
Root Cause Analysis

in Sparsely Labeled Environments

using Machine Learning

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)

der Fakultät Physik
der Universität Regensburg

vorgelegt von

Marinus Bommer

aus Garmisch-Partenkirchen

im Jahr 2022

Promotionsgesuch eingereicht am 18.1.2022.

Die Arbeit wurde in Zusammenarbeit mit Syskron GmbH,

am Institut für Biophysik unter der

Anleitung von Prof. Dr. Elmar W. Lang durchgeführt.

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Dominique Bougeard

1. Gutachter: Prof. Dr. Elmar W. Lang

2. Gutachter: Dr. Stefan Solbrig

weiterer Prüfer: Prof. Dr. Jascha Repp

Ersatzprüfer: Prof. Dr. Florian Hartig

Contents

Nomenclature v

1 Introduction 3

2 Theoretical background 5

2.1 Bottling Plant . 5

2.1.1 Manufacturing flow lines . 6

2.1.2 Common machines . 9

2.1.3 Bottle-flow control . 12

2.1.4 Error propagation . 13

2.2 Line data . 13

2.2.1 Available signals for representing line behaviour 14

2.2.2 Data characteristics . 16

2.2.3 Encoding of categorical data 16

2.2.4 Representing a filling line . 18

2.3 Time-series classification (TSC) . 19

2.3.1 Machine Learning nomenclature 21

2.3.2 Dynamic Time Warping and k -Nearest Neighbours 22

2.3.3 Manual feature extraction . 25

2.3.4 Random Forest classifier . 26

2.3.5 Neural Network approaches 26

2.4 Weak Supervision . 33

2.4.1 Active Learning . 36

2.4.2 Transfer Learning . 40

2.4.3 Multi-Task Learning . 41

2.5 Related work . 43

i

ii Contents

3 Methods 45

3.1 Probabilistic formulation of temporal error propagation 46

3.1.1 Extracting the temporal characteristics of error propagation

from data . 46

3.1.2 Causality between stoppages 50

3.1.3 Long range causality . 53

3.2 Data handling . 53

3.2.1 Temporal data downsampling 56

3.2.2 Manual feature extraction . 57

3.3 Rule based analysis approaches . 58

3.4 General methods for Machine Learning approaches 60

3.5 Dynamic Time Warping and k -Nearest Neighbors 60

3.6 Random Forest . 61

3.7 Algorithmic labeling . 61

3.8 Active Learning . 63

3.9 Multi-Task Learning and Transfer Learning 64

3.10 Fully Convolutional Graph Network architectures 65

3.10.1 Relational Graph Convolutional Neural Network (RGCN) . . . 67

3.10.2 spatio-temporal Relational Graph Convolutional Neural Net-

work (stRGCN) . 68

3.11 Adding lead-machine information to data 68

4 Results 71

4.1 Data characteristics . 71

4.2 Rule-based approaches . 76

4.2.1 Avalanche algorithm . 76

4.2.2 New rule-based approach . 76

4.3 Dynamic Time Warping and k -Nearest Neighbors 80

4.3.1 Optimal parametrization . 81

4.3.2 Results per customer . 81

4.3.3 Inference durations . 84

4.4 Random Forest . 86

4.5 Relational Graph Convolutional Neural Network 89

4.5.1 Training on single lines using RGCN 90

4.5.2 Multi-Task Learning using RGCN 94

Contents iii

4.5.3 Transfer Learning using RGCN 101

4.6 spatio-temporal Relational Graph Convolutional Neural Network . . . 103

4.6.1 Training on single lines using stRGCN 103

4.6.2 Multi-Task Learning using stRGCN 105

4.6.3 Transfer Learning using stRGCN 107

4.7 Comparing RGCN to stRGCN . 108

4.8 Milestones for training Graph Convolutional Networks 110

4.8.1 Edge types . 110

4.8.2 Fully convolutional architecture 111

4.8.3 Temporal data selection . 113

4.8.4 Lead-machine information . 114

4.9 Active Learning . 115

4.10 Results overview . 118

5 Conclusion and Outlook 121

5.1 Conclusion . 121

5.2 Outlook . 123

6 Appendix 125

6.1 Line graphs . 125

6.2 Confusion matrices . 129

6.2.1 Transfer Learning: RGCN . 129

6.2.2 Multi-Task Learning: spatio-temporal RGCN 130

6.3 Hyperparameter tuning stRGCN . 131

6.3.1 Number of blocks and layers 131

6.3.2 Number of channels . 132

6.3.3 Dropout rate . 133

Bibliography 135

Nomenclature

Symbols describing the line and data

A Adjacency matrix

C Set of categories

M Set of machines

X Set of examples

x one example

Y Set of labels

y one label

C Number of categories

mi Machine i

M Number of machines

N Number of samples

T Number of time-steps

T time space

X feature space

Y label space

v

Abstract

Current filling and packaging lines in liquid food industry are highly optimized and

process up to 120000 units per hour. To keep performance at a high level, an ongoing

analysis process to identify and consequently solve weaknesses inside the line must

take place. To support bottling companies in this task, we present and compare

various algorithmic approaches to find the root-cause machine for each line stoppage.

We introduce a rule-based algorithm as well as an implementation using Random

Forest and two different Relational Graph Convolutional Neural Networks. Since

information about the true causer machine is very limited, all approaches have to

be label-efficient. Therefore, we introduce Active Learning, Algorithmic Labeling,

Multi-Task Learning and Transfer Learning. Finally, a new fully-convolutional

Neural Network architecture enables us to predict root-cause machines at any line

with only needing one trained model.

1

1 Introduction

This thesis was conducted in close collaboration between the Computational Intelli-

gence and Machine Learning group of Prof. Elmar Lang at University of Regensburg

and Syskron GmbH. As a part of the Krones AG family, Syskron is a globally acting

company with the goal of leading the bottling industry into Industry 4.0. The com-

pany gathers data of bottling lines and converts them to valuable information for

the end-user. One important field is the analysis of error propagation in a bottling

line. There are two main reasons: On the one hand, modern production lines are

designed to process up to 120,000 units per hour. The high speeds lead to a high

susceptibility to faults. On the other hand, line stoppages should be avoided for

profitability and quality reasons. Contrary to the strong demand for failure analyses,

even in modern bottling companies, the root cause of a problem has to be found and

solved by an expert with little digital help. This includes the documentation and

consecutive analysis of detecting the main error sources in the line. Altogether, this

procedure is not a sustainable for bottling lines increasing in number and size.

The goal of this thesis is to develop an algorithm for automatically detecting

the error-causing machine (root cause) for each line stoppage. It should meet the

requirements of providing a high accuracy, low costs per roll-out at one filling line

and being immediately usable after roll-out. Based on the algorithm’s results, the

analysis of the main error causes over shifts, days or weeks can be automatically

executed in Syskron’s Share2Act platform. These statistics are a valuable basis for

the maintenance staff and are used to identify and correct the causes of frequent

failures, thus improving line efficiency [1].

To gain good accuracies, this task can be solved in two ways: Either by using a

rule based system that is set up and configured by experts, or by using Supervised

Machine Learning based on experts’ labels.

To make these approaches scalable for roll-out on hundreds of filling and packaging

lines, an expert’s effort per adaption to a new line has to be minimized. On the one

hand, this can be achieved by automatizing the rule-based systems’ configuration

3

4 Chapter 1. Introduction

for each line and on the other hand by avoiding the need of labeling large amounts

of data per line for Machine Learning.

For the first option, an unsupervised algorithm to extract temporal characteristics

of error propagation in a filling and packaging line is introduced. The results are used

to automatically configure rule-based algorithms for root cause analysis. During this

work, the automatic configuration is implemented for Syskron’s existing ’Avalanche’-

algorithm as well as for the newly introduced rule-based algorithm that uses graph

theory to represent the line structure and a probabilistic description of temporal

error propagation through the production line.

The second option to decrease expert’s effort uses the area of Machine Learning

approaches: Active Learning and Multi-Task Learning in combination with Transfer

Learning as well as the usage of algorithmically created labels are applied to limit

labeling effort.

In terms of Machine Learning models, I evaluate Random Forest, Graph Convo-

lution Neural Network and a newly created spatio-temporal Graph Neural Network

architecture and compare them to the baseline of Dynamic Time Warping and

k -Nearest Neighbors.

For evaluation and comparison of the different approaches, test datasets of four

different Syskron customers, each containing hundreds of line stoppages were col-

lected and labeled by experts. The amount of training data was increased from a few

hundred examples in previous works (e.g. [2]), to the order of 10 000 which allows

for proper training of state-of-the-art Neural Network architectures.

2 Theoretical background

In this chapter, the reader will be introduced to the background behind extracting

the root-cause machine of a line stoppage. Therefore, the world of a filling and

packaging line including the components and the control mechanisms is presented,

and the properties of error propagation through a line are explained. Afterwards,

the available data and different data preprocessing approaches are shown. The

field of time-series classification in general is presented and an introduction to the

corresponding algorithms is given. This includes Dynamic Time Warping as baseline

model, as well as Random Forest and Graph Convolution Networks. To tackle the

problem of only sparsely labeled data, tools from the field of Weak Supervision

including Active Learning, Multi-Task Learning, Transfer Learning and Algorithmic

Labeling will be used in this work and presented to the reader in this chapter. Last

but not least an overview over related work is given.

2.1 Bottling Plant

In this work we use data from Krones filling and packaging lines. These can be very

diverse, ranging from processing cans over plastic-bottles to glass-bottles. Addition-

ally, there are bottling lines using new bottles and ones that use returnable bottles.

Finally, every line is custom tailored to the needs of the customer, his building and

his products. These points show that generic analysis is a challenging task. But

there is standardized data that can be collected from every machine and there are

reoccurring patterns from a line perspective that can be used as a data-basis to

develop algorithms that yield great added value.

In this chapter the basic structure and behavior of filling and packaging lines is

described. Thus the background of the used data is presented.

5

6 Chapter 2. Theoretical background

2.1.1 Manufacturing flow lines

The definition of a production line in general can be phrased like the following:

””Manufacturing flow line systems consist of material, work areas, and

storage areas. Material flows from work area to storage area to work area;

it visits each work and storage area exactly once in a fixed sequence””[3]

Figure 2.1 schema of production line with k work areas M consisting of n
machines each. k+ 1 buffers B are used for storing the material in
between work-steps [2]

In this work the terms ”Manufacturing flow line” and ”production line” are used

synonymously. A generalized schema for this kind of line is depicted in Figure 2.1

and describes the material flow through storage areas and work-areas. Storage areas

act as buffers between the manufacturing steps and thus enable a work area to keep

producing for a while although e.g. the previous work step has no material output

due to some error.

Packaging and bottling lines represent a special case of a manufacturing flow line

and differ from the general schema by some special characteristics. These will be

presented in detail in the following.

Different machine speeds

While a production line in general shows constant production speed over all work

areas, the machine speeds along the bottle flow of a bottling line are not constant.

This is based on presence of a central aggregate, also called lead-machine. The main

task is to achieve a continuous operation of the lead-machine. For that reason the

buffers between the machines are optimized to detach the lead-machine as much as

possible from failures of surrounding aggregates. As an example, the buffer previous

2.1. Bottling Plant 7

to the lead-machine should be as full as possible to enable the lead aggregate a

maximal duration of ongoing production during an upstream failure along the bottle

flow.

Let’s further examine this example and assume that the failure was corrected. Now

the mentioned buffer, of course, has less population than before. That amount of

missing bottles in the buffer has to be refilled. Therefore, the previous machines have

to be able to operate faster than the lead-machine. This is called in over-performance.

According to this example, the whole line is built up based on a V-diagram (compare

Figure 2.2). This shows the machine speeds along the bottle flow of a filling and

packaging line. Usually the filling machine is the lead-machine for qualitative reasons,

e.g. prevention of warming and oxidation of the product due to frequent stops.

Figure 2.2 Graph showing machine speed against the main stream of a filling
line, exemplary for machines of a returnable glass line. It needs to
have a V-shape to secure the best possible capacity utilization of the
lead-machine (Filler). This shape is also called Berg’sche Kurve
[4].

High susceptibility to faults

Due to very high production speeds of e.g. 60000 bottles per hour (almost 17 bottles

per second) for a glass line and up to 120000 cans per hour in a can line and the

corresponding need for high mechanical precision the chances of aggregate failure are

significantly higher than they were at slower production speeds. Thus the production

8 Chapter 2. Theoretical background

line has to be prepared to absorb most failures that appear in the line by exploiting

its buffers. Additionally, there is always the need to find the source of frequent errors

in a line to be able to eliminate the root cause.

Run-through buffer

Unlike usual production lines (which use e.g. pallet racks), buffering in the filling

and packaging industry is done on conveyors. In general there are three types of

conveyors: Pallet-, crate- and bottle-conveyors. For pallets and crates the conveyors

are FIFO-(First In First Out)-buffers. This category includes all one-lane conveyors.

For the buffering effect, they have to be large enough to be able to hold a sufficient

amount of material to buffer minor machine-stops. In the case of bottle transport

Figure 2.3 Example for a multi-lane bottle transportation conveyor, view from
above (adapted from [2])

we have to look a little closer (compare Figure 2.3). Inside the machines, bottles are

usually processed in a single-line. Therefore, the conveyors directly before and after

these machines are single-lined, too. But as mentioned above, due to high production

speeds a single-line transport of bottles is erroneous. In mass-transport (multi-line),

the speed of each single bottle is heavily decreased and thus also the relative speed

between bottles e.g. at the edge regions of a tailback area are decreased. This results

in multiple advantages like noise reduction, less falling bottles and the possibility to

buffer.

Multi-line conveyors provide buffer capacity according to the following principle: If

the transporteur is empty and the first bottles are transported, they are led through

2.1. Bottling Plant 9

the multi-line section without spreading to the full width but staying one or two (out

of e.g. 8) lanes. Thus the transportation speed stays high and the first bottles arrive

at the upcoming machine fast. If the previous machine has a higher production

speed than the upcoming one, there will be a bottle-tailback on the conveyor. In this

case the bottles will slowly spread up on the full width of the conveyor and the buffer

occupancy is rising. Occasionally, filling and packaging lines also possess buffers that

rely on principles besides the run-through buffer. One example is a tower buffer for

empty crates that works according to Last In First Out (LIFO) principle.

Auxiliary flows

Besides the main flow (bottle flow) there are multiple auxiliary flows in a returnable-

bottle line: On the one hand empty pallets are transported e.g. from the depalletizer

to the palletizer, on the other hand there is a connection for empty crates between

unpacker and packer. Besides these two main auxiliary connections in a returnable

glass line, there are of course many auxiliary material inputs: e.g. the product itself,

caps, labels, new bottles to counterbalance rejects and foil for wrapping the pallets.

2.1.2 Common machines

The data in this work has its origin mostly in returnable glass lines that are usually

used e.g. by breweries (compare exemplary architecture in Figure 2.4). Therefore

the usually installed machines are described in the following. A similar description

can also be found in [5]. Generally there are two types of machines: cycle machines

(stepwise working) and those with constant material flow through the machine. In the

latter category one can again distinguish between machines consisting of a carousel

that carries bottles a little less than one turn and processes them within this period

and those machines that process bottles while they are on a multi-lane conveyor.

Depalletizer

Since, as mentioned, used bottles are filled in returnable lines the pallets carrying

empty bottles have to be unloaded in the first step. This is done by the Depalletizer.

It takes crates with empty bottles from the pallet layer by layer and puts them on

the crate transport while empty pallets are afterwards transported to the Palletizer.

Since the process steps are done one after another in a temporal view, this machine

10 Chapter 2. Theoretical background

Figure 2.4 exemplary architecture of a filling and packaging line for returnable
glass-bottles like e.g. for a brewery. (adapted from [2])

is an example of a cycle-machine with following steps: firstly the pallet is driven into

the machine, afterwards, the highest layer of crates is lifted and placed on conveyor

belt by a robot, finally, the crates are moved out of the machine. And only after

finishing the previous working step the next one is started.

Unpacker

The Unpacker takes crates with empty bottles and lifts the bottles from the crate

to the bottle conveyor. The empty crates are transported to the Packer and usually

pass a Crate-Washer on their way. This machine also is a cycle machine.

Washer

Dirty bottles from unpacker arrive in multiline transport at the washer. The washer

is one of only two machines that process bottles in multi-line manner with constant

speed and the first in the bottle flow that works in go-through style. Although this

machine also possesses a multitude of process steps, the way it works is different

than a cycle-machine since all steps are run simultaneously inside the machine and

the bottles run through the areas of the different process steps that continuously run.

2.1. Bottling Plant 11

For hygienic reasons the bottles have to go through a multitude of cleaning steps

and therefore stay in the washer for approximately half an hour. With production

speeds of about 60000 bottles per hour one can approximate the large amount of

bottles that are processed at the same time (≈ 30000). This implies the huge size

of this machine.

Empty bottle inspector (EBI)

When clean bottles are transported towards the filling process, the quality of the

empty bottle has to be secured. One simply does not want to fill valuable product

into a cracked or dirty bottle. The quality of a bottle is inspected by the Empty-

Bottle-Inspector (EBI). Since the checks have to be very accurate they are made on

each single bottle. For this reason the former multi-line bottle stream is converted

to single-line transport ahead the EBI. Inside the machine, a couple of images

of every bottle are taken along a linear conveyor. Based on these pictures e.g.

cracks at different positions of the bottle (opening, neck, body, base) or remaining

contamination can be detected.

Filler

Consecutive to the EBI, without interjacent multi-line transport, the filling aggregate

is placed. Here the product is filled into the bottle and the cap is added. The filler

is built up as a carousel of big diameter (e.g. 7m) with around 100 to 300 filling

stations that each hold one bottle. At the input, the bottles are separated and

mounted to the main carousel. In a little less than one rotation of the filler, a bottle

is filled (in about 10s). Afterwards, the bottle gets directly into a so called capper

head, one station of the capper carousel, and back onto a single-lined conveyor. This

leads through a closely connected inspector (usually called Checkmat) that inspects

e.g. the filling height and rejects the bottle in case of being out of specification.

A set of machines that are connected as closely as EBI and Filler is called ’blocked’.

If machines are in one block, there are no buffers in between and the machines possess

direct information exchange.

Labeler

Like the Filler the Labeler is a constantly producing machine and consists of a

carousel. But this time labels are glued on the bottles. After this step again a

12 Chapter 2. Theoretical background

Checkmat controls among others the correct position of all labels.

Packer

The Packer reverses the action of the Unpacker and puts the now filled, closed and

labeled bottles into crates.

Palletizer

Crates containing full bottles are put on a pallet.

Auxiliary machines

In between the described main machines multiple smaller machines like an Uncapper

and multiple control stations like an inspector for crates containing empty bottles

may occur but are left aside in this overview since they show a low probability of

errors and thus are not taken into account in terms of root cause analysis.

2.1.3 Bottle-flow control

Usually neighbouring machines do not have a direct communication. The bottle flow

is controlled by so called back-up switches. In the case of bottle transport, these are

sensors in multi-lane transportation segments that give information if the full width

of the conveyor is used, what is equal to the information that there are buffered

bottles. In the case of pallet or crate transport there are also back-up switches with

a little different mechanism but the same task. For each machine, two main factors

have to be given to enable it to run:

• Enough bottles in front of the machine

• Sufficient free conveyor capacity on the downstream conveyor segment

These points are ensured by using the information of the back-up switches: Before

the machine there has to be at least one sensor ’active’ to secure enough buffered

material from upstream direction. This secures a controlled run-down in case of a

stoppage of the previous machine. On the other hand, at least one back-up switch

behind the machine has to be ’not active’ to secure enough space for product output.

2.2. Line data 13

For machines that can be speed-regulated, additionally one or two more back-up

switches are connected to the machine that decrease the machine speed by some

percent when ’active’/’not active’.

2.1.4 Error propagation

Due to the above described interaction between machines, errors can propagate

through a line. In Figure 2.5, one can see the error appearing as a downtime at the

Figure 2.5 Gantt representation of an examplary error propagation from Pal-
letizer in upstream direction and thus also to Filler(lead-machine)

Palletizer and propagating through the line via machines that change into machine-

state ’tailback’. As this example shows, the error propagates in spatial dimension

as well as in temporal dimension. The temporal sequence of error propagation is

highly dependent on the occupancy of the intermediate conveyors and thus underlies

strong fluctuations. Although the spatial error propagation path usually happens

via the bottle flow, other paths beside the main stream like empty-crate transport

are possible and occur in practice.

2.2 Line data

This section introduces different types of data that is available for most machines

in a standardized way. Advantages and disadvantages of every type are discussed.

Subsequently, the characteristics of machine-state data, as the data type that will be

used in this work, are presented. One property is the categorical nature of machine

states. Therefore, different ways of encoding categorical data into numerical style

and thus being processible by Machine Learning algorithms are shown.

14 Chapter 2. Theoretical background

2.2.1 Available signals for representing line behaviour

Filling and packaging lines differ strongly from each other. On the contrary, the

Syskron-services have to be designed to fit for as many lines as possible with the

least possible amount of configuration work since they are going to be installed in

hundreds of lines within the next few years. Thus, one of the main tasks for being

able to analyze line-dynamic problems is to find a generally valid data-basis. There

are some signals that are available at every machine. Within the digitalization, the

output of all signals has to be standardized over thousands of Krones’ machines.

Thus, improving the standardization is a ongoing process.

Machine state

Filling and bottling machines provide standardized machine-state, -mode and -

program according to weihenstephan standard [6]. The mentioned triple is converted

into one of the categories shown in Table 2.1 which usually are (although it is in-

accurate) also called machine-state. To use common wording we will also use the

term machine-state for the mentioned combination of state, mode and program in

the rest of this work.

machine state description

productive the machine produces
lack stopped as a result of missing material at input
tailback stopped as a result of missing space at output
own-fault stopped as a result of an internal error
planned-downtime stopped due to a scheduled task (changeover or cleaning)

Table 2.1 Machine states contained in the data

At the moment, machine-states are the most reliable signals from machines since

they are also needed to compute Key Performance Indicators (KPIs) which are very

important for current analysis.

Bottle counters

Knowing the current distribution of bottles in the line was the basis for the most

intuitive representation for a line’s dynamic in a bottling plant. If operating staff is

asked what they looked for to find the error causing machine for a line downtime,

2.2. Line data 15

they always answer to first look at the conveyors, searching for tailback or lack.

The problem is that the current distribution of bottles is currently not available in

the lines’ data. But by using bottle counters some information about the position

of bottles in the line can be extracted. Theoretically, every machine should have

an input counter and additionally a counter for good units and rejected units if

there is a rejection possibility in the machine. In practice, the quality of counters is

not as good as one would expect at the first view. The origin lies in the fact that

digitalization is still an ongoing progress in the bottling industry. Machines are not

intended to be data suppliers. Thus sensors are only installed if they are needed for

the functionality of the machine. Additional sensors that would be needed to know

the exact number of processed bottles are not installed due to financial reasons. A

washer for example just acts like a giant conveyor. Every bottle that is inside will

be cleaned but there is no information available if a certain bottle-slot is currently

used. Thus processed bottles can only be estimated very roughly.

Counters hold great potential of providing information about the bottle flow in the

line. Their disadvantages lie in insufficient data-quality and the missing availability

over all machines.

Machine speeds

Machine speeds provide information if the machine is producing and additionally

about phases of production with decreased speed that can result from conveyor

circumstances, operator interventions or equipment malfunctions. On the other

hand, there is no information if the stopped machine did this as a result of an own

fault or induced by the connected conveyor. This information could be used as

an addition to machine states but not as only input for detecting the root-cause

machine.

Backup switches

Like described in subsection 2.1.3, the line is controlled by using backup switches.

So their data contain secure information if a machine stop was self-induced (when

no backup switch was the cause).

The main drawback for these sensors is the missing standardization, mainly re-

garding the information about localization of each sensor. At the moment, this

would have to be done manually during data connection and thus is financially not

16 Chapter 2. Theoretical background

reasonable as standardized process.

2.2.2 Data characteristics

Machine states are used as Machine Learning data in this work. For every line

downtime (stop of the lead-machine), a multivariate time-series of machine states is

extracted from the data (compare Figure 2.5). In the first step, this results in an

array X of shape M × T per example where M describes the number of machines

and T the number of time-steps.

At this step, the machine states are described by strings like shown in Table 2.1.

Since Machine Learning algorithms need numeric input (compare [7]), the data has

to be encoded from e.g. ’productive’ and ’own-fault’ into numeric style.

In the following, different approaches for handling the categorical nature of data

is presented and subsequently data preprocessing into different shapes for different

kinds of subsequent Machine Learning algorithms is shown.

2.2.3 Encoding of categorical data

In contrast to numerical data, categorical variables represent types of data

which may be divided into groups called categories. Examples are sex,

nationality or, in our case, machine states. But Machine Learning algo-

rithms need numerical data as their input. The problem is: Humans do

Integer encoding

Each category is mapped to a natural num-

ber: Categories are ordered. Then category

i is mapped to i.

encint(x) : C → {0, 1, ..., C} ⊂ N (2.1)

e.g. the categorical variable ’age group’ con-

sists of ’junior’ and ’senior’:

encint(’junior’) = 0

encint(’senior’) = 1

not name their categories 1, 2, 3 but

with meaningful names like ’productive’

and ’equipment-failure’ for the example of

machine-states. These are string values and

have to be converted into numerical style.

In the following, different approaches for this

problem are presented and the two main solu-

tions, integer encoding and one-hot encoding

are explained in detail as they will be used

in this work.

Categorical data looks as follows: A

dataset Xcat of categorical data consists of

N sample-points x. Each sample point cor-

2.2. Line data 17

responds to one category of a set of categories C with cardinality C = |C|.
In general, there are many ways to encode categorical data and its success is

highly dependent on the data. To get an overview, we use the partitioning from [8]

and divide encoding mechanisms into three categories: Determined, algorithmic and

automatic. Determined describes mechanisms with a low amount of computational

complexity such as integer encoding or one-hot encoding.

One-hot encoding

Each category is mapped to a vector of

length C containing zeros everywhere be-

sides a single ’one’.

encone−hot(x) : C → {0, 1}C (2.2)

xone−hotj = δjxint (2.3)

e.g. the categorical variable ’age group’ con-

sist of ’junior’ and ’senior’:

encone−hot(’junior’) =

(
1

0

)

encone−hot(’senior’) =

(
0

1

)

Their advantage is to show negligible com-

putation time and being stable and repeat-

able (determined). Integer encoding (also

compare box ’Intger encoding’) is commonly

used for ’classic’ ML-algorithms like Random

Forest or Support Vector Machine. In con-

trast Neural Networks usually need categor-

ical input to be one-hot encoded (also com-

pare box ’One-hot encoding’).

The disadvantage comes for examples with

a great amount of categories for a variable.

In the field of natural language processing

(NLP), every word of a language has to be

represented by a vector. In common lan-

guages, a vocabulary includes at least some

thousand words. When using one-hot encod-

ing, this results in vectors with some thousand dimensions and due to the resulting

data-sparsity, the processing costs are disproportionately high [9].

Algorithmic techniques encode categorical variables into a better condensed space

than determined approaches by using better elaborated algorithms. In contrast to

automatic encodings, they do not use the training data and e.g. are not directly

included in neural network training.

Accordingly automatic techniques use training data and adapt the encoding di-

rectly to it. This approach is widely used in recent research. Especially embedding

mechanisms set up new standards. These are represented by neural network layers

that are fed with data in one-hot encoding (e.g. [10]). Their advantage lies in the

ability to bring context into data representation like minimal distances between

similar words in NLP [11]. Thus the used encoding process is a combination of

one-hot encoding and embedding while the embedding part is learned during the

18 Chapter 2. Theoretical background

neural network training. Combining multiple techniques is in general a very widely

used strategy [8].

2.2.4 Representing a filling line

For very simple filling and packaging lines, a simple list of machines in the order

they are passed e.g. by the bottle is sufficient. But usually the architecture of a

line is way more complex and consists of auxiliary flows like for empty pallets or

crates. The most precise mapping of the physical topology of a filling and packaging

line is by using a graph structure. An examplary graph is given in Figure 2.6 which

displays the graph corresponding to the typical filling line that can be found at a

brewery (compare subsection 2.1.2).

Figure 2.6 Graph for an exemplary line consisting of machines like described
in 2.1.2. 1: Depalletizer, 2: Unpacker, 3: Washer, 4: Empty
Bottle Inspektor, 5: Filler, 6: Labeler, 7: Packer, 8:Palletizer.
Connections between machines 1 and 8 as well as 2 and 7 describe
auxiliary flows while the other connections correspond to the main
stream.

2.3. Time-series classification (TSC) 19

A graph G consists of vertices V and edges E. In the case of a bottling

and packaging plant, the set of machines M = {m1, ...,mM} act as vertices

(V = M) and the conveyors as their connections act as edges (e.g. E =

{{m1,m2}, {m1,m8}, {m2,m3}, {m3,m4}, ...}). In the following, the terms vertex

and node will be used sysnonymously.

To mathematically describe a graph structure, usually an adjacency matrix

Aij =

1 if mi,mj connected

0 otherwise
(2.4)

with Aij describing the connection between node i and node j, Aij = 1 indicating a

connection and Aij = 0 unconnected machines, is used.

The mentioned approach is valid for undirected graphs. But the material flow in a

filling and packaging line is directed and thus we also need to cover this information

in the adjacency matrix:

A is extended to a M × M matrix containing Aij = 1 if the edge shows the

direction of the bottle flow and Aij = −1 if units are transported from machine j

to machine i.

Aij =

1 if material flows from mi to mj

−1 if material flows from mj to mi

0 otherwise

(2.5)

For the given example, this results in the adjacency matrix given in Table 2.2.

2.3 Time-series classification (TSC)

Time-series data is one of the main types of data for Machine Learning since all data

that shows some kind of ordering can be cast as a TSC-problem. Accordingly, the

variety of problems in TSC is large and include translation, text sentiment analysis,

cyber-security and medical assessment as well as many more [12]. Since classification

in general is a kind of supervised learning, in time-series classification one example

in the dataset is represented by a feature-label pair {x, y} with x = (x1, ..., xT)

consisting of T time-steps and the class label y ∈ C. Here C = [0, 1]C represents

20 Chapter 2. Theoretical background

Adjacency Matrix

D
ep

alletizer

U
n
p
acker

W
ash

er

E
m

p
ty

B
ottle

In
sp

ek
tor

F
iller

L
ab

eler

P
acker

P
alletizer

Depalletizer 0 1 0 0 0 0 0 1
Unpacker -1 0 1 0 0 0 1 0
Washer 0 -1 0 1 0 0 0 0
Empty Bottle Inspektor 0 0 -1 0 1 0 0 0
Filler 0 0 0 -1 0 1 0 0
Labeler 0 0 0 0 -1 0 1 0
Packer 0 -1 0 0 0 -1 0 1
Palletizer -1 0 0 0 0 0 -1 0

Table 2.2 Exemplary adjacency matrix for the graph given in Figure 2.6. Each
cell describes the connection from machine A on the left(y-axis) to-
wards machine B, given at the top(x-axis). If material flows from A
to B the entry is one, for the opposite direction minus one is inserted
and finally, a zero represents the case that no connection is given.

the space of class probabilities consisting of C different classes. The classifier is a

function

fclf : X → [0, 1]C (2.6)

from the space of possible input values X to the space of class membership proba-

bilities. The goal of model training is to optimize the model, that should be used as

fclf to predict ỹ in the best possible way:

fclf (x) ≈ ỹ (2.7)

Since ỹ represents class probabilities
∑
c∈C

ỹc = 1 has to hold. To get one concrete

prediction the class with the maximum predicted probability is chosen.

Since we work with multivariate time-series, every xt consists of multiple dimen-

2.3. Time-series classification (TSC) 21

sions D s.t. xt ∈ RD. Thus, in contrast to univariate time-series classification,

patterns have to be found not only in the temporal dimension of the data, but also

in the dependencies between D features of each time-step.

Since the problem is known

”as one of the most challenging problems in data mining”[12]

it took Deep Learning until 2015 to take root in this area. One reason for this

is the ”strong baseline” laid by a combination of Dynamic Time Warping (DTW)

distance in combination with a Nearest Neighbour classifier (kNN)[13], [14]. This

also is the reason to use Dynamic Time Warping and kNN as the baseline model

in this thesis. A further solution approach for multivariate time-series classification

(MTSC) is to develop a feature extraction (based on expert knowledge) and use a

standard classifier on these features. Due to the decreased complexity of the problem,

classifiers like Random Forest, Support Vector Machine and similar can be used. Like

all fields of Machine Learning, also in TSC nowadays usually Deep Neural Networks

like Convolutional Neural Networks are used [15]. Due to the graph structure of

each filling line, Graph Convolutional Neural Networks will be used in this work.

In the following, after introducing basic Machine Learning nomenclature, the

algorithmic approaches for

• Dynamic Time Warping

• manual feature extraction combined with Random Forest

• Graph Neural Networks

will be introduced.

2.3.1 Machine Learning nomenclature

In this work, the terms example as well as sample-point are used for describing

the input of the classifier x corresponding to one lead-machine stop. A classifier

consists of a Machine Learning model like DTW+kNN, Random Forest or Graph

Neural Network, or alternatively a rule-based algorithm. The classifier predicts or

classifies and thus produces its output, the class-probabilities, which is compared

(since classification is a Supervised Learning approach) to the ground-truth or label,

that was provided or labeled by an expert. Thus, our datasets always have to consist

of example-label pairs.

22 Chapter 2. Theoretical background

Before training a model, the available data is split into training- and test-set. For

Neural Network training often also a validation-set is extracted from the data. When

talking about model training, the above mentioned optimization of the model to

fulfill Equation 2.7 is meant and conducted using the training-set. In the end, we are

always interested in the model’s generalization ability. This means the ability of the

model to correctly predict unknown input which was not part of the training data.

Thus, we test the model’s performance using a test-set that consists of examples

that are unknown for the model. Additionally, especially during Neural Network

training, a validation-set is used to estimate the generalization ability during training,

after each training epoch. This is useful in cases when the model starts to overfit

during the training process. We talk about overfitting when the training accuracy

of the model rises but simultaneously the validation accuracy decreases. In this

phase of training the model learns patterns inside the training data that are too

specific and thus it’s generalization ability decreases although it still improves it’s

performance on the training set. Thus, often the model parametrization which

showed the highest validation accuracy during training, is assumed to have the best

generalization ability.

2.3.2 Dynamic Time Warping and k-Nearest Neighbours

Dynamic Time Warping and k -Nearest Neighbours (DTW+k -NN) is a simple but

in general powerful approach (compare [14]) for Time-Series Classification which

consists of two main parts:

Dynamic Time Warping (DTW) is an algorithm that computes a similarity measure

between single examples of data and k -Nearest Neighbours (k -NN) is the classifier

that uses this similarity measure.

DTW, as many other time-series specific algorithms, has its origin in speech

recognition but was early adapted to other inherently temporal problems [16]. The

original problem was about recognizing words, although they provide different timing

(speed of each syllable or sound in pronunciation) and accents, what results in non-

linearly expanded or contracted signals.

Thus the similarity between the mentioned signals can not be calculated by common

similarity measures like euclidean distance (compare Figure 2.7) which are not able to

temporally warp the signals while comparing them. Therefore, DTW was introduced

providing this special ability which also includes the capability of comparing time-

2.3. Time-series classification (TSC) 23

Figure 2.7 Two exemplary time-series (blue and red). The black lines show
which points would be compared by a basic similarity measure. Note
that this is not possible for time-series of different lengths. (image
similar to [17])

series of different lengths (compare Figure 2.8).

Taking a closer look at k -NN, the idea of the algorithm can be described like the

following: The simplest idea for classification is to compare the new example of an

unknown class with the sample-points that have a class label (training set) and use

the label of the most similar stored instance as the new prediction. That is the basic

idea behind a Nearest Neighbor classifier. The drawback of looking at only the most

similar training-example is a severe probability of falling for a misleading one. Thus,

usually a number k of most similar stored instances is taken into account. This leads

to a better generalization of the classifier and is called k-Nearest-Neighbours. In

this case the prediction is extracted e.g. by majority voting beyond the k ”nearest”

labels.

But how do these two elements collaborate? We assume a dataset with labeled

examples. When a new example arrives, it should be classified. This is done by

comparing the new example to all known (labeled) examples by computing the

DTW-similarity. Subsequently, the k most similar examples are known and their

24 Chapter 2. Theoretical background

Figure 2.8 Illustration of the assignment of points between two time series by
dynamic time warping. The black lines show which points are be
compared. Due to this assignment, similarity between time series
with similar shape but e.g. delay or warping of patterns can be
determined. Note that even time-sequences with different lengths
can be compared. (image similar to [17])

corresponding labels are extracted from the dataset. Finally, the prediction is

selected by a majority voting beyond the extracted labels. In other words: If three

of the five most similar examples carry the label ’Filler’, the Filler is predicted as

causer-machine.

For a detailed insight into dynamic time warping, we look at an example and

compare two time-sequences x = [x1, x2, ..., xm] and y = [y1, y2, ..., yn]. The distance

between xi and yj is written as d(i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The

algorithm fills a m× n-matrix D by using the recursive formula

D(i, j) = d(i, j) + min

D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

(2.8)

and the initial condition D(1, 1) = d(1, 1).

2.3. Time-series classification (TSC) 25

After finishing D, the best warping is extracted by starting at (m,n) and from

every position (i, j) progressing to one of (i−1, j), (i, j−1) or (i−1, j−1) depending

on which corresponding value of D is the lowest. In this way the ideal path through

the cost-matrix D is found and provides the ideal warping from x to y.

To further improve the performance of DTW, constraints regarding the path like

a maximum difference between i and j can be given:

”As we can see, relatively tight warping constraints produce more accurate

classifiers.”[18]

One big advantage of this approach is the ability to process data with different

lengths in time-dimension especially since Machine Learning algorithms often are

dependent on equally sized input.

As a major drawback, contrary to the usually hard to beat performance, the com-

bination of k-NN and DTW is computationally costly while classifying and therefore

not suitable for live computation or other fields that need fast inference. This is

based on the fact that Dynamic Time Warping itself is (compare [19]) computa-

tionally expensive although already heavily optimized and has to be calculated for

every combination of sample-point that should be classified, and every example in

the training set.

2.3.3 Manual feature extraction

If there is the possibility to extract a number of features from the multivariate

time-series that preserve most important information for the classification, a time-

series problem can be converted to a normal Machine Learning problem with one-

dimensional data as input. Thus the model no longer has to learn a function

RN×T×D → C but the way less complex function RF → C, where N denotes the

number of sample-points, T the number of time-steps, D the number of dimensions of

the time-series and F the number of features. The resulting problem can be solved

with every kind of classifier that has a 1d-input per example. This includes all

”classic” classifiers like Random Forest, Support Vector Machine and also Multilayer

Perceptrons.

26 Chapter 2. Theoretical background

2.3.4 Random Forest classifier

Random Forests are built up using an ensemble of Decision Trees that take 1d-input

like e.g. features from previous chapter as input. The output of the Random Forest

is usually given by a majority voting over all Trees.

Each Tree consists of a hierarchical structure of nodes and edges, each node

possesses two children. The final nodes are called leaves. Training a Decision Tree

means iteratively splitting the training-data into two branches, the children. The

goal of training is to set up a decision for each node such that(s.t.) each leave consists

of training samples of the same class. This is called purity and usually gini index G

(Equation 2.9)

G =
C∑
i=1

pi(1− pi) (2.9)

is used as purity measure where pi describes the ratio of class i members in the

current split.

But Decision Trees are known for one drawback: They are prone to overfitting.

Besides of using ensembles of Decision Trees to increase generalizability, bagging

is used. The original idea [20] was randomly selecting subsets of the dataset and

training each tree on only a subset of the data. This idea evolved to feature bagging.

This means that a random subset of features is selected for each split. In today’s

implementations of Random Forest classifiers, the usage of the introduced ideas can

be selected when initializing the classifier.

2.3.5 Neural Network approaches

Over the last decades of improvements in Neural Networks research, types of Neural

Network Layers heavily evolved. After a long time of research using Multilayer-

Perceptrons, also called Feedforward Artificial Neural Network (consisting of Fully

Connected Layers, compare Figure 2.9a), the introduction of Convolutions for Neu-

ral Networks [21] marked a breakthrough for e.g. processing images (compare Fig-

ure 2.9b). Their great advantages are e.g., the sharing of weights and thus their

ability to overcome the ”curse of dimensionality”, the recognition of patterns inde-

pendently to local shifts in the input, and processing of multidimensional input, like

images, under preservation of the original two-dimensional structure. But Convo-

2.3. Time-series classification (TSC) 27

lutional Neural Networks need input that is arranged on a lattice which implies a

constant number of neighbors. In contrast, many structures in nature belong to

non-Euclidean domains and can be represented as graphs ([22], [23], [24]). There-

fore, Graph Neural Networks [23] (compare Figure 2.9c) and many kinds of Graph

Convolutional Neural Networks (e.g. [25], [26]) were invented.

Figure 2.9 Three different types of layers. (a) fully connected layer. (b) convo-
lutional layer (2-dimensional). (c) graph convolutional layer. [27]

In this work, Graph Convolutional Neural Networks will be used to classify (com-

pare Equation 2.7) the root cause machine in a filling and packaging line.

Additionally, we want to cover requirements that originate from Multi-Task Learn-

ing and Transfer Learning. Therefore, instead of the common architecture that

combines Convolutional Layers for feature extraction and fully connected decision-

layers, that output class probabilities, we use Fully Convolutional architectures,

where class probabilities are output of the last Convolution Layer without additional

fully-connected layers on top. By using Graph Convolution layers, we can build up

a network that automatically adapts its output-size, the size of the class probability

vector, to the number of machines that appear in the input data.

Thus, one model can solve the root cause classification task for all available bottling

lines!

In this chapter Convolutional Layers and afterwards Graph Convolutional Layers,

in particular Relational Graph Convolutional Layers, will be introduced. Addition-

ally, a combination of Convolutional Layers and Graph Convolutional Layers, called

spatio-temporal Graph Convolutions that use 1D Convolutional Layers for temporal

and Graph Convolutional Layers for spatial pattern recognition, are explained.

This theory is later used to build up two types of Graph Convolution Networks: On

the one hand we built up a Relational Graph Convolution Neural Network that takes

28 Chapter 2. Theoretical background

manually preprocessed data (time-dimension is collapsed to size 1 by preprocessing)

and does spatial analysis to identify the root-cause machines. On the other hand we

use spatio-temporal Graph Convolutions to process the full multivariate time-series

data by performing temporal convolutions as well as spatial convolutions.

Both models will be built up according to the mentioned fully convolutional ar-

chitecture to meet the requirements given by Multi-Task Learning and Transfer

Learning (section 3.10).

Learning process of Neural Network for classification

A Neural Network consists of layers that apply some linear function l(θ,x) that

is dependent on the model parameters θ, on the input x and add a nonlinear

activation function σ on the result. By stacking e.g. L layers, a neural network

f = l1 ◦ l2 ◦ ... ◦ lL(θ,x) arises.

In this work, we use the activation functions tanh(x), sigmoid(x) = (1 + e−x)−1,

ReLU(x) = max(0, x) and softmax(xi) = exi∑C
c=1 e

xc
. Since softmax function is used

for converting activations into class probabilities, C is the number of output nodes

and simultaneously classes.

To train a Neural Network f, a loss function L has to be defined to use it as input

for an Optimizer that adapts the networks parameters by using backpropagation.

For deeper details into this sections topics the reader is referred to e.g. [28].

When using Neural Networks for classification tasks usually categorical cross-

entropy

L(x,y) = y log ŷ =
C∑
c=1

yc log ŷc (2.10)

is used as loss function. Here x denotes one example of the dataset, y the corre-

sponding label in one-hot notation and ŷ the model’s output which is a vector of

class probabilities. Finally, C represents the number of classes.

To smooth the trajectory of net parameters in their parameter space while opti-

mizing them, the examples of the dataset are divided into batches with size B. Each

batch consists of a set of examples X = x1, ...,xB and a set of corresponding labels

2.3. Time-series classification (TSC) 29

Y = y1, ...,yB. For each batch the loss

L(X,Y) =
B∑
b=1

C∑
c=1

yb,c log ŷb,c (2.11)

and corresponding backpropagation with parameter adaptions are computed.

Convolutional Layer

In this work, we mainly use convolutional layers in our Neural Networks. To introduce

these, we start with the standard definition for a discrete convolution

(x ? f)(t) =
K−1∑
s=0

f(s)x(t− s) (2.12)

where f ∈ RK denotes the convolution filter, ? the convolution operation and x ∈ RT

a 1d series of data with length T .

In Machine Learning, the filter consists of learnable parameters (weights), thus

written as W(l) for layer l (compare Equation 2.13), which are adapted by backprop-

agation. These learned filters are responsible for detecting the corresponding learned

patterns in the input h(0) or hidden dimension h(l). In this case the convolution

operation between weights and input nodes is represented by the term
∑

j h
(l)
j W

(l)
ij .

From now on, we use superscript (l) notation for the corresponding layer. Thus h
(l)
i

denotes the i-th neuron of layer l.

As usual in Neural Network implementation (compare [29]), a bias b is added to

the convolutions result. To enable the network to learn non-linear dependencies, an

activation function σ is applied to the sum of convolution result and bias.

h
(l+1)
i = σ

(∑
j∈Mi

W
(l)
ij h

(l)
j + b(l)

)
(2.13)

Additionally, the summation is conducted over the indices j, provided by Mi, which

thus is adaptable to different selections from input h. In other words, one can choose

which nodes’ information (from layer l) should be respected when computing h
(l+1)
i .

An example in which this is needed, is dilatation. This concept is introduced in

the following section. To introduce another common notation for layers, we rewrite

30 Chapter 2. Theoretical background

Equation 2.13 to

H(l+1) = σ(W(l) ?H(l) + b(l)). (2.14)

Equations 2.13 and 2.14 intend the same calculation specification.

Temporal Convolutional Layer

We adopt the gated temporal convolutional layer according to Wu et al. [30]. There-

fore Equation 2.12 is extended to a dilated convolution operation

x ? f(t) =
K−1∑
s=0

f(s)x(t− d× s) (2.15)

by using d as dilation factor. This results in the kernel only respecting every d-th

step in x. In this way the layers’ receptive field grows linearly by increasing d. When

increasing the dilatation factor from top layer towards the input like done in [30],

the receptive field of the network grows exponentially with layer depth what enables

effective handling of long-range dependencies in data.

Additionally, gating is introduced by using

H(l+1) = g(Ŵ
(l)
?H(l) + b̂)� σ(W(l) ?H(l) + b) (2.16)

where W, Ŵ, b and b̂ are model parameters, and � is the element-wise product.

Furthermore σ(·) is an activation function of the outputs, usually a hyperbolic

tangent, while g(·) is the sigmoid function which determines the ratio of information

passed to the next layer and thus represents the gating functionality (compare [30],

[31]). In this approach, the gating mechanism enables the model to decide if a

computed feature should pass into the next layer, based on the input that was also

used to compute the feature in question.

Graph Convolutional Layers

Convolution operation on graphs follows the same idea like ’classic’ CNNs (like

described in section 2.3.5) but mathematical formulation has to be adapted to the

number of neighbors per node being dynamic, since this changes the number of

sources which provide information for a given node.

2.3. Time-series classification (TSC) 31

Note that Mi in Equation 2.13 consists of the same number of elements for each

convolution operation. More intuitively spoken, the area of data that is processed

by a kernel will always have the same shape. In contrast, graph data, as it is not

distributed evenly on a grid like e.g. images, consist of a variable number of neighbors

for each node (compare Figure 2.9). But information of each neighbor should be

respected during the convolution operation on the current node.

Thus Mi from Equation 2.13 is replaced by the neighborhood of node i, denoted as

Ni. Furthermore, for indistinguishable edges there is no reasonable way to associate

different weights to them and thus the same weight W is used to propagate informa-

tion from all neighbors. In addition to the neighbors’ information, also information

of the current node is respected by adding a so-called self-loop with weight W0.

Introducing the described changes results in Equation 2.17.

h
(l+1)
i = σ

(∑
j∈Ni

W (l)h
(l)
j +W

(l)
0 h

(l)
i

)
(2.17)

For efficient implementation, Equation 2.17 is translated to Equation 2.18

H(l+1) = σ

(
D̃
− 1

2 ÃD̃
− 1

2H(l)W(l)

)
(2.18)

with H(l) denoting the input, W(l) the weight matrix and the term D̃
− 1

2 ÃD̃
− 1

2

representing the dependencies between nodes. This term is combined from Ã =

A+ IN with IN as N ×N identity matrix and A denoting the adjacency matrix, and

the diagonal matrix Dii =
∑

j Ãij [25]. In this notation Ã represents the adjacency

matrix of the undirected graph with added self-connections.

For the case that edges can be distinguished into different kinds (in contrast to

Equation 2.17), which means that now there are different relations between the nodes,

a weight can be learned for each kind of relation. For this case Schlichtkrull et al.

[26] introduce Equation 2.19 which extends Equation 2.17 by adding a summation

over the relations r ∈ R and an additional learnable weight ci,r that evaluates the

influence of each relation for the given node.

32 Chapter 2. Theoretical background

h
(l+1)
i = σ

∑
r∈R

∑
j∈N ri

1

ci,r
W (l)
r h

(l)
j +W

(l)
0 h

(l)
i

 (2.19)

Examples for different kinds of relations between nodes of a knowledge graph are

e.g. a person ’is citizen of’ some country, ’educated at’ some university or ’awarded’

some prize [26]. In this thesis we distinguish between error propagation by ’tailback’

and by ’lack’, respectively upstream and downstream propagation of the error.

Transferring the multiple kinds of relations into Equation 2.18 results in

H(l+1) = σ

(∑
r∈R

D̃
− 1

2 ÃrD̃
− 1

2H(l)W(l)
r

)
(2.20)

with R = {’upstream’, ’downstream’, ’self-loop’}. Thus each graph convolution layer

is a combination of three graph convolutions with a separate adjacency matrix.

Adownstream describes a directed graph equal to the directed graph of material flow

through the line. Aupstream accordingly corresponds to the same nodes but edges

point in the opposite direction. Finally Aself−loop is the identity matrix IN and

describes connections of each node to itself.

Blocks of Layers

In this work, we adopt the combination of spatial and temporal convolutions like

proposed in [30]. Their approach is combining a gated TCN and a GCN with residual

connection to one layer.

In the next step the mentioned layers are combined to blocks like shown in Fig-

ure 2.10. Each block consists of K layers. The outputs of all layers are concatenated

and two convolutional layers with ReLU activations are applied before the block

outputs the information. The last mentioned layers are depicted as ’Linear’ which

is an easily misleading nomenclature. Thus we go a little deeper into detail at this

point: Since concatenation of layer outputs is done in the dimension of channels, a

new number of channels, which is the product from number of layers and number of

channels before concatenation, exists. To reduce this amount of channels two convo-

lutions with 1x1-kernels are applied on the data. Effectively these 1x1 convolutions

act as if a fully connected (linear) layer was applied on the channels of one node at

2.4. Weak Supervision 33

one timestep. Thus the naming ’Linear’ occurs.

Figure 2.10 Visualization of one block of layers used in spatio-temporal GCN
[30]. ”Linear” layers describe a fully connected layer without acti-
vation function, the grey circles containing ”tanh”, ”σ” or ”ReLU”
represent activation functions while the green circle containing ”+”
depicts a concatenation operation and the green circle containing
”×” describes the element-wise product.

Usually layers are stacked inside a Neural Network. In this case a block of layers

takes the function that usually one layer fulfills. That means a number of blocks

will be stacked and after the final block some decision layer that converts the

information into class probabilities will be added to create a Neural Network for

solving classification tasks.

2.4 Weak Supervision

Machine Learning has achieved great results in solving various problems over the

last decades. Typically, a Deep Neural Network is trained on a huge amount of

training examples, each consisting of a tensor x containing the features, and the

corresponding ground truth label y. In classification, the label represents the class

in which the example belongs and the model f should learn the mapping y ≈ f(x)

like described in Equation 2.7.

34 Chapter 2. Theoretical background

Gathering a huge amount of feature representations is usually an automatized task

and thus does not need too much manpower. But creating a ground-truth label for

every example is a time-consuming and difficult job. Thus, it can be difficult to

attain strong supervision information for a Machine Learning problem with Strong

Supervision meaning that there is a correct (ground-truth) label, representing exactly

the desired model output, available for every training example.

Due to usually high labeling costs for strong supervision, especially in an industrial

context perfectly supervised datasets are seldomly available. But the corresponding

use-cases should be solved anyways. Thus, all data that carries some valuable

information has to be used. This field is, in contrast to strong supervision, called

Weak Supervision. A definition is:

”We define WSRL [weakly-supervised representation learning] as the collec-

tion of representation learning problem settings and algorithms that share

the same goals as supervised representation learning but can only access to

less supervised information than supervised representation learning”[32]

But how does weakly supervised data look and how can it be of use for Machine

Learning?

Figure 2.11 Strong vs. Weak Supervision with subcategories of Weak Supervi-
sion and approaches for Neural Network training with data corre-
sponding to one subcategory.

In the following, an overview over the four main types of Weak Supervision will

be given and approaches to utilize the corresponding data are provided [33]. Also, a

2.4. Weak Supervision 35

graphical overview provided in Figure 2.11.

Incomplete Supervision describes the subcategory when only a subset of training

examples is labeled. Formally the model f : X → Y has to be learned from a training

set X = {(x1, y1), ..., (xL, yL),xL+1, ...,xN} with L (strongly) labeled sample-points

and U = N−L unlabeled examples. Y denotes the space of predictions of the model.

At this point, two common techniques are used: On the one hand Active Learning

can be used to get ground-truth labels for the most informative unlabeled examples.

Afterwards, Supervised Learning is conducted on the built up labeled data. On

the other hand, Semi-Supervised Learning can be used to learn from labeled and

unlabeled data simultaneously. Thus a mix of supervised and unsupervised learning

has to be used. In this case, in addition to learning the classification, the unlabeled

data is used to better adapt the model to the underlying data distribution and thus

improve generalization of the model.

Inexact Supervision is the field, in which labels are not as detailed as needed for

the problem task but coarsely-grained. Formally the model f : X → Y has to be

learned from a training set X = {(x1, ỹ1), ..., (xN , ỹN)} with ỹi ∈ Ỹ and Ỹ an inexact

label space compared to Y . For example learning object localization from a dataset

that only has class labels without a local information. This is e.g. done by using

Multiple Instance Learning (MIL).

Inaccurate Supervision describes the setting that every sample-point has a label

describing the desired model-output but the labels are not always ground-truth.

Again f : X → Y has to be learned from a training set X = {(x1, y1), ..., (xN , yN)}
but a percentage of ys is erroneous. To solve this e.g. label cleaning can be used

where erroneous labels are detected and corrected.

Cross Domain Supervision describes the scenario that there are no or only few

labels in the original domain but supervision information can be sufficiently derived

from a related domain by using e.g. Multi-Task Learning or Transfer Learning.

In practice, the presented types of Weak Supervision often appear in a mixed

style. This work faces a combination of incomplete, inaccurate and cross-domain

supervision. In the following, solutions for these types are presented. Firstly, Active

36 Chapter 2. Theoretical background

Learning will be discussed as a tool to extract best possible information, given a

defined amount of labeling-effort by an expert. As additional label-source, algorith-

mically created inaccurate labels in combination with a label-cleaning approach is

presented. To combine classification knowledge over multiple plants, Multi-Task

Learning and Transfer Learning for the field of Cross Domain Supervision is intro-

duced.

2.4.1 Active Learning

While in many problems data that can be used as features for a Machine Learning

problem is available in sufficient amount, the corresponding labels are usually created

by an expert and therefore costly.

”How do we select instances from the underlying data to label, so as to

achieve the most effective training for a given level of effort?”[34]

The goal of Active Learning is to exploit a labeling expert’s (called oracle) work as

much as possible by requesting (querying) the labels for the most promising sample-

points. This can be either done for an existing set of examples (pool-based Active

Learning) or for every new incoming example (online Active Learning). Since the

further course of this work will use the mechanisms of pool-based Active Learning,

these will be elaborated in the following.

Figure 2.12 Loop describing one iteration of the active learning process [35]

The workflow includes the following steps (compare Figure 2.12): From a set of

2.4. Weak Supervision 37

unlabeled data U the most promising examples x̃ are extracted by the query strategy

Q(f,U,L). It usually also uses the set of labeled examples L and the model f (e.g.

when using the uncertainty of the model) as input.

Under the hood, an utility score representing how promising the gained information

is, is calculated for every unlabeled example. According to the score a number N

of sample-points {x1, ...,xN} = Ũ is extracted and sent to the oracle as a query.

The oracle returns the sample-points with corresponding labels ỹ = O(x̃) such that

new labeled pairs {(x̃1, ỹ1), ..., x̃N , ỹN)} = L̃ are created and thus expands the set

of labeled examples L̂ = L ∪ L̃. Now the model is retrained and the loop starts

again until the set of unlabeled examples is empty or e.g. the loss of the model is

below a threshold δ. For a pseudo-code description of pool-based Active Learning

also compare algorithm 1.

Algorithm 1 Pool-based Active Learning

Input: Classifier f trained on L, unlabeled examples U, labeled examples L
Output: f with L(f) < δ

while U 6= {} & L(f) > δ do
xs = Q (f, U, L)
ys = O(xs)
L, U = L ∪ {(x̃, ỹ)}, U \ x̃
retrain f on L
update L(f)

end while
return f

To get more into detail we have to discuss the question: How does the query

strategy decide? One can use different approaches to assign a utility score to a

sample-point:

Informativeness describes the ability of an example to reduce the uncertainty of

a model, e.g. uncertainty sampling (UC). In uncertainty sampling, the model’s

predicted class probabilities are used to derive the classifiers confidence for this

prediction. The example, for which the model is least confident, is assumed to carry

most information for improving the model. This sample-point is usually located

at a decision boundary of the classifier. Two approaches for converting the class

probability p which is a discrete distribution into an uncertainty score are:

38 Chapter 2. Theoretical background

1. Each example get assigned the uncertainty

S(p) = 1−max
c∈C

pc, (2.21)

that consists of the difference between the most probable class membership

and the highest possible probability to be in a certain class, which is one. As

in the previous chapters, C denotes the space of class-probabilities.

2. As a second option, the margin between highest class probability and the

second highest one is extracted as (un)certainty

S(p) = max
1
pc −max

2
pc (2.22)

where max
n

pc denotes the n-th largest element of p.

Note that a value of zero corresponds to highest uncertainty in Equation 2.22 while

it corresponds to being fully certain in Equation 2.21. The query strategy finally

returns the example that corresponds to the models maximum uncertainty.

Representativeness measures the quality of the representation of the dataset’s

underlying distribution D by the distribution of labeled sample-points like e.g. done

by Nearest neighbor criterion (NNC).

Basis of NNC is the nearest neighbor distance

N(L,U) =
∑
xu∈U

min
xl∈L
‖xl − xu‖2 (2.23)

where ‖·‖2 denotes the Euclidean norm. Since it sums up the Euclidean distance

of each example in the unlabeled pool to its nearest neighbor in the labeled pool,

the distance N describes the dissimilarity between the example distributions of the

labeled set L and the unlabeled set U.

This query strategy returns the unlabeled example that decreases the nearest neigh-

bor distance most by converting to the labeled pool. Expressed differently: The

example xu for which

N(L ∪ {xu},U \ {xu}) (2.24)

2.4. Weak Supervision 39

is minimal is chosen by the NNC.

After taking a closer look on different approaches for querying an example, we

have to care about the consequences of manipulating the training-data by Active

Learning.

By selecting the sample-points in a defined way, the query strategy, of course,

changes the training set for the model due to its characteristics. Thus the distribu-

tion of drawn examples D̃ deviates from the original distribution D. This can lead to

a poor generalization ability of the model since it did not have sufficient information

about certain regions of the sample space while training. This phenomenon is called

sampling bias and usually occurs when using exploit-heavy query strategies. The

term exploit-heavy stems from the dilemma of balancing exploration (expanding

your knowledge) versus exploitation (using your knowledge). The so called explo-

ration/exploitation dilemma is a common problem in Machine Learning and has

to be solved e.g. in Reinforcement Learning when the actor on the one hand has

to explore the available state- and action-space but on the other hand exploit its

gathered knowledge by choosing actions that are already known for their positive

reward.

Informativeness-based query strategies, for example, tend to query sample-points

with a distribution D̃ that can strongly deviate from the datasets distribution D. More

intuitively spoken, querying can lead to regions without examples in the example

space within the training set. Taking classification as an example: Areas of high

informativeness between certain classes can lead to a concentration of examples in

that region, and even to border-regions between other classes missing entirely in the

dataset.

To benefit from advantages of different query strategies, it is also possible to

combine multiple strategies. This allows to get over the problem of sampling bias and

also decreases the variance between training runs [36]. One example for combining

different query strategies is Dynamic Ensemble Active Learning (DEAL) [37]. DEAL

is an approach to combine multiple query strategies which are in the following called

base query strategies. Furthermore, it is able to weight the base query strategies

dynamically over the active learning process. In this way, a base strategy that works

well for small training sets can be exploited by DEAL for choosing the first examples,

while DEAL can later (with a bigger labeled set) decide to put its trust in another

40 Chapter 2. Theoretical background

base query strategy. This is based on the theory of multi-armed bandit (MAB)

problems and their extension to multi-armed bandit with expert advice [37]. In this

extension the problem converts from finding the arm of a slot machine that gives

best reward to detecting the expert that gives the best advice. In case of active

learning, the same approach is followed by using the query strategies analogously to

the experts and the sample-points instead of the arms. Thus, in every active learning

loop (compare Figure 2.12) DEAL chooses an example to query. Dependent on the

estimated accuracy increase of the model, a reward is returned to DEAL and DEAL

adapts its weights between the base query strategies accordingly. Thus, it evaluates

its strategy after every Active Learning loop along the Active Learning process and

continuously adapts which base query strategy is best to use at the moment. Since

explaining DEAL in detail would go beyond the scope of this work, the reader is

referred to [37] and [36] for in-depth explanation.

2.4.2 Transfer Learning

Transfer Learning aims to use knowledge of a source-problem for a target problem.

To be able to compare different Machine Learning problems and determine if a

knowledge transfer between them is possible two terms for exact description are

introduced: A Domain D and a task T ([38], [39]).

The Domain is composed of the feature space X (space of all possible feature

tensors) and the joint probability distribution P (X), where X describes the dataset.

Thus the domain D = {X , P (X)} describes properties of the model’s input. The

task is defined by the pair of label space Y and the predictive function f(.) that is

learned by the model. Assuming the output of the predictive function f being class

probabilities, it can be rewritten as P (y|x) and thus we get T = {Y , P (y|x)} with

x ∈ X and y ∈ Y denoting one sample-point or label respectively.

One possibility of transferring knowledge from source to target problem is Feature-

Representation Transfer. In the case of a Neural Network model the lower layers

are responsible for extracting features from input. Under the assumption that error

propagation over conveyor segments is similar over all filling and bottling lines,

transferability of low level feature extraction (e.g. detecting causality between the

stops of two neighbouring machines) can be expected. This can be conveniently used

in the case of feature extraction by Convolutional Layers in a Neural Network. In

this case, for the target model only the last layers, called decision layers, have to be

2.4. Weak Supervision 41

trained since the feature extracting layers already exist.

Transferring knowledge from the source (or base) problem to the target problem

works the better, the more general the transferred knowledge is. Yosinski et al.

mention this for the case of Feature-Representation Transfer:

”In transfer learning, we first train a base network on a base dataset and

task, and then we repurpose the learned features, or transfer them, to a

second target network to be trained on a target dataset and task. This

process will tend to work if the features are general, meaning suitable to

both base and target tasks, instead of specific to the base task.”[40]

In other words, Transfer Learning gets more promising if source and target problems

are as similar as possible:

DS ≈ DT (2.25)

TS ≈ TT (2.26)

In the extreme case, when DS = DT and TS = TT no Transfer Learning is needed

but one model can be generalized to solve source and target problem simultaneously.

2.4.3 Multi-Task Learning

Especially in competitive sports, a new kind of learning and teaching increasingly

introduced itself over the last decades named differential learning:

”[...] instead of following a direct linear path towards the target of a ‘to-be-

learned’ movement technique by means of numerous repetitions and correc-

tions, a differential approach is more beneficial because it perturbs learners

towards more functional movement patterns during practice.”[41]

A very similar and thus probably from human learning borrowed idea was also

pursued in Machine Learning. So Yu Zhang and Qiang Yang describe the analogue

effect in different words:

”Based on an assumption that all the tasks, or at least a subset of them,

are related, jointly learning multiple tasks is empirically and theoretically

found to lead to better performance than learning them independently.”[42]

So accuracy of a learned model can be improved by multi-task learning which means,

from another point of view, that the set of existing labeled sample-points is exploited

more efficiently by adding supplementary learning tasks.

42 Chapter 2. Theoretical background

Multi-task learning

Multi-task learning aims to improve the

learning of a model for Ti by using the

knowledge from m related tasks {Ti}mi=1.

In supervised multi-task learning (MTSL)

each task is a supervised learning task

associated with a training dataset Di =

{(xij , yij)}
ni
j=1 consisting of ni examples.

In the present work we will take

a deeper look into Multi-Task Super-

vised Learning (MTSL) which can be

grouped into three kinds of related-

ness between the tasks: feature-based,

parameter-based, and instance-based mod-

els. Instance based relatedness uses

data instances from different tasks in a

weighted manner to construct a learner

for each task. Parameter-based MTSL models see the relatedness be-

tween tasks in the regularization or prior on model parameters while

feature-based models assume that tasks can share feature-representations.

Feature-based MTSL

The feature extraction layers of a Neural

Network are shared among the models of

each task. Thus the feature representation

is shared and only the subsequent decision

layers are learned exclusively on the tasks

data. graphic from [43]

In the current problem, multiple tasks

are represented by the different lines

that should be analyzed. Thus, the

relation between the tasks lies in the

patterns that machine states of con-

nected machines show during error

propagation which leads to the use

of a feature-based approach. Since

the combination of Multi-Task Learn-

ing in weakly supervised environments

will be used in this work, it is also in-

teresting to mention that Multi-Task

Learning is shown to decrease the

generalization error in weakly super-

vised environments by Ratner et al.

[44].

2.5. Related work 43

2.5 Related work

The starting point of the work around this thesis is the so-called ’Avalanche Algo-

rithm’ that is used at Syskron GmbH since many years to detect the root-cause

machine. This is a rule based system that is based on expert knowledge and takes

machine states as input. It is dependent on a time-consuming manual configuration

and thus roll-out costs per filling line are high. Since Syskrons Share2Act platform

should be provided for around 100 Krones lines per year, one of the biggest challenges

is to decrease the roll-out costs heavily.

Voigt [2], Flad [45] and Kather [46] describe model based approaches that show

accuracies in a wide range between 40% and 88.7% depending on the plant and

the model. Multiple evaluations are based on very few examples and thus limited

informative. In 2014, Voigt et al. [47] published a paper proposing model based

analysis with a mean accuracy of 95.4% over two plants and this time using 460

test examples for evaluation. One advantage of this model is the possibility to also

cover secondary object flows like crates and pallets besides the primary flow. The

high accuracies were achieved by heavily adapting the proposed model to the given

plant. In terms of roll-out costs, the model based approach is also labor-intensive

and expensive since every line that should be analyzed has to be modeled by an

expert.

In addition to the model-based approach, Voigt [2] used a model-free approach

(Multilayer Perceptron) for his PhD-thesis in 2004. As input, data of all machines

in the time window inside 1000s before the lead-machine stop with a sampling rate

of 5Hz was used. This data contained machine states reduced to productive, lack,

tailback and own-fault. In his approach, firstly the machine state of the lead-machine

was analyzed. If the lead-machine showed an own-fault it was returned as the error

causer. For the cases lack or tailback two independent Multilayer Perceptrons were

trained. Thus error-propagation via auxiliary flows cannot be resolved. Overall

only 177 training examples were available. The algorithm could be trained to a

high accuracy (98,3% to 100%). But due to missing information about evaluation

mechanisms these results are difficult to compare to others.

3 Methods

This chapter leads through the methods that are used in the present work.

First of all, a new approach to unsupervisedly extract characteristic densities for

temporal error propagations between pairs of machines is introduced. This informa-

tion will subsequently be used for automatically configuring rule based algorithms

for root cause detection like Syskrons currently productive ”Avalanche-algorithm”.

As next step, an improved rule based algorithm, processing the filling line as a graph-

structure and using the extracted characteristic temporal densities is proposed.

To be able to process the data by using Machine Learning algorithms on reasonably

sized samples, different approaches for compressing the data are presented. On the

one hand, the time-dimension can by collapsed by manual feature extraction, on the

other hand, it can be downsampled.

As baseline approach for the time-series classification task at hand, a combination

of Dynamic Time Warping and k-Nearest Neighbours is introduced. Furthermore,

usage of Random Forest Classifier and the newly introduced Relational Graph Convo-

lutional Neural Network, which both are trained by using data that is preprocessed

by manual feature extraction, is explained. Finally, the newly developed spatio-

temporal Relational Graph Convolutional Neural Network approach that is based on

the Graph WaveNet [30] architecture and processes the temporal error propagation

as well as the spatial one, is proposed.

To train the Machine Learning algorithms, a supervised dataset is needed. But

expert labels, and consequently supervised data, is expensive and thus sparse. So,

additionally, methods to effectively use the available supervised data have to be used.

We use Weak Supervision, which includes Algorithmic Labeling, Active Learning,

Multi-Task Learning and Transfer Learning for efficiently converting labeling effort

into capable models. Thereby, Algorithmic Labeling means using an algorithm,

like Random Forest, to create a huge amount of inaccurate labels (compare 2.11).

Active Learning decreases the amount of needed supervised training examples while

Multi-Task Learning and Transfer Learning, in combination with the introduced

45

46 Chapter 3. Methods

fully convolutional network architectures, enable us to find the error causer at any

filling and packaging line by using one single model.

3.1 Probabilistic formulation of temporal error

propagation

Due to better explainability and simplicity compared to Machine Learning models,

rule-based systems are still an appreciated solution for automatized analysis. Their

great drawback usually is the need for an expert configuration which is expensive.

In this chapter a solution is proposed that is able to extract the temporal error

propagation behaviour of a line from 1-2 weeks of production data and thus only needs

configuration regarding the machines and their connections. Since this information

has to be available in any system that analyzes a filling and packaging line, the

algorithm-specific configuration effort is very low.

3.1.1 Extracting the temporal characteristics of error

propagation from data

Let’s assume two machines mi and mj that are directly connected by e.g. a bottle

conveyor. The goal now is to extract the temporal coupling of the machines in case

of one stopping the other. E.g.: mi stops and thus does not bring any more bottles

onto the conveyor. Consequently mj only can continue working as long as there are

bottles left on the conveyor using the conveyors buffer nature. The given example

is depicted as gantt chart in Figure 3.1. This figure additionally visualizes the used

variables τ and t for temporal problem description.

For the described example, the duration between stoppages of mi and mj is given

by

τ stopij = Nij/vcur,j (3.1)

where the number of bottles on the conveyor connecting mi and mj is denoted as

Nij while vcur,j represents the current speed of mj.

The contrary effect in the line is restarting the machines. In this case mi has to

start producing first to provide bottles on the conveyor which have to be transported

3.1. Probabilistic formulation of temporal error propagation 47

Figure 3.1 time delay between starts and stops of two machines that are con-
nected by a conveyor

to mj to be processed. We call this time delay τ startij .

But both delays are not constant over multiple occurrences for many reasons.

The responsible operator is always an influence. E.g. he often has to accept a

message from the machine before the restart. Besides of the operator, machines

can be ’blocked’ with another machine what means that they have a direct signal

exchange and thus e.g. one of the two machines of our example has to wait for some

signal of a third machine. Additionally the state of the conveyor before the error

propagation heavily affects the temporal delay. For the case of machines stopping

the buffer-nature of the conveyor was mentioned. Depending on the filling state

(linearly dependent on number of bottles Nij) of this buffer, the subsequent machine

has different amounts of bottles left to process which is directly proportional to the

remaining productive time.

Thus we interprete every measured τ as a random event of the random variable

τ. For better readability let σ be either ’start’ or ’stop’. In the following e.g. τσ is

used in formulations that are valid for the stopping as well as the starting process.

To extract the probability distribution pτ(τ) over τ start and τ stop for each connection

(machine i to machine j) in the line, that means extracting each pτσij(τ) the following

steps are conducted: Gather data of 10 productive days of a line and extract random

events τσij. Build up a discrete probability distribution like shown in Figure 3.2.

Approximate the discrete distribution by a continuous probability density function

pτσij(τ).

Since the stochastic processes corresponding to the random variable τ show sta-

tionary and independent influences the underlying process is a Levy-process. The

inverse gamma function as a member of the family of Levy-distributions proved

empirically to provide the best fit results.

48 Chapter 3. Methods

Figure 3.2 Histogram of τstart over 716 events. Blue line shows fitted inverse
gamma function and black dashed line marks the characteristic
restart duration

The inverse gamma distribution is defined as

f(x, α, β) =
βα

Γ(α)
x−α−1 e(−

β
x) (3.2)

with corresponding cumulative distribution function

F (x;α, β) =
Γ
(
α, β

x

)
Γ(α)

= Q

(
α,
β

x

)
(3.3)

where Γ(α, x) is the upper incomplete gamma function

Γ(α, x) =

∫ ∞
x

tα−1 e−t dt, (3.4)

Γ(α) is the gamma function

Γ(α) =

∫ ∞
−∞

tα−1 e−t dt (3.5)

3.1. Probabilistic formulation of temporal error propagation 49

and Q is the regularized gamma function

Q (α, x) =
Γ (α, x)

Γ(α)
. (3.6)

By approximating the given discrete density function by the inverse gamma func-

tion we get

f(x, ασij, β
σ
ij) ≈ pτσij(τ) (3.7)

like exemplary shown in Figure 3.3 and can directly derive

0 100 200 300 400 500 600 700 800

t[s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

p
ro

b
ab

il
it

y

fstop

fstart

Figure 3.3 continuous probability density function for temporal delay between
causally connected stops and restarts of two neighboring machines.
τ stop should be larger than τ start as a result of the conveyors buffer
mechanism.

Pτσij
(τ ≤ x) = F (x, ασij, β

σ
ij) (3.8)

(compare Figure 3.4). For better readability

P σ
ij := Pτσij

(3.9)

50 Chapter 3. Methods

0 100 200 300 400 500 600 700 800

t[s]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

F stop

F start

Figure 3.4 cumulated probability density function for temporal delay between
causally connected stops and restarts of two neighbouring machines

will be used further on.

3.1.2 Causality between stoppages

Using the assumption that f startij and f stopij describe characteristics of causally con-

nected stoppages, we can compute a causality score

Cij(S) : T ,S → R+ (3.10)

describing if machine i has caused a certain victim stoppage Sv of machine j.

T describes the space of all possible time-series Ti of machine states at machine i

and S the space of stoppages containing start-time and end-time information. For

every t ∈ Ti, we compute the probability s that

1. a stop of mi before t caused mj to stop

τ stopij > tstopj − t (3.11)

3.1. Probabilistic formulation of temporal error propagation 51

2. a restart of mi after t made mj restart

τ startij < tstartj − t (3.12)

Compare Figure 3.1 for visualization of temporal conditions. The probability of

an error at mi at time t is equal to the probability that both listed dependencies are

fulfilled.

Thus

sij(t, Sv) = P stop
ij (tstopj − t < τ stop)× P start

ij (τ start < tstartj − t)
=
(
1− P stop

ij (τ stop < tstopj − t)
)
× P start

ij (τ start < tstartj − t)
=
(
1− F (tstopj − t, αstopij , βstopij)

)
× F (tstartj − t, αstartij , βstartij) (3.13)

like depicted in Figure 3.5. The probability s can also be expressed using fσij as

follows:

sij(t, Sv) =

(
1−

∫ tstopj −t

−∞
f stopij (t′) dt′

)
×
∫ tstartj −t

−∞
f startij (t′) dt′ (3.14)

Integrating sij(t, S) over the duration of a potentially causing stoppage Sc at mi,

the causality score c for this stoppage (Sc) is

cij(Sc, Sv) =

∫
dur(Sc)

sij(t, Sv) dt. (3.15)

This score has the potentially causing interval Sc and the victim interval Sv as input.

By summing up sij(t, S) over all periods where mi is in an self-induced error E ∈ S
the causality score for mi being the causer of the stop S at mj can be finally found.

Cij(S) =
∑
E

sij(t, S) dt (3.16)

52 Chapter 3. Methods

−800 −600 −400 −200 0 200 400

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

(
1− F (tstopj − t)

)

F (tstartj − t)

−800 −600 −400 −200 0 200 400

t[s]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

sij(t, Sv)

Figure 3.5 upper: factors of causality score cij(t, S); lower: causality score
cij(t, S). Both are computed for a stoppage S of mj from 0s to 200s

3.2. Data handling 53

3.1.3 Long range causality

The result of the previous section result Equation 3.15 is derived from fσij. But so

far fσij is fitted to data that should be gathered under the assumption of causality

between the stop/start events and thus can only be extracted for direct neighbors.

But under this constraint also the causality of stops can only be computed for

directly connected machines. To avoid this limitation and also cover higher order

connections, fσij can be built up by convolution of all fσi′j′ with |i′− j′| = 1 along the

direct connection between machines i and j:

By using the convolution formula

(f ∗ g)(t) :=

∫ ∞
−∞

f(τ)g(t− τ) dτ (3.17)

the distributions for computing the causing score for e.g. two machines i and j which

are chosen s.t. j > i, can be expressed by

fσij = (fσi,i+1 ∗ ... ∗ fσj−1,j). (3.18)

3.2 Data handling

This section will lead through the data preprocessing and display all different ap-

proaches of preprocessing that are used in this thesis. Additionally, data-preparation

steps for the different algorithms are explained.

First of all, we have to define the time-window that is cut from the full time-series

of a plant for a given lead-machine stoppage. It should contain all information

for analyzing the corresponding error propagation. After preprocessing, the data

of this time-window will be used as input for an algorithm. For most customers

the error propagation usually does not take more than 10 minutes from causer-

machine to lead-machine. For larger filling lines, the error propagation can last up

to 15 minutes. Thus we extract data in the time-window starting 10 minutes or 15

minutes respectively before the lead-machine stoppage and ending with the end of

the lead-machine stoppage. Since lead-machine stoppages have a variable length,

also the time-windows do have variable lengths and can only be used in this shape

by algorithms that are able to handle data of dynamic length in time-dimension.

And that is usually not the case. The usual approach for this problem is to cut time-

54 Chapter 3. Methods

windows of constant lengths. By cutting the time-windows 10s after the beginning

of the lead-machine stoppage (Figure 3.6 a) we initially also followed this approach.

This leads to fixed time-lengths and provides the highly important information about

the machine state during the lead-machine’s stop. Although the mentioned approach

fulfills the given requirements, valuable information during the lead-machine stop is

lost. We thus also use the second option of extracting time-windows of data from

usually 10 minutes before the filler stop until its end (Figure 3.6 b).

Figure 3.6 Visualization of time-window of data that is cut per lead-machine
downtime. Time in minutes is given on the x-axis, machines sorted
along the bottle stream are aligned on the y-axis. The downtime in
question is marked by ’downtime’ in the chart. Cut time-window
usually lasts from 10 minutes before the lead-machine (Filler) stop
until a) 10s after the lead-machine stop (static window-size) or b)
until the downtime ends (dynamic window size).

If an algorithm is able to process data of dynamic temporal length this can be

used as input. For other algorithms like e.g. Neural Networks that use convolutions

for the temporal dimension, we introduce a different approach by converting the full

time-window by downsampling the dynamic temporal length to a fixed number of

time-steps. This approach will be described in detail in subsection 3.2.1.

After having defined the temporal extraction of data-snippets for each lead-machine

downtime, now the different kinds of preprocessing are presented.

First of all, the data arrives in a format that is written ’on-change’. Thus it

only possesses entries when a state-change event took place. For every change,

information about the new machine-state and the time of the change is provided. We

can directly use this kind of data for the rule-based algorithms. But ML-algorithms

need a different kind of input.

3.2. Data handling 55

For ML models either a set of features or time-series data with fixed frequency

is needed as input. We achieve that by, first of all, resampling the given data to

a fixed frequency (we use 1 Hz) and successively encode the machine states into

one-hot representation (compare subsection 2.2.3). In an example, this looks like

the following: Let an exemplary machine be in state ’productive’ from second 0. At

second 3 it stops as a result of an own-fault. We want to look at the data from

second 0 to second 8. After resampling to 1 Hz this looks like Table 3.1.

time machine-state
1 ’productive’
2 ’productive’
3 ’productive’
4 ’own-fault’
5 ’own-fault’
6 ’own-fault’
7 ’own-fault’
8 ’own-fault’

Table 3.1 exemplary machine data in resampled style

By converting the given example to one-hot style we get an array of (T ×S) where

T describes the number of timesteps and S describes the number of machine-states

(compare Table 3.2).

time ’productive’ ’lack’ ’tailback’ ’own-fault’ ’planned-downtime’
1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 0 0 0 1 0
5 0 0 0 1 0
6 0 0 0 1 0
7 0 0 0 1 0
8 0 0 0 1 0

Table 3.2 exemplary machine data in one-hot style

To cover the entire line the data of machines has to be stacked. Thus we finally

get data with shape (T ×M × S), where M is the number of machines, for every

lead-machine stoppage.

56 Chapter 3. Methods

For the given example (Figure 3.6 a), 610 seconds of data for a line consisting of

8 machines, the size of one sample-point is (610× 8× 5) and thus a large number

of timesteps. To decrease the size and therefore the complexity of the data and

convert it into a less sparse format, we introduce two approaches: Temporal Data

Downsampling and Manual Feature extraction.

3.2.1 Temporal data downsampling

To reduce the amount of time-steps an algorithm has to process, downsampling is

used on the temporal data dimension. This is done by cutting the time-dimension

of one-hot encoded data into equally-sized, non-overlapping slices of length ∆slice

and computing the mean value for each slice along the temporal dimension. Thus,

downsampling the data of a machine that was productive for 3s and in own-fault for

5s (example like above) in 4s slices looks as following:

xm =

1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0

→

0.75 0

0 0

0 0

0.25 1

0 0

 (3.19)

For real data choosing e.g. ∆slice = 60s means that the time-window before lead-

machine stop (usually 600s) is downsampled into 10 slices. The resulting data, thus,

consists of these 10 slices plus those that describe the lead-machines stoppage. In

case of a 5 min stop this results in an overall number of 15 time-steps after Temporal

Data Downsampling.

A second approach is to separate the given time-series into a fixed amount of

slices. Then, the duration of one slice is variable but the resulting preprocessed

data is of fixed size, independent of the incoming number of temporal steps. This

is an important property for most ML algorithms and particularly Neural Network

architectures.

3.2. Data handling 57

3.2.2 Manual feature extraction

This approach fully covers the time dependencies in error propagation and thus the

time dimension is collapsed.

We again use one-hot data and thus the given data is of shape N × T ×M × S
where N denotes the number of sample-points, T the number of time-steps, M the

number of machines and S the number of machine-states.

After extracting the features, the shape will be reduced to N ×M × S. Thus, the

time dimension with e.g. length 300 is reduced to 1 which yields a reduction of

data-size and -complexity by factor 300.

To achieve this, the temporal behavior of error propagation from subsection 3.1.3

is used. Based on the extracted probability density functions characteristic propa-

gation times between start/stop of two connected mi and mj are set as Tstart
ij and

Tstop
ij . These characteristic values are set from Syskron-operations staff by using

automatically created suggestions like Figure 3.2 that are derived from the fitted

density functions.

Figure 3.7 Visualization of manually defined time-regions of interest for the
downtime in question. A temporal ratio is computed for each state
at a machine inside the given time-window as feature vector.

By using Equation 3.18, the characteristic stop and start durations Tstart
ij and

Tstop
ij between mi and mj can be used to calculate Tstart

iv and Tstop
iv , the characteristic

temporal delays for mi causing to stop or restart the lead-machine (also called victim

machine) mv. Based on this, time windows wi = [wstarti , wendi] of interest can be

derived for every machine mi in the line with respect to the current victim downtime

Sv:

58 Chapter 3. Methods

wstarti = Sstartv − Tstart
iv (3.20)

wstopi = Sstopv − Tstop
iv (3.21)

Afterwards, for each example, the temporal ratio r per machine and state is

computed from data inside the given time-window:

r(mi, s) =

∑
wi

Xm,s∑
wi

1
(3.22)

3.3 Rule based analysis approaches

The goal of root cause analysis is finding the causer for the victim machines (usually

lead-machines) stop. A good starting point is using an experts approach when tracing

back an error during production. Starting at the victim machine while it is stopped,

he/she will study the line for lack and tailback on the conveyors and machines

showing own-faults. Usually, the error propagation path is followed backwards step

by step through machines and conveyors by deciding firstly, if the causer was found

and if not, where the error, that caused the currently analyzed machine to stop,

came from.

This basic idea is denoted in algorithm 2 and consists of many steps that need an

experts experience to make it work properly. A few examples:

• The error does not only propagate locally but also temporally (compare

subsection 2.1.4 for greater detail). Thus extracting the stoppage-causing

time-interval at a machine is not trivial! In fact the temporal aspect of error

propagation has considerably higher volatility over different line stoppages.

Thus powerful algorithmic solutions have to be found to reach the accuracy of

an expert’s view in this task.

• What is about multiple stops at one machine? Which of them contributed

to the stoppage of the connected machine? An expert intuitively groups

non-productive time-spans to erroneous phases that act like one interval with

insufficient machine performance.

3.3. Rule based analysis approaches 59

Algorithm 2 Basic error tracing

Input: sample-point x, adjacency matrix A,
victim machine mv, stoppage of victim machine downtime Sv

Output: class probability distribution c

m (machine under investigation) = lead-machine
S (stoppage at m) = Sv
while m is not None do

sm = x(m, t) . machine state of m
if sm 6= ’own-fault’ then

m = A(m, sm) . find next machine to look at
extract Sm (causer of S) . extract stoppage of m
S = Sm

else
c(m) = 1 . causer was found
m = None

end if
end while

To translate this into an algorithm we use the results of section 3.1 and take a

closer look into finding the stoppages of mi that caused a certain stoppage Smj at

mj. This step has to be repeatedly done for every station on the trace to find the

error source.

Like denoted in algorithm 3, when ’sitting’ on the stoppage interval Smj and

searching for its source at mi, firstly all stoppages of mi have to be extracted from

the given data. Now we use Equation 3.15 to assign a causality score cij(S, Smj) to

every stoppage S in the set of stoppages at mi (Si) and sort them by this score. In

that way, we can now split up the caused stoppage duration beyond the stoppages

of mi like described in 3. Since conveyors are built with buffering capability, the

duration of an error that propagates from one machine to another, should always

shrink. Thus, we maximally assign the own dur(S) as the caused-stoppage-duration

δc to any causing stoppage.

In this way, the caused nonproductive time is spread beyond stoppages due to the

computed causality score and consequently scenarios with more than only one root

cause can be resolved.

60 Chapter 3. Methods

Algorithm 3 Temporal tracing

Input: sample-point X, machine under investigation mi, last stoppage on trace Smj
Output: Set of stoppages that caused Smj

extract Si . set of stoppages of mi

compute causing score cij(S, Smj) for every S ∈ Si
sort Si by causing score
set victim-stop-duration δv = dur(Smj)
causing-intervals C = [] . Initialize list of found causing intervals
for S in Si do

set caused duration δc = min(δv, dur(S))
δv = max(δv − δc, 0)
if δc > 0 then

append (S, δc) to C
end if

end for
return C

3.4 General methods for Machine Learning

approaches

In this section, the methodical approaches that are common beyond all kinds of used

Machine Learning are discussed. This starts with filtering the dataset. Contrary to

the above mentioned rule-base approach that is also able to classify areas between

two machines, the ML-models will be trained to select the causer from the set

of machines that provide data. Additionally, stoppages that are labeled as ’else’,

implying that the causer was not within the available classes or the expert was not

able to detect the root cause himself, are filtered.

3.5 Dynamic Time Warping and k-Nearest Neighbors

Since DTW has the ability to compare Time Series data of different lengths, we

could use ”raw” one-hot encoded data in this approach. But the greatest drawback

of DTW are high computation times. To decrease these we reduce complexity of

the input data by using Temporal Data Downsampling according to subsection 3.2.1

with fixed downsampling window-sizes ∆slice. Thus, time-series data is decreased in

size by a factor of ∆slice/1s since original data is sampled in seconds. But examples

still differ in their temporal length. For this, the capability of computing similarities

3.6. Random Forest 61

between time-series of different lengths is utilized.

We use training- and test-sets with amounts of labels like given in Table 3.3 for

each customer.

training examples # test examples
customer a 439 100
customer b 439 100
customer h 328 100
customer w 102 100

Table 3.3 Number of training- and test-examples for DTW and k-NN training

3.6 Random Forest

As one of the simpler classification approaches, Random Forest can also be trained

on significantly smaller datasets than Neural Networks. Thus we train it using the

experts labels.

training examples # test examples
customer a 424 80
customer b 525 80
customer h 80 80
customer w 112 80

Table 3.4 Number of training- and test-examples for Random Forest training

The minimal amount of labeled examples per customer is 160. To leave a sufficient

amount of examples in the training set for every customer we choose 80 as size for

the test-set per customer. This results in sizes for test- and train-set like denoted in

Table 3.4.

As model input, we use data preprocessed by manual feature extraction (compare

subsection 3.2.2). To cover the problem complexity, the amount of used trees has to

be increased to 500 and the maximal tree depth is set to 7.

3.7 Algorithmic labeling

Since manually labeled, high-quality labels are very rare, training of complex Machine

Learning models like large Neural Networks tends to heavy overfitting with these

62 Chapter 3. Methods

labels. A significantly larger amount of labeled data is likely to overcome this

problem. Thus we are using algorithmic labeling in this work.

Figure 3.8 Algorithmic labeling pipeline: Low amount (starting from ≈ 100) of
manually created labels is used to train a Random Forest classifier.
This afterwards provides predictions for the remaining unlabeled
examples which are used as algorithmically created labels. The re-
sulting, significantly larger dataset enables improved Neural Network
training.

Like depicted in Figure 3.8, a Random Forest model is trained on manually labeled

data. Therefore the available expert labels are combined with their corresponding

examples to form the so-called manually labeled dataset. This set is split in subsets

A and B. In the first step, these two sets are used as train- and test-set for Random

Forest training. At this step, we can use the Random Forest model to algorithmically

create labels for the examples that do not possess a manually created label.

3.8. Active Learning 63

The combination of algorithmically created labels and their corresponding examples

is the desired, large dataset. This will be used for Neural Network training.

For a clean evaluation of the GCNs we also need a validation-set in addition to the

test-set. It is crucial that the test set consists of examples which never contributed

information to any step inside the training pipeline. Since set A was used to train

the Random Forest which created the training labels for the Neural Network, this

set cannot be used as test-set for evaluation of GCN-training. Contrary, set B was

only used to evaluate the performance of the trained Random Forest model and thus

its contained information was only used for evaluation and never for training. Thus

we use set B, the test-set corresponding to Random Forest training, as test-set for

analyzing the GCN performance. During training the GCN, we use the validation-set

for estimating the models generalization ability. For this task, also label-example

pairs that already contributed their information during the training pipeline can be

used. Thus we use set A as validation-set for Neural Network training.

Since Random Forest training is possible with a minimum amount of 100 to

200 examples, heavily depending on the complexity of the filling line, this approach

enables us to create large, algorithmically created datasets and thus also train Neural

Networks after collecting only a small amount of manually labeled examples.

We expect this approach to provide significantly higher accuracies than rule-based

algorithms but lower accuracies than a human expert.

3.8 Active Learning

We want to use Active Learning to achieve the best information content out of a

given amount of time/effort of an expert on site to train a model on the elaborated

information. The usual approach is pool-based active learning. Following this

approach would lead to maintaining a large pool of unlabeled data that is constantly

updated with every stop of the lead-machine. From time to time an expert would

decide to label some sample-points that are selected from the huge pool for him.

But how does the expert decide which label to give? He can take the data as his

information for the error. But then the big advantage of an expert on site, who

is knowing what really happened beyond data inaccuracies etc., is lost. Thus, our

oracle (expert) needs to have the respective stoppage in mind. And this is only the

case if the stoppage happened in the ongoing shift.

64 Chapter 3. Methods

For that reason, classic pool based learning is not the perfect option in this case.

Instead, we introduce a new form of Active Learning. We build up a pool of unlabeled

examples for every shift. Since the lead-machine stops around 20-50 times per shift,

there are enough data-instances to provide a proper pool. Examples from this pool

are selected by the query strategy and directly addressed to the oracle (expert).

He has the knowledge about the errors of this shift and thus can exactly label the

line-stoppage. In this way, fast model training combined with heavily reduced expert

work can be achieved.

During detailed comparison of many different query strategies ([36]), the combi-

nation of Uncertainty Sampling (UC) and Nearest Neighbour Criterion (NNC) by

using Dynamic Ensemble Active Learning (DEAL) proved best on the given data.

For comparability to training on the full manually labeled dataset we use Random

Forest with 500 estimators and a maximal depth of 7 as classifier.

3.9 Multi-Task Learning and Transfer Learning

In this work, we try to decrease the effort per roll-out of a Machine Learning

algorithm for one filling and packaging line. The optimal solution for the case of

a large number of roll-outs is to have an initial effort (e.g. training a ML-model)

and then zero additional effort per customer. This can be achieved if the trained

model is able to detect the root-cause machine for any line. Since each new line

corresponds to a new classification task, the model has to be able to solve multiple

tasks (Multi-Task Learning) when being trained on all available training examples

from different lines. Additionally, also tasks(lines) that have not been represented in

the training (Transfer Learning) must be solved. Combination of both approaches

is a manageable task since both approaches are highly similar as Caruana et al.

”Multitask Learning is an approach to inductive transfer that improves

generalization by using the domain information contained in the training

signals of related tasks as an inductive bias.”[48]

and also Ruder et al.

”We can view multi-task learning as a form of inductive transfer.”[49]

state.

Practically spoken: We want to train a Neural Network on all tasks/filling lines that

provide labeled data and use the trained model to classify the root cause machine

3.10. Fully Convolutional Graph Network architectures 65

at all lines that provide sufficient data. Even those without any labels.

Each task consists of converting data of a line downtime x ∈ (M × T × S) into

a vector of class probabilities y where the set of classes C is equal to the set of

machines M (comapre Equation 2.7). Thus we allocate a class probability to every

machine that is available in the input data x.

This leads to challenging requirements to solve for one single model: The model

has to be capable of

• processing input of variable shape (different number of machines per line)

• providing a variable shape of class probabilities (different number of machines

per line)

• using the same set of network-parameters(weights) for all tasks

In the following section, we introduce a new Neural Network architecture that was

build up to meet these requirements.

3.10 Fully Convolutional Graph Network architectures

In this work, all Neural Networks are built up and trained using PyTorch and

PyTorchGeometric. As Optimizer, Adam [50] was used on default parameters:

learning-rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−08, weight-decay = 0.

We stack Graph Convolutional Layers to build up a Fully Convolutional Graph

Neural Network which satisfies the above (section 3.9) given requirements towards

solving Multi-Task Learning and Transfer Learning. Our structure shows one major

difference (which enables us to conduct Multi-Task Learning and Transfer Learning)

compared to the usual Fully Convolutional Classification architecture (e.g. [51]). In

our case the common approach would look like shown in Figure 3.9).

In the last layer, the number of channels is equal to the number of classes and a

global pooling operation delivers one real number for every channel by collapsing

the graph (calculate a mean value over the nodes of each channel). The resulting

vector is finally converted to class probabilities by a softmax-layer.

But, in our case we want to know which node of the graph was the error causing

machine. Thus, we choose only one output channel for the last convolution layer and

correspondingly we only compute one feature for each node in the final convolution

66 Chapter 3. Methods

Figure 3.9 Common fully convolutional Graph Neural Network architecture.
This architecture uses Global Pooling on each channel after the
final Convolution Layer. In this case, the length C of the resulting
class probability vector is equal to number of channels of the final
Convolutional Layer

layer (compare Figure 3.10). Finally, this is converted to class probabilities by using

softmax-activation.

For better understanding the difference in the final layer, Figure 3.9 and Figure 3.10

visualize the dimension that provides the class probabilities in the output layer.

Usually, these are given along the dimension of channels (features per node). In the

proposed architecture, the probabilities are returned as a graph of nodes with one

feature, that is trained to represent the class probability.

Since the architecture of combining the layers is set, we now take a closer look at

the used graph information. Looking at a filling and packaging line, one intuitively

depicts the graphs edges as directed connections representing the material flow.

Contrary to the directed connections, errors can propagate in both directions along

the conveyors.

The algorithm tries to reconstruct the path of error propagation before a lead-

machine stop from machine state data and therefore from lack and tailback informa-

tion. But to convert the information of lack or tailback to knowing where the error

came from, one needs to know the direction of material flow.

To provide this information to the GCN we use multiple relations (compare Equa-

tion 2.19) between the nodes. One for downstream (compared to material flow)

propagating information which means we provide the adjacency matrix correspond-

ing to the graph of material flow to the model. The second relation represents the

upstream propagating information while the third relation connects each node to

itself and thus enables the model to ’remember’ information through the layers. The

3.10. Fully Convolutional Graph Network architectures 67

Figure 3.10 Newly introduced fully convolutional Graph Neural Network archi-
tecture. In this case, a class probability is provided for each node
by reducing the channels to one and applying the softmax activa-
tion on the graph’s nodes. This enables us to use Multi-Task and
Transfer Learning over multiple lines.

last mentioned connections are usually called self-loops.

To evaluate the models, in each run a validation-set is used to monitor validation

accuracy after each training epoch. This, on the one hand, enables to detect overfit-

ting. On the other hand we select the model, showing highest validation accuracy

during the training process, as the best trained model and compute the test accuracy

for this. For greater insight we do not only compute one test accuracy for the full

Multi-Task dataset but also for each customer. The test-sets are built up in such

way, that every customer’s test-set is used for the individual test-accuracy. For the

average test-accuracy of Multi-Task Learning the test-examples are combined to one

test-set. To avoid one customer being overweighted in the combined test-set the

number of test examples per customer are equal over all customers.

3.10.1 Relational Graph Convolutional Neural Network (RGCN)

We build up the RGCN as a three or four layer architecture consisting of Relational

Graph Convolutional Layers like introduced in Equation 2.19 and Equation 2.20.

Therefore, the layer-implementation provided in pytorch-geometric [52] is used. To

provide the nonlinearity in the model, ReLU activation in all layers except the last,

which possesses a softmax activation, was used. The network is trained and evaluated

with data preprocessed by Manual Feature Extraction (compare subsection 3.2.2).

When using algorithmically labeled data, test-sets contain 64 examples per cus-

tomer while size of validation- and train-sets vary since the train-set consists of the

68 Chapter 3. Methods

algorithmically labeled examples and validation set corresponds to the train set of

Random Forest which was used for algorithmic labeling.

If manually labeled data is used, the examples of one customer are split into a

test-set of size 32, an equally sized validation-set and the remaining examples are

used as training-set. In this case, the validation- and test-sets are very small and

thus the corresponding quality measures are highly volatile beyond different splits of

data into train-, validation- and test-sets. Due to using at least three customers for

Multi-Task-Learning and Transfer Learning, the accumulated test- and validation-

sets have a size of 96 (three customers) or 128 (four customers) which is a sufficient

size for proper testing.

3.10.2 spatio-temporal Relational Graph Convolutional Neural

Network (stRGCN)

In this architecture, we use three blocks containing three layers each, like described

in section 2.3.5. After the last block, two 1x1 convolutional layers with ReLU

activations (compare section 2.3.5) are added (similar to the final layers of each

block) to reduce the number of channels (features) per node to one. Finally, the

class probabilities are computed by a softmax activation over the nodes. Thus, we

again achive the proposed fully convolution architecture.

Furthermore, the number of channels is set to 16 for all convolution operations

and dropout is set to 0.2 for the output of the graph convolutions.

3.11 Adding lead-machine information to data

Knowledge about the filling and packaging line is crucial for correctly classifying

the root-cause of a lead-machine. Particularly, knowing which machine is the lead-

machine inside the line is needed to backtrace the error-propagation starting from

the correct machine. Thus, an approach to provide this information to the stRGCN

is presented in this section.

Reminder: The data array of one lead-machine stoppage is of shape (T ×M × S)

where T represents the number of time-steps, M is the number of machines and S

displays the number of machine-states.

To provide the information to the Neural Network, we add one more input-channel

to the data. That means, we expand the ’machine states’ dimension of the data by

3.11. Adding lead-machine information to data 69

one and add a matrix of shape (M × T). The matrix is binary and thus consists of

ones and zeros only. In this way we mark the lead-machine with ones and all other

machines with zeros. Thus e.g. data of a stop at a line consisting of four machines

(lead-machine is the third machine) with five time-steps of data additionally gets the

matrix

xm =

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

 (3.23)

appended.

4 Results

In this chapter, rule-based approaches, Dynamic-Time-Warping and k -Nearest Neigh-

bors, Random Forest and Graph Convolutional Neural Networks (GCN) are eval-

uated by comparing their accuracies when classifying the correct root cause for

a lead-machine stoppage. Additionally, results of the proposed label-efficient ap-

proaches Multi-Task Learning, Transfer Learning and Active Learning are analyzed.

For Multi-Task Learning, the special property of our fully convolutional GCNs is

exploited and each model is trained on all customer’s data at once. An extension

of this approach is done by additionally combining it with Transfer Learning. For

that purpose, we train the model on all but one customer’s data using Multi-Task

Learning, and afterwards evaluate it on the left-out customer by using the Transfer

Learning approach. If this combination reaches sufficient accuracy, the model can

be used at a new customer without initial training effort and thus ”out of the box”.

Last but not least, savings in labeling-effort by using Active Learning in combina-

tion with a Random Forest Classifier are quantified.

4.1 Data characteristics

This section contains background knowledge about the customers’ filling and pack-

aging lines and peculiarities of some machine’s data. Their effects will show up in

multiple results.

First of all, a data-example corresponding to customer-b (Figure 4.1) shows an

extreme example of bad data quality. In reality, an error occured somewhere near

Unpacker, thus this machine should show some non-productive status. Afterwards,

the Depalettizer stopped in ’tailback’ and the error also propagated downstream

towards the Filler with stopping the Washer on its way. Finally, a sensor before the

Empty Bottle Inspector (EBI) made the Filler duo stop due to missing bottles in the

entry. Furthermore the EBI gets a stop-command via electronic data exchange from

71

72 Chapter 4. Results

Filler and thus shows the status ’tailback’. Due to the direct information exchange

between Filler and EBI, those two machines are called blocked.

Looking at Figure 4.1 shows data that is suspicious for three machines. As already

mentioned, the Unpacker should show some non-productive status. Additionally,

the Labeler constantly shows an own-fault status although the machines before

and after it are productive. Since buffer-capacity of conveyors equals roughly the

amount of bottles that can be produced in three minutes, data of Labeler must

be erroneous. In the same time Packer shows ”productive” state which has to be

erroneous by the same argumentation. At customer-b, these data inconsistencies

only rarely occur since machine-state output at all machines was checked and, in

case of errors, corrected after connecting the industrial data acquisition. At this

point, it is to mention that the data at the investigated customers was monitored

very well and thus it can be assumed that the corresponding data-accuracies are

above average.

Figure 4.1 Gantt chart showing data inconsistencies at customer-b. Production
is displayed in green, tailback in pink, lack in blue and equipment-
failure in red. Incorrect status for Unpacker, Packer and Labeler
since in reality all machines stopped caused by a lack of crates/bottles
from line’s beginning.

Based on data evaluation we assume, that an algorithm usually has to classify

about 10% to 20% of downtimes based on data with bad quality which heavily

increases the problem complexity for these cases. If an important time-window of a

machine under investigation carries an erroneous machine-state, this almost certainly

causes a wrong classification when using rule-based algorithms. In case of Machine

Learning approaches and especially Neural Networks, it is possible to overcome this

problem for part of the low quality examples.

4.1. Data characteristics 73

In the following, we look deeper into the data of each customer and elaborate some

characteristics.

Unpacker of customer-b regularly shows state ”tailback” when its speed is de-

creased by the line-control. In this scenario, the buffer between Unpacker and Washer

gets filled during production as a result of the V-graph (Figure 2.2) and correspond-

ing higher nominal speed of Unpacker compared to Washer. When the buffer is

filled, the line-control decreases the Unpacker’s speed to the Washer’s speed. Thus,

although Unpacker runs with decreased speed as a result of tailback, it is in normal

production and should show state ”productive”.

Empty Bottle Inspektor of customer-a was changed during data collection. The

new machine often returns state ”held” in case it was stopped by a signal from Filler

as shown in Figure 4.2.

Figure 4.2 Gantt chart showing wrong machine state of EBI at customer-a in
case of lack from Depalletizer. Thus EBI should show machine-state
”lack” when stopping as a cause of Depalletizer error. Production is
displayed in green, ”tailback” in pink, ”lack” in blue, and ”held” and
”off” in grey. ”held” and ”off” are own-fault states of the machines.

Since a machine should be in ”held” if it was manually stopped by an operator,

this state is an own-fault state. Consequently, the EBI is shown as having stopped

due to an own-fault in the example (Figure 4.2). When analyzing this example,

one has to trace back the error path from filler upstream and finds the EBI in own

fault. Thus it is reasonable for an algorithm to select the EBI as causer. Looking

deep into detail, one can get a hint what really happened when looking at the exact

moments of stopping for Filler and EBI. Since EBI stops slightly after the Filler the

information flow probably went from Filler to EBI. And this leads to the assumption,

74 Chapter 4. Results

that EBI was not the real causer. But this tiny pattern is hard to evaluate for an

algorithm and would not be needed with correct machine states.

Packer at customer-w shows ”intermediate” state in tailback situation. For all

examples, that are labeled with Palletizer as causer-machine the Packer shows ma-

chine state ”intermediate” although ”tailback” was the correct one. During data-

preprocessing for Machine Learning ”intermediate” is converted to an ”own-fault”

state (Table 2.1). Thus, classifying the corresponding examples as caused by the

Packer is a reasonable behavior of an algorithm but will be evaluated as wrong

classification later on, since the stoppage of the Palletizer is the root cause.

Figure 4.3 Gantt chart showing erroneous machine state of Packer at customer-
w in case of tailback from Palletizer. Thus Packer should show
machine-state ’tailback’ when stopping as a cause of Palletizer’s
error. Production is displayed in green, ”tailback” in pink, ”inter-
mediate” in grey and ”equipment-failure” in red. ”intermediate”
and ”equipment-failure” are own-fault states of the machines.

Blocked machines at customer-w are directly connected to each other without

bottle transport on conveyors. Due to producing and filling non-returnable plastic

bottles, this line is equipped with a so-called ErgoBlock which is a combination of

Blower, Labeler and Filler. Thus there is no buffer between the machines and they

stop as one when an error appears. Note the simultaneous stopping and starting

behavior in Figure 4.3.

Labeling experts differ across the customers. For customer-a, the labels were

given from line-experts without looking at the corresponding data. That opens up

problems that are based on different standards used by the expert and the algorithm

for determining the causer machine.

4.1. Data characteristics 75

Besides the mentioned data-inconsistencies at the EBI that lead to predicting

the EBI as causer when the Depalletizer is labeled, there are additional examples

that are labeled with Depalletizer as the causer although EBI was correct from a

data perspective. In this case the expert sees a quality problem of returned bottles

(returnable bottles that are already used and input to the filling line). Then, often

the washer is not able to clean old labels off the bottles. Those bottles are afterwards

detected and rejected by the EBI. If there are too many rejects, the EBI stops with an

appropriate message that informs the user about the rejection cause. For the expert,

the problem in glass quality is not connected to a machine and thus the convention

is to choose the very first machine in the line, the Depalletizer, as causer. From an

algorithm’s point of view, the causer-machine is the EBI since it stopped the Filler.

And due to the EBI’s message, the information about problems with cleaning and

thus glass quality is also worked out. Thus expert’s label and algorithm’s prediction

carry the same information about the very root-cause of the problem in the filling

line, the insufficient quality of returned bottles. But different root-cause machines

are selected which leads to evaluating these examples as wrong classifications.

At customer-a about 30% of the data consist of examples with the described prob-

lem of different analysis standards. Discussions with the customer regarding results

of the newly introduced rule-based system revealed that most of the predictions

in question are sufficient for their analysis and only another point of view on the

problem. Thus we can assume an increase of accuracies for customer-a by around

20% to 30% for customer-a given the fact that they adapt the bigger part of our

problem-interpretation standards.

For customer-b, the customer’s expert labeled the examples based on a data

visulization without information from inside the line but with using the algorithms

prediction as proposed result. Thus, the approach is the contrary to that of customer-

a. The basis of root-cause machine classification, the data, is equal for algorithm and

expert. Additionally, the standards of interpretation were aligned during the labeling

work by repeatedly comparing the algorithms result with the experts estimation

and thus understanding and adopting the algorithms standards. This results in

comparably high accuracies for customer-b.

In the following results, we will witness severely different accuracies between

customer-a and customer-b as a result of the described labeling characteristics al-

though their lines are very similar and thus also the classification tasks should be of

similar difficulty.

76 Chapter 4. Results

The labels for customers h and w are created by Syskron and Krones experts.

Thus, the interpretation standards are, similar to customer-b, well adjusted with

those of the algorithm.

4.2 Rule-based approaches

In this chapter, at the one hand, we look at accuracies of Avalanche-algorithm which

is the currently active approach at Syskron GmbH, one the other hand we evaluate

results of the newly introduced rule-based system, introduced in section 3.3.

4.2.1 Avalanche algorithm

This algorithm is currently used in Syskron’s productive systems and therefore

test accuracy [%]

customer-a 47.4

customer-b 67.6

customer-h 48.1

customer-w 63.1

Table 4.1 Accuracies of Avalanche algorithm which is
currently active in Syskron’s productive sys-
tem. The goal of this thesis is to clearly out-
perform the given results.

sets the general baseline for re-

sults.

The algorithm is a rule-based

system and analyses temporal

correlations in machine states

over the line to estimate proba-

bilities for each machine for be-

ing the causer-machine. Due to

compliance issues, the approach

can not be described in deeper

detail.

4.2.2 New rule-based approach

This approach uses the representation of the line as a graph and backtraces each error

propagation from the lead-machine stoppage to its source. We will firstly analyze

accuracies and confusion matrices. Additionally, the false classifications are analyzed

in detail and therefore divided into three error-categories: Errors that were caused

by miss-classification of the algorithm itself, those that ware caused by erroneous

data and finally differing interpretation standards between expert and algorithm.

For customer-h, an accuracy of 70% shows a respectable result considering the

complexity of the line. The improvement of 21% compared to Avalanche algorithm

4.2. Rule-based approaches 77

is huge and can be explained by the utilization of the graph structure of a filling line.

test accuracy [%]

customer-a 53.5

customer-b 92.1

customer-h 69.5

customer-w 68.5

Table 4.2 Accuracies of the new rule-based approach.

Since the corresponding line is

a large one with many inter-

dependencies, the information

about these dependencies is cru-

cial for an algorithm. In con-

trast to the new rule-based algo-

rithm, Avalanche-algorithm is

not able to exploit this informa-

tion.

Since customer-w is a very simple line architecture, the accuracy of 69% is lower

than expected. Additionally an improvement of only 5% compared to Avalanche is

significantly lower than at customer-h. In this case, the factor that mainly limits the

accuracy is not the complexity of the line, which is very simple, but the data-quality.

To get a better insight, will investigate different influences which lead to miss-

classifications for customers a and b in the following.

For customer-a, a comparably low accuracy of 53.5% was achieved. By looking

deeper into detail of the miss-classified examples, 11.8% of examples were falsely

classified due to erroneous data, 5.2% because of a wrong classification by the

algorithm and the largest part, namely 29.5% due to differing interpretation of data

by the algorithm and expert.

At this step, the expert’s approach has to be explained. At customer-a, an expert

labeled the examples for calculation of internal key performance indicators (KPIs)

while working at the line. Those estimations are not primarily done for the used

dataset. And thus, in contrast to the algorithm which selects the causing machine,

the expert often directly goes one layer of analysis deeper and primarily extracts

the general problem, that occurred in the line, like bad glass quality or manpower

shortage. Since these problems are not directly corresponding to a machine and the

main focus of the expert for the analysis is satisfied, he simply chooses a machine to

allocate the error. On the other hand, it is very important to firstly find the correct

causer machine from an algorithms perspective. Proceeding from this result, the

analysis can find the cause for the causer-machine’s stoppage which is provided by

the error-message of the machine. Based on these different approaches, in 29.5%

of the examples, neither the expert’s, nor the algorithm’s result are wrong but still

they provided different causer machines. Thus the evaluation counts them as wrong

78 Chapter 4. Results

Figure 4.4 Confusion matrix for rule based algorithm at customer-a. Labels
and results of the form ”m1 - m2” are to be read as ”causer is
located between ”m1 and m2”. Low accuracy since interpretation of
stoppages between customer and algorithm heavily deviates.

classifications. During discussions with customer-a’s expert, it turned out that he

accepts the results of the algorithm as also valid results for most examples in question.

Thus, we can effectively assume a significantly higher effective accuracy of up to

83.0% for this customer.

At customer-b, a different picture appears for the classification results. With a

classification accuracy of 92.1%, the rule based approach reached unexpectedly good

results. Again taking a deeper look into reasons for miss-classifications shows that

4.0% of the data was wrongly classified by the algorithm, in only 2.5% of cases the

interpretation of the situation was different between expert and algorithm and a

very low ratio of 1.4% were caused be erroneous data. In contrast to the labeling

process at customer-a, the expert at customer-b did his analysis based on the data

with seeing the algorithms result. In this way, he on the one hand had the same

knowledge-input for each downtime as the algorithm also had, and on the other

hand he adapted his interpretation of stoppages to the algorithms approach. Thus

the ratio of errors arising from different analysis-approaches is very small at this

4.2. Rule-based approaches 79

Figure 4.5 Confusion matrix for rule based algorithm at customer-b. Labels and
results of the form ”m1 - m2” are to be read as ”causer is located
between ”m1 and m2”. Very good result due to reworking data
output of multiple machines and highly consistent interpretation
approaches between customer and algorithm.

customer. A further difference between these customers is the data-quality. Before

recording the data at customer-b, severe effort was done to improve the machines

data-output. This gets reflected in the corresponding ratio of caused classification

errors which are significantly smaller at customer-b. Contrary, the ratio of errors

caused by the algorithm itself was quite similar with 4.0% to customer-a’s 5.2%. To

put things into a nutshell, the newly developed rule-based algorithm provides results

with high accuracy for the case of good data-quality. Additionally, synchronizing

the users understanding of root-cause detection with the approach of the algorithm

has a huge potential. We showed this potential at customer-a: When comparing

the algorithmic results to the customer’s own estimations an accuracy of about 50%

resulted. Contrarily, when asking the customer if he agrees to the result of the

80 Chapter 4. Results

algorithm he agrees for about 80% of the examples.

Overall, the new rule based algorithm shows multiple improvements in direct

comparison to the Avalanche algorithm: First of all, its accuracies are in average

13% higher than those of the Avalanche algorithm. One factor for this improvement

is the ability of resolving error propagations via auxiliary streams by using the graph

structure of a line. Additionally, since its basic idea imitates the common approach

of experts when searching for the root cause machine, the results of Fair Detective

are always intuitive for experts. Even in case of a wrong classification the expert

can understand why this result occurred. Thus acceptance of Fair Detective beyond

experts is very good.

4.3 Dynamic Time Warping and k-Nearest Neighbors

In this section, we first of all optimize parameters, afterwards evaluate classification

results per customer, and finally discuss if inference durations are sufficient. We use

manually labeled data for training and evaluations. Table 4.3 provides the amounts

of label-example pairs per customer and per class.

customer a customer b customer h customer w

Depalletizer 72 Depalletizer 22 Depalletizer 16 Blower 116
Unpacker 27 Unpacker 26 Unpacker 0 Labeler 18
Washer 39 Washer 45 Sekamat 2 4 Filler 40
EBI 96 EBI 76 Sekamat 1 0 Packer 23
Filler 127 Filler 181 Washer 9 Palletizer 5
Labeler 85 Labeler 153 EBI 91
Packer 51 Packer 50 Filler 94
Palletizer 32 Palletizer 58 Labeler 69
Cargo Safeguarding 0 Packer 73
Wrapper 10 Palletizer 65

Crate Washer 1
Sweep-off
Depalletizer

6∑
539 611 428 202

Table 4.3 Available manually labeled examples per customer for DTW and k-
NN training. Overall number and amount per class(root-causer) are
given. Lead-machine is written in bold letters.

These are split into 100 test-examples and the remaining ones for training.

4.3. Dynamic Time Warping and k-Nearest Neighbors 81

4.3.1 Optimal parametrization

First of all, parameters ∆slice and the number of neighbors k of k -Nearest Neighbors

are sweeped on customer-b data. Customer b is a reasonable choice since its line-

characteristic represents an average between all four customers. For k, values 2, 3,

4, 5, 6 and 8, and for ∆slice the parametrizations 10s, 20s, 30s, 60s, 120s, 240s are

evaluated over five repetitions each.

For each run, train/test split is done randomly before the run. This results in

mean accuracies like displayed in 4.4.

∆slice

k
2 3 4 5 6 8

10 60.2 ± 3.2 69.4 ± 3.1 73.0 ± 3.6 69.6 ± 3.2 70.4 ± 3.2 71.2 ± 1.6
20 63.2 ± 2.6 71.6 ± 2.9 72.4 ± 2.6 75.8 ± 5.5 75.8 ± 3.7 72.0 ± 1.1
30 65.8 ± 4.9 68.2 ± 2.1 74.4 ± 3.8 71.8 ± 1.9 75.8 ± 4.5 74.8 ± 4.0
60 66.8 ± 2.5 72.0 ± 2.1 70.8 ± 5.6 75.6 ± 3.7 71.4 ± 4.6 76.2 ± 3.2
120 67.8 ± 2.2 71.8 ± 2.9 72.0 ± 5.6 74.4 ± 3.6 74.4 ± 2.2 74.2 ± 5.0
240 62.8 ± 5.4 68.0 ± 2.1 70.4 ± 2.9 71.6 ± 6.3 69.4 ± 2.2 75.0 ± 3.0

Table 4.4 Mean classification accuracies over five runs for dataset of customer-
b using DTW and k-NN with hyperparameter-sweep over k of k-NN
classifier and ∆slice (subsection 3.2.1).

Accuracies show a significant growth along k -values until k=5. When choosing k

as 5, 6 or 8 and ∆slice as 30s, 60s or 120s equally good results near the maximum

reachable ones are achieved. With growing k usually overfitting is prevented, since

multiple training-examples have to be found near the example that should be pre-

dicted. In this way, the model generalizes its prediction policy. On the other hand,

choosing a larger k means prefering classes that are represented over-proportionally

often in the training set. As an extreme example: If k is chosen equally to the size of

the training-set, always the class with most examples will be predicted. Since multi-

ple classes consist of only a few samples (≈ 10) in our datasets (compare Table 4.3)

it is favourable to choose a small k -value to also regard those classes. Thus we decide

to choose k=5 and ∆slice=60s. This will be used for the upcoming evaluation.

4.3.2 Results per customer

An overview over the mean accuracies of each customer is given in Table 4.5.

We can see quite large dependencies of the accuracy to the customer. On the one

82 Chapter 4. Results

test accuracy [%]
customer a 67.7 ± 2.1
customer b 70.0 ± 2.8
customer h 63.3 ± 3.9
customer w 87.0 ± 2.8

Table 4.5 Mean classification accuracies and standard deviation over three runs
for each customer using DTW and k-NN

hand, the complexity of the line is an important factor. The more machines a line

consists of, the more classes the classifier has to resolve. Additionally, the patterns

in the data are more complex and have to be found over a larger local and temporal

space. Thus, it is reasonable that customer h, as the largest line, has the lowest

accuracy while customer w, as the simplest line, has the highest accuracy.

In the following, we are going to look at the confusion matrices of for each customer.
D

ep
a
ll

et
iz

er

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

8 4 0 2 0 0 1 0 1
0 5 1 0 1 0 1 0 0
0 0 2 1 0 1 0 0 0
0 0 2 11 1 2 0 0 0
0 1 0 3 18 0 0 0 0
0 1 0 1 0 13 0 0 0
2 5 0 2 1 0 2 0 0
0 0 0 0 1 0 1 2 1
0 0 0 0 0 0 0 1 1

0

5

10

15

Figure 4.6 Confusion matix for DTW and k-NN on
data of customer a.

These are created by comparing

the test-sets labels to the mod-

els predictions. For customer-

a (Figure 4.6), we can see the

main diagonal(correct classifi-

cations) being better occupied

for the central machines than

for the outer ones. Especially

the first part of the line (De-

palletizer to Washer), seems to

be hard to resolve for the al-

gorithm. This can result from

greater variance in temporal

error propagation due to the

longer spatial propagation path

for machines at the very start or end of the line.

Customer-a (Figure 4.6) as well as customer-b (Figure 4.7) have the filler as lead-

machine. And in both cases the accuracy of detecting the lead-machine correctly is

not high, although this should be the easiest class to predict since the lead-machine

is the causer itself if it stopped as a result of an own-fault.

The following is an example for multiple wrong classifications in case of own-

4.3. Dynamic Time Warping and k-Nearest Neighbors 83

faults at the lead-machine: At customer-b the Labeler is chosen as causer by the

algorithm six times although the Filler itself was chosen as causer by the expert.

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 0 0 0 1 1 0

1 0 0 0 0 0 0

1 4 0 1 0 0 0

0 3 13 1 1 0 0

0 1 0 22 6 0 2

0 0 0 1 21 2 0

0 0 0 0 3 6 3

0 0 0 0 0 0 6
0

10

20

Figure 4.7 Confusion matix for DTW and k-NN on
data of customer b.

D
ep

a
ll

et
iz

er

S
ek

a
m

a
t

2

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

S
w

ee
p

-o
ff

D
ep

a
ll

et
iz

er

Predicted

Depalletizer
Sekamat 2

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

1 0 0 0 0 2 0 2

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 20 8 0 0 0 0

0 0 2 15 1 3 0 0

0 0 0 2 7 1 2 0

1 0 0 1 2 12 2 0

0 0 0 2 0 2 10 0
0

5

10

15

20

Figure 4.8 Confusion matix for DTW and k-NN on
data of customer h.

Most probably, this is a result

from DTW equally weighting

all inputs since it is a similar-

ity measure and not a learning

algorithm. Thus it is not able

to emphasize the importance of

the lead-machine’s state like any

expert intuitively does. This

results in classification results

that feel counter-intuitive for ex-

perts. And missing the classi-

fications that seem to be easy

from an expert’s view quickly

diminish the trust in the algo-

rithm and should be avoided at

all costs.

Confusion matrix of customer-

h (Figure 4.8) looks unfamiliar

since the class distribution in

this dataset is very uneven (com-

pare Table 4.3). Most exam-

ples are representing the area

from EBI to Palletizer. Also

in this case, the Filler is the

lead-machine and especially re-

solving EBI and Filler as root

cause is a hard task for the al-

gorithm. As mentioned in sec-

tion 4.1, EBI and Filler are

electronically connected. That

leads to missleading machine-

states for some cases and makes it hard to interprete the status of EBI for an

algorithm.

84 Chapter 4. Results

B
lo

w
er

L
a
b

el
le

r

F
il
le

r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

55 0 2 1

2 6 0 0

3 0 17 0

0 0 3 7

0 0 1 3

0

20

40

Figure 4.9 Confusion matix for DTW and k-NN on
data of customer w.

In the case of customer-w

(Figure 4.9), Palletizer is not

predicted once. This matches

with the problem of choosing k

too large like mentioned in sub-

section 4.3.1. In case of Pal-

letizer at customer-w we only

have 5 examples in the dataset.

Thus, it is very unlikely to find

a spot in the space of input data

which is close to more than one

of these 5 sample-points.

All in all DTW and k -NN

reaches solid results but, since

it is not able to stronger weight important regions of the data like the lead-machine’s

state during its stoppage, consistently miss-classifications that are not explainable

towards a line expert come up.

4.3.3 Inference durations

For a statistic over detected root causers, usually time spans

starting from one shift (8h) to a week are selected.

∆slice inference duration [s]

10 3.9 ± 0.2

20 1.8 ± 0.13

30 1.2 ± 0.08

60 0.6 ± 0.04

120 0.3 ± 0.03

240 0.2 ± 0.01

Table 4.6 Mean duration with stan-
dard deviation for one in-
ference of DTW and k-NN
dependent on ∆slice

With roughly 20 to 50 stoppages per shift, this

results in hundreds of root-cause analyses for one

statistical view. And latency should not exceed

a few seconds. That is a demanding requirement

for the computational duration of the algorithm.

Thus, we compute the mean duration per in-

ference (classifying one example) dependend on

∆slice since this changes the number of temporal

steps in each sample-point and therefore heavily

affects the processing efford inside DTW. In the

results of Figure 4.10, we can see the exponential

dependency of computation durations to ∆slice.

As expected (compare subsection 2.3.2), dura-

4.3. Dynamic Time Warping and k-Nearest Neighbors 85

102030 60 120 240

∆slice [s]

0

1

2

3

4

d
u

ra
ti

on
[s

]

DTW + kNN: inference durations

inference duration

Figure 4.10 Average and standard deviation of duration per single inference
dependent on ∆slice in preprocessing which is directly dependent to
the number of temporal steps in input-data. Statistics are computed
over five repetitions.

tions are very high even for the largest ∆slice = 240s with 0.16s (compare also

Table 4.6). Assumed a batch of 100 line-stoppages this results in a computation

duration of 16s even without respecting loading times from the database and further

environmental tasks like api requests. Thus, DTW+k -NN is not suited for usage

in a productive environment since latencies of this magnitude are not acceptable.

Most probably, significant speedups in comparison to the used implementation are

possible but it is also highly probable that these will not be able to solve the problem

satisfactory.

With this result, we are able to eliminate DTW+k -NN from the list of candidates

for usage in a productive system. Contrary to the current, the upcoming approaches

are known for sufficient speed of their predictions. Thus, their computation durations

will not be evaluated in this work but have to be checked in detail, in case one of

these approaches should be used in the productive environment.

86 Chapter 4. Results

4.4 Random Forest

When training a random forest classifier, data is preprocessed using Manual Feature

Extraction (subsection 3.2.2). The distribution of labeled examples beyond customers

and classes can be seen in Table 4.7. Due to a minimum amount of 160 examples in

customer a customer b customer h customer w

Depalletizer 76 Depalletizer 22 Depalletizer 7 Blower 108
Unpacker 27 Unpacker 26 Unpacker 0 Labeler 18
Washer 39 Washer 46 Sekamat 2 0 Filler 39
EBI 87 EBI 76 Sekamat 1 0 Packer 22
Filler 110 Filler 181 Washer 1 Palletizer 5
Labeler 82 Labeler 145 EBI 43
Packer 48 Packer 51 Filler 34
Palletizer 25 Palletizer 58 Labeler 19
Cargo Safeguarding 0 Packer 24
Wrapper 10 Palletizer 29

Crate Washer 0
Sweep-off
Depalletizer

3∑
504 605 160 192

Table 4.7 Available manually labeled examples per customer for random for-
est training. Overall number and amount per class(root-causer) are
given. Lead-machine is written in bold letters.

the dataset of customer-h we separate the data into 80 test-examples and use the

remaining ones for training.

train accuracy [%] test accuracy [%]

customer a 92.2 ± 0.7 72.8 ± 4.0

customer b 99.0 ± 0.3 90.7 ± 1.6

customer h 100.0 ± 0.0 82.5 ± 5.0

customer w 100.0 ± 0.0 93.9 ± 1.3

Table 4.8 Accuracy of test- and train-set over ten runs for
each customer using random forest (500 trees
with maximal depth of 7)

The resulting train-

accuracies are close to 100%

for all customers except

customer-a, while results

close to 100% are usual

for a Random Forest. The

worse ability of learning

customer-a’s data can be

explained by the fact that

labels of customer-a were

provided by experts from

inside the filling and packaging line without looking at the corresponding data

4.4. Random Forest 87

(compare section 4.1), whereas all other labels were provided from experts by taking

data to the aid. Thus the labels of customer-a are likely to contain information that

is not part of the data and consequently the model can not be able to learn the

corresponding dependencies.

All test-accuracies are significantly higher than those of DTW+kNN. Especially

at customer-b and customer-h, the performances were increased by a huge amount

of about 20%. For the other two lines the increase is approximately 6%.

D
ep

a
ll

et
iz

er

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

8 0 0 2 1 1 2 0 0
1 1 0 1 0 0 1 0 0
0 0 3 1 0 0 1 0 0
0 0 0 12 1 0 1 0 0
0 0 0 0 14 0 0 0 0
2 0 0 1 0 11 0 0 0
1 0 0 0 1 0 5 0 0
1 0 0 0 0 0 3 2 0
0 0 0 0 0 0 0 0 2

0

5

10

Figure 4.11 Confusion matix for random forest on data
of customer a. High accuracy when clas-
sifying the central machines (Washer to
Labeler). In the outer area of the line clas-
sification seems to be more difficult.

Comparing the quality of the

results to each other, the same

picture as in the last sec-

tion arises: Customer-w seems

to be the easiest task to

solve, followed by customer-b.

Customer-h is the second hard-

est task to learn and customer-a

the most difficult.

When looking at results of

each single customer more

closely, we can mainly see two

problems that cannot be solved

properly by Random Forest

model at customer-a (compare

Figure 4.11). On the one hand,

the Depalettizer is severely con-

fused with various other classes.

On the other hand, the model confuses Packer and Palettizer by predicting the

Packer as root causing machine for examples that are labeled as corresponding to

Palettizer.

A similar picture emerges for customer-b (compare Figure 4.12): Also in

this case, distinction of Depalletizer’s class to the rest provides significantly

worse results than for the remaining classes. This time also three stoppages

that are labeled as ”caused by the Palettizer” are predicted by the model

as related to the Labeler. Both cases are concerning the first and last ma-

chines in the line and thus the error propagation between the causer and

the lead-machine happens locally as well as temporally on the longest path.

88 Chapter 4. Results

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 1 1 0 1 1 0

1 2 0 0 0 0 0

2 7 0 0 0 0 0

0 0 7 0 0 0 0

0 0 0 33 0 0 0

0 0 0 0 11 0 0

0 0 0 0 1 4 0

0 1 0 0 3 0 4
0

10

20

30

Figure 4.12 Confusion matix for random forest on data
of customer b. Most miss-classifications
are connected to machines that handle
crates or pallets. This can be caused by the
additional complexity introduced by branch-
streams (empty crate/pallet transport) be-
tween these machines.

D
ep

a
ll

et
iz

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer

EBI

Filler

Labeller

Packer

Palletizer

Sweep-off Depalletizer

A
ct

u
al

0 0 1 0 0 0

0 23 1 0 0 0

0 0 13 0 0 0

0 0 0 9 2 0

1 0 0 1 8 3

0 0 1 0 1 14

0 0 2 0 0 0
0

10

20

Figure 4.13 Confusion matix for random forest on data
of customer h.

On the one hand, the local error

propagation can differ by ”us-

ing” the secondary streams like

empty crate or empty palette

conveyors. On the other hand,

the temporal differences of error

propagation between the inci-

dents grow with the distance be-

tween causer machine and lead-

machine. E.g.: If the Palet-

tizer has already had a prob-

lem which made it stop and the

filling and packaging line cur-

rently is restarting when again

a problem at the Palettizer oc-

curs, then the temporal error

propagation through the line

is very fast since all conveyors

still are full. In contrast to

that, if the buffers that are posi-

tioned downstream of the lead-

machine have been empty (due

to an error caused by the lead-

machine itself or any machine

upstream of it) the buffers can

gather thousands of bottles in

case of a Palettizer problem and

thus it will take up to 15 or 20

minutes until the lead-machine

has to stop.

In customer-h’s confusion matrix (compare Figure 4.13), most wrong classifications

are positioned on the secondary diagonal. Thus, the classification result only missed

by one machine (along the main stream). This is to be rated as positive, since

almost all classifications showed the correct region for the error cause. At customer-

w, the classification accuracy is very high (compare Figure 4.14). Still, Palettizer

4.5. Relational Graph Convolutional Neural Network 89

was never chosen as the root causer by the algorithm. Correspondingly, one has to

note Palettizer being only represented five times in the dataset and only three times

in the training set (compare Table 4.7). Although Random Forest does a good job

in learning underrepresented classes, this level of imbalance seems to be too high.

B
lo

w
er

L
a
b

el
le

r

F
il
le

r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

42 0 2 0

0 9 0 0

0 0 13 0

0 0 2 10

0 0 0 2

0

20

40

Figure 4.14 Confusion matix for random forest on data
of customer w. Palletizer is missing in the
predictions.

In contrast to DTW + kNN,

this approach shows signifi-

cantly increased accuracies for

the machines being positioned

near the lead-machine. The

Random Forest classifier shows

to solve the simpler examples

with very high accuracy. But

also for the outer machines, the

classifications are good. That

leads to results ranging from suf-

ficient accuracy in case of the

hard task at customer-a to high

accuracy at customer-w. Com-

pared to results of previous stud-

ies (section 2.5), these results

are at least on state-of-the-art level and likely higher. Thus, Manual Feature Ex-

traction seems to extract meaningful features which can be learned effectively by a

comparably basic classifier like Random Forest.

Since this approach provides the highest accuracies so far, it will be used as

algorithmic labeler for building up larger datasets for Neural Network training

(section 3.7).

4.5 Relational Graph Convolutional Neural Network

In this section, we will discuss the training of a fully convolutional Relational Graph

Neural Network (RGCN) architecture on algorithmically labeled data on the one

hand, and manually labeled data on the other hand. For this Neural Network, data

is preprocessed by using manual feature extraction (subsection 3.2.2) like also done

for Random Forest. The Neural Network architectures were built up in such way

90 Chapter 4. Results

that one model can afterwards be used to classify the root causer on any filling

and packaging line with the same set of trained parameters. The only configuration

needed, is the graph-representation of each filling line. This is the basis to firstly

use Multi-Task Learning to fit the model to a preferably wide range of different

lines simultaneously, and afterwards predict causer machines at lines that were not

contained in the training set, by using Transfer Learning.

train set validation set test set

customer a 440 32 32

customer b 541 32 32

customer h 96 32 32

customer w 128 32 32

Table 4.9 Available manually labeled examples per
dataset and customer.)

train set validation set test set

customer a 2429 160 160

customer b 2475 200 200

customer h 4603 60 60

customer w 1053 60 60

Table 4.10 Available algorithmically (Random
Forest) labeled examples per dataset and
customer.)

For training, validation and

testing we used two different ap-

proaches. On the one hand, we

go the usual way and simply di-

vide all available expert labels

up into train-, validation- and

test-set. This results in some

hundred labeled examples. For

more detailed distribution com-

pare Table 4.9.

These expert labels are cre-

ated with much effort and still

the resulting datasets are com-

parably small for Neural Net-

work training. Thus we use ad-

ditionally built up a algorithmi-

cally labeled dataset (compare

section 3.7) with about 9 times

as many samples (compare Ta-

ble 4.10).

Distributions of labels at each customer are similar to those given in Table 4.7.

Thus this dependency is not again displayed here.

4.5.1 Training on single lines using RGCN

In the following, the results of training one RGCN per customer (in contrast to

Multi-Task Learning) are evaluated. First of all, manually labeled datasets are

used. Despite the comparably small size of training sets for a Neural Network,

results show similar accuracies compared to Random Forest (compare Table 4.11).

4.5. Relational Graph Convolutional Neural Network 91

While customer-a and -b achieve around 3% less accuracy than Random Forest,

customer-h provides about 3% higher accuracy and customer-w is similar. But on

train accuracy test accuracy

customer-a 78.4 ± 4.9 69.4 ± 9.4
customer-b 92.9 ± 2.2 86.9 ± 3.1
customer-h 91.7 ± 2.5 85.6 ± 3.2
customer-w 95.6 ± 2.1 92.5 ± 2.5

Table 4.11 Mean train- and test- accuracy with standard deviation computed
over five repetitions for RGCN model trained on manually labeled
data per customer

the other hand, the standard deviation in accuracies over multiple training runs is

really high. Especially for customer-a, with a statistical error of almost 10%, results

seem to be highly dependent on the training run. But most probably, the point that

raises variance most, is the size of the test-set. With only 32 examples, the sample

distribution inside this dataset is far less stable than a larger set due to probabilistic

train/test-splitting. And since one test example contributes about 3% of accuracy

the test-accuracy is highly volatile. If there are e.g. two additional examples of

a machine that is simple to classify correctly, like the lead-machine, instead of a

difficult one, we can expect the test accuracy to change by 3% or 6%. Based on this

knowledge, the variances at customers b, h and w are not too large.

train accuracy
test accuracy

(at best validation acc)
test accuracy

(final)

customer-a 95.1 ± 1.2 82.8 ± 1.0 83.0 ± 1.2
customer-b 96.9 ± 0.4 93.4 ± 0.6 92.7 ± 1.8
customer-h 91.4 ± 0.4 86.0 ± 1.3 85.7 ± 0.8
customer-w 97.4 ± 0.4 83.3 ± 3.3 88.3 ± 0.0

Table 4.12 Mean train- and test- accuracy with standard deviation computed
over five repetitions for RGCN model trained on algorithmically
(Random Forest) labeled data per customer

Comparing results of training the same Neural Network on algorithmically labeled

data to those resulting from training on manually labeled ones, the mean test

accuracies are significantly higher for customer-a and -b. Customer-h shows very

92 Chapter 4. Results

similar results in both cases while customer-w is significantly worse. The result at

customer-w was not to expect, since the Random Forest model, which was used for

labeling, achieved a test-accuracy of 96% and also the RGCN-model shows a mean

train accuracy of 97.4%. This means that is was able to learn, what the Random

Forest model itself had learned before, almost perfectly.

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(a) customer-a

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(b) customer-b

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(c) customer-h

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(d) customer-w

Figure 4.15 Training and validation accuracy for RGCN on each customers
manually labeled data. Mean values with standard deviation as
error bar are computed over five repetitions.

Looking deeper into detail, test accuracy after finishing the training (100 epochs)

is with 88.3% significantly higher than after the epoch with best validation accuracy

(83.3%) for customer-w (compare Table 4.12). In this case, the models’ ability of

generalization is increasing during the training although the validation accuracy

starts to decrease after a few epochs. Usually validation- and test-accuracy show

similar values and especially tendencies. This is why validation is used to determine

e.g. overfitting.

In our case, the difference between validation- and test-results are probably con-

nected with the way of building up these datasets. Since train- and validation-dataset

4.5. Relational Graph Convolutional Neural Network 93

are created by algorithmic labeling, the validation set is sampled from Random For-

est labeled examples while test-set consists of manually labeled examples. This can

result in slightly different distribution of data in the datasets and thus explains the

decreased ability of generalization for one of four customers.

Since Neural Networks in general possess a huge number of learnable parameters,

they are prone to overfitting. Over the years, many mechanisms have been invented

to decrease this tendency. But independently of the type of ML-model, every model

learns better generalized patterns or decision processes by having a broader, better

distributed and thus usually also quantitatively larger dataset.

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(a) customer-a

0 25 50 75 100

number of epochs

0.6

0.8

1.0
ac

cu
ra

cy

train acc

val acc

(b) customer-b

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(c) customer-h

0 25 50 75 100

number of epochs

0.6

0.8

1.0

ac
cu

ra
cy

train acc

val acc

(d) customer-w

Figure 4.16 Training and validation accuracy for RGCN on each customers
Random Forest labeled data. Mean values with standard deviation
as error bar are computed over five repetitions.

We can witness this effect by comparing training progress when using manually

labeled data (compare Figure 4.15) with the progress when using of algorithmi-

cally labeled(compare Figure 4.16) data which possesses about nine-fold amount of

training-examples.

94 Chapter 4. Results

Validation accuracy on manually labeled data shows very high results after the first

few epochs and afterwards does not further improve (except of customer-a). Instead

it decreases slightly, especially for customer-b and -w. Additionally, the shapes of

training- and validation-results are different. While training-accuracy shows the

expected saturation behavior, validation-accuracy follows the training-results for a

few epochs but afterwards detaches and stays at the same level or slightly under

it. Starting from the mentioned knee in the validation curve one usually talks

about overfitting: The model loses its ability of generalizing the learned patterns to

unknown examples as a result of adapting too heavily to the training-set.

In the case of algorithmically labeled data, the model reaches its best results

significantly later in the training process. Additionally, validation- and training-

graphs possess very similar shapes. Thus there is no overfitting when using the

larger dataset.

4.5.2 Multi-Task Learning using RGCN

During this section, we train the Relational Graph Convolutional Neural Network on

data of multiple filling and packaging lines at once. This way, we expect the model

to learn a generalized ability of detecting the root-cause machine over different filling

line architectures and characteristics. Here we exploit the ability of our built up

networks: They are adaptable to any possible line by providing the related graph

structure. In other words: Instead of training one Neural Network per customer we

now train one Neural Network for all four customers.

In the following, we will compare Multi-Task Learning on algorithmically labeled

data to manually labeled data, extract the best hyperparameters and compare the

results to training one Neural Network per filling line. As before, test-accuracies are

computed for each network when it shows its best validation-accuracy. But since

we now train on different customers simultaneously, the output looks different. An

accuracy for each customer is extracted and additionally the network is evaluated

against a combined dataset over all customers. This average over the different filling

and packaging lines is also used for all measures during training, e.g. calculating the

best validation score.

4.5. Relational Graph Convolutional Neural Network 95

Hyperparameter tuning

To determine hyperparamters for RGCN training, influence of batch-size and size

of the Neural Network architecture are evaluated. We have run RGCN Multi Task

training on algorithmically labeled data with Neural Network architectures ranging

from small three-layer with only eight, six and four hidden dimensions to four-layer

shapes with 128, 64, 64 and 32 latent dimensions. Every architecture was combined

with batch-sizes 16, 32, 64 and 128. The results of this experiment are displayed in

Figure 4.17.

All four plots show that larger networks, like the 4-layer architectures, lead to best

performing results and best stability beyond the customers’ accuracies. Thereby,

neither varying the number of hidden channels, nor different batch-sizes do change

the accuracies for 4-layer architectures significantly. At this point we set the batch-

size to 64 and the hidden dimensions to 128 in the first, 64 in the second and third,

and 32 in the fourth layer for upcoming trainings.

96 Chapter 4. Results

[8
,

6
,

4
]

[8
,

8
,

8
]

[3
2
,

1
6
,

8
]

[6
4
,

6
4
,

6
4
]

[1
2
8
,

1
2
8
,

1
2
8
]

[3
2
,

1
6
,

1
6
,

8
]

[6
4
,

3
2
,

3
2
,

1
6
]

[1
2
8
,

6
4
,

6
4
,

3
2
]

number of hidden channels

0.7

0.8

0.9

ac
cu

ra
cy

(a) batch-size=16
[8

,
6
,

4
]

[8
,

8
,

8
]

[3
2
,

1
6
,

8
]

[6
4
,

6
4
,

6
4
]

[1
2
8
,

1
2
8
,

1
2
8
]

[3
2
,

1
6
,

1
6
,

8
]

[6
4
,

3
2
,

3
2
,

1
6
]

[1
2
8
,

6
4
,

6
4
,

3
2
]

number of hidden channels

0.7

0.8

0.9

ac
cu

ra
cy

(b) batch-size=32

[8
,

6
,

4
]

[8
,

8
,

8
]

[3
2
,

1
6
,

8
]

[6
4
,

6
4
,

6
4
]

[1
2
8
,

1
2
8
,

1
2
8
]

[3
2
,

1
6
,

1
6
,

8
]

[6
4
,

3
2
,

3
2
,

1
6
]

[1
2
8
,

6
4
,

6
4
,

3
2
]

number of hidden channels

0.7

0.8

0.9

ac
cu

ra
cy

(c) batch-size=64

[8
,

6
,

4
]

[8
,

8
,

8
]

[3
2
,

1
6
,

8
]

[6
4
,

6
4
,

6
4
]

[1
2
8
,

1
2
8
,

1
2
8
]

[3
2
,

1
6
,

1
6
,

8
]

[6
4
,

3
2
,

3
2
,

1
6
]

[1
2
8
,

6
4
,

6
4
,

3
2
]

number of hidden channels

0.7

0.8

0.9

ac
cu

ra
cy

(d) batch-size=128

Figure 4.17 Comparing test accuracies of multi-task training for different sizes
of the RGCN architecture and different batch-sizes on data that
was algorithmically labeled by Random Forest. Each combination
is evaluated on a customer-specific test set and additionally on a
overall test-set (average). The average accuracy over five runs is
plotted in dashed blue, customer-h in orange, customer-w in lila,
customer-a in green and customer-b in red.

4.5. Relational Graph Convolutional Neural Network 97

Manually- vs. algorithmically-labeled

Like done before, we evaluate the influence of using manually labeled data in com-

parison to algorithmically labeled data also for Multi-Task Learning performance.

We use a four layer architecture with 128 hidden dimensions in the first layer, 64 in

the second and third, and 32 in the fourth layer and train it five times. For every

run, we extract the test-accuracy for the model after the epoch showing highest

validation accuracy while training for 200 epochs. Afterwards, we compute the mean

accuracy and standard deviation as statistical error for the average-accuracy and

every customer over the set of five repetitions. Table 4.13 shows the results for

training on algorithmically labeled data. The trained network reaches accuracies

that are marginally beyond (customer-a and -b) or very similar to those of training

the RGCN model on single customers (compare subsection 4.5.1).

train accuracy [%] test accuracy [%]

average 95.4 ± 0.8 87.0 ± 0.7
customer-a 81.3 ± 1.4
customer-b 91.3 ± 1.0
customer-h 86.3 ± 0.7
customer-w 88.3 ± 1.1

Table 4.13 Mean train- and test- accuracy with standard deviation computed
over five repetitions for RGCN model training on Random Forest
labeled data using Multi Task Learning

But contrary to the previous results, also for customer-w the maximum accuracy of

about 88% is available at the epoch of best validation accuracy. Thus expressiveness

of validation concerning the abilities of the model is given in this case. In case

of a productive usage of a Neural Network, this correlation is very important to

automatically determine the optimal stop of training progress for receiving the best

possible parameters of the model.

Like in subsection 4.5.1, variances over multiple training runs are way (three to

four times) larger for training on manually labeled data compared to training on

algorithmically labeled data. Additionally, the achieved accuracies are worse in

general.

Figure 4.18 also shows the same behavior of training- and validation-accuracy like

in the previous chapter: For algorithmically labeled data train- and validation-curve

98 Chapter 4. Results

train accuracy [%] test accuracy [%]

average 91.5 ± 0.8 82.0 ± 2.4
customer-a 66.3 ± 8.8
customer-b 86.1 ± 4.2
customer-h 84.0 ± 5.8
customer-w 91.7 ± 4.2

Table 4.14 Mean train- and test- accuracy with standard deviation computed
over five repetitions for RGCN model training on manually labeled
data using Multi Task Learning

0 50 100 150 200

num. epochs

0.7

0.8

0.9

1.0

ac
cu

ra
cy

(a) Random Forest labeled

0 50 100 150 200

num. epochs

0.7

0.8

0.9

1.0

ac
cu

ra
cy

(b) manually labeled

Figure 4.18 Training (orange) and validation (blue) accuracies of a RGCN
over 200 epochs

show similar shapes while a early detaching of the validation-accuracies from training

progress can be witnessed for manually labeled data.

Comparing the average test-accuracies, we can state an performance increase of

5% by using algorithmically-labeled data over manually labeled data!

Looking deeper into details of the training results, very structured confusion

matrices for training on algorithmically labeled data (compare Figure 4.19) can

be witnessed. The main diagonals, which are showing correctly classified results,

are clearly pronounced. And many of the falsely classified examples appear next to

the main diagonal and thus classify a neighboring machine of the correct one. This

has to be considered a ”good miss”, since the rough area of the error cause still is

correct. Especially in cases that show a superposition of error causes leading to a

lead-machine stoppage, it is hard to choose exactly one causer machine. A frequent

scenario is e.g. a fault at machine A that makes the neighboring machine B stop.

4.5. Relational Graph Convolutional Neural Network 99

D
ep

a
ll

et
iz

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

C
a
rg

o
S

a
fe

g
.

W
ra

p
p

er
Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

7 0 1 0 0 2 0 0 0
2 0 0 0 0 0 0 0 0
0 3 1 0 0 1 0 0 0
1 0 10 1 0 0 0 0 0
0 0 0 13 0 0 0 0 0
0 0 0 0 11 1 0 0 0
2 0 0 0 0 3 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 3

0

5

10

(a) customer-a

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

2 0 0 1 0 0

1 0 0 1 0 0

4 0 0 0 1 0

0 10 0 0 0 0

0 0 24 0 0 0

0 0 0 10 0 0

0 0 0 0 2 0

0 0 0 0 0 8
0

10

20

(b) customer-b

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

Predicted

Depalletizer
Washer

EBI
Filler

Labeller
Packer

Palletizer
New-glass Depal

A
ct

u
al

1 0 0 0 0

1 0 0 0 0

15 0 0 0 0

1 16 0 0 0

0 0 9 1 0

0 0 0 8 0

0 0 0 2 9

0 1 0 0 0
0

5

10

15

(c) customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

35 0 0 1

0 6 0 0

0 0 11 0

0 0 1 6

0 0 1 3

0

10

20

30

(d) customer-w

Figure 4.19 Confusion matrices for Multi-Task Learning on algorithmically
labeled data. The model is trained on all customers’ data at once
and tested using test-sets of each customer individually.

The operators use the time to fix some previously known but not severe issue at

machine B. While they are still working on machine B, machine A already restarted

and now has to stop caused by machine B. In this case, line experts usually choose

the temporally first causer as the main causer since the line would not have stopped

without this failure. But both machines contributed to the overall line downtime.

In this case it would not be exactly wrong to classify machine B as causer. Thus,

model predictions that miss the correct machine in favor of its neighbor have better

chance of being reasonable than those that completely miss the correct area within

the line.

Figure 4.19 additionally shows some machines getting ignored by the Neural Net-

work. E.g. Unpacker and Cargo Safeguard at customer-a, Depalletizer and Unpacker

at customer-b, Depalletizer, Washer and Sweep-off Depalletizer at customer-h and

100 Chapter 4. Results

Palletizer at customer-w. All of these have in common that they are severely under-

repesented in the dataset. On the long term, that means with increasing amount of

data and customers, it is to expect that the potential of the known graph structure

is fully exploited, accordingly the generalization of the model increases and thus

also the poorly represented classes can be correctly classified. But at this stage the

model seems to lack some of the needed ability of generalization to expand its space

of predictions to cover all input machines.

D
ep

a
ll
et

iz
er

U
n
p
a
ck

er

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

5 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 3 0 1 0 0 0

0 0 2 5 0 0 0 0

0 0 1 0 4 0 0 0

1 1 0 0 0 1 0 1

0 0 0 0 0 0 1 1
0

2

4

(a) customer-a

U
n
p
a
ck

er

W
a
sh

er

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 0 0 0 0 1 1

1 0 0 0 0 1 0

0 2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 10 0 0 0

0 0 0 0 9 0 0

0 0 0 0 1 3 0

0 0 0 0 0 0 2
0.0

2.5

5.0

7.5

10.0

(b) customer-b

D
ep

a
ll

et
iz

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

S
w

ee
p

-o
ff

D
ep

a
ll

et
iz

er

Predicted

Depalletizer

EBI

Filler

Labeller

Packer

Palletizer

Sweep-off Depalletizer

A
ct

u
al

1 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 9 0 0 2 0

0 0 0 3 0 0 0

0 0 0 0 4 2 0

0 0 0 0 0 7 0

0 0 0 0 0 0 1
0.0

2.5

5.0

7.5

(c) customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

16 0 0 0

0 5 0 0

0 0 7 0

0 0 0 3

0 0 0 1

0

5

10

15

(d) customer-w

Figure 4.20 Confusion matrices for Multi-Task Learning on manually labeled
data. The model is trained on all customers’ data at once and
tested using test-sets of each customer individually.

In contrast to the above, the confusion matrices related to manually labeled data

show a significantly more confused picture, especially for customer-a. Obviously,

it is very hard for the model to share the learned features of the other customers

with those of customer-a, what, as seen before, decreases the classification accuracy

4.5. Relational Graph Convolutional Neural Network 101

for this filling line by about 15%. In Multi Task Learning, the model will adapt

to recognize those patterns that are most common beyond the tasks. Thus from a

Multi Task Learning point of view, the task corresponding to customer-a (task-a)

differs from the others in such degree, that training the network on all tasks at once

influences the training result for task-a negatively.

Summarizing the given results, we encountered accuracies within Multi Task Learn-

ing that replicate the top level of the available approaches in this work. A great

advantage when using this approach is that only one model has to be trained and

monitored in its life-cycle. Additionally, we expect the model to increase its accuracy

and ability of generalization by adding more customers and more examples to the

training.

As training on manually labeled data again leads to inferior results compared to

algorithmically labeled data, we will proceed the evaluation of Transfer Learning by

only using the latter.

4.5.3 Transfer Learning using RGCN

In this chapter, we use the models transferability over customers to train it on

three of the four customers using Multi Task Learning, transfer the network to

the remaining customer and evaluate its performance on the unknown filling and

packaging line.

Since Multi Task Learning on the larger, algorithmically labeled dataset showed

to be superior to training on manually labeled data, the combination of Multi Task

Learning and Transfer Learning will be exclusively evaluated on algorithmically

labeled data.

transferred to customer
average

MTL test-accuracy
[%] transfer accuracy [%]

customer-a 89.4 ± 0.3 66.9 ± 2.5
customer-b 86.4 ± 1.1 80.9 ± 1.5
customer-h 86.2 ± 1.2 82.5 ± 2.3
customer-w 86.1 ± 1.1 70.3 ± 5.5

Table 4.15 Accuracies with standard deviation for MTL on three customers
and transferring the model to fourth customer. Computed over five
repetitions for RGCN model training on algorithmically labeled data
using Multi Task Learning

102 Chapter 4. Results

When transferring the models, we achieve accuracies that are between 4% and 18%

lower than in Multi-Task Learning when using all four customers. This wide range

D
ep

a
ll

et
iz

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

C
a
rg

o
S

a
fe

g
.

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

2 1 4 0 0 3 0 0
0 1 1 0 0 0 0 0
0 1 3 0 0 1 0 0
0 0 12 0 0 0 0 0
0 0 2 11 0 0 0 0
0 0 0 0 11 1 0 0
0 0 1 0 0 4 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3

0

5

10

(a) Transferred to customer-a

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 2 0 0 1

0 1 1 0 0

0 4 0 1 0

9 1 0 0 0

0 23 1 0 0

0 0 10 0 0

0 0 0 2 0

0 0 0 0 8
0

10

20

(b) Transferred to customer-b

D
ep

a
ll
et

iz
er

W
a
sh

er

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

N
ew

-g
la

ss
D

ep
a
l

Predicted

Depalletizer
Washer

EBI
Filler

Labeller
Packer

Palletizer
New-glass Depal

A
ct

u
al

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 14 0 0 0 0 1

0 4 1 12 0 0 0 0

0 0 0 0 10 0 0 0

0 0 0 0 0 8 0 0

2 0 0 0 0 2 7 0

0 0 0 0 0 0 0 1
0

5

10

(c) Transferred to customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er
Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

25 9 0 2

0 5 0 1

2 0 9 0

0 0 0 7

0 0 0 4

0

10

20

(d) Transferred to customer-w

Figure 4.21 Confusion matrices for Transfer Learning using RGCN, trained
with Multi-Task Learning on three customers and transferred to
the fourth.

of performance decrease can be explained by a deeper look into the different filling

line characteristics (compare section 6.1) on the one hand and the different ways

of manually creating a label on the other hand. Customer-w, with 18% the most

decreased one, shows a clearly different line architecture than all other customers

since here one-way plastic bottles are filled instead of returnable glass bottles. This

result shows that the introduced Neural Network architecture learns generalized

feature extraction that is able to solve severely different tasks with solid accuracy.

But patterns, learned on one type of filling and packaging lines, are obviously not fully

transferable to other types of lines. Customer-a, as a similar filling line compared to

customers b and h, shows results decreased by about 14% compared to Multi Task

4.6. spatio-temporal Relational Graph Convolutional Neural Network 103

Learning. This also is a greater gap than expected, but can be explained by the way

of creating the expert labels (manual labels). Customer-a is the only one that gave

the ground truth for every stoppage from within the filling line without considering

the corresponding data, that we used as input for our algorithms. The labels for

all other customers were mainly created on basis of the data by analyzing plots of

data for each lead-machine downtime. Comparing the results of customer-b and -h,

as the customers corresponding to the two most similar classification tasks, to their

performance in plain Multi Task Learning, their loss of accuracy is comparably small

with 10% and 4%.

As expected, Transfer Learning works the better, the higher the similarity between

source and target task are.

Looking deeper into detail, all confusion matrices of Transfer Learning (compare

Figure 4.21) show problems of the models to solve the root cause allocation for the

start of the filling line.

4.6 spatio-temporal Relational Graph Convolutional

Neural Network

In this section, we train the spatio-temporal Graph Convolutional Neural Network

which is built up in a fully convolutional architecture (like given in section 3.10)

with data that was preprocessed using Temporal Data Downsampling (like described

in subsection 3.2.1). The labels of the training data are built up algorithmically

(compare section 3.7) while the model is evaluated on expert-labeled validation- and

test-set to secure a realistic evaluation.

4.6.1 Training on single lines using stRGCN

First of all, we train the model on each of the filling and packaging lines individually.

On the one-hand, we optimize hyperparameters for this model architecture and on

the other hand we score the model to compare it to the previous approaches.

During hyperparamter-tuning we sweeped over different values for:

• Numbers of blocks and layers.

• Number of channels (this hyperparameter is used for all convolutions within

the stRGCN architecture).

104 Chapter 4. Results

• Droput rate which is applied to the output of the graph convolution layers.

To say one thing in advance: The results are very stable against changing hyper-

parameters. In general, accuracies do not change significantly when tweaking the

hyperparameters in a reasonable range. In-detail results can be found in Appendix

(chapter 6).

When selecting the number of blocks and layers mainly extreme configurations

should be avoided. But by using at least three layers per block stable results are

achived (compare Figure 6.7). We chose to use three blocks of three layers each for

our stRGCN architecture.

In terms of channels, again we mainly have to avoid choosing a insufficiently low

number. For 16 or more channels the results do not change significantly (compare

Figure 6.8). We will use 16 channels in the further work.

Finally, dropout rate does not influence the resulting accuracies significantly (com-

pare Figure 6.9). It was set to 0.2.

With the chosen hyperparameters, we evaluate the models training on data of each

customer individually. The results are displayed in Table 4.16.

test acc [%] train acc [%]

customer-a 67.2 ± 2.6 93.0 ± 0.4
customer-b 87.7 ± 1.4 95.9 ± 0.3
customer-h 79.7 ± 2.0 95.9 ± 0.2
customer-w 86.8 ± 6.0 98.2 ± 0.4

Table 4.16 Train and test accuracies for stRGCN trained on single lines

As already witnessed before when evaluating GCNs (section 4.5, especially in

Transfer Learning), also this model has difficulties in solving the root-cause anal-

ysis for the very first machines along the main-stream. The confusion matrices

(Figure 4.22) of customers a, b and h show that the model either never predicts

the first machines like Depalletizer and Unpacker (customer-b and -h) or too many

predictions of the Depalletizer at customer-a. Since especially the Depalletizer at

customer-a is way too often predicted by the model, we want to discuss this in more

detail. The reason is most probably again the way of labeling. At customer-a the

expert often interprets low quality of the returnable glass bottles as the root cause

of problems in the line. And for this scenario he usually selects the Depalletizer

as corresponding root cause machine since he says there was no correct machine

4.6. spatio-temporal Relational Graph Convolutional Neural Network 105

D
ep

a
ll

et
iz

er

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

W
ra

p
p

er
Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

25 0 1 6 1 2 1 0 0
4 4 0 4 0 1 1 0 0
3 0 10 5 0 0 1 0 0
2 0 1 40 3 1 1 0 0
2 0 2 2 54 3 0 0 0
2 0 1 2 2 35 0 0 0
12 0 1 0 0 3 9 0 0
3 0 0 0 1 2 3 7 0
1 0 0 2 0 1 0 0 1

0

20

40

(a) customer-a

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

8 1 0 1 4 1

1 2 0 6 1 1

18 2 0 1 2 0

3 33 0 0 0 0

0 0 91 0 0 0

0 1 0 63 0 0

0 0 0 1 30 1

0 0 0 8 0 24
0

25

50

75

(b) customer-b

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

N
ew

-g
la

ss
D

ep
a
l

Predicted

Depalletizer
Sekamat 2

Washer
EBI

Filler
Labeller

Packer
Palletizer

New-glass Depal

A
ct

u
al

2 0 0 2 3 1
1 1 0 0 0 0
1 0 0 0 0 3
49 1 1 0 0 0
2 39 0 0 0 0
1 0 26 0 2 0
3 0 2 27 2 0
1 0 0 3 36 1
1 2 0 0 0 1

0

20

40

(c) customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

11 0 0 0

0 2 0 0

0 1 8 0

0 0 0 7

0 0 1 1

0

5

10

(d) customer-w

Figure 4.22 Confusion matrices for training the spatio-temporal Graph Convo-
lutional Neural Network on each single customer.

to select. Since the algorithm goes the contrary way, so first selects the root-cause

machine and in a later step more information (e.g. about glass quality problems)

is given via the machines error message. As a result of the different approaches

of expert and algorithm our evaluation result when comparing the classified causer

machines often shows wrong results.

4.6.2 Multi-Task Learning using stRGCN

With a train-accuracy of 97.9± 0.6% after the training epoch which yielded highest

validation accuracy, this model shows an improvement in terms of adption to the

training set compared to the RGCNs Multi-Task training accuracy of 91.5±0.8%. As

one can see in Figure 4.23, the network even improves its training accuracy steadily

to a saturation level of about 100%. That means, the model is capable of learning

106 Chapter 4. Results

the patterns hidden in the training set perfectly.

0 20 40 60

epoch

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Figure 4.23 Training- (upper, blue curve) and validation-accuracy (lower, or-
ange curve) of Multi-Task Learning by using the stRGCN architec-
ture. Validation accuracy stagnates early in training process. But
this behaviour is independent from hyperparamters like learning-
rate.

But the maximum of validation accuracy is already reached as early as about

epoch 15 to 20 and afterwards validation performance decreases. Thus the model

gets into overfitting.

We conducted hyperparamter-tuning to decrease overfitting. Therefore, we inves-

tigated the influence of Adam optimizer’s learning-rate and the dropout-rate that

is used within the models blocks, since these are the usual tools to decrease overfit-

ting. Both provide best results with their default values of 0.001 for learning rate

and 0.2 for dropout. Thus overfitting can not be decreased by these parameters.

Investigating the learning behaviour from a data-perspective opens up new insights:

Remembering the fact that training-sets are labeled algorithmically while validation-

and test-sets are labeled by human experts, is an important property of the used

data. During Multi-Task Learning, the model has to adapt to prediction of four

Random Forest models which created the training labels. This is a task that a model

with huge adaption abilities like our stRGCN should be able to solve. And the high

accuracies of the Random Forest models (between 73 and 94%) set high expectations

towards the trained stRGCN model which hopefully combines what the Random

Forests learned before. Due to a training accuracy of up to 100% the model showed

that it actually can combine what the four Random Forests learned independently,

4.6. spatio-temporal Relational Graph Convolutional Neural Network 107

but the problem now is in converting the learned on unknown examples. And at

generalizing its ability, the trained stRGCN model seems to have its deficiencies

what results in a heavy difference between training- and validation-/test-accuracy.

test acc [%]

customer-a 63.9 ± 3.8
customer-b 84.1 ± 1.7
customer-h 82.7 ± 2.4
customer-w 55.8 ± 7.9

Table 4.17 Test accuracies for each customer. One stRGCN is trained on
all filling lines at once using Multi-Task Learning and afterwards
evaluated on test-sets of each customer individually.

In Table 4.17, the results of evaluating the stRGCN model after being trained

by Mulit-Task Learning on a combined dataset of all four customers, are shown.

Corresponding confusion matrices can be found in the Appendix in subsection 6.2.2.

For customers a, b and h, the accuracies are in a good range similar to the results of

training the same Neural Network architecture on each line individually (compare

Table 4.16). But evaluation on customer-w shows noticeable worse performance

compared to 86.8 ± 8.0%, when training on only this lines data. A difference of

about 30% was not to expect and is probably caused by the strongly differing

line characteristic compared to all other customers. Differences like the fact that

customer-ws first three machines are electronically and mechanically blocked and

thus do not show temporal delay during error propagation, or the position of the

lead-machine at the very start of the line, could be a factor.

This result opens up an important question for the future: Is it better to conduct

Multi-Task Learning over all different lines with one model to provide this with as

much and as various data as possible or can better results be achieved by clustering

filling lines into e.g. returnable glass lines, one-way plastic lines, can lines etc. to

provide the opportunity to the model to deeper adapt to the given characteristics of

this cluster’s lines?

4.6.3 Transfer Learning using stRGCN

The achieved accuracies in Transfer Learning for customers a and b show the potential

of this approach! Since the performance loss comparing MTL results (Table 4.17) to

108 Chapter 4. Results

Transfer Learning (Table 4.18) is with approximately 4% and 8% low, respecting the

fact that the model only gets the graph-structure of the new filling line as knowledge

and cannot adapt to any data.

mean test acc mean train acc

customer-a 59.1 ± 3.0 96.1 ± 0.7
customer-b 76.6 ± 2.1 83.9 ± 1.3
customer-h 70.1 ± 4.5 96.2 ± 1.5
customer-w 65.7 ± 3.7 95.1 ± 1.6

Table 4.18 Test accuracies for each customer after training a stRGCN on all
customers at once using Multi-Task Learning.

This provides the option for productive usage, to transfer a model to a unknown

customer and thus put a Machine Learning model in place without needing to wait

for a certain amount of label-example pairs for initial training.

Contrary to that, the gap between Customer-bs accuracy after MTL-training and

when using Transfer Learning is with about 15% larger and drops the accuracy

significantly. Customer-w however shows a strange behavior when again comparing

MTL and Transfer Learning accuracies. It advances by about 10%. This only can

be explained by the suspiciously low accuracy during MTL.

When looking deeper into detail of the results (Figure 4.24), the confusion matrices

show a known tendency: The central part and the area, downstream of the lead-

machine at lines a, b and h can be resolved well. Whereas the first machines along

the mainstream again are more difficult to learn. Hint: The New-glass Depalletizer

at customer-h is also located at the very beginning of the line, in parallel position

to Depalletizer and Unpacker.

4.7 Comparing RGCN to stRGCN

In this work, we built up two Neural Network architectures that are capable of

Multi-Task Learning and Transfer Learning. Thus, they are able to firstly adapt to

different packaging and filling lines at once and subsequently predicting root-causer

machines in new lines without any training-data.

But there is a difference in their data preprocessing pipelines. Since RGCN works

on manually extracted features, a manual configuration of the corresponding param-

eters is needed for each line. This is not the case for stRGCN, which covers feature

4.7. Comparing RGCN to stRGCN 109

D
ep

a
ll

et
iz

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

C
a
rg

o
S

a
fe

g
.

W
ra

p
p

er
Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

1 5 33 5 19 2 1 1 5
1 3 16 0 7 0 0 0 0
0 15 18 0 5 0 0 0 0
0 3 79 8 6 0 0 0 0
0 1 4 119 1 1 0 0 0
0 3 4 4 73 1 0 0 0
0 0 9 2 16 19 5 0 0
0 0 3 2 2 8 14 3 0
1 0 1 0 0 2 5 0 1

0

50

100

(a) customer-a

D
ep

a
ll

et
iz

er

U
n

p
a
ck

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 0 1 8 3 8 2

0 0 2 6 8 10 0

0 0 7 32 1 4 0

0 0 73 2 1 0 0

0 0 6 174 0 0 0

0 0 1 0 150 1 0

0 0 0 1 7 42 0

2 1 0 3 21 8 23
0

50

100

150

(b) customer-b

D
ep

a
ll
et

iz
er

U
n
p
a
ck

er
S
ek

a
m

a
t

2
S
ek

a
m

a
t

1
W

a
sh

er
E

B
I

F
il
le

r
L

a
b

el
le

r
P

a
ck

er
P

a
ll
et

iz
er

C
ra

te
W

a
sh

er
N

ew
-g

la
ss

D
ep

a
l

Predicted

Depalletizer
Sekamat 2

Washer
EBI

Filler
Labeller

Packer
Palletizer

Crate Washer
New-glass Depal

A
ct

u
al

8 0 1 1 0 2 0 1 1 0 0 2
0 0 0 0 2 2 0 0 0 0 0 0
2 0 0 1 4 2 0 0 0 0 0 0
1 0 0 0 2 84 0 1 0 0 0 3
4 0 0 1 0 9 78 0 0 0 0 2
1 0 0 0 0 3 0 52 1 0 1 11
6 0 0 0 0 2 0 5 45 0 2 13
7 1 0 1 2 3 0 5 2 18 8 18
0 0 0 0 0 0 0 0 1 0 0 0
4 0 1 0 1 0 0 0 0 0 0 0

0

25

50

75

(c) customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

17 1 0 0

0 8 0 0

2 6 11 0

0 3 2 9

0 2 1 1

0

5

10

15

(d) customer-w

Figure 4.24 Confusion matrices for every customer after conducting Multi-Task
Learning on the other three customers data and afterward transfer-
ring the model to the given customer. Using spatio-temporal Graph
Convolutional Neural Network on algorithmically labeled data.

extraction inside the network and thus needs even less manual work per roll-out at

one filling line.

But since test-results of stRGCN are usually worse than those of RGCN, addi-

tionally learning the feature-extraction seems to decrease stRGCN’s test accuracy

compared to RGCN with the current amount of data being available. This is prob-

ably caused by a severely more complex network architecture, containing loads of

learnable parameters in case of stRGCN. The amount of available data seems to be

sufficient for training the smaller RGCN to high accuracies but stRGCN probably

needs a larger dataset to reach the accuracies that are possible to hit, like shown by

RGCN and Random Forest.

110 Chapter 4. Results

4.8 Milestones for training Graph Convolutional

Networks

When examining the potential of GCNs on the given task for the first time, we

used manually preprocessed data and a simple three-layer GCN architecture with a

fully connected decision layer on top. This approach delivered accuracies of roughly

50% and thus showed that this model type is able to learn patterns in the data.

But for competitive results, the performance had to be pushed significantly. This

was achieved by introducing edge-types and a fully convolutional architecture for

our GCN approach as well as the stGCN approach. For the latter we additionally

introduced an improved way of temporal data selection and preprocessing and added

information about the lead-machine to the data.

In this section, differences in the results of the models when using the named

improvements versus without using them are shown.

4.8.1 Edge types

The most important breakthrough was brought about by introducing edge-types and

thus different relations between machines. Since machines show the states ”lack”

and ”tailback” when an error arrives they provide information if the error arrived

from upstream or downstream direction. To utilize this information, the model

somehow has to know the direction of material flow. We translate this information

using edge-types without edge-types

average 87.0 ± 1.0% 58.8 ± 2.9%
customer h 88.1 ± 2.0% 64.1 ± 3.0%
customer a 80.3 ± 3.0% 43.1 ± 3.8%
customer b 89.4 ± 1.0% 65.3 ± 3.6%
customer w 90.3 ± 1.0% 62.5 ± 6.4%

Table 4.19 Comparing test-accuracies of fully convolutional GCN architectures
on data preprocessed with Manual Feature Extraction using Multi-
Task Learning. On the one hand, we see a network using Relational
GCN layers and thus different edge-types, on the other hand a net-
work with plain GCN layers and thus no different edge-types. Using
edge-types leads to an improvement of ≈ 30% in accuracy.

into ”upstream” and ”downstream” edges between machines in the graph of each

4.8. Milestones for training Graph Convolutional Networks 111

line. Thus, the undirected connection between two machines is split up into an

”upstream” and a ”downstream” edge. This enables the network to learn how to

utilize ”lack” and ”tailback” information.

As Table 4.19 shows with accuracy increase of about 30% per customer and

severely decreased variance of results, replacing plain Graph Convolution Layers

with Relational Graph Convolution Layers was a crucial step for the Neural Network

architectures.

4.8.2 Fully convolutional architecture

Our very first approach of using GCNs for root-cause machine classification contained

using GCN-layers for feature extraction and a fully-connected layer (Single Layer

Perceptron) as so-called decision layer, thus converting the features, extracted by

the Graph Convolution layers, into class probabilities.

To reduce the number of network parameters that have to be optimized during

training process, we exchanged the fully connected decision layer by a convolutional

layer in combination with global-max-pooling.

But it became apparent very quickly that this architecture adds unnecessary

complexity to the information flow through the network (compare section 3.10).

Thus, the fully convolutional approach was adapted to the given problem to result

in the final architecture.

RGCN-with-dense classic-fcRGCN fcRGCN

customer a 78.4 +- 2.7 74.7 +- 2.7 83.0 +- 1.2
customer b 91.6 +- 0.8 90.0 +- 1.6 92.7 +- 1.8
customer h 83.8 +- 7.5 85.0 +- 4.1 85.7 +- 0.8
customer w 90.6 +- 0.0 90.3 +- 0.6 88.3 +- 0.0

Table 4.20 Test-accuracies for different NN-architectures when training one
network per line. Results are averaged over five runs, test-accuracy
is computed after 100 epochs. Fully convolutional RGCN outper-
forms the other networks at three of four customers.

As we can see in Table 4.20, the newly introduced fully convolutional Relational

Graph Neural Network (RGCN) outperforms the other architectures at all customers

but customer-w with additionally showing low variances, and thus stable results, for

all customers.

112 Chapter 4. Results

0 25 50 75 100
0.8

0.9

1.0

(a) customer-a

0 25 50 75 100
0.8

0.9

1.0

(b) customer-b

0 25 50 75 100
0.8

0.9

1.0

(c) customer-h

0 25 50 75 100
0.8

0.9

1.0

(d) customer-w

Figure 4.25 Comparing the evolution of training accuracy over epochs for a
RGCN with a fully connected decision layer (blue), a RGCN with
fully convolutional architecture using global pooling (orange) and
a RGCN with the newly introduced fully convolutional architecture
(green). Results are averaged over five runs. The newly introduced
architecture learns significantly fast than the others and is already
less than 10% beyond the final training accuracy after the first
epoch.

Additionally, training progress (training-accuracy after each epoch of training)

shows significant differences between the architectures (compare Figure 4.25) al-

though the final train-accuracies are similar between all models besides the classic

fully-convolutional approach at customers a and b. Looking at the training accu-

racies after the very first epoch of training, we can see that the introduced fully-

convolutional architecture has already reached comparably high accuracies after

being trained on each training example only once. In case of customer-a, training

accuracy rises from about 87% to 96% after the first epoch. For the other customers

only three to four percent of training accuracy are gained after the first epoch.

This shows exceptionally fast Neural Network training for the newly introduced net-

4.8. Milestones for training Graph Convolutional Networks 113

work which is a hint for a well chosen architecture which simplifies information flow

through the network and thus also facilitates approximating the pattern recognition

during model training.

4.8.3 Temporal data selection

We started training DTW+kNN and GCN approaches by extracting data from e.g.

10min before the start of the lead-machine downtime until 10s after it, like also done

in related work [2]. Changing this towards selecting the data until the end of the

lead-machine downtime (compare Figure 3.6) led to improvements of up to 5%, when

using the stGCN, depending on the customer (compare Table 4.21).

test-accuracy
for temp. data selection a)

test-accuracy
for temp. data selection b)

customer-a 63.4 ± 2.4 67.0 ± 2.9
customer-b 82.1 ± 1.7 87.1 ± 1.9
customer-h 77.5 ± 2.3 80.9 ± 1.5
customer-w 90.7 ± 4.2 89.7 ± 4.0

Table 4.21 Comparing test-accuracies of stRGCN between temporal data selec-
tion until the stop of the lead-machine (a) or end of the lead-machine
downtime (b). Trained on each customer individually.

By providing information about events in the line also during the lead-machine’s

stop, we enable the models to also follow patterns during the machines’ restarting

process towards the lead-machines restart. Thus, correlations between machine

stoppages can be better estimated. Accordingly, results of customers a, b and h

show an increase of accuracy by 3% to 5%. In contrast, we cannot see improvements

at customer-w which is reasonable due to the very simple and few temporary patterns

that can be found in its data. Due to the first three machines being blocked and

thus stopping and starting simultaneously, there are only two machines left that

show temporally delayed events compared to the lead-machine. And they are causers

for only 12% of the examples. Thus, it is not surprising that an improvement in

processing the temporal patterns inside the data shows little effect at customer-w.

114 Chapter 4. Results

4.8.4 Lead-machine information

When training a ML-model on data of one filling and packaging line, the model is

able to learn the characteristics of the line and thus also to properly handle the lead-

machine in comparison to the rest of the machines. In contrast, when conducting

Multi Task Learning, specialization at one line is impossible. Thus the model can’t

learn to treat one machine alternatively. Thus, we added the information about the

position of the lead-machine to the data like introduced in section 3.11.

Improvements of about 3% in accuracy (compare Table 4.22) verify the assumption

of needing this information.

without lead-machine info with lead-machine info

customer-a 59.8 ± 3.9 63.9 ± 3.8
customer-b 81.9 ± 2.7 84.1 ± 1.7
customer-h 79.5 ± 1.6 82.7 ± 2.4
customer-w 56.1 ± 8.6 55.8 ± 7.9

Table 4.22 Comparing test-accuracies of Multi-Task training using stRGCN
between data without lead-machine info vs. data with lead-machine
information. Averaged over 10 runs. Providing information about
the position of the lead-machine generally improves test-accuracy.

As for the last milestone, introducing to provide the position of the lead-machine

to the model improves accuracy for all customers but customer-w. And once again,

this most probably is caused by the simplicity of its line structure which makes the

added information redundant to the machine-state information in the majority of

the examples.

4.9. Active Learning 115

4.9 Active Learning

In this section, we show that selecting lead-machine stoppages, which should be

labeled, by a query strategy outperforms randomly selecting the stops significantly.

In a first step, this result is shown using pool-based Active Learning, afterwards we

show the same behavior for querying examples from mini-pools that only contain

examples of one shift in a filling line. Since the goal of Active Learning is to reduce

labeling effort, we will compare the reached test accuracy of a Random Forest

classifier with a given number of training examples that are chosen by different query

strategies.

50 100 150

number of training examples

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(a) customer-a

50 100 150

number of training examples

0.4

0.6

0.8

1.0
ac

cu
ra

cy

(b) customer-b

25 50 75 100

number of training examples

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(c) customer-h

50 100

number of training examples

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(d) customer-w

Figure 4.26 Comparing different query strategies for pool-based Active Learning.
AL starts with 10 labeled samples. Model: Random Forest with
500 estimators and maximum depth of 7. Training is conducted
for every number of training samples 10 times and results are
averaged. Random Sampling strategy is plotted in dashed blue,
Uncertainty Sampling in orange, Nearest Neighbor Criterion in
green and Dynamic Ensemble Active Learning in dotted red.

Results shown in Figure 4.26 witness increased accuracy for training on examples

116 Chapter 4. Results

queried using DEAL(combining Uncertainty Sampling and Nearest Neighbor Crite-

rion) in comparison to randomly sampling. Especially for low amounts of training

examples, the difference is large. In other words, the model learns faster along the

growing number of training examples. Nevertheless Uncertainty Sampling (UC) out-

performs DEAL at some occasions. But there are multiple reasons to prefer DEAL to

Uncertainty Sampling. The main one is called sampling bias and describes the bias

that is introduced by the query strategy when selecting the examples. Due to this

influence, the labeled training set shows a different example distribution than the

full dataset. In the case of Uncertainty Sampling, examples near the models decision

boundaries (boundaries between areas in input space that correspond to a class)

are over-represented in the labeled dataset. This often leads to poor generalization

ability of the model.

Connected to the sampling bias, the variance between training runs on datasets

queried by Uncertainty Sampling is high since sometimes the distribution of training

samples is sufficient, sometimes e.g. only depicts some but not all boundaries between

classes in the example space.

Therefore, the sampling strategy Nearest Neighbor Criterion (NNC) turned out to

be a very well suited combination for Uncertainty Sampling. NNCs goal is to tweak

the labeled training-sets distribution to be as similar as possible to the original data

distribution. Thus training accuracies are stabilized and generalization ability is

increased by combining UC and NNC using DEAL. For deeper insight into these

results the reader is also referred to [36].

After looking at the results of plain pool based Active Learning, we now evalu-

ate shift-wise pool-based Active Learning. As starting point, the model gets ten

randomly selected labeled examples. After that, a shift is assumed to provide ten

lead-machine stoppages (examples) each. The query selects three of the ten sample-

points which are labeled and added to the train-set. We again train the Random

Forest classifier after each epoch for ten times (for each query strategy) and average

over the results (Figure 4.27).

As before, this approach also shows a severe speed-up of the training process.

Customers a and h need about 25% less labels when the examples are queried

by DEAL. Customer-b shows advantages in the early stages of training, until an

accuracy of apporximately 80% is reached. Afterwards the progress is similar for

Random Sampling and DEAL. But even in this case accuracy of 90% is reached

after approx 25 shifts which equals about 2 weeks of production. That means that

4.9. Active Learning 117

the end-user only needs to provide three selected labels per shift over two weeks to

get 90% accuracy instead of labeling all 250 stoppages that occured during the two

weeks. At customer-w 90% accuracy is reached after eight shifts when using DEAL.

Model training based on Random Sampling has not reached equal accuracy after 14

shifts. Only needing eight instead of at least 14 shifts until an accuracy of 90% is

reached equals saving more than 40% work for labeling data.

0 10 20

number of shifts

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(a) customer-a

0 10 20

number of shifts

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(b) customer-b

0 2 4 6 8

number of shifts

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(c) customer-h

0 5 10

number of shifts

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(d) customer-w

Figure 4.27 Comparing different query strategies for Active Learning. AL
starts with 10 labeled samples. Afterwards, the query always se-
lects 3 out of 10 examples (mini-pool per shift) to simulate the
behavior of Active Learning per shift. Model is a Random Forest
with 500 estimators and maximum depth of 7. Random Sampling
strategy is plotted in dashed blue, Uncertainty Sampling in orange,
Nearest Neighbor Criterion in green and Dynamic Ensemble Active
Learning (combining Uncertainty Sampling and Nearest Neighbor
Criterion) in dotted red.

118 Chapter 4. Results

4.10 Results overview

This section gives an overview of results and compares all models that were eval-

uated in this work. Firstly, strengths and weaknesses of all types of models are

compared qualitatively. Afterwards, the quantitative accuracies are compared over

all algorithms.

Avalanche Fair Detective ML per Line
ML over

multiple lines

Level of accuracies medium high very high high

Duration of roll-out medium fast slow fast

Explainability high high low low

Robustness against
low data quality

high medium very high high

Adaptability to customer’s
interpretation standards

no no yes no

Amount of labeling effort no no high medium

Need of Machine Learning
environment

no no yes yes

Table 4.23 Comparing different approaches qualitatively. As a result, Fair
Detective is the reasonable first increment to improve root-cause
analysis starting from Avalanche Algorithm. In cases of low data-
quality or individual customers’ interpretation standards for lead-
machine stoppages, ML approaches nonetheless, offer the chance to
achieve highest accuracies.

4.10. Results overview 119
A

va
la

n
ch

e
a
lg

o
ri

th
m

D
T

W
+

K
N

N

cu
st

o
m

er
-a

4
7
.4

6
7
.7
±

2
.1

cu
st

o
m

er
-b

6
7
.6

7
0
.0
±

2
.8

cu
st

o
m

er
-h

6
3
.3

6
3
.3
±

3
.9

cu
st

o
m

er
-w

6
3
.1

8
7
.0
±

2
.8

T
ab

le
4.

24
B

a
se

li
n

e
a
cc

u
ra

ci
es

in
cl

u
d
in

g
A

va
la

n
ch

e
a
lg

o
ri

th
m

,
w

h
ic

h
is

th
e

cu
rr

en
tl

y
p
ro

d
u

ct
iv

e
sy

st
em

a
t

S
ys

kr
o
n

,
a
n

d
co

m
bi

n
a
ti

o
n

o
f

D
yn

a
m

ic
T

im
e

W
a

rp
in

g
a
n

d
kN

N
.

R
es

u
lt

s
gi

ve
n

in
pe

rc
en

t.

ru
le

-
b

as
ed

R
an

d
om

F
or

es
t

R
G

C
N

si
n

gl
e

cu
st

om
er

R
G

C
N

M
u

lt
i-

T
as

k

R
G

C
N

T
ra

n
sf

er
L

ea
rn

in
g

st
R

G
C

N
si

n
gl

e
cu

st
om

er

st
R

G
C

N
M

u
lt

i-
T

as
k

st
R

G
C

N
T

ra
n

sf
er

L
ea

rn
in

g

cu
st

om
er

-a
53

.5
72

.8
±

4.
0

8
2
.8
±

1
.0

81
.3
±

1.
4

66
.9
±

2.
5

67
.2
±

2.
6

63
.9
±

3.
8

5
9
.1
±

3
.0

cu
st

om
er

-b
92

.1
90

.7
±

1.
6

9
3
.4
±

0
.6

91
.3
±

1.
0

80
.9
±

1.
5

87
.7
±

1.
4

84
.1
±

1.
7

7
6
.6
±

2
.1

cu
st

om
er

-h
79

.9
82

.5
±

5.
0

86
.0
±

1.
3

8
6
.3
±

0
.7

82
.5
±

2.
3

79
.7
±

2.
0

82
.7
±

2.
4

7
0
.1
±

4
.5

cu
st

om
er

-w
68

.5
9
3
.9
±

1
.3

83
.3
±

3.
3

88
.3
±

1.
1

70
.3
±

5.
5

86
.8
±

6.
0

55
.8
±

7.
9

6
5
.7
±

3
.7

T
ab

le
4.

25
A

cc
u

ra
ci

es
o
f

n
ew

ly
in

tr
od

u
ce

d
a
p
p
ro

a
ch

es
:

R
u

le
-b

a
se

d
ex

pe
rt

sy
st

em
,

R
a
n

d
o
m

F
o
re

st
a
n

d
N

eu
ra

l
N

et
-

w
o
rk

s.
E

a
ch

N
N

is
tr

a
in

ed
o
n

d
a
ta

o
f

ea
ch

li
n

e
in

d
iv

id
u

a
ll

y
(s

in
gl

e
cu

st
o
m

er
),

o
n

a
ll

li
n

es
a
t

o
n

ce
(M

u
lt

i-
T

a
sk

)
a
n

d
o
n

a
ll

li
n

es
bu

t
o
n

e
a
n

d
a
ft

er
w

a
rd

s
tr

a
n

sf
er

re
d

to
th

e
le

ft
-o

u
t

o
n

e
(T

ra
n

sf
er

L
ea

rn
in

g)
.

N
eu

ra
l

N
et

w
o
rk

s
a
re

tr
a
in

ed
o
n

a
lg

o
ri

th
m

ic
a
ll

y
la

be
le

d
d
a
ta

.
R

es
u

lt
s

gi
ve

n
in

pe
rc

en
t.

5 Conclusion and Outlook

5.1 Conclusion

In this thesis multiple approaches for algorithmically finding the root-cause machine

corresponding to a stoppage of a filling and packaging line, were developed and

evaluated. The goal was to increase classification accuracy and decrease roll-out

costs per filling line. Additionally, any model should be immediately usable within

the day of roll-out.

I built up a dataset containing about 1800 manually labeled examples of four

different lines. By algorithmically labeling additional data, I was able to create a

dataset that includes about 10 500 examples, which is, to the best of my knowledge,

by far the largest dataset for this kind of problem.

All developed algorithms were compared to the general baseline ”Avalanche al-

gorithm”, which is the algorithm that is currently used in Syskron’s productive

system.

I introduced multiple approaches, allocated in the field of Time-Series Classifca-

tion, including a rule-based algorithm as well as four different Machine Learning

algorithms. Beyond the ML-approaches, Dynamic Time Warping combined with

k -Nearest Neighbors (DTW+k -NN) acts as canonical baseline method. Additionally,

Random Forest, a Relational Graph Convolution Neural Network (RGCN) and a

spatio-temporal Relational Graph Convolution Neural Network (stRGCN) were ap-

plied. For the rule-based system and the Neural Network approaches, the filling and

packaging line was represented as a graph with machines as nodes and conveyors as

edges.

The introduced rule-based approach outperforms the Avalanche algorithm. Fur-

thermore, all Machine Learning approaches outperform the DTW+k -NN baseline

and the Avalanche algorithm. Thus, all developed approaches fulfill the requirement

of increasing the classification accuracy.

During this work, a tool for automatically extracting characteristic values of tem-

121

122 Chapter 5. Conclusion and Outlook

poral error propagation was developed and implemented. It is used for configuring

the Avalanche algorithm and the introduced rule-based system and heavily decreases

configuration effort per roll-out. Therefore, the tool contributes to rendering the

rule-based models scalable.

To apply Neural Networks on categorical data with dynamic temporal length (since

stoppages in the line have variable durations), two approaches of data preprocessing

were elaborated. The first approach extracts engineered features from the temporal

data-dimension as input to a Random Forest and a RGCN. The second one down-

samples the multivariate time-series of variable length, either with fixed sampling

rate to a shorter time-series that still has flexible lengths for DTW+k -NN, or by

using an adaptive sampling rate, to a fixed length for stRGCN.

The Neural Network(NN) approaches are elaborated in order to solve a Graph

Classification task with the special property of classes being equal to the graphs

nodes, to select the root-cause machine in the line. I exploited this property to

build up the above mentioned Neural Network architectures in a fully convolutional

approach. This way, the models are adaptable to any filling line by exchanging

the line’s graph but without the need for model training. Using these models, it

is now possible to use Multi-Task Learning(MTL) over multiple production lines,

and Transfer Learning(TL) to apply a trained model on an unknown line. This

contributes to the goals of cheaper roll-out costs per line as well as immediate

usability, since after training a model on a variety of lines, it can be transferred to

another line without training it on the new line’s data. To the best of my knowledge,

the fully convolutional Graph Neural Network architecture in general as well as the

special adaption for MTL and TL are novel contributions to scientific discourse.

During evaluation, it has turned out that choosing the appropriate model for

the given task is severely dependent on the available data-quantity as well as on

the degree of standardization in machine-state data and in selecting the root-cause

machine by the users.

If the described standardization is of low degree, only a Machine Learning(ML)

model, that is trained on only one filling line, has the ability to adapt to all peculiar-

ities of the given line and thus will be able to solve the task with high accuracy. On

the other hand, a high degree of standardization simplifies the task in such way that

the introduced rule-based expert system is able to solve the task with accuracies of

over 90%. In this case, classifications are highly explainable and all efforts regarding

training, deploying and maintaining ML-models are avoided.

5.2. Outlook 123

In between the two described scenarios, when a sufficient but non-optimal data-

quality is present, ML-approaches promise an increased ability of overcoming data

inconsistencies due to, in comparison to the rule-based approach, significantly larger

receptive fields and the ability to learn a huge variety of patterns.

In case of implementing one of the introduced Machine Learning models, expert

labels are necessary for building up the corresponding dataset. In order to decrease

the labeling effort, Active Learning was introduced and optimized to choose the

most promising examples and request the corresponding expert’s assessment. We

were able to show labor savings of the experts of about 40% by combining the query

strategies Uncertainty Sampling and Nearest Neighbor Criterion by using Dynamic

Ensemble Active Learning. This heavily contributes to the requirement of saving

labor per roll-out.

With this work, multiple algorithms for detecting the root-cause machine were

elaborated which were able to solve the given problem with accuracies of at least 83%

and up to 94% and were able to be activated for a new filling- and packaging-line

quickly and with substantially decreased effort.

5.2 Outlook

In general, improvements in data-standardization and a so-called feedback loop, for

gaining customers’ classifications corresponding to stoppages as labels, have to be

realized. Additionally, the standards for interpreting a lead-machine stoppage have

to be set and published by Syskron and Krones to gain a shared awareness beyond

users, and thus increase acceptance of algorithm results by increasing transparency.

By implementing the described feedback loop, the foundation for a growing dataset

is laid. In the first step, this can be used to further improve the rule based system

and implement it to the productive service. Choosing the rule based system as first

increment is reasonable since the corresponding effort is relatively low but introduces

a significant accuracy increase. Depending on the status of data-quality and the

standardization the of customers’ interpretation, introducing a Machine Learning

based model has to be re-evaluated on a regular basis.

Over time, the behavior of introduced NN-models with growing datasets has to be

evaluated and hyperparameters have to be re-evaluated to match the new demands.

Additionally, the effect of introducing filter pruning strategies has to be analyzed.

124 Chapter 5. Conclusion and Outlook

I assume that Multi-Task Learning on expert labels will start outperforming train-

ing on the algorithmically labeled dataset when a sufficient amount of manually

labeled examples is available. This assumption has to be verified and the correspond-

ing amount of manually provided labels has to be estimated. When working with

expert labels in any way, label cleaning will play a very important role and has to be

developed. Additionally, the question, whether one model should be trained to solve

the classification task for all filling lines or if alternatively overall performance is

increased by splitting the lines into clusters of similar characteristics (like returnable

glass lines vs. one-way plastic lines) and train one model per cluster, has to be

answered.

6 Appendix

6.1 Line graphs

For better understanding the four filling and packaging lines studied, their graph

structures with machines as nodes and connecting conveyors as edges are presented

and explained in this section.

Figure 6.1 Line graph of customer-b filling and pack-
aging line. This is used to fill beer into
multi-way glass bottles

The architectures of customer

a’s and b’s lines are very sim-

ilar and made for filling beer

into multi-way glass bottles like

usual for German beer (com-

pare Figure 6.2 and Figure 6.1).

The process starts by depalet-

tizing crates, full of empty and

used bottles, from the incom-

ing palette. The empty palette

is transported to the Palettizer

to recieve the completed full

crates. The depalettized crates

are transported to the Unpacker

where empty bottles are re-

moved from the crates and put

on bottle transport towards the Washer. The empty crates are carried to the packer.

After washing the bottles, they have to pass the Empty Bottle Inspector which

controls the bottle for all types of quality issues before filling the beer into it.

The Filler includes a capping module s.t. the bottle is filled and also closed when

exiting from the Filler. Subsequently, the bottle has to get labelled in the Labeller.

Now the bottle itself is finished and is put into a crate at the Packer and the crate

is placed onto a palette inside the palettizer.

125

126 Chapter 6. Appendix

Figure 6.2 Line graph of customer-a filling and pack-
aging line. This is used to fill beer into
multi-way glass bottles

In between all of the described

steps, there are usually again

multiple smaller machines or

modules e.g. for checking the

filling level or placement of the

labels. These are commonly ei-

ther directly connected to their

parent-machine like the filling

level inspector is connected to

the Filler, or show very low

probability of causing a stop-

page. Thus, they are not or only

indirectly taken into account in

the root cause analysis.

An example for machines like

this are Cargo Safeguarding and

Wrapper of customer-a. They

also exist at customer b and se-

cure the crates from falling off

their palette. But at customer-

b the decision was made that their probability of being the root causer is too small

to take them into the analysis while customer-a wanted to observe them. As we can

see in the table of available labels e.g. Table 4.3, Cargo Safeguarding has never been

the root cause for a labeled example and Wrapper was selected only ten from 539

times by the expert.

Customer-h also runs a multi-way glass line which thus is very similar to the

already mentioned lines (compare Figure 6.4). This time, water and soft drinks are

filled and additionally, the line is a little more complex since it needs to run on a

very high efficiency level due to smaller win margins on selling water compared to

selling beer.

In addition to the already described machines, in this line two Sekamats, arranged

in parallel, are present. These filter the unpacked bottles for shapes that are not

the currently processed one. Due to their parallel arrangement, the functional area

of sorting becomes significantly more stable since most probably one of the two

machines is usually able to remain working when the other has a failure. Thus the

6.1. Line graphs 127

subsequent conveyor areas fill with only about half the speed. This can also be

witnessed when looing again into Table 4.3 where the Sekamats are only chosen 4 of

428 times by the expert.

Figure 6.3 Line graph of customer-w
filling and packaging line.
This is used to fill water
into one-way plastic bot-
tles

The last of our analyzed lines is very different

to the previous ones (compare Figure 6.3). On

the one hand, it does not fill glass but plastic bot-

tles, on the other hand, these are one-way bottles

and not returnable ones. Thus, the line starts

with a Blower that recieves so-called preforms

that look a little similar to test tubes which are

known from laboratories but already possess the

thread which will later carry the cap. This pre-

form is heated and expanded into its final shape.

Afterwards it is handed to the Labeller which

is directly connected without a conveyor in be-

tween. Subsequently, the labeled bottle again is

directly handed over to the Filler. Those three

machines are combined to one block. That also

means: If one of them has a problem, all three

are stopped. But due to severe place saving this

drawback is more than erased. The bottle now

is in its final state and has to be packed and

palettized. As we are used to, one-way plastic bottles most of the time are not put

into a crate but combined to e.g. a sixpack by a plastic sleeve. The sixpacks are

afterwards put onto their palette in several layers.

128 Chapter 6. Appendix

Figure 6.4 Line graph of customer-h filling and packaging line. This is used to
fill water or soft-drinks into multi-way glass bottles

6.2. Confusion matrices 129

6.2 Confusion matrices

6.2.1 Transfer Learning: RGCN
D

ep
a
ll

et
iz

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

C
a
rg

o
S

a
fe

g
.

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer
Wrapper

A
ct

u
al

2 1 4 0 0 3 0 0
0 1 1 0 0 0 0 0
0 1 3 0 0 1 0 0
0 0 12 0 0 0 0 0
0 0 2 11 0 0 0 0
0 0 0 0 11 1 0 0
0 0 1 0 0 4 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3

0

5

10

(a) Transfer to customer a

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

0 2 0 0 1

0 1 1 0 0

0 4 0 1 0

9 1 0 0 0

0 23 1 0 0

0 0 10 0 0

0 0 0 2 0

0 0 0 0 8
0

10

20

(b) Transfer to customer b

D
ep

a
ll
et

iz
er

W
a
sh

er

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

N
ew

-g
la

ss
D

ep
a
l

Predicted

Depalletizer
Washer

EBI
Filler

Labeller
Packer

Palletizer
New-glass Depal

A
ct

u
al

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 14 0 0 0 0 1

0 4 1 12 0 0 0 0

0 0 0 0 10 0 0 0

0 0 0 0 0 8 0 0

2 0 0 0 0 2 7 0

0 0 0 0 0 0 0 1
0

5

10

(c) Transfer to customer h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

25 9 0 2

0 5 0 1

2 0 9 0

0 0 0 7

0 0 0 4

0

10

20

(d) Transfer to customer w

Figure 6.5 Confusion matrix for performance of RGCN when transferring to
given customer after Multi-Task Learning on the other three cus-
tomers.

130 Chapter 6. Appendix

6.2.2 Multi-Task Learning: spatio-temporal RGCN

D
ep

a
ll

et
iz

er

U
n

p
a
ck

er

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

C
a
rg

o
S

a
fe

g
.

W
ra

p
p

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

Cargo Safeg.
Wrapper

A
ct

u
al

6 0 4 10 4 0 11 0 0 0
0 0 3 2 1 0 5 0 0 0
0 0 13 6 3 1 1 0 0 0
0 0 1 28 2 2 2 0 0 0
0 0 0 2 51 1 0 0 0 0
0 1 0 3 2 38 1 0 0 0
0 0 0 2 0 1 27 0 0 0
0 0 0 0 1 0 4 10 0 0
0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 2 0 0 2

0

20

40

(a) customer-a

W
a
sh

er

E
B

I

F
il

le
r

L
a
b

el
le

r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Depalletizer
Unpacker

Washer
EBI

Filler
Labeller

Packer
Palletizer

A
ct

u
al

3 0 0 0 3 0

2 1 1 3 2 1

17 1 1 0 1 0

0 35 0 1 0 0

0 0 69 0 0 0

0 0 0 55 1 0

0 0 0 2 17 1

1 0 0 1 1 21
0

20

40

60

(b) customer-b

S
ek

a
m

a
t

2

S
ek

a
m

a
t

1

W
a
sh

er

E
B

I

F
il
le

r

L
a
b

el
le

r

P
a
ck

er

P
a
ll
et

iz
er

C
ra

te
W

a
sh

er

Predicted

Depalletizer
Unpacker

Sekamat 2
Sekamat 1

Washer
EBI

Filler
Labeller

Packer
Palletizer

Crate Washer
New-glass Depal

A
ct

u
al

3 0 0 3 0 1 2 2 1
1 0 0 1 3 0 0 0 0
2 0 0 2 0 0 0 0 0
0 9 0 0 0 0 0 0 0
0 0 18 4 1 0 0 1 0
0 0 0 54 1 0 0 0 0
0 0 0 2 42 2 0 0 0
0 0 0 0 0 32 0 1 0
0 0 0 0 0 0 29 6 0
0 0 0 1 1 3 2 24 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0

0

20

40

(c) customer-h

B
lo

w
er

L
a
b

el
le

r

F
il

le
r

P
a
ck

er

P
a
ll

et
iz

er

Predicted

Blower

Labeller

Filler

Packer

Palletizer

A
ct

u
al

8 0 1 16 1

0 4 1 2 0

1 1 5 2 0

0 0 1 10 2

0 1 1 0 7

0

5

10

15

(d) customer-w

Figure 6.6 Confusion matrices for every customer after conducting Multi-Task
Learning using the spatio-temporal Graph Convolutional Neural Net-
work on algorithmically labeled data of all four customers.

6.3. Hyperparameter tuning stRGCN 131

6.3 Hyperparameter tuning stRGCN

6.3.1 Number of blocks and layers

1 3 5 7 9 15 20 30

number of layers

2
3

4
5

n
u

m
b

er
of

b
lo

ck
s

64 68 68 67 68 67 67 65

67 68 68 68 68 66 0 0

67 68 67 68 0 0 0 0

68 68 0 0 0 0 0 0

0

20

40

60

(a) customer-a

1 3 5 7 9 15 20 30

number of layers
2

3
4

5

n
u

m
b

er
of

b
lo

ck
s

83 87 88 87 88 87 86 86

87 87 87 86 86 87 0 0

86 87 87 86 0 0 0 0

87 87 0 0 0 0 0 0

0

25

50

75

(b) customer-b

1 3 5 7 9 15 20 30

number of layers

2
3

4
5

n
u

m
b

er
of

b
lo

ck
s

76 83 82 81 81 80 82 81

81 82 81 80 81 81 0 0

81 81 82 81 0 0 0 0

81 80 0 0 0 0 0 0

0

25

50

75

(c) customer-h

1 3 5 7 9 15 20 30

number of layers

2
3

4
5

n
u

m
b

er
of

b
lo

ck
s

76 84 86 86 84 88 86 87

82 86 86 85 87 86 0 0

83 87 86 86 0 0 0 0

84 84 0 0 0 0 0 0

0

25

50

75

(d) customer-w

Figure 6.7 Accuracies in percent for comparing accuracies depending on se-
lected number of blocks and number of layers. Averaged over 10
runs. Combinations showing an accuracy of zero were not evaluated.
Three blocks with three layers each were selected as hyperparameters
for later usages.

132 Chapter 6. Appendix

6.3.2 Number of channels

4 8 16 32 64

number of channels

0.5

0.6

0.7

ac
cu

ra
cy

(a) customer-a

4 8 16 32 64

number of channels

0.6

0.8

1.0

ac
cu

ra
cy

(b) customer-b

4 8 16 32 64

number of channels

0.78

0.80

0.82

0.84

ac
cu

ra
cy

(c) customer-h

4 8 16 32 64

number of channels

0.6

0.8
ac

cu
ra

cy

(d) customer-w

Figure 6.8 Accuracies in percent for comparing accuracies depending on se-
lected number of channels. This hyperparameter is set in all convo-
lutional layers. Averaged over 10 runs. 16 channels were selected
as hyperparameter for later usages.

6.3. Hyperparameter tuning stRGCN 133

6.3.3 Dropout rate

0.0 0.1 0.2 0.3 0.4 0.5

dropout rate

0.66

0.68

0.70

0.72

ac
cu

ra
cy

(a) customer-a

0.0 0.1 0.2 0.3 0.4 0.5

dropout rate

0.86

0.88

ac
cu

ra
cy

(b) customer-b

0.0 0.1 0.2 0.3 0.4 0.5

dropout rate

0.775

0.800

0.825

0.850

ac
cu

ra
cy

(c) customer-h

0.0 0.1 0.2 0.3 0.4 0.5

dropout rate

0.75

0.80

0.85

0.90

ac
cu

ra
cy

(d) customer-w

Figure 6.9 Accuracies in percent for comparing accuracies depending on
dropout rate. Dropout is used on the output of graph convolution
layers. Averaged over 10 runs. Dropout rate of 0.2 selected as
hyperparameter for later usages.

Bibliography

[1] Frank L Härte. Efficiency analysis of packaging lines. Delft University Press,

1997.

[2] Tobias Voigt. Neue Methoden für den Einsatz der Informationstechnologie bei

Getränkeabfüllanlagen. Dissertation, Technische Universität München, München,

2004.

[3] Yves Dallery and Stanley B Gershwin. Manufacturing flow line systems: a

review of models and analytical results. Queueing systems, 12(1-2):3–94, 1992.

[4] Prof. Dr. Willibald A. Günthner and Dipl.-Ing. Makrem Kadachi. Simula-

tionsgestützte planung und nutzung von getränke-abfüllanlagen, 2001. https:

//mediatum.ub.tum.de/doc/1188204/file.pdf, last accessed at 9th January

2022.

[5] Frank L Härte. Efficiency analysis of packaging lines. Delft University Press,

1997.

[6] Dipl.-Ing. Axel Kather, Dipl.-Ing. Christian Haufe, and Dr.-Ing. Tobias Voigt.

Ws pack specification of the interface content (part 2) version 08. Weihenstephan

Standards for Production Data Acquisition, 2016.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org, last visited at 31 august

2020.

[8] John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for

neural networks. Journal of Big Data, 7:1–41, 2020.

[9] Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf, and Ed-

ward A. Fox. Natural language processing advancements by deep learning: A

survey. CoRR, abs/2003.01200, 2020.

135

https://mediatum.ub.tum.de/doc/1188204/file.pdf
https://mediatum.ub.tum.de/doc/1188204/file.pdf
http://www.deeplearningbook.org

136 Bibliography

[10] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables.

arXiv preprint arXiv:1604.06737, 2016.

[11] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning

structured embeddings of knowledge bases. In Proceedings of the Twenty-Fifth

AAAI Conference on Artificial Intelligence, 2011.

[12] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Deep learning for time series classification: a review.

Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

[13] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn

Keogh. The great time series classification bake off: a review and experimen-

tal evaluation of recent algorithmic advances. Data Mining and Knowledge

Discovery, 31(3):606–660, 2017.

[14] Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. On the non-

trivial generalization of dynamic time warping to the multi-dimensional case. In

Proceedings of the 2015 SIAM international conference on data mining, pages

289–297. SIAM, 2015.

[15] Alejandro Pasos Ruiz, Michael Flynn, and Anthony Bagnall. Benchmarking

multivariate time series classification algorithms. arXiv e-prints, pages arXiv–

2007, 2020.

[16] Donald J Berndt and James Clifford. Using dynamic time warping to find

patterns in time series. In KDD workshop, volume 10, pages 359–370. Seattle,

WA, USA:, 1994.

[17] Esmaeil Alizadeh. An illustrative introduction to dy-

namic time warping. https://towardsdatascience.com/

an-illustrative-introduction-to-dynamic-time-warping-36aa98513b98,

last visited at 16 october 2020.

[18] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann

Ratanamahatana. Fast time series classification using numerosity reduction.

In Proceedings of the 23rd international conference on Machine learning, pages

1033–1040, 2006.

https://towardsdatascience.com/an-illustrative-introduction-to-dynamic-time-warping-36aa98513b98
https://towardsdatascience.com/an-illustrative-introduction-to-dynamic-time-warping-36aa98513b98

Bibliography 137

[19] Prodromos E Tsinaslanidis, Achilleas D Zapranis, et al. Technical analysis for

algorithmic pattern recognition. Springer, 2016.

[20] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8):832–844,

1998.

[21] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[22] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu

Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning,

2019.

[23] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE transactions on

neural networks, 20(1):61–80, 2008.

[24] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan

Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:

A review of methods and applications. AI Open, 1:57–81, 2020.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In European semantic web conference, pages 593–607. Springer, 2018.

[27] Yuxiao Liu, Ning Zhang, Dan Wu, Audun Botterud, Rui Yao, and Chongqing

Kang. Guiding cascading failure search with interpretable graph convolutional

network. arXiv preprint arXiv:2001.11553, 2020.

[28] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Deep learning for time series classification: a review.

Data mining and knowledge discovery, 33(4):917–963, 2019.

138 Bibliography

[29] David Kriesel. A Brief Introduction to Neural Networks. 2007.

https://www.dkriesel.com/en/science/neural_networks?s[]=brief&

s[]=introduction&s[]=to&s[]=neural&s[]=networks, last accessed at 9th

of January 2022.

[30] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.

Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint

arXiv:1906.00121, 2019.

[31] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language

modeling with gated convolutional networks. In International conference on

machine learning, pages 933–941. PMLR, 2017.

[32] Acml2020 wsrl workshop. https://wsl-workshop.github.io/, last accessed

at 20th November 2020.

[33] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National

Science Review, 5(1):44–53, 08 2017.

[34] Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and S Yu

Philip. Active learning: A survey. In Data Classification: Algorithms and

Applications, pages 571–605. CRC Press, 2014.

[35] Elmar Haussmann, Michele Fenzi, Kashyap Chitta, Jan Ivanecky, Hanson Xu,

Donna Roy, Akshita Mittel, Nicolas Koumchatzky, Clement Farabet, and Jose M

Alvarez. Scalable active learning for object detection. In 2020 IEEE Intelligent

Vehicles Symposium (IV), pages 1430–1435. IEEE, 2020.

[36] Simon Bachhuber. Increasing label efficiency in supervised classification for

industrial application. Master’s thesis, University Regensburg, 2020.

[37] Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy M Hospedales. Dynamic

ensemble active learning: A non-stationary bandit with expert advice. In 2018

24th International Conference on Pattern Recognition (ICPR), pages 2269–2276.

IEEE, 2018.

[38] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, 2010.

https://www.dkriesel.com/en/science/neural_networks?s[]=brief&s[]=introduction&s[]=to&s[]=neural&s[]=networks
https://www.dkriesel.com/en/science/neural_networks?s[]=brief&s[]=introduction&s[]=to&s[]=neural&s[]=networks
https://wsl-workshop.github.io/

Bibliography 139

[39] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer

learning. Journal of Big data, 3(1):9, 2016.

[40] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? arXiv preprint arXiv:1411.1792, 2014.

[41] W I Schollhorn, Patrick Hegen, and Keith Davids. The nonlinear nature of

learning-a differential learning approach. The Open Sports Sciences Journal,

5(1), 2012.

[42] Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science

Review, 5(1):30–43, 2018.

[43] Kim-Han Thung and Chong-Yaw Wee. A brief review on multi-task learning.

Multimedia Tools and Applications, 77(22):29705–29725, 2018.

[44] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash

Pandey, and Christopher Ré. Training complex models with multi-task weak

supervision, 2018.

[45] Stefan Walter Flad. Neue Methoden zur Effizienzanalyse in verketteten Pro-

duktionslinien am Beispiel von Getränkeabfüllanlagen. PhD thesis, Technische

Universität München, 2018.

[46] Axel Kather. Fehlerlokalisierung in verketteten Produktionslinien am Beispiel

von Lebensmittelverpackungsanlagen. PhD thesis, Technische Universität

München, 2009.

[47] Tobias Voigt, Stefan Flad, and Peter Struss. Model-based fault localization in

bottling plants. Advanced Engineering Informatics, 29(1):101–114, 2015.

[48] Rich Caruana. Multitask Learning, pages 95–133. Springer US, Boston, MA,

1998.

[49] Sebastian Ruder. An overview of multi-task learning in deep neural networks.

arXiv preprint arXiv:1706.05098, 2017.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

140 Bibliography

[51] Matthias Dorfer, Bernhard Lehner, Hamid Eghbal-zadeh, Heindl Christop, Pais-

cher Fabian, and Widmer Gerhard. Acoustic scene classification with fully

convolutional neural networks and i-vectors. DCASE2018 Challenge, 2018.

[52] Matthias Fey. pytorch-geometric, 2021. https://pytorch-geometric.

readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.

RGCNConv, last accessed at 17th December 2021.

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv

Danksagung

An dieser Stelle möchte ich allen herzlich danken, die zum Zustandekommen dieser

Arbeit beigetragen haben. Insbesondere:

• Meinen Eltern und Großeltern, die mir die Möglichkeit gegeben haben meine

Ausbildung bis zur Promotion verfolgen zu können und mich immer unterstützt

und motiviert haben.

• Prof. Dr. Elmar Lang für die ausgezeichnete Betreuung, die interessanten

Diskussionen und die uneingeschränkte Hilfsbereitschaft bezüglich aller The-

men. Das macht die Arbeitsgruppe zu einem familiären Umfeld in dem man

sich gerne aufhält.

• Der Syskron X bzw. Syskron GmbH für die Bereitstellung des Themas und

der fachlichen Betreuung. Allen Syskron- und Krones Kollegen ein herzliches

Dankschön für alle mit großer Selbstverständlichkeit gegebenen Hilfestellungen

und die angenehme Zusammenarbeit. Besonders unter direktem Druck von

Kunden und Zeitplänen ist das sehr bemerkenswert.

• Meiner Freundin Thea für ihre Unterstützung, Aufmuterung und das Verständ-

nis für den ”zerstreuten Physiker” in der letzten Zeit des Verfassens dieser

Arbeit. Ich hoffe, das bessert sich wieder ;).

• Meinen Bürokollegen und Masteranden and der Uni für die gute Zusamme-

narbeit und die Freundschaft, die auch über die Uni hinaus geht. Ich bin mir

sicher, es gibt sonst nirgends eine so effiziente Umwandlung von Keksen in

Ideen!

• Der DataScience-Community in Regensburg. Was gibt es schöneres als gute

Ideen für die Promotion beim Beachvolleyball sammeln zu können?

141

142

• Allen Freunden und Bekannten. Ihr macht es mir sehr leicht das Leben zu

genießen und in der Freizeit die Akkus wieder aufzuladen.

	Nomenclature
	Introduction
	Theoretical background
	Bottling Plant
	Manufacturing flow lines
	Common machines
	Bottle-flow control
	Error propagation

	Line data
	Available signals for representing line behaviour
	Data characteristics
	Encoding of categorical data
	Representing a filling line

	Time-series classification (TSC)
	Machine Learning nomenclature
	Dynamic Time Warping and k-Nearest Neighbours
	Manual feature extraction
	Random Forest classifier
	Neural Network approaches

	Weak Supervision
	Active Learning
	Transfer Learning
	Multi-Task Learning

	Related work

	Methods
	Probabilistic formulation of temporal error propagation
	Extracting the temporal characteristics of error propagation from data
	Causality between stoppages
	Long range causality

	Data handling
	Temporal data downsampling
	Manual feature extraction

	Rule based analysis approaches
	General methods for Machine Learning approaches
	Dynamic Time Warping and k-Nearest Neighbors
	Random Forest
	Algorithmic labeling
	Active Learning
	Multi-Task Learning and Transfer Learning
	Fully Convolutional Graph Network architectures
	Relational Graph Convolutional Neural Network (RGCN)
	spatio-temporal Relational Graph Convolutional Neural Network (stRGCN)

	Adding lead-machine information to data

	Results
	Data characteristics
	Rule-based approaches
	Avalanche algorithm
	New rule-based approach

	Dynamic Time Warping and k-Nearest Neighbors
	Optimal parametrization
	Results per customer
	Inference durations

	Random Forest
	Relational Graph Convolutional Neural Network
	Training on single lines using RGCN
	Multi-Task Learning using RGCN
	Transfer Learning using RGCN

	spatio-temporal Relational Graph Convolutional Neural Network
	Training on single lines using stRGCN
	Multi-Task Learning using stRGCN
	Transfer Learning using stRGCN

	Comparing RGCN to stRGCN
	Milestones for training Graph Convolutional Networks
	Edge types
	Fully convolutional architecture
	Temporal data selection
	Lead-machine information

	Active Learning
	Results overview

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Line graphs
	Confusion matrices
	Transfer Learning: RGCN
	Multi-Task Learning: spatio-temporal RGCN

	Hyperparameter tuning stRGCN
	Number of blocks and layers
	Number of channels
	Dropout rate

	Bibliography

