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Abstract
Question: Soil seed banks (SSB), i.e. pools of viable seeds in the soil and on its surface, 
play a crucial role in plant biology and ecology. Information on seed persistence in soil 
is of great importance for fundamental and applied research, yet compiling data sets 
on	this	trait	still	requires	enormous	efforts.	We	asked	whether	the	machine-	learning	
(ML)	approach	could	be	used	to	infer	and	predict	SSB	properties	of	a	regional	flora	
based on easily available data.
Location: Eighteen calcareous grasslands located along an elevational gradient of al-
most 2000 m in the Bavarian Alps, Germany.
Methods: We	 compared	 a	 commonly	 used	ML	model	 (random	 forest)	with	 a	 con-
ventional model (linear regression model) as to their ability to predict SSB presence/
absence and density using empirical data on SSB characteristics (environmental, seed 
traits and phylogenetic predictors). Further, we identified the most important deter-
minants	 of	 seed	 persistence	 in	 soil	 for	 predicting	 qualitative	 and	 quantitative	 SSB	
characteristics	using	the	ML	approach.
Results: We	demonstrated	 that	 the	ML	model	 predicts	 SSB	 characteristics	 signifi-
cantly better than the linear regression model. A single set of predictors (either envi-
ronment,	or	seed	traits,	or	phylogenetic	eigenvectors)	was	sufficient	for	the	ML	model	
to achieve high performance in predicting SSB characteristics. Importantly, we estab-
lished that a few widely available SSB predictors can achieve high predictive power 
in	the	ML	approach,	suggesting	a	high	flexibility	of	the	developed	approach	for	use	in	
various study systems.
Conclusions: Our study provides a novel methodological approach that combines em-
pirical	knowledge	on	the	determinants	of	SSB	characteristics	with	a	modern,	flexible	
statistical	approach	based	on	ML.	It	clearly	demonstrates	that	ML	can	be	developed	
into	a	key	tool	to	facilitate	labor-	intensive,	costly	and	time-	consuming	functional	trait	
research.
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1  |  INTRODUC TION

Soil seed banks (SSB), pools of viable seeds in the soil and on its 
surface, play a key role in plant biology and ecology at different lev-
els	of	organization.	They	bridge	short-		and	long-	term	environmental	
conditions temporarily unsuitable for growth and reproduction, es-
pecially in habitats subject to high climatic variability and high lev-
els of disturbance, competition and predation (Fenner & Thompson, 
2005; Saatkamp et al., 2014). Regeneration resulting from persistent 
SSBs helps plants to recover the original state of populations and 
communities, including genetic diversity (Honnay et al., 2008), after 
they have been altered by environmental fluctuations (Vandvik et al., 
2016). Thus, the ability of seeds to persist in the soil for long periods 
is	a	crucial	bet-	hedging	strategy	(Harper,	1977;	Rosbakh	&	Poschlod,	
2021; Venable & Brown, 1988) contributing to a plant's adaptive 
potential and ecosystem resilience, which is especially important in 
times of global change (Ooi, 2012;	Walck	et	al.,	2011).

Species that are not able to persist in the soil at a local or re-
gional	scale	are	particularly	vulnerable	to	extinction	risk,	whereas	
species with persistent SSBs can easily recover even after direct 
destruction	of	the	above-	ground	vegetation	(Plue	&	Cousins,	2018; 
Plue	et	al.,	2020;	Stöcklin	&	Fischer,	1999). Thus, knowledge about 
species’ ability to form persistent SSBs is of great importance for 
fundamental and applied research, such as nature conservation or 
restoration (Bakker et al., 1996; Faist et al., 2013;	Willems	&	Bik,	
1998) and management of invasive species (Gioria et al., 2019). 
However,	compiling	databases	on	seed	persistence	in	soil	requires	
enormous effort when collecting primary data: such studies are 
labor-	intensive,	 costly,	 and	 time-	consuming.	 As	 a	 result,	 the	 ex-
isting studies are limited to a few regions (e.g. temperate Europe; 
Plue	 et	 al.,	 2020) and specific habitats (e.g. grasslands; Kleyer 
et al., 2018).	Consequently,	life-	history	trait	databases	suffer	from	a	
chronic	problem	of	missing	data	on	seed	persistence	in	soil.	We	are	
simply uncertain about the survival potential of species in the soil 
in	entire	local	and	regional	floras,	which	impedes,	for	example,	ex-
tinction	risk	assessment	studies	(Stöcklin	&	Fischer,	1999), research 
on	community	assembly	 (Jiménez-	Alfaro	et	al.,	2016), and habitat 
restoration	programs	(Hölzel	&	Otte,	2004).

Several characteristics determine seed persistence in the soil, 
including	seed	and	whole-	plant	traits,	vegetation	and	environmen-
tal	 properties,	 and	 various	 combinations	 thereof	 (Poschlod	 et	 al.,	
2013; Saatkamp et al., 2014). To begin with, morphological (seed 
shape and seed size) and physiological traits (dormancy) have been 
widely used as predictors of seed persistence in soil: species with 
comparatively small, round, dormant seeds tend to build persistent 
and dense(r) banks in the soil (Bekker et al., 1998; Gioria et al., 2020; 
Honda, 2008). Further, seed number (i.e. total seed production per 
individual plant), species population density and its dominance in 
the vegetation are considered important, especially for species that 
form SSBs, as species that produce a high number of seeds (often 
annuals;	 Phartyal,	 et	 al.,	2020) and/or dominate in the vegetation 
canopy tend to have denser SSBs (Arroyo et al., 1999; Gioria et al., 
2019;	Hölzel	&	Otte,	2004).

Importantly, the predictive power of these characteristics varies 
strongly with local environmental conditions, suggesting that abiotic 
and biotic factors can mediate species’ ability to form SSBs (Abedi 
et al., 2014;	Long	et	al.,	2015;	Rosbakh	&	Poschlod,	2021; Saatkamp 
et al., 2014). In general, species richness, composition, and density of 
the SSBs are positively correlated with conditions of unpredictable 
growth,	 frequent	disturbance	and	high-	risk	 recruitment	 (Anderson	
et al., 2012; Gioria et al., 2020).	Previous	research	on	seed	bank	vari-
ation across successional gradients in different habitats indicates 
that the persistence and size of SSBs decrease with successional 
maturity (Gioria et al., 2020;	 Plue	 et	 al.,	2020;	Warr	 et	 al.,	1994). 
Additionally,	a	few	existing	studies	on	SSB	variability	along	environ-
mental gradients have revealed that all characteristics of SSBs, but 
particularly seed density, are negatively correlated with levels of abi-
otic stress, e.g. climate and edaphic conditions (Funes et al., 2003), 
due to their direct and indirect effects on seed persistence in the soil 
(Fenner & Thompson, 2005;	Long	et	al.,	2015;	Poschlod	et	al.,	2013; 
Saatkamp et al., 2014). Finally, the recent study by Gioria et al. (2020) 
demonstrated that SSB type and density depend on species relat-
edness, suggesting that the ability to form persistent and/or dense 
SSBs might be inferred from phylogeny.

Such interconnected and variable relationships between predic-
tors of SSB persistence (plant and seed traits, habitat preferences 
and phylogeny) make predicting SSB characteristics challenging. 
In particular, conventional statistical methods, such as regression 
models, are not suitable for this task as their learning, i.e. finding 
a relationship between the predictors (e.g. seed traits) and the re-
sponse (SSB characteristics), is guided and constrained by a priori as-
sumption(s) about the underlying relationships, thereby limiting their 
predictions	with	a	pre-	defined	set	of	rules,	which	for	SSB	character-
istics	are	currently	only	poorly	understood.	In	this	context,	machine-	
learning	(ML)	is	a	promising	tool	for	solving	this	problem.

Modern	ML	algorithms	can	flexibly	identify	the	best	predictors,	
non-	linearities	of	predictors,	 and	 interactions	between	predictors,	
and usually achieve higher predictive performance than regres-
sion models (Breiman, 2001b;	 LeCun	 et	 al.,	2015). Recent studies 
have	demonstrated	that	ML	models	can	successfully	predict	plant–	
environment relationships and outperform conventional methods, 
for	example	generalized	linear	models	(GLMs),	by	a	substantial	mar-
gin	(Pichler	et	al.,	2020).	Moreover,	ML	models	cope	well	with	high-	
dimensional	data.	And	yet,	the	ML	approach	has	never	been	applied	
to infer and predict species persistence in SSBs. Finally, many po-
tential predictors of SSB persistence have been identified in recent 
years	(e.g.	seed	traits	[Long	et	al.,	2015] or phylogeny [Gioria et al., 
2020]), but it remains unclear which characteristics contribute the 
most	 to	predicting	SSB	persistence.	This	 is	 an	 important	question	
since collecting data on seed and plant traits, phylogeny, and envi-
ronmental	data	results	in	different	costs.	ML	could	offer	an	attrac-
tive	solution,	as	most	likely	multiple	predictors	that	exist	for	SSB	are	
difficult	to	identify	with	regression	models,	while	ML	is	more	flexible	
and efficient in detecting the most predictive patterns.

The	main	aim	of	this	study	is	to	test	the	applicability	of	the	ML	
approach to infer and predict SSB properties in a regional flora. 
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Specifically,	we	ask	two	questions:	(1)	can	we	predict	species’	abil-
ities	to	build	a	SSB	(and	its	density)	better	with	ML	than	with	com-
monly	used	 (generalized)	 linear	models?	 (2)	What	determinants	of	
seed persistence in soil (environmental characteristics, seed traits 
and phylogenetic relatedness) are the most important for predict-
ing	 qualitative	 and	 quantitative	 SSB	 characteristics	 using	 the	 ML	
approach? The practical utility of this approach in seed ecological 
research	is	demonstrated	using	an	extensive	SSB	survey	of	a	set	of	
easily available seed and plant traits, and species phylogeny and en-
vironmental	characteristics	conducted	in	18	species-	rich	grasslands	
located along a climatic gradient. The study is also intended to pro-
vide	detailed	explanations	of	the	methods	used	to	stimulate	further	
usage	of	the	ML	approach	in	seed	science	research.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

The	 field	 data	were	 collected	 from	 species-	rich	 calcareous	 grass-
lands	on	nutrient-	poor	soil	 located	along	an	elevational	gradient	in	
the Bavarian Alps (northern part of the Calcareous Alps, Germany; 
Appendix	S1)	from	656	to	2363	m	above	sea	level.	We	selected	this	
study system for two main reasons. First, these ecosystems are ideal 
for studying the relative impacts of environmental (un)favorability 
on SSBs because the elevation gradient encompasses strong vari-
ation in climatic factors (temperature), soil conditions (soil moisture 
and nutrients), disturbance regimes (substrate stability, past and 
present	 land-	use	 type)	 and	 many	 other	 environmental	 properties	
(Körner,	2007) potentially affecting seed persistence in soil. Second, 
the	relatively	high	number	of	taxonomically	and	functionally	diverse	
species occurring in the studied grasslands allowed us to test the 
influence of plant phylogeny and seed traits on seed persistence in 
soil.

The study region is typical for the Northern Alps in Southern 
Germany, with steep Triassic lime and dolomite mountain peaks. The 
climate	has	mean	annual	precipitation	rates	up	to	1500–	2000	mm/
year and a strong altitudinal decrease in mean annual temperature of 
ca.	−0.6°C/100	m	of	elevation	(Marke	et	al.,	2013). The lower mon-
tane vegetation is dominated by tall forbs and grasses, which are 
replaced	by	sedges,	short-	stature	herbs	and	dwarf	shrubs	as	altitude	
increases. During the first half of the 20th century, the traditional 
practice of grazing and mowing ceased, although several study sites 
were occasionally grazed by cattle or wild ungulates. The nomencla-
ture follows Oberdorfer (2001).

2.2  |  Soil seed bank survey

In	2009,	we	selected	18	sites	 (Appendix	S1)	 located	at	different	
elevations representing different grassland vegetation types typi-
cal for the study region and easily accessible by foot for soil sam-
ple transportation. The SSBs were studied by cultivating the soil 

samples	in	an	open	greenhouse	in	Regensburg.	More	specifically,	
the soil samples were collected right after snowmelt: from the be-
ginning	of	April	to	the	second	half	of	May	in	the	years	2010–	2017	
(the	 sampling	 period	 is	 elevation-	specific).	 The	 sampling	 period	
was spread over eight years due to limited space for soil sample 
cultivation.	We	assumed	that	the	studied	SSBs	are	rarely	subject	
to	considerable	year-	to-	year	fluctuations,	as	the	disturbance	lev-
els in the study system are very low and succession rates are slow. 
Thus it is most likely that sampling over different years did not 
affect the SSB characteristics. At each site, we randomly selected 
ten 2 m × 2 m plots (replicates) with homogeneous vegetation. 
The plots were located at more or less similar distances from each 
other within an area of ca. 1000 m² at each site. At each plot, soil 
was	cored	with	a	soil	auger	(4	cm	diameter)	to	a	maximum	depth	at	
10 random locations and the samples were bulked together. The 
top layer of each soil core including the litter layer and the top 
centimeter	was	removed	to	exclude	transient	seeds	present	at	the	
surface.	We	focused	on	the	top	10	cm	of	the	soil	profile	to	account	
for	 elevation-	specific	 differences	 in	 the	 sampled	 volume	of	 soil,	
as lowland grasslands tend to have deeper soils as compared to 
their upland counterparts. A preliminary study conducted in a few 
lowland sites indicated that this approach would not affect the 
correctness of the SSB characteristics, as very few viable seeds 
were found below the first 10 cm of the soil profile (S. Rosbakh, 
unpublished data). Altogether, there were 100 soil samples from 
each site, resulting in 1800 samples in total.

The collected soil samples were transported to the lab, 
where they were stored at +4°C	for	a	few	days	before	being	pro-
cessed.	 The	 soil	 samples	were	 bulked	 by	 sieving	 through	 a	 0.2-	
mm sieve, spread thinly and evenly on plastic trays (40 cm wide) 
filled with potting soil, and cultivated outdoors at the University 
of Regensburg (Germany). To allow all viable seeds to germinate, 
the samples were cultivated for two successive growing seasons. 
Emerged seedlings were identified and removed from the trays. 
Five containers with potting soil only were used to control for con-
tamination by airborne seeds or seeds present in the potting soil. 
After the initial flush of germination during the first cultivation 
year had ended, the soil samples were carefully turned over with 
a fork to facilitate the germination of ungerminated seeds. After 
cold stratification during the winter between two growing sea-
sons, the soil samples were turned over one more time. Cultivation 
was discontinued when no more seedlings emerged for eight con-
secutive weeks.

2.3  |  SSB predictors

2.3.1  |  Environmental	characteristics	of	the	
study sites

We	considered	three	main	types	of	SSB	predictors:	environmen-
tal factors, seed traits and phylogeny. Environmental predic-
tors included thermal conditions, water and nutrient supply, and 
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disturbance (grazing). Abundances of individual species in the veg-
etation at each site were included in the group of environmental 
predictors as they can be considered to be a result of abiotic filter-
ing. The vegetation was surveyed in the same plots from which 
the soil samples were taken. The surveys were conducted in the 
same year that the soil was sampled in ten 2 m × 2 m plots per site 
at	the	peak	of	the	growing	season,	which	was	elevation-	specific.	
In each plot, the abundance of all vascular plant species was esti-
mated	based	on	 the	 following	scale:	0.1%–	1%,	1%–	5%,	5%–	25%,	
25%–	50%,	50%–	75%,	and	75%–	100%.	The	relative	abundance	of	
a species at a site was then calculated as the mean value of its 
abundance in all plots.

Site thermal conditions during the vegetation period were esti-
mated	with	the	help	of	the	Landolt	indicator	value	for	temperature	
(Landolt's	T),	a	proxy	for	mean	soil	and	surface	temperatures	after	
snowmelt	(Landolt	et	al.,	2010;	Scherrer	&	Körner,	2011). Similarly, 
we	used	Landolt	 indicator	values	for	water	availability	 (Landolt's	
F)	and	soil	nutrients	(Landolt's	N)	as	proxies	for	site	water	and	nu-
trient	supply	during	the	vegetation	period	respectively.	We	opted	
for these indicator values because they are strongly correlated 
with directly measured temperature and soil parameters (e.g. air 
temperature, soil phosphorus content, soil depth; e.g. Rosbakh & 
Poschlod,	2021) and due to their wider availability. Finally, graz-
ing intensity, the main disturbance factor at the study sites, was 
recorded at all study sites and included three levels: (1) no current 
agricultural usage but occasional grazing by sheep and wild ungu-
lates;	 (2)	occasional	extensive	grazing	by	cows;	and	(3)	mountain	
dairy	 farm	with	permanently	 grazing	 cows	 (except	 for	 site	HO5,	
which	was	extensively	grazed	by	sheep).

2.3.2  |  Seed	traits

For	all	the	species	found	either	in	the	SSBs	or	in	the	above-	ground	
vegetation we collected in situ data on seed mass, seed shape 
and seed production following the standardized protocols (Kleyer 
et al., 2008).	Seed	mass	was	extrapolated	based	on	three	samples	
of 100 seeds each.

Seed shape is the variance of seed dimensions that were mea-
sured on ten replicate seeds per species. It is a dimensionless trait 
that	 varies	 between	 zero	 in	 perfectly	 round	 and	 0.2	 in	 disk-		 or	
needle-	shaped	seeds.	Seed	production	was	measured	as	 the	aver-
age number of seeds produced per ramet of ten randomly selected 
individuals (Thompson et al., 1993).

Furthermore, all the species were classified into having either 
non-	dormant	or	dormant	seeds	based	on	published	literature	(Baskin	
& Baskin, 2014; Rosbakh et al., 2020) and our own germination tests 
(S. Rosbakh, unpublished). Finally, the presence/absence of endo-
sperm	was	identified	for	every	species	according	to	Martin	(1946), 
and	Finch-	Savage	and	Leubner-	Metzger	(2006).

Trait data on seed mass, seed shape and seed production were 
unavailable for some (<15) of the species; in their case the missing 
data	were	extracted	from	the	LEDA	database	(Kleyer	et	al.,	2008).

2.3.3  |  Phylogeny

To infer the influence of species’ phylogenetic relatedness on seed 
persistence in soil, e.g. Gioria et al. (2020), we included informa-
tion on the phylogenetic distances between study species as vari-
ables	 in	 the	models.	We	made	no	 inferences	about	the	potential	
evolutionary processes underlying possible correlation between 
SSB properties and species phylogeny. The phylogenetic relation-
ships among all the studied species were summarized by calculat-
ing	 eigenvectors	 extracted	 from	 a	 principal	 coordinates	 analysis	
(PCoA)	 representing	 the	 variation	 in	 the	 phylogenetic	 distances	
among	species	(Penone	et	al.,	2014).	We	used	the	first	13	eigen-
vectors that represented more than 60% of the variation in the 
phylogenetic distances among species. The calculation of the ei-
genvectors was based on a dated phylogeny of a large European 
flora	(Durka	&	Michalski,	2012).

2.4  |  Data analysis

All statistical calculations were done with the help of R software 
(version 4.1, R Core Team, 2022).

2.4.1  |  Data	preparation

Based on the vegetation survey and soil cultivation data, we pre-
dicted the ability of a species to form a persistent SSB at a study 
site as a binary variable (1, able to form a seed bank; 0, otherwise). 
Furthermore, we predicted SSB density (seeds/m2),	 a	 quantitative	
measure of persistence in soil, for each species at each study site 
by adding up the numbers of seedlings germinated from the corre-
sponding soil samples.

In the first step, we compiled a data set including SSB data (both 
the binary variable for ability to build a seed bank and seed bank 
density), environmental characteristics, seed traits, and phylogenetic 
relatedness for each species occurring at each study site both in the 
vegetation and in the SSB. In other words, the analyzed data set con-
tained seed bank data for multiple species at the same plot, i.e. every 
row	in	the	data	set	represented	a	species–	plot	combination.

We	transformed	the	“seed	dormancy”	ordinal	variable	into	a	con-
tinuous	variable.	Missing	values	in	the	data	set	(seed	shape	for	five	
species,	productivity	 for	45	species	and	dormancy	 for	37	species)	
were imputed using the missRanger R package (an alternative imple-
mentation of the original proposed method [Stekhoven & Bühlmann, 
2011]). As information about vegetation succession is rarely avail-
able in SSB research (many species from previous succession stages 
can survive in the soil for longer periods of time), the observations 
with	vegetation	equal	to	zero	were	removed	from	the	data	set.	All	
predictors were standardized (centered and divided by their stan-
dard deviation) prior to analysis. Because SSB density was heavily 
skewed, we applied logarithmic transformation to it (log[SSBden-
sity +	0.001])	and	used	the	log-	transformed	variable	as	a	response	
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variable	 in	 our	models.	Model	 assumptions	were	met	 in	 all	 cases,	
when applicable.

2.5  |  Model evaluation

Evaluating models on the data on which they have been trained 
leads to underestimation of the actual predictive error for new 
data (Roberts et al., 2017). To estimate the generalization ability 
of a model (i.e. how accurate the predictions of a model are for 
new observations), it has to be evaluated on a part of the data set 
that	was	not	used	for	training	the	model,	the	so-	called	holdout.	We	
used k-	folded	 cross-	validation	 (i.e.	 split	 the	 data	 set	 into	 several	
holdouts so that each data point appears once in the holdout data 
set, trained the model n times on the n training data sets, and aver-
aged the predictive errors on the n holdout data sets; see Roberts 
et al., 2017)).

While	 cross-	validation	 can	 produce	 accurate	 estimates	 of	 pre-
dictive performance, performance can still be overestimated if the 
observations	are	non-	independent,	for	example	in	the	presence	of	
spatial	 auto-	correlation	 (Roberts	 et	 al.,	 2017). To counteract this, 
we	used	nine-	folded,	 spatially	 blocked	 cross-	validation	 to	 account	
for spatial dependencies introduced by the 18 sites from which the 
observations were collected. In each split, observations for 16 sites 
were used to train the model and the holdouts of two sites were 
used	to	estimate	the	predictive	error.	We	used	nine-	folded	blocked	
cross-	validation	for	all	the	different	sets	of	predictors.

For the calculation of the predictive error/performance (on the 
holdouts	 of	 the	 cross-	validation),	 we	 used	 the	 area	 under	 the	 re-
ceiver operating characteristic (ROC) curve (AUC) for models when 
predicting	 the	 presence/absence	 of	 SSB,	 and	 the	 R-	squared	 for	
models when predicting SSB density. AUC measures how well the 
model can differentiate between two response classes (presence 
and	absence	of	SSB).	The	AUC	and	R-	squared	were	averaged	over	
the	nine	holdouts	of	the	cross-	validation.

2.6  |  Performance of the ML and the conventional 
approach in predicting SSB characteristics

To	test	whether	the	ML	approach	is	more	advantageous	than	con-
ventional approaches to predicting SSB characteristics, we used 
two	 common	 representatives	 of	 these	 groups.	 For	ML,	 we	 used	
the random forest model (RF; Breiman, 2001a) which has advan-
tages	over	other	ML	models	such	as	the	 low	number	of	hyperpa-
rameters and the associated easier usability. Hyperparameters are 
parameters of the model itself (not to be confused with parameters 
that are optimized by the model), which are usually optimized in a 
trial-	and-	error	search	to	find	the	optimal	set	for	a	specific	data	set	
(Claesen	&	Moor,	2015). In addition, RF copes well with small data 
sets, can handle different types of responses (e.g. presence/ab-
sence of SSB and SSB density in our study), and is implemented in 

numerous programming languages. Foregoing the established pro-
cedures, we skipped hyperparameter optimization, opting instead 
to test the achievable predictive performance with the default 
hyperparameters	because	hyperparameter	tuning	usually	requires	
expert	knowledge.	We	used	the	RF	implementation	from	the	ranger 
R	package	(version	0.12.1;	Wright	and	Ziegler,	2017).

For the conventional statistical approach, we used linear re-
gression	 (with	 log-	transformed	SSB	density	as	the	response	vari-
able) and logistic regression models (presence/absence of SB as 
the response variable) as these are commonly used tools in anal-
yses	 of	 ecological	 data.	 The	 training	 or	 “learning”	 in	 regression	
models is specified by the hypothesis. Because linear regression 
models cannot learn outside of their hypothesis, i.e. if interac-
tions are not specified the model cannot account for them, we 
added all the predictors additively, as well as all the combina-
tions	 of	 predictor–	predictor	 interactions.	 To	 compensate	 for	 the	
lack of power (interim results showed that the regression model 
would	not	converge	with	so	many	predictors),	we	applied	elastic-	
net	regularization	 (Zou	&	Hastie,	2005) via the glmnet R package 
(Friedman et al., 2010). The strength of the regularization and the 
weighting between the l1 and the l2 regularization were tuned via 
three-	fold	cross-	validation.

We	used	the	mlr	R	package	(version	0.9.0;	Lang	et	al.,	2019) to 
train and evaluate the models.

2.7  |  Relative importance of environmental 
characteristics, seed traits and phylogeny in 
predicting SSB characteristics

We	identified	the	relative	importance	of	single	predictors	and	cor-
responding functional groups (seed traits, environment and phylog-
eny) using the RF models as they demonstrated better performance 
than the regression framework (see below).

2.8  |  Identifying individual important predictors

RF	 provides	 quantitative	 information	 about	 the	 importance	 of	 the	
predictors. This ranking, called variable importance (Breiman, 2001a), 
should be not confused with regression coefficients in regression 
models, since the absolute values of those variables’ importance are 
uninformative and depend on the data set (and the number of predic-
tors). However, the relative importance of the variables vs each other 
can be used to rank the predictors to identify the most predictive 
ones. Thus, to identify the most important predictors, we fitted RF on 
all the predictors and ranked the importance of the predictors based 
on their variable importance.

To assess the ability of the different functional groups to pre-
dict	SSB,	we	divided	the	predictors	into	“Environment”	(Landolt's	T,	
Landolt's	F,	Landolt's	N,	grazing	intensity,	cover),	“Seed”	(mass,	shape,	
production,	dormancy,	endosperm	presence/absence),	“Phylogeny”	
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(the	first	13	phylogenetic	eigenvectors),	and	“All”	(all	predictors).	We	
then fitted the models (RF and regression) on the different groups 
and	estimated	the	predictive	performance	via	nine-	folded	blocked	
cross-	validation	(see	above).

2.9  |  Minimal requirements for predicting SSB 
features with the ML approach

The choice of type and number of model predictors in ecological 
research strongly depends on the available data. Thus, to estimate 
the	minimal	set	of	SSB	determinants	required	to	achieve	high	pre-
dictive performance for SSB characteristics, we selected the four 
previously identified predictors (see corresponding sections) with 
the	highest	variable	 importance,	which	were	(temperature,	c5,	c7,	
mass)	for	the	presence/absence	of	SSB	and	(temperature,	c7,	mass,	
c5) for SSB density, to test their predictive performance.

In the second step, we first tested an RF model with only the 
first	predictor	(temperature)	and	in	subsequent	steps	we	sequentially	
added the remainder of the four predictors to the set of predictors. In 
each	step,	we	estimated	the	predictive	performance	via	nine-	folded	
blocked	cross-	validation	as	described	above.

2.10  |  Functional relationship of important 
predictors and SSBs

Machine-	learning	models	are	often	referred	to	as	black-	box	mod-
els	because	 it	remains	unknown	what	relationships	the	ML	model	
learns in order to generate predictions. In linear regression models, 
the a priori hypothesis restricts the model's learning, and the model 
is not capable of learning outside of this hypothesis (e.g. given two 
predictors A and B, if the interaction of A and B is not specified, the 
model	cannot	learn	it).	In	ML,	however,	the	idea	is	that	the	model	
should be capable of automatically identifying the best predictive 
patterns in the data (Breiman, 2001a),	which	makes	ML	a	great	tool	
for predictive modeling but comes with the cost of low interpret-
ability (Breiman, 2001b).	 However,	 findings	 of	 discriminative	ML	
models	have	driven	the	development	of	explainable	artificial	intel-
ligence	(xAI)	methods	and	tools	(Barredo	Arrieta	et	al.,	2020). The 
idea	of	xAI	is	to	reveal	post-	hoc	the	predictive	patterns	used	by	the	
ML	model	 (Barredo	Arrieta	 et	 al.,	2020;	 Pichler	 et	 al.,	2020; Ryo 
et al., 2021).

To	check	whether	the	predictive	patterns	the	ML	model	used	
to predict SSB density are ecologically plausible, we used an ap-
proach	based	on	accumulated	local	effect	plots	(ALE;	Apley	&	Zhu,	
2020)	 to	explore	 the	 functional	 relationships	between	predictors	
(temperature, shape, and mass) and the response variable (pres-
ence/absence	of	SSB,	and	density	of	SSB;	Molnar,	2020). Briefly, 
ALEs	 are	 based	 on	 the	 idea	 of	 sampling	 predictors	 individually	
while	 keeping	 the	 other	 predictors	 fixed.	 If	 the	 sampled	 predic-
tor	 is	 “important,”	 the	predictions	will	be	affected	more	strongly.	

Phylogenetic	predictors	were	not	considered	because	they	cannot	
be linked to actual ecological mechanisms, making their interpreta-
tion pointless.

3  |  RESULTS

3.1  |  Vegetation and soil seed bank surveys

At the 18 study sites, we recorded 290 species belonging to 45 
families. The most dominant families were Asteraceae (45 species), 
Poaceae	(30	species),	Cyperaceae	(21	species)	and	Caryophyllaceae	
(16 species). Graminoids dominated in the vegetation of all the sites 
surveyed.

In	 total,	 247,995	 seedlings	 belonging	 to	 162	 species	 and	 35	
families germinated in the collected soil samples. Thus, germinable 
seeds of 128 species (e.g. Campanula alpina, Ligusticum mutellina and 
Valeriana montana) were not found in the collected soil samples. Of 
the	 species	 present	 in	 the	 SSB,	 seeds	 of	 65	 species,	 for	 example,	
Carex flacca, Hypericum perforatum and Veronica officinalis, were 
found at each site where the corresponding species occurred in the 
vegetation.	Seeds	of	97	species,	such	as	Alchemilla vulgaris, Nardus 
stricta, and Ranunculus montanus, displayed a variable behavior in the 
surveyed SSBs, being present at some sites and absent from others. 
The seed density of species present in the SSB ranged from eight 
(Carex sylvatica, Potentilla aurea) to 63,603 (Sagina saginoides) with an 
average	of	1617	seeds/m².

3.2  |  Predictive performance of the 
ML and conventional approaches in predicting SSB 
characteristics

When	 comparing	 the	 performance	 of	 ML	 (RF)	 and	 conventional	
approaches (linear and generalized linear model) in predicting SSB 
characteristics,	we	 found	 that	 the	ML	approach	 achieved	 an	AUC	
of	86.1%	and	the	GLM,	an	AUC	of	76.9%	when	predicting	the	pres-
ence/absence of SSB (Figure 1; intersection of the circles). In pre-
dicting	 the	 density	 of	 SSBs,	 the	 ML	 approach	 achieved	 an	 R² of 
41.7%,	whereas	the	conventional	approach	(linear	regression	model)	
achieved an R²	of	18.7%	(Figure 1; intersection of the circles).

For SSB density, the combination of environmental character-
istics and phylogeny included in the RF model resulted in an R2 of 
38.1%, and was followed by the combination of environmental char-
acteristics and seed traits (R2 of 33.2%), and seed traits and phy-
logeny (R2 of 32.5%). Among single groups of predictors, seed traits 
and phylogeny had the highest predictive performance with an R2 of 
33.8% and 31.9% respectively. Environmental characteristics alone 
were predictive of only 6.2% of SSB density in the data set.

The conventional approach had a substantially lower predictive per-
formance	than	the	ML	model,	with	an	R2	of	18.7%	when	all	predictors	
were used (Figure 1b), followed by the combination of phylogenetic 
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and seed, and phylogenetic and environmental characteristics (R2 of 
13.5% and 15.5%). Among single groups of predictors, seed character-
istics showed the lowest predictive performance with an R2 of 0.5%, 
while phylogenetic and environmental characteristics achieved higher 
predictive performances with an R2	of	9.7%	and	12.6%.

All	 the	differences	between	the	ML	model	and	the	 (generalized)	
linear	 model	were	 statistically	 significant	 excepting	where	 only	 the	
group	of	environmental	predictors	was	used	(Appendixes	S2–	S4).

3.3  |  Relative importance of environmental 
characteristics, seed traits and phylogeny in 
predicting SSB characteristics

3.3.1  |  Identifying	individual	important	predictors

When	looking	at	the	variable	importance	of	SSB	predictors,	we	found	
that for both types of response (presence/absence [Figure 2a] and 

F I G U R E  1 Performance	of	the	random	forest	machine-	learning	model	(a)	and	the	conventional	regression	model	(b)	in	predicting	presence/
absence and density of seed banks. Both models were fitted on three sets of predictors (environment: temperature, nitrogen, moisture, 
grazing;	seed	traits:	production,	mass,	endosperm,	shape,	and	dormancy;	phylogeny:	phylogenetic	axes	that	explain	60%	of	the	variation).	The	
intersections	show	the	performance	of	the	different	combinations	of	predictors.	Predictions	for	presence/absence	of	SSB	(left	column)	were	
evaluated by AUC and predictions for SSB density (right column) were evaluated by R2.	Models	were	evaluated	by	blocked	nine-	folded	cross-	
validation (observations were from 18 different plots; in each validation step 16 plots were used for training and two plots for validation)
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density [Figure 2b]) the temperature conditions at the surveyed sites 
were the most important predictor (9% and 10% for SSB presence/
absence and density respectively, Figure 2). The remaining environ-
mental characteristics (soil nutrients and moisture, grazing inten-
sity), several seed traits (seed mass, shape and production) and all 
the phylogenetic eigenvectors had comparable variable importance 
for	 SSB	 characteristics	 (3%–	6%).	 Seed	 dormancy	 and	 endosperm	
presence/absence had comparatively low variable importance (<1%, 
Figure 2).

3.3.2  | Minimal	requirements	for	predicting	SSB	
features	with	the	ML	approach

We	 identified	 site	 temperature	 conditions	 as	 the	 predictor	 with	
the highest predictive performance (AUC of 65.8% and R2 of 6.2%, 
Figure 3) for both response types (Figure 3). For predicting SSB pres-
ence/absence, the addition of the phylogenetic eigenvector c5 as a 
predictor	is	already	sufficient	to	reach	an	AUC	of	0.79,	which	corre-
sponds	to	91%	of	the	maximal	achievable	predictive	performance	of	
0.861 (Figure 1a). For predicting SSB density, two additional predic-
tors, seed mass and the phylogenetic eigenvector c5, were neces-
sary	to	reach	80%	of	the	maximal	achievable	predictive	performance	
(Figures 1b, 3b).

3.4  |  Functional relationship of important 
predictors and SSBs

According to the RF model, the probability of a species forming an 
SSB increased with increasing site temperature, soil moisture and 
fertility, and species abundance, and decreased with increasing seed 
mass, seed shape value, and seed production (Figure 4a–	h). Species 
occurring at sites with relatively high grazing intensity tended to 
form persistent seed banks in the soil. SSB density was positively af-
fected by site temperature conditions, soil moisture availability, and 
species abundance (Figure 4i–	p).

4  |  DISCUSSION

There is a growing demand for knowledge on soil seed persistence 
in both basic and applied plant ecological research. Information 
on	 species’	 ability	 to	 form	persistent	 SSBs	 and	 their	 quantitative	
characteristics is not only crucial for understanding past, present 
and future plant population dynamics (Saatkamp et al., 2014; 
Walck	et	al.,	2011),	but	also	for	restoration	projects	(Hölzel	&	Otte,	
2004),	 risk	 assessment	 (Stöcklin	 &	 Fischer,	 1999)	 and	 invasive-	
species management (Gioria et al., 2019). SSB surveys cannot by 
themselves satisfy such a need for knowledge as the field, and 

F I G U R E  2 Variable	importance	in	
random forest model fitted on presence/
absence of seed banks (a) and on 
density of seed banks (b), plotted in 
descending order as per their relative 
importance	measured	by	the	Gini	index	
in percent. All available predictors were 
used.	Abbreviations:	T,	N,	F:	Landolt's	
indicator values for temperature, soil 
fertility	and	moisture	respectively;	c1–	13:	
phylogenetic eigenvectors
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particularly	the	cultivation	part	of	this	approach,	is	still	extremely	
resource-	intensive.

Our study closes this gap by providing a novel methodological 
approach combining empirical knowledge on the determinants of 
SSB	characteristics	and	a	modern,	flexible	statistical	approach	based	
on	ML.	We	first	demonstrated	that	the	ML	approach	substantially	
outperforms conventional statistical methods in predicting SSB 
characteristics. Second, we found that SSB characteristics can be 
predicted with high accuracy regardless of the available predic-
tor type (environmental characteristics, seed trait and phylogeny). 
Finally, we revealed that a few widely available SSB predictors can 
already	achieve	a	high	predictive	power	 in	 the	ML	approach,	 sug-
gesting	high	flexibility	of	the	developed	approach	for	use	in	various	
study systems.

4.1  |  Predictive performance of the 
ML and conventional approaches in predicting SSB 
characteristics

In	 our	 study,	 the	 ML	 approach	 (RF)	 outperformed	 the	 (general-
ized) linear model considerably in predicting SSB characteristics 
(Figure 1).	This	finding	confirms	previous	studies	(e.g.	Pichler	et	al.,	
2020)	and	our	expectations	that	given	the	complex	nature	of	predic-
tors and their interactions, accurate analysis of patterns in SSB, and 
more	generally	ecological	data,	 requires	a	more	 flexible	approach.	
The	comparatively	better	performance	of	the	ML	approach	in	pre-
dicting	SSB	characteristics	can	be	explained	by	two	points.

First, assuming the correct functional form of the relationship 
between predictors and response variable is essential for accurate 
predictions. However, conventional statistical models such as lin-
ear regression models are constrained in their learning by a priori 
assumptions (the hypotheses) about the underlying system. Thus, 

the modeler needs to correctly specify the functional relationships 
between	predictors	and	predicted	characteristics	(e.g.	linear	or	non-	
linear)	 as	well	 as	 the	 relationships	 between	 predictors.	Moreover,	
it remains doubtful whether we can do the same for phylogenetic 
predictors,	 which	 can	 be	 seen	 as	 proxies	 for	 unmeasured	 traits	
(Morales-	Castilla	et	al.,	2015) and can improve the accuracy of pre-
dictions for ecological data (e.g. Brousseau et al., 2018;	Pomeranz	
et al., 2019). However, making assumptions about their functional 
form or linking them to environmental or seed trait predictors is dif-
ficult as we cannot connect them to actual ecological mechanisms.

Second,	conventional	approaches	often	lack	flexibility.	As	men-
tioned	 earlier,	 ecological	 patterns	 are	 usually	 scale-	dependent	
(König	et	al.,	2021;	Poisot	at	al.,	2015) and nuisance predictors are 
required	to	account	for	 locally	varying	functional	forms,	but	entail	
loss of statistical power and give no guarantee that the possible fluc-
tuating predictive patterns of predictors will be successfully cap-
tured.	However,	our	results	demonstrated	that	in	this	case	ML	could	
offer a powerful solution, as it is able to automatically identify and 
learn	flexible	predictive	patterns	(Breiman,	2001a, 2001b).

Based	on	previous	research,	we	assumed	the	existence	of	several	
predictive patterns for SSB characteristics. Our results indicate that 
RF individually achieved a high performance for phylogenetic and 
seed trait predictors (Figure 1), but their combination did not greatly 
further increase predictive performance. Assuming that phylogeny 
is	 a	 proxy	 for	 unmeasured	 traits	 correlated	with	 SSB	 persistence,	
our findings thus confirm that phylogeny and information about 
seed traits encode similar predictive patterns for SSB characteris-
tics and using both does not increase predictive performance greatly 
(Figure 1). On the other hand, for the conventional statistical models 
predictive performance increased greatly when all sets of functional 
predictors were used compared to use of individual groups (Figure 1). 
This implies that such statistical models cannot make the best use 
of the predictive patterns in the individual groups, indicating that 

F I G U R E  3 Predictive	performance	of	random	forest	models	for	soil	seed	bank	presence/absence	(a)	and	density	(b)	with	the	four	most	
important	predictors.	Temperature,	Landolt's	indicator	values	for	temperature;	Mass,	seed	mass;	c5	and	c7,	phylogenetic	eigenvectors
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some	of	 the	predictive	 patterns	 are	 non-	linear	 and	 require	 higher	
flexibility.	In	contrast,	the	ML	model	was	able	to	utilize	the	available	
individual	predictive	patterns,	highlighting	the	advantages	of	the	ML	
approach in predicting SSB characteristics when the availability of 
predictors is limited by temporal and/or financial resources.

4.2  |  Relative importance of environmental 
characteristics, seed traits and phylogeny in 
predicting SSB characteristics

When	 predicting	 SSB	 characteristics	 with	 the	 ML	 approach,	 we	
found that the temperature conditions of the surveyed sites were 
the most important predictor, both for SSB presence/absence and 
density. The conditional dependency profiles of RF for this predic-
tor	revealed	that	species	from	warmer	sites	(i.e.	higher	Landolt's	T	
values) were more likely to build up a persistent SSB with higher 
seed density (Figure 3). This finding is in line with our recent study 
in	the	same	study	system	(Rosbakh	&	Poschlod,	2021) and observa-
tions made elsewhere (Ortega et al., 1997;	Welling	et	al.,	2004) that 
the importance of SSBs for plant persistence gradually decreases 
with	 increasing	 elevation.	 Low-	temperature	 stress	 in	 colder	 sites,	
including the short growth period with generally low temperatures 
coupled	with	 frequent	 and	 severe	 frost	 events,	 negatively	 affects	
regeneration by seed. Therefore, because of the unpredictable seed 
input into the soil, plants shift their main persistence strategy from 
replacement of individuals by seeding germinating from the SSB to 
in situ maintenance of established individual plants by emphasizing 
stasis	of	adult	stages	(Rosbakh	&	Poschlod,	2021).

The remaining environmental characteristics (soil nutrients and 
moisture, grazing intensity, and species abundance in the vegetation 
[“cover”])	were	found	to	be	important	predictors	of	SSB	characteris-
tics	of	equal	importance,	though	with	smaller	predictive	power	than	
temperature.	Although	the	ML	approach	does	not	allow	for	direct	

hypothesis testing and P-	value	calculations,	which	are	usually	used	
to confirm/reject postulated hypotheses, these findings are ecolog-
ically plausible as they agree well with previous SSB research. First, 
the detected low probability that species with persistent SSB and 
low	SSB	density	would	be	present	 in	 sites	with	nutrient-	poor	 and	
dry	soils	(i.e.	lower	Landolt's	F	and	N	values)	is	in	line	with	the	gen-
eral observation that all components of SSBs, and particularly seed 
density (the curves for SSB density are much steeper than for SSB 
presence/absence; Figure 4), are negatively correlated with levels of 
abiotic stress (e.g. edaphic conditions; Funes et al., 2003), due to its 
direct and indirect effects on seed persistence in the soil (Fenner & 
Thompson, 2005;	Long	et	al.,	2015;	Poschlod	et	al.,	2013; Saatkamp 
et al., 2014). Second, the revealed positive effects of grazing animals 
on SSB persistence and density agree well with the previous finding 
that	frequent	(moderate)	disturbance	favors	formation	of	persistent	
SSBs with a high density due to the establishment of gaps by grazing 
and trampling, favoring species with a ruderal strategy (Grime, 2006; 
Renne & Tracy, 2007). Finally, SSB persistence and density were 
positively affected by plant abundance in the vegetation, a pattern 
known	from	other	systems	and	explained	by	a	comparatively	large	
seed input into soils from the dominant species (Saatkamp et al., 
2014). These results, however, come with the reservation that we 
did	not	check	which	predictor–	predictor	 interactions	were	 learned	
by RF. It is likely that RF found some, but the high predictive perfor-
mances of a few single predictors (Figure 3) suggest that these are 
negligible.

In our study, three out of five seed traits: mass, shape and pro-
duction,	 performed	 well	 in	 predicting	 SSB	 characteristics.	 Like	 in	
other SSB studies (Bekker et al., 1998; Gioria et al., 2020; Honda, 
2008), the species in our system with comparatively small, round 
seeds, a seed morphology that favors easier seed burial and reduces 
risk of predation (Fenner & Thompson, 2005), tended to build per-
sistent and dense(r) banks in the soil. Seed production, a trait with 
predictive performance comparable to that of seed mass and shape, 

F I G U R E  4 Conditional	dependency	profiles	(based	on	accumulated	local	effects)	from	random	forest	model	for	the	environmental	and	
the	seed	trait	predictors.	Predictors	are	sorted	according	to	their	variable	importance	found	by	the	random	forest	model.	(a–	h)	The	profiles	
for	predicting	the	presence/absence	of	seed	bank	formation;	(i–	p)	the	profiles	for	predicting	seed	bank	density.	The	grey	lines	are	the	
profiles, and the black lines are smoothing splines 
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had a negative effect on SSB persistence and density, especially in 
species that produce more than 9000 seeds per ramet. This find-
ing contradicts previous observations that high seed production is 
an important determinant of SSB characteristics due to the positive 
trade-	off	 between	 number	 of	 produced	 seeds	 and	 their	mass,	 i.e.	
productive species tend to produce smaller seeds that persist in the 
soil (Saatkamp et al., 2014).

Seed dormancy and endosperm presence played a minor role in 
predicting SSB characteristics, as they showed the lowest predictive 
performance in the calculated models. The former finding agrees 
well with the studies by Thompson et al., (2003) and Gioria et al. 
(2020), which demonstrated that seed dormancy is an important 
mechanism promoting seed persistence in the soil but, overall, is a 
poor predictor of SSB characteristics. The weak predictive power of 
endosperm presence in inferring SSB characteristics supports the 
conclusion	by	Long	et	al.	(2015) that this trait, which can neverthe-
less	 serve	 as	 a	 good	 proxy	 for	 seed	 longevity	 in	 storage	 (Probert	
et al., 2009; Tausch et al., 2019), does not reflect species’ ability to 
persist in soil.

Including phylogenetic eigenvectors considerably improved RF 
model performance in predicting both SSB characteristics of inter-
est.	These	results	agree	well	with	recent	trait-	based	research	show-
ing that phylogenetic predictors contain information on unobserved 
traits,	thereby	increasing	the	predictive	power	of	models	(Desjardins-	
Proulx	 et	 al.,	 2017;	Morales-	Castilla	 et	 al.,	2015;	 Pomeranz	 et	 al.,	
2019).	 In	 the	SSB	context,	 these	unobserved	 (and	usually	hard-	to-	
measure) traits might include a number of ecophysiological adap-
tations, such as desiccation tolerance and/or genetic degradation 
resistance, which positively influence inherent seed longevity and 
thus	 seed	persistence	 in	 soil	 (Long	et	 al.,	2015). Alternatively, the 
good predictive performance of the phylogenetic predictors could 
be	 explained	 by	 their	 correlation	 with	 the	 seed	 traits	 correlated	
with SSB persistence (mass, shape productivity; Figures 2 and 4, 
Appendix	S5),	which	are	not	randomly	distributed	across	phylogeny	
(e.g. Gioria et al., 2020). Although in our study it was not feasible to 
separate	 these	 two	explanations	 from	each	other,	we	believe	 that	
in	our	case	the	latter	explanation	is	more	likely,	as	both	the	“Seed”	
and	“Phylogeny”	groups	of	predictors	showed	the	highest	predictive	
performance of the three groups but including both did not substan-
tially improve predictive performance.

Besides testing different sets of predictors (environment, seed, 
and phylogeny), we also wanted to identify the minimal combination 
of the best predictors independently of their group. In our study, 
we considered 22 predictors, a comparatively large number that 
would entail high labor and temporal costs of data collection, espe-
cially in poorly studied regional floras. Our results indicate that both 
SSB components can be predicted with high accuracy based only 
on	a	few	characteristics	that	can	be	obtained	from	already	existing	
sources.	For	example,	for	studies	conducted	in	Europe,	information	
on site temperature conditions could be obtained from regional in-
dicator	values	(e.g.	Landolt	et	al.,	2010; Tyler et al., 2021), data on 
seed shape and mass, from trait data bases (Kleyer et al., 2008;	Liu	

et al., 2019), and phylogenetic vectors, from the work by Durka and 
Michalski	(2012). In other regions with poorer data coverage, global 
ready-	to-	use	phylogenies	(e.g.	Jin	&	Qian,	2019) in combination with 
in situ measurements of relatively simple seed morphological traits, 
such as mass and shape, could be used as reliable predictors of SSB 
characteristics.
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