben und wir berücksichtigen erstmals die Beiträ-

ge von nicht zusammenhängenden Dreipunktfunktionen. Neben einer Einführung

in Spin-1 Strukturfunktionen und Parton-Verteilungsfunktionen gehen wir ins-

besondere auf die während dieser Arbeit erstellten Computerprogramme ein, die

benötigt werden, um zusammenhängende Dreipunktfunktionen mit Hilfe stochastis-

cher Verfahren zu approximieren. Das Hauptaugenmerk richten wir dabei auf den

Kern unserer Simulationssoftware, in dem wir die Korrelationsfunktion in zwei

unabhängige Teile faktorisieren, um Teilergebnisse mit offenen Spin- und teil-

weise offenen Farb-Indizes zu produzieren. Dieses Vorgehen erlaubt es uns die

beiden Beiträge der Faktorisierung gleichzeitig für viele verschiedene Anfangs- und

Endzustände sowie Impulse zu simulieren, ohne die Gesamtrechenzeit merklich zu

erhöhen.

Mit Hilfe unserer numerischen Analyse können wir Momente der Strukturfunk-

tion F1 (Pion und Rho) und der Strukturfunktion b1 berechnen. Letztere liefert

zustätzliche Beiträge für Spin-1 Teilchen. Zu diesem Zweck nutzen wir 26 ver-

schiedene Ensembles an Eichfeldern, die großteils im Rahmen der CLS Initiva-

tive erzeugt wurden. Die Konfigurationen decken Pionmassen von 214 MeV bis

420 MeV und fünf verschiedene Gitterabstände zwischen 0.05 fm und 0.1 fm ab.

Durch die Benutzung dieser Ensembles können wir Quarkmassen-Abhängigkeiten

vollständig auflösen und außerdem eine Kontinuums-Extrapolationen durchführen.

Insbesondere im Fall des Rho Mesons könnte jedoch dessen Resonanzcharakter

und damit einhergehende Zwei-Pion-Zustände, zu einer Verfälschung der Ergeb-
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nisse führen. Dies wird in der Arbeit ausführlich diskutiert. Unsere Ergebnisse

werden im MS Schema für µ = 2 GeV angegeben. Wir erhalten

v
(u+d+s)
2 = 0.220(207) , v

(u+d−2s)
2 = 0.344(28) ,

a
(u+d+s)
2 = 0.285(295) , a

(u+d−2s)
2 = 0.384(52) ,

d
(u+d+s)
2 = 0.226(124) , d

(u+d−2s)
2 = 0.163(39) ,

für das zweite Moment v2 der Pion Strukturfunktion F1, das zweite Moment a2 der

Rho Strukturfunktion F1 und das zweite Moment d2 der Rho Strukturfunktion b1.

Aufgrund dieser Werte schließen wir, dass die Valenzquarks im Pion ungefähr

35% und im Rho Meson ungefähr 40% des Gesamtimpuls tragen. Der nicht ver-

schwindende Wert für d2 legt nahe, dass die Quarks im Rho Meson zusätzlich

einen nicht vernachlässigbaren Drehimpulsanteil aufweisen.
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1
Introduction

At the beginning of the twentieth century, a new generation of physicists turned
the world upside down by starting to focus their interest on the smallest known
objects in the universe. They were chasing the idea of understanding the world in
its smallest, innermost components, but at that time no one could have guessed
that this would develop into a completely new view on physics that would change
the entire world. In the beginning, it was scientists like Thomson, Rutherford,
Planck, and Bohr who developed a fundamental understanding of the structure
of atoms and tiny particles [1–8]. Their groundbreaking research eventually led
to a theory that initially seemed so outlandish to some of its developers that it
took several more years for it to become widely accepted. We know it today as
quantum mechanics [9]. It was masterminds like Heisenberg, Born, de Broglie, and
Schrödinger who paved the way for a completely new way of thinking with their
revolutionary ideas on wave-particle duality or the uncertainty principle [9–18].
How important these ideas are for our present understanding of matter and the
resulting structure of the universe is made clear by the numerous Nobel Prizes that
the above-mentioned scientists and numerous other colleagues, whom we cannot
name all in this context, have received. Although there were groundbreaking
developments in many areas of physics at that time, we want to focus our attention
on the development of quantum field theory (QFT). The starting point of this
development was the quantization of the electro-magnetic field and the electron
field in the late 1920s by Paul Dirac [19]. In the following decades, his approach
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proved to be extremely promising and some years later Tomonaga, Feynman,
Schwinger, and Dyson succeeded in formulating quantum electrodynamics (QED)
as the corresponding QFT, mainly by adapting renormalization to eliminate the
occurring infinities [20–23]. This theory allowed, e.g., to describe processes in
which the number of particles in the initial and final state differs, as for the
emission of a photon, when the energy state of an atom changes by dropping an
electron into a quantum state of lower energy. To date, QED represents one of the
most accurately experimentally verified physical theories [24–27] and is the most
prominent example of a QFT. Based on the underlying U(1) symmetry group, it
describes the interaction for systems consisting of electromagnetic fields with the
associated massless gauge boson (photon). For this work, Feynman, Schwinger,
and Tomonaga were awarded the Nobel Prize in Physics in 1965.

Looking back again to the beginning of the twentieth / end of the nineteenth-
century one finds the discovery of a further theory, namely the theory of weak
interactions. At that time Wilhelm Roentgen discovered X-rays [28] and three
years later Marie and Pierre Curie investigated the ionizing radiation of ’pech-
blende’ [29, 30]. From these kinds of observations, which turned out to be ra-
dioactive decays, Enrico Fermi derived the first theory of the weak interaction in
the 1930s. Therefore he assumed that the radioactive beta decay can be described
by a simple four-fermion interaction [31]. In the 1960s Glashow, Salam, and Wein-
berg finally succeeded in combining the weak interaction with the electromagnetic
force using the SU(2) × U(1) symmetry group to form the theory of electroweak
interactions [32–34]. The associated gauge bosons are nowadays known as W± and
Z and were experimentally detected in the early 1980s [35–39]. For their efforts,
Glashow, Salam, and Weinberg jointly received the Nobel Prize in Physics in 1979
and Rubbia and van der Meer in 1984 for the experimental measurement.

In addition to these achievements, the first experiments with cloud chambers in
the 1950s led to the discovery of more and more different particles, whose behavior
could be explained only inadequately with the help of available theories. It took
well over one decade until in 1973 the concept of color charge could be incorporated
into a non-Abelian Yang-Mills gauge theory in such a way that all previously unex-
plained phenomena of the so-called strong interaction could be described with the
help of a QFT. At this point, Fritzsch, Leutwyler, and Gell-Mann had developed
a theory which is known today as quantum chromodynamics (QCD) [40]. Essen-
tially, with the help of the SU(3) symmetry group, the concept of color charge
was introduced, analogous to the electric charge of QED. The underlying funda-
mental particles are now known as quarks [41, 42] and the corresponding gauge
bosons as gluons. With the help of this theory, and the concept of asymptotic
freedom [43, 44], already some years later various high energy experiments could
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be described very precisely in the context of a perturbative expansion of QCD. In
the course of the years, the performed experiments became more and more pre-
cise, so that the validity of QCD can be verified in the meantime in the single-digit
percentage range [45]. Nevertheless, there are numerous open questions, such as
the behavior of QCD in the non-perturbative limit. A famous example is the
observation that the attraction between two particles with color charge does not
decrease with their distance (confinement). Corresponding evidence can be con-
firmed in the framework of lattice QCD (LQCD) [46] calculations, but is not yet
mathematically proven. The search for a corresponding proof is listed as one of
the seven millennium problems by the Clay Mathematics Institute [47].

At the beginning of the 1960s, Peter Higgs postulated another particle, which
should finally lead to the fact that all elementary particles could be provided with
corresponding masses [48, 49]. When the Higgs boson, now named after him, was
experimentally confirmed about 50 years later, Peter Higgs and François Englert
were awarded the Nobel Prize in Physics in 2013.

Finally, in 1975 the electroweak- and the strong interaction were combined to
form the standard model (SM) of particle physics [32–34] which is – neglecting
gravitational effects – a state-of-the-art QFT model in modern physics, relying on
a SU(3) × SU(2) × U(1) gauge theory. Driven by the search for a unifying the-
ory, both experimental and theoretical physicists have developed a model that has
been verified by numerous experiments so far, e.g., measurements of the fine struc-
ture constant α [50]. Nevertheless, numerous open questions remain, such as the
combination of gravity and the SM. However, the SM represents an indispensable
cornerstone in the search for new models, e.g., supersymmetry.

In summary, since the 1970s, most physicists agree that the matter around
us is composed of fermions that interact with each other through the exchange
of gauge bosons. The elementary fermions can be divided into two groups: Six
leptons like the electron and the associated neutrino and six quarks which form
colorless bound states, commonly known as hadrons. The corresponding charge
carriers are the four gauge bosons, e.g., the gluon for the strong interactions. As
the last particle of the Standard Model, for the time being, the Higgs particle shall
be listed here, which results directly from the second quantization of the Higgs
field. These elementary particles are described by the SM, cf. the overview given
in Fig. 1.0.1.

Essentially, the quantum field theories presented above form the basic framework
for the considerations in this thesis. LQCD is of special importance in the following
deliberations. Its formalism allows us to map the continuous Minkowski space-
time onto a four-dimensional Euclidean lattice. The method developed by K.
Wilson [46] allows the computation of quantities that are not accessible by the
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Figure 1.0.1: Particles of the SM. The first three columns show the three genera-
tions/families of fermions, the fourth column the four gauge bosons, and the last col-
umn the scalar Higgs boson. In addition we list the mass of the particles, their electrical
charge in multiples of the unit charge e, and the isospin I, spin J , charge conjugation C,
and parity P quantum numbers, depending on the corresponding particles. All values
are taken from [51].

perturbative QCD expansion.
In this context also the parton model developed by Bjorken and Feynman

plays an equally important role. It started with Bjorken’s proposal in 1969, that
the structure functions for inelastic electron scattering off a fixed target obey
a certain scaling property - nowadays known as Bjorken scaling [52]. This was
quickly confirmed by experiments [53] and only a few months later Feynman and
Bjorken/Paschos independently worked out the so-called parton model [54, 55].
Therefore Feynman interpreted the Bjorken scaling due to the point-like nature
of fundamental particles in the scattering target when they were scattered by the
electron – he named them partons. Since QCD was not yet fully developed at
that time, it was still unclear whether the partons were the quarks postulated by
Gell-Mann, and also gluons did not play a role at this point.

However, we are interested in the structure functions inherent in the theory,
which will give us information about the momentum distribution of the individual
quarks within a hadron. This work aims mainly at computing Mellin moments
of parton distribution functions (PDFs) for spin-0 and spin-1 mesons. Based on
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the concept of LQCD, a new type of analysis software to analyze gauge fields,
has been developed in the course of this thesis [56]. The goal of this work is
to determine the structure functions F1, F2 (spin-0 and spin-1), and b1 (spin-1
only) as accurately as possible using a maximum subset of the current lattice data
available to our group. With the contributions considered, it is possible to present
new (or rather improved) results that may play a significant role in planned EIC
experiments [57, 58] and the new AMBER experiment planned for M2 beamline
at the CERN super proton synchrotron [59, 60].

This thesis is structured as follows: We set the stage with a general introduction
to QCD, the parton model, and the LQCD formalism together with numerical
parameters, which are used to compute all the observables presented in this work.
In Chapter 3 we discuss structure functions and PDFs and their relation to deep
inelastic scattering (DIS) processes including various techniques like the operator
product expansion (OPE). This finally yields the quantities computed in this
thesis, called reduced matrix elements v2, a2, and d2. Chapter 4 is finally devoted
to the numerical simulations used to extract moments of PDFs of the pion and
rho meson. We put special emphasis on the calculation of connected three-point
functions using stochastic estimators since the development of the corresponding
software was one of the main tasks for this thesis. At the end of Chapter 4 we
present results for the quark mass dependence and continuum extrapolation of
our quantities, where we, for the first time, also included quark-line disconnected
contributions. A brief conclusion is given in Chapter 5.
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2
Basic concepts

This chapter summarizes the textbook knowledge on the theoretical foundations
of this thesis. In the first place, a short introduction to the theory of the strong
interaction is given and the development of the parton model mentioned in Chap-
ter 1 is discussed in more detail. Afterward, LQCD, which represents the basic
framework of this thesis, will be discussed in greater detail. In particular, it shall
be elaborated how the QCD path integral on a Minkowski space-time can be
evaluated using statistical Monte Carlo methods on a four-dimensional Euclidean
lattice in order to draw conclusions about the structure of the particles we want
to analyze by appropriate simulations.

2.1 Quantum chromodynamics

QCD describes the interaction of the quarks and gluons of the SM. In Chapter 1
we stated that the quarks involved in the strong interaction occur in Nf = 6 dif-
ferent flavors, reflecting the current evidence provided by accelerator experiments.
However, it cannot be ruled out that additional fermion generations exist in na-
ture. In the following we will point out that quarks and gluons further occur in
Nc = 3 different variants, denoted as color c, and how the interactions between
the consequent Nc ×Nf = 3× 6 quarks and N2

c − 1 = 8 gluons, cf. Fig. 1.0.1, are

7



described by QCD as a non-Abelian SU(3) gauge theory1.

Measurements in different experiments suggest that quarks and gluons are never
observed as isolated particles (confinement) but always appear in bound states and
are ordered to groups with very similar internal quark-gluon wave functions. Ne-
glecting the mass differences of the individual quarks, these multi quark states
can be described in the framework of a global SU(Nf ) symmetry group. How-
ever, this SU(Nf ) is completely independent of the local SU(3) gauge group of
QCD. Historically, the approximation of this flavor symmetry allowed for suc-
cessful predictions of numerous, until then unknown, particles which, despite its
weaknesses, plays an important role in numerous QCD calculations. An example
for such an experimentally determined composite state of quarks are the nucleons
(protons, neutrons) known from atomic physics, which were measured to be spin-1

2

particles. From the total spin of the nucleons, and all other baryons, it follows
directly that all quarks themselves have to be Dirac particles with spin-1

2 so that
the correct wave function can be constructed. The quality for predictions that use
the SU(Nf ) flavor symmetry just described depends of course on the accuracy of
the approximation. Altogether the symmetry imposes that all physics is invariant
under the exchange of the Nf quark types. If one compares the masses of the
individual quarks from Fig. 1.0.1 with each other, and also with the typical en-
ergy scales of O(100 MeV) in hadron physics, it becomes clear that the symmetry
assumptions will not necessarily lead to good predictions. mu and md are approx-
imately equal and thus SU(2) is a very good symmetry assumption. Although ms

is already significantly larger, good results in the range of 20% - 30% accuracy
can still be obtained for SU(3). However, the symmetry is not exact but broken
explicitly to SU(2)I × U(1)Y where I denotes the isospin and Y corresponds to
the hypercharge2. The small mass differences within the SU(3) multiplet are de-
scribed by the Gell-Mann-Okubo formula [62–64]. For the heavier quark flavors,
however, one no longer assumes symmetry. As an introductory example we want
to pick out the construction of wave functions in SU(3)flavor× SU(2)spin. From the
lowest lying states of the baryon decuplet we use the simplest state, called ∆++

resonance,
∣∣∣∣∆++, jz = 3

2

〉
=
∣∣∣∣u ⇑, u ⇑, u ⇑ 〉 , (2.1)

1There are various valuable introductions to QCD in nearly every QFT textbook. However,
the introduction given here relies mainly on [61] and the lecture notes of the QCD courses of A.
Schäfer and T. Wettig and the group theory course of T. Wettig, all attended at the University
of Regensburg. Whenever necessary additional references are provided.

2In the fundamental representation I3 = t3 and Y = 2t8/
√

3, cf. Appendix A.2.
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a very exotic and short-lived particle with J = 3
2 and z-component jz = +3

2 , with
completely symmetric spin-flavor structure. Furthermore, we assume a S-wave
state with corresponding orbital angular momentum L = 0 and hence see that the
Pauli principle seems to be violated. To make the wave function antisymmetric
an additional degree of freedom was introduced, the color charge. Using this
additional information we generalize the model wave function u from the ∆++ to
qf,s

a (x) with color index a = 1, 2, 3, flavor f ∈ [u, d, s, c, b, t] and spin s =⇑ / ⇓. If
the wave function is odd in color the spin-statistics problem of the combined wave
function is solved. Therefore we re-write (2.1) as

∣∣∣∣∆++, jz = 3
2

〉
= 1√

6
εabc

∣∣∣∣qu,⇑
a (x)

〉 ∣∣∣∣qu,⇑
b (x)

〉 ∣∣∣∣qu,⇑
c (x)

〉
, (2.2)

using the completely antisymmetric tensor εabc defined in Appendix A.1. How-
ever, by performing the completely antisymmetric coupling one finds that the
corresponding states always appear as color singlets, as predicted by experiments.
The theory that describes all experiments is that with three colors. One of the
best known experiments for the validation of Nc = 3 is the so-called R-ratio. The
following equation gives the ratio of hadronic decays related to a leptonic decay
channel in first order perturbation theory

R = σ (e+ + e− → hadrons)
σ (e+ + e− → µ+ + µ−) = Nc

∑
f

e2
f , (2.3)

where we sum over all quark flavors f , and ef is the electrical quark charge in units
of the elementary charge. Considering quarks with mass much smaller than half of
the energy in electron-positron annihilations, this ratio gives the number of quarks
and their electric charges. E.g., for 3 GeV < E < 10 GeV, i.e., f ∈ [u, d, s, c] one
gets R = 10

3 if we assume Nc = 3. Comparing this result to the world data on
R, shown in Figure 52.2 of [51], one finds that the assumption of three different
colors is reflected very precisely in the experimental data.

The simplest color singlet states can be realized as 3-quark states (baryons)3 or
quark-antiquark states (mesons). As mentioned above, the QCD Lagrangian LQCD

– see below – is invariant only for flavor SU(3), i.e., for mu = md = ms. Using this
behavior, one obtains for the approximation of exact SU(3) flavor symmetry the

3In 2015 the LHCb collaboration also presented first experimental evidence for so-called
pentaquarks and tetraquarks dicussed in [65–67]. For a recent review see also [68].
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Figure 2.1.1: Meson octet for (a) JP C = 0−+ and (b) JP C = 1−−. A detailed
overview of all quantum numbers and physical states up to SU(4) is given in [51]. Note
that the quantum number C is only defined for states built by a quark and its antiquark,
e.g., uu.

fundamental representation of the quarks as vectors

q(x) =


qu,s1

a (x)
qd,s2

b (x)
qs,s3

c (x)

 , (2.4)

where si labels the spin of the quark. The corresponding antiquarks for the meson
states are obtained by applying the charge conjugation operator C = −iγ2K to the
quark fields q as qf,s

a (x) = C qf,s
a (x) where K is the complex conjugation operator.

Resulting antiquarks transform as elements of the anti-multiplet 3. To obtain all
meson states we finally compute all product states of the form 3⊗3 and decompose
them into their irreducible components

3⊗ 3 = 8⊕ 1 , (2.5)

resulting in a multiplet with 8 roughly degenerated particles and a second multiplet
with only one particle. Experimental observations show that the lightest (ground-
state) mesons indeed form an octet and a singlet with quantum numbers J = 0
(spin), P = −1 (parity), and C = +1 (charge conjugation) abbreviated as JP C =
0−+. A detailed overview of the ground-state meson octet is shown in Fig. 2.1.1a,
the corresponding singlet state is denoted by ψ1. Assuming exact SU(3) flavor
symmetry this picture suggests that the isospin singlet state ψ8 = 1/

√
6(uu+dd−

2ss) of the SU(3) octet and the isospin singlet state ψ1 = 1/
√

3(uu + dd + ss) of
the SU(3) singlet would be physical states, i.e., particles, since they transform in
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different irreducible representations of SU(3), sharing the same quantum numbers.
However, SU(3) is broken explicitly so that the ψ1 and ψ8 transform in different
irreps, but with the same quantum numbers. The corresponding physical states η
and η′ can be parametrized ascos Θ − sin Θ

sin Θ cos Θ

ψ8

ψ1

 =
η
η′

 , (2.6)

where Θ is the nonet mixing angle [51]. The weight diagrams for the lightest
SU(3) vector meson octet is depicted in Fig. 2.1.1b and the corresponding isospin
singlet state is ψ∗

1.
An analogous approach can be used to determine all baryon states composed

of three quarks. Again assuming exact SU(3) flavor symmetry the product states
are decomposed into their irreducible components

3⊗ 3⊗ 3 = 10S ⊕ 8MS
⊕ 8MA

⊕ 1A , (2.7)

and one finds multiplets of 10, 8, and 1 particles. The indices S and A denote
tensors totally symmetric or antisymmetric under S3, i.e., permutations of quarks,
while MS and MA are tensors of mixed symmetry, symmetric or antisymmetric
under the exchange of the first two quarks respectively. In ground-state baryons
the singlet contribution is forbidden by Fermi statistics while the octet appears as
a linear combination of 8MS

and 8MA
. Experiments show that the lightest baryons

indeed form a decuplet and an octet with JP = 3
2

+ and JP = 1
2

+. However, a sec-
ond octet and also the singlet contributions are possible in excited state baryons.
A complete list of quantum numbers and the corresponding SU(4) multiplets are
given in [51].

Up to this point, we have shown that the quarks can be represented as vectors
in the fundamental representation, furnished with three colors. To complete the
theory just the corresponding gauge bosons are missing.

Gluons are the charge carriers of the strong interaction, which finally lead to the
formation of hadronic states. Generally speaking, each gluon carries a color charge
and an anti-color charge, which leads to a total of nine possible combinations for
three colors, represented by a color singlet and a color octet. However, a more
detailed analysis of all possible gluon states leads to the fact that the (theoretically
possible) color singlet state (or color-invariant) could occur as a free particle and
thus would not be bound by confinement. I.e., a coupling with a very long range
would occur which is in clear contradiction to the short-range behavior of the
strong interaction. So in the observed universe only eight different gluons appear,
which reflects the SU(3) gauge group of QCD. The corresponding generators are
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the Gell-Mann matrices, cf. Appendix A.2. While the quarks correspond to the
fundamental representation, the gluons are described by linear combinations of
elements in the adjoint representation

(tj)kl = −ifjkl , (2.8)

which could be represented by the structure constants as (N2 − 1) × (N2 − 1)
matrices. Analogous to the photons in QED, the gluons correspond to massless
spin-1 particles.

Taking into account the considerations made so far, it is now possible to state
the QCD Lagrangian density by

LQCD =
∑
αβ

∑
f

∑
ij

qf,i
α

(
i /D

ij
αβ −mfδ

ijδαβ

)
qf,j

β −
1
2 trc [FµνF

µν ] , (2.9)

with q = q†γ0 and the Feynman slash notation /a ≡ aµγ
µ using the Dirac gamma

matrices defined in Appendix A.3. In contrast to the definitions at the beginning
of this section, the structure of q is now made explicit using additional Dirac
indices (Greek letters) which reflect the spin structure of the quarks. In (2.9) the
gluon fields are hidden in the covariant derivative defined as

Dµ = ∂µ + igAµ , (2.10)

and in the field strength tensor

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] = −i
g

[Dµ, Dν ] , (2.11)

where g is the strong coupling constant and Aα = ∑
j A

j
αt

j are the gluon fields using
the SU(3) generators tj defined in Appendix A.2. By substituting (2.11) into (2.9)
one immediately sees that we encounter terms cubic and quadratic in terms of the
gauge fields, already at tree level. This gives rise to the self-interaction of QCD
and is thus responsible for confinement, one of the most prominent features of
QCD.

Using the QCD Lagrangian we require that the corresponding action is invariant
under gauge transformations, i.e.,

S [q, q, A] =
∫

d4xLQCD = S [q′, q′, A′] , (2.12)

12



using the local gauge transformations

q(x)→ q′(x) = Ω(x)q(x) ,
Aµ(x)→ A′

µ(x) = Ω(x)Aµ(x)Ω†(x) + i [∂µ Ω(x)] Ω†(x) ,
(2.13)

with Ω(x) ≡ exp
(
i
∑

j Θj(x)tj
)

and Ω†(x) = Ω−1(x). However, if one uses the
Lagrangian density just presented, one finds that especially in the calculation of
the gauge field propagators (with the help of the path integral formalism) two
unphysical light-like polarization states of the gluons occur in loop diagrams. To
compensate these unwanted states, Faddeev and Popov introduced so-called ghost
fields by fixing the gauge condition via adding a gauge fixing and a gauge com-
pensating term to the Lagrangian [69]. Note that the ghost fields appear only
in non-Abelian theories while they decouple completely otherwise, e.g., in QED.
The extension of (2.9) comes along with a new symmetry of the gauge fixed La-
grangian, taking into account how the compensation of the ghost-fields affects the
complete interacting theory. It is called Becchi, Rouet, Stora, and Tyutin (BRST)
invariance [70, 71]. Since all of the following discussions are not affected by gauge
fixing – this thesis is dedicated to the computation of gauge-invariant quantities
using LQCD – we stop the discussion here and will not discuss BRST invariance
and gauge fixing any further.

Based on the QCD action (2.12) the behavior and interactions of elementary
particles – and also the ghost fields introduced above – can be described by the
well known Feynman diagrams4. In this text, we will skip an introduction to Feyn-
man diagrams and refer the reader to the satisfactory literature. However, we do
not want to hide one of the main problems in Feynman diagram calculus: The
occurrence of ultra violet (UV) divergences in loop diagrams, describing quantum
corrections to the field theory. It is shown in, e.g., [75], that the masses, couplings,
and fields in (2.9) do not reflect the exact quantities of a single, physical particle.
Rather, they describe what is called the bare parameters of the system. To over-
come this issue we exploit that QCD is a renormalizable field theory and define
the renormalized Lagrangian density by [76]

LQCD(q0,m0, A0, g0, . . . ) = LQCD(q,m,A, µg, . . . ) + δLQCD(q,m,A, µg, . . . ) ,
(2.14)

where q0, etc. denotes the bare parameters. The connection between the renor-
malized and bare parameters finally defines the counterterms δLQCD and the UV

4Frank Wilczek remarks in the column [72] that the very first Feynman diagram was published
in [73]. However, the construction of Feynman diagrams and the corresponding calculus is part
of nearly every textbook about elementary particle physics, e.g., [61, 74].
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divergences are absorbed into the renormalized parameters of the Lagrangian.
However, in the discussion of (2.14) we disregarded that the loop integrals pre-
sume that the divergences are regularized, i.e., the divergences are isolated in
well-defined expressions. A state-of-the-art regularization method for perturba-
tive calculations is dimensional regularization [77]. In the LQCD computations
of this work, we implicitly introduce another regularization scheme through the
lattice spacing a which provides a natural cutoff Λ ∼ 1/a to regularize the theory,
since it acts as a momentum cut-off, cf. Section 2.3. Final results are obtained in
the limit a→ 0 or Λ→∞ respectively using proper renormalization methods. On
the one hand, this cut-off regularization has the clear advantages to be well-defined
and to be understandable already at a very intuitive level. On the other hand,
calculations can become disproportionately cumbersome. Choosing a particular
regularization combined with the freedom to rescale the fields and parameters by
the renormalization procedure described above finally cancels all divergences of the
theory. At this point, the discussion is actually completed but nevertheless, we
have to make one additional remark. The counterterms defined in (2.14) provide
the opportunity to introduce arbitrary, but finite, constant terms. Specific types
of these terms are grouped in so-called subtraction schemes where the modified
minimal subtraction (MS) scheme [78] is, without doubt, the most popular choice
in perturbative QCD. Through the regularization we secretly introduced the en-
ergy scale µ in (2.14) to well define the counterterms via a specific regularization
scheme. Since µ does not show up in the original theory our final results have
to be independent of the energy scale, which yields a set of differential equations
referred to as renormalization group (RG) equations. The RG equations describe
the dependence of the renormalization factors on the energy scale µ. While the
final results have to be independent of µ all intermediate steps now may depend
on the energy scale, which entails a scale dependence for the parameters of the
theory. Using the MS scheme we ensure that bare parameters depend only implic-
itly on the renormalization scale via the renormalized parameters. A prominent
example for the scale dependence of such a parameter is the running coupling of
QCD.

Perturbative QCD expectations for observables are given in terms of the renor-
malized strong coupling αs(µ) = g2(µ)/(4π) as a function of the renormalization
scale µ and, following [51], satisfies the RG equation

µ2 dαs

dµ2 = β(αs) = −
(
β0α

2
s + β1α

3
s + β2α

4
s + . . .

)
. (2.15)

The values βi are referred to as the (i+ 1)-loop β-function coefficients. Note that
the coefficients depend on the subtraction scheme for i > 1 and the factor −1 in

14



front of the expansion indicates asymptotic freedom for β0 > 0, i.e., the coupling
becomes weak for hard processes while it is strong for energies around and below
the typical hadronic scale of 1 GeV. Assuming a theory with a constant number of
Nf light quarks (mq � µ) an exact solution for the 1-loop (i = 0) strong coupling
is given by

αs(µ2) = 4π(
11
3 Nc − 2

3Nf

)
ln
(

µ2

Λ2

) , (2.16)

where Nc defines the gauge group, i.e., Nc = 3 for QCD, and Λ corresponds to the
scale where the perturbatively calculated strong coupling would diverge and non-
perturbative dynamics become dominant. A possible choice for µ2 is the invariant
momentum transfer Q2 of a given process, e.g., a DIS reaction introduced in the
next section. If one chooses µ2 ' Q2 higher order corrections become minimal.

2.2 Parton model

Based on the introductory remarks about the theory of strong interactions in the
last section, we can make predictions and interpret the results of experiments us-
ing QCD. However, even before the introduction of non-Abelian gauge theories,
there existed already other theories to describe the behavior of elementary par-
ticles. One famous example is the parton model, introduced by Feynman and
Bjorken/Paschos [54, 55]. In this section, we will point out that this seminal
model, incomplete as it is, implicates a series of prescriptions that are still used
in high energy physics and also in the computation done in this thesis.

A first, naive starting point for the invention of the parton model are hadron-
hadron scattering experiments. At high energies (Ecm & 10 GeV), collisions of
hadrons produce a high number of pions with momenta almost collinear with the
collision axis [61]. In other words: Instead of filling the whole phase space, as one
would assume for interacting particles, the final particles are furnished with a very
limited amount of transverse momentum and thus it seems natural to describe the
initial hadrons by a bundle of almost free particles, called partons. Later it turned
out that the partons correspond to the particles predicted by QCD. A first cru-
cial test of this picture was performed by the SLAC-MIT experiments in the late
1960s [79] using electron-nucleon DIS experiments as shown in Fig. 2.2.1. Using
a 20 GeV electron beam scattered off hydrogen atoms these experiments saw a
substantial rate of hard scattering events, comparable to the scattering of a fun-
damental, point-like particle according to simplest expectations from QED. So it
was assumed that partons are fundamental particles, incapable of exchanging large
momenta Q2 through strong interactions, but the partons interact with electrons
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Figure 2.2.1: (a) Basic diagram for a inclusive DIS reaction. The black line depicts
the initial (final) lepton with momentum k and energy E (k′, E′). The virtual photon
momentum is denoted by q and p corresponds to the target momentum. The unknown
final states are denoted by X. (b) Kinematic of the DIS reaction in the parton model.
The longitudinal parton momentum fraction is denoted by xp.

(leptons) via electromagnetic interactions. This imposes a strong constraint on
the DIS cross-section, as we will see in the subsequent calculations.

Starting from an unpolarized inclusive DIS process as shown in Fig. 2.2.1a one
can factorize the matrix element of the DIS cross-section into a leptonic and a
hadronic tensor, cf. Chapter 3 for details. In the unpolarized case, the decompo-
sition of the hadronic tensor W µν defines two structure functions via

W µν =
(
gµν − qµqν

q2

)
W1(x,Q2) +

(
pµ − qµ(p · q)

q2

)(
pν − qν(p · q)

q2

)
W2(x,Q2) ,

(2.17)

using Q2 = −q2 and x = Q2/(2p · q). The structure functions W1/2 were measured
by the SLAC-MIT experiment [79] and surprisingly it was found that they are
approximately independent of Q2, for large invariant momentum transfers Q2.

Following the basic operations, e.g., shown in [76], naive parton model calcula-
tions are performed using the sub-process shown in Fig. 2.2.1b. By decomposing
the DIS process into a hard scattering kernel, containing the interaction of the
photon and the struck parton, and a soft contribution, containing the information
about the hadron structure, the computation can be split into two independent
parts. While the first part can be calculated in perturbation theory the second
part requires the PDFs to be computed using non-perturbative methods, in our
case LQCD. More formally, this can be written as

W µν =
∫

dx fq(x)Cµν
q,partonic , (2.18)

where fq(x) is the weight-function to find a quark of flavor q with momentum
fraction x inside the target hadron and Cµν

q is the corresponding coefficient for
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Figure 2.2.2: World-data for the
structure function F2(x, Q2) of the
proton. Note that the data sets
for the different values of x would
sit on top of each other and are
therefore shifted by an additional
factor 2i where i denotes the num-
ber of the data set. Figure taken
from [51] under the Creative Com-
mons CC-BY license.

flavor q. Comparing this to the expansion of the hadronic tensor in terms of
structure functions one finally finds

F2(x,Q2) =
∑

q

e2
q x fq(x), F1(x,Q2) = 1

2xF2(x,Q2),

with F1(x,Q2) = −W1(x,Q2), F2(x,Q2) = (p · q)W2(x,Q2). (2.19)

The sum in the first term of (2.19) runs over all flavors 1 ≤ q ≤ Nf and the charge
of the individual quarks is given in units of the elementary charge, cf. Fig. 1.0.1.
According to the naive parton model the structure functions are independent of
Q2 which is known as Bjorken scaling [52]. The Bjorken variable x corresponds to
the momentum fraction of the hit quark in the target hadron. Furthermore, the
second equation in (2.19) is the Callan-Gross relation [80], stating that in lowest
order the structure functions F1 and F2 are not independent and thus the process is
described by a single structure function. The world-data on the structure function
F2 of the proton is given, e.g., in [51], and one finds that the predictions made
by the parton model are quite accurate for medium values of x. However, in the
limiting cases x → 0 and x → 1, correction terms have to be taken into account.
An overview is shown in Fig. 2.2.2.

In the following, we introduce an explicit expression for the PDFs fq(x) and
complete the discussion with the introduction of leading order correction terms.
Within the parton model the PDFs can be expressed in terms of matrix elements
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of bilocal twist-2 operators [81, 82]

fq(x) =
∫ ∞

−∞

dz−

4π eixp+z−
〈

p, λ

∣∣∣∣q (−z2
)

Γ q
(

+z2

) ∣∣∣∣p, λ〉∣∣∣∣
z+=0,z=0

, (2.20)

where the right-hand side quark flavor is set implicitly via the quark spinor defi-
nition, e.g., q(x) = u(x) for up quarks, and the light-cone coordinates p+ and z−

are defined according to Appendix A.8. Gluon PDFs are defined in close analogy
to (2.20). In explicit calculations we set Γ = γ+ for unpolarized PDFs, Γ = γ+γ5

for helicity PDFs, or Γ = iσ+i with i = 1, 2 for transversity PDFs, see also [83].
The definition in (2.20) is, however, only correct neglecting additional collinear
gluons connecting the hard scattering kernel and the soft contributions given by
the PDFs. These additional gauge links are introduced by Wilson lines5 between
the fields at positions −z

2 and z
2 defined as

W [a, b] = P eig
∫ a

b
dx−A+(x−n−) , (2.21)

where P denotes path ordering from a to b [82]. What remains is the incorporation
of the Wilson lines into the definition (2.20) to obtain

fB
q (x) =

∫
dk− d2k

∫ ∞

−∞

dz−

4π eik·z
〈

p, λ
∣∣∣∣q (−z2

)
W

[
−z

−

2 ,
z−

2

]
Γ q

(
z

2

) ∣∣∣∣p, λ〉 ,
(2.22)

as the definition of the bare quark PDF. We fix the UV divergences by an appro-
priate regularization and renormalization procedure

fq(x, µ) =
∫ 1

x

dz
z
Zqr

(
x

z
, µ
)
fB

r (z) , (2.23)

where Zqr is the renormalization factor, and thus introduce a scale dependence
into the definition of the PDFs. The scale µ separates high and low momentum
physics, however, final results have to be scale-independent. Predictions for scale
variations in the computations of PDFs are governed by the Dokshitzer, Gribov,
Lipatov, Altarelli, and Parisi (DGLAP) evolution equations [84–86] which have
the form

d
d log µ2 fq(x, µ) =

∫ 1

x

dz
z
Pqr

(
x

z
, µ
)
fr(z, x) , (2.24)

5One can just as well argue with the introduction of a general gauge instead of the light-cone
gauge A+ = 0, cf. [82].
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where the splitting kernels P are defined as

d
d log µ2 Zqr

(
x

z
, µ
)

=
∫ 1

x

dz
z
Pqk

(
x

z
, µ
)
Zkr (z, µ) . (2.25)

Finally, we can rewrite the naive factorization of the hadronic tensor (2.18) using
the approximation

W µν(p, q) ≈
∫ 1

x

dz
z
fq(z, µ)Hµν

q

(
z, q, µ, αs(µ)

)
, (2.26)

neglecting higher-order terms. Hµν
q is the hard scattering kernel, computed in

perturbation theory for sufficiently large values of q. With this statement, we
conclude the discussion about the collinear factorization of the hadronic tensor
and the introduction of quark PDFs and DIS structure functions. The parton
model quantities derived in this section allow for the extraction of PDFs from
experimental data, e.g., HERA [87, 88] and JLab Hall A [89], and by the use of
(l)QCD input we are able to predict cross-sections of upcoming experiments6, e.g.,
EIC [57] and AMBER at CERN [60]. A physical interpretation of the PDFs in the
infinite momentum frame is given by a rather simple, probabilistic picture: The
function fq(x, µ) corresponds to the number of quarks q carrying the fraction x of
the total longitudinal target momentum. If one increases the scale µ the DGLAP
equations predict that the number of partons will also increase, i.e., we increase
the resolution of the process [76]. However, it has to be mentioned that collinear
PDFs do not represent the complete non-perturbative structure of hadrons. Fur-
ther contributions are given by, e.g., generalized parton distributions [81, 82] or
transverse momentum distributions [90–92]. In Chapter 3 we will present the
connection between the PDFs defined in (2.23) and matrix elements of specific
operators computed using LQCD techniques introduced in the next section. This
will finally enable us to draw conclusions about the polarized and unpolarized
structure functions of the pion and rho mesons.

2.3 Lattice QCD

This section is devoted to the formulation of QCD on the lattice, which is a way
to perform non-perturbative, first principle calculations in quantum field theories.
The crucial reasons for this are the non-perturbative regularization of the the-
ory and the ability to directly compute path integrals by the projection onto a
four-dimensional lattice, which allows performing calculations at low energies. In

6There is a vast number of experiments planned by different accelerator facilities around the
world. However, we restrict ourselves to the citation of a few experiments that are relevant for
this thesis.
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this way, one can extract, e.g., hadron masses or information about the hadron
structure from the underlying computations.

The first formulation of LQCD was given by Wilson in 1974 [46] and meanwhile
there exist various excellent textbooks treating lattice field theories, e.g., [93–95],
in a didactically valuable way without omitting necessary details. In the following,
we will collect the knowledge about LQCD that we need for the computations done
in this work from the references mentioned above7. Whenever necessary, additional
references to the primary literature are provided.

With all the technical details explained in this section, it is easy to lose track of
the big picture. Therefore, we would like to conclude this introduction with the
words of R. Hamming, which we should always keep in mind: “The purpose of
computing is insight, not numbers.” [96].

2.3.1 The lattice action

Starting from (2.12) in Minkowski space-time we get the Euclidean action SE [q, q, A]
by rotating to imaginary times t = iτ and replacing the Dirac (Minkowski) gamma
matrices by their Euclidean counterparts, cf. Appendix A.4. Now the QCD action
reads

SE [q, q, A] =
∫

d4x
∑

f

qf
(
γµDµ +mf

)
qf + 1

2 trc

[
FαβF

αβ
]
, (2.27)

where we omitted the explicit sums over Dirac- and color indices. Unless explicitly
stated, from now on we use S [q, q, A] = SE [q, q, A], i.e., we drop the subscript
E for better readability. Furthermore, we rescale the gauge fields (and also the
covariant derivative) by

Aµ →
1
g
Aµ ⇒ Dµ = ∂µ + iAµ, (2.28)

so that the gauge coupling g appears as an overall constant in the gauge part of
the action. In the next step we discretize the four-dimensional space-time as a
NT ×N3 lattice Λ with

Λ =
{
n = (n, n4) |n1,2,3 = 0, 1, 2, . . . , N ;n4 = 0, 1, 2, . . . , NT

}
, (2.29)

7In addition to these references, the lecture contents and personal notes of both, the courses
Lattice QCD 1 and 2 by S. Collins, and the course about Monte-Carlo Methods by J. Bloch,
attended at the University of Regensburg, provided information that is included in this section.

20



where the spinor fields q(x) live on the lattice sites, denoted as

q(x) = q(an) ≡ q(n), with n ∈ Λ. (2.30)

From now on a denotes the distance between individual lattice sites in spatial and
temporal directions using physical units. The corresponding partial derivative is
discretized using the central difference

∂µq(x)→ q(x+ aµ̂)− q(x− aµ̂)
2a +O

(
a2
)
. (2.31)

This approach looks promising and we already have discretized the fermionic part
of the action. However, the introduction of the discretized derivative violates the
gauge invariance of the action. A possible solution is the introduction of link
variables Uµ(n) and U−µ(n) as elements of the SU(3) gauge group. Defining the
gauge transformations of the new fields by

Uµ(n)→ U ′
µ(n) = Ω(n)Uµ(n) Ω†(n+ µ̂) , (2.32a)

U−µ(n)→ U ′
−µ(n) = Ω(n)U−µ(n) Ω†(n− µ̂) , (2.32b)

restores gauge invariance for the discretized derivative. Note that the fields Uµ(n)
and U−µ(n), and thus also their transformations, are introduced as elements of the
gauge group SU(3) and not as elements of the Lie algebra, cf. Section 2.1. At this
point, we can write down a first version of the fermionic part of the discretized
lattice gauge action

SF [q, q, U ] =

a4
Nf∑
f

∑
n∈Λ

(
qf (n)

4∑
µ=1

γµ
Uµ(n)qf (n+ µ̂)− U−µ(n)qf (n− µ̂)

2a +mfqf (n)qf (n)
)
.

(2.33)

To connect the link variables U and the algebra valued gauge fields A of the
continuum action we make use of the parallel transporter

G(y, x) = Pe
i
∫

Cy,x
Aµ·dsµ

, (2.34)

where P refers to the path ordered product [61] and the integration contour Cy,x

is a valid path between y and x. By construction, the parallel transporter has
exactly the same transformation properties as the link variables and therefore
it can be used as a continuum equivalent to the link variables arising from the
lattice discretization. And of course, to compare vectors using the local gauge
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n Uµ(n) n + µ̂

Uν(n + µ̂)

n + µ̂ + ν̂Uµ(n + ν̂)n + ν̂

Uν(n)

Figure 2.3.1: The plaquette (2.36) is built by four link variables depicted by the square.
The order that the links are run through is indicated by the circle in the middle.

transformations, occurring on each lattice site, one has to translate the vectors
from, e.g., x to y, using the parallel transporter. By introducing algebra valued
gauge fields Aµ(n) we rewrite

Uµ(n) = eiaAµ(n) +O
(
a2
)
, (2.35)

to approximate the integral in (2.34) by aAµ(n). Using this approximation in (2.33)
restores the fermionic part of the continuum action (2.27) in the limit a→ 0.

For the gluonic part of the action, we use Wilson’s approach [46] to build a
gauge-invariant combination of link variables using the plaquette, defined by the
product of four link variables

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) , (2.36)

depicted in Fig. 2.3.1. Looking at

P [U ] = tr
 ∏

(n,µ)∈P
Uµ(n)

 = tr
Ω(n0)

∏
(n,µ)∈P

Uµ(n)Ω†(n0)
 = P [U ′] , (2.37)

it is easy to see that the gauge transformation of the trace over a closed path of
link variables is indeed a gauge-invariant object and, thus, the trace over (2.36)
is also gauge-invariant. In his seminal work Wilson used this approach to write
down the pure gauge action SG[U ] as a sum over all plaquettes counted with only
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one orientation

SG[U ] = 2
g2

∑
n∈Λ

∑
µ<ν

Re tr[I− Uµν(n)] . (2.38)

In the limit a → 0 it is straightforward to show that (2.38) approximates the
continuum part of the gauge action (2.27) up to O(a2).

Collecting all the facts derived so far we can write down the first version of a
discretized LQCD action as

S[q, q, U ] = SF [q, q, U ] + SG[q, q, U ] , (2.39)

and start to compute physical observables. However, at least for the fermionic
part we first have to replace the spinors q by Grassmann numbers, to fulfill Fermi
statistics and the Pauli principle, and also for the gluonic part one has to con-
sider some subtleties in the computation of observables. The necessary details are
explained in Section 2.3.2.

Incorporating all the relevant details, and considering that SF is bilinear in q

and q, allows us to rewrite (2.33) for a single flavor f as

Sf
F [q, q, U ] = a4 ∑

n,m∈Λ
qα,a(n)Df

αβ,ab(n|m)qβ,b(m) , (2.40)

and define the naive lattice Dirac operator by

Df
αβ,ab(n|m) =

4∑
µ=1

(γµ)αβ

Uµ,ab(n)δn+µ̂,m − U−µ,ab(n)δn−µ̂,m

2a +mf δn,mδαβδab .

(2.41)

Using trivial link variables Uµ(n) = I, and the Fourier transformation presented
in Appendix A.6, one can write down the Dirac operator in momentum space as

D̃(p) = mI + i

a

∑
µ

γµ sin(apµ) , (2.42)

and the inverse Dirac operator as

D̃−1(p) =
m− i

a

∑
µ γµ sin(apµ)

m2 + 1
a2
∑

µ sin2(apµ)
a→0−−→
m=0

−iγµpµ

p2 , (2.43)

with the correct naive continuum limit for fixed values of p. However, looking at
the momentum space Λ̃ in Appendix A.6, one finds that the inverse Dirac operator
on the lattice contains 15 additional unphysical poles for pµ = π/a, so-called
doublers. To overcome this issue we take advantage of the freedom to add arbitrary
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irrelevant operators to the lattice action as long as these additional operators do
not change the continuum behavior of the theory, cf. [97] and references specified
therein. Following this idea Wilson added a discretized version of a r q ∂µ∂µ q to
the action, which leads to a modified version of the Dirac operator

D(p) = m+ i

a

∑
µ

γµ sin(apµ) + r

a

∑
µ

[1− cos(apµ)] . (2.44)

Introducing this additional term the fifteen extra species pµ, for which one has
an extra contribution π/a − pµ, get a mass of m + r/a while the sixteenth has
mass m. Thus in the continuum limit a → 0 the doublers decouple from the
theory. Incorporating this extra term into (2.40) allows us to replace the naive
Dirac operator (2.41) by

DW
αβ,ab(n|m) = δn,mδαβδab

+ κ

a

∑
µ

(γµ − r)αβ Uµ,ab(n)δn+µ̂,m

− κ

a

∑
µ

(γµ + r)αβ U−µ,ab(n)δn−µ̂,m , (2.45)

using the rescaled field definition

qL(n) =
√
ma+ 4r q(n) = q(n)√

2κ
, with κ = 1

2ma+ 8r . (2.46)

The local term of the action ties the fermion to the lattice site, while the non-
local term is responsible for the fermion hopping to nearest neighbor sites, with
strength κ. Therefore κ is known as the hopping parameter and is used to tune
the mass

am = 1
2κ −

1
2κc(a) , (2.47)

where κc(a) is the critical value of the hopping parameter, corresponding to the
chiral limit m = 0. The hop from one lattice site to another comes along with a
twist of the fermion in spin space (γµ − r) and in color by Uµ. Choosing r = 1 is
a common choice, since (1± γµ) is a projection operator of rank 2.

Now the doublers have been removed from the theory, but on the way we in-
troduced some other issues. One prominent example is the explicit breaking of
chiral symmetry [98] caused by the introduction of the Wilson term in (2.44).
Furthermore, the leading order discretization errors are now O(a). However, using
Symanzik’s improvement [99–101] for the Wilson fermion action, e.g., Sheikoleslami
and Wohlert added a second five-dimensional operator to the Wilson action and
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tuned it to cancel the O(a) term, obtaining an O(a) improved action for on-shell
quantities [102]. We further want to stress that the Wilson fermion and gauge
actions have the same discrete symmetry as the naive action (2.27), i.e., it is in-
variant under parity, charge conjugation, and time reversal. The Wilson Dirac
operator and its inverse are in addition γ5-hermitian, i.e., (DW )† = γ5D

Wγ5.
Up to this point, our remarks have been merely theoretical. A concrete example

of the action used to compute the observables of this thesis is given in Section 2.3.6.

2.3.2 Path-integral formalism

In particle physics, the path-integral formulation is often used as an alternative ap-
proach to quantize fields, which is, especially for non-Abelian gauge theories, easier
to apply than, e.g., canonical methods. While in quantum mechanics the path-
integral literally describes the integral over all possible trajectories of a particle
between two fixed endpoints, a path-integral in field theory actually corresponds
to an integral over all possible field configurations. Detailed explanations of the
path-integral formalism can be found in most textbooks about particle physics,
e.g., [61, 103]. However, in this section, we will focus on the computation of cor-
relation functions in LQCD without going too much into formal details about the
method itself.

In the first place, this work aims at determining observables with the help of
two- and three-point functions. The former shall serve as an example for the
computation of lattice correlators, in this chapter. Introducing general operators
O1 and O2, built from field operators qf

µ,a, to create physical states from the
vacuum, the Euclidean correlator can be written as

〈
O2(t)O1(0)

〉
= 1
Z

∫
D [q, q] D[U ] e−SF [q,q,U ]−SG[U ] O2 [q, q, U ]O1 [q, q, U ] , (2.48)

using the partition function

Z =
∫
D [q, q] D[U ] e−SF [q,q,U ]−SG[U ] . (2.49)

The corresponding measures of the path-integral are defined as

D [q, q] =
∏
n∈Λ

∏
f,µ,a

dqf
µ,a(n) d qf

µ,a(n), and D [U ] =
∏
n∈Λ

4∏
µ=1

dUµ(n) . (2.50)

A priori it is not clear that one can reconstruct n-point functions (respectively two-
point functions) with Minkowski metric from Euclidean correlators (2.48). One
possible approach for the Wilson formulation of LQCD is shown in [104], using
the Osterwalder-Schrader reconstruction. An alternative approach, based on the
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transfer matrix, is given in [105].

As mentioned above the operators O1,2 are built by field operators qf
µ,a so one

could rewrite the l.h.s. of (2.48) for a more general n-point function as a product
of the form

〈
qf1

µ1,a1q
f2
µ2,a2 · · · q

fn
µ1,a1q

f1
µ1,a1q

f2
µ2,a2 · · · q

fn
µn,an

〉
, (2.51)

ignoring the link variables. As stated in Section 2.3.1 the field operators have
to obey Fermi statistics to achieve physically meaningful results. So, the vacuum
expectation value (2.51) must be antisymmetric under the interchange of quantum
numbers of any two fermions. A common way to achieve this is to describe the
corresponding field operators qf

µ,a by Grassmann numbers, see Appendix A.5 for
a short introduction. In the next step, we show how to compute the fermionic
expectation value (2.51).

Starting from (A.25) the generating functional for fermions is given by

W
[
Θ,Θ

]
=
∫

dηdη eηiMijηj+Θη+ηΘ = (det M) e−ΘiM−1
ij Θj , (2.52)

where the generators Θ and Θ serve as source terms and detM can be inter-
preted as the fermion determinant. Note that (2.52) can be generalized by a
4N -dimensional Grassmann algebra using ηi, ηi,Θi,Θi with i = 1, 2, 3, . . . , N , to
finally return to Green functions of the form (2.51). These functions can be ob-
tained from the generating functional via functional derivatives with respect to
the source fields Θ and Θ. Using the form given in (2.52) generalized to N fields
one obtains Wick’s theorem

〈
qi1qjn · · · qi1qin

〉
= (−1)n

∑
P (1,2,...,n)

sign(P )M−1
i1jP1

M−1
i2jP2
· · ·M−1

injPn
, (2.53)

where we use the compact notation qf1
µ1,a1 = qi1 . The sum runs over all possible

permutations P of the numbers 1, . . . , n and sign(P ) = ±1 is the sign of the
permutation, defined as +1 for even permutations and −1 for odd permutations of
the indices. The expectation values in Wick’s theorem are called n-point functions.
For the simple case of n = 2 this corresponds to the quark propagator. Note that
the structure of (2.41) reflects exactly Wick’s theorem (2.53), if one replaces the
general N ×N matrix M with M = a−4D.

In contrast to the fermionic expectation values the gauge part of (2.48) is com-
puted implicitly for most applications, e.g., Metropolis and microcanonical Monte
Carlo algorithms sample the group space in such a way that the corresponding
measure (2.50) is generated automatically, see Section 2.3.4. Therefore we will
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omit the explicit computation at this point. However, cases where dU has to be
known explicitly, e.g., the strong coupling expansion, are covered in, e.g., [46, 104].

2.3.3 Hopping parameter expansion

In the last section we have shown how to compute n-point functions using Wick’s
theorem. These computations will capture a prominent position for the special
cases of n = 2 and n = 3 in the analysis of this thesis, cf. Chapter 4, and we
will finally discover that the expectation value of a two-point function of fermions
corresponds to the inverse of the Dirac operator, i.e., the quark propagator, intro-
duced in Section 2.3.1. The corresponding equation can be written down as〈

q(n)f
α1a1q(m)f

α2a2

〉
= a−4 D−1(n|m)f

α1α2,a1a2 . (2.54)

Technical details of the calculation will be discussed in Chapter 4. However, for
the moment let us concentrate on the analysis of the Dirac operator for large
quark masses, which will play an important role in the estimation of three-point
functions by stochastic methods shown in Section 4.2.5.

The limit of large quark masses allows us to expand the propagator in terms
of the hopping parameter κ introduced in (2.46), using the hopping parameter
expansion (HPE).

Rewriting the Wilson Dirac operator (2.45) in matrix-vector notation for the
special case r = 1 yields

D(n|m) = I− κH(n|m),

with H(n|m)α1α2,a1a2 = a−1
±4∑

µ=±1
(I− γµ)α1α2

Uµ(n)a1a2 δn+µ̂,m ,
(2.55)

where we use the abbreviated sum notation µ = ±1 to incorporate backward hops
in the sum. Rewriting (2.55) as geometric series gives

D−1(n|m) = [I− κH(n|m)]−1 =
∞∑

i=0
κiH i(n|m) , (2.56)

which converges for κ ||H|| < 1. Using (2.46) it follows that ||H|| ≤ 8 and thus
κ < 1/8. What remains is the computation of a general expression for H i(n|m),
given by

H i(n|m)α1α2,a1a2 =
±4∑

µj=±1

 i∏
j=1

(
I− γµj

)
α1α2

× (2.57)
[
Uµ1(n)Uµ2(n+ µ̂1) · · ·Uµi

(n+ µ̂1 + µ̂2 + · · ·+ µ̂i−1)
]

a1a2

δn+µ̂1+µ̂2+···+µ̂i,m ,
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containing a product of i link variables. For the special case of i = 0 we find the
trivial expression

H 0(n|m) = δα1α2 δa1a2 δn,m , (2.58)

which cancels all diagonal contributions in (2.55) and infinitely heavy quarks do
not hop. However, in the general case, the propagator from n to m is a sum over
link variables connecting the two points on the lattice. Depending on the length
of the path it is furnished with additional factors κ and is only non-vanishing for
lattice points n and m connected via

m = n+ µ̂1 + µ̂2 + · · ·+ µ̂i, for µj ∈ {±1,±2,±3,±4}, with 1 ≤ j ≤ i . (2.59)

In Dirac space it is interesting to notice that so-called back-tracking paths are
forbidden due to (I− γµ)(I + γµ) = 0, i.e., we are on a one-way road.

With this result we close the discussion of the HPE. In summary, we have
justified the expansion of the propagator into a sum of non-back-tracking paths
with length i coming along with factors of κi. To leading order this yields the
shortest path only, while for higher orders additional terms arise.

2.3.4 Monte Carlo methods

In (2.48) we stated that the Euclidean correlator is a typical example for the com-
putation of expectation values in LQCD. As introduced in Section 2.3.2, the path
integral formalism is used to perform these kinds of simulations and for very small
lattices this can indeed be done analytically. However, for analyzing the lattice
volumes used in this work it is necessary to perform the corresponding simulations
on computers. Thus, it is mandatory to solve the problems given in Section 2.3.2
using numerical methods. A prominent example for such a simulation procedure
of physical systems are Monte Carlo methods: a statistical framework based on
averaging the results for a large number of random settings.

One of the key tasks is the computation of expectation values of observables,
distributed according to a probability distribution. The expectation value of a
function y(x) is defined by

y ≡ 〈y〉 =
∫

dxρ(x)y(x) , (2.60)

using the probability distribution ρ(x) of the states x. The corresponding variance
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is given by

σ2
y = 〈(y − µ)2〉 = 〈y2〉 − 〈y〉2 , (2.61)

where µ is defined as the average of y. In principle, it would be beneficial to directly
compute (2.60) and (2.61), however, in the numerical simulations elaborated in
this work we will estimate these expectation values by the sample mean since a
direct computation is not possible. Using a sample S = {xi | 1 < i < N} of N
configurations drawn according to ρ(x) the sample mean is given by

y = 1
N

N∑
i=1

y(xi) . (2.62)

The corresponding standard error is defined as the standard deviation of the sam-
ple means y, measured over all possible samples S of size N , drawn independently
from the population x. It is given by

σy = σy√
N

, (2.63)

so a measured estimate can be written down as

〈y〉 = y ± σy√
N
, with σy ≈

√√√√ 1
N − 1

N∑
i1

(yi − y)2 . (2.64)

Following the central limit theorem we know that for N →∞ the sample mean y is
normally distributed, with mean µ and standard deviation σy/

√
N approximated

by the sample variance. This holds for independent and identically distributed
original distributions. For large N the standard error σy can be related to the
probability that the estimate y lies within a distance σy (68.3%), 2σy (95.4%),
3σy (99.7%), . . . , away from the true mean µ. Since one of our main objec-
tives is the computation of physically meaningful results it would be beneficial
to draw random numbers from a given probability distribution and thus reduce
the standard errors of our results by suppressing contributions with low-impact.
An effective way to reduce the variance is the idea of importance sampling. By
introducing a second probability distribution ρ̃(x) in (2.60) one gets

〈y〉p =
∫

dx ρ̃(x)ρ(x)y(x)
ρ̃(x) =

〈
ρy

ρ̃

〉
, (2.65)

i.e., on the one hand, the states x can be sampled according to ρ(x) or ρ̃(x) to
estimate y. On the other hand, the distribution ρ̃(x) can be chosen such that
the variance of (ρy)/ρ̃ is small because states with a high probability are sampled
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more often.
Exploiting the results of the discussion about expectation values, error esti-

mates, and importance sampling allows us to illustrate the computation of LQCD
observables using the pedagogical example of a simple multi-dimensional integral.
Starting from

Id =
∫

V
ddxρ(x)

[
f(x)
ρ(x)

]
=
〈
f

ρ

〉
, where x ∈ V ⊆ Rd , (2.66)

with a positive and properly normalized probability distribution ρ(x) over V , we
find that Id is an expectation value of f/ρ. Thus the integral can be estimated
numerically using a Monte Carlo integration and sampling the points according
to ρ(x) as

Id ≈
1
N

N∑
i=1

f(xi)
ρ(xi)

, with σId
= σf/ρ√

N
. (2.67)

The standard deviation σId
decreases as 1/

√
N , independent of the dimension d.

Compared to standard quadrature methods, e.g., the Gaussian quadrature [106]8,
which scale as 1/N k

d , where k is the order of the quadrature, this yields a key
advantage especially for higher-dimensional integrals. The points xi used in the
Monte Carlo integration are randomly sampled according to ρ(x) using a random
number generator. Common examples, suitable for Monte Carlo simulations, are
the Mersenne twister [108], or the RANLUX [109] algorithms. This is, however, not
a random choice. The random number generators used in Monte Carlo simulations
have to furnish uniformly distributed numbers with (very) long periods and small
correlations. Additionally, the used algorithms should be optimized and as fast as
possible to minimize the runtime of the integration procedure.

Depending on the problems we want to solve numerically one often needs ran-
dom number generators producing values of x in a finite range from a non-uniform
probability distribution ρ(x). A widely used algorithm to produce these kinds of
random numbers is the acceptance-rejection method introduced in [110]. It relies
on the approximation of ρ(x) by a function g(x) satisfying

g(x) ≥ ρ(x) ∀ x ∈ [a, b) . (2.68)

Using this approximation one can generate a random number x from the proba-

8Here we refer to textbook literature about numerical integration, where the Gauss quadrature
is represented in a well comprehensible way. However, the method was invented by Gauss already
at the beginning of the 19th century, the representation used today was formulated by Jacobi in
1826 [107].
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bility distribution

g(x)∫ b
a dxg(x)

, (2.69)

and accept x with probability q = ρ(x)/g(x) ≤ 1. This accept-reject step is
achieved by the generation of a second uniformly distributed random number
x̃ ∈ [0, 1) and x is accepted only if x̃ ≤ q.

After this general discussion, we now want to adapt the framework of Monte
Carlo simulations to the computation of path integrals and observables as shown
in Section 2.3.2. Focusing on the gauge part of (2.48) and simplifying to the case
of a single operator the expectation value of O can be approximated as

〈O〉 ≈ 1
N

N∑
i=1
O[Ui] , (2.70)

where now the gauge fields Ui are random variables, sampled according to the
measure

dP (U) = e−SG[U ]D[U ]∫
D[U ] e−SG[U ]

∏
f

detDf [U ] (2.71)

where Df is the fermion determinant, c.f. (2.52). Note that even for lattices of
moderate size the Dirac operator D is a huge matrix and has to be computed
for every gauge configuration. Thus the computational cost of calculating detM
becomes prohibitively high. In Section 2.3.6 we provide further references how
this problem is solved for the gauge configurations used in this work.

One could also sample the random gauge field configurations Ui uniformly, i.e.,
use every configuration of the configuration-space weighted with the same proba-
bility. This would, however, yield a non-manageable number of configurations to
achieve reasonable errors already for very small volumes Λ, and in addition, one
would sample mainly samples of irrelevant states that contribute only negligibly
to the result. To overcome this issue we replace the set of all configurations by
a much smaller subset UN = {Ui | 1 ≤ i ≤ N} of configurations, as mentioned
above, where i is called the Monte Carlo time. In addition the configurations are
chosen according to (2.71), to get a valid approximation from the subset UN . Tak-
ing into account these considerations the main task is to generate configurations
according to (2.71), using a Markov chain. It describes a stochastic process to
generate a configuration Ui, generated from the configuration Ui−1, characterized
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by transition probabilities P (Ui−1 → Ui) with the requirements

0 ≤ P (Ui−1 → Ui) ≤ 1, and
∑

Ui∈Ω
P (Ui−1 → Ui) = 1 , (2.72)

where Ω is the configuration space. I.e., every state Ui can be reached from Ui−1

with the possibility that Ui = Ui−1 and that not all states Ui can be reached in a
single step. But note that any configuration can be reached in a finite number of
Markov steps (ergodicity). Furthermore, P depends only on Ui−1 and Ui and P

is independent of the Markov time i. Once the system has reached equilibrium,
according to the desired probability distribution, each state Ui is created and
annihilated with the same probability and the equilibrium equation reads

∑
Ui−1∈Ω

P (Ui−1)P (Ui−1 → Ui) = P (Ui) , (2.73)

where P (Ui) is the probability to find a configuration Ui. Configurations generated
after the equilibrium is reached reproduce the canonical ensemble and can be used
to compute observables. At this point the system is called thermalized. In practice,
almost every algorithm in use satisfies the detailed balance condition

P (Ui−1)P (Ui−1 → Ui) = P (Ui)P (Ui → Ui−1) , (2.74)

which is even more restrictive than (2.73) but not strictly necessary to con-
verge to the correct probability distribution. However, the transition probabilities
P (Ui−1 → Ui) are not uniquely determined and one has some freedom of choice in

P (Ui−1 → Ui)
P (Ui → Ui−1)

= P (Ui)
P (Ui−1)

, (2.75)

used in the different implementations of various Monte Carlo algorithms. Common
examples are the Metropolis [111] and the heat bath [112] algorithms. The gauge
ensembles in this thesis are generated using hybrid Monte Carlo algorithms [113]
which are better suitable to treat fermions. In most cases the underlying principle
relies on the division of the transition probability P (Ui−1 → Ui) into a proposal
probability g(Ui−1 → Ui) and an acceptance probability A(Ui−1 → Ui). The
detailed balance equation (2.75) yields

P (Ui−1 → Ui)
P (Ui → Ui−1)

= g(Ui−1 → Ui)A(Ui−1 → Ui)
g(Ui → Ui−1)A(Ui → Ui−1)

, (2.76)

which allows us to generate states with a simple g and tune A such that detailed
balance is satisfied. If the configuration Ui is accepted it is appended to the
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Markov chain otherwise a new proposal configuration is created and we restart the
accept-reject procedure9. Using this method we finally achieve adequate statistical
accuracy with less computational effort.

However, in contradiction to the assumption entering in (2.63) configurations
provided by the Markov chain are correlated, while the computation of the stan-
dard error (2.63) only holds for N independent measurements. While we still get
a correct estimate for the expectation value (measured on an ensemble of Markov
chains) the naive standard error underestimates the true statistical error of the
observable according to

σ2
y =

σ2
y

N
2τint,y , (2.77)

with integrated autocorrelation time

τint,y = 1
2 + 1

σ2
y

N∑
t=1

(
1− t

N

)(
〈yiyi+t〉 − 〈yi〉 〈yi+t〉

)
, (2.78)

where t = j− i with j > i is defined as the difference in Monte Carlo time between
two points of the chain. We further define the autocorrelation function

Ry(t) ≡ Cy(t)
Cy(0) , with Cy(t) = 〈yiyi+t〉 − 〈yi〉 〈yi+t〉 , (2.79)

which depends on the time difference t, the update process, and the observable y.
Due to the high computational cost of the ensemble generation for LQCD simula-
tions, we are not able to compute the ensemble average of Markov chains to get y.
Instead, we estimate the ensemble average and the autocovariance function Cy(t)
by a Monte Carlo time average for a large number of Monte Carlo time-steps N .
This yields

Cy(t) ≈ 1
N − t

N−t∑
i=1

yiyi+t −
(

1
N − t

N−t∑
i=1

yi

)(
1

N − t

N−t∑
i=1

yi+t

)
, (2.80)

and the variance is estimated by σ2
y = Cy(0). To achieve configurations that are

representative for the chain one has to choose N � τint,y and the standard error
on correlated measurements is finally given by

σy =
√

2τint,y

N
σy , with τint,y = 1

2 +
N∑

t=1
Ry(t) . (2.81)

9In actual simulations, e.g., using the Metropolis algorithm, one does not store every accepted
configuration. Instead, the accept-reject step is performed V times (one sweep) before appending
the configuration to the Markov chain, to reduce autocorrelations.
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I.e., the number of effectively independent data points is reduced by a factor of
1/(2τint,y). As a final remark we want to mention that Ry(t) decreases exponen-
tially for t → ∞, which defines the exponential autocorrelation time τexp. In
practice τexp provides a measure of the convergence rate of the Markov process
towards its equilibrium as t grows. τexp is often approximated by the integrated
autocorrelation time (2.78).

From the above considerations, we find that the autocorrelation time depends
on the updating algorithm as well as on the simulation parameters. For the LQCD
simulations shown in this thesis, one expects that the integrated autocorrelation
time is proportional to the correlation length ξy of an observable y

τint,y ∼ ξz
y ∼ a−z , (2.82)

where z ≥ 0 is the dynamical critical exponent, depending on the updating al-
gorithm. The simulation of finite lattices with linear size L further yields that
ξ ≤ L and thus, near a critical point (where the correlation length ξ of the system
diverges), the numerical cost increases like a power of the lattice extension Lz.
This behavior is called critical slowing down.

2.3.5 Scale setting

In Section 2.3.1 we introduced the lattice spacing a to write down a discretized
version of the QCD action in (2.39). If one starts generating gauge ensembles,
using the methods presented in Section 2.3.4 and the LQCD action, the lattice
spacing a is only set implicitly via the inverse coupling β = 6/g2

0 using the bare
coupling g0. Thus, we simulate at finite lattice spacing a but the value of a in
physical units is a priori unknown and depends mainly on the lattice coupling.
To compare results at various couplings, and to connect to the physical world, we
need to fix the scale.

A common way to set the scale is using the static quark potential V (r) and
compute the corresponding values for r = 0 and the Sommer parameter r =
r0 [114]. By simply counting the number of lattice points n between these two
fixed points the lattice spacing a is determined by r0/n. For a more detailed
explanation see, e.g., [93].

However, for the Coordinated Lattice Simulations (CLS) gauge ensembles used
in this work, the scale is set using another method, based on the determination of t0
defined by the Wilson flow [115]. In contrast to the use of static quark potentials
the determination of t0 is independent of the renormalization, shows only mild
quark mass and cut-off effects, and achieves comparatively high accuracy. The
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flow equation of lattice gauge fields is given by

∂tVt(n, µ) = −g2
0 (∂n,µ SG[Vt])Vt(n, µ) , with Vt(n, µ)

∣∣∣
t=0

= Uµ(n) , (2.83)

using the Wilson gauge action (2.38). With the help of numerical integration
methods one can determine the gauge fields for an arbitrary but finite flow time t
and compute observables as, e.g., the average action density

E(t) = 1
4|Λ|

∑
n∈Λ

F Vt
αβ(n)F Vt

αβ(n) , (2.84)

using the four plaquette Wilson loops as the definition of the field strength tensor
F Vt

αβ(n). As pointed out by Lüscher [115] perturbation theory prescribes the scaling
behavior of 〈E〉 as a physical quantity of dimension 4. This can be checked using
the reference scale t0 defined as

t2 〈E〉
∣∣∣
t=t0

= 0.3 . (2.85)

If the expectation value 〈E〉 is a physical quantity the dimensionless ratio t0/r
2
0

has to be independent of the lattice spacing up to corrections proportional to
some power of a. Finally the values t0 can be used as a reference scale analogous
to the Sommer parameter. In actual lattice simulations the lattice spacing a is
determined via various, discrete measurements of t/a2 and equating (2.85).

2.3.6 CLS lattice action

In the following we will describe the framework that is used for the simulations in
this thesis. The gauge configurations have been generated by the CLS effort, which
is a trans-European project established in 2007 to combine human and computer
resources in the field of lattice gauge theories. One of the main goals within the
collaboration is to perform LQCD simulations for a wide range of lattice spacings,
volumes, and pion masses, using a single lattice formulation [116]. A detailed
overview of the CLS program for Nf = 2 + 1 flavor simulations is given in [117].
In this section, we recap the deliberations in [117] with special emphasis on the
key elements used for the analysis in this work.

Based on the previous considerations in this section, it is obvious that the gauge
fields used in our simulations must meet certain requirements. First of all, one
needs configurations with quark masses close to the physical values combined with
fine lattices, to minimize discretization effects, and large volumes to minimize finite
volume effects. To also achieve reliable statistical accuracy one further has to use
Markov chains with an adequate length, cf. (2.81). Due to the continuous progress
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in computer development, the statistical accuracy of LQCD is still increasing
over time and systematic effects become more visible and have to be taken into
account. However, the generation of ensembles is the most demanding part of the
computation, therefore the main goal is to balance the sources of systematic and
statistical uncertainties to achieve precise final results. As a first step CLS gauge
configurations for very fine lattices are generated using open boundary conditions
in time to avoid freezing of the topological charge [118, 119]. This setup has the
advantage that one can prevent exaggeratedly bad scaling behaviors due to critical
slowing down (2.82) and by keeping the trajectory length constant in all runs we
expect Langevin scaling τint ∼ a−2 [117].

Next we write down the action analogous to (2.39). For the gauge fields the
Lüscher-Weisz action [101] is used

SG[U ] = β

6

(
5
3
∑

p

tr[I− U(p)]− 1
12
∑

r

tr[I− U(r)]
)
, (2.86)

where β = 6/g2
0 is the inverse gauge coupling. The sums run over the plaquette

and rectangle terms of the elementary loops on the lattice, cf. Tab. 1 in [101],
and are multiplied by their respective coefficients10. The fermion action is defined
analogous to (2.40), including a sum over Nf = 2+1 flavors and using the Wilson-
Dirac operator [46]

DW (m0,f ) = 1
2
∑

µ

[
γµ

(
∇∗

µ +∇µ

)
− a∇∗

µ∇µ

]
+ a cSW

∑
µ,ν

i

4σµνF̂µν +m0,f ,

(2.87)

where the Sheikholeslami-Wohlert term [102] is included for O(a) improvement
of the action11 [120] and m0,f is the bare quark mass for flavor f . An explicit
form of the discretized field strength tensor F̂µν can be found in [121] and non-
perturbatively determined values for cSW are given in [120].

In the case of the Nf = 2 + 1 simulations by CLS the physical quark masses are
fixed by the pion and kaon masses using

φ2 = 8t0m2
π, φ4 = 8t0

(
m2

k + 1
2m

2
π

)
,

φ2 ∼ mu +md, φ4 ∼ mu +md +ms,
(2.88)

10In general one could also sum over parallelograms and bent rectangles, however, the corre-
sponding coefficients are set to 0 by definition.

11To avoid confusion we follow the notation in [117] and use the operators ∇ and ∇∗ for the
covariant forward and backward derivatives instead of the explicit notation in Section 2.3.1.
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where the scale is set through t0 and the relations to the quark masses follow from
leading order chiral perturbation theory [122, 123]. However, the parameters of the
simulations have to obey certain restrictions to, e.g., achieve O(a) improvement.
In Section 2.3.5 we have introduced bare parameters in general as functions of a.
This is especially important for the strong coupling g0. To improve g0 it was shown
in [121, 124] that the strong coupling has to be improved using a mass-dependent
term. Keeping the modified version of g0 fixed allows us to define trajectories in
the φ2 − φ4 plane. At the current stage, the CLS ensembles are generated along
three different trajectories in the renormalized quark mass plane

• tr[M ] = const.: The trace of the quark mass matrix is kept constant near
its physical value.

• ms = ms,phy: The strange quark mass is kept constant close to its physical
value [125].

• ml = ms: The symmetric line.

All ensembles available along the three trajectories are depicted in Fig. 2.3.2.
Fig. 2.3.3 shows the three different trajectories in the m2

π −m2
k plane. The three

solid lines depict the behavior of m2
k as a function of m2

π for the three trajectories
using the standard Gell-Mann–Oakes–Renner relations. For the symmetric line
this yields the simple relation m2

k = m2
π while we get

m2
k ≈

2m2
k,phy +m2

π,phy −m2
π

2 , for tr[M ] = const.,

m2
k ≈

2m2
k,phy −m2

π,phy +m2
π

2 , for ms = ms,phy,

(2.89)

where mk/π,phy are the physical pion and kaon masses [51]. The data points are
plotted using the ensemble parameters mk and mπ respectively. In contrast to
a similar plot in the φ2 − φ4 plane Fig. 2.3.3 has the advantage that it makes
the extrapolation strategy, using CLS ensembles, intelligible in terms of physical
masses. While the tr[M ] = const. and the ms = ms,phy trajectories intersect at
the point of nearly physical pion and kaon masses (quark mass extrapolation) the
ml = ms trajectory extrapolates to the chiral limit.

In the remainder of this section we briefly discuss some subtleties regarding
the action used in the actual simulations and the determination of t0. Using the
Wilson-Dirac operator (2.87) it is possible to produce barriers of infinite action,
created by zero eigenvalues of DW , during the simulations. To overcome this
issue it was proposed in [126] to modify the action with a twisted-mass term that
generally increases the stability of simulations and avoids such configurations.
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This extra term is subsequently compensated by a reweighting factor W ` at the
analysis stage. For the generation of the CLS gauge ensembles we use the exact
relation [126]

det
[
D†

`D`

]
= W ` det


(
D†

`D` + µ2
)2

D†
`D` + 2µ2

 , (2.90)

to rewrite the determinant12 of the light quark pair in the action. Here µ serves
as an infrared regularization and shifts the spectrum of the Dirac operator along
the positive real axis. The corresponding reweighting factor is given by

W ` = det

 D†
`D`(

D†
`D` + µ2

)2

(
D†

`D` + 2µ2
) . (2.91)

In the actual simulations only the determinant in (2.90) is computed and contains
the major contribution to the fermion force.

Contrary to the two mass degenerate light quarks the strange quark mass is
simulated using the rational hybrid Monte Carlo algorithm [130, 131]. Including
strange quarks we get

detDs = ±
∣∣∣ detDs

∣∣∣ . (2.92)

Following [117] the positive square root
√
D†

sDs can be approximated by

det
[√
D†

sDs

]
≈ detRs , with Rs = A−1

Np∏
i=1

D†
sDs + µ2

i

D†
sDs + ν2

i

, (2.93)

where the matrix A and the parameters µ and ν are computed using Zolotarev’s
approximation and Np denotes the number of poles. The approximation error of
the rational approximation in (2.93) can be taken into account by reweighting
with

W s = det
[
DsR

−1
s

]
. (2.94)

Note that the rooting needed to simulate the strange quarks gives rise to a second
multiplicative contribution to the reweighting factor W = W `W s, see also [132].
Primary quantities A can finally be measured using expectation values estimated

12Note that in the actual simulations the determinant is split up further into several factors
to allow for frequency splitting in the Monte-Carlo time integration using Hasenbusch’s mass
factorization [128, 129].
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by the modified action via

〈A〉 =
∑

i W
iAi∑

i W i
. (2.95)

To simulate the complete action a hybrid Monte Carlo algorithm [113] with a
hierarchical integration scheme [133] is used. The simulation setup is described
in [119] and is implemented in the OpenQCD code [134] for ensemble production.

The lattice scale for the setup chosen in the CLS simulations in use is set via
the Wilson flow introduced in Section 2.3.5, see also [117, 127, 135]. Note that,
for lattices with open boundary conditions in time, the value E(t) in (2.84) is an
average over the central points only. In the analysis of this work we define the
value t∗0 [136] by

φ4

∣∣∣∣
t0=t∗

0

= 8t0
(
m2

k + 1
2m

2
π

) ∣∣∣∣∣∣
t0=t∗

0

= 12t0m2
π

∣∣∣∣
t0=t∗

0

= 1.110 , (2.96)

along the symmetric trajectory ml = ms. Following the discussions in [136]
and [127] we use

√
8t∗0 = 0.413 fm , (2.97)

in our analysis13. To compute, e.g., the lattice spacing a, the ratio t0/a2 is deter-
mined on a specific ensemble and a = 0.170569 fm/(8t∗0a−2).

However, CLS is only one among many other simulation programs. For the
sake of completeness, we finally want to give an (incomplete) list of several other
simulation programs that use different actions, fermions, algorithms, etc. to create
gauge ensembles, which can also be used for LQCD computations. Simulations
using Wilson fermions are also performed by PACS-CS [137], QCDSF [138], and
the Hadron Spectrum collaboration [139]. Twisted mass fermions are used by
ETM [140] and domain wall fermions are used by MILC [141], JLQCD [142], and
RBC-UKQCD [143].

2.3.7 Bootstrap error estimation

In Section 2.3.4 we introduced the concept of Monte Carlo simulations to compute
Euclidean correlation functions on the lattice and we have shown how to compute
the corresponding expectation values and errors in (2.81). However, in practical
simulations, we are interested in two kinds of quantities and distinguish between

13[127] was not published at the time of writing this thesis. The numerical values were provided
by G.S. Bali (private communication).
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• primary quantities, measured separately on each configuration for which the
expectation value can be estimated by a sample average,

• secondary quantities, all quantities which are not primary quantities, e.g.,
fit parameters.

Especially the latter play an important role in the analysis elaborated on in this
thesis. Using a brute force method it would be possible to perform measurements
of the correlation functions on all configurations available and average all the
results to perform the fit. To get a naive error estimate from these computations
one would have to create many such sets of data and finally apply the methods
shown in Section 2.3.4, which is very expensive in terms of computer time. Hence,
resampling methods like jackknife or bootstrap, see, e.g., [144], are used to estimate
observables and the corresponding errors. We will use the latter in this work.

Let’s assume we want to compute a secondary quantity Q(S), computed from
a sample S of N independent configurations given by

S =
{
µt | t = 1, . . . , N

}
. (2.98)

A bootstrap-sample (or pseudo-sample) S(i) with i = 1, . . . ,M , is given by ran-
domly choosing N configurations out of S with replacement, i.e., allowing for
duplicates. This resampling comes along with no additional cost in terms of the
Monte Carlo simulation, since we just recycle the available results. Next we com-
pute the M pseudo measurements Q(i) = Q

(
S(i)

)
to obtain the bootstrap estimate

of the standard error via

σQ =

√√√√M−1
M∑

i=1

(
Q(i) −QB

)2
, with QB = 1

M

M∑
i=1

Q(i) . (2.99)

The bootstrap estimate of the standard error on Q(S) is the standard deviation
of the pseudo measurements Q(i), given by

Q = Q(S)± σQ . (2.100)

In terms of bootstrap measurements, N is called the sample size and determines
the size of the standard error, while M is the number of bootstrap samples. We
stress that the error decreases with increasing the sample size N and not M ,
however, for M → ∞ the error σQ will converge to its expectation value for a
sample of size N . To achieve valid error estimations it is further important to
remove autocorrelations. In our implementation the minimization of correlations
is ensured by the binning method, where we divide the N measurements into nB
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Figure 2.3.3: Visulaization of the subset of CLS gauge configurations analyzed in
this thesis. We plot the three different trajectories as solid lines, using (2.89), and
the corresponding data points in the m2

π – m2
k plane. This plot directly shows the

extrapolation strategy to reach the physical point. However, as one can see the data
points are partly located slightly above or below their corresponding trajectory, which is
attributed to small (but natural) inaccuracies in the parameter tuning of the ensembles.
This issue can be overcome by applying appropriate shifts when plotting the data-points
in extrapolations, etc. .

blocks of block size (bin size) N(i), finally used to measure an observable. If the
blocks are large enough the measurements on successive blocks can be considered
as independent if N(i) � τint. Typically we generate 500 bootstrap samples with
a bin size of 40 molecular dynamics units.
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3
Structure functions and deep

inelastic scattering

A common way to investigate the internal structure of hadrons are DIS exper-
iments, realized by the scattering of leptons off a hadronic target. Prominent
examples are the DIS experiments by HERA [87, 88] and at JLab Hall A [89] (cf.
the conditionally approved proposal [145]). In a nutshell, the term DIS describes
scattering processes with a highly virtual photon transfer from the lepton to the
target hadron, resulting in an (unknown) final state of many hadrons with large in-
variant mass. The corresponding processes are characterized by three sub-groups:
If all final states are known (measured) the process is called exclusive DIS, if the
final states are only partially known it is called semi-inclusive (or semi-exclusive)
DIS, and if the final state remains unknown the process is called inclusive DIS.
Note that the final lepton momentum is measured in all cases. For this thesis, we
will restrict ourselves to the case of inclusive DIS using the basic diagram shown
in Fig. 2.2.1.

There are various valuable introductions to DIS. However, the introduction
given here relies mainly on [61, 146, 147] and the lecture notes of the QCD courses
attended at the University of Regensburg. Parts of this chapter were also already
published in [148]. Whenever necessary, additional references are provided.
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3.1 Inclusive deep inelastic scattering

In typical DIS experiments one measures the scattering of an incoming lepton with
energy E off a fixed hadronic target. The corresponding detectors measure the
energy and direction of the scattered lepton while the final hadronic state (denoted
by X) remains unknown for the moment, cf. Fig. 2.2.1a. Interactions between the
lepton and the hadron take place by the interchange of a virtual photon, which is
absorbed by the hadron to produce the final state X. In the DIS region the target
hadron is blown apart by the virtual photon and fragments into many particles.

To produce predictions which can be compared to experiment the main goal of
this section is to write down the cross-section of a DIS process in terms of the
leptonic tensor Lµν , containing the information about the initial and final lepton,
and the hadronic tensor W µν . Starting point of the computation is the general
expression for the DIS cross-section depicted in Fig. 2.2.1

iM = (−ie)2 −igµν

q2 〈k′, s′
l| J

µ
l (0) |k, sl〉 〈X| Jν

h (0) |p, λ〉 , (3.1)

where λ is the target and sl the lepton polarization along a quantization axis and
Jl/h describe the leptonic and hadronic currents respectively. The differential cross-
section is then obtained by squaring (3.1) and multiplying with the corresponding
phase space factors

dσ = e4

(q2)2
d3k′

(2π)3 2E ′
4πLµνW

µν(p, q)λλ

4k · p , (3.2)

with

Lµν =
∑
s′
〈k, sl| Jl,µ(0) |k′, s′

l〉 〈k′, s′
l| Jl,ν(0) |k, sl〉 , (3.3)

W µν(p, q)λ,λ′ = 1
4π

∫
d4xeiq·x 〈p, λ′| [Jµ(x), Jν(0)] |p, λ〉 . (3.4)

Note that the commutator in the definition of (3.4) is purely conventional because
the subtracted term vanishes for a ground-state hadron. It is inserted to achieve
a nicer analytical structure when continued away from the physical region [146],
which we will exploit in subsequent calculations. All information about the DIS
process is contained in (3.3) and (3.4). While the leptonic tensor will be computed
explicitly in the next section the hadronic tensor is a priori unknown, as it depends
on the internal quark-gluon structure of the target hadron.
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3.2 Structure functions

In the last section, and also in Section 2.2, we have shown that the cross-section
of a DIS experiment can be factorized into a leptonic and a hadronic tensor.
The main goal of this section is to describe these objects and to finally relate
the hadronic tensor to structure functions analogous to (2.19). After the more
technical decomposition of Wµν we interpret the structure functions in the naive
parton model and also using helicity amplitudes.

3.2.1 The leptonic tensor

Leptons are point-like fermions and the leptonic tensor (3.3) can be computed
explicitly. Rewriting (3.3) yields

Lµν =
∑
s′

l

u(k, sl)γµu(k′, s′
l)u(k′, s′

l)γνu(k, sl) , (3.5)

where we sum over the unknown final spin s′
l. Imposing that the polarization of a

spin-1/2 particle is given by1 2sµ
l = u(k, sl)γµγ5u(k, sl) and using the identies

∑
s′

l

u(k′, s′
l)u(k′, s′

l) =
(
/k′ +ml

)
, (3.6a)

u(k, sl)u(k, sl) = (/k +ml)
1 + γ5 /slm

−1
l

2 , (3.6b)

one can rewrite the initial definition by

Lµν = tr
[
(/k′ +ml)γµ(/k +ml)

1 + γ5/sl/ml

2 γν

]
= 2

(
kµk

′
ν + kνk

′
µ − gµνk · k′ − i εµναβq

αsβ
l

)
+O (ml) . (3.7)

Note that the spin-dependent part of Lµν is antisymmetric in µν while the spin-
independent part is symmetric. I.e., the symmetric part of the hadronic tensor can
be probed with an unpolarized lepton beam, while probing the antisymmetric part
requires a polarized beam. As a final remark we want to state that the current is
conserved via ∂µJ

µ = 0 and thus qµLµν = qνLµν = 0. Both, the symmetry consid-
erations and the current conservation will become important in the remainder of
this section.

1Here we use the normalization given in [146], omitting the fermion mass.
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3.2.2 The hadronic tensor

The cross-section of deep inelastic scattering can be written as a product of a
leptonic and a hadronic part as shown in (3.2). In this factorization the hadronic
tensor characterizes the full hadron structure relevant for DIS experiments as a
function of the polarizations λ and λ

′ (i.e., the spin along the polarization axis)
and the spatial target momentum p. For the sake of this thesis we will extend
the familiar spin-1/2 definition of the hadronic tensor given in, e.g., [146], to the
spin-1 case presented in [147].

We start the discussion with a brief reminder on the density matrix formalism.
If one thinks about the states in, e.g., unpolarized DIS experiments one notices
that the description by so-called pure states is not sufficient to characterize the
system adequately. E.g., we have no information about the helicity of the initial
hadronic target. To overcome this issue we make probabilistic statements instead
by introducing the density matrix

ρ =
∑

i

pi |ψi〉 〈ψi| , (3.8)

where pi is the probability to find a pure state |ψi〉 of the ensemble, with ∑i pi = 1.
In general, the density matrix of these mixed states is hermitian, positive, and
normalized as tr[ρ] = 1. The expectation value of an observable A is given by

〈A〉ρ = tr[ρA] =
∑

i

pi 〈ψi|A |ψi〉 . (3.9)

In contrast to the density matrix of a pure state the relation ρ2 = ρ does not hold
in the mixed case, however, a further computation of tr[ρ2] yields a measure for
the mixedness of a density matrix. For pure states it is equal to 1 while it is ≤ 1
for mixed states.

Considering the polarization states of a spin J target the most general form of
the density matrix can be written down as [146]

ρ =
J∑

λ,λ′=−J

|λ〉 pλλ′ 〈λ′| . (3.10)

Since the polarization states transform as the spin-J representation under the
rotation group the density matrix can be decomposed into 2J + 1 irreducible
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tensors. Following [149, 150] one obtains

ρ0 = 1 (spin-0),

ρ 1
2

= 1
2 (1 + σ · a) (spin-1/2), (3.11)

ρ1 = 1
3 (1 + P · J +WijTij) (spin-1).

While the spin-0 case is trivial in the spin-1/2 case the real vector a is a measure
for the mixedness and, thus, one finds three parameters for the polarization. In
the spin-1 density matrix we find 8 parameters. The product P ·J belongs to the
antisymmetric part while Tij is the symmetric part defined as

Tij = 1
2 (JiJj + JjJi)−

2
3δij , with i, j ∈ [1, 2, 3] , and i ≤ j , (3.12)

where the Ji’s are the angular momentum operators for spin-1. Note that the
symmetric case does not include the identity ∼ δij. In this way, we introduced
the additional quadrupole moment JiJj to identify the ensemble. The hadronic
tensor for a spin-J particle is finally defined as

Wµν(p, q, ρ) = ρλ′λ Wµν(p, q)λλ′ = tr[ ρWµν(p, q)] , (3.13)

treating W (p, q) as a matrix in spin space. The (general) argument ρ corresponds
to the density matrices (3.11). For spin-1/2 it contains the spin information of the
initial and final state spinors, for spin-1 additional contributions arise. Following
the discussions in [146, 147] one imposes parity P and time reversal T invariance as
well as photon crossing symmetry and current conservation qµWµν = qνWµν = 0
which allow to decompose the hadronic tensor into a generic tensor structure
including functions of the Lorentz invariants of the process. While the P and T
invariance conditions are straightforward to show crossing symmetry is achieved
by exchanging µ and ν and replacing q → −q. In the case of a spin-1 target the
decomposition of the hadronic tensor can be written down as

W µν =− F1 g
µν + F2

p · q
pµ pν + ig1

p · q
εµνλσ qλsσ + ig2

(p · q)2 ε
µνλσqλ (p · qsσ − s · qpσ)

− b1r
µν + 1

6b2 (sµν + tµν + uµν) + 1
2b3 (sµν − uµν) + 1

2b4 (sµν − tµν) .

(3.14)

At this point, we already omitted all terms proportional to qν or qν in the defini-
tion of the hadronic tensor due to the current conservation of the leptonic tensor
described at the end of Section 3.2.1. Note that this removes the explicit current
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conservation, and, thus, (3.14) is only valid as long as it is contracted with a ten-
sor Lµν that fulfills qµLµν = qνLµν = 0. However, with the decomposition of W µν

in (3.14) we introduced a multitude of new variables and functions.

In the remainder of this section, we provide definitions to all yet unknown
objects needed in subsequent calculations and discussions. The kinematic factors
r, s, t, and u depend on the momentum transfer q, the target momentum p, and
the target polarization ε. They are defined as

rµν = 1
(p · q)2

[
q · ε∗ q · ε− 1

3(p · q)2κ
]
gµν ,

sµν = 2
(p · q)3

[
q · ε∗ q · ε− 1

3(p · q)2κ
]
pµpν ,

tµν = 1
(p · q)2

[
(q · ε∗)p{µεν} + (q · ε)p{µ(ε∗)ν} − 2

3(p · q)pµpν
]
,

uµν = 2
p · q

[
(ε∗){µεν} + 1

3M
2gµν − 1

3p
µpν

]
,

(3.15)

using the shorthand symmetrization notation given in Appendix A.7 and the
definition of the polarization vectors ε given in Appendix A.8. Note that the
quantities (3.15) are constructed such that they vanish upon averaging over the
target spin. Furthermore the target hadron mass is denoted by M and κ ≡
1 + (Mq)2/(p · q)2. The vector sµ is the equivalent to the spin four-vector of the
spin-1/2 case and is defined by

sµ = −iεµνρσe∗
νeρpσ . (3.16)

What remains is the discussion of the eight structure functions. As already men-
tioned above the structure functions can only depend on the Lorentz invariants of
the process, in particular, p · q and −q2, further we use that p2 = M2 = const.. It
is, however, convenient to rewrite this dependence in the standard notation using

Q ≡
√
−q2 > 0, and x ≡ Q2

2p · q , (3.17)

to finally obtain functions of the form, e.g., F1(x,Q2). The variable x is also
known as the Bjorken variable [52] and is crucial for the understanding of DIS.
We have seen in Section 2.2 that QCD predicts that the structure functions are
independent of Q2 in leading order calculations, i.e., the mass scale M becomes
irrelevant if the target constituents are treated as almost free, point-like particles
for very high energies.

Which of the structure functions can contribute depends on the target spin: In
the case of spin-0 only F1 and F2 do. For spin-1/2 targets one has F1, F2, g1,
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and g2, where the measurement of g1 and g2 requires a longitudinally polarized
beam. In the case of spin-1 targets the full set of eight structure functions can
contribute. Notably, as argued in ref. [147], the additional structure functions b1−4

can be measured using an unpolarized electron and polarized hadron beam.

3.2.3 Operator product expansion and momentum sum rules

One possible interpretation of the structure function can be obtained by deriving
sum rules for each structure function using the operator product expansion (OPE).
This approach has the advantage that it does not depend on the hadronic model
and therefore provides a direct test of QCD. The starting point of our calculation
is the optical theorem, which relates the hadronic tensor to the imaginary part of
the forward virtual Compton scattering amplitude, cf. Fig. 3.2.1, via

W µν = 1
2πT

µν , (3.18)

where the Compton scattering amplitude T is defined analogously to the hadronic
tensor

T µν(p, q)λ,λ′ = i

4π

∫
d4xeiq·x 〈p, λ′|T [Jµ(x)Jν(0)] |p, λ〉 , (3.19)

replacing the commutator with the time-ordered product. However, the disap-
pearance of the commutator introduces a little subtlety concerning the photon
crossing symmetry used in the decomposition of W µν , because the interchange
of Jµ and Jν in the commutator produces an additional minus sign while the
time-ordered product does not. This implies that a decomposition of (3.19) into
structure functions F̃1(ω), . . . , analogous to (3.14), yields functions depending ex-
clusively on even or odd powers of ω = 1/x. In the physical region 1 ≤ ω ≤ ∞
the Compton scattering structure functions are related to the structure functions
of the hadronic tensor by

Im F̃1(ω + iε) = 2πF1(ω),
Im F̃2(ω + iε) = 2πF2(ω),
Im g̃1(ω + iε) = 2πg1(ω),

· · ·

Im b̃4(ω + iε) = 2πb4(ω) . (3.20)

What remains is the computation of F̃1(ω), . . . , using (l)QCD methods to make
predictions about the hadronic structure.
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2

∑
f =f 2 Im

P P

Figure 3.2.1: The hadronic tensor is related to forward virtual Compton scattering
via the optical theorem. Twice the imaginary part of the forward scattering amplitude
is the total cross-section.

A well-known approach for the computation of T µν is the OPE2. Let us start
with a product of two operators in the limit z → 0

lim
z→0
Oa(z)Ob(0) =

∑
k

cabk(z)Ok(0) , (3.21)

with structure constants cabk(z), which allows us to rewrite the product of opera-
tors as a sum over local operators, assuming that the momentum components of
the external states under consideration are small compared to the inverse separa-
tion 1/z. Using this concept we can expand the product of the electromagnetic
currents in (3.19) into a series of local operators multiplied by coefficient functions,
depending solely on the momentum transfer q. However, this is only valid for tar-
get matrix elements provided that the virtuality of the transferred momentum
√
−q2 is much larger than the typical hadronic mass scale ΛQCD.
For any general symmetric and traceless operator Oµ1...µn

d,n of mass dimension d

and spin n one can show that the terms in the expansion have the structure

cµ1...µnO
µ1...µn

d,n → ωn
(
Q

M

)2−t

, (3.22)

where M is the target hadron mass and t = d−n is the twist. I.e., the contribution
of a specific local operator matrix element to the DIS process is determined by the
operator’s twist. Associating the twist quantum number to the matrix element of
any bilocal operator is fairly straightforward by dimensional analysis. We simply
count the powers of mass introduced in the Lorentz-tensor decomposition of the
matrix element and compensate it at the end of the calculation by correspond-
ing powers of Q in the denominator, which completely determines t. The most
dominant operators are those with t = 2 where we get no suppression at all, i.e.,
contributions of O(1). In QCD calculations we may restrict ourselves to operators

2The OPE is a standard tool introduced in most QCD textbooks. We will follow [146, 151]
for the general introduction and [147] for the special case of spin-1 targets.
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Quantum No. q Gµν Dµ

d 3/2 2 1

s 1/2 1 1

t 1 1 0

Table 3.2.1: Dimension, spin and twist of QCD operator constituents.

built from quark fields q, the gluon field strength G, and the covariant derivative
D, with quantum numbers listed in Tab. 3.2.1. Any gauge-invariant object is built
by at least two quark fields or two gluon field strength tensors and an arbitrary
number of derivatives, i.e., t ≥ 2, provided that the operators are symmetrized
and traceless. With these restrictions and in the limit of vanishing quark masses
of the lightest quarks q ∈ {u, d, s}, a possible basis can be written down as six
towers of twist-two operators [81]

Oµ1...µn = 1
2n−1 S q γ

µ1i
←→
D µ2 . . . i

←→
D µn q , (3.23a)

Oµ1...µn
5 = 1

2n−1 S q γ
µ1 γ5i

←→
D µ2 . . . i

←→
D µn q , (3.23b)

Oµ1...µnα
δ = 1

2n−1 S q σ
µ1α i
←→
D µ2 . . . i

←→
D µn q , (3.23c)

Oµ1...µn
g = 1

2n−2 S G
µ1αi
←→
D µ2 . . . i

←→
D µn−1Gµn

α , (3.23d)

Õµ1...µn
g = 1

2n−2 S G
µ1αi
←→
D µ2 . . . i

←→
D µn−1G̃µn

α , (3.23e)

Oµ1...µnαβ
δg = 1

2n−2 S G
µ1αi
←→
D µ2 . . . i

←→
D µn−1Gµnβ. (3.23f)

The covariant, symmetrized derivatives are defined as ←→D µ = −→Dµ −
←−
Dµ and S

projects out the completely symmetrized and traceless components of the r.h.s.
tensor. While the gluon operators (3.23d) - (3.23f) and the quark operator (3.23c)
are interesting in their own right, e.g., for the computation of transversity PDFs [152,
153], we will restrict ourselves to (3.23a) and (3.23b), which correspond to the
structure functions shown in (3.14).

In the next step, we compute the leading order coefficient functions of the op-
erators by evaluating on-shell quark matrix elements3. Following [146] the matrix
element of the lowest order contribution to the OPE of the time-ordered product

3In principle one has to compute on-shell matrix elements of gluonic operators also. However,
the gluon field comes along with a factor (αs)1 and can be neglected in leading order (αs)0

computations.

51



in (3.19) is given by the Feynman diagrams in Fig. 3.2.2. An explicit calcula-
tion [146] yields

Mµν = − 2
q2

∑
f

e2
f

∞∑
n=0

ωn
[
(p+ q)µpν + (p+ q)νqν − gµνp · q + ihεµναλqαqλ

]
,

(3.24)

where the sum over f runs over all quark flavors with electrical charge ef and
h denotes the quark helicity. Using Mµν as the l.h.s. of (3.21) the next step
is to compute on-shell matrix elements of the operators (3.23a) and (3.23b) that
correspond to the r.h.s. of (3.21). The matrix elements in a free quark state read

〈p, s| Oµ1...µn |p, s〉 = pµ1 · · · pµn , (3.25a)
〈p, s| Oµ1...µn

5 |p, s〉 = pµ1 · · · pµn h. (3.25b)

As stated above the coefficient functions depend only on q while the matrix el-
ements depend on p and s. Taking this to our advantage we split all the terms
in (3.24) into a q and a p dependent part respectively to read off the leading order
coefficient functions. For the spin-dependent part this yields

M[µν] =
∞∑

n=1,3,5,...

2nqµ2 . . . qµn

(−q2)n
iεµναµ1 qα

∑
f

e2
f

〈
Oµ1...µn

5,f

〉
, (3.26)

and the spin independent part is given by

M{µν} =
∞∑

n=2,4,...

(
−gµν + qµqν

q2

)
2nqµ1 · · · qµn

(−q2)n

∑
f

e2
f

〈
Oµ1...µn

f

〉

+
∞∑

n=2,4,...

(
gµµ1 −

qµqµ1

q2

)(
gνµ2 −

qνqµ2

q2

)
2nqµ3 · · · qµn

(−q2)n−1

∑
f

e2
f

〈
Oµ1...µn

f

〉
.

(3.27)

We know that electroproduction is a charge conjugation even process, which is
validated by (3.26) and (3.27). While in the spin-dependent part of the scattering
amplitude only odd spin axial vectors (charge conjugation odd) occur the spin
independent part is exclusively built from even spin axial vectors (charge conju-
gation even). Writing down the most general decomposition of the time-ordered
product in (3.19) yields
∫

d4x eiq·x T [Jµ(x)Jν(0)] =

=
∞∑

n=2,4,...

(
−gµν + qµqν

q2

)
2nqµ1 · · · qµn

(−q2)n

∑
j

2C(1)
j,n O

µ1...µn
j +

∣∣∣ next page
∣∣∣
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q q

p, s p, s

p + q

(a)

q q

p, s p, s

p − q

(b)

Figure 3.2.2: Leading order contributions to the time-ordered product of the two
electromagnetic currents in (3.19).

+
∞∑

n=2,4,...

(
gµµ1 −

qµqµ1

q2

)(
gνµ2 −

qνqµ2

q2

)
2nqµ3 · · · qµn

(−q2)n−1

∑
j

2C(2)
j,n O

µ1...µn
j

+
∞∑

n=1,3,...

iεµνλµ1q
λ 2nqµ2 · · · qµn

(−q2)n

∑
j

2C(3)
j,n O

µ1...µn
j,5

+ . . . , (3.28)

and allows us to identify the leading order Wilson coefficients C(k)
j,n as C(1)

j,n =
C

(2)
j,n = C

(3)
j,n = e2

f for a single quark of flavor f . Note that the coefficients of gluon
contributions are zero in leading order, so all gluonic contributions are hidden in
the ellipses at the end of (3.28).

However, for the computation of T µν , cf. (3.19), we have to compute the a
priori unknown hadronic matrix elements of the operators (3.23a) and (3.23b).
A Lorentz decomposition of the forward matrix elements using the operators for
spin-0 targets yields

〈p| Oµ1...µn |p〉 = 2S [vq
np

µ1 · · · pµn ] , (3.29)

and defines the reduced matrix element vn. Operators containing γ5 do not con-
tribute because of symmetry relations. For a spin-1 particle [147, 154] we find
three independent structures

〈p, λ| Oµ1...µn |p, λ〉 = (3.30a)

2S
aq

np
µ1 · · · pµn + dq

n

(
m2ε∗µ1(p, λ) εµ2(p, λ)− 1

3p
µ1pµ2

)
pµ3 · · · pµn

 ,
〈p, λ| Oµ1...µn

5 |p, λ〉 = 2iS
[
rq

nε
ρστµ1ε∗

ρ(p, λ)εσ(p, λ)pτ p
µ2 · · · pµn

]
, (3.30b)

where we use the convention that ε0123 = −1, cf. Appendix A.1, and the polar-
ization vectors ε defined in Appendix A.8. By substituting (3.30a) and (3.30b)
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Figure 3.2.3: (a) Analytic structure of the tensor (3.19) in the complex ω-plane.
(b) Contour integral for the derivation of momentum sum rules for the structure func-
tions. The inner circle depicts the naive contour |ω| < 1 while C represents the deformed
contour used in the actual integration.

into (3.28) one can finally use the decomposition into structure functions F̃1, . . .

given in (3.20) to establish relations to the reduced matrix elements via

F̃1(ω) =
∞∑

n=2,4,...

2C(1)
n an ω

n,

F̃2(ω) =
∞∑

n=2,4,...

4C(2)
n an ω

n−1,

b̃1(ω) =
∞∑

n=2,4,...

2C(1)
n dn ω

n,

b̃2(ω) =
∞∑

n=2,4,...

4C(2)
n dn ω

n−1,

g̃1(ω) =
∞∑

n=1,3,...

2C(3)
n rn ω

n.

(3.31)

The structure functions g2, b3, and b4 do not contribute at leading twist. The n-th
term in their expansions corresponds to a spin-n contribution but is still twist
t = 2. Broadly speaking (3.31) parameterizes the structure functions via a power
series around ω = 0 with convergence radius |ω| = 1, as shown in Fig. 3.2.3a. The
gray bands on the real axis depict the physical regions 1 ≤ ω ≤ ∞ for particles
and −∞ ≤ ω ≤ −1 for antiparticles. So the structure functions are computed
near ω = 0. An ad hoc explanation for this behavior follows directly from the deep
inelastic limit (x fixed, Q2 →∞) using light-cone coordinates, cf. Appendix A.8,
to obtain

x = 1
ω

= q+

p+ , (3.32)
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where we used Q2 = 2q+q− for fixed q+. I.e., DIS probes the structure of the
hadron along the light-cone and is not a priori a short distance process. Neverthe-
less, taking the limit ω → 0 additionally forces q+ → ∞ and thus the expansion
around ω = 0 can be computed in QCD. To finally relate the structure functions
estimated in the unphysical region to values of |ω| ≥ 1 we extract the coefficient
functions in (3.31) by the contour integral shown in Fig. 3.2.3b. The contour of
the naive integral, depicted by the inner circle in Fig. 3.2.3b, can be deformed to
the outer contour C and the coefficient function is given by, e.g.,

2C(1)
n an = 1

2πi

∮
C

dω
ωn+1 F̃1(ω) , (3.33)

assuming that C vanishes for |ω| → ∞ and only the discontinuities along the cuts
contribute to the integral. Following (3.20) and exploiting the explicit symmetries
of the structure functions, e.g, F̃1(−ω) = F̃1(ω), the structure functions can be
expressed by their Mellin moments

2Mn(F1) = 2
∫ 1

0
dxxn−1F1(x) = C(1)

n an , n even, (3.34)

where we used that the n-th moment of a function is defined as

Mn(f) =
∫ 1

0
dxxn−1 f(x) = 〈xn−1〉f . (3.35)

A generic structure function F is always obtained as the sum over the contributions
from quarks and antiquarks for the individual quark flavors weighted by the square
of their electric charge eq,

F =
∑

q

e2
q

(
F q + F q

)
. (3.36)

Comparing this to (3.34) one notices that the series used above yields information
about either the even or the odd moments of a given structure function, but not
both. For spin-0 targets one finds

2Mn(F q+q
1 ) = C(1)

n vq
n , Mn−1(F q+q

2 ) = C(2)
n vq

n , n even , (3.37)

while one finds

2Mn(F q+q
1 ) = C(1)

n aq
n , Mn−1(F q+q

2 ) = C(2)
n aq

n , n even ,
2Mn(bq+q

1 ) = C(1)
n dq

n , Mn−1(bq+q
2 ) = C(2)

n dq
n , n even , (3.38)

2Mn(gq+q
1 ) = C(3)

n rq
n , n odd ,
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for spin-1 targets [147]. The antiparticle contributions are obtained by expand-
ing (3.35) from 0 ≤ x ≤ 1 to −1 ≤ x ≤ 1, where the negative x values correspond
to the antiparticle with momentum fraction −x. At this point, we have obtained a
set of momentum sum rules (3.37) and (3.38) for the structure functions of spin-0
and spin-1 particles respectively. Analogous results can be achieved in the gen-
eral spin-n case by adapting the formalism presented above. After these technical
deliberations, we finally want to emphasize that the computation of the reduced
matrix elements defined in (3.30a) and (3.30b), for the special case of n = 2, is
the main objective of this thesis. Nevertheless, before we start the actual compu-
tation of the reduced matrix elements we want to introduce two more possibilities
to interpret the hadronic structure functions, starting with the parton model in-
terpretation in the next section.

3.2.4 Parton model interpretation

In Section 2.2 we introduced the parton model and stated that DIS processes
can be factorized into a hard scattering kernel, which is calculated perturbatively,
and in PDFs containing the non-perturbative information. We now want to use
this interpretation to relate the structure functions introduced in Section 3.2.3 to
PDFs. The full set of quark PDFs can be found in, e.g., [82, 83], and reads

fλ
q,h =

∞∫
−∞

dz−

4π e
−ixp+z− 〈p, λ| q(z)γ+q(0) |p, λ〉 , (3.39a)

∆fλ
q,h =

∞∫
−∞

dz−

4π e
−ixp+z− 〈p, λ| q(z)γ+γ5q(0) |p, λ〉 , (3.39b)

δfλ
q,h =

∞∫
−∞

dz−

4π e
−ixp+z− 〈p, λ| q(z)σ+iq(0) |p, λ〉 , (3.39c)

defining the unpolarized-, helicity-, and transversity-PDFs, respectively. In all
cases we use light-cone coordinates described in Appendix A.8. Note that in
analogy to the quark PDFs one can define three additional gluon PDFs, see,
e.g., [81]. The structure functions defined in (3.14) are related to the PDFs (3.39a)
and (3.39b). Therefore we will restrict ourselves to the consideration of the unpo-
larized and helicity PDFs. To assure gauge invariance the fields in the non-local
operators have to be connected by Wilson lines (cf. Section 2.2) which we do not
write out explicitly here.

The PDF in (3.39a) corresponds to the sum fq = fq,↑ + fq,↓, while the PDF
in (3.39b) corresponds to the difference ∆fq = fq,↑ − fq,↓ of the densities for quarks
with opposite helicity. For spin-1 hadrons reflection symmetry implies that distri-
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butions for different polarizations, λ = +, 0,−, are related [147, 154]

f+
q = f−

q , ∆f+
q = −∆f−

q , ∆f 0
q = 0 , (3.40)

such that only three independent quark PDFs remain. The quark PDFs defined
above support −1 < x < 1, where the values at negative x have to be interpreted
as momentum fractions of anti-quarks

fλ
q (x) = −fλ

q (−x) , ∆fλ
q (x) = ∆fλ

q (−x) , for x < 0 . (3.41)

In Section 3.2.3 we introduced the OPE to relate the product of operators to
six towers of operators defined in (3.23a) - (3.23f). It is shown in, e.g., [82], that
the unpolarized PDF and the helicity PDF can be related to (3.23a) and (3.23b),
respectively, via

∫ 1

−1
dx xn−1fq(x) = 〈xn−1〉fq + (−1)n〈xn−1〉fq

= 1
2pn

+
n−

µ1 · · ·n
−
µn
〈p| Oµ1...µn

q |p〉 ,
(3.42a)

∫ 1

−1
dx xn−1∆fq(x) = 〈xn−1〉∆fq − (−1)n〈xn−1〉∆fq

= 1
2pn

+
n−

µ1 · · ·n
−
µn
〈p| Oµ1...µn

q,5 |p〉 ,
(3.42b)

where the moments of the PDFs are defined in (3.35). Note that we made the
flavor index q of the operators explicit in (3.42a) and (3.42b). At leading order per-
turbation theory and to leading twist accuracy the structure functions are directly
related to the PDFs, see, e.g., refs. [147, 154], using the generic definition (3.36).
For spin-0 targets one obtains

F q
1 (x) = 1

2fq(x) +O(αs) , (3.43a)

F q
2 (x) = xfq(x) +O(αs) , (3.43b)

satisfying the Callan-Gross relation (2.19). The gluon PDF does not appear at
leading order, since the gluons do not carry electric charge, and thus can only
couple through a quark loop, cf. the discussion in Section 3.2.3. For spin-1 targets
the hadronic tensor depends on the hadron spin. By averaging over the target
spins one finds

F q
1 (x) = 1

6

(
f+

q (x) + f 0
q (x) + f−

q (x)
)

+O(αs) , (3.44a)

F q
2 (x) = x

3

(
f+

q (x) + f 0
q (x) + f−

q (x)
)

+O(αs) . (3.44b)
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Considering the difference between targets with polarization λ = ± and λ = 0 one
finds

gq
1(x) = 1

2∆f+
q (x) +O(αs) , (3.45a)

bq
1(x) = 1

2

(
f 0

q (x)− f+
q (x)

)
+O(αs) , (3.45b)

bq
2(x) = x

(
f 0

q (x)− f+
q (x)

)
+O(αs) , (3.45c)

which means that b1 and b2 are sensitive to a possible dependence of the quark
densities on the hadron polarization. We stress again that the structure functions
g2, b3, and b4 do not contribute at leading twist.

The relation to the reduced matrix elements defined in (3.37) and (3.38) is given
by substituting (3.29) into the PDF definition (3.42a) for a spin-0 target

vq
n = 〈xn−1〉fq+fq

, n even ,
vq

n = 〈xn−1〉fq−fq
, n odd ,

(3.46)

and by substituting (3.30a) into (3.42a) for a spin-1 target

aq
n = 1

3
∑

λ=±,0
〈xn−1〉fλ

q +fλ
q
, n even ,

aq
n = 1

3
∑

λ=±,0
〈xn−1〉fλ

q −fλ
q
, n odd ,

dq
n = 〈xn−1〉f0

q +f0
q
− 〈xn−1〉f+

q +f+
q
, n even ,

dq
n = 〈xn−1〉f0

q −f0
q
− 〈xn−1〉f+

q −f+
q
, n odd .

(3.47)

In the spin-1 case a similar relation holds for the reduced matrix element rn given
by the axial vector operator (3.30b), however, in this thesis we restrict ourselves
to the computation of an, dn, and vn. Interpreting fq(x) as the probability to find
a quark with momentum fraction x in the target hadron, a simple probabilistic
interpretation of the structure functions can be read off from (3.46) and (3.47).
The reduced matrix element aq

n yields the polarization average, while dq
n corre-

sponds to the difference between hadrons with polarization λ = ± and λ = 0.
In the following we will be particularly interested in the second moments, since
the corresponding operator (cf. (3.23a) with n = 2) is equivalent to the quark
part of the energy-momentum tensor [155], and describes the distribution of the
momentum within the hadron. For instance, in the spin-1 case a non-zero value
of dq

2 indicates that the portion of the momentum carried by quarks of flavor q
depends on the polarization direction of the hadron.

Furthermore, it is shown in [147] that the parton model description of the leading
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λ λ′

h h′

Figure 3.2.4: General helicity structure of the Compton scattering contributing to
PDFs. The incoming hadron (photon) has helicity λ (h), the outgoing hadron (photon)
λ′ (h′).

twist structure function computations can easily be generalized to spin-J targets.
One finds 2(2J + 1) PDFs fλ

q,↑/↓ with −J ≤ λ ≤ J , obeying symmetry considera-
tions, analogous to (3.40). This yields 2J+1 independent distributions for integer
values of J and, if 2J is odd, there are J+1/2 contributions to the polarization av-
erage and J+1/2 contributions to the polarization difference, respectively. For 2J
even one finds J + 1 contributions to the polarization average and J contributions
to the polarization difference. We assume in both cases that λ > 0.

3.2.5 Helicity amplitudes

The structure functions and PDFs introduced in the last two sections can also be
classified and interpreted using the more phenomenological approach of so-called
helicity amplitudes. In Section 3.2.3 and Section 3.2.4 we related the distribution
functions to discontinuities in the Compton scattering amplitude. This process is
basically described by the amplitude shown in Fig. 3.2.4 [146, 147, 156].4 We now
label the process by the helicities of the incoming hadron (photon) λ (h) and the
outgoing hadron (photon) λ′ (h′) and define the helicity amplitude

Ahλ,h′λ′ = ε∗µ
h′ W λλ′

µν ε
ν
h , (3.48)

omitting the explicit momentum dependence given in the definition of the hadronic
tensor (3.4). The photon polarization vectors are defined as

ε± = ∓ 1√
2

(0, 1,±i, 0) (spacelike), ε0 = 1
Q

(q3, 0, 0, q0) (timelike), (3.49)

4The process can also be described by a u-channel discontinuity as shown in [82, 151]. How-
ever, we found the ansatz shown in the original literature particularly advantageous since it
is associated with a direct counting rule for the number of structure functions in an arbitrary
spin-J target.
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with three possible polarizations h = ±, 0 respectively. We now use angular
momentum conservation plus parity and time reversal invariance to find

λ+ h = λ′ + h′ , A−λ−µ,−λ′−µ′ = Aλµ,λ′µ′ , and Aλµ,λ′µ′ = Aλ′µ′,λµ , (3.50)

which yields 6J + 2 (6J + 1) amplitudes for integer (half-integer) valued J ’s given
by

A±λ,±λ (λ > 0), A+0,+0 (λ = 0), diagonal transvers,
A0λ,0λ (λ ≥ 0), diagonal longitudinal,
A+λ,0(λ+1) (λ ≥ 0), A−λ,−(λ−1)(λ > 0), helicity flip,
A+(λ−1),−(λ+1)(λ > 0), double helicity flip,

(3.51)

cf. the discussion at the end of Section 3.2.4. From this general behavior one can
extract a simple but very useful counting rule: The considerations above provide
a fixed number of independent helicity amplitudes which are directly related to
the same number of structure functions.

For the special case of a spin-1 target the relation between A and the structure
functions is obtained by substituting (3.14) into (3.48). Due to (3.51) we have
some freedom for the choice of the 6 + 2 helicity amplitudes and use

A++,++ = F1 + 1
3κb1 + M2

6(p · q)
b2

3− b3
− g1 + (κ− 1) g2 ,

A+0,+0 = F1 + 2
3κb1 −

M2

3(p · q)
b2

3− b3
,

A+−,+− = F1 −
1
3κb1 + M2

6(p · q)
b2

3− b3
+ g1 − (κ− 1)g2 ,

A0+,0+ = −F1 + κ
(
F2

2x + 1
3b1

)
− 1

18x
(
κ2 + κ+ 1

)
b2 ,

A00,00 = −F1 + κ
(
F2

2x −
1
3b1

)
− 1

9x
(
κ2 + κ+ 1

)
b2 ,

− 1
3x
(
1− κ2

)
b3 −

κ

3x(1− κ)b4 ,

(3.52)

for the diagonal amplitudes and

A+0,0+ =
√
κ− 1 (g1 + g2) + M

4Q

(
2b2

3− b3
+ κ

b2

3− b4

)
,

A+−,00 =
√
κ− 1 (g1 + g2)−

M

4Q

(
2b2

3− b3
+ κ

b2

3− b4

)
,

A+−,−+ = M2

(p · q)
b2

3− b3
+ 1

6x
(
1− κ2

)
b3 + κ

6x(1− κ)b4 ,

(3.53)
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for the (double) helicity flip amplitudes. Both cases follow the notation in [147].
While the diagonal amplitudes approach finite values in the scaling limit the he-
licity flip amplitudes fall off like 1/Q and the double helicity flip amplitude falls
off like 1/Q2. If one further uses the Callan-Gross relation (2.19) (and the anal-
ogous relation b2 = 2xb1) the diagonal amplitudes A0+,0+ and A00,00 vanish too.
The structure functions are obtained by solving the system of equations (3.52)
and (3.53) which requires to use the definition (3.14). However, in [157] another
approach is shown, where the structure functions are redefined such that they all
scale properly in the Bjorken limit and yield rather simple solutions to represent
the structure functions in terms of helicity amplitudes.

Representing the structure functions by helicity amplitudes allows us to also
compute the differential cross-section (3.2) in terms of helicity amplitudes. Nev-
ertheless, there is a minor disadvantage one has to keep in mind: in general, the
hadron helicities used in the computation of (3.51) are defined with respect to the
direction q while it is better to define the helicity of cross-sections with respect
to a fixed direction in the laboratory frame. The transformation is given by the
Wigner rotation matrix and the final cross-sections are given in [156]. Fortunately,
the Bjorken limit yields a trivial transformation and the helicity eigenstates with
respect to the beam direction are also eigenstates with respect to the photon
direction.

With these remarks we finish our introduction to structure functions. In sum-
mary, we presented three approaches to represent and interpret DIS structure
functions and the corresponding kinematics. Each method comes along with nu-
merous advantages but also with some peculiarities. In the next chapter we com-
pute the reduced matrix elements v2 for the pion and a2, d2 for the rho meson
and introduce all necessary technical details needed for the analysis of the LQCD
gauge ensembles used in this work.
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4
Second moments of meson PDFs

After the general introduction of LQCD in Chapter 2 and DIS structure functions
in Chapter 3 our prime goal is to compute Mellin moments of spin-dependent
and independent PDFs of the pion and the rho meson. To this end, we will first
introduce general techniques to analyze the CLS gauge ensembles used in this
work and treat the occurrence of 2π states in the ρ meson spectrum before we
finally show the results of the second PDF moments v2 (pion) and a2, d2 (rho)
including also disconnected contributions. We determine both, singlet and non-
singlet flavor combinations. The numerical analysis includes 26 ensembles, with
pion masses ranging from 420 MeV down to 214 MeV and with 5 different lattice
spacings in the range of 0.1 fm to 0.05 fm. This enables us to take the continuum
limit, as well as to resolve the quark mass dependencies reliably. Note that the
results and most of the deliberations given in this chapter have been published
in [148].1

The pion and the rho are not random examples of mesons but are both inter-
esting in their own right. The pion is the pseudo-Goldstone boson of dynamical
chiral symmetry breaking (DCSB) and is, as such, much lighter as any constituent
quark model would suggest, and acts as the main carrier of the nuclear force. It is
exciting to study whether its quark structure could differ substantially from that

1M. Löffler is the main author of this publication, however, the paper arose from a collabora-
tion with mainly P. Wein and A. Schäfer. Some parts are taken over without further comments.
Whenever necessary the co-workers are mentioned explicitly.
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of other mesons. If so, the flavor singlet sea quark contribution is a natural place
for such a difference to show up. For the pion there exists quite some experimental
data, primarily from two classes of experiments2, namely Drell-Yan reactions with
(secondary) pion beams, e.g., π+N → µ++µ−+X, which are sensitive to the pion
PDF at large x & 0.15, and semi-inclusive (tagged) DIS, e.g., e+N → e′ +N+X,
which is sensitive to small x and exploits the fact that the electron can scatter
off the nucleon pion cloud via the Sullivan process [158]. Experiments of the first
type were performed by NA10 [159], E326 [160], E615 [161], and, more recently,
by COMPASS [162]. This will be continued by AMBER at CERN [59, 60]. Exper-
iments of the second type were performed at HERA [87, 88] (see also [163–165])
and are currently pursued at JLab Hall A [89] (cf. the conditionally approved
proposal [145]). They are also under consideration for the physics program at the
EIC [57].

For the rho meson the situation is somewhat different. Due to its resonance
structure there exists only very little relevant experimental data and we are only
aware of one actual lattice study analyzing its quark structure [154] (also dis-
cussed in [166, 167]). The rho meson is the lightest strongly decaying particle
with a branching fraction of > 99.9% into 2 pions [51]. It has spin-1 which im-
plies the existence of novel polarization-dependent structure functions as shown
in Chapter 3, however, gaining information about its structure is rather challeng-
ing in experiments and on the lattice due to its unstable nature. Nevertheless,
studying the quark-gluon structure of resonances is interesting. For this intent
the rho is one of the most attractive light mesons to explore. To the best of our
knowledge, no existing or planned experiment will investigate the spin structure
of the rho, and so lattice calculations may offer the best, if not only, chance to
determine it. In ref. [154] it was speculated whether one could analyze the spin
structure of the ρ in the meson cloud of a nucleon in a (polarized) Sullivan process
(see also ref. [163]), but the interpretation of such measurements would be very
non-trivial because of the required analytic continuation from the t to the s chan-
nel [168]. However, the b1 structure function of the deuteron was measured by
HERMES [169], using DIS on tensor-polarized deuteron gas with negligible vector
polarization. It turned out to be surprisingly large for such a loosely bound system.
Also, while the data for a limited x range cannot really test the Close–Kumano
sum rule for the first moment of b1(x) [170], one can conclude that an unexpected
behavior outside of the measured x range is needed to fulfill this sum rule. Overall
the results differ from the expectation that the deuteron is in an S wave with only

2The list of experiments and the corresponding descriptions resulted from private communi-
cation with A. Schäfer, who is also a member of the HERMES collaboration, and P. Wein.
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a small D wave admixture, cf. e.g., ref. [171]. Also, there are efforts to measure
the deuteron b1 via the proton-deuteron Drell-Yan process (conditionally approved
proposal at JLab Hall C [172] and feasibility studies for Fermilab [171, 173]), as
well as discussions of measurements via DIS at the EIC [58].

By now the structure of hadrons is studied for more than three decades using
LQCD. While in the early days mostly quenched fermion representations were
used, cf. [154, 166, 167, 174–177], more recent simulations [178–183] take the
fermion determinant, and thus the quark sea, into account using, e.g., (clover-
improved) dynamical Wilson fermions. However, what all these studies have in
common is that they neglect disconnected contributions. On the one hand, these
contributions are fairly easy to compute, but on the other hand, they usually
come with a large statistical error. During our analysis, we found that the noise
for the light and strange quark disconnected loops is highly correlated. We can
use this to our advantage by looking at the non-singlet (uu+dd−2ss) and singlet
(uu+dd+ss) flavor combinations instead of the light and strange loops themselves.
Obviously, the large statistical errors persist for the flavor singlet combination but
the difference in the flavor non-singlet combination reduces the error by more than
one order of magnitude, which allows us to obtain quite precise results in this case
even though we take the disconnected contributions fully into account.

In Chapter 3 we gave an in-depth introduction to the computation of the mo-
ments of structure functions. The second moments are computed using operators
of the form (3.23a) for n = 2, i.e., with one covariant derivative. We want to stress
that the procedure shown in this section is completely analogous for higher mo-
ments but not directly applicable, since one would face the problem of mixing with
lower-dimensional operators. Sparked by the presentation in ref. [184], position
space methods have recently fueled a lot of excitement, since they, in principle,
allow for a resolution of the complete PDF. There are recent studies on the pion
PDF exploring possible methods, such as the current-current method [185, 186],
large momentum effective theory [187, 188] (using quasi PDFs), or Ioffe time dis-
tributions [189] (using pseudo PDFs). For the rho meson, we found only one
prior lattice study in the literature, which was based on a quenched simulation at
large pion masses of ∼ 600 MeV. The usage of such large pion (quark) masses is
maybe due to the additional difficulty raised by the instability of the rho meson
in the continuum limit. At a first glance we will not find a continuum of two
pion final states on the lattice because of the discretization of space-time and the
corresponding finite volume used in actual simulations. I.e., the rho meson cannot
decay dynamically into two pions. Nevertheless, the discretized set of two-pion
(or, at higher energies, even multi-pion) finite volume states is present and should
mix with the contribution from the rho in the correlation function. We discuss
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this issue in detail in Section 4.3.
In the next sections we will introduce the numerical setup along with the two-

and three-point correlation functions needed to build ratios and extract the re-
duced matrix elements of our choice from the lattice. Furthermore, we will briefly
discuss operator renormalization and the delicate issue of two pion states that
may arise in our computations before we finally come to the statistical setup and
fitting routines used to produce our results.

4.1 Numerical setup

To calculate the second moment of the structure functions introduced in Chapter 3
we have analyzed a subset of the lattice gauge ensembles generated within the
CLS effort, introduced in Section 2.3.6. A complete list of the gauge ensembles
used in this work is shown in Tab. 4.2.1. We use five different lattice spacings
from 0.0497 fm up to 0.0984 fm and mπ covers a range from ∼ 420 MeV down to
∼ 220 MeV with volumes Lmπ between 3.8 and 6.4, see Tab. 4.2.1.

The two- and three-point functions introduced in Section 4.2 are computed
on the lattice using the gauge configurations in Tab. 4.2.1. While we get the
two-point functions by inversions of the lattice Dirac operator using common nu-
merical solvers (in particular, we use a modified version of the Wuppertal adap-
tive algebraic multigrid code DD-αAMG [190, 191] on single instruction multiple
data (SIMD) architectures [192–195] and the IDFLS solver [196, 197] on other
architectures) the computation of the three-point functions is more involved. The
three-point function connected and disconnected parts of all ensembles are com-
puted using stochastic estimators as described in Section 4.2. To improve the
overlap of the interpolating currents at the source and the sink timeslice we use
Wuppertal smeared [198] quarks by iteratively applying the smearing kernel

Φ(x, y) = 1
1 + 6δ

δ(x, y) + δ
±3∑

j=±1
Uj(x) δ(x+ a̂, y)

 , (4.1)

where Uj(x) is an APE-smoothed gauge link [199] at position x pointing in spatial
direction ̂, to the source and sink interpolators. The number of iterations (4.1) is
applied to the source and the sink of the propagator is denoted by sm` for the light
quarks, cf. Tab. 4.2.1. In combination with the parameter δ = 0.25 the number
of smearing iterations are tuned such that the corresponding smearing radii are
rsm ≈ 0.7 fm, see, e.g., [200–202] for a more detailed derivation.

All the computations are performed using the Chroma software package [203]
and additional libraries implemented by our group.
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4.2 Correlation functions

To calculate the DIS structure functions on the lattice one has to compute two-
and three-point correlation functions in the forward limit:

C
(µν)
2,p,t = a3∑

x

e−ip·x〈O(µ)
M (x, t)O(ν)

M (0, 0)〉 , (4.2)

C
(µν)
3,p,t,τ = a6∑

x,y

e−ip·x〈O(µ)
M (x, t)O(y, τ)O(ν)

M (0, 0)〉 . (4.3)

We will consider pions (M = π) and rho mesons (M = ρ), where the Lorentz
indices are only necessary in the latter case. The interpolating current O(µ)

M creates
a meson state with matching quantum numbers at the source timeslice tsrc while
O

(ν)
M annihilates the meson at the sink time slice tsnk. They read

Oπ = qfγ5qg , Oi
ρ = qfγ

iqg , (4.4)

with appropriately chosen quark flavors f and g and i = 1, 2, 3. The quark fields
in the interpolating currents are spatially smeared (see Section 4.1) to enhance
the ground-state overlap. In addition to the two interpolating currents the three-
point function contains an insertion current O at timeslice τ with 0 < τ < t.
The extraction of the ground-state matrix element of O is the key task in the
subsequent calculations. In this work we set t = tsnk − tsrc, τ = tins − tsrc and
tsrc = 0 due to translational invariance.

4.2.1 Two-point correlation functions

Let’s start the explicit introduction of correlation functions with an example, given
by the field strength renormalization of an interacting scalar field theory [61]. A
two-point correlation function, abbreviated as two-point function from now on, is
the amplitude of a particle propagating from y → x given by 〈0|Tφ(x)φ(y) |0〉,
where T denotes the time-ordered product. According to [204, 205] the two-point
function can be written as

〈0|Tφ(x)φ(y) |0〉 = 1
2π

∫ ∞

0
dM2 ρ(M2)DF (x− y,M2) , (4.5)

where DF denotes the Feynman propagator and the spectral density function is
defined by

ρ(M2) =
∑

λ

2πδ
(
M2 −m2

λ

) ∣∣∣ 〈0|φ(0) |λ0〉
∣∣∣2 . (4.6)
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Note that the sum runs only over the zero momentum eigenstates λ0 of the corre-
sponding interacting Hamiltonian. The squared matrix element refers to the field
strength renormalization factor Z =

∣∣∣ 〈0|φ(0) |λ0〉
∣∣∣2 and a one-particle state con-

tributes a single delta function, where m corresponds to the observable, physical
mass. Furthermore, Z can be interpreted as the probability for φ(0) to create a
given state from the vacuum. Of course, this is only one oversimplified way to
relate bare and renormalized parameters but it is not chosen without a reason. If
one takes the Fourier transformation of (4.5) one finds an isolated simple pole in
the complex p2 plane for stable particles (p2 = m2), further multi-particle bound
states along the real p2 axis, and a branch cut at p2 = 4m2, as shown in Fig. 4.2.1.
However, within this thesis, we analyze the rho meson, which rapidly decays into
2 pions [51]. This resonance character gives rise to the occurrence of (multi) par-
ticle states in the branch cutoff region of the spectrum (4.6). We want to stress
that these additional multi-particle states could occur with ground-state energies
below the rho meson mass and are in principle indistinguishable from the rho it-
self. A further discussion of this delicate issue can be found in Section 4.3. In
the remainder of this section we will introduce the necessary formalism used to
analyze two-point functions on the lattice.

From the above considerations, we can generalize the overlap of the ground-
state with the interpolating currents (4.4) at the source and the sink in case of
the pion and the rho as

〈0|Oπ |p〉 =
√
Zπ

p , 〈0|Oµ
ρ |p, λ〉 =

√
Zρ

pεµ(p, λ) , (4.7)

where |p〉 abbreviates a state by its momentum quantum number and λ denotes
the polarization. Note that the overlap factor Zp is now a smearing-dependent
quantity, i.e., it depends on the actual setup used in the simulations. To simplify
the following computations we have chosen the same smearing setup for the source
and sink interpolators. For the rho we further use the polarization vectors shown
in Appendix A.8. Inserting a complete set of states into (4.2) allows us to expand
the two-point correlation function in terms of hadronic matrix elements. At large
Euclidian times the correlation function can be approximated by the ground-state
contribution

C2,p,t = Zπ
p

e−Eπ
p t

2Eπ
p

[
1 +O

(
e−∆Eπ

p t
)]

(pion), (4.8)

Cµν
2,p,t = −Zρ

p

e−Eρ
pt

2Eρ
p

(
gµν − pµpν

m2
ρ

) [
1 +O

(
e−∆Eρ

pt
)]

(rho) , (4.9)

where E =
√

p2 +m2 is the ground-state energy imposing the continuum disper-
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p2

isolated
pole

m2

bound state
poles

4m2 Branch cutoff

Figure 4.2.1: Analytic structure of the two-point correlator in the complex p2

plane [61]. Poles occur for one particle states at m2 and for an arbitrary number of
bound multi-particle states. The branch cut at 4m2 corresponds to free multi-particle
states.

sion relation and ∆E corresponds to the energy difference between the ground-
state and the first excited state. We assume that Eρ

p is the contribution from
the rho meson, which is the leading one-particle state at large Euclidean times.
Depending on the simulation parameters also two pion contributions, see above,
with energies < Eρ

p can occur. Note that, in the computation of (4.9) a complete
set of states was inserted, which includes a sum over all possible polarizations,
cf. (A.40).

Before we proceed with the introduction of three-point functions in the next
section we want to have a closer look at the excited state contaminations in (4.8)
and (4.9). In Section 4.4 we will fit various two-point function correlators to extract
the rho mass mρ for the ensembles given in Tab. 4.2.1. For all ensembles with open
boundary conditions we decided to include a generic excited state contribution of
the form

Cµν
2,p,t = −Zρ

p

e−Eρ
pt

2Eρ
p

(
gµν − pµpν

m2
ρ

) (
1 + Ae−∆Eρ

pt
)
, (4.10)

where A is the excited state amplitude, depending on the interpolating currents
at the source and the sink, their smearing, and the momentum p. The construc-
tion of an analogous ansatz for the pion is straightforward by omitting the first
term in parenthesis and replacing the energies and amplitudes with their pion
counterparts.

4.2.2 Three-point correlation functions

The spectral decomposition of three-point functions is similar to the two-point
function case in the last section. One just includes two complete sets of states
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into (4.3) to obtain

C3,p,t,τ = Zπ
p

e−Eπ
p t

(2Eπ
p )2 〈p| O |p〉+ . . . (pion), (4.11)

Cµν
3,p,t,τ = Zρ

p

e−Eρ
pt

(2Eρ
p)2

∑
λ′,λ

εµ(p, λ′)εν∗(p, λ) 〈p, λ′| O |p, λ〉+ . . . (rho), (4.12)

for large Euclidean times. In practice, it turns out that especially for the three-
point functions the signal-to-noise ratio decreases exponentially with the source-
sink separation in time. At small time distances between the operators, however,
there are still noticeable excited state effects. We take these into account by
allowing for a generic excited state contribution in the spectral decomposition of
the correlation functions. Analogous to (4.10) our ansatz for the vector three-
points functions is given by

Cµν
3,p,t,τ = Zρ

p

e−Eρ
pt

(2Eρ
p)2

∑
λ′,λ

εµ(p, λ′)εν∗(p, λ) 〈p, λ′| O |p, λ〉

×
(

1 +B10e
−∆Ep(t−τ) +B01e

−∆Epτ +B11e
−∆Ept

)
, (4.13)

where the energy difference Ep to the first excited state may differ from the energy
difference given for the two-point function. Note that, B10, B01, and B11 depend
on the operator insertion O, the interpolating currents, their smearing, and mo-
mentum. For the pion case we perform the analysis analogously by neglecting the
spin-dependent part of (4.13).

At this point, we also want to underline that, especially for ensembles with
small pion mass and large volume, the occurrence of two (or even multiple) pion
states in the energy spectrum of the three-point function cannot be fully excluded.
Analogous to the discussion in Section 4.2.1 these multi-particle states could also
occur with energies smaller than the expected ground-state energy of the rho it-
self. We tried to explicitly resolve these multi-particle states in the two-point
correlator of the ensemble D200 using an ansatz analogous to (4.10), including
additional energy terms, where we fixed the estimated mass of the n-pion states
(n = 2, 3) by the ensemble parameters. However, non of our tests gave any evi-
dence for the occurrence of two pion states. Possible explanations will be discussed
in Section 4.3.

After explaining the general idea of three-point function computations we pro-
ceed with the technical intricacies in the actual computations. Using the Wick
contractions introduced in Section 2.3.2 it is clear that three-point function com-
putations can be grouped into two subgroups referring to connected and discon-
nected quark-line contributions, as depicted in Fig. 4.2.2. While both types of
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diagrams correspond to the same physical process each contribution encounters
physics-independent subtleties on the software side. One of the key tasks of this
thesis was the finalization of a software package to compute connected three-point
functions using stochastic estimators. Hence a more in-depth introduction to these
computations is given in Section 4.2.3. Quark-line disconnected contributions will
be discussed in Section 4.2.5.

4.2.3 Connected three-point functions using stochastic estimators

Parts of this introduction were already published in [56, 148, 206]. We will collect
the main results in this section which are partly identical to the cited publica-

τ r4x′
4 x′′

4y4

(a) Connected three-point function.

τ r4x′
4 y4

(b) Disconnected three-point function.

Figure 4.2.2: (a) Sketch of a generic meson three-point function in forward and back-
ward (grayed out) direction. The source timeslice is r4, the backward/forward sink
timeslice x′

4/x′′
4 and the current is located at timeslice y4. While the solid lines represent

point-to-all propagators the wiggly line illustrates the stochastic timeslice-to-all prop-
agator connecting the sink and the operator insertion. A similar figure was published
in [56, 148, 206]. (b) Sketch of a generic meson disconnected three-point function. The
source timeslice is r4, the sink timeslice x′

4 and the current (loop) is located at timeslice
y4. While the solid lines represent point-to-all propagators the solid circle represents a
quark loop. A similar figure was published in [148].
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tions. In addition, it should be mentioned that parts of the work was done in
collaboration with R. H. Rödl who implemented an analogous version for baryon
three-point function computations presented in [207].

The standard setup for connected three-point function computations in the for-
ward and backward direction is shown in Fig. 4.2.2a, where the ellipses at r4 and
x′

4 depict the initial and final meson interpolators, respectively, while the star at y4

represents the operator insertion for Euclidean times τ . Furthermore, we denote
the particle flow by arrows in the middle of the individual quark-lines. Computa-
tions of mesonic three-point functions, in general, involve the computation of two
so-called all-to-all propagators, connecting all points of the lattice (the wiggly line
and the propagator connecting y4 and r4) plus one point-to-all propagator connect-
ing the source and the sink (top line). Exploiting γ5-hermiticity of the propagator,
we can change the direction of the quark-line connecting y4 and r4, i.e., we reduce
the problem to the computation of only one all-to-all propagator. Nevertheless,
a direct computation is not feasible, because it would need an inversion of lat-
tice Dirac operators containing 12V × 12V elements, where V denotes the lattice
volume. For common CLS gauge ensembles, e.g., H102 V = 323 × 96 ≈ O(107).

A traditional approach to overcome this issue is the sequential source
method [208]. In this method the propagators connecting the source position
with all other points of the lattice are computed using the point-to-all method.
To compute the propagator connecting the sink timeslice x′

4 with all insertion
timeslices y4 we define the sequential propagator as

Σ(y, 0) =
∑
x′

G(y, x′) Γsnk G(x′, 0) e−ip′·x′
, (4.14)

where G denotes the standard quark propagator and Γsnk corresponds to the sink
interpolator. It is computed by an additional inversion of the Dirac matrix for
each choice of the final momentum p′

∑
y

D(z, y) Σ(y, 0) = Γsnk G(z, 0) e−ip′·z. (4.15)

Hence a new sequential propagator has to be computed for every change of the sink
properties (x′

4, final momentum, field interpolator, smearing) and every choice of
the Γ-structure within the sequential propagator. As a consequence computations
of various sink quantities become rather expensive and hence one often uses only a
small number of final momenta for the computations. To avoid these restrictions
other methods were introduced. A particular example are stochastic estimators
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to approximate the all-to-all propagator

G(y, x′) ≡ D−1(y, x′) = 1
N

N∑
i=1

si(y) η∗
i (x′) +O

(
1√
N

)
, (4.16)

using the noise vectors η defined in Appendix A.9. Here s denotes the solution
vector defined by

D(x, y) si(y) = ηi(x). (4.17)

To improve the estimation it is necessary to choose N large enough so that the
gauge noise dominates over the stochastic noise term O(1/

√
N).

Following the conventions in [56, 206] we use the propagator estimation (4.16)
to factorize (4.3) into two completely independent parts. In the first step we
rewrite (4.3) in terms of quark field creation and annihilation operators and use
Wick’s theorem to obtain

δa′b′ δ
ã̃b
δba Γα′β′

snk Γα̃β̃
ins Γβα

src

〈
qf1(x′)α′

a′ qf2(x′)β′

b′ qf3(y)α̃
ã qf4(y)β̃

b̃
qf6(r)β

b qf5(r)α
a

〉
c

= δa′b′ δ
ã̃b
δba Γα′β′

snk Γα̃β̃
ins Γβα

src Gf1(r, x′)αα′

aa′ Gf2(x′, y)β′α̃

b′ã
Gf4(y, r)β̃β

b̃b
,

(4.18)

where 〈. . . 〉c denotes the configuration average. The abbreviations Γsrc, Γsnk, and
Γins correspond to the spin structure of the individual interpolating currents while
Γins can contain additional local derivatives. Of course one has to take into ac-
count a second contraction, which corresponds to an inverted propagation direction
in Fig. 4.2.2a, as shown in [206]. However, for the sake of readability, we will omit
the second contraction in the following.

The introduction of the stochastic propagator allows us to replace the prop-
agator connecting the sink and the insertion timeslice and thus factorize3 the
correlation function

C3,p′(x′
4, y4, r4) ≈

a6

N

N∑
i=1

Γα′β′

snk Γα̃β̃
ins Γβα

src Si, f1(p, x′
4)β′ α′ α

a Ii, f2, f4(q, y4)α̃ β̃ β
a , (4.19)

where we define the spectator Si, f1(p, x′
4)β′ α′ α

a and the insertion Ii, f2, f4(q, y4)α̃ β̃ β
a

3The idea of factorizing three-point correlation functions is not new. Early considerations
can be found in, e.g., [209], and further investigations of the RQCD group were published in,
e.g., [210, 211].
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parts as

Si, f1(p′, x′
4)β′ α′ α

a =
∑
x′

e−ip′·x′
δa′b′ [ηi(x′) γ5]β

′

b′

[
γ5 G

†
f1(x′, r) γ5

]α′α

a′a
, (4.20)

Ii, f2, f3(q, y4)α̃ β̃ β
a =

∑
y

eiq·y δab δã̃b

[
γ5 s

∗
i, f2(y)

]α̃
ã
Gf4(y, r)β̃β

b̃b
, (4.21)

for r = 0. A closer look at the factorization (4.19) and the corresponding propaga-
tor particle flow directions reveals that the insertion part (4.21) can be reused in
the estimation of baryonic three-point functions and vice versa. This is accompa-
nied by additional multiplications of γ5 matrices and a reshaping in the spectator
part of the meson. However, the advantages of a re-usable insertion part more
than compensate all drawbacks. In the next section we will introduce the soft-
ware stack used to analyze the three-point functions, which was one of the main
technical tasks during this thesis.

4.2.4 Connected three-point functions software stack

Most important in the considerations presented in Section 4.2.3 is the amount
of disk space needed to store the individual objects (4.20) and (4.21), were all
spin indices, one color index, the stochastic index i, the flavor indices fi, and the
momentum indices are kept open. For a single configuration this yields4

Nspectator = N3
s ·Nc ·Ni ·Nmom ·Nfwd/bwd ·Nflavor ·Nsrc ,

Ninsertion = N3
s ·Nc ·Ni ·Nmom ·Nfwd/bwd ·Nflavor ·Nins ·Nsol. flavor ·Nder ,

(4.22)

complex numbers. A typical numerical setup for the CLS ensemble J303 is shown
in Tab. 4.2.2. Ni denotes the number of stochastic estimates, Nsrc the number
of source timeslices, Nmom the number of momentum combinations, Nfwd/bwd the
forward/backward part of the three-point function (used to increase statistics via
averaging), and Nflavor the number of flavor combinations for the meson. The usual
abbreviations Ns and Nc denote the number of spin and color components respec-
tively. Our example calculation (4.22) for J303 yields Nspectator ≈ 8.3 ·106 complex
numbers for the spectator part, cf. Tab. 4.2.2a, which correspond to ∼ 127 MB of
disk space. The insertion part requires the computation on every operator inser-
tion timeslice and typically includes all directions of the first derivative. Using the
parameters shown in Tab. 4.2.2b this yields Ninsertion ≈ 2.86 · 109 additional com-
plex numbers corresponding to ∼ 42 GB of disk space. Incorporating the baryon

4Here we corrected a misprint in [206].
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Parameter Value

Ns 4

Nc 3

Ni 100

Nmom 27

Nfwd/bwd 2

Nflavor 2

Nsrc 4

Nspectator ∼ 8.3 · 106

(a) Spectator part

Parameter Value

Ns, Nc, Ni 4, 3, 100

Nmom 54

Nfwd/bwd 2

Nflavor 3

Nsrc 4

Nins 23

Nder 1 + 4

Ninsertion ∼ 2.86 · 109

(b) Insertion part

Table 4.2.2: Analysis parameters for the stochastic three-point function simulation of
the CLS ensemble J303.

spectator part5, which is included in most of our runs, we eventually end up at a
total file size of ∼ 43 GB per configuration, which is dominated by the insertion
part contribution.

This example calculation highlights the importance of a reusable insertion. An
ensemble like J303 contains 1073 configurations and thus produces ∼ 46 TB of
data. Summing up all current runs on the various CLS gauge ensembles, we
already produced ∼ 1.8 PB of data [212] and the number would roughly be twice
as big if we had to produce the insertion part data for both cases. Considering
the storage systems available at present it is, however, already a non-trivial task
to manage the reduced amount of data6.

The memory and disk space requirements we had to solve were a further key
challenge at the time we published [56, 206]. In previous simulations we used the
chroma/QDP++ software stack [203], which was not optimized for the Intel Xeon
Phi (KNC/KNL) processors used by various computing centers and also in the
QPACE-2 and QPACE-3 supercomputers of our group. To overcome this issue at
the beginning of 2015 S. Heybrock started to implement a library called LibHadro-
nAnalysis (LHA) which was incorporated into the chroma/QDP++ software stack

5An in-depth explanation of the baryon case is given in [207].
6The management of data among the various computing-centers and our university storage

system, was done in collaboration with S. Weishäupl and R. H. Rödl in terms of software and
infrastructure development.
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and came along with a lot of optimizations solely for the Intel Xeon Phi archi-
tecture. The new memory layout implemented to exploit the 512 bit wide AVX
vector registers of the KNL SIMD architecture is one of the most essential build-
ing blocks of the code. Omitting some technical details, the main idea of the new
layout is given by rearranging parts of the for-loops in the original implementation
as shown in7 Alg. 1 and Alg. 2.

for 3 spin indices do
for color indices a,b do

for all sites in the local
lattice do

end
end

end

Algorithm 1: Chroma

for all sites in the local lattice do
for 1 spin index do

for color indices a,b do
for 2 spin indices
SIMD vect. do

end
end

end
end

Algorithm 2: LibHadronAnalysis

In a nutshell, this implies that the innermost loop over all lattice sites in Alg. 1 is
moved to the very outside in Alg. 2 while we split the loops over the spin indices
such that we can compute multiple spin operations with only one instruction in
the innermost loop in Alg. 2. Corresponding timings for the reference as well as
the LHA implementation can be found in [56, 207].

Based on these basic tools there were already implementations to, e.g., compute
meson and baryon distribution amplitudes. However, it was up to us to imple-
ment the three-point function computations using stochastic estimators [213] as
shown in (4.19), which is by now the most complex part of the library. In the
actual computation we implemented the spectator parts (meson and baryon) and
the insertion part as separate blocks to further parallelize the code. The com-
putation of the spectator part consists of the contractions of propagators at the
timeslices where the source and the sink are located. Naively only the MPI ranks
on the timeslices r4 and x′

4, x′′
4 would work, cf. Fig. 4.2.2a. In our implementation

we prepare a set of propagators sourced from different temporal source positions
and redistribute these propagators among the different MPI ranks in such a way
that each rank has at least one propagator. The computation of the spectator
part for each source position is then performed simultaneously and the Fourier
transformation in (4.20) fixes the momentum p′ at the sink.

7Algorithms are taken from [210].
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The insertion part corresponds to the contraction of the stochastic propagator,
i.e., the solution of the lattice Dirac equation sourced by random noise vectors,
with the point-to-all propagator. This has to be repeated for each operator times-
lice y4 between the sinks x′

4 and x′′
4 and the source r4. Again, to keep a good

workload balance we redistribute the data from the timeslices where the insertion
is present among all MPI ranks in such a way that each rank has approximately
the same number of insertion positions to work with. Finally, we perform all the
computations in parallel. Note that a separate Fourier transformation in (4.21)
allows us to select the desired momentum q flowing through the insertion. The re-
sults of our computations are stored in the HDF5-file format. A brief introduction
of the specific file structure is given in Appendix A.10.

However, there is a subtlety in the actual implementation concerning the Fourier
transformations in the spectator and insertion parts producing wrongly labeled
results, which we have to correct. For the Fourier transformation we use standard
chroma methods which take an offset argument set by the first spatial source
position of the measurement, i.e., if one computes four source positions the offset
corresponds to the source position which occurs first in the input file. Therefore we
have to multiply all subsequent Fourier transformations by a global phase factor
and rewrite the spectator and insertion part as

S̃i, f1(p′, x′
4)β′ α′ α

a = e−ip′·∆r Si, f1(p′, x′
4)β′ α′ α

a , (4.23)

Ĩi, f2, f3(q, y4)α̃ β̃ β
a = e−iq·∆r Ii, f2, f3(q, y4)α̃ β̃ β

a , (4.24)

where ∆r = rk−r0 defines the offset between the k-th and the first source position
of the measurement8 with 0 < k < Nsrc. The analysis software created for the
purpose of this project already contains the correction factors for the spectator
parts of the baryon and meson.

Once we have created the spectator and insertion data we have to further process
the data. The general idea of our software stack9 for this task is shown in Fig. 4.2.3.
In the following we will briefly discuss the individual constituents starting with
the chromaXML package [214].

A common choice of feeding chroma with input data, e.g., source positions,
smearing parameters, etc., is the use of extensible markup language (XML) files

8For all readers with technical intents: The source positions of every measurement can be
found in the meta-data of the HDF5 output-file where also the data is stored. Additionally one
should keep in mind that for the implementation of the phase correction it is essential to convert
the lattice momenta to physical units, i.e., p = 2π

Ns
k where Ns is the spatial lattice extend.

9For more detailed information we refer to [207], where also example code and timings are
provided.

79



openGFF

rioc
rios rioi

LHA
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Figure 4.2.3: Overview of the software stack used to extract physical results from
the stochastic three-point function estimates. The red lines depict the user’s personal
workstation or any server computer used for daily work. In our case, the application
programming interface (API) is just a shorthand notation for the operating system pro-
viding basic properties like python and other standard tools and the circles denote the
individual software packages implemented to extract the data. The blue part corre-
sponds to infrastructure mostly located in data or computing centers where we run a
server and interface structure to get data from disk and store it in a database. The
green part in the top right corner finally describes a supercomputer where we run our
code combined with the chroma software package to analyze CLS gauge configurations.

where the input arguments are stored in so-called tags. These files can easily
contain several thousand lines of arguments and thus become very confusing at
first sight. To simplify the workflow we developed a lightweight python module
that allows us to collect all the input parameters in one place to subsequently be
able to use the capabilities of a programming language to create the XML files in
a comprehensible way.

Let’s assume that the spectator and insertion data is already created and stored
on disk. To obtain physical quantities one first has to choose a specific Wick con-
traction, cf. (4.18), and explicit spin structures Γ for the interpolating currents. Of
course one also has to provide additional meta-data, e.g., the number of stochas-
tic indices to use, the source-sink distance, etc. . These tasks are governed by
the wick [215] and the openGFF [216] packages, which assemble human-readable
requests to software objects and assure that the request does not contain logical
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errors. However, in order to cope with the very large amount of data, we decided
not to process the request directly on the user’s workstation and thus set up a
server-client structure that allows us to leave the main data in a central storage
system and only load the data of interest. The main constituents of this structure
are the rioc (Regensburg IO client) package [217] which sends the user request to
the rios (Regensburg IO server) package [218] via any network connection. Once
the request has arrived on the server-side we hand it over to the rioi (Regens-
burg IO interface) package [219] and start a case differentiation. If the data has
never been requested before the interface loads the corresponding numbers for the
spectator and insertion part from disk and first creates an object of the form

Cβ′ α′ α α̃ β̃ β
3,p′,q (x′

4, y4, r4) = S̃i(p′, x′
4, r4)β′ α′ α

a Ĩi(q, y4, r4)α̃ β̃ β
a , (4.25)

where we already handled the sum over the color and stochastic indices. In the
next step we compute the remaining spin contractions

C3,p′,q(x′
4, y4, r4) ≈

a6

N
Γα′β′

snk Γα̃β̃
ins Γβα

src C
β′ α′ α α̃ β̃ β
3,p′,q (x′

4, y4, r4) , (4.26)

to achieve a single three-point function object for given source, sink, and operator
timeslices as well as requested sink momentum p′ and momentum transfer q. This
task is quite expensive in terms of computer time so we decided to store already
stripped results in a distributed database (DB) provided by the NoSQL Apache
Cassandra environment [220]. If the data is requested a second time we skip the
steps shown above and instantly get the data from the DB which drastically speeds
up computations. More precisely, this workflow is designed to complete tasks that
otherwise would take at least several hours in just a few seconds, corresponding
timings are shown in [207].

For the sake of completeness, we want to mention that there are of course
alternative approaches in terms of analysis software. A new, promising example
is, e.g., the Grid Python Toolkit (GPT) [221] that is being (co-)developed by
our group at the time of this work. However, to our knowledge the three-point
function computation using stochastic estimates and the factorization (4.19) was
not implemented by other groups so far.

At this point we want to sum up the work of our group by providing two
numbers: Till the submission of this thesis we generated 1.8 PB of connected three-
point function data using LHA and overall we wrote more than 50.000 lines of code
to accomplish these simulations. A detailed introduction, including example code
and documentation, of the individual software layers presented in Fig. 4.2.3 can
be found in chapter 5 of [207]. Further projects using the software stack and data
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presented in this section are, e.g, [201, 222, 223], and other upcoming projects,
e.g., the computation of vector form factors for the nucleon, are still in progress.

Besides the contributions of connected three-point functions, we also need dis-
connected contributions. In the next section we will briefly motivate the under-
lying diagrams and introduce the computation procedure before we come to the
actual results.

4.2.5 Disconnected three-point functions using stochastic estimators

In addition to the connected contributions of the three-point function, which we
treated in Section 4.2.3, we also compute the disconnected contributions illustrated
in Fig. 4.2.2b. The corresponding Wick contraction reads

δa′b′ δ
ã̃b
δba Γα′β′

snk Γα̃β̃
ins Γβα

src

〈
qf1(x′)α′

a′ qf2(x′)β′

b′ qf3(y)α̃
ã qf4(y)β̃

b̃
qf6(r)β

b qf5(r)α
a

〉
c

= δa′b′ δ
ã̃b
δba Γα′β′

snk Γα̃β̃
ins Γβα

src Gf1(r, x′)αα′

aa′ Gf2(x′, r)β′β
b′b Lf3(y, y)β̃α̃

b̃ã
,

(4.27)

where we denote the quark propagator connecting the space-time points y to them-
selves by Lf3 . Using the two-point function definition given in Section 4.2.1 we
can rewrite the disconnected contribution by the product of a two-point function
with the disconnected loop LΓins

q (y4) [224], which reads

C3,p′,q(x′
4, y4, r4) a−6 =

〈
C2(x′

4, r4)LΓins
q (y4)

〉
c
−
〈
C2(x′

4, r4)
〉

c

〈
LΓins

q (y4)
〉

c
,

(4.28)

where 〈. . . 〉c makes the configuration average explicit. The loop is given by

LΓins
q (y4) =

∑
y

eiq·y tr[Lf3(y, y)Γins] , (4.29)

where q denotes the momentum transfer in the non-forward case. Note that the
dependence on the final momentum p′ is contained in the definition of the two-
point function.

Analogous to Section 4.2.3 the computation of (4.29) involves a very large ma-
trix that is prohibitively expensive to compute exactly and therefore is estimated
by stochastic methods. Detailed information about the estimation used in our
simulations can be found in [225] and an application is shown, e.g., in [202]. In
the following, we will compile the information presented in the cited literature
which is also relevant for our analysis code [226]. Similar to (4.16) we estimate
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the propagator using complex Z2 noise vectors, cf. Appendix A.9, to reduce the
O(12V × 12V ) problem to a O(N × 12V ) problem in terms of computer time
and memory. The number of noise vectors is tuned such that the statistical error
arising from the Monte Carlo simulation is larger than the additional uncertainty
introduced by the stochastic estimation. Furthermore, we use three different tech-
niques to reduce the stochastic noise at given computational cost (i.e., without
increasing the number of stochastic estimates):

1. time partitioned sources (also known as diluted sources),

2. the hopping parameter expansion (HPE),

3. the truncated solver method (TSM).

Since time dilution [227–229] plays a minor part in the data used in this thesis we
will not go into further details. The HPE was already introduced in Section 2.3.3
and can be used to eliminate some of the noise contributions by exploiting the
locality of the action [230, 231]. In particular, we expand the trace given in (4.29)
in terms of the hopping parameter κ, cf. (2.55), as

tr[LΓins] =
n−1∑
i=0

κi tr
[
H iΓins

]
+ κn tr[HnΓins] , (4.30)

where we have split the terms on the right-hand side into two parts. The first
part contains n contributions with tr[H iΓins] = 0 while the remainder corresponds
to the first non-vanishing term of the expansion. In general n depends on Γins,
however, for all insertion currents analyzed in this work we find n = 3. A more
in-depth analysis of (4.16) gives rise to stochastic noise with larger amplitudes
from terms close to the diagonal arising from the first sum in (4.30). Instead of
increasing the number of stochastic estimates to handle these contributions we
follow, e.g., [202], and apply the Dirac operator n times to the solution to achieve
an improved estimate of the trace.

In the last step we use the TSM [232], where we exploit that the numerical
solvers converge to correct results, within an accuracy of the size of the stochastic
error, already for a small number of iterations [233]. We can utilize this behavior
in practical simulations and relax the requirement on the residual when solving for
stochastic sources. However, this introduces a systematic bias, at least at the level
of configuration averages used in the analysis of complete ensembles. To overcome
this issue we reassemble the propagator estimation by two uncorrelated estimates
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given by

L(y, y) ≈ 1
N1

N1∑
i=1

si,(nt)(y) η∗
i (y) + 1

N2

N1+N2∑
i=N1+1

[
si(y)− si,(nt)(y)

]
η∗

i (y) , (4.31)

where (nt) labels the number of solver iterations. Note that omitting (nt), i.e.,
using only solves within numerical accuracy, restores (4.16). Although (4.31)
is an approximation the decomposition on the right-hand side is exact and the
algorithms used to solve both parts are well defined. Now we use the fact that
the terms for i ≤ N1 and N1 < i ≤ N2 are uncorrelated and thus we are able to
reconstruct an unbiased estimate. Ideally one simulates a large number N1 � N2

of cheap estimates for a small number of solver iterations and finally corrects the
results by a small number N2 of expensive solves to machine precision. A detailed
discussion of the parameter tuning can be found in [225]. In principle, the TSM is
comparable to the HPE if one would estimate the first term in (4.30) with many
sources and the second, more expensive, term by a smaller number of sources.
However, on the one hand, modern iterative solvers converge much fast than the
HPE and on the other hand, the TSM does not depend on the locality of the
action.

The methods presented above can easily be combined as shown in [225] and
even more technical details can be found by directly studying the code [226]. In
actual simulations we use the already implemented methods with a small subtlety.
Instead of truncating the number of solver iterations nt in (4.31) we compute the
corresponding residuals for∼ 10 randomly chosen configurations of the ensemble of
interest using nt = 7. From this range of residue we finally choose the maximum
value which is used as cut-off instead of nt in the simulation of the complete
ensemble. This strategy is more robust for less well conditioned Dirac matrices
compared to a simple nt cut-off. The final analysis data is then stored in HDF5
files analogous to Appendix A.10 and further processed using python packages
implemented by our group [234, 235]10 to extract physical results.

4.2.6 Ratios of correlation functions

Instead of performing a fit to three-point functions, one can equivalently fit to
ratios of two- and three-point functions. As discussed in [201], this can be ad-
vantageous due to the cancellation of unwanted correlations between two- and
three-point functions. Furthermore, the ratio can be chosen such that contri-
butions from the ground-state directly correspond to the matrix element we are

10The main author of these packages is T. Wurm. Additional features were implemented by
D. Jenkins and M. Löffler.
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interested in. For pseudoscalar correlation functions we define

Rp = C3,p,t,τ

C2,p,t

t�τ�0−−−−→ 〈p| O |p〉2Eπ
p

, (4.32)

which holds for any operator insertion O in the three-point function.

For the vector meson case we will consider the diagonal case with the same
Lorentz indices at the sink and at the source, i.e., µ = ν = i in (4.2) and (4.3).
Defining

Jp
λ′λ ≡

〈p, λ′| O |p, λ〉
2Eρ

p
, (4.33)

one obtains

Ri
p =

Cii
3,p,t,τ

Cii
2,p,t

t�τ�0−−−−→
m2

ρ

(Eρ
p)2

∑
λ,λ′

εi(p, λ′)εi∗(p, λ)Jp
λ′λ , (4.34)

where i is fixed (no summation). On the right-hand side a sum over multiple
matrix elements occurs, which can be evaluated explicitly for the chosen three-
momentum. Let us now consider the case of on-axis momenta p̂ = ±ei. Evaluating
the sums one finds

p̂ = ±e1 :

R1
p = Jp

00 ,

R2
p = 1

2
(
Jp

++ + Jp
−−

)
− 1

2
(
Jp

+− + Jp
−+

)
,

R3
p = 1

2
(
Jp

++ + Jp
−−

)
+ 1

2
(
Jp

+− + Jp
−+

)
,

(4.35)

etc., which can be written in a more compact form for the polarization conserving
cases:

p̂ = ±ei :
Jp

00 = Ri
p , Jp

++ + Jp
−− =

∑
j 6=i

Rj
p +Rj

p . (4.36)

However, as a final remark, we want to add that for the case of on-axis momenta
the decomposition into irreducible representations is particularly simple, as we
will see in Section 4.3.
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4.3 Resonance character of the rho meson

Considering an infinite volume a continuum of states would contribute to the spec-
tral decomposition above the particle creation threshold11. For the computations
presented in this work this especially affects the decomposition (4.9), where a
continuum of two pion states would contribute above the 2mπ threshold. For the
special case of non-interacting particles the center of mass energies of two pions
with momenta −k and k are given by

E2
cm = 4

(
m2

π + k2
)
, (4.37)

measured in the center of mass frame. However, in a finite volume, as used in
our computations, momenta are quantized such that a discrete set of states con-
tributes.

At non-zero total three-momentum p the energies of the two-pion states are
given by

E =
√
m2

π + p2
1 +

√
m2

π + p2
2 , (4.38)

⇒ Ecm =
√(√

m2
π + p2

1 +
√
m2

π + p2
2

)2
− p2 , (4.39)

where p1 + p2 = p, and p1 and p2 are again quantized in a finite volume. This
means, that for each value of p a different set of states with different center of
mass energies will contribute. Hence, despite the fact that the dispersion relation
holds for each individual state, any ansatz that enforces the dispersion relation
and assumes that the states contribute for all values of total momentum p, cannot
describe the contribution of the two-pion states properly.

The rest frame and the laboratory frame are related by a Lorentz boost

Λ =
 γ γβT

γβ Λ3

 , with Λij
3 = δij + (γ − 1)β

iβj

β2 , (4.40)

where the velocity is given by β = p/E = p/
√
E2

cm + p2 and γ = 1/
√

1− β2.
To relate the difference between the pion three-momenta in the laboratory frame,
p1 and p2, to the three-momenta in the center of mass frame one only needs the

11The insights presented in this section were elaborated in close collaboration with P. Wein.
Especially all the figures shown in this section were initially created by P. Wein and refined by
M. Löffler. All input parameters were provided by M. Löffler.
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d2 LG(p) Γ
0 Oh T1u
1 C4v A1⊕ E
2 C2v A1⊕ B1⊕ B2
3 C3v A1⊕ E
4 C4v A1⊕ E

(a) Little groups and decomposition.

d2 Γ φd
Γ

0 T1u w0,0 − w2,0 −
√

6w2,2
1 A1 w0,0 + 2w2,0
1 E w0,0 − w2,0

. . . . . . . . .

(b) Scattering phase shifts.

Table 4.3.1: (a) Little groups and decomposition of angular momentum 1 in irreducible
representations for all momentum sectors d2 ≤ 4, where p = 2π

L d. The groups are
isomorphic for each representative of a sector. Table taken from [238]. (b) Scattering
phase shifts (assuming that only the P -wave contributes) for momentum sectors d2 and
irreducible representations Γ. See [236, 238] for more details. Table taken from [148].

spatial part of a Lorentz boost matrix, because

1
2(p1 − p2)

∣∣∣∣∣
cm

=
0

k

 ⇒ 1
2(p1 − p2) = Λ3k ⇒ k = Λ−1

3
1
2(p1 − p2) . (4.41)

Using p = 2π
L

d and pi = 2π
L

di, where on a torus d, d1, d2 ∈ Z3, one obtains the
quantization condition for k at a given value for p after replacing p2 = p− p1. It
reads

Lk

2π ∈ Γd , with Γd =
{

z
∣∣∣∣ z = Λ−1

3

(
n− d/2

)
,n ∈ Z3

}
. (4.42)

Considering particles of integer spin in the center of mass frame, i.e., at zero
momentum, the full symmetry group in terms of LQCD is the octahedral group
Oh = O ⊗ I defined as the direct product of the cubic group O (consisting of
24 rotations) and the group of space inversions I. For particles of half-integer
spin the corresponding double covers of O and Oh have to be taken into account.
However, as shown in, e.g., [236–238], the symmetry in a moving frame is reduced
to the so-called little groups, cf. Tab. 4.3.1a, together with a decomposition into
irreducible representations for the P -wave (l = 1).

The latter is relevant because not all combinations of pion momenta p1 and
p2 that are possible for a given value of p do contribute to all irreducible rep-
resentations, which leads to “missing” energy levels in some cases. A list of
momentum combinations leading to the lowest possible two pion energy levels
(for the case l = 1) in each representation has been given in [238], and is re-
produced in Tab. 4.3.2. Plugging these momentum combinations into (4.38)
and (4.39) one obtains the corresponding energy levels and center of mass en-
ergies shown in Fig. 4.3.1, where we use the parameters of the CLS ensemble
D200 (Ns ×Nt = 64× 128,mπ = 201 MeV,mρ = 746 MeV).
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How to connect infinite volume phase shifts with the finite volume energy
spectrum is shown in [239, 240] while further, recent discussions can be found
in [236–238]. However, since we are only interested in the rho resonance in the
vector channel it is sufficient to only consider P -wave (l = 1) contributions. It was
shown in, e.g., [241, 242], that nonzero phase shifts in higher odd partial waves
are usually not required to describe the two pion spectrum. In this situation it
is possible to directly relate the P -wave phase shift δ1 to the quantized two pion
energy levels in finite volumes by the condition

cot δ1
!= cotφd

Γ . (4.43)

The scattering phase shifts φd
Γ, for the momentum sectors d2 ≤ 1 we are interested

in, can be taken from Tab. 4.3.1b. For explicit computations we use the definitions

wlm = Zd
lm(1, q2)

π3/2
√

2l + 1 γ ql+1
, q = Lk

2π , k =
√
E2

cm
4 −m2

π , (4.44)

where Zd
lm(1, q2) is a generalized form of the zeta function. One possible represen-

tation of Zd
lm(1, q2), which we use for numerical evaluations, is given in [236] and

reads

Zd
lm(1, q2) =

∑
z∈Γd

Ylm(z)
z2 − q2 e

−(z2−q2) + γ
π

2 δl0 δm0

∞∑
n=0

q2n

(n− 1/2)n!

+ γπ3/2
∫ 1

0
dt
etq2

t3/2

(
i

2t

)l ∑
n∈Z3
n6=0

e−iπd·n Ylm(2πΛ3n) e−(πΛ3n)2/t ,
(4.45)

with

Ylm(r) = rlYlm(θ, φ) , (4.46)

where Ylm(θ, φ) are spherical harmonics.

To finally obtain the energy levels in the interacting case we use (4.43) and
equate the phase shifts φd

Γ with a phenomenological parametrization. Follow-
ing [243] we first define the rho mass and width for any given parametrization
by

cot δ1

∣∣∣∣∣
s=m2

ρ

= 0,

mρΓρ =
(
dδ1

ds

)−1

s=m2
ρ

= −
(
d cot δ1

ds

)−1

s=m2
ρ

=
−k3

ρ

mρ

(
d k3

√
s

cot δ1

ds

)−1

s=m2
ρ

,

(4.47)

88



d
Γ

d
1
⊗

d
2

(0
,0
,0

)
T

1u
(0
,0
,1

)⊗
(0
,0
,−

1)
,(

1,
0,

1)
⊗

(−
1,

0,
−

1)
(0
,0
,1

)
A

1
(0
,0
,1

)⊗
(0
,0
,0

),
(0
,0
,2

)⊗
(0
,0
,−

1)
,(

1,
0,

1)
⊗

(−
1,

0,
0)

,(
1,

1,
1)
⊗

(−
1,
−

1,
0)

(0
,0
,1

)
E

(0
,1
,1

)⊗
(0
,−

1,
0)

,(
1,

1,
1)
⊗

(−
1,
−

1,
0)

(1
,1
,0

)
A

1
(1
,1
,0

)⊗
(0
,0
,0

),
(1
,1
,1

)⊗
(0
,0
,−

1)
,(

1,
−

1,
0)
⊗

(0
,2
,0

)
(1
,1
,0

)
B1

(1
,1
,1

)⊗
(0
,0
,−

1)
,(

1,
0,

1)
⊗

(0
,1
,−

1)
(1
,1
,0

)
B2

(1
,0
,0

)⊗
(0
,1
,0

),
(1
,0
,1

)⊗
(0
,1
,−

1)
,(

2,
0,

0)
⊗

(−
1,

1,
0)

(1
,1
,1

)
A

1
(1
,1
,1

)⊗
(0
,0
,0

),
(1
,0
,1

)⊗
(0
,1
,0

),
(2
,0
,0

)⊗
(−

1,
1,

1)
(1
,1
,1

)
E

(1
,0
,1

)⊗
(0
,1
,0

),
(1
,−

1,
1)
⊗

(0
,2
,0

)
(0
,0
,2

)
A

1
(0
,0
,2

)⊗
(0
,0
,0

)
(0
,0
,2

)
E

(0
,1
,1

)⊗
(0
,−

1,
1)

T
ab

le
4.

3.
2:

C
om

bi
na

tio
ns

d
1
⊗

d
2

(w
he

re
th

e
m

om
en

ta
ar

e
gi

ve
n

by
p

i
=

2π L
d

i)
th

at
yi

el
d

th
e

lo
w

es
t

pi
on

en
er

gy
le

ve
ls

in
ea

ch
re

pr
es

en
ta

tio
n.

O
nl

y
on

e
re

pr
es

en
ta

tiv
e

to
ta

l
m

om
en

tu
m

p
=

2π L
d

is
gi

ve
n

fo
r

ea
ch

m
om

en
tu

m
se

ct
or

.
T

he
m

om
en

tu
m

co
m

bi
na

tio
ns

de
pe

nd
on

th
e

irr
ed

uc
ib

le
re

pr
es

en
ta

tio
n

Γ
be

ca
us

e
no

t
al

lc
om

bi
na

tio
ns

co
up

le
to

al
li

rr
ed

uc
ib

le
re

pr
es

en
ta

tio
ns

.
Fu

rt
he

rm
or

e,
th

e
sh

ift
of

th
e

en
er

gy
le

ve
ls

du
e

to
in

te
ra

ct
io

ns
ca

n
be

di
ffe

re
nt

fo
r

ea
ch

re
pr

es
en

ta
tio

n.
T

hi
s

Ta
bl

e
is

ta
ke

n
fr

om
re

f.
[2

38
].

89



using the Mandelstam variable s = E2
cm. Subsequently we use two different

parametrizations, namely

• the Breit-Wigner (BW) ansatz,

• the Gounarius-Sakurai (GS) parametrization [243],

to extract the phase shifts δBW
1 and δGS

1 . Using a relativistic BW ansatz this reads

k3
√
s

cot δBW
1 =

6π
(
m2

ρ − s
)

g2
ρππ

=
k3

ρ

(
m2

ρ − s
)

Γρm2
ρ

, with Γρ =
g2

ρππk
3
ρ

6πm2
ρ

, (4.48)

where k =
√
s/4−m2

π, as defined in (4.44), and

kρ = k

∣∣∣∣∣
s=m2

ρ

=
√
m2

ρ/4−m2
π . (4.49)

The alternative GS parametrization yields

k3
√
s

cot δGS
1 = k2h(s) + a+ bk2 , with h(s) = 2

π

k√
s

ln
(√

s+ 2k
2mπ

)
. (4.50)

To further simplify (4.50) we compute the contributions a and b via

0 = k2
ρ

(
h(m2

ρ) + b
)

+ a ⇒ a = −k2
ρ(b+ h(m2

ρ)),
−k3

ρ

m2
ρΓρ

=
h(m2

ρ) + b

4 + k2
ρh

′(m2
ρ) ⇒ b = −h(m2

ρ)−
4k3

ρ

m2
ρΓρ

− 4k2
ρh

′(m2
ρ),

a = k2
ρ

(
4k3

ρ

m2
ρΓρ

+ 4k2
ρh

′(m2
ρ)
)
, (4.51)

to finally obtain

k3
√
s

cot δGS
1 = k2(h(s)− h(m2

ρ)) + (k2
ρ − k2)c , (4.52)

with c =
4k3

ρ

m2
ρΓρ

+ 4k2
ρh

′(m2
ρ) =

4k3
ρ

m2
ρΓρ

+
4k2

ρ

πm2
ρ

(
1 + m2

π

mρkρ

ln
(
mρ + 2kρ

2mπ

))
.

Note that we can measure the value of Fπ on each of our lattices. Therefore, we
can apply the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation [244, 245],
m2

ρ = 2g2
ρππF

2
π , (which, as argued in ref. [246], is a consequence of chiral symmetry

and the requirement of renormalizability for the EFT) such that both the BW
and the GS parametrizations are determined solely by the rho mass (given that
the pion decay constant Fπ is well-known and the width of the rho is linked to the
rho-pi-pi coupling constant gρππ via (4.48)).
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Figure 4.3.1: Center of mass energies Ecm and energies E of the two pion states that
contribute at different total momenta p = 2π

L d and irreducible representations Γ. Here
we have used the volume and the pion mass for D200. The red line corresponds to the
two-pion threshold in the continuum. The black dashed lines correspond to the rho mass
we have extracted on this ensemble.
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Figure 4.3.2: Comparison of the BW (red) and GS (blue) phase shift parametrizations.
We again use the D200 input parameters including the naively measured rho mass. The
rho-pi-pi coupling constant is set to the phenomenological value gρππ = 5.96. Figure
taken from [148].

A comparison of the BW and GS phase shifts for the P -wave are shown in
Fig. 4.3.2 where we again use the parameters of the CLS gauge ensemble D200 as
input. As one can see the two different parametrizations agree very well and lie al-
most on top of each other. The same holds for the presentation shown in Fig. 4.3.3
where we show cot δ1 as a function of the center of mass energy. In addition
we illustrate the quantization condition (4.43). The corresponding energy lev-
els are situated at the intersections between the BW and GS parametrizations
and the curves for cotφd

Γ. The positions of the poles correspond to Ecm of the
non-interacting system.
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It was shown in [243], that the phase shifts are linked to the pion form factor
via

Fπ(s) = f(0)
f(s) , with f(s) = k3

√
s

(cot δ1 − i) . (4.53)

Obviously this relation holds only in case of the GS parametrization, since f(s)
diverges for s = 0 in the BW ansatz. Thus only the GS parametrization is used
in the following calculations. Using (4.52) one finds

Fπ(s) =
m2

πh(m2
ρ) + c

4m
2
ρ − 1

π
m2

π

k3√
s

(
cot δGS

1 − i
) . (4.54)

From the form factor we can derive the overlap factor of the two-pion states with
a local (unsmeared) vector current using the formula derived in [247]12

|Fπ(s)|2 = γ

g(γ)2

(
q
∂φd

Γ
∂q

+ k
∂δ1(k)
∂k

)
3πs
k5 |〈0|b̂ · j(0)|ππ, n〉V |2 ,

with g(γ) =

γ for b ‖p ,

1 for b ⊥ p ,
(4.55)

⇒ |Fπ(s)|2 =
(
q
∂φd

Γ
∂q

+ k
∂δ1(k)
∂k

)
6π
√
s

k5 Zππ
p .

Inverting (4.55) finally yields the overlap factors13

Zππ
p (s) =

(
q
∂φd

Γ
∂q

+ k
∂δ1(k)
∂k

)−1
k5

6π
√
s
|Fπ(s)|2

s>4m2
π=
√
s

6πk

(
q
∂φd

Γ
∂q

+ k
∂δ1(k)
∂k

)−1∣∣∣∣∣m
2
πh(m2

ρ) + c
4m

2
ρ − 1

π
m2

π

cot δGS
1 − i

∣∣∣∣∣
2

,

(4.56)

from a given form factor, which, in turn, can be determined from the phase shift.
The form factors and corresponding overlap factors with two-pion states of

12A generalization for moving frames of the original derivation is given in [248].
13The vacuum polarization (two-point function) is defined in (4.2) and can be adapted to the

calculations shown here by Cij
p,t =

∑
H e−EH,pt ZH

p

2EH,p

(
δij + pipj

E2
cm,H

)
, where H denotes the hadron

and EH,p =
√

E2
cm,H + p2. The overlap factors can be different in time direction µ = ν = 0, so

we only treat spatial components in our computations. Compared to [247] equation (12) we thus
need an extra factor (2E)−1 = (2γEcm)−1 = (sγ

√
s)−1 in our computations and the kinematic

factor g(γ)2 drops out. Furthermore, our current differs by a factor of 2 compared to [247].
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Figure 4.3.3: Illustration of (4.43). The BW (red) and GS (blue) parametrizations,
cf. Fig. 4.3.2, are shown in addition to the scattering phase shifts φd

Γ for different total
momenta p = 2π

L d and irreducible representations Γ, calculated using the relations
shown in Tab. 4.3.1b. We again use the input parameters of the CLS gauge ensembles
D200. The poles occur at the positions of the noninteracting Ecm, while the energy
levels are situated at the intersection of the curves. Figure taken from [148].

a local, i.e., unsmeared, vector current at the source and the sink are shown
in Fig. 4.3.4 as a function of the center of mass energy. In the right column one
immediately sees that two-pion states with Ecm � mρ (or Ecm � mρ) are strongly
suppressed. Comparing the top right panel of Fig. 4.3.4 to the lower right panel
indicates that values computed in our example are suppressed by roughly a factor
100 compared to our estimate for the overlap of the rho meson itself, depicted by
the horizontal red line in the top right panel. Thus, these states will not yield
large contributions to the correlation functions at the intermediate time distances
available in our simulations whilst being energetically favored. Eventually, this
may explain why we do not see these states in our numerical analysis. However,
the more problematic case occurs for Ecm ≈ mρ. The top right panel of Fig. 4.3.4
clearly indicates that the overlap of these states is strongly enhanced, and can be
of the same size or even larger than the overlap of the rho meson. Our numerical
analysis does not allow for a distinction between these two-particle contributions
and the contribution of the rho meson itself in the spectral decomposition, which
is particularly concerning. It is important to take this shortcoming into account
when interpreting the results.

Nevertheless, in the analysis shown above, we only considered local currents
and the situation might be less critical for the smeared currents that we use in our
simulations. A posteriori, the trustworthiness of the numerical results presented
in Section 4.8 could be enhanced significantly, if subsequent studies (e.g., by using
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Figure 4.3.4: Left column: The pion form factor obtained using (4.55) and the cor-
responding overlap factors Zππ

Γ for the local currents from (4.56). Right column: The
red line on the upper panel is plotted for comparison and corresponds to the estimated
Zρ = 2f2

ρ m2
ρ for the local currents using the phenomenological value fρ = 222 MeV as

input. The lower panel corresponds to same values as shown at the top right but zoomed
in on the y-axis. All input parameters are again taken from the CLS gauge ensemble
D200 and the top row of the figure was already published in [148].

the generalized eigenvalue method with two-pion interpolating currents, cf. [237,
249–252]) can show that the overlap of smeared vector interpolating currents with
the two-pion states is much smaller than for the local currents.

4.4 Pion and rho mass

To compute the reduced matrix elements introduced in Section 3.2 one has to
determine the mass (energy) of the meson in the rest (boosted) frame, as an ad-
ditional input parameter. While the values for mπ are taken from [127] the values
for mρ are obtained by a direct fit to the spectral decomposition of the correlation
function (4.9). Besides the mass (energy) itself two additional amplitudes (Z and
A) and also the energy gap to the first excited state ∆E enter the fit as free param-
eters. However, using the ratio method introduced in Section 4.2.6 the additional
amplitudes and also ∆E will not enter the results presented in this work.

The fits are performed using a constant fit window of ∼2 fm for all ensembles
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Figure 4.4.1: Rho masses for all ensembles analyzed from a double exponential fit
(open boundaries) or a single exponential fit (periodic boundaries) to the two-point
function correlator. The triangles depict the results in the rest frame (p2 = 0) while the
circles correspond to fits in the boosted frame (p2 = 4π2

L2 1) projected to the rest frame
using the continuum dispersion relation. Numerical values are shown in Tab. 4.4.1.

with open boundary conditions and we start 1 or 2 timeslices (∼ 0.1 fm) away
from the source for the coarser or finer lattices. Due to the structure of (4.10)
the values obtained by the fit for the ground-state and excited state energy can
be interchanged. To overcome this technical issue we have introduced a cutoff
for the double exponential fit at tcut ≈ 0.65 fm and fit only the single exponential
Zρ

p(2Eρ
p)−1e−Eρ

pt for larger times. In case of periodic boundary conditions we choose
a symmetric ansatz of the form

C2,p,t = Zρ
p(2Eρ

p)−1(e−Eρ
pt + e−Eρ

p(T −t)) , (4.57)

with tcut ≤ t ≤ T − tcut, where we only fit the amplitude and the ground-state
energy. The final results of these fits are shown in Tab. 4.4.1 and Fig. 4.4.1, in the
latter we depict the rest frame results by triangles and the boosted frame results
by circles. Note that the continuum dispersion relation Eρ

p =
√
m2

ρ + p2 is used to
project the energies onto their corresponding mass values and to check that the
dispersion relation is well satisfied for the momenta in use.
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Ens.
√
E2

ρ − p2 mρ

A653 0.855 (11) 0.870 (11)
A650 0.819 (12) 0.813 (12)
H101 0.862 (2) 0.860 (2)
H102r001 0.830 (5) 0.828 (5)
H102r002 0.825 (5) 0.820 (5)
H107 0.864 (4) 0.860 (4)
H105 0.796 (5) 0.793 (5)
H106 0.807 (6) 0.805 (6)
C101 0.758 (2) 0.753 (2)
C102 0.756 (4) 0.756 (4)
B450 0.868 (5) 0.869 (5)
S400 0.839 (4) 0.839 (4)
B452 0.860 (17) 0.856 (17)
rqcd030 0.806 (21) 0.795 (21)

Ens.
√
E2

ρ − p2 mρ

N450 0.792 (12) 0.812 (12)
X450 0.746 (5) 0.737 (5)
D450 0.748 (6) 0.741 (6)
N202 0.864 (3) 0.860 (3)
N204 0.861 (4) 0.859 (4)
N203 0.838 (3) 0.833 (3)
X250 0.814 (8) 0.816 (8)
N201 0.823 (4) 0.822 (4)
N200 0.800 (4) 0.804 (4)
X251 0.751 (1) 0.757 (1)
N300 0.889 (5) 0.891 (5)
N304 0.872 (9) 0.884 (9)
J303 0.807 (5) 0.802 (5)

Table 4.4.1: Rho masses for all ensembles analyzed from a double exponential fit (open
boundaries) or a single exponential fit (periodic boundaries) to the two-point function
correlator. The first column denotes the ensemble identifier while the second and the
third column show the results obtained from the boosted frame (p2 = 4π2

L2 ) and the rest
frame (p2 = 0) respectively, including the statistical error. A graphical illustration can
be found in Fig. 4.4.1.

4.5 Extraction of ground-state matrix elements

In Section 4.2.5 we already remarked that three-point correlation functions can
contain quark-line disconnected contributions. A common approach to circumvent
this problem is the usage of isovector current insertions, e.g., used in [201], where
the up and down quark disconnected loops cancel each other in the limit of exact
isospin symmetry. However, in terms of the two mesons studied in this thesis, this
is not a viable solution, since also the connected parts would vanish for isovector
currents and all results would be identical to zero. So on the one hand, we are
forced to take disconnected contributions into account, but on the other hand,
these contributions lead to large statistical errors which, in principle, drastically
deteriorate the quality of our results. Fortunately, we found that large statistical
errors do not occur in general, see below.

Often one finds, that the signal of disconnected contributions yields results
that are zero within the error and thus one might be tempted to simply drop
the corresponding contributions. However, if one includes all contributions in the
final results one finds that the inclusion of quark-line disconnected contributions
can shift the mean and, even more importantly, can increase the error for the final
results substantially. I.e., they have to be included, if one wants to provide reliable
error estimates for phenomenological applications. Nevertheless, we perform a
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second analysis in these cases, where we solely use the connected part, which
allows us to compare to other lattice results for connected contributions.

In Section 4.2.3 and Section 4.2.5 we have introduced our implementations for
the computation of connected and disconnected three-point function contributions,
respectively. Both methods rely on the usage of stochastic estimators. While the
connected part is computed using a setup with fixed sink timeslice, to obtain
the results for all possible insertion timeslices, the disconnected part is computed
using a setup with fixed loop timeslices. Using these different methods it is no
longer advantageous to add the connected and disconnected contributions already
at the correlation function level, i.e., we separate the statistical analysis of both
contributions and add them only at the very end of our analysis. Otherwise
we would have to throw away a large part of our data since we could only use
disconnected contributions, where we also have corresponding connected insertion
timeslices τ and final timeslices t. This would be prohibitively wasteful. Therefore,
we will perform the extraction of the ground-state matrix elements separately for
the connected and the disconnected contribution.

Next, we extract the ground-state contributions from the ratios defined in Sec-
tion 4.2.6. To directly relate the reduced matrix elements v2, cf. (3.29), a2, and
d2, cf. (3.30a), with the corresponding ground-state contribution of the ratios we
use appropriate kinematic prefactors and, in case of the rho, adequate linear com-
binations of data points. For on-axis momenta p̂ = ±ei we obtain

v2 = 1
pi
Rp

(
Oi

v2a

)
, (4.58a)

a2 = 1
3pi

∑
j

Rj
p

(
Oi

v2a

)
, (4.58b)

d2 = 3
4pi

[
2Ri

p

(
Oi

v2a

)
−
∑
j 6=i

Rj
p

(
Oi

v2a

)]
, (4.58c)

with operator Oi
v2a as inserted current, and for Ov2b we find

v2 = 3E
4E2 −m2Rp

(
Ov2b

)
, (4.59a)

a2 = E

4E2 −m2

∑
j

Rj
p

(
Ov2b

)
, (4.59b)

d2 = 3E
8(E2 −m2)

[
2Ri

p

(
Ov2b

)
−
∑
j 6=i

Rj
p

(
Ov2b

)]
. (4.59c)

Here we suppress the superscripts π, ρ, and the subscript p for the mass and
energy. To avoid mixing as far as possible we have chosen operator combinations
Oi

v2a = O0i and Ov2b = 4
3O

00, using (3.23a), that posses a definite C-parity and
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transform according to irreducible representations of H(4), cf. [154, 253]. For
the case of n = 2, i.e., only first derivatives and thus two operator indices, the
projection onto leading twist via the symmetrizing and trace-subtracting operator
S is defined by

SOµν = Sµν
ρσOρσ = 1

2

(
gµ

ρ g
ν
σ + gµ

σg
ν
ρ −

2
d
gµνgρσ

)
Oρσ . (4.60)

Making this definition explicit in (3.29) yields

〈p| Oi
v2a |p〉 = 2vq

2 Ep
i , (4.61a)

〈p| Ov2b |p〉 = 2vq
2

4E2 −m2

3 . (4.61b)

for the pion and inserting (4.60) into (3.30a) yields

〈p, λ| Oi
v2a |p, λ〉 = 2Epi

a
q
2 + 2

3d
q
2 for λ = 0 ,

aq
2 − 1

3d
q
2 for λ = ± ,

(4.62a)

〈p, λ|Ov2b|p, λ〉 = 2
(
aq

2 −
dq

2
3

)4E2 −m2

3 + 2d
q
2

3

4E2 − 3m2 for λ = 0 ,

m2 for λ = ± ,
(4.62b)

for the rho. In the actual computations we use the explicit operators

Oi
v2a = O{0i}, with i = 1, 2, 3, (4.63)

Ov2b = O00 + 1
3
(
O11 +O22 +O33

)
, (4.64)

with

Oµν = i

2 q γ
µ←→D ν q. (4.65)

The conversion between Minkowski and Euclidean convention is finally given by

O(E),i
v2a = −iOi

v2a , and O(E)
v2b = −Ov2b , (4.66)

see [154] for details.

One immediately finds that the computation of Oi
v2a requires non-zero momen-

tum contributions in direction i while the computation of Ov2b also gets along
with vanishing three-momentum, except for the computation of d2, which always
requires finite momenta. The reason for this is that d2 corresponds to the differ-
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Figure 4.5.1: Extraction of renormalized values for v2, a2, and d2 from the ratios
obtained in (4.58a) – (4.58c) using the operator combination Ov2a. For illustrative
purposes we only show the data points and individual fits (solid blue lines in the first
column) for all momentum combinations with k2 = 1, however, the ground-state results
(orange lines) are obtained by a simultaneous fit to the operator combinations Ov2a
and Ov2b using all possible momenta for the corresponding matrix element with k2 ≤
1 for the connected, disconnected non-singlet, and disconnected singlet contributions
respectively. The analysis shown in this plot has been performed on the ensemble
N204. The solid blue lines in the first column correspond to a simultaneous fit to the
four source-sink separations of the ensemble, cf. Tab. 4.2.1, for the insertion current
(uu + dd) needed to construct the flavor (non-)singlet operator contributions. In case of
v2 and a2, the fits allow for an excited state on top of the ground-state. The orange line
depicts the extracted ground-state contribution and directly correspond to the values of
the reduced matrix elements. In the second and third column we show the disconnected
contributions for the non-singlet (uu + dd− 2ss) and singlet (uu + dd + ss) operators as
function of the final timeslice t. In addition to the original data points (grayed out) we
also show an average over all insertion times for every final timeslice t (black triangle
markers). Figure taken from [148].

ence of the PDF moment between longitudinally and transversally polarized rho
mesons, which is no useful concept for mesons in their rest frame.

In Fig. 4.5.1 and Fig. 4.5.2, we show examples of the ratio fits for the ensemble
N204. For the statistical analysis we generate 500 bootstrap samples per ensemble
using a bin size of 40 molecular dynamics units to eliminate autocorrelations, cf.
the discussion in Section 2.3.7. To visualize the fits and corresponding data points
we only present plots for k2 = 1, with lattice momentum k = L

2π
p, using the

operator combinations (4.58a) – (4.59c). However, the results for the reduced
matrix elements v2, a2, and d2 in the left column are obtained by combined fits to
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Fit Parameter Ov2a(k2 = 1) Ov2b(k2 = 1) Ov2b(k2 = 0)

B0 3 3 3

B1 (Ov2a,k
2 = 1) 3 7 7

B1 (Ov2b,k
2 = 1) 7 3 7

B1 (Ov2b,k
2 = 0) 7 7 3

∆Ek2=1 3 3 7

∆Ek2=0 7 7 3

Table 4.5.1: Summary of the occurrence of the individual fit parameters in the
ansatz (4.67) for the extraction of v2 (pion) and a2 (rho). A green check mark in-
dicates that the fit parameter is present in the corresponding operator combination,
whereas the red crosses indicate that the fit parameter is not present.

all ratios using an ansatz similar to (4.13) with the definitions (4.32) and (4.34).
In the case of pseudoscalar mesons this reads

R(O,p2, t, τ) = B0 +B1(O,p2) e−∆Ep2 (t−τ) +B1(O,p2) e−∆Ep2 τ , (4.67)

where the ratio R explicitly depends on p2, the operator O ∈ {Ov2a,Ov2b}, the
sink timeslice t, and the insertion timeslice τ . For the operator combination Oi

v2a,
with i = 1, 2, 3, we average the three spatial directions and fit to the data using
the parameters B0, B1 (Ov2a,k

2 = 1), and the excited state energy is given by
∆Ek2=1, independent of the operator combination. Note that we require nonzero
momentum in direction i for Ov2a. Additionally the operator combination Ov2b

gives rise to the further excited state amplitudes B1 (Ov2b,k
2) and the excited

state energy ∆Ek2=0. All in all, this yields a simultaneous fit to three operator
combinations for each source-sink separation, to resolve the individual parame-
ters. The actual fit is performed simultaneously to all source-sink separations,
cf. Tab. 4.2.1. A summary of the individual contributions is given in Tab. 4.5.1.
One can easily deduce that the ground-state contribution B0 is obtained from all
data sets while the excited state amplitudes and energies depend on the operator
combination and k2 respectively. A similar approach holds for the extraction of
a2 and d2. However, for d2 the statistical error is much larger such that the in-
clusion of a generic excited state in the fit is not promising. Therefore we fix the
excited state energies ∆Ek2=1 by an additional, simultaneous fit to the two-point
function (4.10) in case of the reduced matrix element d2.

In summary, this means that the fits do not only take into account the data
points shown in Fig. 4.5.1 and Fig. 4.5.2 but are actually based on a larger data
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Figure 4.5.2: Extraction of renormalized values for v2, a2, and d2 from the ratios
obtained in (4.59a) – (4.59c) using the operator combinationOv2b. The data is visualized
in the same way as in Fig. 4.5.1, i.e., we only plot the data points and individual fits
for p2 = 1. Also here we want to stress, that the ground-state results (orange line) are
obtained by a simultaneous fit to the operator combinations Ov2a and Ov2b using all
possible momenta for the corresponding matrix element with p2 ≤ 1 for the connected,
disconnected non-singlet, and disconnected singlet contributions respectively. Figure
taken from [148].

set stemming from various operator and momentum configurations. However, the
prefactors in (4.58a) – (4.59c) are solely determined by the results shown in Sec-
tion 4.4 and the corresponding momentum contributions. As discussed above,
we perform the extraction of the ground-state matrix elements separately for the
connected (left column) and the disconnected (middle and right column) contribu-
tions. In the analysis of the disconnected contribution we found a high correlation
between the noise on the light and the strange quark loop. This can be used to our
advantage if we build non-singlet (uu+ dd− 2ss) and singlet (uu+ dd+ ss) flavor
combinations, instead of using the light and strange loops themselves. As depicted
impressively in the middle and the right column of Fig. 4.5.1 and Fig. 4.5.2 (note
the difference in scale), the statistical error is smaller by more than one order of
magnitude for the non-singlet operator. For the disconnected contributions we
do not see an indication for a significant excited state contribution and thus use
a constant fit to extract the ground-state signal, using the combined fits shown
above.

In contrast to the connected contributions the disconnected three-point func-
tions are computed for a large number of final timeslices t and operator timeslices τ
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equally distributed over the central part of the lattice. The grayed out point in
the middle and the right column of Fig. 4.5.1 and Fig. 4.5.2 show the disconnected
three-point correlator as a function of the final timeslice t where all datapoints
per t (aligned on top of each other) correspond to the possible insertion timeslices
between the source and the sink. The statistical scattering of these data points
alone can lead to the misconception that the statistical error of the extracted
ground-state (yellow band) is underestimated. In order to convince the reader
that this is not the case we also show the black points, where we first sum up
all data points per t and finally divide the result by the corresponding number
of data points. Using the results for v2, a2, and d2 shown in this section and
building appropriate flavor combinations finally allows us to establish three sets
of data points that can be used to extrapolate the reduced matrix elements to the
physical and the continuum limit as shown Section 4.7.

4.6 Renormalization

In the last section we used the operator combinations

Oi
v2a = O0i, and Ov2b = 4

3 O
00, (4.68)

without any further justification. However, the main reason for the usage of these
operator combinations directly follows from the renormalization procedure used to
obtain physically meaningful results from the bare operators introduced in (3.23a)
– (3.23f). The consideration of isosinglet Osinglet and non-singlet Onon−singlet op-
erator combinations shown in Section 4.5 in principle requires different renormal-
ization approaches. Regarding the non-singlet components we get the simple,
schematic, relation

OR
non−singlet = ZqqOnon−singlet , (4.69)

where Zqq is the quark non-singlet renormalization constant. In the case of isos-
inglet operators one faces the additional difficulty that the quark operators will
mix under renormalization with gluonic contributions due toOR

singlet

OR
g

 =
Zqq

s Zqg

Zgq Zgg

Osinglet

Og

 , (4.70)
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β 3.34 3.4 3.46 3.55 3.7

Zqq
v2a 1.0731 1.1010 1.1251 1.1578 1.2053

Zqq
v2b 1.0672 1.0938 1.1170 1.1485 1.1949

Table 4.6.1: Renormalization factors Zqq for the operator combinations Ov2a and Ov2b
used in this work. All values taken from Tab. XIII in [256].

where Zqq
s is the isosinglet renormalization constant and all superscripts g denote

gluonic contributions. For the quark operator this means

OR
singlet = Zqq

s Osinglet + ZqgOg . (4.71)

It was shown in [254, 255] that the admixture in the opposite direction, i.e., mixing
of quark operators into gluon operators, is only a few percent effect. Assuming
that the same is true for the admixture of gluonic operators into quark operators
we will classify these contributions as negligible in the statistical accuracy of our
work. Still, this caveat has to be kept in mind and needs to be addressed in future
work. Furthermore, we will approximate Zqq

s ≈ Zqq using the non-perturbatively
computed isovector renormalization factor Zqq. Within a perturbative renormal-
ization procedure this is only exact in next to leading order.

In LQCD the continuous Euclidean symmetry group O(4) is reduced to its finite
hypercubic subgroup H(4) where symmetry imposes much weaker constraints on
the mixing of operators under renormalization. This mixing, especially with lower-
dimensional operators, is suppressed as far as possible by the usage of operators
chosen from suitable multiplets that possess a definite C-parity and transform
according to irreducible representations of H(4) as shown in, e.g., [154, 253]. To
be specific we use the operator definitions (4.68), cf. also Section 4.5.

An in-depth description of the renormalization procedure used in our work is
given in [256], including subtleties due to the use of open boundary conditions in
the CLS gauge ensembles and details about the perturbative subtraction of lattice
artifacts. To this end, we adopt the two-step procedure shown there: First, we cal-
culate the renormalization factors non-perturbatively in the RI′/SMOM scheme.
These are then converted to the MS scheme using perturbative QCD. Our results
are finally given in the MS scheme at a scale of 2 GeV and to be more specific: We
use the values for Zv2a and Zv2b based on RI′/SMOM as intermediate scheme pre-
sented in [256], with the perturbative subtraction of lattice artifacts without using
the so-called fixed scale method. The actual numbers used in our computations
are listed in Tab. 4.6.1.
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4.7 Quark mass dependence and continuum extrapolation

In Fig. 2.3.3 we have shown how the CLS gauge ensembles are distributed in the
m2

π – m2
k plane along three different trajectories which allows us, in combination

with the 5 different values of β, to extrapolate our results to physical masses and
the continuum limit a = 0. To this end, we perform the extrapolation employing
a parametrization of the form

f(a,m2
π,m

2
k) = c0 + c1a+ c2m

2
π + c3m

2
k , (4.72)

where the pion mass mπ, the kaon mass mk and the lattice spacing a are used as
input parameters, defined by the individual ensembles, and (4.72) is inserted into a
least square fit to obtain the parameters ci. Note that we have to use a linear term
in the lattice spacing as leading contribution although our lattice action is order
a improved because we lack the order a improvement for the inserted currents.

In Fig. 4.8.1, Fig. 4.8.2, and Fig. 4.8.3 the yellow bands show the extrapolations
for the flavor singlet and flavor non-singlet operator combinations as functions of
m2

π, a, and for data points where we average all values per β. In all cases we plot
the three different trajectories tr[M ] = const., ms = const., and ml = ms from
the left to the right. The data points in Fig. 4.8.1 are corrected for lattice spacing
effects while the data points in Fig. 4.8.2 and Fig. 4.8.3 are corrected for pion
mass effects. The data sets are finally shifted to the corresponding trajectories.
This description of the data allows us to draw conclusions about various physical
aspects. Using the representation shown in Fig. 4.8.1 for, e.g., the tr[M ] = const.
line keeps the average quark mass fixed using the fitted model shown above. This
allows us to see the effect of flavor symmetry breaking. As pointed out in Sec-
tion 4.5, and explicitly shown in Fig. 4.5.1 and Fig. 4.5.2, it is hard to draw any
convincing conclusions from the flavor singlet operator combinations, due to large
statistical errors. However, these results will allow us to give at least an upper
bound for the reduced matrix elements v2, a2, and d2. In contrast to the flavor
singlet combinations the situation for the flavor non-singlet case is much better
and we can draw serious conclusions from the various extrapolations. Fig. 4.8.1
and Fig. 4.8.2 show the extrapolations for the quark mass and lattice spacing de-
pendence, respectively. Another representation of the lattice spacing dependency
is shown in Fig. 4.8.3 where we average for all ensembles with the same value of
β using the weighted average

Ai =
Nβ∑
i

wi Ai , with wi = 1/σ2
i∑Nβ

i 1/σ2
i

, (4.73)
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where Nβ is the number of data points Ai (ground-state matrix elements) per β
with corresponding errors σi. To visualize solely the discretization effects all the
data points used in the average were corrected for mass effects, again using the
fitted model, i.e., they were translated to physical masses along the fitted curve.
However, we want to stress that the averaging procedure for the data points was
only used for illustrative purposes. The yellow bands still correspond to the actual
fit performed using the original data points, cf. Fig. 4.8.2.

The final results for the reduced matrix elements are given in Tab. 4.8.1. In
addition to the statistical error we provide estimates for the systematic uncertain-
ties due to the quark mass extrapolation and the continuum extrapolation. For
the error estimation we have performed additional fits with cuts in the mass range
m =

√
(2m2

K +m2
π)/3 < 450 MeV and a < 0.09 fm, respectively. We then take the

difference between the results from these fits and our main result as an estimate
of the corresponding systematic uncertainties.

4.8 Discussion

What remains is the reconstruction of structure functions as a sum over reduced
matrix elements using (3.36) in combination with (3.37) and (3.38). At leading
twist accuracy we write down ratios of the second moments of the structure func-
tions F1, F2, and b1 with their corresponding Wilson coefficient C(k)

n = 1 +O(αs)
as a sum over the related reduced matrix element

2M2(F1)π

C
(1)
2

= M1(F2)π

C
(2)
2

=
∑

q

e2
qv

q
2 = 2

9

(
vfs

2 + 1
4v

fns
2

)
, (4.74a)

2M2(F1)ρ

C
(1)
2

= M1(F2)ρ

C
(2)
2

=
∑

q

e2
qa

q
2 = 2

9

(
afs

2 + 1
4a

fns
2

)
, (4.74b)

2M2(b1)ρ

C
(1)
2

= M1(b2)ρ

C
(2)
2

=
∑

q

e2
qd

q
2 = 2

9

(
dfs

2 + 1
4d

fns
2

)
, (4.74c)

where we assume exact isospin symmetry and fs ≡ u + d + s is the flavor singlet
while fns ≡ u + d − 2s is the flavor non-singlet combination. If we only consider
the connected part, the strange quark contribution drops out entirely. The result
can be written in terms of the light quark connected contribution as

2M2(F1)conn.
π

C
(1)
2

= M1(F2)conn.
π

C
(2)
2

= 5
9v

`,conn.
2 , (4.75a)

2M2(F1)conn.
ρ

C
(1)
2

=
M1(F2)conn.

ρ

C
(2)
2

= 5
9a

`,conn.
2 , (4.75b)

2M2(b1)conn.
ρ

C
(1)
2

=
M1(b2)conn.

ρ

C
(2)
2

= 5
9d

`,conn.
2 . (4.75c)
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Matrix element Final result χ2/d.o.f.

v
(u+d+s)
2 0.220 (95)s(98)m(155)a 1.71

a
(u+d+s)
2 0.285 (90)s(76)m(271)a 1.78

d
(u+d+s)
2 0.226 (112)s(6)m(54)a 0.72

v
(u+d−2s)
2 0.344 (20)s(3)m(19)a 1.72

a
(u+d−2s)
2 0.384 (29)s(11)m(42)a 1.33

d
(u+d−2s)
2 0.163 (38)s(5)m(7)a 0.58

v
(u+d),conn.
2 0.357 (16)s(2)m(15)a 1.74

a
(u+d),conn.
2 0.393 (29)s(10)m(35)a 1.47

d
(u+d),conn.
2 0.180 (38)s(5)m(7)a 0.59

Table 4.8.1: Results obtained from the extrapolations in Figs. 4.8.1 and 4.8.2 and
the corresponding connected-only contributions for the flavor combination (u+d), all at
µ = 2 GeV. The final statistical error is subscribed by ()s, the estimates of the systematic
uncertainties due to the quark mass by ()m, and due to the continuum extrapolation
by ()a. The values of χ2 per degrees of freedom are obtained from the corresponding
extrapolation.

Structure function Final result χ2/d.o.f.

CM2(F1)π 0.132 (33)s(32)m(57)a 1.75

CM2(F1)ρ 0.156 (33)s(23)m(102)a 1.84

CM2(b1)ρ 0.108 (41)s(1)m(13)a 0.72

CM2(F1)conn.
π 0.099 (5)s(0)m(4)a 1.74

CM2(F1)conn.
ρ 0.109 (8)s(2)m(9)a 1.47

CM2(b1)conn.
ρ 0.050 (10)s(1)m(2)a 0.59

Table 4.8.2: Estimated results for the second moments of the structure functions
F1 and b1 exploiting (4.74a) – (4.75c) and performing the extrapolations as discussed
in Section 4.7. We use the abbreviation C ≡ 2/C

(1)
2 . Table taken from [148].

Our final results for the linear combinations (4.74a) – (4.75c) are given in Tab. 4.8.2.
While the first three lines in Tab. 4.8.2 correspond to the results obtained

by (4.74a) – (4.74c), and thus have relatively large errors due to the isosinglet con-
tribution, the last three lines correspond the ‘connected-only’ contribution (4.75a)
– (4.75c), which drastically reduces the errors. The latter is meant to be used
for comparison with other studies, e.g., [154], where only connected contributions
were considered. The reader should be aware of the fact that we use the flavor non-
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Figure 4.8.1: Extrapolation for the flavor singlet (uu + dd + ss) and flavor non-singlet
operator combinations (uu+dd−2ss) as a function of pion mass mπ using the fits shown
in, e.g., Fig. 4.5.1. From left to right we show the m2

π dependence of the reduced matrix
elements v2 (pion), a2, and d2 (both rho) for the three different trajectories we use in
our analysis. The vertical red line denotes the physical point. Note that the symmetric
trajectory ml = ms with exact SU(3) flavor symmetry does not approach the physical
point but the chiral limit in the quark mass plane. Figure taken from [148].
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Figure 4.8.2: Extrapolation for the flavor singlet (uu + dd + ss) and flavor non-singlet
operator combinations (uu+dd−2ss) as a function of the lattice spacing a using the fits
shown in, e.g., Fig. 4.5.1. From left to right we show the a dependence of the reduced
matrix elements v2 (pion), a2, and d2 (both rho) for the three different trajectories we
use in our analysis. The vertical red line denotes the continuum limit for a = 0. Figure
taken from [148].
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Figure 4.8.3: Lattice spacing dependence of the extrapolations for the flavor singlet
(uu + dd + ss) and flavor non-singlet (uu + dd − 2ss) operator combinations using the
fits shown in, e.g., Fig. 4.5.1 and Fig. 4.5.2. The reduced matrix elements v2 (pion), a2,
and d2 (both rho) have been obtained by a translation to physical quark masses and
averaging measurements with the same values of β using the weighted average given
in (4.73). From coarsest to finest lattice spacing, this corresponds to averaging the data
of 2, 8, 7, 7, and 3 independent ensembles, cf. Tab. 4.2.1. The non-averaged plots for
the individual trajectories can be found in Fig. 4.8.2. Figure taken from [148].

singlet renormalization constants in both cases, which is only an approximation
as stated in Section 4.6.

In contrast to the only partially meaningful final results given for the full struc-
ture functions in Tab. 4.8.2, remember the various approximations and the large
statistical errors, we obtain very precise results for the flavor non-singlet contri-
butions shown in Tab. 4.8.1, and this even though we consider all possible con-
tributions. As shown in Section 4.6 the non-singlet operator combinations do not
mix with gluonic operators under renormalization and necessary renormalization
factors have been computed non-perturbatively in [256]. A comparison of the con-
nected only results from Tab. 4.8.2, of course divided by the corresponding prefac-
tors given in (4.75a) – (4.75c), to the flavor non-singlet results given in Tab. 4.8.1
shows very good agreement for the unpolarized structure functions F π

1 and F ρ
1 as

well as for the structure function b1 and the corresponding reduced matrix ele-
ments and, of course, reflects the connected-only values in Tab. 4.8.1. Following
the discussion in Section 4.5 this comes as no surprise since the quark-line dis-
connected contributions are small compared to their connected counterparts in
the extraction of the ground-state matrix elements. In leading order the structure
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function F q
1 (x) corresponds to one half of the probability to find a quark of flavor q

with momentum fraction x. Starting from (3.46) we find that the reduced matrix
elements for the pion are related to the moments of the PDFs via

vu+d+s
2 = 〈x〉u+u + 〈x〉d+d + 〈x〉s+s (flavor singlet), (4.76a)

vu+d−2s
2 = 〈x〉u+u + 〈x〉d+d − 2〈x〉s+s (flavor non-singlet), (4.76b)

where we use the shorthand notation q ≡ fq. Treating the special case of, e.g., a
π+ meson with u and d valence quarks, i.e., 〈x〉u = 〈x〉uval + 〈x〉usea and 〈x〉d =
〈x〉dval

+〈x〉dsea
, the relations (4.76a) and (4.76b) can be further split up in moments

of valence and sea quark PDFs

vu+d+s
2 = 〈x〉uval + 〈x〉usea + 〈x〉usea

+〈x〉dval
+ 〈x〉dsea + 〈x〉dsea

+ 〈x〉ssea + 〈x〉ssea , (4.77a)

vu+d−2s
2 = 〈x〉uval + 〈x〉usea + 〈x〉usea

+〈x〉dval
+ 〈x〉dsea + 〈x〉dsea

− 2〈x〉ssea − 2〈x〉ssea , (4.77b)

depending on the operator insertion. Following [165] we assume charge symmetry
for the π+ valence PDF, i.e.,

〈x〉π+

val ≡ 〈x〉uval = 〈x〉dval
, (4.78)

and exact SU(3) flavor symmetry for the quark sea

〈x〉π+

sea ≡ 〈x〉usea = 〈x〉dsea = 〈x〉ssea = 〈x〉usea = 〈x〉dsea
= 〈x〉ssea . (4.79)

Using this assumption we rewrite (4.77a) and (4.77b) as

vu+d+s
2 = 2〈x〉π+

val + 6〈x〉π+

sea , vu+d−2s
2 = 2〈x〉π+

val , (4.80)

and find that the flavor singlet operator combination describes the full quark PDF
and the flavor non-singlet combination corresponds to the valence quark PDF
respectively. Similar relations can be constructed for the reduced matrix elements
a2 and d2 of the rho meson. Thus, the results in Tab. 4.8.2 imply that in the pion
the valence quarks carry about 35% of the total momentum, while in the rho they
carry about 40% of the total momentum under the assumption of exact SU(3)
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flavor symmetry in the quark sea. It is remarkable that these values justify the
assumption F1(x)π ∼ F1(x)ρ, which is often used in phenomenological estimates.
The structure functions b1(x) and b2(x) are sensitive to a possible dependence of
the quark densities on the hadron polarization, i.e., they measure the difference
in quark distributions of a spin projected λ = 0 and λ = +/− rho meson. If the
quarks were in a relative S-wave state one would expect b1 = b2 = 0. However, our
results show a large contribution (compared to the scale of a2) to the approximated
valence quark contribution d2 with a relative error of only∼10%. This confirms the
conclusion in [154] that the quarks carry substantial orbital angular momentum
and also reflects the results of the various phenomenological studies cited at the
very beginning of Chapter 4.
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5
Summary

In this thesis we presented the first computation of the PDF moments v2, a2, and
d2 of the pion and the rho meson including disconnected quark-line contributions.
Our final results are expressed in terms of flavor singlet (u + d + s) and non-
singlet (u + d − 2s) operator combinations. The latter has a drastically smaller
statistical error and allows for serious conclusions of the momentum fractions
carried by the quarks in the pion and the rho meson. Our numerical analysis
includes 26 gauge ensembles, mainly generated by the CLS effort, with pion masses
ranging from 420 MeV down to 214 MeV and with five different lattice spacings
in the range of 0.1 fm to 0.05 fm. Without the work of the CLS collaboration,
generating ensembles and other configuration related data, this work would have
been inconceivable.

We have presented the, to our knowledge, very first computation of the second
moments for the structure functions F π

1 , F ρ
1 , and b1, including quark-line discon-

nected contributions. As shown in Section 4.7 our final results are tainted with very
large statistical errors due to the flavor singlet disconnected contributions, how-
ever, we are able to provide accurate results for the flavor non-singlet combinations
u+d−2s. While finishing this thesis another preprint, also treating quark-line dis-
connected contributions, for the pion PDF moments, using Nf = 2 +1 + 1 LQCD,
was published [257] and gave rise to questions. A comparison of our results to the
results presented in [257], and to phenomenological values presented in [258, 259],
was shown in [257] and is captured in Tab. 5.0.1. In [257] it is stated, that a com-
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Matrix element This work [257] [258] [259]

v
(u+d+s)
2 0.220(95)s(98)m(155)a 0.68(05)s 0.58(9)s 0.75(18)s

v
(u+d−2s)
2 0.344(20)s(3)m(19)a 0.48(01)s – –

Table 5.0.1: Comparison of pion PDF results presented in this thesis to the values
given in [257]. Both values are given in the MS scheme at 2 GeV.

parison of the flavor singlet contribution is not meaningful, since, in contrast to
our work, in [257–259] also gluonic contributions are considered. Of course this is
true, however, we want to stress that especially the values shown in [257] are com-
puted using only one ensemble with mπ ≈ mπ,phys. and a = 0.08029(41) fm. We
have shown in Fig. 4.8.3 that our results for v2 show a strong dependence on the
lattice spacing a, which is ignored in [257] and thus the corresponding comparison
is pointless. In contrast to the flavor singlet combinations the flavor non-singlet
operators are not affected by gluonic mixing, however, since also in this case no
continuum extrapolation was performed in [257] the corresponding value given
in Tab. 5.0.1 is at least questionable. To further illustrate this one could com-
pare the value v(u+d−2s)

2 = 0.48(01)s of [257] to our value v(u+d−2s)
2 = 0.468(16)s

at a = 0.0859 fm, corresponding to the blue data-point in the bottom left panel
of Fig. 4.8.3. Despite the fact that a different action is used in [257] the values
show good agreement and one could assume that both results agree. However,
this does not reflect the extrapolated results at all and thus the comparison im-
posed in [257] is disputable. In summary this means that the lattice results and/or
the results presented in [165, 259] have to be further investigated to clarify the
continuum limit. Our results yield a first, crucial contribution to this process.

Furthermore, we can compare with the pion valence quark contributions shown
in [165]. Adapting the approximations about the sea quark contributions in [165],
i.e., vu+d−2s

2,sea = 0, to our results we can interpret the value vu+d−2s
2 = 0.344(28) as

the valence quark contribution of the pion, measured on the lattice, cf. Section 4.8.
However, our value of ∼ 35% differs from the results presented in [165] by ∼ 10%.
The reason for this discrepancy is a priori not clear. On the one hand, there are
various assumptions used in [165], which are at least open to debate. On the other
hand, we found a strong dependence on the lattice spacing, which may cause the
lower value.

As an additional subtlety we had a closer look at possible two-pion contributions
which might occur in our analysis of the rho meson. We did not find any evidence
for a significant contribution of these multi-particle states. Nevertheless, using
our analysis techniques we cannot fully exclude them either, which is particularly
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true for two-pion states close to the resonance energy as shown in Fig. 4.3.4. The
precision of our numerical results could be enhanced a posteriori, if future studies
(e.g., by using the generalized eigenvalue method with two-pion interpolating cur-
rents, cf. [237, 249–252]) can show that the overlap of smeared vector interpolating
currents with the two-pion states is much smaller than for the local currents.

Although we present comprehensive results including disconnected contribu-
tions for the first time we have reduced the statistical error considerably. This
can be seen comparing the error of the connected-only contribution with earlier
studies. However, to determine the phenomenologically important moments of the
structure functions (at leading twist), one needs the flavor singlet combination,
where the statistical error is still large. Future studies will have to aim at a further
reduction of these statistical errors. Once this is achieved, also a non-perturbative
calculation of the singlet renormalization factors and the inclusion of mixing with
gluonic operators is possible.

Our main results show a significant dependence on the lattice spacing, which
justifies the CLS strategy, and can be summarized as

v
(u+d+s)
2 = 0.220(207) , v

(u+d−2s)
2 = 0.344(28) ,

a
(u+d+s)
2 = 0.285(295) , a

(u+d−2s)
2 = 0.384(52) ,

d
(u+d+s)
2 = 0.226(124) , d

(u+d−2s)
2 = 0.163(39) ,

for the second moment v2 of the pion structure function F1, the second moment a2

of the rho structure function F1, and the second moment d2 of the rho structure
function b1 respectively. All results are presented in the MS scheme at µ = 2 GeV.
Our results imply that the valence quarks of the pion and the rho meson carry
the same amount of total momentum within the error. Furthermore, we were able
to show that the quarks in the rho meson carry a substantial amount of orbital
angular momentum via the finite value of d2.

We finally want to remind of the upcoming AMBER experiment at the CERN
super proton synchrotron [59, 60], which will produce further relevant data. We
presented our results [148] at the Perceiving the Emergence of Hadron Mass
through AMBER@CERN - VI online workshop and thus could impact on up-
coming experiments. We are very curious what the results of these experiments
will be.

In summary we presented a LQCD study of the second Mellin moments of
PDFs for the pion and the rho meson including extrapolations to the continuum
and physical quarks masses. There are two novel aspects in this thesis. First of all,
we systematically included disconnected quark contributions into our results and
used these values within our extrapolations. Secondly we also computed the Mellin
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moments a2 and d2 of the rho meson PDF. While typical LQCD computations
tend to focus on the nucleon and the pion, only little is known about the structure
of other hadrons.
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A
Appendix

A.1 Antisymmetric Tensor

The completely antisymmetric tensor (Levi-Civita symbol) is defined as

εi1,i2,i3,...,in =


+1 if (i1, i2, i3, . . . , in) is an even permutation of (1, 2, 3, . . . , n),

−1 if (i1, i2, i3, . . . , in) is an odd permutation of (1, 2, 3, . . . , n),

0 if at least two indices ij are equal.
(A.1)

A.2 Gell-Mann matrices

For SU(3), i.e., unitary matrices U with detU = 1, the defining representation
can be written as

U3×3 = ei
∑8

j=1 θjtj , with [tj, tk] = ifjkl tl , (A.2)

where fjkl are the structure constants defined in Tab. A.2.1. Note that in general
there are N2 − 1 generators tj of the Lie group. The standard choice for the 8
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j k l fjkl

1 2 3 1

1 4 7 1/2

1 5 6 -1/2

2 4 6 1/2

2 5 7 1/2

3 4 5 1/2

3 6 7 -1/2

4 5 8
√

3/2

6 7 8
√

3/2

Table A.2.1: Totally antisymmetric structure constants for SU(3) for semi-simple
compact Lie algebras. All other coefficients vanish.

independent matrices in the SU(3) case are the Gell-Mann matrices

λ1 =


0 1 0
1 0 0
0 0 0

 ,

λ4 =


0 0 1
0 0 0
1 0 0

 ,

λ6 =


0 0 0
0 0 1
0 1 0

 ,

λ3 =


1 0 0
0 −1 0
0 0 0

 ,

λ2 =


0 −i 0
i 0 0
0 0 0

 ,

λ5 =


0 0 −i
0 0 0
i 0 0

 ,

λ7 =


0 0 0
0 0 −i
0 i 0

 ,

λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 ,

(A.3)

where the normalization is chosen such that tr[λ2
i ] = 2. The Gell-Mann matrices

form the representation with the smallest matrices acting on vectors with the
smallest number of elements, for SU(3) this means 3. Therefore this specific
matrix representation is called the fundamental representation. The relation to
(A.2) is given by

tj = λj

2 , with [λj, λk] = 2ifjkl λl. (A.4)
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A.3 Dirac matrices (Minkowski)

The four contravariant Dirac matrices (also known as gamma matrices) are defined
as

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

γ2 =


0 0 0 i

0 0 −i 0
0 −i 0 0
i 0 0 0

 ,

γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,
(A.5)

in the Weyl (chiral) representation. They obey the anticommutation relation

{γµ, γν} = 2ηµνI , (A.6)

using the Minkowski metric ηµν = diag(1,−1,−1,−1). Further, the gamma ma-
trices are chosen such that

(γµ)† = γ0γµγ0 , (A.7)

and the fifth gamma matrix is defined by

γ5 ≡ γ5 = iγ0γ1γ2γ3 , (A.8)

with the properties

(γ5)2 = I , γ†
5 = γ5 , {γ5, γ

µ} = 0 . (A.9)

Using the common Pauli matrices σi it is convenient to rewrite

γ0 =
0 I
I 0

 , γi =
 0 σi

−σi 0

 , γ5 =
−I 0

0 I

 . (A.10)

A.4 Dirac matrices (Euclidean)

Denoting the Minkowski gamma matrices shown in Appendix A.3 by γM we define
their Euclidean equivalents γµ as

γi = −iγM
i , γ4 = γM

0 . (A.11)
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Analogous to (A.6) the Euclidean gamma matrices obey the anticommutation
relation

{γµ, γν} = 2 δµνI (A.12)

and we define γ5 as

γ5 = γ1γ2γ3γ4 , (A.13)

with the properties

(γ5)2 = I , γ†
5 = γ5 , {γ5, γµ} = 0 . (A.14)

In the Weyl (chiral) representation an explicit form is given by

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

γ3 =


0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

 ,

γ4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
(A.15)

and using the Pauli matrices σi yields

γ4 =
0 I
I 0

 , γi =
 0 −iσi

iσi 0

 , γ5 =
I 0

0 −I

 . (A.16)

We close this section with two general remarks about the replacements needed
for four-vectors and covariant derivatives when going from Minkowski to Euclidean
space

x0
M → −ix4

E , D0
M → iD4

E ,

xi
M → xi

E , D0
M → −Di

E .
(A.17)

A.5 Grassmann numbers

In this section we provide an excerpt about Grassmann numbers and properties of
Grassmann variables following [93]. A more detailed textbook introduction can be
found in, e.g., [260]. In general Grassmann numbers are anticommuting numbers
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satisfying

Θη = −ηΘ , (A.18)

so that the square for any Grassmann number is zero, i.e., the Taylor expansion of
any function f(Θ) = A + BΘ, with commuting numbers A and B vanishes after
the linear term. From this one can define the indefinite integral

∫
dΘ f(Θ) =

∫
dΘ(A + BΘ) = A

∫
dΘ + B

∫
dΘ Θ , (A.19)

where we require invariance under a shift Θ→ Θ+η and thus immediately see that∫
dΘ = 0. However, the second integral is arbitrary and we define

∫
dΘ Θ = 1.

For multiple integrals there is a sign ambiguity, and we define
∫

dΘ
∫

dη ηΘ = +1 , (A.20)

i.e., the innermost integral is performed first. Note that, however, the interchange
of any two variables in the integrand as well as the interchange of dΘ and dη
would yield additional minus signs. Complex conjugation is defined by reversing
the order of two complex Grassmann numbers

(Θη)∗ = η∗Θ∗ = −Θ∗η∗ , (A.21)

and for their integration we get
∫

dΘ∗dΘ ΘΘ∗ = 1 . (A.22)

Gaussian integrals over Grassmann numbers with a single complex variable are
given by

∫
dΘ∗dΘ e−Θ∗bΘ = b , (A.23)

whereas in higher dimensions an integral is nonzero only if we have only one factor
of Θ∗

i and Θi in the integrand. Further any integral is invariant under unitary
transformations Θ′

i = UijΘi. Starting from ∏
i Θ′

i = detU ∏i Θi one finds
(∏

i

Θ′

i

)(∏
i

Θ′∗
i

)
= detU (detU)∗

(∏
i

Θi

)(∏
i

Θ∗
i

)
, (A.24)
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and similar for the measures. To compute Gaussian integrals containing a Hermi-
tian matrix B we diagonalize B and get(∏

i

∫
dΘ∗

i dΘi

)
e−Θ∗

i BijΘj = detB , (A.25)(∏
i

∫
dΘ∗

i dΘi

)
ΘkΘl e

−Θ∗
i BijΘj = detB

(
B−1

)
kl
. (A.26)

Finally, we state the following rules and conventions for derivatives

∂

∂Θi

1 = 0, ∂

∂Θi

Θi = 1, ∂

∂Θi

∂

∂Θj

= − ∂

∂Θj

∂

∂Θi

,
∂

∂Θi

Θj = −Θj
∂

∂Θi

. (A.27)

A.6 Fourier transformation on the lattice

In this section we discuss the Fourier transformation f̃(p) of functions f(n) on the
lattice following [93].

For the function f(n) we impose toroidal boundary conditions for each direction
µ, i.e.,

f(n+ µ̂Nµ) = ei2πΘµf(n) , (A.28)

Further µ̂ denotes the unit vector pointing in µ-direction and Θµ = 0 (periodic
boundary conditions) and Θµ = 1/2 (open boundary conditions). The momentum
space Λ̃ corresponding to the lattice Λ introduced in Section 2.3 is defined as

Λ̃ =
{
p = (p1, p2, p3, p4)

∣∣∣∣pµ = 2π
aNµ

(kµ + Θµ) , kµ = −Nµ

2 + 1, . . . , Nµ

2

}
. (A.29)

If one now uses the algebraic property

1
N

N/2∑
N/2+1

ei 2π
N

lj = 1
N

N−1∑
j=0

ei 2π
N

lj = δl0 , (A.30)

we get the identities

1
|Λ|

∑
p∈Λ̃

eip·(n−n′)a = δ(n− n′) = δn1,n′
1
δn2,n′

2
δn3,n′

3
δn4,n′

4
, (A.31)

1
|Λ|

∑
n∈Λ

ei(p−p′)·na = δ(p− p′) = δk1,k′
1
δk2,k′

2
δk3,k′

3
δk4,k′

4
, (A.32)

by combining four times the one-dimensional sum in (A.30). Using these identities
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the Fourier transformation and its inverse are defined by

f̃(p) = 1√
|Λ|

∑
n∈Λ

e−ip·naf(n) , (A.33)

f(n) = 1√
|Λ|

∑
p∈Λ̃

eip·naf̃(p) . (A.34)

A.7 Operator (anti-) symmetrization

In the computation we often use a shorthand notation to (anti-) symmetrize oper-
ators. Curly brackets around the indices denote the symmetrization of an operator

Ô{µ1µ2...µn} = 1
n!

∑
π∈Sn

Ôπ(µ1)π(µ2)...π(µn) . (A.35)

In general one finds n! permutations and π is used to sum over all possible per-
mutations.

Square brackets around the indices denote the anti-symmetrization of an oper-
ator

Ô[µ1µ2...µn] = 1
n!

∑
π∈Sn

sgn(π)Ôπ(µ1)π(µ2)...π(µn) . (A.36)

In addition to the n! permutations in Sn the contribution is multiplied by the
signature of the permutation defined by

sgn(π) =

+1 (even permutations),

−1 (odd permutations).
(A.37)

A.8 Light-cone coordinates and polarization vectors

This section is following [148]. We define light-cone coordinates in such a way
that the perpendicular (or transverse) part of the momentum always vanishes,
i.e., pT = 0 and p+ is its large component. To achieve this let v be any four-vector
and p̂ the direction of the three-momentum. Then,

vµ = v+nµ
+ + v−nµ

− + vµ
T , with nµ

± = 1√
2

 1
±p̂

µ

, (A.38)
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where v± = n∓ · v and

vµ
T =

 0
vT

µ

, with vT = v − (p̂ · v)p̂ , (A.39)

such that vT ⊥ p̂. For the momentum we then have p± = E ± |p| and pT = 0.

For the polarization vectors we use a dimensionless definition. They obey the
general transversality condition

∑
λ

εµ(p, λ)ε∗
ν(p, λ) = −

(
gµν −

pµpν

m2

)
, (A.40)

where m is the hadron mass. For momenta in x direction the polarization vectors
in the rest frame are given by (0, eλ) with

ex
0 = e0

∣∣∣∣∣
p̂=ê1

=


1
0
0

 , ex
± = e±

∣∣∣∣∣
p̂=ê1

= 1√
2


0
∓1
−i

 , (A.41)

where ex
0 corresponds to the longitudinal polarization, while ex

± to the circular
polarizations. For momenta in an arbitrary direction, we have to rotate these
vectors to

e0 = p̂ , e± = ex
± −

p̂ · ex
±

1 + p̂ · ex
0
(ex

0 + p̂) , (A.42)

to obtain the longitudinal polarization vector e0 and the polarization vectors for
the circular polarizations e±. Last but not least, we have to perform a boost
to the laboratory frame. This only affects e0 (e± are invariant because they are
perpendicular to p), and we obtain

εµ(p, 0) =
 |p|

m
E
m

p̂

µ

, εµ(p,±) =
 0

e±

µ

. (A.43)

In terms of the light-cone coordinates introduced above this yields

ε±(p, 0) = ±p±/m , εµ
T (p, 0) = 0 , (A.44)

ε±(p,+) = 0 , εµ
T (p,+) = εµ(p,+) , (A.45)

ε±(p,−) = 0 , εµ
T (p,−) = εµ(p,−) . (A.46)
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Figure A.9.1: Illustration of the Z2 noise vectors in the complex plane. Figure taken
from [206].

A.9 Noise vectors

This section follows M. Löffler’s masterthesis [206]. In Chapter 4 we use stochastic
estimators to approximate all-to-all propagators in the computation of three-point
correlation functions. From a general perspective one could use every set of noise
vectors η that obeys

1
N

N∑
i=1

(ηi) (x)α
a = 0 +O

(
1√
N

)
, (A.47)

1
N

N∑
i=1

(ηi) (x)α
a (η∗

i ) (x′)α′

a′ = δxx′ δαα′ δaa′ +O
(

1√
N

)
. (A.48)

However, following [210, 211] so-called Z2 noise vectors [209] η defined as

(ηi)α
a (x) ∈

(Z2 ⊗ iZ2)/
√

2 if x4 = ±x′
4 ,

0 otherwise,
(A.49)

are a particular good and numerical favorable choice. The additional factor 1/
√

2
is introduced to obey (A.48). A graphical illustration is given in Fig. A.9.1. Al-
together this yields the four possible tuples corresponding to values of the vectors
in Equation A.49

Z2 ⊗ iZ2√
2

=
{

1√
2

(1 + i) ; 1√
2

(1− i) ; 1√
2

(−1 + i) ; 1√
2

(−1− i)
}
. (A.50)
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rqcd

baryon_spectator

meson_spectator

meas0

prop_set0

data

table
...

...

insertion

(a) Spectator part

rqcd

baryon_spectator

meson_spectator

insertion

meas0

stoch_set0

prop_set0

data

table
...

...

(b) Insertion part

Figure A.10.1: HDF5-file layout for LHA data. (a) depicts a simplified overview of
the spectator data while (b) represents the insertion part.

A.10 LibHadronAnalysis output file layout

The output data of our production code introduced in Section 4.2.4 is stored
in the HDF5-file format [261]. In this section we want to provide a simplified
roadmap to find and thus extract data from our output files. The general file
structure is depicted in Fig. A.10.1. HDF5-files can be illustrated in a simplified
way as directory structures while in our case the base directory is always called
rqcd. On the next level one finds the folders baryon_spectator, meson_spectator,
and insertion denoting the measurements of the spectator and insertion parts
respectively. Following the way down in Fig. A.10.1a and Fig. A.10.1b we find
the meas0 folder of the meson spectator and the insertion. In general there are
n measurements, denoted by the dots at the end of the tree, depending on the
number of flavor and smearing combinations used in the actual simulation. For
the insertion part the next folder is called stoch_set0 and reflects the stochastic
index i of the insertion, so we get Ni such entries denoted by the dots at the end
of the tree, cf. Tab. 4.2.2. Note that the stochastic index is set implicitly in the
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prop_set of the spectator. The prop_set0 entry finally reflects the source position
of the individual propagators used in the individual measurements, i.e., we find
Nsrc such folders. On the innermost level we get the data and the corresponding
meta-information table to identify the individual rows of the data-set by their
corresponding momenta, derivatives, operator timeslices, . . . . As a last remark,
we want to state that real and imaginary parts of the numbers in the data-sets
are stored alternately, i.e., Re, Im,Re, . . . .

HDF5-files have many more (technical) features, which we cannot explain all
within the scope of this thesis. However, with this introduction it should be
possible for everyone to extract data from the files.
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